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INTERMEDIATE ASYMPTOTICS FOR CRITICAL AND
SUPERCRITICAL AGGREGATION EQUATIONS AND
PATLAK-KELLER-SEGEL MODELS*
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Abstract. We examine the long-term asymptotic behavior of dissipating solutions to aggrega-
tion equations and Patlak-Keller-Segel models with degenerate power-law and linear diffusion. The
purpose of this work is to identify when solutions decay to the self-similar spreading solutions of the
homogeneous diffusion equations. Combined with strong decay estimates, entropy-entropy dissipa-
tion methods provide a natural solution to this question and make it possible to derive quantitative
convergence rates in L'. The estimated rate depends only on the nonlinearity of the diffusion and
the strength of the interaction kernel at long range.
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1. Introduction

The most widely studied mathematical models of nonlocal aggregation phenom-
ena are the Patlak-Keller-Segel (PKS) models, originally introduced to study the
chemotaxis of microorganisms [40, 28, 25, 24]. Similar models are also used to study
the formation of herds and flocks in ecological systems [11, 48, 37, 23]. A common
theme is the competition between the tendency for organisms to diffuse, e.g. un-
der Brownian motion or to avoid over-crowding, and for organisms to aggregate into
groups through nonlocal self-attraction. The parabolic-elliptic PKS models are a
subclass of the general aggregation-diffusion equations

ur+ V- (uVEK*u)=AA(u). (1.1)

The local and global existence and uniqueness of models such as (1.1) is well studied
(see for instance [5, 6, 8, 10, 45, 46, 47, 20]). However, less is known about the long-
term qualitative behavior of solutions. In this work, we are interested in examining
the asymptotic profiles of dissipating solutions to (1.1) in the special case

ur+ V- (uVE*xu)=Au™, m>1, (12)
u(O,x)zuo(x)eLi_(Rd;(l—&—|x\2)da:)ﬂL°°(Rd), '

where L (R%;p):={feL'(R%u): f>0}. In particular, we are interested in deter-
mining when solutions to (1.2) converge in L'(R?) as t — oo to the self-similar spread-
ing solutions of the diffusion equation

ug=Au". (1.3)

All dissipating solutions are weak* converging to zero as t— oo, but this kind of
result implies that for 1<t < oo, the dissipating solutions all look more or less like
self-similar solutions of (1.3). For this reason, these results are often referred to as
intermediate asymptotics.
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Supercritical problems are those in which the aggregation is dominant at high
concentrations, subcritical problems are those in which the diffusion dominates at
high concentrations, and critical problems are those in which the effects are in ap-
proximate balance. It is known that supercritical problems exhibit finite time blow
up for solutions of arbitrarily small mass and subcritical problems have global solu-
tions [45, 46, 5, 8]. The critical case is more interesting; data with small mass exists
globally, whereas finite time blow up is possible for large mass [8, 5, 10, 46]. In this
work, we will refer to the case m <2—2/d as supercritical and m=2—2/d as critical.
This is in contrast to the definition used in [5], where the critical diffusion exponent
was taken to depend on the singularity of the kernel. Here, achieving such a precise
balance is not the primary interest and moreover we are concerned with examining
the limit of low concentrations. In the sense of [5, 8, 46, 45], m=2—2/d is the critical
exponent for the Newtonian potential, which is the most singular kernel known to
have unique, local-in-time solutions [5].

As strong nonlinearities vanish quickly near zero, scaling heuristics suggest that
the nonlocal aggregation term should become irrelevant for small data in the critical
and supercritical regime. We use entropy-entropy dissipation methods [18, 49, 19,
15, 14, 7] to obtain several intermediate asymptotics results which show this to be
true, and that solutions of (1.2) converge to self-similar solutions of (1.3). Entropy-
entropy dissipation methods are well-suited for proving the convergence to equilibrium
states of nonlinear Fokker-Plank-type equations for arbitrary data [18, 15]. Through a
change of variables employed below, this also provides convergence to self-similarity of
nonlinear homogeneous diffusion equations [19]. In contrast to these works, we employ
such methods to prove a small data result, treating the nonlocal aggregation term as
a perturbation. For this to work, sufficiently strong decay estimates on the solution
must be obtained. Indeed, strong decay estimates imply the intermediate asymptotics
results, and so we have chosen to state them separately in Theorem 1.2 below. We
obtain these estimates using iteration methods, discussed in more detail below, which
are a refinement of the local theory of (1.2) (see e.g. [8, 5]). While nonlinear, they are
essentially perturbative in nature and thus somewhat limited against arbitrary data,
using basic dissipation estimates to over-power the nonlocal advection term only under
certain conditions. Analogous to related models, such as the nonlinear Schrédinger
equations, it is likely a fully non-perturbative theory will need to be applied in order
to treat large data, which is sometimes significantly more difficult (see for instance
[48, 29]). More details and discussion about the results and the methods of the proofs
are discussed below in §1.1 and §1.2.

The first of our intermediate asymptotics results, Theorem 1.3, covers the case
KeWhH(R?). Here, the nonlocal term can be considered to have a finite charac-
teristic length-scale which becomes vanishingly small relative to the length-scale of
the solution as it dissipates. A result similar to Theorem 1.3 for LP, 1<p< oo, was
proved for the special case of the Bessel potential in [34, 35] with the soft compact-
ness method of [27] (see also [50]). In contrast to methods based on compactness,
the entropy-entropy dissipation methods obtain quantitative convergence rates in L?,
which by interpolation against the decay estimates, provides convergence in all LP,
1<p<oo. For supercritical problems, the convergence rate is shown to be the same
as the optimal rates for (1.3) [18, 49, 19, 15, 50].

In general, if the kernel does not have critical scaling at large length-scales, the
long-range effects should still become irrelevant as the solution dissipates. That is,
we should expect results similar to the K € WH1(R9) case to hold, except when m=
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2-2/d and VK ~|z|'"% as |z| »occ. Indeed, when K is the Newtonian potential,
there exists at least one self-similar spreading solution to (1.2) when m=2-2/d
[10, 8, 9, 13]. In the presence of linear diffusion, these are additionally known to
be the global attractors [10, 9]. Theorem 1.4 below extends Theorem 1.3 to the
general case of K& WU (R?), where the decay of K is characterized by ~ € [d—1,d]
such that [VK(z)|=0O(|z| ") as |z| = co. We show that if v>d— 1, then dissipating
solutions converge to the self-similar spreading solutions of (1.3). However, in contrast
to Theorem 1.3, the long-range effects appear to degrade the convergence rate and
Theorem 1.4 provides a quantitative estimate of this effect in terms of m and ~. It is
not known whether the rates obtained in Theorem 1.4 are sharp. When y=d—1, the
kernel behaves like the Newtonian potential on large length-scales, and the result is
no longer expected to hold if m=2—2/d. Indeed, we expect solutions to converge to
the self-similar solutions of (1.2) constructed in [10, 8]. However, Theorem 1.4 asserts
that in supercritical cases, self-similar solutions to (1.3) again govern the intermediate
asymptotics. Thus, Theorem 1.4 provides intermediate asymptotics for Patlak-Keller-
Segel models with linear diffusion in dimensions d > 3.

