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THE HOMOGENIZED EQUATION OF A HETEROGENEOUS
REACTION-DIFFUSION MODEL INVOLVING PULSATING

TRAVELING FRONTS∗

MOHAMMAD EL SMAILY†

Abstract. The goal of this paper is to find the homogenized equation of a heterogeneous
reaction-diffusion model in a periodic medium. The solutions of this model are pulsating traveling
fronts whose speeds are superior to a parametric minimal speed c∗

L
. We first find the homogenized

limit of the stationary states which depend on the space variable in many cases. Then, we prove
that the pulsating traveling fronts converge to the classical solution u0 :=u0(t,x) of a homogeneous
reaction-diffusion equation. The homogenized limit u0 is also a traveling front whose minimal speed
of propagation is given in terms of the harmonic mean of the diffusion and the arithmetic mean of
the reaction.

Key words. Homogenization, reaction-diffusion, front propagation, heterogeneous media, min-
imal speed of propagation.
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1. Introduction and setting of the problem

This paper is a continuation of the study of the propagation phenomena of pulsat-
ing traveling fronts solving a heterogeneous reaction-diffusion equation. The notion
of traveling fronts arose in 1937 in the homogeneous model of Fisher [12] and Kol-
mogorov, Petrovsky, and Piskunov [17]. This model describes certain population
dynamics. In the one-dimensional case, it corresponds to the following equation:

∂u

∂t
=D

∂2u

∂x2
+u (µ−νu), t>0, x∈R. (1.1)

The unknown u=u(t,x) is the population density at time t and position x, and the
positive constant coefficients D, µ, and ν respectively correspond to the diffusiv-
ity (mobility of the individuals), the intrinsic growth rate, and the susceptibility to
crowding effects.

Later, many works extended the notion of traveling fronts to the notion of
pulsating traveling fronts solving a heterogeneous reaction-advection-diffusion equa-
tion in any dimensional space and in general periodic domains (see for example
[1, 4, 5, 24, 25, 26, 27, 28, 29] and [30]). We will recall, after introducing the terms in
our problem, the definition of pulsating traveling fronts in the one-dimensional case.
The references which were mentioned above can give a detailed and wide description
of this notion in higher dimensions and in many general settings.

In this paper, the setting is similar to that in El Smaily, Hamel, and Roques [10].
We consider the parametric heterogeneous reaction-diffusion equation (L>0 is the
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parameter)

∂u

∂t
=

∂

∂x

(

aL(x)
∂u

∂x

)

+fL(x,u), t∈R, x∈R. (1.2)

The diffusion term aL satisfies

aL(x)=a(x/L),

where a is a C2,α(R) (with α>0) 1-periodic function that satisfies

∃ 0<α1<α2, ∀ x∈R, α1≤a(x)≤α2. (1.3)

The reaction term satisfies fL(x, ·)=f(x/L, ·), where we assume that f :=f(x,s) :
R×R+→R is 1-periodic in x, of class C1,α in (x,s), C2 in s over (0,M) (M is defined
below at (1.5)), and for each x∈R, s 7→f(x,s)/s is continuous to the right at s=0.
We set

µ(x) := lim
s→0+

f(x,s)

s
and µL(x) := lim

s→0+

fL(x,s)

s
=µ

( x

L

)

. (1.4)

In biological invasions, µ stands for the growth rate. Here, µ may depend on the
position x. The more favorable the region is, the higher the growth rate µ is. In this
setting, both aL and fL are L-periodic in the variable x. Furthermore, we assume
that:

{

∀ x∈R, f(x,0)=0,
∃ M ≥0, ∀ s≥M, ∀ x∈R, f(x,s)≤0.

(1.5)

In the main result of this paper, we need the assumption

∀x∈R, ∀s∈ (0,M), f(x,s)>0. (1.6)

Moreover, to ensure the existence of pulsating traveling fronts, we assume that f
satisfies the following condition:

∀ x∈R, s 7→f(x,s)/s is decreasing in s>0. (1.7)

Let, for each s∈R,

g(s) :=

∫ 1

0

f(x,s)dx=<f(·,s)>A

(<·>A stands for the arithmetic mean of a function; see Definition 1.1 below). Then

(1.5) and (1.7) yield that g(0)=0, g(s)≤0 for all s≥M, and s 7→ g(s)

s
is decreasing

in s.
The stationary states p(x) of (1.2) satisfy the equation

∂

∂x

(

aL(x)
∂p

∂x

)

+fL(x,p)=0, x∈R. (1.8)

Under general hypotheses including those of this paper, and in any space dimension,
it was proved in [4] that a necessary and sufficient condition for the existence of a
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positive and bounded solution p of (1.8) was the negativity of the principal eigenvalue
ρ1,L of the linear operator

L0 :Φ 7→−(aL(x)Φ
′)′−µL(x)Φ,

with the periodicity condition that Φ(x) is L-periodic in x. In this case, the solution
p was also proved to be unique, and therefore L-periodic. Actually, it is easy to see
that the map L 7→ρ1,L is nonincreasing in L>0, and even decreasing as long as a is

not constant (see the proof of Lemma 3.1 in [10]). Furthermore, ρ1,L→−
∫ 1

0

µ(x)dx

as L→0+. In this paper, the assumption (1.6) yields that µ(x) is positive everywhere
and hence

∫ 1

0

µ(x)dx>0. (1.9)

The hypothesis (1.9) guarantees that (for more details about this, see (3.6) below)

∀ L>0, ρ1,L<0.

