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ANALYSIS ON PATH SPACES OVER RIEMANNIAN MANIFOLDS

WITH BOUNDARY∗
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Abstract. By using Hsu’s multiplicative functional for the Neumann heat equation, a natural
damped gradient operator is defined for the reflecting Brownian motion on compact manifolds with
boundary. This operator is linked to quasi-invariant flows in terms of an integration by parts formula,
which leads to the standard log-Sobolev inequality for the associated Dirichlet form on the path space.
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1. Introduction

Stochastic analysis on the path space over a complete Riemannian manifold with-
out boundary has been well developed since 1992 when B. K. Driver [3] proved the
quasi-invariance theorem for the Brownian motion on compact Riemannian mani-
folds. A key point of the study is to first establish an integration by parts formula
for the associated gradient operator induced by the quasi-invariant flows, and then
prove functional inequalities for the corresponding Dirichlet form (see e.g. [5, 9, 2]
and references within). For more analysis on Riemannian path spaces we refer to
[4, 10, 11] and references within.

On the other hand, however, the analysis on the path space over a manifold with
boundary is still very open. To see this, let us mention [12], where an integration
by parts formula was established on the path space of the one-dimensional reflect-
ing Brownian motion. Let e.g. Xt= |bt|, where bt is the one-dimensional Brownian

motion. For h∈C([0,T ];R) with h0=0 and
∫ T

0
|ḣt|

2dt<∞, let ∂h be the derivative
operator induced by the flow X+εh, i.e.

∂hF =

n
∑

i=1

hti∇if(Xt1 , · · · ,Xtn),

where n∈N, 0<t1< · · ·<tn≤T and F (X)=f(Xt1 , · · · ,Xtn) for some f ∈C∞(Mn).
As the main result of [12], when h∈C2

0 (0,T ), [12, Theorem 2.3] provides an integration
by parts formula for ∂h by using an infinite-dimensional generalized functional in
the sense of Schwartz. Since for non-trivial h the flow is not quasi-invariant, this
integration by parts formula can not be formulated by using the distribution of X
with a density function, and the induced gradient operator does not provide a Dirichlet
form on the L2-space of the distribution of X. In this paper, we shall establish an
essentially different integration by parts formula using quasi-invariant flows.

When M is a half-space of Rd, which essentially reduces to the one-dimensional
setting, quasi-invariant flows have been constructed in [1, §4(a)] by solving SDEs with
reflecting boundary. By modifying the idea of [1], we shall define quasi-invariant flows
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on a d-dimensional Riemannian manifold with boundary for all h∈H in an intrinsic
way, where

H :=

{

h∈C([0,T ];Rd) : h0=0,

∫ T

0

|ḣt|
2dt<∞

}

is the Cameron-Martin space. By establishing an integration by parts formula, these
flows will be linked to a damped gradient operator defined by using Hsu’s multiplica-
tive functionals constructed in [9] (see Section 2). In Section 3 we will derive the
Gross log-Sobolev inequality for the associated Dirichlet form.

2. Damped gradient and integration by parts

In this section, we aim to define the damped gradient operator by using the multi-
plicative functional constructed in [9] to replace the known one as in [7] on manifolds
without boundary, and to link this operator to quasi-invariant flows constructed by
solving SDEs with reflection as in [1] where the half-space of Rd is considered. To
this end, we first recall the construction of the reflecting Brownian motion by solving
SDEs on the manifold with local times, then introduce Hsu’s multiplicative functional
which gives an explicit formulation of the damped gradient for cylindrical functions,
and finally establish an integration by parts formula which links the gradient operator
to quasi-invariant flows constructed in the spirit of [1].

Let M be a d-dimensional compact connected Riemannian manifold with bound-
ary ∂M . Let o∈M and T >0 be fixed. Then the path space for the reflecting
Brownian motion on M starting at o is

W ={γ∈C([0,T ];M) : γ0=o}.

