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RANDOM ATTRACTOR FOR A STOCHASTIC
HYDRODYNAMICAL EQUATION IN HEISENBERG
PARAMAGNET ON AN UNBOUNDED DOMAIN∗

Y. F. GUO† , B. L. GUO‡ , D. L. LI§ , AND C. X. GUO¶

Abstract. In this paper, the asymptotic behavior of the stochastic hydrodynamical equation
in the Heisenberg paramagnet on the entire two-dimensional space is studied. The asymptotic com-
pactness of the stochastic dynamical system is proved by using the uniform a priori estimates for
the far-field values of the solution. The existence of a random attractor is established for the corre-
sponding stochastic dynamical system, and the regularity of the random attractor is obtained, which
implies the asymptotic smoothing effect of the equation in a probability sense.
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1. Introduction
In this paper, we consider the following stochastic hydrodynamical equation

emerging from the Heisenberg paramagnet with additive noise defined in the entire
space R2:

du+(λu−∆u−u×∆u)dt=

m∑
i=1

φi(x)dwi(t), x∈R2, (1.1)

where λ is a positive constant, φi(x)(i= 1,2, ·· · ,m) are given smooth functions defined
on R2, and {wi}mi=1 are independent two-sided real-valued Wiener processes on a
probability space which will be specified later. In this equation, u= (u1,u2,u3) is the
unknown denoting the spin density and × denotes the cross product for vectors in R3.
In physics, this equation describes the hydrodynamics of the Heisenberg paramagnet
in the long wavelength-low frequency limit when random spatio-temporal forcing is
taken into account [12].

In the deterministic case, the authors in [7] studied the equation and obtained
the existence and uniqueness of smooth solutions for this equation. This equation is
very similar to the Landau-Lifshitz equation [7, 12], which plays an important role
in understanding the dynamics of the ferromagnetism in materials, when the tem-
perature is below a critical temperature known as the Curie temperature. One can
refer to [10] for a thorough introduction. It is well known that stochastic differential
equations play an important role in understanding nonlinear phenomena. Indeed the
deterministic model usually neglects the impact of many small perturbations, but

∗Received: December 28, 2010; accepted (in revised version): March 27, 2011. Communicated by
Jack Xin.
†Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing, 100088,

China Department of Information and Computation of Science, Guangxi University of Technology,
Guangxi, 545006, China (guoyan feng@yahoo.com.cn; guoyan feng@163.com).
‡Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing, 100088,

China (gbl@iapcm.ac.cn).
§Department of Information and Computation of Science, Guangxi University of Technology,

Guangxi, 545006, China (lidl@21cn.com).
¶Department of Mathematics, China University of Mining and Technology Beijing, Beijing,

100083, China (guochunxiao1983@sina.com).

1097
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stochastic equations can conform to physical phenomena better. Recently these prob-
lems were intensively investigated by many mathematicians due to the importance
of the stochastic equations from the view point of mathematical physics. For exam-
ple, the stochastic Navier-Stokes equations, KdV, Schrödinger and Burgers’ equations
are studied [3, 4, 5, 13]. In particular, the existence of global smooth solutions was
obtained for (1.1) with additive noise on a bounded domain [8].

In order to capture the essential dynamics of stochastic dynamical system, the
concept of a random attractor was introduced in [5, 6] as the extension to stochastic
systems of the theory of attractors for deterministic equations founded in [16, 15].
The random attractor is a compact invariant set depending on chance and moving
with time, attracting any orbit starting from −∞. The existence of the random
attractor has been studied for stochastic PDEs on bounded domain [5, 6]. For (1.1),
the existence of the random attractor has been studied in [9] on bounded subdomains
of R2. But the existence of the random attractor has not been studied in the entire
space R2 for (1.1).

