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WELL-POSEDNESS CLASSES FOR SPARSE REGULARIZATION∗

MARKUS GRASMAIR†

Abstract. Because of their sparsity enhancing properties, `1 penalty terms have recently re-
ceived much attention in the field of inverse problems. Also, it has been shown that certain properties
of the linear operator A to be inverted imply that `1-regularization is equivalent to `0-regularization,
which tries to minimise the number of non-zero coefficients. In the context of compressed sensing,
one usually assumes a restricted isometry property, which requires that the operator A acts almost
like an isometry on certain low dimensional sub-spaces. In this paper, we show that similar proper-
ties appear naturally when one studies the question of well-posedness of `0-regularization. Moreover,
we derive a complete characterisation of those linear operators A for which `0-regularization is well-
posed. It turns out that neither boundedness nor invertibility of A are necessary conditions; compact
operators, however, are shown not to be suited for `0-regularization.
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1. Introduction

While the basic assumption of classical regularization methods for the stable
inversion of ill-posed operator equations is either boundedness or smoothness of the
solution, the theory of sparse regularization is based on the assumption that the
true solution has a finite expansion with respect to some given basis of the space of
definition. This sparsity of the solution can be enforced by employing the number
of non-zero coefficients as a regularization term. There are two major problems with
this approach: The first problem is the fact that, in general, this does not yield a
well-posed regularization method, as has been observed in [15]; the number of non-
zero coefficients is no coercive functional, and therefore the regularization functional
need not attain its minimum. The second difficulty lies in the actual computation of
the solution, provided it exists.

In order to obtain a problem that is computationally tractable, it has been sug-
gested in [6] to use the `1-norm as a sparsity enforcing regularization term. Then
one obtains a convex minimisation problem that can be solved by standard methods.
This approach was rigorously justified later, when it was shown that, under certain as-
sumptions, the `1-minimiser is also the sparsest solution (see, for instance, [4, 5, 8, 9]).
In [5], the main assumption is that the operator A to be inverted satisfies a certain
restricted isometry property, which requires that A acts almost like an orthogonal
operator on the class of all sufficiently sparse vectors (see also [3]).

In [7, 12, 15, 17, 18], the method of `1-regularization has been considered from
an inverse problems point of view. It has been shown there that `1-regularization
provides a well-posed regularization method and, in addition, that it may have ex-
ceedingly good properties: If the true solution of the considered equation is sparse and
satisfies a range condition, and the operator A satisfies a certain restricted injectivity
property, then the regularized solution converges linearly to the true solution as the
noise level decreases to zero. In [13], the injectivity condition has been replaced by
the assumption of uniqueness of the `1-minimising solution. In addition, it has been
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shown that the restricted isometry property implies a uniform range condition on the
set of all sufficiently sparse elements.

There are, however, fundamental differences between the latter results and those
on compressed sensing. First, the convergence rates derived from restricted isom-
etry properties hold uniformly on the set of sufficiently sparse vectors, while those
in [13] depend strongly on the solution. Second, the results on convergence rates
for `1-regularization in [13] make no assertion concerning the question whether the
`1-minimising solutions are actually the sparsest ones (note however [16], where spar-
sity results for `1-regularization were derived using methods from compressed sensing
applied to the setting of inverse problems). Indeed, the range condition postulated
in [13] seems not be strong enough to guarantee such a sparsity. On the other hand,
it might be possible to substantially weaken the assumptions in [5] and still be able
to obtain this equivalence of `1- and `0-regularization. Also, it might be possible that
weaker assumptions would at least imply the equivalence of `0-regularization and
`p-regularization for some 0<p<1. Such regularization methods with non-convex
penalty term have for instance been studied in [1, 10, 11, 21] (see also [15], where some
preliminary first results on well-posedness of the non-convex case were presented).