Let Bt be the d-dimensional Brownian motion on a complete probability space
(Ω,F ,P) with natural filtration {Ft}t≥0. For any x∈M , let OxM be the set of all or-
thonormal bases for the tangent space TxM at point x, and let O(M) :=∪x∈MOx(M)
be the frame bundle. Then for any x∈M , the reflecting Brownian motion starting at
x can be constructed by solving the SDE

dXx
t =ux

t ◦dBt+N(Xx
t )dl

x
t , (2.1)

where ux
t ∈OXx

t
(M) is the horizontal lift of Xx

t on the frame bundle O(M), N is the
inward unit normal vector field on ∂M , and lxt is the local time of Xx

t on the boundary
∂M. Let Xx={Xx

t : 0≤ t≤T}.
To introduce Hsu’s multiplicative functional, we need to introduce some Rd

⊗

R
d-

valued functionals on the frame bundle. Let Ric be the Ricci curvature on M and I

the second fundamental form on ∂M . For any u∈O(M), let

Ru(a,b)=Ric(ua,ub), a,b∈R
d.

Let π∂ :TM→T∂M be the orthogonal projection at points on ∂M , and let π :O(M)→
M is the canonical projection. For any u∈O(M) with πu∈∂M , let

Iu(a,b)= I(π∂ua,π∂ub), a,b∈R
d.

Finally, for u∈∂O(M), let

Pu(a,b)= 〈ua,N〉〈ub,N〉, a,b∈R
d.
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For any ε>0, let Qε
t solve the following SDE on R

d
⊗

R
d:

dQx,ε
t =−Q

x,ε
t

{1

2
Rux

t
dt+

(

ε−1Pux

t
+Iux

t

)

dlt

}

, Q
x,ε
0 = I. (2.2)

According to [9, Theorem 3.4], when ε↓0 the process Q
x,ε
t converges in L2 to an

adapted right-continuous process Qx
t with left limit, such that Qx

t Pux

t
=0 if Xx

t ∈∂M.

Consequently, if Ric≥−K and I≥−σ for some continuous functions K and σ on M ,
then

‖Qx
t ‖≤ exp

{

1

2

∫ t

0

K(Xx
s )ds+

∫ t

0

σ(Xx
s )dl

x
s

}

, t≥0,

where ‖·‖ is the operator norm on R
d. In particular, E‖Qx

t ‖
p<∞ holds for any p>1.

For f ∈C(M), let

Ptf(x)=Ef(Xx
t ), x∈M.

Then Pt is the Neumann semigroup. By [9, Theorem 4.2] (see also the last display in
the proof of [9, Theorem 5.1]), s 7→Qx

s (u
x
s )

−1∇Pt−sf(X
x
s ) is a martingale. So,

(ux
0)

−1∇Ptf(x)=E
{

Qx
t (u

x
t )

−1∇f(Xx
t )
}

, x∈M,u0∈Ox(M). (2.3)

In general, for s≥0, let (Qx
s,t+s)t≥0 be the associated multiplicative functional

for the process (Xx
t+s)t≥0. We have

Qx
s,tQ

x
t,r=Qx

s,r, 0≤s≤ t≤ r. (2.4)

We shall use these multiplicative functionals to define the damped gradient operator
(see [7] for the damped gradient operator for manifolds without boundary).

Let

FC∞=
{

W ∋γ 7→f(γt1 , · · · ,γtn) :n≥1,0<t1< · · ·<tn≤T,f ∈C∞(M)
}

be the class of smooth cylindrical functions on W . For any F ∈FC∞ with F (γ)=
f(γt1 , · · · ,γtn), define the damped gradient DF (Xx) as an H-valued random variable
by setting (DF )0(X

x)=0 and

d

dt
(DF )t(X

x)=
n
∑

i=1

1{t<ti}Q
x
t,ti

(ux
ti
)−1∇if(X

x
t1
, · · · ,Xx

tn
), t∈ [0,T ],

where ∇i denotes the gradient operator with respect to the i-th component. Then,
for any H-valued random variable h, we have

DhF (Xx) := 〈DF (Xx),h〉H=

n
∑

i=1

∫ ti

0

〈(ux
ti
)−1∇if(X

x
t1
, · · · ,Xx

tn
),(Qx

t,ti
)∗ḣt〉dt. (2.5)

Note that when ∂M =∅, we may let lt≡0 in (2.2), so that our formulation of DhF

goes back to the known one presented in [7] for manifolds without boundary.
Now, we intend to link DhF to the directional derivative induced by a quasi-

invariant flow. Let H̃ denote the set of all square-integrable H-valued adapted random
variables, i.e.

