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KPP REACTION-DIFFUSION SYSTEMS WITH LOSS INSIDE A
CYLINDER: CONVERGENCE TOWARD THE PROBLEM WITH

ROBIN BOUNDARY CONDITIONS∗

THOMAS GILETTI†

Abstract. We consider in this paper a reaction-diffusion system under a KPP hypothesis in a
cylindrical domain in the presence of a shear flow. Such systems arise in predator-prey models as
well as in combustion models with heat losses. Similarly to the single equation case, the existence
of a minimal speed c

∗ and of traveling front solutions for every speed c>c
∗ has been shown both

in the cases of heat losses distributed inside the domain or on the boundary. Here, we deal with
the accordance between the two models by choosing heat losses inside the domain which tend to a
Dirac mass located on the boundary. First, using the characterizations of the corresponding minimal
speeds, we will see that they converge to the minimal speed of the limiting problem. Then, we will
take interest in the convergence of the traveling front solutions of our reaction-diffusion systems. We
will show the convergence under some assumptions on those solutions, which in particular can be
satisfied in dimension 2.
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1. Introduction and main results

The models and their background. We consider reaction-diffusion-advection
systems, of the type (1.1) below, in a cylindrical domain Ω=Rx×ωy⊂R

d where ω
is a smooth bounded domain of Rd−1. The existence and qualitative properties of
the solutions of such problems have been extensively studied over the years both in
the single-equation [3, 4, 12] and the two-equations [2, 9, 10, 11, 15] cases. Those
references describe various situations, in dimension 1 or more, within homogeneous
or heterogeneous frameworks, and with various assumptions on the nonlinearities
arising in the system, such as KPP or ignition hypotheses. For large reviews of this
mathematical area, we refer the reader to [1, 6, 17]. This variety reflects the diversity
of the processes which can lead to such systems, ranging from chemical and biological
to combustion contexts [14, 16].

The wide variety of applications implies a wide variety of models, from which
arise highly interesting questions, such as the accordance between those models. In
this paper, the issue at stake is indeed the comparison between two reaction-diffusion-
advection problems with heat losses. Such a physical situation can be studied math-
ematically by various approaches, depending on whether we consider the losses to
take place inside the domain or only on the boundary. From a modelling and numer-
ical simulation perspective, the boundary loss case may be easier to study. However,
it does not necessarily reflect exactly the physical phenomena, and thus one must
proceed carefully when making such an approximation.

The aim of this paper is to highlight what effect the choice of the model may
have by comparing the boundary loss case with some “near-boundary” loss case,
where the heat losses take place inside the domain but are concentrated on the edge.
As those two models, that we will precisely describe below, are both well studied from
[7, 2, 10], we can indeed compare them. In particular, we will look at their traveling
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wave solutions, i.e. the related propagation phenomena, and give some hypotheses
under which the two models have the same behaviour. This result was to be expected;
nevertheless, this paper gives the first proof toward the accordance between those two
problems, which is notable for both mathematical and modelling purposes.

For a better knowledge of the mentioned models, we will refer the reader to the
papers where they have been introduced. Note that here we choose to invoke the
“combustion” terminology, hence the term “heat loss”. We will also refer to the
unknowns functions Y and T as, respectively, the combustant concentration and the
temperature.

Let us now present the two mathematical problems corresponding to the models
described above. First, when the heat loss (denoted by h) can take place in the whole
domain Ω, we consider the following system, described in [7]:

{

Tt+u(y)Tx=∆T +f(y,T )Y −h(y,T ),

Yt+u(y)Yx=Le−1∆Y −f(y,T )Y,
(1.1)

with Neumann boundary conditions

∂T

∂n
=
∂Y

∂n
=0 on ∂Ω, (1.2)

where n denotes the outward unit normal on ∂Ω.
Then, in the case of a heat loss (denoted by qT ) on the boundary, we consider

the following system, described in [2, 10]:

{

Tt+u(y)Tx=∆T +f(y,T )Y,

Yt+u(y)Yx=Le−1∆Y −f(y,T )Y,
(1.3)

with Robin boundary conditions















∂T

∂n
+qT =0 on ∂Ω,

∂Y

∂n
=0 on ∂Ω.

(1.4)

Note that in both systems (1.1) and (1.3), the Lewis number Le is the ratio of
the thermal diffusivity and the diffusivity of the reactant, and may be an arbitrary
positive number. Besides, f(.,T )Y is the reaction term, raising the temperature
while consuming the combustant, and u is the shear flow of the medium, which will
be assumed to have zero average and does not depend on the x-variable — that is,
the flow is invariant along the cylinder, and is divergence free.

As mentioned before, those systems have a wide range of applications, and also
describe predator-prey situations [14]. The unknowns T and Y would then be replaced
by the density of two species, U and V , where the former is the predator and the
latter the prey. In this context, our interest in traveling waves is a way to study the
invasion of the prey-populated medium by the predator. The “heat loss” would then
be interpreted as the death rate or as a saturation effect for the species U . In the
former, the death rate of the predator U may be caused by a human influence, which
may intervene inside the medium or on its boundary. In the latter, the saturation
may be caused by an intra-species competition. In both cases, it can be reasonable to
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assume that the intrinsic death rate and the saturation for the prey V are negligible
compared to the other parameters.

As we are interested in traveling front solutions of those problems, we look for
solutions of the form T (t,x,y)= T̃ (x−ct,y), Y (t,x,y)= Ỹ (x−ct,y) for some c∈R,
and such that

{

T̃ (+∞, .)=0, Ỹ (+∞, .)=1,

T̃x(−∞, .)= Ỹx(−∞, .)=0.
(1.5)

Physically, that means that we search solutions such that the right side of the front
is a cold region with a strong presence of the combustant (or, in a biological context,
is populated only by the prey), while the left side of the front is left free. Moreover,
to make physical sense, we impose on the solutions to verify T >0 and 0<Y <1 (the
inequalities are strict in order to avoid trivial solutions).

Assumptions, notations, and known results. Before we enounce the main
results of [7] and [2, 10], we recall the main hypotheses. We assume first that u∈
C0,α(ω) (for some α>0) and that, as said before, it has zero average:

∫

ω

u(y)dy=0.

Moreover, the heat loss coefficient q is assumed, as in [2, 10], to be a positive constant,
although the results in the mentioned papers and in this article could be generalized
to smooth positive functions on ∂ω.

The functions f and h are in C1(ω× [0,+∞);R), and there exists s0>0 such
that the sets of functions (f(y,.))y∈ω and (h(y,.))y∈ω are bounded in C1,α([0,s0);R).
Lastly, f satisfies:

f(.,0)=0<f(.,T )≤
∂f

∂T
(.,0)T,

∂f

∂T
≥0 for all T >0, and f(.,+∞)=+∞; (1.6)

and h satisfies










h(.,0)=0≤
∂h

∂T
(.,0)T ≤h(.,T )≤KT for all T ≥0 and some K>0,

∫

ω

∂h

∂T
(y,0)dy>0.

(1.7)

Those hypotheses are of the KPP-type, by analogy with the standard nomenclature
of the single equation problem. The acronym KPP stands for Kolmogorov, Petrovsky,
and Piskounov, the authors of one of the pioneering works on reaction-diffusion equa-
tions [13]. It will allow us, as in the single equation case, to determine the behavior of
systems (1.1)-(1.2) and (1.3)-(1.4) by comparisons with the linearized problems. The
positivity of the integral of ∂h

∂T (.,0) insure that the heat-loss is non trivial. For more
precise information about the role of those hypotheses, we refer to [2, 7, 10].

Next, in order to characterize the minimal speeds of the solutions of the two
systems (1.1)-(1.2) and (1.3)-(1.4), we introduce some eigenvalue problems that arise
from the linearized systems ahead of the front (that is, with T =0 and Y =1). For
λ∈R, let (µh(λ),φh,λ) be the principal eigenvalues and eigenfunctions of the following
system:














−∆φh,λ−λu(y)φh,λ+

(

∂h

∂T
(y,0)−

∂f

∂T
(y,0)

)

φh,λ = µh(λ)φh,λ in ω,

∂φh,λ
∂n

= 0 on ∂ω.

(1.8)
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That is, µh(λ) is the unique eigenvalue of (1.8) that corresponds to a positive
eigenfunction φh,λ. Nonnegative solutions of the form T (t,x,y)=φ(y)e−λ(x−ct) of
the linearized system (1.1)-(1.2) with T =0 and Y =1 only exist if φ=φλ and
µh,f (λ)=λ

2−cλ. For the conditions (1.5) ahead of the front to be satisfied, the
real number λ must be positive, thus the need of assumptions on µh,f and c, which
will be enounced later in this paper and will in fact guarantee the existence of trav-
eling waves (see Theorem 1.1 below). Similarly, let also (νq(λ),ψq,λ) be the principal
eigenvalues and eigenfunctions of the system











−∆ψq,λ−λu(y)ψq,λ−
∂f

∂T
(y,0)ψq,λ = νq(λ)ψq,λ in ω,

∂ψq,λ

∂n
+qψq,λ = 0 on ∂ω.