If one aims for the derivation of more general equivalence results, it makes sense
to study first the properties of `0-regularization more closely. In particular, because
regularization with `p-penalty terms is well-posed for every p>0 (see [10]), one should
derive conditions for the operator A that guarantee this well-posedness also for the
case of an `0-penalty term. In this paper, we will approach this task by studying the
method of quasisolutions, where one assumes that a strict bound for the penalty term
is known. In the setting of sparse regularization, this means that an upper bound
s for the number of non-zero coefficients of the expected true solutions is known a
priori. The same assumption is also present in the theory of compressed sensing.

The main result of the paper is Theorem 3.1, where a characterisation of those
linear operators is given for which the assumption of s-sparsity leads to a well-posed
problem. It turns out that the conditions one obtains are closely connected to the
restricted isometry property, though far less restrictive. As a consequence of these
conditions, we obtain that compact operators are only in the finite dimensional case
susceptible to `0-regularization. Still, the class of operators for which s-sparsity is
a meaningful regularization assumption contains more operators than only isomor-
phisms: We show by means of two explicit examples that neither the boundedness of
the operator A nor the closedness of the range of A are necessary for `0-regularization
to be well-posed.

2. Sparse regularization
Let Λ be some countable index set, Y some Hilbert space, and A : `2(Λ)→Y a

linear operator. The goal is to solve, for given data y∈Y , the operator equation

Ax=y. (2.1)

If the operator A is ill-posed, then solving this equation, if possible, in general does not
yield any meaningful results, as small errors in the data y can lead to arbitrarily large
errors in the solution. In order to obtain useful results nevertheless, it is necessary to
have some additional a priori knowledge about the solution of the equation and to use
it in some approximate solution process. One possibility for such a priori knowledge
is sparsity, where one assumes that the support of the solution x†= (x†λ)λ∈Λ of (2.1),
that is, the set

supp(x†) =
{
λ∈Λ :x†λ 6= 0

}
,
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is a finite set.
There are several methods for exploiting this knowledge. If one not only knowns

that supp(x†) is finite, but an additional estimate of the data error in the form ‖y−
yδ‖≤ δ is available, then one can solve the constrained minimisation problem

|supp(x)|→min subject to ‖Ax−yδ‖2≤ δ2. (2.2)

Also, it is possible to apply a Tikhonov type of regularization, and solve the uncon-
strained minimisation problem

‖Ax−yδ‖2 +α|supp(x)|→min, (2.3)

where the regularization parameter α>0 is chosen in some suitable manner. If, on
the other hand, an explicit bound for |supp(x†)| is given, for instance the knowledge
that |supp(x†)|≤s, then it makes sense to compute the quasi-solution of (2.1), which
is defined as

x(s) := argmin
{
‖Ax−yδ‖2 :x∈Xs

}
, (2.4)

where

Xs :=
{
x∈ `2(Λ) : |supp(x)|≤s

}
.

The problem with all of the three models (2.2), (2.3), and (2.4) is that, in general,
none of them is well-defined. The reason is that, while the mapping x 7→ |supp(x)| is
weakly lower semi-continuous, it is not coercive (see [11]). Thus, direct methods for
proving the existence of solutions can only be applied, if the non-coercivity of |supp(x)|
is compensated by the coercivity of the fidelity term ‖Ax−yδ‖2 on the set Xs. To see
what can happen in the general case, we consider a simple example, which makes use
of the same construction as an example in [15, Section 5.2], where it is shown that
Tikhonov regularization with an `0-penalty term need not be well-posed.

Before that we clarify some notation that is used throughout the text. Whenever
Λ is some (countable) index set and x∈ `2(Λ), we denote by xλ∈R, λ∈Λ, the λ-th
coefficient of x. Moreover, we denote by eλ∈ `2(Λ), λ∈Λ, the standard basis vector
with coefficients (eλ)λ= 1 and (eλ)µ= 0 for every µ∈Λ\{λ}. That is, for all x∈ `2(Λ)
we have the representation x=

∑
λ∈Λxλe

λ.