Throughout this paper, we set < ·>A as follows.

Definition 1.1 (Arithmetic Mean). Let w :R 7→R be an l−periodic function (for
some l>0). If w is integrable over its period [0,l], we define the arithmetic mean of
w as

<w>A:=
1

l

∫ l

0

w(x)dx. (1.10)

Now, we recall the definition of pulsating traveling fronts in the one-dimensional case.

Definition 1.2 (Pulsating traveling fronts). A function u= u(t,x) is called a
pulsating traveling front propagating from right to left with an effective speed c 6= 0, if
u is a classical solution of































∂u

∂t
=

∂

∂x

(

aL(x)
∂u

∂x

)

+fL(x,u), t∈R, x∈R,

∀k∈Z, ∀(t,x) ∈ R×R, u

(

t+
kL

c
,x

)

= u(t,x+kL),

0≤ u(t,x)≤ pL(x),
lim

x→−∞
u(t,x) =0and lim

x→+∞
u(t,x)−pL(x) = 0,

(1.11)

where the above limits hold locally in t.

This definition was given in any space dimension in [1] and [27] whenever the
stationary state pL≡1 and in [5] whenever pL 6≡1.

For each L>0, assuming (1.3) on the diffusion a, (1.5), (1.7), and (1.9) on the
nonlinearity f, the results of [5] yield that there exists c∗L>0 such that pulsating
traveling fronts of (1.11) which propagate with a speed c exist if and only if c≥ c∗L.
The value c∗L is called the minimal speed of propagation. We refer to [2, 3, 8, 9, 10, 11,
15, 18, 19, 13, 20, 21, 22, 23, 26, 31] for further results on the existence and properties
of the minimal speed in the KPP case. We mention that the limit of the minimal
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wave speeds was considered in [18] but there are no results about the homogenized
equation.

In El Smaily, Hamel, Roques [10], the homogenized speed was found by calculating
the limit of c∗L as L→0+. Precisely, Theorem 2.1 in [10] yields that

lim
L→0+

c∗L=2
√
<a>H <µ>A, (1.12)

where

<µ>A =

∫ 1

0

µ(x)dx and <a>H =

(
∫ 1

0

(a(x))−1dx

)−1

= <a−1>−1
A

denote the arithmetic mean of µ and the harmonic mean of a over the interval [0,1].
This result was proved rigorously and it generalized the formal and numerical results
of [16].

Having (1.12), there arise several questions about the homogenized equation of
(1.11) and the nature of the homogeneous limit of the pulsating traveling fronts uL
and the type of convergence of {uL}L as the periodicity parameter L→0+. The main
goal of this work is to answer these questions.

In this paper, some difficulties arise in finding H1
loc(R×R) estimates, independent

of L, for a sequence of pulsating traveling fronts {uL}L and for the corresponding

sequence

{

aL
∂uL
∂x

}

L

. In fact, each pulsating traveling front uL satisfies a sort of

(t,x)-periodicity (see the second line of (1.11)). This fact makes the procedure leading
to the desired estimates indirect. Another difficulty comes from the dependence of the
stationary states pL on the space variable x. This is due to the choice of a wider class
of heterogeneous nonlinearities in the present work. We mention that the situation
becomes simpler if we assume that there is a positive value s0 such that f(x,s0)=0
for any x∈R and that f(x,s)>0 in R×(0,s0). Indeed, this yields that pL≡s0 for
all L>0 (see [4] and [5] for more details). One of the techniques that we use in this
present work appears in Step 3 of the proof of Theorem 2.3. It consists of deriving
the reaction-diffusion equation with respect to the time variable and then getting
estimates on the functions wL :=∂uL/∂t and vL :=aL(x)∂uL/∂x.

2. Main results
Before going further in this section, we recall that the function g defined by

∀s∈R, g(s) :=

∫ 1

0

f(x,s)dx

satisfies g(0)=0. Referring to Definition 1.1, one can rewrite

∀s∈R, g(s)=< ·,s>A . (2.1)

Moreover, (1.9) yields that

g′(0)= lim
s→0+

∫ 1

0

f(x,s)

s
=

∫ 1

0

µ(x)dx >0.

Owing to (1.5) and (1.7), the map s 7→ g(s)
s is decreasing and g(s)≤0 for all s≥M .

As a consequence, we let p0 stand for the only root of g(s) which is strictly positive.
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The following lemma gives several convergence results of the sequence {pL}L>0

of stationary states as L→0+ :

Lemma 2.1 (The homogenized stationary state at +∞). Assume that the diffu-
sion a=a(x) satisfies (1.3) and the nonlinearity f satisfies (1.5) and (1.7) together

with
∫ 1

0
µ(x)dx>0. Let {Ln}n∈N be a sequence of positive real numbers in (0,1)

such that Ln→0+ as n→+∞. Let p0 denote the unique positive zero of the func-
tion g(s) :=<f(·,s)>A (see Definition 1.1 and the explanation above about p0). For
each n∈N, the function pLn

:=pLn
(x) denotes the unique stationary state at +∞ of

the Equation (1.8) with L=Ln. Then

i) The sequence {pLn
}n∈N is bounded in H1

loc(R).

ii) pLn
⇀p0 in H1

loc(R) weak and pLn
→p0 in L2

loc(R) strong as n→+∞.

iii) pLn
→p0 in C0,δ

loc (R) as n→+∞ for all 0≤ δ<1/2.