(1.9)

This system arises from the linearization of (1.3)-(1.4) with T =0 and Y =1. We can
normalize φh,λ and ψq,λ in L2(ω) norm, that is,

‖φh,λ‖2=‖ψq,λ‖2=1. (1.10)

We now enounce some properties of νq(λ) and µh(λ) that will be needed throughout
this paper. First, we recall that under the L2-normalization (1.10),

µh(λ) = inf
φ∈H1(ω),‖φ‖2=1

[
∫

ω

|∇φ(y)|2dy−λ

∫

ω

u(y)φ2(y)dy

+

∫

ω

(

∂h

∂T
(y,0)−

∂f

∂T
(y,0)

)

φ2(y)dy

]

,

=

∫

ω

|∇φh,λ(y)|
2dy−λ

∫

ω

u(y)φ2h,λ(y)dy

+

∫

ω

(

∂h

∂T
(y,0)−

∂f

∂T
(y,0)

)

φ2h,λ(y)dy,

(1.11)

νq(λ) = inf
φ∈H1(ω),‖φ‖2=1

[
∫

ω

|∇φ(y)|2dy−λ

∫

ω

u(y)φ2(y)dy

+

∫

∂ω

qφ2−

∫

ω

∂f

∂T
(y,0)φ2(y)dy

]

,

=

∫

ω

|∇ψq,λ(y)|
2dy−λ

∫

ω

u(y)ψ2
q,λ(y)dy

+

∫

∂ω

qψ2
q,λ−

∫

ω

∂f

∂T
(y,0)ψ2

q,λ(y)dy.

(1.12)

It follows from the above that the functions µh(λ) and νq(λ) are concave, as an
infimum of affine functions of λ. Lastly, elementary calculations lead to, for all λ∈R,















µ′
h(λ) = −

∫

ω

u(y)φ2h,λ(y)dy,

ν′q(λ) = −

∫

ω

u(y)ψ2
q,λ(y)dy.

(1.13)

We can now express the minimal speeds of problems (1.1)-(1.2) and (1.3)-(1.4) with
conditions at infinity (1.5) as:

{

c∗h = min{c∈R/∃λ>0,µh(λ)=λ
2−cλ},

c∗q = min{c∈R/∃λ>0,νq(λ)=λ
2−cλ}.

(1.14)
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We assume in this paper that

{

µh(0) < 0,

νq(0) < 0.

Then, by concavity of µh and νq with respect to λ, the minima in (1.14) are well
defined.

The known existence results for problems (1.1)-(1.2) and (1.3)-(1.4) are summed
up in the following theorem:

Theorem 1.1 ([2, 7, 10]). Under the above hypotheses, we have that:

(a) If µh(0)<0, there exists a traveling front solution of (1.1)-(1.2) and (1.5) with
speed c if and only if c≥ c∗h and c>0,

(b) If νq(0)<0 and c>max(c∗q ,0), then there exists a traveling front solution of

(1.3)-(1.4) and (1.5) with speed c. Conversely, if there exists a traveling front solution

of (1.3)-(1.4) and (1.5) with speed c, then c≥ c∗q and c>0.

Main results. In this paper, we first prove the following result on the conver-
gence of the minimal speeds:

Theorem 1.2. Let (hk)k∈N be a sequence of functions satisfying (1.7) with h=hk for

all k∈N, and such that

∃εkց0 such that
∂hk
∂T

(.,0)→0 uniformly in ω\(∂ω+B(0,εk)), (1.15)

εk

∥

∥

∥

∥

∂hk
∂T

(.,0)

∥

∥

∥

∥

L∞(ω)

=O(1), (1.16)

g(σ) :=

∫ 1

0

εk
∂hk
∂T

(σ−εksn(σ),0)ds −→ q uniformly in σ∈∂ω. (1.17)

Then µhk
→νq locally uniformly and for any λ∈R, the sequence (φhk,λ)k∈N of the

L2-normalized principal eigenfunctions of (1.8) is bounded in H1(ω) and converges to

the principal eigenfunction ψq,λ of (1.9) strongly in L2(ω) and weakly in H1(ω).
Furthermore, if νq(0)<0, then c∗hk

→ c∗q .

Theorem 1.2 will rely on the Lemma 2.1, that is the uniform convergence of
the sequence (∂hk

∂T (.,0))k∈N toward the Dirac mass qδ∂ω on any sequence of functions
bounded in H1(ω). This is in fact the important assumption on the sequence (hk)k∈N,
but we chose in Theorem 1.2 a more convenient hypothesis to give a better view of
the admissible hk. For instance, the hk defined as

hk(y,T )=
∂hk
∂T

(y,0) T =3k3
(

min

(

0,d(y,∂ω)−
1

k

))2

T

satisfy the correct assumptions with εk=
1
k and q=1. Since we assumed that hk

belongs to C1 (ω × [0 ,+∞ );R), we can not define ∂hk

∂T (.,0) as a constant or an affine

function of d(.,∂ω) near ∂ω, and 0 elsewhere. Still, we can also define ∂hk

∂T (.,0) as a

constant or an affine function of d(.,∂ω) near ∂ω and extend it so that ∂hk

∂T (.,0)∈C1(ω)
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and ∂hk

∂T (.,0)=0 outside of a neighborhood of ∂ω. More generally, we can easily use
standard approximations of a Dirac mass in dimension 1 to generate suitable sequences
for Theorem 1.2.

We also want to study the convergence of the traveling front solutions of the prob-
lem (1.1)-(1.2) with the conditions at infinity (1.5), when h converges to a Dirac mass
with the same assumptions as in Theorem 1.2. We recall that (T,Y )=(T (x,y),Y (x,y))
is a traveling front solution of (1.1) with speed c∈R when

{

∆T +(c−u(y))Tx+f(y,T )Y −h(y,T )=0,

Le−1∆Y +(c−u(y))Yx−f(y,T )Y =0,
(1.18)

with Neumann boundary conditions (1.2) and conditions at infinity (1.5). Simi-
larly, (T,Y ) is a traveling front solution (1.3) with speed c∈R of when

{

∆T +(c−u(y))Tx+f(y,T )Y =0,

Le−1∆Y +(c−u(y))Yx−f(y,T )Y =0,
(1.19)

with Robin boundary conditions (1.4) and conditions at infinity (1.5). To ensure the
accordance between our two models of the heat-loss, we want to show the conver-
gence of the solutions of (1.18)-(1.2) and (1.5) for some speed c to the solutions of
(1.19)-(1.4) and (1.5) with the same speed, when h is replaced by a sequence (hk)k∈N

converging to the Dirac mass qδ∂ω with the same assumptions as in Theorem 1.2.
The main difficulty is the lack of bounds on hk, and thus the lack of estimates on
the corresponding sequence of temperatures Tk. In particular, we would need H1

estimates on the temperatures in order to use Lemma 2.1 on the convergence of the
hk on any H1 -bounded sequence toward a Dirac mass, that is the lemma we use for
the convergence of the eigenvalue problems. Another difficulty is our inability to use
Harnack’s inequality, so that even when our sequence of solutions converges, the limit
may be trivial; for instance, the temperatures might tend to be concentrated on a
single point, hence a regular limit could only be zero.

Therefore, the general case is still open. Here, we will only consider particular
solutions of (1.18)-(1.2) and (1.5), which satisfy some exponential bounds from below
and above, in order to overcome the above difficulties. Then, the bounds are proved
to hold in dimension d=2, leading to the desired convergence result in this case.

Theorem 1.3. Let (hk)k∈N be a sequence of functions satisfying (1.15), (1.16), (1.17),
and (1.7) with h=hk for all k∈N, and such that hk(y,.) is linear for all y∈ω and

k∈N. Let also (Tk,Yk) a sequence of non-trival solutions of problem (1.18)-(1.2)
with h=hk, c>c

∗
q , and satisfying the conditions at infinity (1.5), and let (λk)k∈N be

a sequence of positive real numbers such that for any k∈N we have

λ2k−cλk=µhk
(λk).

We assume that there exist 0<Λ1<Λ2 and C1,C2,C3>0 such that for all k∈N

and (x,y)∈Ω,

Tk(x,y)<C1e
−λkx, (1.20)

max(0,C2e
−Λ1x−C3e

−Λ2x)<Tk(x,y). (1.21)

Then up to extraction of a subsequence, (Tk,Yk) converges weakly in H1
loc(Ω) and

strongly in L2
loc(Ω) to a non trivial solution (T,Y ) of problem (1.19)-(1.4) and (1.5).



T. GILETTI 1183

Remark 1.1. In this theorem, we added the assumption that hk is linear in the
T -variable. Indeed, in Theorem 1.2 where we only considered the eigenvalue prob-
lem (1.8), we only made assumptions on ∂hk

∂T (.,0). Here, we need to make sure that
the term “hk(y,T )” in our equation (1.18) will tend to qδ∂ωT , hence the linearity
assumption.

The hypotheses of Theorem 1.3 may in fact be weakened. For instance, the hy-
pothesis (1.21) could be replaced by any function positive on a non trivial set in Ω.
The choice of those exponential bounds in fact come from the sub- and super-solutions
that have been used in [7] to construct solutions of (1.18)-(1.2) and (1.5). More pre-
cisely, we know that there exist, for each k and c>c∗hk

, solutions of (1.18)-(1.2) and
(1.5) with h=hk that fulfill similar exponential bounds. The issue is then to make
those bounds independent of k∈N in order to exhibit some particular solutions satis-
fying the assumptions of Theorem 1.3. In fact, the construction of the aforementioned
sub- and super-solutions used in [7] relies on some strong estimates on the principal
eigenfunctions of (1.8), which can be made independently of k∈N only in dimension
2 (d=2), where H1(ω)-estimates imply C0,1/2(ω)-estimates.