We know that it is more difficult to prove the existence of random attractors for
stochastic PDEs than to prove the existence of attractors for deterministic PDEs on
unbounded domains because Sobolev embeddings are no longer compact, and so the
compactness of solutions cannot be obtained by the standard method. In the case of
stochastic PDEs, in order to overcome this difficulty in unbounded domains we provide
the uniform estimates on the far-field values of solutions. This idea was developed in
[17] to prove the asymptotic compactness for the deterministic version. By extending
the method of using the tail estimates to the case of stochastic dissipative PDEs,
some authors have proved the existence of the random attractor on an unbounded
domain [1, 18]. In this paper we use this method to prove the existence of the random
attractor in the entire space R2 for (1.1). It is difficult to control the estimates which
are produced by the nonlinear term. In order to overcome this difficulty we will use the
ergodic property in the process of uniform estimates. The asymptotic compactness of
the stochastic dynamical system is proved by using the uniform a priori estimates for
the far-field values of solutions via a truncation function.

This paper is organized as follows. In the next section, we recall some fundamental
concepts of random attractors for stochastic dynamical systems. In Section 3, we
transform (1.1) into a continuous stochastic dynamical system. Section 4 is devoted
to the uniform estimates of solutions. These estimates are necessary for proving the
existence of bounded absorbing sets and the asymptotic compactness of the solution
for (1.1). In the last section, we establish the asymptotic compactness of the solution
operator by giving uniform estimates on the tail of solutions and then prove the
existence of the random attractor.

We denote by ‖·‖ and (·,·) the norm and the inner product in H=L2(R2) respec-
tively, and we use ‖·‖Lp to denote the norm in Lp(R2). Hk(R2), k∈Z+ are the usual
Sobolev spaces. Moreover, the norm of a general Banach space X is written as ‖·‖X .
The letters c and ci (i= 1,2, ·· ·) are generic positive constants which may change their
values from line to line or even in the same line.

2. Preliminaries

We recall some basic concepts related to random attractors for stochastic dynam-
ical systems. For additional details, the reader is referred to [5, 6]. Let (X,‖·‖X)
be a separable Hilbert space with Borel σ-algebra B(X) endowed with the dis-
tance d, and let (Ω,F ,P) be a probability space. We also denote the mappings
S(t,s;ω) :X→X,−∞<s≤ t<∞ with explicit dependence on ω. In most applica-
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tions there exists a group θt, t∈R, of measure preserving transformations of (Ω,F ,P)
with the property that for all s<t and x∈X we have

S(t,s;ω)x=S(t−s,0;θsω)x, P −a.e.

In applications to stochastic evolution equations driven by white noise, ω(t) is
the two-sided Wiener space C0(R;X) of continuous functions with values in a Banach
space X, equal to 0 at t= 0. In this case θt is defined as

(θtω)(s) =ω(t+s)−ω(t), s,t∈R.

Definition 2.1. Let t∈R and ω∈Ω. A stochastic dynamical system with time t
on a complete and separable metric space (X,d) with Borel σ-algebra B over {θt} on
(Ω,F ,P) is a measurable map

S(t,s;ω) :X→X, −∞<s≤ t<∞

such that S(s,s;ω)x=x and S(t,s;ω)x=S(t,r;ω)S(r,s;ω)x for all s≤ r≤ t∈R and
for all x∈X, ω∈Ω.

Definition 2.2. Given t∈R and ω∈Ω, K(t,ω)⊂X is called an attracting set if for
all bounded sets B⊂X,

d(S(t,s;ω)B,K(t,ω))→0, s→−∞,

where d(A,B) is the semidistance defined by

d(A,B) = sup
x∈A

inf
y∈B

d(x,y).

Definition 2.3. A family A(ω) (ω∈Ω) of the closed subsets of X is measurable, if
for all x∈X, the mapping ω 7→d(A(ω),x) is measurable.

Definition 2.4. Define the random omega limit set of a bounded set B⊂X at time
t as

A(B,t;ω) =
⋂
T<t

⋃
s<T

S(t,s;ω)B.

