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RESIDUAL-FREE BUBBLE METHODS FOR NUMERICAL
HOMOGENIZATION OF ELLIPTIC PROBLEMS∗

TAO YU† AND XINGYE YUE‡

Abstract. The residual-free bubble (RFB) method was first proposed for convection-diffusion
problems. Then it was used to treat elliptic homogenization problems. We revisit it in this paper
and try to reveal its relations to some other multiscale methods. Some new bubble schemes are also
proposed.
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1. Introduction
Consider the numerical homogenization of the following second order elliptic prob-

lems with oscillating data:

Luε≡−∇·(kε(x)∇uε(x)) =f(x), x∈Ω. (1.1)

uε= 0 on ∂Ω,

where Ω⊂Rn is a bounded domain, kε is symmetric and satisfies the ellipticity con-
dition α|ξ|2≤ ξikεijξj≤β|ξ|2 for any ξ∈Rn with 0<α≤β independent of ε, and ε is
a small positive parameter standing for the scale ratio between the micro structure
and the whole domain.

This problem has attracted a great deal of attention because of its relevance to
several important practical problems such as flow in porous media and mechanical
properties of composite materials. Many numerical homogenization methods have
been proposed. We refer to the short reviews in [16, 17] and references therein. We
will focus on the residual-free bubbles (RFB) finite element method, which was first
proposed in [5] for convection-diffusion problems, and then was extended to treat
problem (1.1) in [3, 19]. As shown in [3] and [19], the RFB method has a close
relation to the multiscale finite element method (MsFEM) [12].

We will see that as a numerical homogenization method for problem (1.1), the
coarse scale part of the RFB scheme is actually the same as a simple version of
MsFEM if the coefficient tensor kε is symmetric. Furthermore, the whole solution
of RFB, which is a coarse scale part plus a bubble part, can be obtained from the
MsFEM solution by local reconstruction in each finite element. That means over
each element, solving the original problem with MsFEM solution as the boundary
condition yields the whole RFB solution.

RFB method can also be viewed as an upscaling procedure, since the coarse
scale part of RFB scheme implies a closed coarse scale model. So the support of
each bubble, which is a whole element, may be regarded as the sampling window.
From this point of view, we introduce the technique of adaptive sampling to take the
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advantage of scale separation. We may choose bubble functions with much smaller
support rather than the whole element to save the computational cost. Then we get
a new scheme very similar to the heterogenous multiscale methods (HMM) proposed
in [8] and fully analyzed for elliptic homogenization problems in [10]. If the coarse
mesh size h is comparable to the small scale size ε, we may choose bubble functions
with larger support than the element (so-called over-sampling technique in [12, 11])
in order to achieve more accuracy.

2. Relations between RFB method and MsFEM

Let us first introduce the schemes of RFB and MsFEM, then show some obser-
vations on the relations between them.

2.1. RFB finite element method. Let Th be a regular triangulation of Ω:
Ω̄ =

⋃
T∈Th T . Let V hC ⊂H1

0 (Ω) denote the conforming piecewise linear finite element

space on Th. The bubble space is defined by Vb=
∏
T∈ThH

1
0 (T ). Then the RFB finite

element method reads:Find uh=uC +ub∈Vh≡V hC ⊕Vb such that

a(uh,vh)≡
∫

Ω

kε∇uh ·∇vhdx= (f,vh), ∀vh=vC +vb∈Vh.
(2.1)

This scheme can be split into two parts naturally by choosing test functions at different
scales:

Coarse Scale: a(uC +ub,vC) = (f,vC), ∀vC ∈V hC . (2.2)

Fine Scale: a(ub,vb) = (f,vb)−a(uC ,vb), ∀vb∈Vb. (2.3)

To obtain the completely coarse scale model, one needs to solve the fine scale equation
(2.3) for the bubble part ub, and substitute it into the coarse scale equation (2.2). For
each element T ∈Th, the fine scale equation (2.3) is equivalent to the following local
problem:

L(uC +ub)=f, in T, (2.4)

ub= 0, on ∂T,

i.e. the solution uh=uC +ub is residual free inside each element T ∈Th.