As remarked above, the results of Theorems 1.3 and 1.4 hold provided there are
strong enough decay estimates, which we deduce in critical and supercritical cases in
Theorem 1.2. On the other hand, for subcritical problems, the aggregation can dom-
inate at large length-scales, leading to the existence of nontrivial stationary solutions
(Remark I1.4 [33] and [3]), which clearly violate strong decay estimates. Moreover,
convergence to these stationary solutions is known in certain cases [30]. However, be-
tween the results here and the work of [33, 3], not every case is covered. For instance,
if K€ L'(R?) and 2—2/d<m <2, stationary solutions are only known to exist for
sufficiently large mass, and the behavior of smaller solutions is unknown. We point
out (Remark 1.3) that Theorems 1.3 and 1.4 can potentially apply to some of these
subcritical cases, however it is not known if the requisite decay estimates hold in any
subcritical cases, as the techniques we employ below to prove Theorem 1.2 appear
insufficient.

In what follows, we denote [|ul|, := [|u[|f» (ra), where LP(R?) := LP is the standard
Lebesgue space. We will often suppress the dependencies of functions on space and /or
time to enhance readability. The standard characteristic function for some S C R? is
denoted 1g and we denote the ball Br(xzg):={z€R*:|z —xo| < R}. In formulas we
use the notation C(p,k,M,...) to denote a generic constant, which may be different
from line to line or term to term in the same formula. In general, these constants will
depend on more parameters than those listed, for instance those which are fixed by
the problem, such as K and the dimension, but these dependencies are suppressed.
We use the notation f <,k . g to denote f<C(p,k,..)g, where again, dependencies
that are not relevant are suppressed.

1.1. Statement of results. We need the following definition from [5], which
we restate here.

DEFINITION 1.1 (Admissible Kernel). We say a kernel K € C3\ {0} is admissible
ifKe Wi)’cl(Rd) and the following holds:
(KN) K is radially symmetric, K(x) =k(|z|) and k(|z|) is non-increasing.
(MN) E"(r) and k'(r)/r are monotone on r € (0,d) for some §>0.
(BD) |D*K(z)| <z ~7".

The definition ensures that the kernel is radially symmetric, attractive, reasonably
well-behaved at the origin and has second derivatives which define bounded convolu-
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tion operators on LP for 1 <p< oo. It is important to note that all admissible kernels
satisfy VICéL%’C’o, where LP*° denotes the weak-L” space, making the Newto-
nian potential effectively the most singular of admissible kernels [5]. Provided K is
admissible, for a given initial condition ug(z) ELi(Rd;(1+|x|2)dx)ﬂL°° (RY), (1.2)
has a unique, local-in-time weak solution which satisfies u(t) € C([0,T); L} (R%;(1+
|lz|*)dx)) N L ((0,T) x RY) [5, 6, 10, 47, 4]. Moreover, u(t) is a solution to (1.2) in a
sense which is stronger than a distribution solution, which is important for obtaining a
well-behaved local theory, but the distinction will not be important here [5, 6]. Weak
solutions conserve mass and we define M = ||ugl|y = ||u(t)]]1.

The self-similar solutions to the diffusion Equation (1.3) are well-known; see for
instance [50] and [19]. In the linear case m=1, the self-similar solution is simply the
heat kernel,

M —l=|?
W@ a (14)

U(t,z; M) =

In the case of degenerate diffusion m >1, the self-similar solution is given by the
Barenblatt solution,

U(t,z: M) =t54 (cl _m=1p x|2t2ﬁ> " (1.5)
2m n

where (7 is determined from the conservation of mass and

1

5:d(m—1)+2

. (1.6)

Note that
e (t; M), S ¢4 0=3),

and so to provide a meaningful characterization of the convergence to self-similarity,
quantitative estimates will be stated in terms of this relative scale.

The entropy-entropy dissipation methods of [18, 49, 19, 15] were used to determine
the optimal rate of convergence in L!(R?) to self-similarity. That is, any solution u(t)
of (1.3) satisfies

1003 u(t) — Ut M), S (1417 ™25 m) vp, 1< p<oo.

This rate should be contrasted with the rates obtained in Theorems 1.3 and 1.4,
where it is shown that kernels with finite length-scales do not have much effect on the
rate, but strong nonlocal effects can degrade the convergence rate significantly; see
the discussion in Remark 1.2 below on the relationship between our convergence rate
estimates and those of the homogeneous porous media equation. In particular, note
that in supercritical problems covered by Theorem 1.3, our estimated convergence rate
(1.9) is the same as for the porous media equation. In this sense, they are necessarily
optimal, as the purely attractive nonlocal force will in general hinder convergence to
self-similarity.

In order to emphasize the relationship between decay estimates and intermediate
asymptotics, we state them separately. Results similar to (i) of Theorem 1.2 have
been obtained in a variety of places, for example [41, 46, 9]. Our estimates are
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obtained in a closely related but different way than existing work. We first rescale
into the self-similar variables of the diffusion equation as in [9], and then adapt the
Alikakos [1] iteration techniques of [31, 12, 8, 5], which are variants of fairly standard
methods for obtaining uniform in time L> bounds for PKS models (see also [26, 45,
46, 47]). This approach to decay estimates has the advantage of naturally extending
the existing methods used to obtain uniform bounds, and for a relatively mild increase
in complexity, much stronger results are obtained. Here we use this advantage to also
deduce a sufficient condition for decay estimates to hold in the critical case 2—2/d,
(ii) of Theorem 1.2 below. For critical problems, uniform equi-integrability in time is
known to be equivalent to global uniform boundedness for solutions to (1.2) [12, 8, 5],
and due to the similarities in the proof, we may state something analogous for decay
estimates. Indeed, (1.8) is simply the requirement that the solution of the rescaled
system remain uniformly equi-integrable. The proofs of Theorems 1.2, 1.3, and 1.4 are
outlined in more detail in §1.2. Remarks on the limitations and possible extensions
are made after the statements.