Remark 2.2. We mention that the assumption (1.6) is not needed in Lemma 2.1.

Concerning the nonlinearity f , we assume that

∫ 1

0

µ(x)dx>0 in order to guarantee

the existence and the uniqueness of the stationary state pL solving (1.8) for each L>0.
The results of Lemma 2.1 hold in the cases where the sign of µ may be positive in
some regions (favorable regions) and negative in others (unfavorable regions) provided

that
∫ 1

0
µ(x)dx>0.

We announce the homogenized equation of (1.11) and some convergence results
of {uL}L>0 as L→0+ in the following theorem.

Theorem 2.3 (Homogenized equation after normalization). Assume that the
diffusion a satisfies (1.3) and the reaction f satisfies (1.5-1.6) and (1.7). Let {Ln}n∈N

be a sequence of positive numbers in (0,1) such that Ln→0+ as n→+∞. For each
n∈N, let (cLn

,uLn
) be the unique pulsating traveling front solving (1.11) for L=Ln,

propagating with the speed cLn
≥ c∗Ln

, and satisfying the normalization

∀0<Ln≤L0,

∫ ∫

(0,1)×(0,1)

uLn
(t,x) dt dx=

p0
2

(2.2)

(a justification of this normalization is given in Step 2 of the proof). Assume that
{cLn

}n∈N converges and call c := lim
n→+∞

cLn
. On the other hand, let u0(t,x)=U0(x+

ct) denote the traveling front propagating from right to left with the speed c, normalized
by

∫ ∫

(0,1)2
u0(t,x) dt dx=

p0
2
, (2.3)

and which is a classical solution of the homogeneous reaction-diffusion equation

∂u0
∂t

=<a>H
∂2u0
∂x2

+g(u0) in R×R, (2.4)

with U0(−∞)=0 and U0(+∞)=p0 in C2
loc(R).Then,

uLn
→u0 as n→+∞ in H1

loc(R×R) weak and in L2
loc(R×R) strong. (2.5)
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The above theorem holds for pulsating traveling fronts with speeds cL∈ [c∗L,+∞).
Physically and biologically, the fronts propagating with a speed c∗L (the minimal
speed) are the most interesting. Due to [10], any sequence

{

c∗Ln

}

n
will converge to

2
√
<a>H

√
<µ>A as Ln→0+. However, for the sake of completeness, we announced

Theorem 2.3 for any sequence cL≥ c∗L provided that the chosen sequence of speeds
converges to c. Here, it is important to recall the existence results of pulsating traveling
fronts in [5] together with the uniqueness results, up to a shift in the time variable,
proved by Hamel and Roques [14]. In this present setting, this reads as: for each
cL≥ c∗L, there exists a pulsating traveling front uL(t,x) :=ϕL(x+cLt,x), and any other
pulsating traveling front with the same speed should have the form uL(t+σ,x) for
some shift σ∈R. Of course, one has to take the dependence of the shifts on L into
consideration. In this context, we have the following remark.

Remark 2.4. In Theorem 2.3, the normalization (2.2) of the sequence {uLn
}n is to

guarantee the existence and uniqueness of the limit u0 in the effective Equation (2.4).
The estimates done in Step 3 of the theorem’s proof do not require the normalization.
For more details, we refer the reader to the proof of the theorem and especially Step
2, which deals with the normalization issue, and Step 4, which is the passage to the
limit. On the other hand, if one picks a sequence of speeds cL→ c> limL→0+ c

∗
L, Step

2 of the proof yields that there will exist a normalized sequence {uLn
}n satisfying

(2.2) and then the convergence result (2.5) will still hold.

The homogenization problem would be very interesting in multi-dimensions. Es-
timates for the multi-dimensional problem in cylindrical type domains could be ob-
tained in a similar approach to the one we use in the proof of Theorem 2.3, but they
are not enough to pass to the limit as L→0+. One needs to get further estimates on
higher order derivatives of the sequence uL. Furthermore, the homogenized speed of
such problems was proved rigorously only in the one-dimensional case in [10]. A first
step to obtain the homogenized equation in higher dimensions is to homogenize the
minimal speeds. This is the subject of a forthcoming paper by the author.

We lastly mention that other homogenization results were found by Caffarelli,
Lee and Mellet [6, 7] in the case of combustion-type nonlinearities.

Remark 2.5. From the above theorem, we can recover the sharp lower bound
of liminf

L→0+
c∗L which was proved in [10]. That sharp lower bound is given by

2
√
<a>H <µ>A, which is the minimal speed of the homogenized Equation (2.4).