Example 2.1. Define A : `2(N)→R2 by

Aek =
cos(k)e1 +sin(k)e2

k
.

Then

‖Ax‖2 =
(∑

k

cos(k)xk
k

)2

+
(∑

k

sin(k)xk
k

)2

≤
(∑

k

cos(k)2

k2

)(∑
k

x2
k

)
+
(∑

k

sin(k)2

k2

)(∑
k

x2
k

)
≤ π2

3
‖x‖2,

showing that A defines a bounded linear operator on `2(N).
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Now note that the set A(X1) =
{
A(tek) : t∈R, k∈N

}
is dense in R2. Thus, when-

ever yδ ∈R2 \A(X1) is given, the problem of minimising ‖Ax−yδ‖2 over X1 has no
solution. Even more, the Tikhonov functional (2.3) attains no solution if ‖yδ‖2>α.
Indeed, the density of A(X1) in R2 implies that infx∈X1‖Ax−yδ‖2 = 0 and therefore

inf
x∈`2(N)

(
‖Ax−yδ‖2 +α|supp(x)|

)
≤α.

On the other hand, with x= 0 we have ‖Ax−yδ‖2 +α|supp(x)|=‖yδ‖2>α, which
implies that x= 0 is no minimiser. If, however, x∈X1 were a minimiser, then ‖Ax−
yδ‖2 = 0, contradicting the assumption that yδ 6∈A(X1).

In the following, we will concentrate on the concept of quasi-solutions, that is,
the model (2.4). These types of models are classically treated within the concept of
well-posedness classes [19]:

Definition 2.1. Let X and Y be topological spaces and let A : X→Y . The set
X̃⊂X is a well-posedness class for A, if the restriction of A to X̃ is well-posed in
the sense of Hadamard. That is, the following conditions are satisfied:

• The restriction of A to X̃ is continuous.

• The restriction of A to X̃ is injective.

• The mapping A−1 : A(X̃)→ X̃ is continuous.

In other words, the set X̃ is a well-posedness class for A if the operator A is a
homeomorphism between X̃ and its image A(X̃)⊂Y .

In the following section, we will derive necessary and sufficient conditions for the
linear operator A that guarantee that the sets Xs, for given s∈N, are well-posedness
classes for A.

3. Well-posedness classes
Let

ρs := sup

{
‖Ax‖
‖x‖

:x∈Xs \{0}
}
,

σs := inf

{
‖Ax‖
‖x‖

:x∈Xs \{0}
}
.

Moreover, define for x∈ `2(Λ) with Ax 6= 0

τs(x) := sup

{
〈Ax,Ax̃〉
‖Ax‖‖Ax̃‖

: x̃∈Xs, supp(x̃)∩supp(x) =∅, Ax̃ 6= 0

}
,

where 〈·, ·〉 denotes the inner product on the Hilbert space Y , and define for Ω⊂Λ

τs(Ω) := sup
{
τs(x) : supp(x)⊂Ω, Ax 6= 0

}
. (3.1)

Here we set τs(Ω) := 0 if Ax= 0 for every x satisfying supp(x)⊂Ω. Note that the
supremum in (3.1) is attained whenever Ω⊂Λ is a finite set and Ax 6= 0 for some x
satisfying supp(x)⊂Ω. That is, whenever Ω is a finite set and τs(Ω)>0, there exists
x∈ `2(Λ) with supp(x)⊂Ω such that τs(Ω) = τs(x).