The discussion above will lead to the following corollary of Theorem 1.3:

Corollary 1.4. Case d=2. Let (hk)k∈N be a sequence of functions satisfying (1.15),
(1.16), (1.17), and (1.7) with h=hk for all k∈N and such that hk(y,.) is linear for all
y∈ω and k∈N. In dimension d=2, up to extraction of some subsequence, there exists

a sequence of solutions of problem (1.18)-(1.2) and (1.5) with h=hk, c>max(0,c∗q),

that converges weakly in H1
loc(Ω) and strongly in L2

loc(Ω) to a non trivial solution

(T,Y ) of problem (1.19)-(1.4) and (1.5).

In spite of all the difficulties aforementioned, we think that this result is only a
first step and in fact holds in a more general case. In particular, we hope that the
study of the exponential behavior of any solution of (1.18)-(1.2) and (1.5), which will
be a subject of interest in a forthcoming paper, will allow us to apply Theorem 1.3 to
a larger set of solutions.

Lastly, one could notice, from the proofs of the above results, that they do not
require q to be a constant, such an assumption being only made to match the results
of [2, 10]. It only needs to be a smooth function on ∂ω, so that the convergence
hypotheses of (hk)k∈N can hold. Thus, we get the following corollary:

Corollary 1.5. Case d=2. Assume that ω=(a,b) with a,b∈R. Then, for any

qa, qb>0 and c>max(0,c∗q), there exists a traveling front solution with speed c of

(1.3)-(1.5) with Robin boundary conditions

−
∂T

∂y
(x,a)+qaT (x,a)=

∂T

∂y
(x,b)+qbT (x,b)=0,

∂Y

∂y
(x,a)=

∂Y

∂y
(x,b)=0.

As it is only needed and elementary to find, for any qa, qb>0, a sequence (hk)k∈N of
functions verifying (1.15), (1.16), (1.17), and (1.7), Corollary 1.5 follows immediately
from Corollary 1.4. Although the proofs used in [2, 10] may also already leave room
for some such improvements, Corollary 1.5 gives a first result for the case of q not
constant by using a new and original method.
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Plan of the paper. Theorem 1.2 will be proved in Section 2. The use of
Lemma 2.1 on the principal eigenfunctions of problem (1.8) and (1.9) will allow us
to prove the locally uniform convergence of the eigenvalues (µk(λ))k∈N toward νq(λ).
Lastly, we will end the proof by showing the convergence of the minimal speeds.

Theorem 1.3 will be proved in Section 3. We will first show Lemma 3.2 which
gives a uniform exponential bound from below on the sequence (Yk)k near +∞. Then,
the bounds from above will allow us to obtain H1

loc(Ω) estimates on the sequence
(Tk,Yk)k∈N and thus its convergence toward a pair (T,Y ). Then, the same lemma as
in the proof of Theorem 1.2 will imply that (T,Y ) is a solution of (1.19)-(1.4). The
fact that it is non trivial will immediately follow from (1.21) and Lemma 3.2, and
so will the behavior of (T,Y ) near +∞. Lastly, the behavior of (T,Y ) on the left,
near −∞, will be proved using (1.20) and a lemma from [10], stating the boundedness
of a solution of (1.19)-(1.4) when it is bounded from above by an exponential of the
form e−λx with λ2−cλ=νq(λ) (we include its proof at the end of Section 3 for the
sake of completeness).

The Section 4 will deal with the proof of Corollary 1.4, although for convenience
we will refer the reader to [7] for the precise proof of the existence of solutions between
the introduced sub- and super-solutions.

2. Convergence of the principal eigenvalue problems and of the mini-
mal speeds

We deal in this section with the proof of Theorem 1.2. As mentioned before, we
begin by a lemma before we study the convergence of the principal eigenvalues and
minimal speeds.

2.1. A useful lemma. We prove here a lemma on the convergence of the
sequence (∂hk

∂T (.,0))k∈N toward the Dirac mass qδ∂ω.

Lemma 2.1. Let (φk)k∈N be a bounded sequence of functions in H1(ω). Then, up to

extraction of some subsequence, the sequence converges weakly in H1(ω) and strongly

in L2(ω) to a function φ such that

lim
n

∫

ω

∂hk
∂T

(.,0)φ2k→

∫

∂ω

qφ2.

Proof. Let us first note that since (φk)k is bounded in H1(ω), we already know
that up to extraction of a subsequence it converges weakly in H1(ω) and strongly
in L2(ω) to a function φ. Moreover, it follows from the traces theory that ((φk)|∂ω)k is

bounded inW 1/2,2(∂ω). Thus, up to the extraction of some subsequence, it converges
in L2(∂ω) to the trace φ|∂ω. That is, we have for any λ∈R, as k→+∞,

∫

∂ω

qφ2k→

∫

∂ω

qφ2.

Therefore, it now remains to show that
∫

ω

∂hk
∂T

(.,0)φ2k−

∫

∂ω

qφ2k→0.

From the hypothesis (1.15) and the L2-bound on (φk)k∈N, and by noting Γεk=ω∩
(∂ω+B(0,εk)), we only have to prove that

∫

Γεk

∂hk
∂T

(.,0)φ2k−

∫

∂ω

qφ2k→0. (2.1)
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Let the function d be the distance from the boundary ∂ω. It follows from the coarea
formula that for εk small enough (that is, for a sufficiently large k), we have

∫ εk

0

(

∫

d−1(s)∩Γεk

∂hk
∂T

(.,0)φ2k

)

ds=

∫

Γεk

∂hk
∂T

(.,0)φ2k.

For εk small enough and 0≤s≤ εk, we can parametrize d−1(s)∩Γεk by z−sn(z),
where z∈∂ω and n(z) is the outward normal unit of ∂ω on z. We then obtain

(1+O(εk))

∫ εk

0

(

∫

d−1(s)∩Γεk

∂hk
∂T

(.,0)φ2k

)

ds

=

∫ εk

0

∫

∂ω

∂hk
∂T

(z−sn(z),0)φk(z−sn(z))
2dzds

=

∫ 1

0

∫

∂ω

εk
∂hk
∂T

(z−εksn(z),0)φk(z−εksn(z))
2dzds.

We then have, on one hand,

∫ 1

0

∫

∂ω
εk

∂hk

∂T (z−εksn(z),0)
(

φk(z−εksn(z))
2−φk(z)

2
)

dzds

=−
∫ 1

0

∫

∂ω
εk

∂hk

∂T (z−εksn(z),0)
∫ s

0
2εkφk(z−εkτn(z))∇φk(z−εkτn(z)) ·n(z)dτdzds.

Thus, with the hypothesis (1.16) on h,

∣

∣

∣

∣

∫ 1

0

∫

∂ω

εk
∂hk
∂T

(z−εksn(z),0)(φk(z−εksn(z))
2−φk(z)

2)dzds

∣

∣

∣

∣

≤C

∫ 1

0

∫

∂ω

∫ s

0

2εk|φk(z−εkτn(z))∇φk(z−εkτn(z)) ·n(z)|dτdzds.

From the coarea formula, with the notation Γεk,s=(∂ω+B(0,εks))∩ω, we then ob-
tain

∣

∣

∣

∣

∫ 1

0

∫

∂ω

εk
∂hk
∂T

(z−εksn(z),0)(φk(z−εksn(z))
2−φk(z)

2)dzds

∣

∣

∣

∣

≤ C(1+O(εk))

∫ 1

0

(

∫

Γεk,s

|φk| ‖∇φk‖

)

ds

≤ C ′‖φk‖L2(Γεk,1)‖∇φk‖L2(Γεk,1)

≤ C ′′‖φk‖L2(Γεk,1)

→0. (2.2)

Here, we used the fact that the sequence (φk)k is bounded in H1(ω), and converges
strongly in L2(ω). On the other hand, it immediately follows from (1.17) that

∫ 1

0

∫

∂ω

εk
∂hk
∂T

(.,0)(z−εksn(z))φk(z)
2dzds−

∫

∂ω

qφ2k→0. (2.3)

Then (2.2) and (2.3) imply (2.1), which concludes the proof of Lemma 2.1.
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2.2. Locally uniform convergence of µhk
to νq. We now begin the proof

of Theorem 1.2. Let us fix λ∈R. It follows from (1.11) that

µhk
(λ)≤

∫

ω

|∇ψq,λ(y)|
2dy−λ

∫

ω

u(y)ψ2
q,λ(y)dy+

∫

ω

(

∂hk
∂T

(y,0)−
∂f

∂T
(y,0)

)

ψ2
q,λ(y)dy,

where ψq,λ is the principal eigenfunction of (1.9) normalized so that ‖ψq,λ‖L2(ω)=1.
Moreover, by Lemma 2.1 and since ψq,λ ∈ H1 (ω), we have that

∫

ω

∂hk
∂T

(.,0)ψ2
q,λ→

∫

∂ω

qψ2
q,λ.