THEOREM 1.2 (Decay Estimates). Let d>2, me[1,2—2/d], and K admissible.
Let ug € LY (R%; (1+ |[*)da) N L= (RY).

(i) There exists an eg >0 (independent of ug) such that if |uol|1 +[|uol| (2—m)a/2 <
€0, then the weak solution u(t) to (1.2) which satisfies u(0) =ug is global and
satisfies the decay estimate

Ju(t)]loo S (1+12)%. (1.7)

(i) If m=2—-2/d and u(t) is a global weak solution to (1.2) which satisfies

ap
t
lim sup / u(t,x)—k(+l> dx =0, (1.8)
k—004e(0,00) B

+

then u(t) satisfies the decay estimate (1.7).

Once the decay estimate (1.7) has been established, entropy-entropy dissipation
methods can be adapted to deduce the following intermediate asymptotics theorems,
as the decay estimate provides sufficient control of the nonlocal terms.

THEOREM 1.3 (Intermediate Asymptotics I: Finite Length-Scale). Let d>2,
me[1,2—2/d], and K e Wbt be admissible. Suppose u(t) is a global weak solution of
(1.2) which satisfies the decay estimate (1.7). If m<2—2/d, then u(t) satisfies

PO |u(t) — Ut M), S (1+1) "7, ¥p, 1< p< oo, (1.9)
and if m=2-2/d, then for all § >0, u(t) satisfies
1O u(t) U M) <s (1+)" 719 ¥p, 1 <p< 0. (1.10)

Here § is defined in (1.6) and U(x,t; M) is the self-similar solution to (1.3) with mass
M = ||lug|lx given in (1.4) or (1.5).

THEOREM 1.4 (Intermediate Asymptotics II: Infinite Length-Scales). Let d >2
and K be admissible with VK(z)=0O(|z|"") as |z| > oo for some ye[d—1,d]. If
v=d—1 then suppose me|[1,2—2/d), and otherwise we may take me[1,2—2/d].
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Suppose u(t) is a global weak solution of (1.2) which satisfies the decay estimate
(1.7). Then, for all § >0, u(t) satisfies

E90) () — U M) S5 (1447577 20) gy 1 <p oo, (1)

Here 5 and U(t,x; M) are as above.

REMARK 1.1. Note that ug € LY (R%; (1+|z[*)dz) N L®(R?) implies uglogug € L' (RY)
by Jensen’s inequality.

REMARK 1.2. The convergence rate in (1.9) is optimal, as it matches that of the
corresponding diffusion equation. Optimality is not known for (1.10) or (1.11), how-
ever we suspect that these rates are nearly optimal. Note that the convergence rate
obtained in (1.11) reduces to (1.9) and (1.10) when v=d. Moreover, if y=d—1, then
the convergence rate goes to zero as m /2 —2/d.

REMARK 1.3. Theorems 1.3 and 1.4 apply to some subcritical cases with suitably
degraded convergence rates. In particular, Theorem 1.3 applies for me[1,2—1/d)
and Theorem 1.4 applies for me[1,14(y—1)/d). In both cases it can be seen that
the convergence rate degrades to zero as the endpoints are reached. The range of
exponents where minimizers can be constructed using concentration compactness is
essentially m>1+(y—1)/d [33, Remark II.4]. However, we stress again that no
decay estimates have been obtained for m >2—2/d and doing so seems to require
new methods.

REMARK 1.4. In some cases, it may be possible to show that the size conditions of
(i) of Theorem 1.2 are only required of the L(2=m)4/2 norm, which is the norm left
invariant by the scaling symmetry of (1.2) when K is the Newtonian potential. Indeed,
one can prove global existence and uniform boundedness of solutions to (1.2) in these
supercritical regimes using iteration techniques without any smallness assumption on
the mass [20, 45, 46]. However, in [33] it is shown that depending on the singularity
of the kernel, if the mass is sufficiently large, there may exist stationary solutions for
all m, 1 <m < 2. Since these are potentially included in our analysis, in order to state
decay results in the generality we have chosen to, a smallness condition on the mass
seems to be necessary.

REMARK 1.5. The results of [5] suggest that if the kernel K is less singular than the
Newtonian potential at the origin, the L(Z~")4/2 norm could, in some cases, possibly
be replaced by a weaker one.

REMARK 1.6. In the critical case m=2—2/d, in general ¢y will be strictly less than
the critical mass [10, 8, 5]. As shown in [12, 10, 8, 5], equi-integrability conditions
such as (1.8) allow one to use the dissipated free energy to deduce global control up
to the sharp critical mass. If K is the Newtonian potential and d > 3, then the energy
dissipation inequality is sufficient to imply (1.8) and therefore solutions satisfy (1.7)
all the way up to the critical mass [8]. Unfortunately, the energy dissipation inequality
does not always seem to imply (1.8) in general.

REMARK 1.7. We consider only the case of power-law diffusion, however, the estimate
(1.7) holds for (1.1) provided A’(z)>cz™ ! for some ¢>0. Therefore, it is likely
possible to apply the methods of [7, 14] to this more general case under some structural
assumptions on A.
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1.2. Outline of proof. The proof of Theorems 1.3 and 1.4 involves sev-
eral steps. As mentioned above, we use the entropy-entropy dissipation methods of
[18, 19, 15] and in particular, the time-dependent rescaling used in [19]. All of the
computations will be formal; they can be made rigorous for weak solutions either
with a suitable parabolic regularization and passing to the limit, as in for instance
[6, 5, 15], or presumably also lifting to strictly positive solutions, as is common in the
study of the porous media equation [50].

Following [19], we define §(7,n) such that

e~ 0(r,n) =ul(t,z), (1.12)

with coordinates e"n=x and 665717 — B =t, where § is given by (1.6). In what follows
we denote a:=df. In these coordinates, if u(t,x) solves (1.2) then 6(7,n) solves

0,0 =V"-(10)+A0™ —e1=2=BB TG (VI (e7-) £0)). (1.13)

The assumption m <2—2/d implies (1 —a—3)3~! < —1. The barrier to treating cases
where (1—a—38)3"t€(~1,0), equivalent to the subcritical cases 2—2/d<m<2—
1/d, occurs in the proof of the necessary decay estimates (Theorem 1.2), which requires
evaluating the divergence of 4"V (e™-)*60, resulting in an additional power of e”
which must be controlled. As discussed above in Remark 1.3, this is not just a
technical obstruction: [33, Remark I1.4] shows that decay results can potentially fail
for initial data with arbitrarily small mass if m >2—2/d. Hence, any proof of decay
estimates will need to treat the nonlocal advection with more precision to properly
distinguish between the different possibilities. However as pointed out, once decay
estimates have been established, some results in this range are possible.