H̃=
{

h∈L2(Ω→H;P) : ht is Ft-measurable, t∈ [0,T ]
}

.
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Then H̃ is a Hilbert space with inner product

〈h,h̃〉
H̃
:=E

∫ T

0

〈ḣt,
˙̃
ht〉dt=E〈h,h̃〉H, h,h̃∈ H̃.

To describe DF by using a quasi-invariant flow, for h∈ H̃ and ε>0 let Xε,h
t solve

the SDE

dXε,h
t =u

ε,h
t ◦dBt+N(Xε,h

t )dlε,ht +εu
ε,h
t ḣtdt, X

ε,h
0 =x=πux

0 , (2.6)

where l
ε,h
t and u

ε,h
t are, respectively, the local time on ∂M and the horizontal lift on

O(M) for X
ε,h
t . Recall that when M is a half-space of Rd, it is shown in [1] that

{Xε,h}ε≥0 is a quasi-invariant flow. To see that {Xε,h}ε≥0 has the flow property also
in the Riemannian setting, let

Θ :W0 :={ω∈C([0,T ]) : ω0=0}→W

be measurable such that X=Θ(B). For any ε>0 and a function Φ :W0→W , let
(θhεΦ)(ω)=Φ(ω+εh). Then Xε,h=(θhεΘ)(B),ε≥0. Hence,

Xε1+ε2,h=θhε1X
ε2,h, ε1,ε2≥0.

Moreover, let us explain that the flow is quasi-invariant, i.e. for each ε≥0, the
distribution of Xε,h is absolutely continuous with respect to that of X. Let

Rε,h=exp

[

ε

∫ T

0

〈ḣt,dBt〉−
ε2

2

∫ T

0

|ḣt|
2dt

]

.

By the Girsanov theorem,

B
ε,h
t :=Bt−εht

is the d-dimensional Brownian motion under the probability Rε,h
P. Thus, the dis-

tribution of X under Rε,h
P coincides with that of Xε,h under P. Therefore, Xε,h is

quasi-invariant.
Finally, we are able to introduce the main result in this section, which provides

an integration by parts formula for Dh as well as a link between the damped gradient
Dh and the directional derivative induced by the flow {Xε,h}ε≥0.

Theorem 2.1. For any x∈M and F ∈FC∞,

E
{

DhF
}

(Xx)= lim
ε↓0

E
F (Xε,h)−F (Xx)

ε
=E

{

F (Xx)

∫ T

0

〈ḣt,dBt〉

}

holds for all h∈ H̃b, the set of all elements in H̃ with bounded ‖h‖H.

Since H̃b is dense in H̃, the above result implies that the projection of D onto H̃

can be determined by the flows Xε,h, h∈ H̃b. But it is not clear whether

DhF (Xx)= lim
ε↓0

F (Xε,h)−F (Xx)

ε
, h∈ H̃ (2.7)

holds or not.
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To prove Theorem 2.1, we need some preparations. In particular, we shall use
(2.3) and a conducting argument as in [8] for the case without boundary.

Lemma 2.2. Let x∈M and F ∈FC∞. Then

lim
ε↓0

E
F (Xε,h)−F (Xx)

ε
=E

{

F (Xx)

∫ T

0

〈ḣt,dBt〉

}

holds for all h∈ H̃b.

Proof. Let Bε,h
t =Bt−εht, which is the d-dimensional Brownian motion under

Rε,h
P. Reformulate (2.1) as

dXx
t =ux

t ◦dB
ε,h
t +N(Xx

t )dl
x
t +εutḣtdt.