Theorem 3.1. The set Xs is a well-posedness class for the operator A if and only if
the following hold:

ρs<∞, (3.2)

σs>0, (3.3)

τs(Ω)<1 for every Ω⊂Λ with |Ω|≤s. (3.4)
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Proof. Assume first that Xs is a well-posedness class for A, that is, the restric-
tion of A to Xs is continuous, injective, and has a continuous inverse. We show by
contradiction that the conditions (3.2)–(3.4) are satisfied. Assume first that (3.2) does
not hold. Then there exists a sequence (x(k))k∈N⊂Xs with ‖x(k)‖≤1 for all k and
‖Ax(k)‖→∞. Setting x̃(k) :=x(k)/‖Ax(k)‖, it follows that x̃(k)→0 while ‖Ax̃(k)‖= 1
giving a contradiction to the continuity of A on Xs.

Now assume that (3.3) does not hold. Then there exists a sequence (x(k))k∈N⊂Xs

such that ‖x(k)‖= 1 for all k and Ax(k)→0. Obviously, this contradicts the continuous
invertibility of A|Xs

.

Finally assume that (3.2) holds, but (3.4) does not hold. Let Ω⊂Λ be such that
|Ω|≤s and τs(Ω) = 1. Then there exist x∈ `2(Λ) with supp(x)⊂Ω and ‖Ax‖= 1, and
a sequence (x(k))k∈N⊂ `2(Λ) such that x(k)∈Xs, supp(x(k))∩supp(x) =∅, ‖Ax(k)‖= 1
for all k∈N, and

〈Ax,Ax(k)〉
‖Ax‖‖Ax(k)‖

= 〈Ax,Ax(k)〉→1.

Then

‖A(x−x(k))‖2 =‖Ax‖2 +‖Ax(k)‖2−2〈Ax,Ax(k)〉= 2(1−〈Ax,Ax(k)〉)→0.

On the other hand (3.2) implies that ‖x‖≥‖Ax‖/ρs= 1/ρs and also ‖x(k)‖≥1/ρs
for all k∈N. Because supp(x)∩supp(x(k)) =∅, this implies that ‖x−x(k)‖≥

√
2/ρs,

showing that Ax(k) converges to Ax while x(k) does not converge to x. This gives the
necessary contradiction.

For the converse direction, assume that (3.2)–(3.4) hold. We first show that
A|Xs

is continuous. Let therefore x∈Xs and assume that (x(k))k∈N⊂Xs converges
to x. Denote πx : `2(Λ)→ `2(Λ) the projection on the subspace spanned by the basis
elements in the support of x, that is,

πx(x̃) =
∑

λ∈supp(x)

x̃λe
λ,

and define π⊥x := Id−πx. Then x−πx(x(k))∈Xs for all k and, similarly, π⊥x (x(k))∈Xs

for all k. Therefore,

‖A(x(k)−x)‖≤‖A(πx(x(k))−x)‖+‖Aπ⊥x (x(k))‖

≤ρs
(
‖πx(x(k))−x‖+‖π⊥x (x(k))‖

)
≤
√

2ρs‖x(k)−x‖,

proving the continuity of A|Xs
.

Now assume that x∈Xs and (x(k))k∈N⊂Xs are such that Ax(k)→Ax. We have to
show that also x(k)→x. Let Ω := supp(x). Then by assumption τs(Ω)<1. Moreover,
we have supp(πx(x(k))−x)⊂ supp(x)⊂Ω, and therefore, as |supp(π⊥x (x(k)))|≤s and
supp(π⊥x (x(k)))∩Ω =∅,

〈A(πx(x(k))−x),Aπ⊥x (x(k))〉≤ τs(Ω)‖A(πx(x(k))−x)‖‖Aπ⊥x (x(k))‖
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for all k. Thus,

‖A(x(k)−x)‖2

=‖A(πx(x(k))−x)‖2 +‖Aπ⊥x (x(k))‖2−2〈A(πx(x(k))−x),Aπ⊥x (x(k))〉
≥‖A(πx(x(k))−x)‖2 +‖Aπ⊥x (x(k))‖2

−2τs(Ω)‖A(πx(x(k))−x)‖‖Aπ⊥x (x(k))‖

=
(
‖A(πx(x(k))−x)‖−‖Aπ⊥x (x(k))‖

)2
+2(1−τs(Ω))‖A(πx(x(k))−x)‖‖Aπ⊥x (x(k))‖

≥0.