Thus, by passing to the limit and using (1.12 ), we obtain that for all λ∈R,

limsupµhk
(λ)

≤

∫

ω

|∇ψq,λ(y)|
2dy−λ

∫

ω

u(y)ψ2
q,λ(y)dy+

∫

∂ω

qψ2
q,λ−

∫

ω

∂f

∂T
(y,0)ψ2

q,λ(y)dy

=νq(λ). (2.4)

We can also deduce that the sequence (µhk
(λ))k is bounded for all λ∈R. Indeed, it is

bounded from above because of (2.4), and it is also bounded from below thanks to the
first part of (1.11) (from ∂hk

∂T (.,0)≥0 for all k and since u and ∂f
∂T (.,0) are bounded).

Thus, up to the extraction of a subsequence, we can assume that µhk
(λ) converges to

some limit µ(λ). We now want to show that µ(λ)=νq(λ). From (1.11), we have that,

∫

ω

|∇φhk,λ(y)|
2dy−λ

∫

ω

u(y)φ2hk,λ
(y)dy+

∫

ω

(

∂hk
∂T

(y,0)−
∂f

∂T
(y,0)

)

φ2hk,λ
(y)dy

=

∫

ω

µhk
(λ)φ2hk,λ

(y)dy.

We know that u and ∂f
∂T (.,0) are in L

∞(ω). Since ∂hk

∂T (.,0)≥0, ‖φhk,λ‖2=1 and since
the sequence (µhk

(λ))k is bounded, it then follows that for all λ∈R,

sup
k∈N

(
∫

ω

|∇φhk,λ(y)|
2dy

)

<+∞.

Therefore, for all λ∈R, the sequence (φhk,λ)k is bounded in H1(ω). Up to the ex-
traction of some subsequence, we can then assume that there exists φ∈H1(ω) such
that

φhk,λ→φ weakly in H1(ω), strongly in L2(ω).

We consider each term in (1.11) in order to pass to the limit in k→+∞:

liminf

∫

ω

|∇φhk,λ(y)|
2dy≥

∫

ω

|∇φ(y)|2dy,

−λ

∫

ω

u(y)φ2hk,λ
(y)dy→−λ

∫

ω

u(y)φ2(y)dy,

−

∫

ω

∂f

∂T
(y,0))φ2hk,λ

(y)dy→−

∫

ω

∂f

∂T
(y,0))φ2(y)dy.
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Here, we only used the weak convergence of the sequence (φhk,λ)k in H1(ω) and its
strong convergence in L2(ω). Lastly, from Lemma 2.1 and up to extraction of some
subsequence,

∫

ω

∂hk
∂T

(.,0)φ2hk,λ
→

∫

∂ω

qφ2.

Therefore, by passing to the limit in (1.11),

µ(λ)≥

∫

ω

|∇φ(y)|2dy−λ

∫

ω

u(y)φ2(y)dy−

∫

ω

∂f

∂T
(y,0)φ2(y)dy+

∫

∂ω

qφ2.

By (1.12), we obtain νq(λ)≤µ(λ) (since ‖φ‖2=1), and in fact we get an equality from
(2.4). By uniqueness of the limit, we have proven the simple convergence of µhk

(λ)
toward νq(λ).

Here, we have also shown that

νq(λ)=

∫

ω

|∇φ(y)|2dy−λ

∫

ω

u(y)φ2(y)dy+

∫

∂ω

qφ2−

∫

ω

∂f

∂T
(y,0))φ2(y)dy,

where φ is the limit, up to extraction of some subsequence, strongly in L2(ω) and
weakly in H1(ω), of the sequence (φhk,λ)k of the L2-normalized principal eigenfunc-
tions of problem (1.8). Thus, by nonnegativity of φ (φhk,λ nonnegative for all k∈N,
and ‖φ‖2=1) and by uniqueness of the limit, the whole sequence (φhk,λ)k converges
strongly in L2(ω) and weakly in H1(ω) to the L2-normalized principal eigenfunction
ψq,λ of problem (1.9).

Moreover, we recall that for all λ∈R (see (1.13)), µ′
hk
(λ)=−

∫

ω
u(y)φ2hk,λ

(y)dy.

Thus ‖µ′
hk
‖∞≤‖u‖∞‖φhk,λ‖

2
2=‖u‖∞. It then follows from the Dini theorem that

µhk
(λ)→νq(λ) as k→+∞ uniformly on any compact subset of R. This completes

the proof.

Remark 2.1. The results above will be used to control the variations of the (φhk,λ)k
in dimension 2 in order to prove Corollary 1.4. In fact, we will use a more general
result, where λ is replaced by a converging sequence (λk)k. This sequence would then
be bounded and the H1-estimates above on the eigenfunctions would still hold. One
could easily check that we would then obtain the convergence of the L2-normalized
principal eigenfunctions of problem (1.8) with λ=λk toward the L2-normalized prin-
cipal eigenfunction of problem (1.9) with λ=limλk.

2.3. Convergence of the minimal speeds. We first show the following
lemma, which will be used several times throughout this paper:

Lemma 2.2. Under the hypotheses of Theorem 1.2, let c∈R, (ck)k∈N, and (λk)k∈N

such that ck→ c and for all k∈N, µhk
(λk)=λ

2
k−ckλk. Then the sequence (λk)k∈N is

bounded and νq(λ∞)=λ2∞−cλ∞ for any accumulation point λ∞.

Proof of Lemma 2.2.
Proof. Let (ck)k∈N and (λk)k∈N be such that ck→ c∈R and for any k∈N,

µhk
(λk)=λ

2
k−ckλk. The sequence (λk)k∈N is bounded, since by concavity of the µhk

,

λ2k−ckλk≤µhk
(0)+µ′

hk
(0)λk,

and from the fact that the sequences (ck)k, (µ
′
hk
(0))k, and (µhk

(0))n are bounded. Let
now λ∞ be an accumulation point of the sequence (λn)n. By the uniform convergence
of µhk

on any compact set, we deduce that λ2∞−cλ∞=νq(λ∞).
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Proof of Theorem 1.2.
Proof. We now get back to the proof of Theorem 1.2, and assume that νq(0)<0.

Note that this hypothesis hadn’t been used in the proofs above, which thus hold
whether or not the minimal speeds are well defined. By uniform convergence of µh,k

toward νq, we can also assume up to extraction of some subsequence that µhk
(0)<0

for all k∈N. Under those assumptions, we define the minimal speeds c∗q and c∗hk
for

any k∈N as in (1.14). We now show that c∗hk
→ c∗q to conclude the proof of Theorem

1.2.
First, let c>c∗q . There exist ε>0 and λ>0 such that λ2−cλ≤νq(λ)−ε. Then,

for sufficiently large k, we have λ2−cλ≤µhk
(λ). Therefore, since µhk

(0)<0 for all k,

we have that for k large enough, there exists λ′>0 such that λ′
2
−cλ′=µhk

(λ′). Hence
limsupc∗hk

≤ c for all c>c∗q , and then

limsupc∗hk
≤ c∗q . (2.5)

We then deduce that the sequence (c∗hk
)k is bounded. Indeed, it follows from (2.5)

that it is bounded from above. We also have that c∗hk
≥−µ′

hk
(0) (by concavity of µhk

),
and thus the sequence is bounded from below (recall that the sequence (µ′

hk
)k is

bounded in L∞). We can now assume, up to the extraction of a subsequence, that c∗hk

converges to a c∈R satisfying c≤ c∗q .
Let (λk)k be a sequence of positive real numbers such that λ2k−c

∗
hk
λk=µhk

(λk)
for all k∈N. By Lemma 2.2 this sequence is bounded, and up to the extraction of
some subsequence we can assume that λk converges to a λ∈R

+ such that λ2−cλ=
νq(λ). Besides, since νq(0)<0, we have that λ>0. Therefore, c∗q ≤ c and c= c∗q . By
uniqueness of the limit, we have shown that limk→+∞ c∗hk

= c∗q for the whole sequence,
and the proof of Theorem 1.2 is complete.

3. Convergence of some solutions
We now begin the proof of Theorem 1.3. We recall our assumptions: (hk)k∈N

is a sequence of functions satisfying (1.15), (1.16), (1.17), and (1.7) with h=hk for
all k∈N, and such that hk(y,.) is linear for all y∈ω and k∈N. We let (Tk,Yk) be a
sequence of solutions of problem (1.18)-(1.2) and (1.5) with h=hk, c>c

∗
q , and such

that 0<Tk and 0<Yk<1.
Let also (λk)k∈N be a sequence of positive real numbers such that

λ2k−cλk=µhk
(λk)

for any k∈N. Lastly, we assume that there exists 0<Λ1<Λ2 and C1, C2, C3>0
such that for all k∈N and (x,y)∈Ω, (Tk,Yk) satisfy (1.20) and (1.21).

Let us first note from Lemma 2.2 that up to extraction of some subsequence, λk
converges to λ∞ such that

λ2∞−cλ∞=νq(λ∞). (3.1)

Moreover, since the real numbers λk are positive and since νq(0)<0, we have that
λ∞>0. This important fact will be used several times along this section and the next
one. In particular, with the hypothesis (1.20), it implies that the sequence (Tk)k is
locally bounded.