By the weak uniqueness of (2.6), we conclude that the distribution of Xx under Rε,h
P

coincides with that of Xε,h under P. In particular, EF (Xε,h)=E[Rε,hF (Xx)]. Thus,

lim
ε↓0

E
F (Xε,h)−F (Xx)

ε
=lim

ε↓0
E

{

F (Xx) ·
Rε,h−1

ε

}

=E

{

F (Xx)

∫ T

0

〈ḣt,dBt〉

}

,

where the last step is due to the dominated convergence theorem since {Rε,h}ε∈[0,1]

is uniformly integrable for h∈ H̃b.

Lemma 2.3. For any n≥1, 0<t1< · · ·<tn≤T , and f ∈C∞(Mn),

(ux
0)

−1∇xEf(X
x
t1
, · · · ,Xx

tn
)=

n
∑

i=1

E
{

Qx
ti
(ux

ti
)−1∇if(X

x
t1
, · · · ,Xx

tn
)
}

holds for all x∈M and ux
0 ∈Ox(M), where ∇x denotes the gradient with respect to x.

Proof. By (2.3), the desired assertion holds for n=1. Assume that it holds for
n=k for some natural number k≥1. It remains to prove the assertion for n=k+1.
To this end, set

g(x)=Ef(x,Xx
t2−t1

, · · · ,Xx
tk+1−t1

), x∈M.

By the assumption for n=k we have

(ux
0)

−1∇g(x)=

k+1
∑

i=1

E
{

Qx
ti−t1

(ux
ti−t1

)−1∇if(x,X
x
t2−t1

, · · · ,Xx
tk+1−t1

)
}

for all x∈M, u0∈Ox(M). Combining this with the assertion for k=1 and using the
Markov property, we obtain

(ux
0)

−1∇xEf(X
x
t1
, · · · ,Xx

tk+1
)=(ux

0)
−1∇xEg(X

x
t1
)

=E
{

Qx
t1
(ux

t1
)−1∇g(Xx

t1
)
}

=

k+1
∑

i=1

E
{

Qx
ti
(ux

ti
)−1∇if(X

x
t1
, · · · ,Xx

tk+1
)
}

.
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Lemma 2.4. Let f ∈C∞(M). Then for any x∈M and t>0,

E

{

f(Xx
t )

∫ t

0

〈ḣs,dBs〉

}

=E

∫ t

0

〈(ux
t )

−1∇f(Xx
t ),(Q

x
s,t)

∗ḣs〉ds, h∈ H̃,t1∈ [0,T ].

Proof. Noting that

d

ds
Psf =

1

2
∆Psf, NPsf |∂M =0, s>0,

by (2.1) and the Itô formula we obtain

d(Pt−sf)(X
x
s )= 〈∇Pt−sf(X

x
s ),u

x
sdBs〉, s∈ [0,t).

This implies

f(Xx
t )=Ptf(x)+

∫ t

0

〈(ux
s )

−1∇Pt−sf(X
x
s ),dBs〉, s∈ [0,t].

Therefore,

E

{

f(Xx
t )

∫ t

0

〈ḣs,dBs〉

}

=E

∫ t

0

〈(ux
s )

−1∇Pt−sf(X
x
s ),ḣs〉ds. (2.8)

By (2.3) and the Markov property we have

(ux
s )

−1∇Pt−sf(X
x
s )=E

(

Qx
s,t(u

x
t )

−1∇f(Xx
t )
∣

∣Fs

)

.

So, the desired formula follows from (2.8) since ḣs is Fs-measurable.

As a consequence of (2.3) and Lemma 2.4, we have the following Bismut formula.

Corollary 2.5. For any v∈TxM and any h∈ H̃ with ht=(ux
0)

−1v,

〈v,∇Ptf(x)〉=E

{

f(Xx
t )

∫ t

0

〈(Qx
s )

∗ḣs,dBs〉

}

.

Proof. By (2.4) and applying Lemma 2.4 to h̃∈ H̃ in place of h, where
˙̃
hs=

(Qx
s )

∗ḣs, we obtain

E

{

f(Xt)

∫ t

0

〈(Qx
s )

∗ḣs,dBs〉

}

=E

∫ t

0

〈(ux
t )

−1∇f(Xx
t ),(Q

x
t )

∗ḣs〉ds

=E〈Qx
t (u

x
t )

−1∇f(Xt),(u
x
0)

−1v〉.