3. Proofs of the announced results

Proof of Lemma 2.1. The proof of Lemma 2.1 will be divided into three steps:
Step 1: Convergence to a constant limit p∗. Under the assumptions of

Lemma 2.1 on f , it follows from [4] that for each L>0, the function pL solving the
equation

(aL(x)p
′
L)

′
+fL(x,pL)=0, x∈R (3.1)

is unique, positive, L-periodic, and

∀L>0, ∀x∈R, 0<pL(x)≤M,

where M is the constant appearing in (1.5).
One can directly conclude from above that the sequence {pLn

}n∈N is bounded in
L2
loc(R). Now, we fix L>0, multiply the Equation (3.1) by pL, and then integrate by
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parts over any interval of the form [−kL,kL] where k∈N. Owing to the L-periodicity
of pL, we get

∀L>0, ∀k∈N,

∫ kL

−kL

a
( x

L

)

(p′L)
2
dx=L

∫ k

−k

f(x,pL(Lx))dx. (3.2)

Consider the values of L included in the interval (0,1) and let K be any compact
interval of R. For each L>0, we denote

kL=

[ |K|
2L

]

+1∈N, (3.3)

where |K| stands for the Lebesgue measure of the interval K and [·] stands for the
integer part of a real number. One consequently has |K|≤2kLL≤|K|+2L and K⊆
[−kLL+mL,kLL+mL] for some integer m∈Z depending on K and L.

Owing to the L−periodicity of fL, aL, and pL with respect to x, together with
the assumption (1.3) on the diffusion a, and using (3.2), we obtain

∀k∈N,

∫ kL+mL

−kL+mL

a
( x

L

)

(p′L)
2
dx=

∫ kL

−kL

a
( x

L

)

(p′L)
2
dx=L

∫ k

−k

f(x,pL(Lx))dx.

Consequently, for any compact interval K in R, we have

∀0<L≤1,

∫

K

(p′L)
2
dx≤C(K), (3.4)

where C(K) :=
|K|+2

α1
max

(x,s)∈[0,1]×[0,M ]
|f(x,s)| is a positive constant independent of L

and depending on the size of the compact K. In other words, the sequence {pLn
}n∈N

is bounded in H1(K) for any compact K⊂R and this completes the proof of part i)
of the Lemma.

Furthermore, we can conclude that there exists p∗∈H1
loc(R) such that, up to ex-

traction of a subsequence, pLn
⇀p∗ in H1

loc(R) weak and pLn
→p∗ in L2

loc(R) strong
as n→+∞.
Using Sobolev injections, we have H1(K) is embedded in C0,1/2(K). Thus, the se-
quence {pLn

}n∈N is bounded in C0,1/2(K). Compact embeddings (Schauder’s esti-
mates) yield that one can extract a subsequence, say {pLn

}n without loss of generality,

that converges in C0,δ
loc (R) for each 0≤ δ<1/2. As a subsequence {pLn

}n should also
converge to p∗ in H1

loc(R) weak and pLn
→p∗ in L2

loc(R) strong as n→+∞. Conse-

quently, for each 0≤ δ<1/2 there is a subsequence pLn
→p∗, as n→+∞, in C0,δ

loc (R).
But since each function pLn

is Ln-periodic (with Ln→0+ as n→+∞), it follows from
Arzela-Ascoli theorem that p∗ has to be constant over R.

Step 2: The constant limit p∗ is positive. To achieve this goal, we will com-
pare the stationary states pL with the principal eigenfunctions ΦL of the eigenvalue
problem

L0ΦL :=−(aL(x)Φ
′
L)

′−µL(x)ΦL=ρ1,LΦL in R, (3.5)

which are L-periodic and positive in R.
First, we divide (3.5) by ΦL and then we integrate by parts over [0,L]. It then

follows from the L-periodicity of ΦL and the coefficients of L0 that

∀L>0, − 1

L

∫ L

0

aL

(

Φ′
L

ΦL

)2

−
∫ 1

0

µ(x)dx=ρ1,L.
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Hence,

∀L>0, ρ1,L≤ρ1 :=−
∫ 1

0

µ(x)dx<0. (3.6)

Next, due to the uniqueness up to multiplication by a nonzero constant of ΦL, we can
assume that ||ΦL||∞=1 for every L∈R. Since the function f(x,s) is 1-periodic in x
and of class C1 on R×R

+, one can then find ε0>0 such that

∀0≤s≤ ε0,∀x∈R, f(x,s)−µ(x)s≥ ρ1
2
s. (3.7)

Having 0<ε0ΦL≤ ε0, we get from (3.6) and (3.7) that

−(aLε0Φ
′
L)

′−f( xL ,ε0ΦL) =ρ1,Lε0ΦL+ε0µL(x)ΦL−f( xL ,ε0ΦL)

≤ρ1ε0ΦL− ρ1

2 ε0ΦL

= ρ1

2 ε0ΦL <0 in R,

(3.8)

for all L>0.
Let us now fix any L>0 and, for simplicity, denote

ψL := ε0ΦL.

We recall that the functions pL and ψL= ε0ΦL are both positive and L-periodic.
Hence, we can define

γ∗ := sup{γ >0, pL>γψL}≥0.