We also recall the following theorem from [7], giving some qualitative properties
of the traveling front solutions of (1.18)-(1.2) and (1.5):

Theorem 3.1. Let (c,T,Y ) be a solution of (1.18)-(1.2) and (1.5) such that 0<T
and 0<Y <1. Then T is bounded, T (−∞, .)=0, Y (−∞, .)=Y∞∈ (0,1).
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3.1. Exponential bound on (Yk)k∈N.
Lemma 3.2. Under the hypotheses of Theorem 1.3, there exist β>0 and γ >0 such

that for any k∈N,

max(0,1−γe−βx)≤Yk<1.

Proof. It has already been said that Yk<1 for all k∈N, which comes from the
fact that we only consider non-trivial solutions. We introduce the following principal
eigenvalue problem (3.2), depending on a parameter λ∈R:







−∆yχλ−λu(y)χλ = ρ(λ)χλ in ω,

∂χλ

∂n
= 0 on ∂ω.

(3.2)

This is the same principal eigenvalue problem as (1.8) and (1.9), with q=h=f =0 (the
purpose of its introduction is only to simplify some of our notations). In particular, we
have that ρ(λ) is concave. Furthermore, (1.13) with h=f =0, together with the fact
that any positive constant is an eigenfunction of (3.2) with λ=0, imply that ρ(0)=
ρ′(0)=0<c. The fact that c is positive follows from the first part of Theorem 1.1,
proved in [7], stating that traveling front solutions only exist with positive speeds.

One can then choose β>0 small enough so that
{

0<β< infk∈Nλk,

ρ(βLe)−β2+cβLe>0.
(3.3)

Note that since each λk is positive, and as λk→λ∞>0 up to extraction of some
subsequence, we indeed have that infk∈N λk >0. Let also γ >0 be large enough so
that







γ×min
ω
χβLe≥1,

γLe−1(ρ(βLe)−β2+cβLe)×min
ω
χβLe>C1max

y∈ω

(

∂f

∂T
(y,0)

)

,
(3.4)

where χβLe is the positive eigenfunction of (3.2) with λ=βLe, normalized in such a
way that ‖χβLe‖L∞(ω) = 1. Let Y be defined by

Y (x,y)=max(0,1−γχβLe(y)e
−βx).

Note that Y =0 for x≤0. Let us check that for any k∈N, Y is a sub-solution
for (1.18)-(1.2) with T =Tk and h=hk. Note first that Y satisfies the Neumann
boundary conditions on ∂Ω. Moreover, when Y >0, then x>0 and

Le−1∆Y +(c−u(y))Y x−f(y,Tk)Y

≥γLe−1(ρ(βLe)−β2+cβLe)χβLe(y)e
−βx− C1

∂f

∂T
(y,0)e−λkx(1−γχβLe(y)e

−βx)

≥γLe−1(ρ(βLe)−β2+cβLe)χβLe(y)e
−βx−C1

∂f

∂T
(y,0)e−βx

≥0,

since f of the KPP-type, and because of (3.3)-(3.4).
Besides, we have that Y (−∞, .)=0<Yk and Y (+∞, .)=1=Yk(+∞, .) for each

k∈N. Therefore, it follows from the weak maximum principle in unbounded domains
that Y ≤Yk in Ω. This concludes the proof of Lemma 3.2.
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3.2. H1
loc(Ω) estimates on (Tk,Yk). For any k∈N, (Tk,Yk) satisfies (1.18)

with h=hk, together with Neumann boundary conditions and the conditions at in-
finity (1.5). We first integrate the equation satisfied by Yk over (−N,N)×ω where
N ∈R

+. We obtain
∫

ω

[

Le−1 (Yk,x(N,y)−Yk,x(−N,y))+(c−u(y))(Yk(N,y)−Yk(−N,y))
]

dy

=

∫

(−N,N)×ω

f(y,Tk(x,y))Yk(x,y)dxdy.

But for each k, the left-hand side is bounded independently of N (since 0<Yk<1
and Yk,x/Yk is bounded from the Harnack inequality for each k) and the function
f(Tk)Yk is positive, thus its integral over Ω converges. Moreover, since for all k,
Yk,x(±∞)=0 and 0<Yk<1, we obtain by passing to the limit N→+∞,

sup
k∈N

∫

Ω

f(y,Tk(x,y))Yk(x,y)dxdy≤

∫

ω

|c−u(y)|dy<+∞. (3.5)

For any k∈N, we multiply by Yk the equation satisfied by Yk and integrate
over (−N,N) × ω,

∫

ω

[

Le−1(Yk,x(N,y)Yk(N,y)−Yk,x(−N,y)Yk(−N,y))

+
1

2
(c−u(y))(Y 2

k (N,y)−Y
2
k (−N,y))

]

dy

=

∫

(−N,N)×ω

f(y,Tk)Y
2
k dxdy+Le−1

∫

(−N,N)×ω

|∇Yk|
2
dxdy

≥Le−1

∫

(−N,N)×ω

|∇Yk|
2
dxdy.

The left-hand side is again bounded independently of N ∈R. Thus

∫

Ω

|∇Yk|
2dxdy<+∞,

for all k∈N. By passing to the limit as N→+∞ and using 0<Yk<1, we even have
that

sup
k∈N

∫

Ω

|∇Yk|
2dxdy≤

Le

2

∫

ω

|c−u(y)|dy<+∞.

That is, the sequence (∇Yk)k∈N is uniformly bounded in L2(Ω).

We now look for H1
loc(Ω) estimates on the sequence (Tk)k∈N. We first recall that

the sequence Tk is locally bounded, that is, for any K compact subset of Ω we have

sup
k

‖Tk‖L∞(K)<+∞. (3.6)

Indeed, this inequality immediately follows from hypothesis (1.20) and the fact that
the sequence (λk)k∈N is bounded (since it converges to λ∞>0 such that λ2∞−cλ∞=
νq(λ∞)).
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By integrating the equation satisfied by Tk over (−N,N)×ω where N ∈R, we
obtain

∫

ω

[

(

Tk,x(N,y)−Tk,x(−N,y)
)

+(c−u(y))
(

Tk(N,y)−Tk(−N,y)
)

]

dy

=

∫

(−N,N)×ω

hk(y,Tk(x,y))dxdy−

∫

(−N,N)×ω

f(y,Tk(x,y))Yk(x,y)dxdy.

Recall that for each k, Tk,x(±∞, .)=Tk(+∞, .)=0. Moreover, it has been shown in [7]
(as restated here in Theorem 3.1) that Tk(−∞, .)=0 for any k. It follows, by passing
to the limit N→+∞, that

∫

Ω

hk(y,Tk(x,y))dxdy=

∫

Ω

f(y,Tk(x,y))Yk(x,y)dxdy.

In particular, the left integral converges. We then obtain, from (3.5),

sup
k∈N

∫

Ω

hk(y,Tk(x,y))dxdy<+∞. (3.7)

Lastly, we multiply by Tk the equation verified by Tk, and we integrate over
(−N,N)× ω:
∫

ω

[

(

Tk,x(N,y)Tk(N,y)−Tk,x(−N,y)Tk(−N,y)
)

+
1

2
(c−u(y))

(

T
2
k (N,y)−T

2
k (−N,y)

)

]

dy

=

∫

(−N,N)×ω

hk(y,Tk)Tkdxdy−

∫

(−N,N)×ω

f(y,Tk)YkTkdxdy+

∫

(−N,N)×ω

|∇Tk|
2
dxdy.

We then integrate over N ∈ (M,M+1) where M>0:

∫ M+1

M

∫

ω

[

(Tk,x(N,y)Tk(N,y)−Tk,x(−N,y)Tk(−N,y))
]

dydN

+

∫ M+1

M

∫

ω

[

(c−u(y))(T 2
k (N,y)−T

2
k (−N,y))

]

dydN

=

∫ M+1

M

∫

(−N,N)×ω

hk(y,Tk)TkdxdydN−

∫ M+1

M

∫

(−N,N)×ω

f(y,Tk)YkTkdxdydN

+

∫ M+1

M

∫

(−N,N)×ω

|∇Tk|
2dxdydN.

(3.8)
For anyM ∈R, the left-hand side is bounded independently of k∈N from Fubini’s the-
orem and the fact that the sequence (Tk)k∈N is locally uniformly bounded from (3.6).
Moreover, from (3.5), (3.6), and (3.7), we have that

sup
k∈N

∫ M+1

M

∫

(−N,N)×ω

hk(y,Tk)TkdxdydN ≤ sup
k∈N

∫

(−M−1,M+1)×ω

hk(y,Tk)Tkdxdy<+∞,

sup
k∈N

∫ M+1

M

∫

(−N,N)×ω

f(y,Tk)YkTkdxdydN ≤ sup
k∈N

∫

(−M−1,M+1)×ω

f(y,Tk)YkTkdxdy<+∞.

We then conclude from (3.8) that for all M>0,

sup
k∈N

∫ M+1

M

∫

(−N,N)×ω

|∇Tk|
2dxdydN <+∞,
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and thus,

sup
k∈N

∫

(−M,M)×ω

|∇Tk|
2dxdy<+∞.

That is, the sequence (Tk)k∈N is bounded in H1
loc(Ω).