2.2. A simple version of MsFEM. The basic idea of MsFEM [12] is to con-
struct the multiscale basis functions instead of the piecewise linear basis functions in
standard FEM. A similar idea was also used in [2] where a framework of the gener-
alized finite element method was developed for one-dimensional problems. For each
triangle element T ∈Th, the standard linear finite element space V TC = span{ϕ1,ϕ2,ϕ3}
is replaced by V TMS = span{ψ1,ψ2,ψ3} such that

−∇·(kε(x)∇ψj(x)) = 0, in T ; (2.5)

ψj =ϕj , on ∂T,

where ϕj is the conforming piecewise linear nodal basis at vertex xj . Please note that
the multiscale basis functions can be constructed in some other ways; see [12] for more
details. With these element basis functions, the global multiscale basis functions can
be well-defined, so we get the multiscale finite element space VMS⊂H1

0 (Ω). Then a
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conforming multiscale finite element scheme can be defined as: Find uεh∈VMS such
that

a(uεh,vh)≡ (kε∇uεh,∇vh) = (f,vh), ∀vh∈VMS . (2.6)

For periodic media, i.e.

kε(x) =k(x,x/ε) and k(x,y) is periodic with respect to y∈Y ≡ [0,1]n, (2.7)

based on the theory of homogenization, the following error estimate was given in [13]:

‖uε−uεh‖1≤C(h+
√
ε+
√
ε/h), (2.8)

where, as in the whole paper, C>0 is a generic constant independent of ε and h.

Remark 2.1. Note that in (2.5), the multiscale basis functions are only linear on
each element interface, meanwhile the exact solution is oscillated everywhere in the
whole domain. This kind of mismatching leads to the ‘poor’ term

√
ε/h in the error

estimate (2.8). This term can be improved to ε/h by the technique of over-sampling
in [11].

2.3. Relations between the two methods. For the MsFEM solution uεh∈
VMS , from the definition of the basis functions (2.5), we have over each element T ∈Th,

Luεh= 0, in T.

For RFB solution uh=uC +ub, we have

L(uC +ub) =f, in T.

So at first glance, they are obviously two different methods with some similar features.
See [19] for the discussions on the relations between these two schemes. The conclusion
was that RFB was closely related to MsFEM.

Actually, if we split the bubble into two parts ub=M0(uC)+M(f), such that

M0(uC)∈Vb, a(uC +M0(uC),v)= 0, ∀v∈Vb, (2.9)

M(f)∈Vb, a(M(f),v)= (f,v), ∀v∈Vb, (2.10)

we will see the key fact that the effect of M(f) can be canceled in the coarse scale
model. Recall the RFB FEM scheme

a(uC +M0(uC)+M(f),vC) = (f,vC), ∀vC ∈V hC ,
a(uC +M0(uC)+M(f),vb) = (f,vb), ∀vb∈Vb.

Setting vb=M0(vC) in the second formula, then adding them up, we have

a(uC +M0(uC)+M(f),vC +M0(vC)) = (f,vC +M0(vC)), ∀vC ∈V hC .

Noting that the coefficient tensor kε is symmetric, we have

a(M(f),vC +M0(vC)) =a(vC +M0(vC),M(f)) = 0

by the definition of the operator M0 in (2.9).
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The coarse scale model for RFB The coarse scale model for RFB now reads:
Find uC ∈V hC , such that

a(uC +M0(uC),vC +M0(vC)) = (f,vC +M0(vC)), ∀vC ∈V hC . (2.11)

If we define the reconstruction operator by

R(vC)≡vC +M0(vC),∀ vC ∈V hC , (2.12)

it is obvious that the multiscale basis functions ψj in (2.5) satisfy ψj =R(φj). So the
coarse scale model of RFB (2.11) can be rewritten as: Find uC ∈V hC , such that

a(R(uC),R(vC)) = (f,R(vC)), ∀vC ∈V hC , (2.13)

or equivalently: Find ũh∈R(V hC ) such that

a(ũh, ṽh) = (f,ṽh), ∀ṽh∈R(V hC ). (2.14)

The above scheme is the same as the scheme of MsFEM (2.6) since VMS =R(V hC ).