Since by assumption ‖A(x(k)−x)‖ converges to zero and 1−τs(Ω)>0, it fol-
lows that so do the sequences ‖A(πx(x(k))−x)‖−‖Aπ⊥x (x(k))‖ and ‖A(πx(x(k))−
x)‖‖Aπ⊥x (x(k))‖. Consequently, we obtain that

‖A(πx(x(k))−x)‖→0 and ‖Aπ⊥x (x(k))‖→0. (3.5)

Because πx(x(k))−x∈Xs and π⊥x (x(k))∈Xs for all k∈N, it follows from (3.3) that

‖x(k)−x‖2 =‖πx(x(k))−x‖2 +‖π⊥x (x(k))‖2

≤σ2
s

(
‖A(πx(x(k))−x)‖2 +‖Aπ⊥x (x(k))‖2

)
.

Now the convergence of (x(k)) to x follows from (3.5).

Corollary 3.2. Assume that X1 is a set of well-posedness for the linear operator
A : `2(Λ)→Y and that Λ is an infinite set. Then A is non-compact.

Proof. For ease of notation we assume without loss of generality that Λ =N.
Assume to the contrary that A is compact and consider the sequence of basis

vectors (ek)k∈N. This sequence converges weakly to zero in `2(N). Moreover, the
compactness of A implies in particular that A is bounded, and therefore also the
sequence (Aek)k∈N converges weakly to zero. Now the compactness of A implies that
(Aek)k∈N converges to zero with respect to the norm, and thus ‖Aek‖→0. This,
however, is a contradiction to the assumption that X1 is a set of well-posedness for
A, as Theorem 3.1 in particular implies that ‖Aek‖≥σ1>0 for all k∈N.

Remark 3.3. Most of the technicalities in the proof of Theorem 3.1 stem from the
fact that the sets Xs are not linear sub-spaces of `2(Λ). If the sets Xs were linear
spaces, then ρs would simply equal the norm of the restriction of A to Xs, and σs
the reciprocal of the norm of its inverse; thus, the conditions ρs<∞ and σs>0 alone
would be equivalent to Xs being a well-posedness class for A. Here, because of the
non-linearity, the additional condition (3.4) is needed. Note, however, that the proof
of Theorem 3.1 shows that this condition is only required for the continuity of the
inverse: the restriction of A to Xs is continuous, if and only if ρs<∞.

Remark 3.4. The (s,s′)-orthogonality constant of A(see [5]) is defined as

τs,s′ := sup
{
τs(Ω) : Ω⊂Λ, |Ω|≤s′

}
.

It can be used in conditions that guarantee that the solution of constrained `1-reg-
ularisation is at the same time the sparsest solution of the equation Ax=y (see [2]
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for a collection of results of that type). Obviously, the condition τs,s<1 implies
condition (3.4) of Theorem 3.1. Conversely, however, it is easily possible in the infinite
dimensional case that (3.4) holds, although τs,s= 1.

Remark 3.5. There is also a connection between τs and the notion of coherence of
a linear mapping, which can be defined as

µ= sup
i 6=j

|〈Aei,Aej〉|
‖Aei‖‖Aej‖

.

Coherence is one of the main tools in compressed sensing for deriving not only the
equivalence of `1 and `0-regularization, but also the correctness of several greedy
algorithms that can be used for solving the minimisation problem numerically (see [9]
for a large collection of results). It is easy to see that µ(A) = τ1,1. In [20], the babel
function µ1 : N→R≥0, defined by

µ1(m) := sup
Ω⊂Λ
|Ω|=m

sup
i 6∈Ω

∑
j∈Ω

|〈Aei,Aej〉|
‖Aei‖‖Aej‖

,

has been introduced in order to obtain sharper results on the validity of greedy algo-
rithms. This original definition has been dissected in [14] in order to analyse different
a priori assumptions on the support of x† than that of s-sparsity. In the course of
this analysis, the setwise babel function has been defined as the mapping that assigns
to every index set Ω⊂Λ the number

µ1(Ω) := sup
i6∈Ω

∑
j∈Ω

|〈Aei,Aej〉|
‖Aei‖‖Aej‖

.