Assume to the contrary that γ∗<1. From the assumption (1.7), we have f(x,γ∗ψL)>
γ∗f(x,ψL) for all x∈R. Referring to (3.8), the following inequality then holds

−(aLγ
∗ψ′

L)
′−f

( x

L
,γ∗ψL

)

<0 in R. (3.9)

Set z :=pL−γ∗ψL. Then z≥0, and there exists a sequence xn∈R such that z(xn)→
0 as n→+∞ (by definition of γ∗). Owing to the periodicity of z, one can then
assume that xn∈ [0,L]. Hence, up to extraction of some subsequence, xn→x∈ [0,L].
From continuity, z(x)=0. Besides, it follows from (3.1) and (3.9) that there exists a
continuous function b= b(x) such that the nonnegative function z satisfies

(aLz
′)′+b(x)z<0 in R.

The strong maximum principle implies that z≡0; and hence, pL≡γ∗ψL. This con-
tradicts with (3.9). Consequently, the assumption that γ∗<1 is false; and thus,
pL≥γ∗ψL≥ψL= ε0ΦL in R. One then concludes that

∀L>0, max
x∈R

pL(x)= max
x∈[0,L]

pL(x)≥ ε0||ΦL||∞= ε0.

On the other hand, the constant limit p∗ to which the Ln-periodic functions pLn

converge uniformly on every compact subset of R as n→+∞ (Ln→0+) satisfies
p∗≥ liminfn→+∞maxx∈RpLn

(x). Therefore, p∗≥ ε0>0.

Step 3: The constant limit p∗ is equal to p0. For each L>0, we call

qL(x)=aL(x)p
′
L(x), x∈R.
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Equation (3.1) can be rewritten as

∀L>0, q′L+f
( x

L
,pL

)

=0 in R. (3.10)

Consider any compact interval K of R and, for each L, let kL>0 be the integer defined
at (3.3). From Equation (3.10) one has

∀0<L<1,

∫ kLL

−kLL

(q′n)
2=L

∫ kL

−kL

f2(x,pL(Lx))dx.

Also, we have 0<pL≤M for all L>0, where M is the constant appearing in
(1.5). Thus, for each compact interval K of R, there exists a constant C1(K) :=
(|K|+2)max[0,1]×[0,M ] |f2(x,s)|, which depends only on K, such that

∀0<L<1,

∫

K

(q′L)
2(x)dx≤ C1(K). (3.11)

Having {Ln}n as a sequence of positive numbers in (0,1) such that Ln→0+ as n→
+∞, we write pn=pLn

and qn= qLn
. The assumption (1.3) together with (3.4) yield

that {qn}n is bounded in L2(K). Finally, the sequence is {qn}n is bounded in H1
loc(R).

Arguing as in Step 1, we can conclude that there exists a constant q0 such that qn⇀q0
in H1

loc(R) weak, qn→ q0 in L2
loc(R) strong, and qn→ q0 in C0,δ

loc (R) for all 0≤ δ<1/2.
However, f( x

Ln
,pn)→g(p∗) in L∞(R) weak-∗ as n→+∞. Passing to the limit as

n→+∞ in Equation (3.10) (where L=Ln) implies that g(p∗)=0. Referring to the
properties of the function g which are mentioned at the beginning of Section 3 and
owing to the positivity of the constant p∗, we conclude that p∗=p0. Eventually, this
completes the proof of Lemma 2.1. 2

Proof of Theorem 2.3. This proof will be done in four steps.

Step 1: Recalling the lower bound for the speeds which proves that
c>0. From the results of [5], each pulsating traveling front uLn

exists if and only if
cLn

≥ c∗Ln
. Moreover, for each L>0, the minimal speed c∗L is positive and, from [5]

(see also [3] in the case when p≡1), it is given by the variational formula

c∗L=min
λ>0

k(λ,L)

λ
=
k(λ∗L,L)

λ∗L
, (3.12)

where λ∗L>0 and k(λ,L) (for each λ∈R and L>0) denotes the principal eigenvalue
of the problem

(

aLφ
′
λ,L

)′
+2λaLφ

′
λ,L+λa

′
Lφλ,L+λ

2aLφλ,L+µLφλ,L=k(λ,L)φλ,L in R, (3.13)

with L-periodicity conditions. In (3.13), φλ,L denotes a principal eigenfunction, which
is of class C2,α(R), positive, L-periodic and unique up to multiplication by a positive
constant. In Section 3 of [10], the author proved with Hamel and Roques that the
minimal speeds c∗Ln

satisfy

c := lim
n→+∞

cLn
≥ liminf

n→+∞
c∗Ln

≥2
√
α1<µ>A>0.

This gives a sharp lower bound for the sequence {c∗Ln
}.
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Step 2: Normalization of uL and recalling standard change of variables.
For any L>0, consider a speed cL≥ c∗L and let WL(t,x) be an arbitrarily chosen
pulsating traveling front for (1.11) propagating with speed cL. We know from Hamel,
Roques [14] that the family of pulsating traveling fronts with a speed cL is then of
the form {WL,σ}σ∈R, where

WL,σ(t,x)=WL(t+σ,x), (t,x)∈R
2.