3.3. Convergence toward a solution of (1.19)-(1.4). By the estimates
proved above, we can now assume, up to extraction of some subsequence, that the
sequence (Tk,Yk)k∈N converges to a pair of functions (T,Y ) weakly in H1

loc(Ω) and
strongly in L2

loc(Ω). We now want to prove that (T,Y ) is a solution of the problem
(1.19)-(1.4) and (1.5), and we will then show that it satisfies the desired properties.

Recall that for any n, Yk satisfies

Le−1∆Yk+(c−u(y))Yk,x−f(y,Tk)Yk=0 in Ω

with the Neumann boundary conditions on ∂Ω. Since Tk and Yk are at least locally
bounded independently of n (recall (3.6)), since f locally Lipschitz-continuous and
from the convergence toward (T,Y ), it is straightforward to check that Y is a weak
solution of

Le−1∆Y +(c−u(y))Yx−f(y,T )Y =0 in Ω

with the Neumann boundary conditions on ∂Ω. Recall now that Tk satisfies

∆Tk+(c−u(y))Tk,x+f(y,Tk)Yk−hk(y,Tk)=0 in Ω

with Neumann boundary conditions. Here, the parameters of the equation depend
on k. Thus the convergence is not straightforward, although it is true for the weak
formulation by the same method we used in the previous sections. Let φ∈C∞

c (Ω).
By multiplying the above equation by φ and integrating over Ω, we obtain

−

∫

Ω

∇Tk ·∇φ +

∫

Ω

(c−u(y))Tk,x φ +

∫

Ω

f(.,Tk)Ykφ −

∫

Ω

hk(.,Tk)φ =0.

Since Tk converges weakly in H1
loc(Ω) and strongly in L2

loc(Ω) to T , we have that
∫

Ω

∇Tk ·∇φ→

∫

Ω

∇T ·∇φ and

∫

Ω

(c−u(y))Tk,x φ→

∫

Ω

(c−u(y))Tx φ

as k→+∞. Since the sequences (Tk)k and (Yk)k are bounded in L∞
loc(Ω) and converge

in L2
loc(Ω), and since f is locally Lipschitz-continuous, we have that

∫

Ω

f(.,Tk)Ykφ→

∫

Ω

f(.,T )Y φ

as k→+∞. Lastly, since the functions hk(y,.) are assumed to be linear for any y∈ω,
we have that

∫

Ω

hk(.,Tk)φ=

∫

Ω

∂hk
∂T

(.,0)Tkφ→

∫

∂Ω

qTφ.

This result is similar to the Lemma 2.1 in Section 2, with ω replaced by Ω. In fact,
since φ is compactly supported, one can easily check that the proof of Lemma 2.1
still holds in this case. Therefore, we have that T is a weak solution of (1.19) with
Robin boundary conditions. We conclude by standard estimates that (T,Y ) is a strong
solution of the problem (1.19)-(1.4).
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3.4. Non-triviality and conditions at infinity. It now only remains to
be shown that 0<T , 0<Y <1, and that T , Y satisfy the right conditions at infinity.
Note first that 0≤T and 0≤Y ≤1 from the convergence of (Tk,Yk) toward (T,Y ).
Moreover, it immediately follows from hypothesis (1.21) and Lemma 3.2 that there
exists (x,y)∈Ω such that T (x,y)>0 and Y (x,y)>0. Thus, by the strong maximum
principle, we have that T >0 and Y >0 everywhere. We now assume that Y =1 some-
where. Again by the strong maximum principle, we then have that Y =1 everywhere.
Since Y is a solution of (1.19)-(1.4), we have that f(T )Y =0 and thus T =0, which is
a contradiction.

Let us now show that T and Y satisfy the conditions at infinity (1.5). It is imme-
diate that T (+∞, .)=0 and Y (+∞, .)=1 from the exponential bounds in (1.20) and
Lemma 3.2 (recall that the sequence λk converges to some λ∞>0 from Lemma 2.2).

In order to deal with the behavior of (T,Y ) on the left, we will use the following
lemma:

Lemma 3.3. ‖T‖L∞(Ω)<+∞.

The proof of this lemma (which echoes a proof of [10]) is postponed to the next
subsection.

By the same method as in Section 3.2, one can check that

∫

Ω

f(y,T (x,y))Y (x,y)dxdy<+∞,

and that the integral

∫

Ω

|∇Y (x,y)|2dxdy<+∞ (3.9)

converges. Let now (xj)j∈N be any sequence such that xj →−∞ as j→+∞. We
define the functions Yj(x,y)=Y (x+xj ,y) for each j∈N. It follows from standard
elliptic estimates and the fact that ‖T‖L∞(Ω)<+∞ that this sequence is bounded

in W 2,p
loc (Ω) for all 1≤p<+∞. Therefore, up to extraction of a subsequence, it con-

verges in C1
loc(Ω) to a function Y∞. Because of (3.9), we know that Y∞ is a constant.

Hence, Yx(−∞, .)=0.

Similarly, we now integrate Equation (1.19), satisfied by T over (−N,N)×ω where
N >0, and obtain

∫

ω

[

(

Tx(N,y)−Tx(−N,y)
)

+(c−u(y))
(

T (N,y)−T (−N,y)
)

]

dy

=

∫

(−N,N)×∂ω

qT (x,y)dxdy−

∫

(−N,N)×ω

f(y,T (x,y))Y (x,y)dxdy.

By Lemma 3.3 and the Harnack inequality, we know that the left-hand side of this
equation is bounded independently of N and that, by passing to the limit as N→+∞,

∫

∂Ω

qT (x,y)dxdy<+∞.

Furthermore, by multiplying the Equation (1.19) satisfied by T by T itself, and inte-
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grating over the domain (−N,N)×ω with N >0, we obtain

∫

ω

[

(

Tx(N,y)T (N,y)−Tx(−N,y)T (−N,y)
)

+
1

2
(c−u(y))

(

T 2(N,y)−T 2(−N,y)
)

]

dy

=

∫

(−N,N)×∂ω

qT (x,y)2dxdy+

∫

(−N,N)×ω

[

|∇T |2−f(y,T (x,y))Y (x,y)T (x,y)
]

dxdy.

We conclude that the integral
∫

Ω

|∇T (x,y)|2dxdy<+∞

converges. As before, from standard elliptic estimates and since ‖T‖L∞(Ω) < +∞,
we have that T converges to a constant T∞ near −∞. Hence Tx(−∞, .)=0.

As a conclusion, (T,Y ) is a solution of (1.19)-(1.4) and satisfies (1.5), which ends
the proof of Theorem 1.3.

3.5. Proof of Lemma 3.3.
Proof. Assume for the sake of contradiction that T is not in L∞(Ω). Let us first

note that from hypothesis (1.20) and Lemma 2.2, we know that

0≤T (x,y)≤C1e
−λ∞x (3.10)

for all (x,y)∈Ω, and where λ∞>0 satisfies (3.1). Hence, the only possibility for the
function T to grow is on the left, and there exists a sequence (xj ,yj)j∈N in R×ω so
that

T (xj ,yj)→+∞ and xj →−∞ as j→+∞. (3.11)

We now want to show that Y (−∞, .)=0. Since the function |∇T |/T is globally
bounded from standard elliptic estimates and the Harnack inequality up to the bound-
ary, it follows that for each R>0,

min
(x,y)∈[xj−R,xj+R]×ω

T (x,y)→+∞

as j→+∞. Let also m=miny∈ω f(y,1)>0. We use again the principal eigenvalue
problem (3.2), which we introduced in Section 3.1. As mentioned before, the function ρ
is concave and ρ(0)=0. Therefore, there exist exactly two real numbers α± such that
α−<0<α+ and

Le−1ρ(−α±Le)=Le−1α2
±+cα±−m.

We denote by χ± the two principal eigenfunctions of problem (3.2) with λ = −α±Le,
normalized so that minωχ±=1. The functions u±(x,y)= e

α±xχ±(y) then satisfy







Le−1∆u±+(c−u(y))u±,x−mu± = 0 in Ω,

∂u±
∂n

= 0 on ∂Ω.

Fix now any R>0 and choose N ∈N so that

min
(x,y)∈[xj−R,xj+R]×ω

T (x,y)≥1
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for all j≥N . Then, as the function f(y,T ) is increasing in the variable T , we have
that f(y,T )≥f(y,1)≥m in [xj−R,xj+R]×ω for all y∈ω and j≥N . Hence, on the
same domain,

Le−1∆Y +(c−u(y))Yx−mY ≥0.

The function Y also satisfies the Neumann boundary conditions on ∂Ω. Furthermore,
Y ≤1 in Ω. It then follows from the weak maximum principle that

∀(x,y)∈ [xj−R,xj+R]×ω, Y (x,y)≤ eα+(x−xj−R)χ+(y)+e
α−(x−xj+R)χ−(y).

Therefore, along the section x=xj , the function Y is small:

limsup
j→+∞

(

max
y∈ω

Y (xj ,y)

)

≤max
(

max
ω
χ+,max

ω
χ−

)

×(e−α+R+eα−R).

Since R>0 can be chosen arbitrary, one concludes that Y (xj , .)→0 uniformly in ω
as j→+∞. Let now ε>0 be any positive real number, and N ∈N be such that
Y (xj ,y) ≤ ε for all j≥N and y∈ω. Since the function Y satisfies

Le−1∆Y +(c−u(y))Yx=f(y,T )Y ≥0,

it follows from the weak maximum principle that Y (x,y)≤ ε for all (x,y)∈ [xj ,xN ]× ω
and j≥N such that xj ≤xN . Since xj →−∞ as j→+∞, we have that Y ≤ ε
in (−∞,xN ]×ω. Thus, as Y ≥0, Y (−∞, .)=0 uniformly in y∈ω.