In the coordinates defined by (1.12), U(t,z; M) is stationary and will be denoted
by Opr(n). That is (see [19]),

Ut M) = (1+;> ey ((1—1—;) _Ba:> — e O (). (1.14)

In fact, 0p7(n) is the unique non-negative solution with mass M to the (degenerate,
if m>1) elliptic equation

0=V"(n0)+A0™. (1.15)

In what follows we will refer to 05, as the ground state Barenblatt solution. Clearly,
ground state solutions are stationary solutions of the homogeneous Fokker-Plank equa-
tion

0.0="-(nf)+AO™, (1.16)

Therefore, the asymptotic convergence to self-similar profiles of solutions to (1.3)
is equivalent to the convergence to the stationary profiles of (1.16). This was the
fundamental observation made in [19] and is the purpose of the rescaling (1.12).

A key quantity in our analysis is the effective nonlocal velocity field

(1) := e(l_a_ﬁ)ﬁflTedTVlC(ef) x0,

which is the velocity field in the inhomogeneous nonlocal advection term in (1.13).
Ultimately, decay of this quantity in L;’,O(Rd) is what allows us to treat the inho-
mogeneous nonlocal term in (1.13) as a vanishing perturbation of (1.16) and prove
Theorems 1.3 and 1.4.
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In order to deduce the required control over ¥, we establish the bound 6(7,n) €
Lif’n(RJr xR?). By the change of variables, this is precisely the decay estimate
(1.7) stated in Theorem 1.2. The decay estimate ||u(t)|c <t~9%, or equivalently,
[10(7) |0 S1, is easily obtained for (1.3) in the linear case and the classical Aronson-
Bénilan estimate proves it in the case m>1 [50]. Clearly, no such analogues are
available for (1.13), and they will instead be provided by Theorem 1.2. To prove
Theorem 1.2, we adapt the Alikakos iterations of [31, 12, 8, 5] to (1.13) to prove
the uniform bound 6(7,n) € L, (R* xR?) in the rescaled variables. Dealing with
time-dependent rescalings in (1.13) introduces several complications. Obtaining L%
estimates for the critical case m=2—2/d is relatively straightforward due to the in-
herent scale-invariance of the relevant inequalities. However, in the supercritical case
m<2—2/d, the effect of the time-dependent rescaling in (1.13) is crucial for closing
a key bootstrap/continuity argument necessary to control the solution uniformly in
time. It is at this step that the method below diverges significantly from existing
methods and is a key step to obtaining Theorem 1.2. Upgrading to L;° estimates on
0 requires '€ L, (R* x R?), which is weaker than what we require to prove Theo-
rems 1.3 and 1.4. Obtaining this estimate has an additional complication if VI & L*,
as we need to deal with the fact that e VK (e7n) blows up in L}, as 7—oc. This
also arises later when we estimate how much the nonlocal term affects the entropy
dissipation and is the source of the degraded convergence rates found in Theorem 1.4.

Once we have established 6(7,7) € L2, (R* x R?), we prove that solutions to (1.13)
converge to 0, and estimate the convergence rate in L'. In fact, these are done
together, as the quantitative estimate is direct and removes the need for compactness
arguments. The primary step of the entropy dissipation method is an estimate of the
decay of the entropy associated to (1.16). In the case m =1, the entropy is given by

H(0) :/91og0dn+%/|n\20dn, (1.17)

and the entropy production functional by
1(9):/9|Vlog9+77|2dn. (1.18)

In the nonlinear case m > 1, the corresponding quantities are

1 1
H(0)= m/emdwi/mﬁedn, (1.19)

and the entropy production functional

2

o m m—1
1(9)_/9‘m_1v0 +| dn. (1.20)

In the nonlinear case, these entropies were originally introduced for studying (1.16) in
[38, 43]. Both (1.17) and (1.19) are displacement convex [36] and in fact, (1.16) is a
gradient flow for (1.19) or (1.17) in the Euclidean Wasserstein distance [39, 2, 16, 17],
and if f(7,n) solves (1.16), then

2 (1) =—1(f(7)).
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For a given mass M, (1.19) has a unique non-negative minimizer which is the ground
state 0j;. That is, if we define the relative entropy

H(010n1)=H (6) — H(0nr), (1.21)

then H(0|0)) >0 with equality if and only if §=0,, [19, 42]. In order to estimate a
convergence rate, it is therefore sensible to measure how quickly H(6|65;) —0. Fol-
lowing the methods of [19, 15, 16, 17], this is made possible by the following two
theorems. The first relates the entropy production functional (1.20) to the relative

entropy (1.21). This represents a generalization of the Gross logarithmic inequality
[22] (see also [42]).

THEOREM 1.5 (Generalized Gross Logarithmic Sobolev Inequality [19, 15, 42,
22]). Let f€ LY (R?) with || f||1 =M and let Op; be the ground state Barenblatt solution
with mass M. Then

H(f|0wm) < SI(f). (1.22)

N |

For the Fokker-Plank Equation (1.16), Theorem 1.5 implies H(0(7)|0x) Se™27.
The (generalized) Csiszar-Kullback inequality [21, 32] relates the relative entropy to
the L! norm.

THEOREM 1.6 (Csiszar-Kullback Inequality [19, 15]). Let, fe€ L% (RY) with
I/l =M and let 05 be the ground state Barenblatt solution with mass M. Then

1f = Onlly S H(f|000)™ " (35w). (1.23)

Note that since we are interested in 1 <m <2—2/d, we will only apply the inequality
with exponent 1/2.

To prove Theorems 1.3 and 1.4, the purpose of proving 6(7,n) € L33, (R* x R%)
is to deduce exponential-in-7 decay of ¢ by controlling the potential growth of
led" VK (eT-) %0]| oo, which depends on the long-range effects of the kernel. For ex-
ample, it is clear that if VA € L' we have E(T),Se(l*a’ﬁ)ﬁ_lﬂ however this is no
longer true if VA ¢ L'. Also note our proof is in fact a bootstrap argument, since
weaker control over ¢ was originally used to prove §(7,7) € L, (R* x R%). To see why
exponential decay of v is sufficient, consider the evolution of the relative entropy,

d

-1 1 1
it —_ (1-a-B)8" "1 . 2\ p.dr T,
T H(O(7)|0ar) =—1(0)+e /v( — 0 +2|n|> 0TV (e7-) % Odn

< 1(0)+1(6)"” (/6|17|2d77)1/2.