Then the proof is completed by combining this with (2.3).

Proof. [Proof of Theorem 2.1.] By Lemma 2.2, it suffices to prove

E{DhF}(Xx)=E

{

F (Xx)

∫ T

0

〈ḣt,dBt〉

}

, h∈ H̃ (2.9)
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for F (Xx)=f(Xx
t1
, · · · ,Xx

tn
) with f ∈C∞(Mn), where n≥1, 0<t1< · · ·<tn≤T . Ac-

cording to Lemma 2.4, (2.9) holds for n=1. Assuming (2.9) holds for n=k for some
k≥1, we aim to prove it for n=k+1. To this end, let

g(x)=Ef(x,Xx
t2−t1

, · · · ,Xx
tk+1−t1

), x∈M.

By the result for n=1 and the Markov property,

∫ t1

0

E〈(ux
t1
)−1∇g(Xx

t1
),(Qx

t,t1
)∗ḣt〉dt

=E

{

E(F (Xx)|Ft1)

∫ t1

0

〈ḣt,dBt〉

}

=E

{

F (Xx)

∫ t1

0

〈ḣt,dBt〉

}

.

(2.10)

On the other hand, by (2.4), Lemma 2.3, and the Markov property,

∫ t1

0

E〈(ux
t1
)−1∇g(Xx

t1
),(Qx

t,t1
)∗ḣt〉dt

=

∫ t1

0

E

〈

E

(

k+1
∑

i=1

Qx
t1,ti

(ux
ti
)−1∇if(X

x
t1
, · · · ,Xx

tk+1
)
∣

∣

∣
Ft1

)

,(Qx
t,t1

)∗ḣt

〉

dt

=
k+1
∑

i=1

∫ t1

0

〈(ux
ti
)−1∇if(X

x
t1
, · · · ,Xx

tk+1
),(Qx

t,ti
)∗ḣt〉dt.

Combining this with (2.5) and (2.10) we obtain

E
{

DhF (Xx)
}

=E

{

F (Xx)

∫ t1

0

〈ḣt,dBt〉

}

+E

k+1
∑

i=2

∫ ti

t1

〈(ux
ti
)−1∇if(X

x
t1
, · · · ,Xx

tk+1
),(Qx

t,ti
)∗ḣt〉dt.

(2.11)

By the Markov property and the assumption for n=k, we have

k+1
∑

i=2

E

∫ ti

t1

〈(ux
ti
)−1∇if(X

x
t1
, · · · ,Xx

tk+1
),(Qx

t,ti
)∗ḣt〉dt=E

{

F (Xx)

∫ T

t1

〈ḣt,dBt〉

}

.

Combining this with (2.11) we complete the proof.

3. The log-Sobolev inequality

Let µ be the distribution of X :=Xo for a fixed point o∈M . Let

E(F,G)=E
{

〈DF,DG〉H(X)
}

, F,G∈FC∞.

Since both DF and DG are functionals of X, (E ,FC∞) is a positive bilinear form
on L2(W ;µ). It is standard that the integration by parts formula (2.9) implies the
closability of the form (see Lemma 3.1). We shall use (E ,D(E)) to denote the closure
of (E ,FC∞). Moreover, (2.9) also implies the Clark-Ocone type martingale represen-
tation formula (see Lemma 3.2), which leads to the standard Gross [6] log-Sobolev
inequality. It is well known that the log-Sobolev inequality implies that the associated
Markov semigroup is hypercontractive and converges exponentially to µ in the sense
of relative entropy.
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Lemma 3.1. (E ,FC∞) is closable in L2(W ;µ).