This definition of µ1(Ω) is very close to that of τ1(Ω) in the present paper. The main
difference to τ1 is that µ1 uses the sum of the absolute values of the inner products
of Aei and Aej , which can be interpreted as an `1-norm on a sub-space of Y . Indeed,
the arguments in [14] are based on an estimation of the norm of the operator A with
respect to suitable `1-norms (see also [16], where similar arguments are used in the
infinite dimensional case).

4. Examples
In this section we show by means of two concrete examples that the conditions

in Theorem 3.1 imply neither boundedness nor bounded invertibility of the operator
A, even if they are satisfied for every s∈N. In the first example, we construct an
unbounded operator, for which Xs is a set of well-posedness for each s∈N.

Example 4.1. Consider the sets

Λ :=
{

(k,l) :k, l∈N, 1≤ l≤k
}
,

Λ′ :=
{

(k,l) :k, l∈N, 0≤ l≤k
}
.

Let moreover A : `2(Λ)→ `2(Λ′) be any linear operator satisfying

Aek,l=ek,0 +ek,l for (k,l)∈Λ.

In the following, we show that the operator A is unbounded, but that every set Xs is
a set of well-posedness for A.
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In order to see that A is unbounded, consider x(k)⊂ `2(Λ) defined as x(k) :=∑
1≤l≤k e

k,l. Then Ax(k) =kek,0 +
∑

1≤l≤k e
k,l, and therefore

‖x(k)‖2 =k, while ‖Ax(k)‖2 =k2 +k. (4.1)

Now let s∈N be fixed. In order to show that the set Xs is a set of well-posedness
for A, we have to verify that ρs<∞, σs>0, and τs(Ω)<1 for every Ω⊂Λ with |Ω|≤s.
Even more, we will show that the (s,s)-orthogonality constant τs,s is strictly smaller
than 1.

Assume first that x=
∑
k

∑
1≤l≤kxk,le

k,l∈Xs. Then

‖Ax‖2 =
∑
k

 ∑
1≤l≤k

x2
k,l+

 ∑
1≤l≤k

xk,l

2
 . (4.2)

This immediately shows that ‖Ax‖2≥‖x‖2, implying that σs≥1. Moreover, because
x∈Xs, it follows that there exist at most s pairs (k,l) such that xk,l 6= 0. Consequently,
making use of the estimate (y1 + .. .+ys)

2≤s(y2
1 + .. .+y2

s), we obtain that

‖Ax‖2≤
∑
k

∑
1≤l≤k

(1+s)x2
k,l= (1+s)‖x‖2,

showing that ρs≤
√

1+s. Together with (4.1) we obtain that, in fact, we have equality;
that is, ρs=

√
1+s.

Now let x̃=
∑
k

∑
1≤l≤k x̃k,le

k,l∈Xs be such that supp(x)∩supp(x̃) =∅. Then
xk,lx̃k,l= 0 for every (k,l)∈Λ, showing that

〈Ax,Ax̃〉=
∑
k

 ∑
1≤l≤k

xk,lx̃k,l+

 ∑
1≤l≤k

xk,l

 ∑
1≤l≤k

x̃k,l


=
∑
k

 ∑
1≤l≤k

xk,l

 ∑
1≤l≤k

x̃k,l


≤
∑
k

∣∣∣∣∣∣
∑

1≤l≤k

xk,l

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

1≤l≤k

x̃k,l

∣∣∣∣∣∣
 .