If one has an estimate of the form ||7(7)||ec <Ce™*T for some A >0, then

diH(e(T)wM) <—I(0)+I1(0)/2C M2,
-

Hence, for all § >0,

%H(Q(T)WM) <—(1—e 2T)[()+ CM /22027,
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Theorem (1.5) then implies

diH(G(T)IHM) <—2(1—e 2T)H(O(7)|0ar) + CMY/220 =227,
=

Integrating this and applying Theorem 1.6 implies

He _ 91\/[”1 56 e—%min(2,2>\—26)7
which, after rescaling and interpolation against the decay estimate (1.7), will prove
Theorems 1.3 and 1.4.

2. Preliminary decay estimates

Let g=(2—m)d/2 and let n, 7, and 0(7,n) be as defined in §1.2. As detailed
above, we establish that 0(7,7) € L3, (R x R?) using Alikakos iteration [1] (see also
[26, 31, 5, 8, 46, 47, 45]). The first step is to prove the following lemma which allows
control over LP norms with p < co. In what follows we denote 0y(n) :=6(n,0) =u(z,0).

LEMMA 2.1 (Control for LP, p<oo for small data). For all g<p<oo, there
exists Cg=Cqz(p,M) and Crr=Cur(p,||0ollg) such that if ||6o]lg<Cq and M <Chy,
then 10(r)]|, € L= (RY).

Proof. Define
2
I= /em—l V02| da.
We estimate the time evolution of ||0||, using integration by parts, Holder’s inequality,

and Lemma A.2 in the appendix,

P L
dr'"P T (p+1)2

(P)Z+C(p)e == D7 gl [V (¥ VE(e™) ) |1+ C )6
(P)Z+C(p)e =7 0| E +C )61 (2.1)

I+ (p— l)e(lfafﬁ)ﬁf%/ﬁpv (VK (e )*0)dn+d(p—1) oy
<-C
<-C
We bound the second term using the using the homogeneous Gagliardo-Nirenberg-
Sobolev inequality (Lemma A.1 in appendix),

a 1) 7o,
0|2t <ol e wtD/2, (2.2)

where ag=1—a1(p+m—1)/2 and

2d(G—p—1)
(p+1)(q(d—2)—d(p+m—1))

o =

By the definition of § we have that

ai(p+1) _ d(g—p—1) -1
2 g(d—2)—d(p+m—-1)

We also estimate the second term in (2.1) using Lemma A.1,

1015 < M PPz, (2.3)
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where 8, =1—f1p/2 and

Bip d(p—1)
—_— = <1
2 2—-d+d(p+m-—1)

9

by 1—2/d <m. Then applying weighted Young’s inequality we have from (2.2), (2.3),
and (2.1),

d —a)B 7 a2
101 < (Crp)e =7 022D~ Co(p) ) T+ Ca(p)M P, (2.4)

for v(p)=2B2p/(2—B1p) >0. If m=2—-2/d, then g=1 and 1—a =0, therefore by
conservation of mass it is possible to choose M sufficiently small such that the first
term in (2.4) is less than —0Z for some § >0. If m <2—2/d, then §>1 and ||||7 is no
longer conserved. Here we must take advantage of 1 —« < 0. Note that (2.4) holds for
p=7; therefore since 1 —a <0, a continuity argument establishes that for ||6y|7 and
M sufficiently small,

10(r)I|Z < |60 ||+ C5 () M@

Indeed, for ||6y |7 small, this holds for at least some time, and for M sufficiently small,
this linear growth is such that the first term in (2.4) remains non-positive forever.
Then by (2.4) for p>7g, if M and ||6y||7 additionally satisfy

Calp)e = (Ca@ M D+ 0720/ Cofp) < 0

for all 7> 0, then the first term is less than —d/. By 1 —a <0 we may always choose
M and ||6y||z such that this is possible. Therefore, whether g>1 or g=1, for small
initial data in the suitable sense, we have

d
EHGH% <—0I+C(M,p).

Using (2.3) and Young’s inequality for products, we have a lower bound on Z,
0], —C(M)<T.

['his proves
d 0P < —0||0|2+C(M
E” ||p - || Hp+ ( ap)a

which immediately concludes the lemma with |[|0[|2 <max(||6ol[5,C(M,p)5~1). O

We now turn to proving that (1.8) implies something analogous to Lemma 2.1.
Let u(t) be as in (i) of Theorem 1.2. One can verify that (1.8) is equivalent to

lim sup [ (6(r)~ ), [1=0, (25)

k_>°o‘r€[0,oo)

which is precisely the condition of uniform equi-integrability which plays a key role in
[12, 8, 5]. We may refine Lemma 2.1 in the following fashion, adapting the techniques
in [12, 8, 5] to this setting.

LEMMA 2.2 (Control for LP, p < oo for equi-integrable solutions). If 8(7) satisfies
(2.5) then we have ||0(7)||, € L (R™) for all p<oo.
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Proof. 'We proceed similar to the proof of Lemma 2.1, but now slightly refined to
take advantage of (2.5). Since similar arguments have appeared in several locations
(for example [12, 8, 5]) we sketch a proof and highlight mainly the differences that
appear due to the rescaling in (1.13). Define 0 (7,n):=(0(7,n) — k)4 and

2
z:/e;gﬂ vy d.
The LP norms of 6 and 6 are related through the following inequality for 1 <p < oc:

10115 <p 11015+ &P~ 6] (2.6)

pNI)|

It is important to note that the implicit constant in (2.6) does not depend on k.
Estimating the time evolution of 85 as in Lemma 2.1, and using Lemma A.2 and
(2.6), implies

d - T T
EHGkHZ:—C(p)I—/((p—l)@i—kk:p@g 1)V~(ed VK(e™)*0y) dn
<=CEIT+CWOI 11+ C k) 10lI5 +C (k,p, M).

Using the Gagliardo-Nirenberg-Sobolev inequality (Lemma A.1) implies

Cl)
ol

d
——16xl13

101241+ C @ 10k]23 1+ C (0. k) |0k]|E + C (k,p, M),

where ag=1—a;(p+m—1)/2>0 and

2d(1-1/(p+1))
2—d+dp+d(m—1)

a1 =

Note ||6k|l, < <M/ ||0kH](Di1_1 , which by weighted Young’s inequality implies

Cp)

10 Hazllﬁkl\p+1 C(@) 16k} 11 +C (k,p, M).

p+1 p+1

d
— |0kl < —
16l < -

Using (2.5) we may make the leading order terms as negative as we want and in-
terpolating LP against L' and LP*! again implies there is a § >0 such that if k is
sufficiently large we have

d
- 10k15 < —=310k|[7 + C (k. p, M).