This is the uniqueness up to a shift in the time variable of traveling fronts with
the same speed cL. We want to pick one front of this family and use it in the
homogenization procedure. Once the appropriate normalization is picked, we will
drop the index σ and continue the proof with the notation uL (or ϕL) for our front.
We start by recalling the standard change of variables

∀L>0,∀σ∈R, WL,σ(t,x) :=ϕL,σ(x+cLt,x)=ϕL,σ(s,x), (t,x)∈R×R.

The (t,x)−periodicity (or the definition of the speed)

WL,σ

(

t,x+
kL

cL

)

=WL(t,x+k), for all k∈Z,

came, in [5] for example, by the construction of ϕL,σ (for any shift σ∈R) which is
L−periodic with respect to the spatial variable x and solves the equation

∂x(aL∂xϕL,σ)+aL∂ssϕL,σ+∂x(aL∂sϕL,σ)+∂s(aL∂xϕL,σ)−cL∂sϕL+fL(x,ϕL)=0,
(3.14)

for all (s,x)∈R×R. This is (1.11) in terms of the new function ϕσ,L. Furthermore,
one has ϕL,σ(s,x)→0 as s→−∞ and ϕL,σ(s,x)→p(x) as s→+∞ in C2(R) (in fact,
this follows mainly from the standard elliptic estimates and from the periodicity of
ϕL,σ with respect to x). As a consequence, it was proved in [5] that

∀L>0, σ∈R, lim
t→−∞

WL,σ(t,x)=0 and lim
t→+∞

WL,σ(t,x)=p(x) in C
2
loc(R).

Then, the (t,x)−periodicity of the functions WL,σ leads to the limiting conditions
limx→−∞WL,σ(t,x)=0 and limx→+∞WL,σ(t,x)=p(x) locally in t.

Now, we define the function

∀L>0, IL(σ)=

∫

(0,1)2
WL(t+σ,x)dtdx,

which is continuous over R. We recall that for each L>0, the function WL is in-
creasing in the first variable (time), hence IL is increasing in σ∈R. Also, IL satisfies
limσ→−∞ IL(σ)=0 and

lim
σ→+∞

IL(σ)=

∫ 1

0

pL(x)dx≥min
x∈R

pL(x)>
p0
2
>0 for all 0<L≤L0,

for some L0 small enough which exists by the L-periodicity of pL and the uniform
convergence of pL to p0 as L→0+. It is important here to notice that L0 is determined
only by the uniform convergence of the stationary states pL(x) to p0 which is the
unique positive root of g. The stationary state pL is the same, even if one considers
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different shifts in the time variable of the function uL(t,x) (see [5] for more details).
Now, we use the continuity and monotonicity of IL with respect to σ to conclude that

∀0<L≤L0,∃ unique σL∈R,

∫ ∫

(0,1)×(0,1)

WL(t+σL,x) dt dx=
p0
2
. (3.15)

Conclusion. For each 0<L≤L0, given a speed cL≥ c∗L, one can then denote by

uL(t,x) :=WL(t+σL,x) (3.16)

(σ=σL) the unique pulsating traveling front solving (1.11) and propagating with a
speed cL≥ c∗L that satisfies the normalization

∀0<L≤L0,

∫ ∫

(0,1)×(0,1)

uL(t,x) dt dx=
p0
2
. (3.17)

In the same context (σ=σL), we set the corresponding ϕL as

uL(t,x) :=ϕL(x+ct,x)=ϕ(s,x), (3.18)

which, from (3.14), satisfies the equation

∂x(aL∂xϕL)+aL∂ssϕL+∂x(aL∂sϕL)+∂s(aL∂xϕL)−cL∂sϕL+fL(x,ϕL)=0, (3.19)

for all (s,x)∈R×R.

Step 3: Boundedness of {uLn
}n and {aLn

∂xuLn
}n in H1

loc(R×R). To sim-
plify notations, we drop the n and consider the family {(cL,uL)}0<L<1 of pulsat-
ing traveling fronts solving (1.11), satisfying the normalization (3.17) and such that
0<c≤ cL≤ c for all 0<L<1, where c and c are two positive constants. We mention
that, for the sequence {(cLn

,uLn
)}n∈N which we consider in Theorem 2.3, we have

c=2
√
α1<µ>A (see Step 1) and c=supn∈N cLn

.
Since ϕL(−∞,x)=0 and ϕL(+∞,x)=p(x) in C2(R) (for each L>0), it follows

then that ∇s,xϕL(−∞,x)=0, ∂xϕL(+∞,x)=p′L(x), and ∂sϕL(+∞,x)=0 uniformly
in x∈R. Integrating (3.19) by parts over R× [−kL,kL] (where L>0 and k∈N) and
using the L−periodicity of ϕL with respect to x, we then get

∫ ∫

R×(−kL,kL)

f
( x

L
,ϕL(s,x)

)

dsdx= cL

∫ kL

−kL

pL(x)dx−
∫ kL

−kL

aLp
′
L(x)dx,

or equivalently

∫ ∫

R×(−kL,kL)

f
( x

L
,uL(t,x)

)

dtdx=

∫ kL

−kL

pL(x)dx−
1

cL

∫ kL

−kL

aLp
′
L(x)dx. (3.20)