So far we have, for the RFB solution (2.6),

uh=uC +M0(uC)+M(f) =uεh+M(f),

where uεh is the MsFEM solution. From the error estimate (2.8), we know that
uC +M0(uC) =uεh is a good approximation of uε. The following setting shows us the
effect of M(f): For each T ∈Th,

Luh=f, in T,
uh=uεh, on ∂T.

This means that the RFB solution can be obtained from the MsFEM solution by local
reconstruction.

Now we come to the following main result.

Theorem 2.2. Under the assumption that the coefficient kε is symmetric in (1.1), let
uh=uC +M0(uC)+M(f) be the solution of RFB scheme (2.1) and uεh be the solution
of MsFEM (2.6). Then we have

uεh=uC +M0(uC), (2.15)

and the induced coarse scale model of RFB scheme (2.1) is equivalent to the MsFEM
(2.6). Furthermore, the RFB solution uh can be obtained from the MsFEM solution
uεh by the local reconstruction (2.15).

Remark 2.3. Local reconstruction is a common strategy for multiscale simulation;
one first solves the macro model on the coarse scale mesh, then solves the original
problems locally on the fine scale, over some local regions where the details in fine
scale are interesting, using the coarse scale solution as the boundary condition [18].

Remark 2.4. Based on the variational multiscale method (VMS) [14, 15], an adaptive
multiscale methods was developed in [17], where it was pointed out that the coarse
scale model of VMS also had a form similar to (2.11) for general symmetric bilinear
form a(·,·).
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3. Adaptive sampling
RFB method can be regraded as an up-scaling procedure [19]. From this point of

view, the support of the bubble can be regarded as the sampling window. One takes
the sample, then ‘measures’ the homogenized (effective) coefficient to complete the
modeling on the macroscopic scale. How large a sample one should choose is problem
dependent. That is the so-called adaptive sampling.

Let us revisit the RFB method. The coarse scale model of RFB is as follows:
Find uC ∈V hC , such that

a(R(uC),R(vC)) = (f,R(vC)), ∀vC ∈V hC . (3.1)

It can be rewritten as∑
T

∫
T

K∗h∇uC ·∇vCdx=

∫
Ω

f R(vC)dx, ∀vC ∈V hC ,

where for each T ∈TH ,

K∗h∇uC ·∇vC ≡
1

|T |

∫
T

kε∇R(uC) ·∇R(vC)dx=
1

|T |

∫
T

kε∇R(uC) ·∇vCdx,

where the second equality is valid thanks to the definitions of the reconstruction
operator (2.12) and the bubble function (2.9). Or more precisely, K∗h = ((K∗h)ij)n×n
is defined by

(K∗h)ij |T =
1

|T |

∫
T

kε∇R(xi) ·∇xjdx=ej ·<kε∇R(xi)>T , (3.2)

where xi is the i-th component of x∈Rn and <v>D= 1
|D|
∫
D
vdx denotes the average

over the region D for any integrated function v.
This means that to take the whole element T as the sampling window is to measure

the homogenized (or effective) coefficient on macro scale (of size h). If there exists
scale separation, instead of the whole element, one can take a smaller region as the
sampling window.

Remark 3.1. It is easy to check that the effective coefficient defined above in (3.2)
satisfies

K∗h<∇R(vC)>T=K∗h∇vC |T =<kε∇R(vC)>T , ∀vC ∈V hC ,∀T ∈Th. (3.3)

This is the key point for model upscaling: one must keep the balance of the mass or
energy in macro (left-hand side) and micro (right-hand side) scales.

Remark 3.2. The same result as (3.2) was obtained in [19] under the assumption
that the source term f is piecewise constant on the triangulation Th.

Remark 3.3. For periodic media (2.7), the modeling error estimate can be found in
[20],

max
x∈T
|K∗(x)−K∗h|≤C

( ε
h

+h
)
, ∀T ∈Th, (3.4)

where K∗(x) is the exact homogenized coefficient in homogenization theory.
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3.1. RFB with adaptive sampling. First assume that there exists scale
separation in the problem (1.1) and furthermore h�ε. We set the bubble space as:
Vb=

∏
T V

T
b , with V Tb =H1

0 (Iδ) for each element T . We may choose the sample Iδ⊂T
with size of δ, such that 0<ε� δ�h. Hereafter we set Iδ =xT ⊕ [−δ/2,δ/2]n, where
xT is the barycenter of the element T .