By (2.6) and conservation of mass, this concludes the proof of Lemma 2.2. |

3. Finite length-scales

We begin by proving Theorem 1.2 for the case VI € L'. Alikakos iteration [1]
is a standard method for using a result such as Lemma 2.1 to imply a result of the
following form.

LEMMA 3.1 (Control of L™ for small data). Let VK € L*. Then there exists Cz=
Cq(M) and Crr=Cur(||00llg) such that if ||0o|lg<Cq and M <Chy, then ||0(7)| €
L (RY).

Proof. Standard iteration implies ||0(7T)||oo € L (R™), provided

Fi= 1m0 PFT T YK () w0 e L0, (RT x RY);
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see [26, 12, 5, 31, 45, 46]. For instance, an iteration lemma due to Kowalczyk [31]
may be extended easily to the case R, d>2 and to include the V- (nf) term in (1.13)
[12].

Fix p>d. Then by Lemma 2.1, for sufficiently small M and |67, |0(7)],€
L>®(R™). Therefore by Lemma A.2 in the appendix,

-1

V5], =l =P (¥ VK (e™) #0) [, SePmDET o]l S e
Moreover, by VK € L*(R9),
[ P
Since 1—a<0, Morrey’s inequality implies 7€ Lif’n(R‘*‘ xR?) and the lemma
follows. O
By Lemma 3.1 and the definition of 7,

lu(®)l Lo (re) :e_dTHe”Lgo(Rd) S+t~

establishing (1.7). A similar argument using Lemma 2.2 in place of Lemma 2.1 implies

LEMMA 3.2. Theorem 1.2 holds if VK € L*.
Now we turn to Theorem 1.3.

Proof. (Theorem 1.3: Intermediate Asymptotics I) Now that the requisite
decay estimate has been established, we proceed by estimating the decay of the relative
entropy (1.21). By Young’s inequality, VK € L'(R?), and (1.7),

™V (eT-) O]l < IV [16]lo0 S 1- (3.1)

We first settle the case m>1. By a standard computation, (3.1) and Cauchy-
Schwarz, for all § >0,

d

-1 1 1
—H(O(7)|0n) =—1(0) +et—o=A)P T/v<9m+|n|2> 0eTVK (e7-) % 0dn
dr m—1 2

1/2
< —I(0)+ e omPBT T (g)1/2 (/9|edTvn(ef.)*9|an)
< _(1 _ 6—257)1(9) + Ce(2—2a—2B),6717—+257—.

Let v(0):=(2a+28—2)5~1—25 >0. By the generalized Gross Logarithmic Sobolev
inequality (Theorem 1.5) we therefore have

%H(e(f)wM) < 21— e 2TV H(]00) + Ce. (3.2)

Solving the differential inequality (3.2) implies
H(6(r) fa1) S e~ min(20(0),
Now by the generalized Csiszar-Kullback inequality (Theorem 1.6)

10(7) = Opr]]1 S e FminZa(d),
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Re-writing in terms of « and ¢ and using (1.14),
u(t) U M) < (1+1)~ 77min(2y(),

If m<2—2/d, it can be verified that >0 may always be chosen small enough such
that 2<~v(8). If instead m=2—2/d, then 2d+2—23"1=2. This establishes (1.10)
in the case p=1. Interpolation against (1.7) completes the proof.

We now settle the case m=1. The time evolution of the relative entropy is similar
to above. By (3.1) and Cauchy-Schwarz, for all § >0,

diH(e(T)wM) = —I(0)+etma=PB T /v <1og0+ % n|2) 0ed"VI(e7-) x0dn
-

1 1/2
SR (O (/9|edTVK(eT.)*9\2dn>
< (1= e 07)I(0) + Ce2-20—2R)B  rvor

The rest of the proof follows similarly to the case m >1 using Theorems 1.5 and 1.6.
This concludes the proof of Theorem 1.3. 1]

REMARK 3.1. A generalization of Talagrand’s inequality [16] shows that § — 6, also
in the Euclidean Wasserstein distance.

4. Infinite length-scales

We now turn to the proofs of Theorem 1.2 and Theorem 1.4 in the case VX ¢ L*.
In order to properly extend the work of the previous section, we must estimate
the quantities [|e?"VK(e-)*60]|, appearing in (3.1) and the proof of Lemma 3.1.
However, VK & L'(R?) and Young’s inequality is not sufficient; in fact we will not
bound |[[e4" VK (e™-)*0||, uniformly in time but instead bound the rate at which it
grows. We separately estimate the growth of the quantities [[AYV(A)1p, (g)ll1 and
[MVE(A)1ga\ 5, (0)llp as A—o0. Using [VK(z)| S|z for sufficiently large |z|, if
v <d, then for large A,

/ N VKO 15,0 () dy = / VK ()| dy

ly|<X
A
=[] 19Kt dpa
sd-1.Jo
<1447, (4.1)
Similarly, if y=d, then for large A,
JXITEO) 15,09 dy 1+ log (4.2

If d/(d—1) < g <oo, since y>d—1, for A sufficiently large we have

/ VK ()| L 5, o) () dy = / X147 ()| dy

[y|>X

:)\qd_d/sdq/)\ |V (pw)|? p? L dpdw

< d=), (4.3)
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Similarly,

sup ’/\dVIC()\J))| <1404, (4.4)

|z]>1
We may now complete the general proof of Theorem 1.2.

Proof. (Theorem 1.2.) We first complete the proof of (). Lemma 3.1 extends to
the case VK & L' provided we can bound #:=e(1==AB8 ' Ted™ K (e7.) %0 in Ly (RY)
uniformly in time. Indeed, fix p>d. Then for M and ||6|7 sufficiently small, we have
by Lemma 2.1, ||6(7)||, € L°(R"). By Lemma A.2,

V3], S e |||, S etm)f T

Let g be such that d/(d—1)<g<p, which implies ||0(7)],S1. If y<d, then by
Young’s inequality we have
= —a— —ilr T T T T
|5]]g < etmemPP (le™ VK (™)1, 0y %O]lq + [l VK (e Iray 5, 0) *0llq)
<D (e V(e )1, o) 111011 + 7T V(™) ey 5, )l M) -

Since [|0(7)|lq S1, by (4.1) and (4.3) we have

7l S et oM (14eld=7)
< -a=PBT'T | ((1-p—y8)B '
Since 1-5—v8<0 and 1—a<0, by Morrey’s inequality we may conclude v€

Lifn(RJr xR?). Similarly if y=d, then by the same reasoning as above, (4.2) and
(4.3) imply

~

7)), Selmo—BB'r (1 bt e(d—v)r)
< e(l_a—ﬁ)ﬁilT (1 + 7—) + e(l—B—’Yﬁ)ﬂilT_
Since 1 —a— <0, we may conclude also in this case that 7€ L, (RT x R?). There-
fore Lemma 3.1 applies with the hypotheses of Theorem 1.4. Re-writing in terms of

z and ¢, this implies (1.7). A similar proof with Lemma 2.2 in place of Lemma 2.1
also proves (ii). 0

We now prove Theorem 1.4.