Definition 2.5. Let S(t,s;ω)t≥s,ω∈Ω be a stochastic dynamical system, and let A(ω)
be a stochastic set such that

(1) A(ω) is the minimal closed set such that for t∈R, B⊂X,

d(S(t,s;ω)B,A(ω))→0, s→−∞,

here we call A(ω) the attractor of B (B is a deterministic set);

(2) A(ω) is the largest compact measurable set, which is invariant in sense that

S(t,s;ω)A(θsω) =A(θtω), s≤ t.

Then A(ω) is said to be the random attractor.
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Theorem 2.6. ([5, 6]) Let S(t,s;ω)t≥s,ω∈Ω be a stochastic dynamical system satis-
fying the following conditions:

(i) S(t,r;ω)S(r,s;ω)x=S(t,s;ω)x for all s≤ r≤ t and x∈X,

(ii) S(t,s;ω) is continuous in X, for all s≤ t,
(iii) for all s<t and x∈X, the mapping ω 7→S(t,s;ω)x is measurable from

(Ω,F ,P) to (X,B(X)),

(iv) for all t∈R, x∈X and P -a.e. ω, the mapping s 7→S(t,s;ω)x is right contin-
uous at any point.

Assume that there exists a group θt, t∈R of measure preserving mappings such
that

S(t,s;ω)x=S(t−s,0;θsω)x, P −a.e.

holds and for P -a.e. there exists a compact attracting set K(ω) at time 0. For P -a.e.
ω∈Ω, we set Λ(ω) =

⋃
B⊂XA(B,ω), where the union is taken over all the bounded

subsets of X and A(B,ω) is given by

A(B,0;ω) =
⋂
T<0

⋃
s<T

S(0,s;ω)B.

Then Λ(ω) is the random attractor.

3. The hydrodynamical equations with additive noise
In the entire space R2 there is a continuous stochastic dynamical system

(S(t,s;ω);H1(R2)) generated by the stochastic hydrodynamical equation defined with
additive noise:

du+(λu−∆u−u×∆u)dt=

m∑
i=1

φi(x)dwi(t), x∈R2, (3.1)

with the initial condition

u(x,s) =us(x), (3.2)

where λ is a positive constant, φi(x)(i= 1,2, ·· · ,m) are given smooth functions de-
fined on R2, and {wi}mi=1 are independent two-sided real-valued Wiener processes on
a probability space (Ω,F ,P;θt). For the deterministic case, it is obvious that there is
a dynamical system (S(t),H1(R2)); see [7, 10]. For the stochastic equation, there is a
continuous stochastic dynamical system (S(t,s;ω);H1(R2)) generated by the stochas-
tic hydrodynamical equation defined with additive noise; see [8, 9, 11, 14]. Now we
need to convert the stochastic equation with a random additive term into a determin-
istic equation with a random parameter.

Let α>0 be given; we shall impose a condition on α below. Given i= 1,. ..,m,
let zi be the stationary (ergodic) solution of the one-dimensional Ornstein-Uhlenbech
equation

dzi+αzidt=dwi(t); (3.3)

so that

zi(t) =

∫ t

−∞
e−α(t−s)dwi(s).
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Putting z(t) =
∑m
i=1φi(x)zi(t) we have

dz+αzdt=

m∑
i=1

φi(x)dwi(t). (3.4)

Then the trajectories of zi are P -a.e. continuous. Let φi(x)∈H3(R2). We know that
for all ε>0 one can choose α>0 such that

E|z1(0)|2≤ε. (3.5)

This is possible since 0≤E|z1(0)|2 = Var(z1(0)), and Var(z1(0))→0 as α→∞; see [7].
From (3.5) and the ergodic theorem we obtain

lim
s→−∞

−1

s

∫ 0

s

m∑
i=1

|zi(t)|2dt=mE|z1(0)|2→0 P -a.e. (3.6)

as α→∞. In addition, for P -a.e. ω∈Ω, we have that

m∑
i=1

(|zi(t)|2 + |zi(t)|p) (3.7)

grows at most polynomially as t→−∞, where p≥2.
Let u(t) =v(t)+z(t). We have

dv

dt
+λv−∆v= ∆z+(α−λ)z+(v+z)×∆(v+z), (3.8)

with initial condition

vs(x) =us(x)−z(s). (3.9)

We now consider the properties of (3.8)-(3.9).