We can formally define a new RFB finite element method: Find uh=uC +ub∈
Vh≡V hC

⊕
Vb such that

Coarse Scale: a(uC +ub,vC) = (f,vC), ∀vC ∈V hC . (3.5)

Fine Scale: a(ub,vb) = (f,vb)−a(uC ,vb), ∀vb∈Vb. (3.6)

Over each element T ∈Th, the fine scale Equation (3.6) is equivalent to the fol-
lowing local problem:

L(uC +ub) =f, in Iδ⊂T, (3.7)

ub= 0, on ∂Iδ,

i.e. the solution uh=uC +ub is now residual free only inside each sample Iδ⊂T ∈Th.
Outside the sampling window, we set ub≡0, in T\Iδ, ∀ T ∈Th.

If we split the bubble into two parts ub=M0
δ(uC)+Mδ(f), such that

M0
δ(uC)∈Vb, a(uC +M0

δ(uC),v) = 0, ∀v∈H1
0 (Iδ),∀ T ∈Th, (3.8)

Mδ(f)∈Vb, a(Mδ(f),v) = (f,v), ∀v∈H1
0 (Iδ),∀ T ∈Th, (3.9)

we will have the coarse scale model of the new RFB scheme: Find uC ∈V hC such that

a(uC +M0
δ(uC),vC +M0

δ(vC)) = (f,vC +M0
δ(vC)), ∀vC ∈V hC .

Thanks to (3.8), the scheme is equivalent to: Find uC ∈V hC such that

a(uC +M0
δ(uC),vC) = (f,vC +M0

δ(vC)), ∀vC ∈V hC , (3.10)

Or in another form: Find uC ∈V hC such that

a∗(uC ,vC)≡
∑
T∈TH

∫
T

K∗h∇uC ·∇vCdx= (f,R(vC)), ∀vC ∈V hC , (3.11)

with

(K∗h)ij |T =
1

|T |

∫
T

kε∇R(xi) ·∇xjdx, (3.12)

where in each element T , the reconstruction operator is

R(vC) =

{
vC , x 6∈ Iδ,
vC +M0

δ(vC), x∈ Iδ,
for any vC ∈V hC . (3.13)

Does this still give a ‘correct’ macro-scale model? Let’s check two extreme cases:
Iδ =T or Iδ =φ. First let’s go back to the RFB (or MsFEM) scheme (2.11) (or (2.13)
- (2.14)). In this case, Iδ =T , the sample window is the whole element, and we have
known that it works well. By the definition of M0 in (2.9), we have

a(uC +M0(uC),vC) = (f,vC +M0(vC)) ∀vC ∈V hC .
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If we neglect the effect of M0(uC) and M0(vC), or equivalently set Iδ =φ, we get the
standard Galerkin finite element scheme

a(uC ,vC) = (f,vC) ∀vC ∈V hC ,

and equivalently ∑
T

∫
T

K̄h∇uC ·∇vCdx=

∫
Ω

f vCdx, ∀vC ∈V hC , (3.14)

where for each T ∈TH ,

K̄h≡
1

|T |

∫
T

kεdx

is the simple arithmetical average. As we have known, for problem (1.1) the standard
Galerkin finite element scheme does not work on the coarse mesh with scale of h>
ε. So (3.14) is an incorrect coarse scale model. The reason is that although the
fine scale bubble M0(uC) is negligible when directly compared to the coarse scale
function uC , this is not the case for ∇M0(uC), which is comparable to ∇uC . On the
other hand, if we denote by a(uC +M0(uC),vC) =

∑
T

∫
T

(kε∇uC +kε∇M0(uC))dx ·
∇vC |T ≡

∑
T

∫
T

(qC +qF )dx ·∇vC |T , then the macro ‘mass’ or ‘energy’ flux qC and
micro flux qF are comparable. Neglecting of the micro mass flux qF will lead to the
loss of mass balance. For an effective media with coefficient K∗, we must have the
balance (see (3.3))

K∗<∇uε>T=<kε∇uε>T

for any proper micro state uε. From this point of view, we will see that in the scheme
(3.11) - (3.12), only part of micro mass flux on Iδ is included. So we can not expect
the balance of mass. We have to modify the bubble functions to keep the balance.