We now use this to find an increasing exponential bound on the temperature
to control its behaviour on the left, and thus to reach a contradiction with (3.11).
From (3.1) and (1.12),

λ2∞−cλ∞=νq(λ∞)≤νq,f=0(λ∞)−min
y∈ω

∂f

∂T
(y,0), (3.12)

where νq,f=0 is defined as the principal eigenvalue of (1.9) where f is replaced by zero.
Let

ε=min

(

νq,f=0(0)

2
,
1

2
min
y∈ω

∂f

∂T
(y,0)

)

>0.

The positivity of νq,f=0(0) is easily verified from (1.12) with f =0. Let A≥0 so that

∀x≤−A, ∀y∈ω,
∂f

∂T
(y,0)Y (x,y)≤ ε.

Such an A exists since Y (−∞, .)=0. As a consequence of the continuity of νq
and (3.12), there exists Λ>λ∞ such that

−νq,f=0(Λ)−cΛ+Λ2<−
1

2
min
y∈ω

∂f

∂T
(y,0)≤−ε. (3.13)

We denote by U the positive function defined by

T (x,y)=U(x,y)e−Λxψf=0,Λ(y),

where ψf=0,Λ is the principal eigenfunction of (1.9) with the parameter Λ and f =0,
normalized so that ‖ψf=0,Λ‖L2(ω)=1. Besides, one has that T (x,y)≤C1e

−λ∞x for
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all x≤0 (see (3.10)), and thus U(−∞, .)=0. It is also easy to verify that we have
∂nU =0 on ∂Ω. Furthermore, one can check that

∆U+(c−u(y)−2Λ)Ux+2
∇yψf=0,Λ

ψf=0,Λ
.∇yU

+(Λ2−νq,f=0(Λ)−cΛ+g(x,y))U =0 in Ω,

where

g(x,y)=
f(y,T (x,y))

T (x,y)
Y (x,y)≤

∂f

∂T
(y,0)Y (x,y)≤ ε

for all (x,y)∈ (−∞,−A]×ω. Therefore, we have

∆U+(c−u(y)−2Λ)Ux+2
∇yψf=0,Λ

ψf=0,Λ
.∇yU+(Λ2−νq,f=0(Λ)−cΛ+ε)U ≥0

for all (x,y)∈ (−∞,−A]×ω.
Because of (3.13), we shall now apply the maximum principle to the previous

operator, and look for a suitable super-solution. Since ε≤νq,f=0(0)/2<νq,f=0(0),
there exists δ>0 such that

δ2+cδ−νq,f=0(−δ)+ε<0.

One can then check that the function

U(x,y)= e(Λ+δ)x×
ψf=0,−δ(y)

ψf=0,Λ(y)
,

where ψf=0,−δ is the principal eigenfunction of (1.9) with the parameter −δ and f =0,
satisfies

∆U+(c−u(y)−2Λ)Ux+2
∇yψf=0,Λ

ψf=0,Λ
.∇yU+(Λ2−νq,f=0(Λ)−cΛ+ε)U

=(δ2+cδ−νq,f=0(−δ)+ε)U ≤0 in Ω,

along with Neumann boundary conditions. It follows from the maximum principle
that the difference U−U can not attain an interior negative minimum. Moreover,
U >0 and one can normalize the function ψf=0,−δ so that U(−A,y)≤U(−A,y) for all
y∈ω. Finally, both U and U tend to 0 as x→−∞. We conclude that

∀x≤−A, ∀y∈ω, U(x,y)≤U(x,y).

In other words,

∀x≤−A, ∀y∈ω, T (x,y)≤ eδxψf=0,−δ(y)≤γe
δx,

where γ=maxy∈ωψf=0,−δ(y), and we have reached a contradiction with (3.11).
Therefore, the proof of Lemma 3.3 is complete.

4. Convergence of some solutions in dimension 2
In this Section, we begin the proof of Corollary 1.4. Our aim is to find a suitable

sequence of solutions of (1.18)-(1.2) and (1.5) with c>max(0,c∗q) and h=hk such
that it satisfies the assumptions of Theorem 1.3. As we said in the Introduction,
the construction of this sequence will echo the proof which was used in [7] to prove
the existence of solutions of (1.18)-(1.2) and (1.5) for c>c∗h. First, we will recall the
sketch of this proof. We will then show how it allows us, in dimension 2, to obtain
Corollary 1.4.
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4.1. Construction of solutions of (1.18)-(1.2) and (1.5) - [7]. We fix
here k∈N. We recall the construction of a solution of (1.18)-(1.2) and (1.5) with h=hk
and c>c∗hk

, which is possible for k large enough since c>c∗q and because of Theorem
1.2. The first step, and the only one we will detail here, is to construct sub- and
super-solutions of (1.18)-(1.2). Then, the use of a fixed point theorem on bounded
cylinders allowed us in [7] to construct approximate solutions. Lastly, by passing to
the limit in the infinite cylinder, we could obtain a solution of (1.18)-(1.2) with the
desired qualitative properties. This is in fact a standard procedure which has also
already been applied to show the existence of fronts in [2, 5, 11], which is why only
the construction of sub- and super-solutions will be detailed here. We refer the reader
to [7] for the end of the proof, which will be summed up here by a lemma.

Supersolutions for Y and T. Note first that the constant 1 is a super-solution
for Y .

We then construct a super-solution for the T -Equation (1.18) with Y =1. Since
limk→+∞ c∗hk

= c∗q<c, we can assume, as already underlined, that c∗hk
<c. Hence,

let λk be the smallest positive root of λ2−µhk
(λ)= cλ, and T k be the function defined

in Ω by

T k(x,y)=φλk
(y)e−λkx>0. (4.1)

Here φλk
is the positive principal eigenfunction of (1.8) with h=hk and λ=λk, nor-

malized so that ‖φλk
‖L2(ω)=1. The function T k satisfies the Neumann boundary

conditions on ∂Ω, and is a super-solution for the equation on T in (1.18) with Y =1,
i.e.

∆T k+(c−u(y))T k,x+f(y,T k)−hk(y,T k)

≤∆T k+(c−u(y))T k,x+

(

∂f

∂T
(y,0)−

∂hk
∂T

(y,0)

)

T k=0 in Ω.

Sub-solution for Y. The method we use here is the same as in the proof of
Lemma 3.2 in Section 3.1. We define ρ to be the principal eigenvalue of (3.2). As
before, we choose β>0 which satisfies (3.3). We also let γk>0 be large enough so
that







γk×min
ω
χβkLe≥1,

γkLe
−1(ρ(βkLe)−β

2
k+cβkLe)×min

ω
χβkLe>max

y∈ω

(

∂f

∂T
(y,0)φλk

(y)

)

,
(4.2)

where χβkLe is the positive eigenfunction of (3.2) with λ=βkLe, normalized in such
a way that ‖χβkLe‖L∞(ω) = 1.

Remark 4.1. Unlike in Section 3.1, γk indeed depends on k, since we lack a priori
estimates on (φλk

)k∈N.

Let Y k be defined by

Y k(x,y)=max(0,1−γkχβLe(y)e
−βx). (4.3)

As in Section 3.1, one can check that Y k is a sub-solution for (1.18)-(1.2) with T =T k

and h=hk. That is, Y k satisfies the Neumann boundary conditions on ∂Ω, and for
any (x,y)∈Ω,

Le−1∆Y k+(c−u(y))Y k,x−f(y,T k)Y k≥0.



1198 KPP REACTION-DIFFUSION SYSTEMS WITH LOSS INSIDE A CYLINDER

Sub-solution for T. Lastly, we will construct a sub-solution for T with Y =Y k.
Recall that λ2k−µhk

(λ)= cλk. We define ak(λ)=λ
2−µhk

(λ). Note that a′k(λk)<c.
Indeed, since ak(0)>0 and λk is the smallest positive root of λ2−µhk

(λ)= cλ, we
have a′k(λk)≤ c. Furthermore, if a′k(λk)= c, then λ2−µhk

(λ)≥ cλ for all λ∈R by
convexity of ak, whence c

∗
hk

≥ c, which is a contradiction. We conclude, as announced,
that a′k(λk)<c.

The above allows us to choose ηk>0 small enough so that
{

0<ηk<min(β,αλk),
εk := c(λk+ηk)−ak(λk+ηk)>0,

(4.4)

where α>0 such that f(y,.) is of class C1,α([0,s0]) for some s0>0 uniformly in y∈ω.
Let M ≥0 be such that

f(y,s)≥
∂f

∂T
(y,0)s−Ms1+α for all s∈ [0,s0] and for all y∈ω. (4.5)

Now take xk≥0 sufficiently large so that

Y k(x,y)=1−γkχβLe(y)e
−βx for all (x,y)∈ (xk,+∞)×ω.