4. Uniform estimates of solutions
In this section we consider the uniform estimates of solutions for (3.8)-(3.9) to

derive uniform estimates on the solution of (3.1)-(3.2) defined on R2 at t= 0, for the
purpose of proving the existence of a bounded random absorbing set and the asymp-
totic compactness of the stochastic dynamical system associated with the equation.
In particular, we will show that the tails of the solution, i.e., solutions evaluated at
large values of |x|, are uniformly small when t→0−. Now we consider the equation

dv+(λv−∆v)dt= ∆zdt+(α−λ)zdt+((v+z)×∆(v+z))dt. (4.1)

Lemma 4.1. Let φi(x)∈H3(R2), and v(t) be the solution of (3.8)-(3.9). For any given
η>0 and us∈H satisfying ‖us‖≤η, there exist random radii r0(ω),r1(ω),r2(ω),r3(ω)
and s1(ω)≤−1, such that for all s≤s1(ω) the following inequalities hold P -a.e.:

‖v(t)‖2≤ r0(ω), ‖u(t)‖2≤ r1(ω), t∈ [−1,0],∫ 0

−1

‖∇v(t)‖2dt≤ r2(ω),∫ 0

−1

‖∇v(t)+∇z(t)‖2dt≤ r3(ω).
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Proof. Taking the inner product of Equation (3.8) with v in H, we can obtain

1

2

d

dt
‖v‖2 +λ‖v‖2 +‖∇v‖2 = (∆z,v)+((α−λ)z,v)+((v+z)×∆(v+z),v)

= (∆z+(α−λ)z,v)+(z×∆v,v)+(z×∆z,v), (4.2)

because (a×b) ·a= (a×b) ·b= 0 for any a,b,c∈R3. Moreover Young’s inequality im-
plies that

|(∆z+(α−λ)z,v)|≤ λ
8
‖v‖2 +c(‖∆z‖2 +‖z‖2)≤ λ

8
‖v‖2 +c1‖z‖2H2 .

For the third term on the right hand side of (4.2), we have the estimate

|(z×∆z,v)|≤‖v‖‖z×∆z‖≤ λ
8
‖v‖2 +c‖z‖2L∞‖∆z‖2≤

λ

8
‖v‖2 +c2‖z‖4H2 ,

where the last inequality is due to the Sobolev embedding theorem H2(R2) ↪→L∞(R2).
We let ‖∇v‖L∞ ≤ b‖v‖H3 , where b is a positive constant. For the second term we

have the estimate

|(z×∆v,v)|= |(∇z×∇v,v)|≤
∫
R2

|v||∇v||∇z|dx≤‖v‖‖∇v‖‖∇z‖L∞

≤ 1

4
‖∇v‖2 +‖∇z‖2L∞‖v‖2≤

1

4
‖∇v‖2 +b2‖z‖2H3‖v‖2.

By using the above estimates we can obtain the inequality

d

dt
‖v‖2 +(λ−2b2‖z‖2H3)‖v‖2 +

λ

2
‖v‖2 +‖∇v‖2≤ c4(‖z‖2H2 +‖z‖4H2).

We let G(t) = c4(‖z‖2H2 +‖z‖4H2)≤ c
∑m
k=1(|zk|2 + |zk|4), which grows at most poly-

nomially as t→−∞ P -a.e., since
∑m
k=1(|zk|2 + |zk|4) grows at most polynomially as

t→−∞ P -a.e. [7]. Then we have

d

dt
‖v‖2 +(λ−2b2‖z‖2H3)‖v‖2 +

λ

2
‖v‖2 +‖∇v‖2≤G(t). (4.3)

By Gronwall’s inequality for s≤−1 and t∈ [−1,0], we have

‖v(t)‖2

≤e−
∫ t
s

(λ−2b2‖z(σ)‖2
H3 )dσ‖v(s)‖2 +

∫ t

s

e−
∫ t
τ

(λ−2b2‖z(σ)‖2
H3 )dσG(τ)dτ

≤eλe−s(−λ− 2b2

s

∫ 0
s
‖z(σ)‖2

H3dσ)‖v(s)‖2 +eλ
∫ 0

s

e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)G(τ)dτ.