If the size of the sample Iδ is properly chosen, the average flux (or flux density)

<qF >δ=
1

|Iδ|

∫
Iδ

kε∇M0
δ(uC)dx would be accurate enough. Therefore the modified

bubble function M̃0
δ(uC) should satisfy

1

|T |

∫
T

kε∇M̃0
δ(uC)dx=

1

|Iδ|

∫
Iδ

kε∇M0
δ(uC)dx.

A simple choice is the re-scaled bubble function

M̃0
δ(vC) =

|T |
|Iδ|

M0
δ(vC), for any vC ∈V hC . (3.15)

Then, replacing the bubble functions in the original scheme (3.10), we obtain a new
coarse scale model for the adaptive RFB scheme: Find uC ∈V hC , such that

a(uC +M̃0
δ(uC),vC) = (f,vC +M̃0

δ(vC)), ∀vC ∈V hC . (3.16)

Or, equivalently: Find uC ∈V hC , such that

a∗(uC ,vC)≡
∑
T∈TH

∫
T

K∗h∇uC ·∇vCdx= (f,R̃(vC)), ∀vC ∈V hC , (3.17)
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with

(K∗h)ij |T =
1

|T |

∫
T

kε∇R̃(xi) ·∇xjdx, (3.18)

where in each element T , R̃(vC) =

{
vC , x 6∈ Iδ,
vC +M̃0

δ(vC), x∈ Iδ,
for any vC ∈V hC .

To estimate the modeling error of this scheme, we compare it with the heteroge-
neous multiscale method (HMM). HMM is a general framework for multiscale prob-
lems, proposed in [8] and fully analyzed in [10] for elliptic homogenization problems.
We refer to the review paper [9] for the details of using HMM for different classes of
multiscale problems. As a numerical homogenization method, HMM has two compo-
nents: selection of a macroscopic solver and estimating the missing macroscale data
by locally solving the fine scale problems.

A simple version of HMM for problem (1.1) [10] has the form as: Find
uC ∈V hC such that

a∗HMM (uC ,vC)≡
∑
T∈TH

∫
T

K∗HMM∇uC ·∇vCdx= (f,vC), ∀vC ∈V hC , (3.19)

with

(K∗HMM )ij |T =
1

|Iδ|

∫
Iδ

kε∇R(xi) ·∇R(xj)dx, (3.20)

where the reconstruction operator R is defined for any vC ∈V hC as{
−∇·(kε∇R(vC)) = 0, in Iδ,
R(vC) =vC , on ∂Iδ.

(3.21)

From (3.8), we readily have R(vC) =vC +M0
δ(vC). The modeling error for HMM can

be bounded for periodic media (2.7) by [10]

|e(HMM)|≡max
T∈Th

|K∗(xT )−K∗HMM |T |≤C(ε/δ+δ), (3.22)

where K∗(x) is the exact homogenized coefficient for periodic media and xT is the
barycenter of T ∈Th.

Remark 3.4. Please note that (3.19) is only a simple version of HMM. If a higher
order finite element method is chosen as a macro solver, then at each element T , a
higher order quadrature rule should be used to compute the element stiffness matrix.
In this case, multiple samples may be chosen to support the macro information at the
multiple quadrature points for each element T (see [10]). Please also note that HMM
has another flexibility in choosing the local micro solver. To define a HMM scheme like
(3.19), the key point is to define the local reconstruction operator R :V hC 7−→H1(Iδ) in
(3.21). For HMM, this is only one of the choices. Beside the Dirichlet formulation used
here, we may choose periodic boundary conditions, Neumann boundary conditions,
or other boundary conditions to define the local reconstruction operator R with the
constraint <∇R(vC)>Iδ=<∇vC >Iδ (see [21]).

The adaptive RFB scheme (3.16) is different with the simple HMM scheme (3.19)
in two points: First, their up-scaling procedures (3.18) and (3.20) are slightly different;
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second, they test the right hand side in different ways. More precisely, in the right
hand side of (3.19) only coarse scale test functions are used, while in scheme (3.16)
multiscale test functions are used. If the right hand side term f does not contain
any micro information, by which we mean that either f is independent of ε or f→f0

strongly in H−1 as ε→0, then there is no need to use the multiscale test functions
on the right hand side. But in the case that we only have f ⇀f0 weakly in H−1 as
ε→0, the multiscale test functions at the right hand side of (3.16) will play a key
role in capturing the micro scale information of the right hand side [7], which we will
address more precisely in the following.