Proof. (Theorem 1.4: Intermediate Asymptotics II) To complete the proof
of Theorem 1.4, we estimate the decay of the relative entropy (1.21). The proof of
Theorem 1.3 used the estimate (3.1). Here we use the bound ||6(7)||coc $1 (4.4) and
(4.1) to imply, if v <d,

eV (e™) #8]loe < (e VK (€)1, (0) #Bllow + €4 VI (e L 3, 0y *Olloc)
S (17 (16]]oo + M) (4.5)
S14eld= 7 < eld=N7, (4.6)
Similarly, if v=d then, for all § >0,

[e"VE(eT) %000 <147 <5€°".

~
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The growth of (4.6) in time is the source of the degraded convergence rate observed
in (1.11). As noted above, this is a manifestation of slow decay in the kernel, which
causes growth of eV (e-) in L} .. Indeed, computing the decay of the relative
entropy (with linear or nonlinear diffusion) as above with (4.6),

) 1/2
;iH(ﬂT)GM)S—J(®4%41amﬁTIWY/2</QL¥TVKX6P)*ﬂ2dn>
-

<(1—e"27)I1(0) + Ce2(—a=B)B~ +2(d—y)+28)7
As before, Theorems 1.5 and 1.6 imply
||9(7-) _eMHl Se—Tmiﬂ(Ll-i-'y—,@*l_(;).

Re-writing in terms of x and ¢ and interpolating against (1.7) completes the proof.
The corresponding argument follows also for y=d, absorbing the mild growth of
le?™K(e7-) 0] oo into the § already introduced. O

Appendix A.

LEMMA A.1 (Homogeneous Gagliardo-Nirenberg-Sobolev). Let d>2 and f:
R? R satisfy f€LPNLY and Vf*eL". Moreover let 1<p<rk<dk, k<q<
rkd/(d—r) and

%—§—§<0 (A1)
Then there exists a constant Cans which depends on s,p,q,r,d such that
1Fllze < CansIAIZ NI .. (A.2)
where 0 < o satisfy
l1=a1k+ o, (A.3)
and
;—;:m<:;+i—ﬁ>. (A.4)

The following lemma verifies that the distributions defined by the second deriva-
tives of admissible kernels behave as expected under mass-invariant scalings.

LEMMA A.2. Let K be admissible. Then Vp,1<p<oo, u€LP, and t>0, we have
IV (9 K(E) % u) [l Sptllull,p- (A.5)

Proof. We take the second derivative in the sense of distributions. Let ¢ € C2°,
then by the dominated convergence theorem,

/tdawi/th)a% ¢(x)dx= Hn% 10, K (tx) 0y, ¢(x)dx
T aze

. d-1 Lj

=—tlim t7 0, K(tr) =

€0 |z|=¢€ |1‘|

fﬁV/ﬁ&Mﬁﬁ@ﬂ@m.

¢(x)dS
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By VK e LY@ we have VK=0(|z|'~%) as —0. Therefore for e sufficiently
small, there exists C'>0 such that

L

“o(a)ds| <Ot o'~ o(a)|ds

|z|=¢

:m/ x|~ g(ex)| l=1dS = Ct | 6(0)].
|z|=1

t / 4719, K(tx)
|x|=€

The admissibility conditions (BD) and (KN) are sufficient to apply the Calderén-
Zygmund theory [44], which implies that the principal value integral in the second
term is a bounded linear operator on L? for all 1 <p < oc. The operator norms, which
are the implicit constants in (A.5), only depend on the bound in (BD) and on the
condition

/ K(x—y)— K(x)|dz < B,
[z|>2]y|

which is implied by (BD) [44]. Both of these conditions are clearly left invariant
under the rescaling in (A.5) and this concludes the proof. d

Acknowledgement. The author would like to thank Andrea Bertozzi, Thomas
Laurent, and Nancy Rodriguez for helpful discussions and guidance, and Inwon Kim
for helpful discussions as well as suggesting the problem.

REFERENCES

[1] N.D. Alikakos, LP bounds of solutions to reaction-diffusion equations, Commun. Part. Diff.
Eqn., 4, 827-868, 1979.

[2] L.A. Ambrosio, N. Gigli, and G. Savafe, Gradient Flows in Metric Spaces and in the Space of
Probability Measures, Lectures in Mathematics, Birkhauser, 2005.

[3] J. Bedrossian, Global minimizers for free energies of subcritical aggregation equations with
degenerate diffusion, Appl. Math. Lett., to appear.

[4] J. Bedrossian, Part I: A Virtual Node Method for Elliptic Interface Problems. Part II: Local
and Global Theory of Aggregation Equations with Nonlinear Diffusion, PhD thesis, UCLA,
2011.

[5] J. Bedrossian, N. Rodriguez, and A.L. Bertozzi, Local and global well-posedness for aggregation
equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24(6),
1683-1714, 2011.

[6] A.L. Bertozzi and D. Slepcev, Ezistence and uniqueness of solutions to an aggregation equation
with degenerate diffusion, Commun. Pure. Appl. Anal., 9(6), 1617-1637, 2010.

[7] P. Biler, J. Dolbeault, and M.J. Esteban, Intermediate asymptotics in L' for general nonlinear
diffusion equations, Appl. Math. Let., 15, 101-107, 2002.

[8] A. Blanchet, J.A. Carrillo, and P. Laurengot, Critical mass for a Patlak-Keller-Segel model
with degenerate diffusion in higher dimensions, Calc. Var., 35, 133—-168, 2009.

[9] A. Blanchet, J. Dolbeault, M. Escobedo, and J. Ferndndez, Asymptotic behavior for small
mass in the two-dimensional parabolic-elliptic Keller-Segel model, J. Math. Anal. Appl.,
361, 533-542, 2010.

[10] A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: Optimal
critical mass and qualitative properties of the solutions, E. J. Diff. Eqn., 44, 1-32, 2006.