As in the proof of Lemma 2.1, we take any compact interval K⊂R and we define
kL∈N as in (3.3). We apply (3.20) for k=kL. Having 0<uL(t,x)<pL≤M for all
(t,x)∈R×R and owing to (1.3), (1.6), and (3.4), one then gets

0<

∫ ∫

R×K

f
( x

L
,uL(t,x)

)

dtdx≤C2(K) (3.21)



1124 HOMOGENIZED EQUATION-PULSATING TRAVELING FRONTS

for all 0<L<1, where

C2(K) :=M(|K|+2)+
α2

c

√

C(K)
√

|K|+2

is a constant independent of L.
Multiplying (3.19) by ϕL and integrating by parts over R×(−kL,kL), we obtain

cL
2

∫ kL

−kL

p2L(x)dx =−
∫ ∫

R×(−kL,kL)

[

aL

(

∂ϕL

∂x

)2

+aL

(

∂ϕL

∂s

)2

+2aL
∂ϕL

∂x

∂ϕL

∂s

]

dsdx

+

∫ kL

−kL

aLp
′
LpLdx+

∫ ∫

R×(−kL,kL)

f(
x

L
,ϕL(s,x))ϕL

=−
∫ ∫

R×(−kL,kL)

aL

(

∂uL
∂x

)2

dtdx+

∫ kL

−kL

aLp
′
LpLdx

+

∫ ∫

R×(−kL,kL)

f(
x

L
,uL(t,x))uLdtdx.

(3.22)
Notice that the last integral in (3.22) converges because of (3.21) and 0≤
f(x/L,uL)uL≤Mf(x/L,uL) in R×R. Moreover,

∀L>0,

∣

∣

∣

∣

∣

∫ kL

−kL

aLp
′
LpLdx

∣

∣

∣

∣

∣

≤α2M(2kL)1/2

(

∫ kL

−kL

p′L
2

)1/2

.

Consequently,

∫ ∫

R×K

(

∂uL
∂x

)2

dtdx≤C3(K), (3.23)

where C3(K) := 1
α1

[

MC2(K)+α2M(2+ |K|)1/2
√

C(K)
]

is independent of L.

Now, we multiply (3.19) by ∂sϕL and we integrate by parts over R×(−kL,kL).
We notice that, from the L−periodicity with respect to x of the function ϕL and its
derivatives together with the limits of ∂sϕL and ∂xϕL as s→±∞, we have

∫ ∫

R×(−kL,kL)

∂x(aL∂xϕL)∂sϕL=−1

2

∫ ∫

R×(−kL,kL)

∂s(aL(∂xϕL)
2)=−1

2

∫ kL

−kL

aLp
′2

Ldx,

while
∫ ∫

R×(−kL,kL)

∂sϕL∂x(aL∂sϕL)+∂sϕL∂s(aL∂xϕL)=0.

Thus,

cL

∫ ∫

R×(−kL,kL)

(

∂ϕL

∂s

)2

=−1

2

∫ kL

−kL

aLp
′2

Ldx+

∫ kL

−kL

F (
x

L
,pL(x))dx,
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where F (y,s)=
∫ s

0
f(y,τ)dτ. Hence,

∫ ∫

R×(−kL,kL)

(

∂uL
∂t

)2

dtdx≤ cL
∫ kL

−kL

F (
x

L
,pL(x))dx≤ c

∫ kL

−kL

F (
x

L
,pL(x))dx. (3.24)

Consequently, for all 0<L<1,

∫ ∫

R×K

(

∂uL
∂t

)2

dtdx≤
∫ ∫

R×(−kLL,kLL)

(

∂uL
∂t

)2

dtdx≤C4(K), (3.25)

where C4(K) := c(2+ |K|)max(x,s)∈R×[0,M ]F (x,s) is a positive constant which is inde-
pendent of L and depending only on the compact K.

Denote

vL(t,x)=aL(x)
∂uL
∂x

(t,x) and wL(t,x)=
∂uL
∂t

(t,x) in R×R.

As already underlined, it follows from [5] ( and [1] in the case pL≡1) that wL= ∂uL

∂t >0
in R×R for each L>0. We shall now establish some estimates (independent of L)
for the functions vL and wL, in order to pass to the limit as L→0+.

We first recall that for each L>0, ϕL→pL(x) in C2(R) as s→+∞ and ϕL→0
in C2(R) as s→−∞ (this was proved by construction of pulsating traveling fronts
in [5] for example). Now, using the relation between uL and ϕL, one concludes that
for each L>0, uL(−∞,x)=0 and uL(+∞,x)=pL(x) locally in x, and wL(±∞,x)=0
locally in x. On the other hand, (3.25) yields that for each compact K and for each L,
||wL||L2(R×K)≤

√

C(K). Now, we differentiate (3.19) with respect to t (actually, from
the regularity of f , the function wL is of class C2 with respect to x). There holds

∂wL

∂t
=

∂

∂x

(

aL(x)
∂wL

∂x

)

+f ′u

( x

L
,uL

)

wL in R×R.