Suppose that the coefficient kε=
(
kij(x,

x
ε )
)

satisfies (2.7) and the source term
f =∇·F ε(x) with F ε=F (x,x/ε)∈Rn and F (x,y) periodic with respect to y∈Y ≡
[0,1]n, then the homogenized equation of (1.1) has the same form as ([7]){

−∇·(K∗(x)∇u0(x)) =∇·F ∗(x), x∈Ω,
u0(x) = 0, x∈∂Ω,

(3.23)

where the homogenized coefficient K∗(x) is defined by

K∗ij(x) =
1

|Y |

∫
Y

kim(x,y)

(
δmj+

∂χj

∂ym
(x,y)

)
dy, (3.24)

with χj(x,y) being the periodic solution of the following cell problem:

−∇y ·
(
k(x,y)∇yχj(x,y)

)
=∇y ·(k(x,y)ej), (3.25)

with zero mean, i.e.,
∫
Y
χjdy= 0, and ej is the unit vector in the jth direction.

The homogenized right hand side function F ∗(x) is defined by

F ∗i (x) =
1

|Y |

∫
Y

(
Fi(x,y)+kij(x,y)

∂w

∂yj
(x,y)

)
dy, (3.26)

where w(x,y) is the periodic solution of

−∇y ·(k(x,y)∇yw(x,y)) =∇y ·F (x,y), (3.27)

with zero mean, i.e.,
∫
Y
wdy= 0.

From (3.25) and (3.27), we have∫
Y

k(x,y)ej ·∇yw(x,y)dy=−
∫
Y

k(x,y)∇yχ(x,y) ·∇yw(x,y)dy

=

∫
Y

F (x,y) ·∇yχj(x,y)dy.

Then the homogenized right hand side term has the form

F ∗i (x) =
1

|Y |

∫
Y

F (x,y) ·
(
ei+∇yχi(x,y)

)
dy. (3.28)

This means that we can obtain the homogenized coefficients K∗ and F ∗ together by
only solving the cell problem (3.25), so there is no need to solve the cell problem
(3.27).
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Now the coarse scale model of the adaptive RFB (3.17) can be rewritten as: Find
uC ∈V hC , such that

a∗(uC ,vC)≡
∑
T∈TH

∫
T

K∗h∇uC ·∇vCdx=
∑
T∈TH

∫
T

F ∗h ·∇vCdx, ∀vC ∈V hC , (3.29)

with K∗h being defined in (3.18) and F ∗h being defined over each element T ∈TH by

(F ∗h )i≡
1

|T |

∫
T

F (x,
x

ε
) ·∇R̃(xi)dx. (3.30)

The following theorem is about the modeling error of the adaptive RFB scheme.

Theorem 3.5. Suppose that in the model problem (1.1),

1. kε is symmetric and satisfies the ellipticity condition α|ξ|2≤ ξikεijξj≤β|ξ|2
for any ξ∈Rn with 0<α≤β independent of ε;

2. kε=k(x,x/ε) and the source term f =∇·F (x,x/ε) satisfy that both k(x,y)
and F (x,y) are smooth with respect to x and periodic with respect to y∈Y ≡
[0,1]n;

3. F is uniformly bounded with respect to ε,

then for the coarse scale model of the adaptive RFB scheme (3.16) or (3.29), the
modeling error can be bounded by

|K∗h−K∗(xT )|+ |F ∗h −F ∗(xT )|≤C(ε/h+ε/δ+h+δ), ∀T ∈Th. (3.31)

If uC is the solution of the adaptive RFB scheme (3.29) and u0 the solution of the
homogenized equation (3.23), then

‖uC−u0‖1≤C(h+δ+ε/h+ε/δ). (3.32)

Proof. We only prove the modeling error (3.31), since the H1-error estimate
in (3.32) is a direct consequence of the modeling error. To estimate the first term
in (3.31), we first compare K∗h with K∗HMM in (3.20). Due to (3.21), we can rewrite
(3.20) in the following form:

(K∗HMM )ij =
1

|Iδ|

∫
Iδ

kε∇R(xi) ·∇xjdx, ∀ T ∈Th. (3.33)

We know that R(xi) =xi+M0
δ(xi), so it follows that over each element T ∈Th,

|K∗h−K∗HMM |= |<kε>T −<kε>Iδ |≤C(ε/h+ε/δ+h), (3.34)

since kε=k(x,x/ε) and k(x,y) is smooth with respect to x and periodic with respect
to y. Hence, from the modeling error of HMM (3.22), we have

|K∗h−K∗(xT )|≤C(ε/h+ε/δ+δ+h). (3.35)

To estimate the second term in (3.31), we introduce two new right hand side
functions F̂ ∗h and F̄ ∗h , which are obtained by fixing the macro-scale variable at xT in
the original multiscale data over each element T ∈Th, as

(F̂ ∗h )i≡
1

|T |

∫
T

F (xT ,x/ε) ·∇R̂(xi)dx, (3.36)

(F̄ ∗h )i≡
1

|Iδ|

∫
Iδ

F (xT ,x/ε) ·∇R̄(xi)dx, (3.37)
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where for each vC ∈Vh, R̂(vC) =

{
vC , x 6∈ Iδ
vC +M̂0

δ(vC), x∈ Iδ
and R̄(vC) =vC +M̄0

δ(vC)

with the re-scaled bubble function M̂0
δ(vC) = |T |

|Iδ|M̄
0
δ(vC). Here the bubble function

M̄0
δ(vC) is also obtained by fixing the macro-scale variable at xT in the original mul-

tiscale data in (3.8), i.e.∫
Iδ

k(xT ,x/ε)∇(vC +M̄0
δ(vC)) ·∇vdx= 0, ∀v∈H1

0 (Iδ), T ∈Th. (3.38)

By the assumption that both k(x,y) and F (x,y) are smooth with respect to x, we
can prove that

‖∇
(
M̄0
δ(vC)−M0

δ(vC)
)
‖0,Iδ ≤Cδ‖∇vC‖0,Iδ ,

and hence over each element T ∈Th,

|F ∗h − F̂ ∗h |≤C(h+δ), (3.39)

|F̂ ∗h − F̄ ∗h |=
∣∣〈F (xT ,x/ε)〉T −〈F (xT ,x/ε)〉Iδ

∣∣≤C( ε
h

+
ε

δ

)
. (3.40)

Now to complete the proof, we only need to estimate |F̄ ∗h −F ∗(xT )|. The argument is
similar to that in [6] for up-scaling the velocity fields of multiscale convection-diffusion
problems.

From (3.25) and (3.38), it is easy to check that

R̄(xi) =xi+M̄0
δ(xi) =xi+εχi(xT ,x/ε)−εθεi , (3.41)

where θεi is the boundary corrector, satisfying{
−∇·(k(xT ,x/ε)∇θεi ) = 0, in Iδ,

θεi =χi(xT ,x/ε), on ∂Iδ,
(3.42)

and (see [13])

||∇θεi ||0,Iδ ≤Cδ(n−1)/2ε−1/2. (3.43)

Then we have, by (3.37), that

(F̄ ∗h )i=
1

|Iδ|

∫
Iδ

F (xT ,x/ε) ·
(
ei+ε∇xχi(xT ,x/ε)−ε∇θεi

)
dx. (3.44)

From (3.28) and (3.44), we have

F ∗i (xT )−(F̄ ∗h )i =

(
1

|Y |

∫
Y

F (xT ,y) ·
(
ei+∇yχi(xT ,y)

)
dy

− 1

|Iδ|

∫
Iδ

F (xT ,x/ε) ·
(
ei+ε∇xχi(xT ,x/ε)

)
dx

)
+

ε

|Iδ|

∫
Iδ

F (xT ,x/ε) ·∇θεi dx

:= I1 +I2. (3.45)
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The first term can be bounded by |I1|≤Cε/δ. To estimate the second term I2, we
introduce an auxiliary problem. Let φε be the solution of the problem{

−∇·(k(xT ,x/ε)∇φε) =∇·F (xT ,x/ε), in Iδ,
φε= 0, on ∂Iδ.