Now note that the fact that |supp(x)|≤s implies the inequality ∑
1≤l≤k

xk,l

2

≤s
∑

1≤l≤k

x2
k,l,

which in turn shows that∣∣∣∣∣∣
∑

1≤l≤k

xk,l

∣∣∣∣∣∣≤
√

s

s+1

√√√√√ ∑
1≤l≤k

x2
k,l+

 ∑
1≤l≤k

xk,l

2

,
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and, similarly, ∣∣∣∣∣∣
∑

1≤l≤k

x̃k,l

∣∣∣∣∣∣≤
√

s

s+1

√√√√√ ∑
1≤l≤k

x̃2
k,l+

 ∑
1≤l≤k

x̃k,l

2

.

Therefore,

〈Ax,Ax̃〉≤ s

s+1

∑
k

√√√√√ ∑
1≤l≤k

x2
k,l+

 ∑
1≤l≤k

xk,l

2
√√√√√ ∑

1≤l≤k

x̃2
k,l+

 ∑
1≤l≤k

x̃k,l

2

≤ s

s+1

√√√√√∑
k

∑
1≤l≤k

x2
k,l+

 ∑
1≤l≤k

xk,l

2

·

×

√√√√√∑
k

∑
1≤l≤k

x̃2
k,l+

 ∑
1≤l≤k

x̃k,l

2

=
s

s+1
‖Ax‖‖Ax̃‖,

which shows that τs(x)≤s/(s+1) for every x∈Xs and therefore τs,s≤s/(s+1).
In the following example, we construct an operator A that is bounded, injective,

and has non-closed range in such a way that every set Xs is a set of well-posedness
for A.

Example 4.2. Let again Λ :=
{

(k,l) :k, l∈N, 1≤ l≤k
}

and let

ηk :=
1√
k

∑
1≤l≤k

ek,l.

Then the vectors ηk form an orthonormal system in `2(Λ). Choose now any sequence
{ck}k∈N with 0<ck<1 for all k and limk→∞ ck = 1. Define A : `2(Λ)→ `2(Λ) by

Ax=x−
∑
k∈N

ck〈x,ηk〉ηk.

Then we obtain, with the abbreviation dk := 2ck−c2k,

‖Ax‖2 =‖x‖2−2
∑
k∈N

ck〈x,ηk〉2 +
∑
k∈N

c2k〈x,ηk〉2

=‖x‖2−
∑
k∈N

(2ck−c2k)〈x,ηk〉2

=‖x‖2−
∑
k∈N

dk
k

 ∑
1≤l≤k

xk,l

2
.

(4.3)

In particular, ‖Ax‖2≤‖x‖2, showing that A is bounded. Moreover, it is obvious that
A is not boundedly invertible, as ‖Aηk‖2 = 1−dk→0 as k→∞.
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Now we show that every set Xs is a set of well-posedness for A. Because A is
bounded, we have to show that σs>0 for all s∈N and τs(x)<1 for all s∈N and
x∈Xs. Let therefore s∈N and let x∈Xs. Because |supp(x)|≤s, it follows that ∑

1≤l≤k

xk,l

2

≤min{k,s}
∑

1≤l≤k

x2
k,l.

Thus (4.3) implies that

‖Ax‖2≥‖x‖2−
∑
k∈N

(
min{k,s}dk

k

∑
1≤l≤k

x2
k,l

)
=
∑
k∈N

((
1−min{k,s}dk

k

) ∑
1≤l≤k

x2
k,l

)
≥ inf
k∈N

(
1−dk

min{k,s}
k

)
‖x‖2.

Because the term dk is strictly smaller than 1 and min{k,s}/k tends to zero as k→∞,
it follows that

σ2
s ≥ inf

k∈N

(
1−dk

min{k,s}
k

)
>0.

Now let x̃∈Xs be such that supp(x̃)∩supp(x) =∅. Define the mapping πk : X→X
by

πk(x̂) :=
∑

1≤l≤k

x̂k,le
k,l.