Next, let δk>0 be large enough so that














φλk
(y)e−λkx−δkφλk+ηk

(y)e−(λk+ηk)x≤s0 in Ω,

φλk
(y)e−λkx−δkφλk+ηk

(y)e−(λk+ηk)x≤0 in (−∞,xk]×ω,

δkεk×min
ω
φλk+ηk

≥max
y∈ω

(

γk
∂f

∂T
(y,0)φλk

(y)+Mφλk
(y)1+α

)

,

(4.6)

where φλk+ηk
is the positive principal eigenfunction of (1.8) with h=hk and λ=

λk+ηk, normalized so that ‖φλk+ηk
‖L2(ω)=1. Lastly, we define, for all (x,y)∈Ω,

T k(x,y)=max
(

0,φλk
(y)e−λkx−δkφλk+ηk

(y)e−(λk+ηk)x
)

. (4.7)

The function T k satisfies the Neumann boundary conditions on ∂Ω. Let us now check
that T k is a sub-solution to (1.18) with Y =Y k. Note first that 0≤T k≤s0 in Ω. More-
over, if T k(x,y)>0, then x>xk≥0 whence 0≤Y k(x,y)=1−γkχβLe(y)e

−βx. Then,
in that case, we have

∆T k+(c−u(y))T k,x+f(y,T k)Y k−hk(y,T k)

≥∆T k+(c−u(y))T k,x−
∂hk
∂T

(y,0)T k

+

(

∂f

∂T
(y,0)T k−MT 1+α

k

)

(

1−γkχβLe(y)e
−βx

)

≥−δk(k(λk+ηk)−c(λk+ηk))φλk+ηk
(y)e−(λk+ηk)x

−
∂f

∂T
(y,0)γkT kχβLe(y)e

−βx−MT 1+α
k

≥ δkεkφλk+ηk
(y)e−(λk+ηk)x−

∂f

∂T
(y,0)φλk

(y)γke
−(λk+βk)x−Mφλk

(y)1+αe−λk(1+α)x

≥

(

δkεkφλk+ηk
(y)−

∂f

∂T
(y,0)φλk

(y)γk−Mφλk
(y)1+α

)

e−(λk+ηk)x

≥0,

because of (4.4), (4.5), (4.6), the fact that hk is linear, and since 0 < φλk+ηk
(y),

0 < χβLe (y) ≤ 1 in ω.
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End of the construction of solutions with speed c of (1.18)-(1.2)
and (1.5). We sum up the end of the proof in the following theorem.

Theorem 4.1. Let T k, T k, and Y k be defined as in (4.1), (4.7), and (4.3) where

the parameters satisfy the above assumptions. Then there exists a solution (Tk,Yk)
of (1.18)-(1.2) with (1.5), such that T k≤Tk≤T k and Y k≤Yk<1.

As we said before, this proof relies on the use of a fixed point theorem in a
truncated cylinder, and then on a passage to the limit, but we refer to [7] for the
details.

4.2. Proof of Corollary 1.4.
Proof. We now assume that we are in dimension 2 (d=2). We want to con-

struct a sequence (Tk,Yk) of solutions of (1.18)-(1.2) where c>c∗q and with the con-
ditions (1.5), such that it satisfies the assumptions (1.20) and (1.21) of Theorem 1.3.

That is, we want to find T k, Y k and T k sub- and super-solutions defined as
in (4.1), (4.3), and (4.7), such that there exist 0<Λ1<Λ2 and C1, C2, C3>0 such
that for all k∈N and (x,y)∈Ω,

T k(x,y)≤C1e
−λkx, (4.8)

max(0,C2e
−Λ1x−C3e

−Λ2x)≤T k(x,y). (4.9)

We first search some C1>0 such that condition (4.8) is satisfied. Recall (4.1):

T k(x,y)=φλk
(y)e−λkx>0,

where φλk
is the positive principal eigenfunction of (1.8) with h=hk and λ=λk, nor-

malized so that ‖φλk
‖L2(ω)=1. We know from Theorem 1.2 that for any fixed λ, the

sequence of the principal eigenfunctions of (1.8) with h=hk and L2-normalization is
bounded in H1(ω) and converges in L2(ω) to the principal eigenfunction ψq,λ of (1.9).
In fact, one could easily check that this result still holds with a sequence λk→λ∞ (see
Remark 2.1 in Section 2.2). Applying this here, that means that our sequence φλk

is
bounded in H1(ω) and converges in L2(ω) to ψq,λ∞

. Furthermore, since ω⊂R (we
are in dimension 2), we can assume, up to extraction of some subsequence, that the
convergence also holds in the Hölder spaces C0,(1/2)−ε(ω) for all ε>0. Since ψq,λ∞

is a positive function (as a principal eigenfunction of (1.9)), we have that there exist
0<K1<K2 such that for all k∈N large enough and y∈ω,

K1≤φλk
(y)≤K2. (4.10)

With C1=K2, the condition (4.8) is verified.
We recall that β is chosen as in (3.3), and we now choose γ >0 such that (4.2)

holds for γ=γk; that is,







γ×min
ω
χβLe≥1,

γLe−1(ρ(βLe)−β2+cβLe)×min
ω
χβLe>K2max

y∈ω

(

∂f

∂T
(y,0)

)

.

Then

Y k(x,y)=Y (x,y)=max(0,1−γχβLe(y)e
−βx)



1200 KPP REACTION-DIFFUSION SYSTEMS WITH LOSS INSIDE A CYLINDER

is a suitable sub-solution for Theorem 4.1 for all k.
Lastly, we deal with condition (4.9). We recall that we defined ak(λ)=λ

2−µhk
(λ)

for any λ∈R. We can also define a(λ)=λ2−νq(λ). We already know from Theo-
rem 1.2 that ak→a locally uniformly. Besides, as we did above for ak in Section 4.1, we
have that a(λ∞)= cλ∞ and a′(λ∞)<c (λ∞ is the smallest positive root of a(λ)= cλ).
Let now η be small enough so that

{

0<η<min(β,λ∞,α inf
k∈N

λk),

ε := c(λ∞+η)−a(λ∞+η)>0,

where α>0 such that f(y,.) is of class C1,α([0,s0]) for some s0>0 uniformly in y∈ω.
Let now ηk=λ∞+η−λk, which converges to η as k→+∞. We then have for k large
enough that ηk satisfies (4.4) with εk≥

1
2ε bounded away from 0. Note that we used

here the locally uniform convergence of ak toward a. Now let x0≥0 be sufficiently
large so that

Y (x,y)=1−γχβLe(y)e
−βx for all (x,y)∈ (x0,+∞)×ω.

We assume that k is large enough so that

λk ∈
(

λ∞−
η

2
,λ∞+

η

2

)

. (4.11)

We recall that φλk
converges uniformly in ω to ψq,λ∞

, the L2-normalized positive
eigenfunction of (1.9), which implied (4.10). Similarly, we have that φλk+ηk

=φλ∞+η

(the principal eigenfunction of (1.8) with parameter λ∞+η) converges uniformly in ω
to ψq,λ∞+η, the L

2-normalized positive eigenfunction of (1.9) with parameter λ∞+η.
Therefore, there exist 0<K3<K4 such that for all k∈N large enough and y∈ω,

K3≤φλk+ηn
(y)≤K4. (4.12)

Since λ∞−η/2>0, we can now let δ>0 be large enough so that







































K2e
−(λ∞+ η

2
)x−δK3e

−(λ∞+η)x≤s0 in Ω,

K2e
−(λ∞− η

2
)x−δK3e

−(λ∞+η)x≤s0 in Ω,

K2e
−(λ∞+ η

2
)x−δK3e

−(λ∞+η)x≤0 in (−∞,x0]×ω,

K2e
−(λ∞− η

2
)x−δK3e

−(λ∞+η)x≤0 in (−∞,x0]×ω,

δε

2
×K3≥γK2max

y∈ω

(

∂f

∂T
(y,0)

)

+MK1+α
2 .

Thus, from (4.10), (4.11), and (4.12), δ satisfies (4.6) with δk= δ for any k. We can
now define, for all (x,y)∈Ω and k∈N,

T k(x,y)=max
(

0,φλk
(y)e−λkx−δφλk+ηk

(y)e−(λk+ηk)x
)

,

which is a suitable sub-solution for Theorem 4.1 for all k∈N.
It now only remains to prove that those sub-solutions satisfy (4.9). For x≤0, we

have that T k(x,y)=0. Thus, if T k>0, then x>0 and

T k(x,y)=φλk
(y)e−λkx−δφλk+ηk

(y)e−(λk+ηk)x

≥K1e
−(λ∞− η

2
)x−δK4e

−(λ∞+η)x .
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One can then easily conclude that

T k(x,y)≥max
(

0,K1e
−(λ∞− η

2
)x−δK4e

−(λ∞+η)x
)

,

and (4.9) is satisfied with C2=K1, C3= δK4, Λ1=λ∞− η
2 , and Λ2=λ∞+η.

Finally, our sub- and super-solutions satisfy the assumptions needed for Theo-
rem 4.1, which means that there exists a sequence of solutions (Tk,Yk) of (1.18)-(1.2)
and (1.5), such that T k≤Tk≤T k and Y k≤Yk<1. Furthermore, since T k and T k sat-
isfy the conditions (4.8) and (4.9), the sequence (Tk,Yk)k∈N satisfies the assumptions
(1.20) and (1.21) of Theorem 1.3, hence the proof of Corollary 1.4 is now complete.
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