Multiply the above equation by wL and integrate by parts over R×(−kL,kL). From
(1.3), (3.24), and the fact that 0<uL≤M, it follows that

∫ ∫

R×(−kL,kL)

(

∂wL

∂x

)2

dtdx≤ 2kLηcL
α1

,

where η is the positive constant defined by

η= max
(x,u)∈R×[0,M ]

|f ′u(x,u)|max
x∈R

|F (x,M)|≥ 1

2kL

∫ ∫

R×(−kL,kL)

f ′u(
x

L
,uL)w

2
L dt dx>0.

Then, for each compact K⊂R, there exists a constant C ′(K)>0 depending only on
K such that

∀ 0<L<1,

∫ ∫

R×K

(

∂wL

∂x

)2

dt dx≤C ′(K). (3.26)

We pass now to the family {vL}L. Actually, vL=aL
∂uL

∂x and 0<α1≤aL≤α2 for each
L>0. Thus, (3.23) yields that for each compact interval K of R and for each 0<L<1,

||vL||L2(R×K)≤α2

√

C3(K). Furthermore, (1.11) implies that

∀L>0,
∂vL
∂x

=
∂uL
∂t

−f
( x

L
,uL

)

in R×R,
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while 0≤f(x/L,uL(t,x))≤κ in R×R where κ=maxR×[0,M ]f(x,u)>0 is independent
of L. Together with (3.25), one concludes that any family {∂vL/∂x}0<L<1 is bounded
in L2

loc(R×R) by a constant independent of L. On the other hand,

∀L>0,
∂vL
∂t

=aL
∂2uL
∂t∂x

=aL
∂wL

∂x
in R×R.

Owing to (1.3) and (3.26), any family
{

∂vL

∂t

}

0<L<1
is bounded in L2

loc(R×R).

Step 4: Passage to the limit as n→+∞ (L→0+). In this step, we consider
the sequence {Ln}n∈N of Theorem 2.3 which is in (0,1) and which tends to 0 as
n→+∞. As a consequence of the previous step, {vLn

}n∈N is bounded in H1
loc(R×R).

The estimates (3.23) and (3.25) imply that the sequence {uLn
}n∈N is bounded in

H1
loc(R×R). Thus, there exist u0 and v0 in H1

loc(R×R) such that, up to extraction
of a subsequence, uLn

→u0, vLn
→v0 strongly in L2

loc(R×R) and almost everywhere
in R×R,

(

∂uLn

∂t
,
∂uLn

∂x

)

⇀

(

∂u0
∂t

,
∂u0
∂x

)

weakly in L2
loc(R×R),

and
(

∂vLn

∂t
,
∂vLn

∂x

)

⇀

(

∂v0
∂t

,
∂v0
∂x

)

weakly in L2
loc(R×R)

as n→+∞. However, a−1
Ln
⇀<a−1>A=<a>

−1
H in L∞(R) weak-∗ as n→+∞. Thus,

∂uLn

∂x
=
vLn

aLn

⇀
v0

<a>H
weakly in L2

loc(R×R) as n→+∞.

By uniqueness of the limit, one gets v0=<a>H
∂u0

∂x . On the other hand, f( x
Ln
,uLn

)→
g(u0) in L∞(R×R) weak-∗ as n→+∞. Passing to the limit as n→+∞ in the first
equation of (1.11) with L=Ln implies that u0 is a weak solution of the equation

∂u0
∂t

=
∂v0
∂x

+g(u0)=<a>H
∂2u0
∂x2

+g(u0) in D′(R×R).

From parabolic regularity, the function u0 is then a classical solution of the homoge-
neous equation

∂u0
∂t

=<a>H
∂2u0
∂x2

+ g(u0) in R×R,

such that 0≤u0≤p0 and ∂u0

∂t ≥0 in R×R. Lastly, it follows directly from the nor-
malization (3.17) that

∫ ∫

(0,1)2
u0(t,x) dt dx=

p0
2
. (3.27)

On the other hand, it follows from the second equation of (1.11) that

∀γ∈R, u0(t+
γ

c
,x)=u0(t,x+γ) in R×R,
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where c=limn→+∞ cLn
>0. In other words, u0(t,x)=U0(x+ct), where U0 is a classi-

cal solution of the equation

cU ′
0=<a>H U

′′
0 +<µ>A g(U0) in R, (3.28)

that satisfies U ′
0≥0 in R, 0≤U0(s)≤p0 for all s∈R.

Standard elliptic estimates on (3.28) imply that U0 converges as s→±∞ in C2
loc(R)

to two constants U±
0 ∈ [0,p0] such that g(U±

0 )=0.
Thanks to the normalization (3.27), u0(t,x)=U0(x+ct) satisfies the normalization

∫ 1

0

(
∫ cs+1

cs

U0(τ)dτ

)

ds=
p0
2
. (3.29)

The monotonicity of U0 and the nature of the function g imply that U−
0 =0 and

U+
0 =p0. Together with the normalization (3.29), one concludes that U0 is the unique

traveling front for the homogenized Equation (3.28) with a speed c and limiting
conditions 0 and p0 at infinity. We mention that, since the minimal speed for the
problem (3.28) is equal to 2

√

<a>H g′(0)=2
√
<a>H<µ>A, one can review that

c≥2
√
<a>H<µ>A, which was proved by other tools in [10]. Eventually, the proof

of Theorem 2.3 is complete. 2
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