It is easy to check that

φε=εw(xT ,x/ε)−εθεw, (3.46)

where θεw is the boundary corrector satisfying{
−∇·(k(xT ,x/ε)∇θεw) = 0, in Iδ,

θεw =w(xT ,x/ε), on ∂Iδ,
(3.47)

and

||∇θεw||0,Iδ ≤Cδ(n−1)/2ε−1/2. (3.48)

By (3.42), we have ∫
Iδ

k(xT ,x/ε)∇φε ·∇θεi dx= 0.

After substituting (3.46) into the above equality, we obtain∫
Iδ

k(xT ,x/ε)∇yw(xT ,x/ε) ·∇θεi dx−ε
∫
Iδ

k(xT ,x/ε)∇θεw ·∇θεi dx= 0.

Thus,∫
Iδ

F (xT ,x/ε) ·∇θεi dx=

∫
Iδ

(F (xT ,x/ε)+k(xT ,x/ε)∇yw(xT ,x/ε)) ·∇θεi dx

−ε
∫
Iδ

k(xT ,x/ε)∇θεw ·∇θεi dx := I21 +I22.

Noting (3.27) and integrating by parts, we obtain

|I21|=
∣∣∣∣∫
∂Iδ

(F (xT ,x/ε)+k(xT ,x/ε)∇yw(xT ,x/ε)) ·nθεi ds
∣∣∣∣≤Cδn−1.

By the estimate (3.43) and (3.48), we have

|I22|≤ε||∇θεi ||0,Iδ ||∇θεw||0,Iδ ≤Cδn−1.

Therefore, |I2|≤Cε/δ. So we have that, over each element T ∈Th,

|F ∗i (xT )−(F̄ ∗h )i|≤C
ε

δ
. (3.49)

Combining the source error terms (3.39), (3.40), and (3.49), we obtain

|F ∗h −F ∗(xT )|≤C(ε/h+ε/δ+h+δ), ∀T ∈Th. (3.50)

This completes the proof of the theorem.
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3.2. Over-sampling. When the grid size h is comparable to the microscale
size ε, the MsFEM (so the RFB) suffers from the ‘resonance’ error term ‘ε/h’ [12, 11].
An over-sampling procedure was developed to deal with this difficulty [12]. In the
context of bubbles, if we view the support of the bubble function as the sampling
window, we can naturally define an over-sampling scheme. We start from the coarse
scale model (2.11), and for any vC ∈V hC , for each element T ∈Th, we define a bubble

function
ˆ̂M0(vC) over a macro element S⊃T by

Find
ˆ̂M0(vC)∈H1

0 (S), a(vC +
ˆ̂M0(vC),v) = 0, ∀v∈H1

0 (S), (3.51)

where vC ∈P1(S) is the extension of vC ∈P1(T ). Then an over-sampling bubble
method can be defined as follows: Find uC ∈V hC , such that for any vC ∈V hC∑

T∈Th

∫
T

kε∇(uC +
ˆ̂M0(uC)) ·∇(vC +

ˆ̂M0(vC))dx=
∑
T∈Th

∫
T

f(vC +
ˆ̂M0(vC))dx.(3.52)

Remark 3.6. Though the over-sampling scheme (3.52) is slightly different with
the over-sampling MsFEM [12] in formula. They are actually equivalent. An over-
sampling mixed multiscale finite element [1] was introduced in the same way as what
we have done above. However, the scheme (3.52) has been beyond the framework of
RFB.

4. Conclusion
In this paper, we show that as a numerical homogenization method for problem

(1.1), the coarse scale part of the RFB scheme is actually the same as a simple version
of MsFEM if the coefficient tensor kε is symmetric. The whole solution of RFB can
be obtained from the MsFEM solution by local reconstruction in each finite element.

When the RFB method is viewed as an upscaling procedure, the support of each
bubble may be regarded as the sampling window. From this point of view, we intro-
duce the technique of adaptive sampling to take the advantage of scale separation.
We may choose bubble functions with much smaller support rather than the whole
element to save the computational cost. We propose a new adaptive bubble scheme
and detailed analysis is presented.
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