Proof. Although the proof is standard by using the integration by parts formula,
we include it here for completeness. Let {Fn}n≥1⊂FC∞ such that E(Fn,Fn)≤1 for
all n≥0 and µ(F 2

n)+E(Fn−Fm,Fn−Fm)→0 as n,m→∞. We aim to prove that
E(Fn,Fn)→0 as n→∞. Since

E(Fn,Fn)=E(Fn,Fn−Fm)+E(Fn,Fm)≤
√

E(Fn−Fm,Fn−Fm)+E(Fn,Fm),

it suffices to show that for any G∈FC∞, one has E(Fn,G)→0 as n→∞. To this
end, let {hi}i≥1 be an ONB on H. For any ε>0 there exists k≥1 such that

∣

∣

∣
E(Fn,G)−

k
∑

i=1

E{(DhiFn)(DhiG)}(X)
∣

∣

∣
<ε,

where DhF := 〈DF,h〉H for F ∈FC∞ and h∈H. Since FC∞ is dense in L2(W ;µ),
there exists Gi∈FC∞ such that

E
{

|DhiG−Gi|
2(X)

}

<ε, 1≤ i≤k.

Therefore,

|E(Fn,G)|≤2ε+
k

∑

i=1

∣

∣E〈(GiDFn)(X),hi〉H
∣

∣.

Noting that GiDFn=D(FnGi)−FnDGi, by (2.9) we obtain

|E(Fn,G)|≤2ε+

k
∑

i=1

∣

∣

∣

∣

E

[

Fn(X)

{

Gi(X)

∫ T

0

〈ḣi
t,dBt〉−DhiGi(X)

}]∣

∣

∣

∣

.

Since µ(F 2
n)→0 as n→∞, by letting first n→∞ and then ε→0 we complete the

proof.

Lemma 3.2. For any F ∈FC∞, let D̃F (X) be the projection of DF (X) on H̃, i.e.

d

dt
(D̃F )t(X)=E

( d

dt
(DF )t(X)

∣

∣

∣
Ft

)

, t∈ [0,T ],(D̃F )0=0.

Then

F (X)=EF (X)+

∫ T

0

〈 d

dt
(D̃F )t(X),dBt

〉

.

Proof. By Theorem 2.1, we have

E〈h,D̃F 〉H(X)=E

{

F (X)

∫ T

0

〈ḣt,dBt〉

}

, h∈ H̃. (3.1)

On the other hand, by the martingale representation, there exists a predictable process
βt such that

E(F (X)|Ft)=EF (X)+

∫ t

0

〈βs,dBs〉, t∈ [0,T ]. (3.2)
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Let

ϕt=

∫ t

0

βsds, t∈ [0,T ].

We have ϕ∈ H̃ and, by (3.2),

E〈h,ϕ〉H=E

∫ T

0

〈ḣt,βt〉dt=E

{

F (X)

∫ T

0

〈ḣt,dBt〉

}

holds for all h∈ H̃. Combining this with (3.1) we conclude that D̃F (X)=ϕ. There-
fore, the desired formula follows from (3.2).

It is standard that the martingale representation in Lemma 3.2 implies the fol-
lowing log-Sobolev inequality. Since the parameter T has been properly contained
in the Dirichlet form E just as in the case without boundary (see [7]), the resulting
log-Sobolev constant is independent of T . Moreover, since it is well-known that the
constant 2 in the inequality is sharp for M =R

d, it is also sharp as a universal constant
for compact manifolds with boundary as Rd can be approximated by bounded balls.

Theorem 3.3. For any T >0 and o∈M , (E ,D(E)) satisfies the following log-Sobolev

inequality:

µ(F 2 logF 2)≤2E(F,F ), F ∈D(E), µ(F 2)=1.

Proof. It suffices to prove the inequality for F ∈FC∞. Let mt=E(F (X)2|Ft), t∈
[0,T ]. By Lemma 3.2 and the Itô formula,

dmt logmt=(1+logmt)dmt+
| ddt (D̃F 2)t(X)|2

2mt

dt.

Thus,

µ(F 2 logF 2)=EmT logmT =

∫ T

0

2E(F (X) d
dt (DF )t(X)|Ft)

2

E(F (X)2|Ft)
dt

≤2

∫ T

0

E

∣

∣

∣

d

dt
(DF )t(X)

∣

∣

∣

2

dt=2E‖DF (X)‖2
H
=2E(F,F ).
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