Then

〈Ax,Ax̃〉=
∑
k∈N
〈Aπkx,Aπkx̃〉.

Moreover,

〈Aπkx,Aπkx̃〉= 〈πkx,πkx̃〉−dk〈x,ηk〉〈x̃,ηk〉

=−dk〈x,ηk〉〈x̃,ηk〉=−dk

 ∑
1≤l≤k

xk,l

 ∑
1≤l≤k

x̃k,l

. (4.4)

Now denote

nk := |supp(x)∩supp(ηk)| and ñk := |supp(x̃)∩supp(ηk)|.

Then (4.4) implies that

〈Aπkx,Aπkx̃〉2≤d2
k

nkñk
k2

 ∑
1≤l≤k

x2
k,l

 ∑
1≤l≤k

x̃2
k,l

 . (4.5)
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Moreover, as dknk/k<1 and dkñk/k<1 for all k,

‖Aπkx‖2‖Aπkx̃‖2≥
(

1−dk
nk
k

)(
1−dk

ñk
k

) ∑
1≤l≤k

x2
k,l

 ∑
1≤l≤k

x̃2
k,l

. (4.6)

Now define

θs := sup
k∈N

dk
min{s,k/2}

k
.

Then

θs= max
{

max
1≤k≤2s

dk
2
, sup
k>2s

dks

k

}
≤max

{
max

1≤k≤2s

dk
2
,

s

2s+1

}
<

1

2
,

as 0<dk<1 for all k∈N. Next, note that the assumptions |supp(x)|≤s, |supp(x̃)|≤s,
and supp(x)∩supp(x̃) =∅ imply that nkñk≤min{s2,k2/4} for all k∈N. Thus we
obtain that for all k∈N

d2
k

nkñk
k2
≤θ2

s <
1

4
.

Now, the inequalities 0≤dknk/k<1, 0≤dkñk/k<1, and d2
knkñk/k

2≤θ imply that
for all k∈N (

1−dk
nk
k

)(
1−dk

ñk
k

)
≥ (1−θs)2.

Consequently, we obtain from (4.5) and (4.6) that

〈Aπkx,Aπkx̃〉2≤
θ2
s

(1−θs)2
‖Ax‖2‖Ax̃‖2.

Consequently,

〈Ax,Ax̃〉=
∑
k∈N
〈Aπkx,Aπkx̃〉

≤ θs
1−θs

∑
k∈N
‖Aπkx‖‖Aπkx̃‖

≤ θs
1−θs

√∑
k∈N
‖Aπkx‖2

√∑
k∈N
‖Aπkx̃‖2

=
θs

1−θs
‖Ax‖‖Ax̃‖.

Because θs<1/2, the assertion follows with

τs,s≤
θs

1−θs
<1.
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5. Conclusion
We have derived a characterisation of those linear operators between `2 spaces

and general Hilbert spaces for which the assumption of sparsity constraints leads to
well-posed problems. For this well-posedness to hold, the operator A as well as its
inverse have to be bounded on the set Xs consisting of all s-sparse elements of `2(Λ).
In addition, if x, x̃∈Xs have disjoint support, then the angle between Ax and Ax̃
has to be strictly larger than some positive number. These conditions are closely
related to various formulations of a restricted isometry property that is commonly
encountered in the context of compressed sensing. There, this property implies first
the stability of sparse regularization and, second, that its solution can be computed
by minimising the `1-norm instead. The results of the present paper indicate that
conditions that are similar to a restricted isometry property appear naturally when
treating sparse regularization problems. Also, the examples show that, although the
approximate inversion of compact operators with sparse regularization can lead to
problems, the theory is not restricted to invertible operators. Instead, there exist
operators with non-closed range for which every set Xs is a well-posedness class, that
is, any restriction of the support of the solution yields a well-posed problem.
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