[11] S. Boi, V. Capasso, and D. Morale, Modeling the aggregative behavior of ants of the species
polyergus rufescens, Nonlinear Anal. Real World Appl., 1(1), 163-176, 2000. Spatial het-
erogeneity in ecological models (Alcald de Henares, 1998).

[12] V. Calvez and J.A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates pre-
venting blow-up, J. Math. Pures Appl., 86, 155-175, 2006.

[13] V. Calvez and J.A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and
related functional inequalities, arXiv:1007.2837v1, 2010.



1160 INTERMEDIATE ASYMPTOTICS FOR AGGREGATION EQUATIONS

[14] J.A. Carrillo, M. Di Francesco, and G. Toscani, Intermediate asymptotics beyond homoegeneity
and self-similarity: Long time behavior for us = A¢(u), Arch. Rat. Mech. Anal., 180, 127—
149, 2006.

[15] J.A. Carrillo, A. Jiingel, P.A. Markowich, G. Toscani, and A. Unterreiter, Entropy dissipation
methods for degenerate parabolic problems and generalized Sobolev inequalities, Montash.
Math., 133, 1-82, 2001.

[16] J.A. Carrillo, R.J. McCann, and C. Villani, Kinetic equilibration rates for granular media
and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat.
Ibero., 19(3), 971-1018, 2003.

[17] J.A. Carrillo, R.J. McCann, and C. Villani, Contractions in the 2-Wasserstein length space
and thermalization of granular media, Arch. Rat. Mech. Anal., 179, 217-263, 2006.

[18] J.A. Carrillo and G. Toscani, Ezponential convergence toward equilibrium for homogeneous
Fokker-Plank-type equations, Math. Meth. Appl. Sci, 21, 1269-1286, 1998.

[19] J.A. Carrillo and G. Toscani, Asymptotic L' decay of solutions of the porous medium equation
to self-similarity, Ind. Univ. Math. J., 49, 2000.

[20] L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotazis and angiogenesis
systems in high space dimensions, Milan J. Math., 72, 1-28, 2004.

[21] I. Csiszar, Information-type measures of difference of probability distributions and indirect
observation, Stud. Sci. Math. Hung., 2, 299-318, 1967.

[22] L. Gross, Logrithmic Sobolev inequalities, Amer. J. Math., 97, 1061-1083, 1975.

[23] E.M. Gurtin and R.C McCamy, On the diffusion of biological populations, Math. Biosci., 33,
35-47, 1977.

[24] T. Hillen and K.J. Painter, A user’s guide to PDE models for chemotazis, J. Math. Biol.,
58(1-2), 183-217, 2009.

[25] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotazis and its conse-
quences, 1, Jahresber. Deutsch. Math.-Verein, 105(3), 103165, 2003.

[26] W. Jager and S. Luckhaus, On ezplosions of solutions to a system of partial differntial equations
modelling chemotazis, Trans. Amer. Math. Soc., 329(2), 819-824, 1992.

[27] S. Kamin and J.L. Védzquez, Fundamental solutions and asymptotic behavior for the p-
Laplacian equation, Ref. Mat. Iberoamericana, 4, 34—45, 1988.

[28] E.F. Keller and L.A. Segel, Model for chemotazis, J. Theor. Biol., 30, 225-234, 1971.

[29] R. Killip and M. Vigan, Nonlinear Schriodinger equations at critical regularity, Proc. Clay
summer school “Evolution Equations”, to appear, June 23-July 18, 2008.

[30] I. Kim and Y. Yao, The Patlak-Keller-Segel model and its variations: Properties of solutions
via mazimum principle, arXiv, 1102.0092, 2011.

[31] R. Kowalczyk, Preventing blow-up in a chemotazis model, J. Math. Anal. Appl., 305, 566-588,
2005.

[32] S. Kullback, A lower bound for discrimination information in terms of variation, IEEE Trans.
Inf., 4, 126-127, 1967.

[33] P.L. Lions, The concentration-compactness principle in the calculus of variations the locally
compact case, Ann. LH.P., Anal. Nonlin., 1(2), 109-145, 1984.

[34] S. Luckhaus and Y. Sugiyama, Large time behavior of solutions in super-critical case to degen-
erate Keller-Segel systems, Math. Model. Numer. Anal., 40, 597-621, 2006.

[35] S. Luckhaus and Y. Sugiyama, Asymptotic profile with optimal convergence rate for a parabolic
equation of chemotazis in super-critical cases, Indiana Univ. Math. J., 56(3), 1279-1297,
2007.

[36] R.J. McCann, A convezity principle for interacting gases, Adv. Math., 128, 153-179, 1997.

[37] P.A. Milewski and X. Yang, A simple model for biological aggregation with asymmetric sensing,
Commun. Math. Sci., 6(2), 397416, 2008.

[38] W.J. Newman, A Lyapunov functional for the evolution to the porous medium equation to
self-similarity, J. Math. Phys., I, 25, 3120-3123, 1984.

[39] F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Com-
mun. Part. Diff. Eqn., 26(1), 101-174, 2001.

[40] C.S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15, 311—
338, 1953.

[41] B. Perthame and A. Vasseur, Regularization in Keller-Segel type systems and the De Giorgi
method, preprint, 2010.

[42] M. Del Pino and J. Dolbeault, Best constants for Galiardo-Nirenberg inequalities and applica-
tions to nonlinear diffusions, J. Math. Pures. Appl., 81, 847-875, 2002.

[43] J. Ralston, A Lyapunov functional for the evolution to the porous medium equation to self-
stmilarity, J. Math. Phys., II, 25, 3124-3127, 1984.

[44] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,



J. BEDROSSIAN 1161

Princeton University Press, 1993.

[45] Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical
cases to degenerate Keller-Segel systems, Diff. Int. Eqns., 19(8), 841-876, 2006.

[46] Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-
Segel models, Adv. Diff. Eqns., 12(2), 121-144, 2007.

[47] Y. Sugiyama, The global existence and asymptotic behavior of solutions to degenerate to quasi-
linear parabolic systems of chemotazis, Diff. Int. Eqns., 20(2), 133-180, 2007.

[48] C.M. Topaz, A.L. Bertozzi, and M.A. Lewis, A nonlocal continuum model for biological aggre-
gation, Bull. Math. Biol., 68(7), 1601-1623, 2006.

[49] G. Toscani, Entropy production and the rate of convergence to equillibrium for the Fokker-Plank
equation, Quart. Appl. Math., 57, 521-541, 1999.

[50] J.L. Vézquez, The Porous Medium Equations, Clarendon Press, Oxford, 2007.