(4.4)

From the ergodic theorem in [5], the process ‖z‖2H3 is stationary and ergodic, thus
there exist s0(ω) such that for any s<s0(ω), we have

−λ− 2b2

s

∫ 0

s

‖z(σ)‖2H3dσ≤−λ−
2b2

s

∫ 0

s

m∑
k=1

|zk(σ)|2dσ≤−λ+
λ

2
=
−λ
2
.
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Therefore we see that

e−
∫ t
s

(λ−2b2‖z(σ)‖2
H3 )dσ≤eλe−s(−λ− 2b2

s

∫ 0
s
‖z(σ)‖2

H3dσ)

≤eλe−s(−λ− 2b2

s

∫ 0
s

∑m
k=1 |zk(σ)|2dσ)≤eλeλs2 (4.5)

decays exponentially as s→−∞. From (4.4) we have

‖v(t)‖2≤eλeλs2 ‖v(s)‖2 +eλ
∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)G(τ)dτ. (4.6)

Because G(τ) is multiplied by a function which decays exponentially, the integral in
(4.6) converges. Given η>0 we can choose s1(ω)<s0(ω) depending only on ω such
that

e
λs
2 η2≤1, ∀s≤s1(ω).

We can then deduce from (4.6) that for all s≤min{−1,s1(ω)}, t∈ [−1,0],

‖v(t)‖2≤r0(ω) := 2eλ(1+ sup
s≤−1

e
λs
2 ‖z(s)‖2)

+eλ
∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)G(τ)dτ. (4.7)

Similarly, since z(s) grows at most polynomially as s→−∞ and z(s) is multiplied by
a function which decays exponentially , then the term

sup
s≤−1

e
λs
2 ‖z(s)‖2

is bounded. Now we can integrate (4.3) on [−1,0] and obtain∫ 0

−1

‖∇v(t)‖2dt≤ r0(ω)+

∫ 0

−1

G(τ)dτ+cr0(ω)

∫ 0

−1

‖z(τ)‖2H3dτ := r2(ω) (4.8)

and ∫ 0

−1

‖∇v(t)+∇z‖2dt≤2r2(ω)+2

∫ 0

−1

‖∇z‖2dt := r3(ω). (4.9)

On the other hand, we can obtain

‖u(t)‖2≤2‖v(t)‖2 +2‖z(t)‖2≤2r0(ω)+2 sup
0≤t≤−1

‖z(t)‖2 := r1(ω).

The proof is complete.

Lemma 4.2. Let φi(x)∈H3(R2) and v(t) be the solution of (3.8)-(3.9). For any given
η>0 and us∈H satisfying ‖us‖≤η, there exist random radii r4(ω), r5(ω) such that
the following inequalities hold P -a.e.:∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)‖v(τ)‖2dτ ≤ r4(ω),∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)‖∇v(τ)‖2dτ ≤ r5(ω).
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Proof. Integrating from s<−1 to 0 on the both sides of (4.3), we have

‖v(0)‖2 +
λ

2

∫ 0

s

e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)‖v(τ)‖2dτ

+

∫ 0

s

e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)‖∇v(τ)‖2dτ

≤e−s(−λ− 2b2

s

∫ 0
s
‖z(σ)‖2

H3dσ)‖v(s)‖2 +

∫ 0

s

e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)G(τ)dτ. (4.10)

For the first term of the right hand side of (4.10), there exists a s2(ω)≤s1(ω) satisfying

e−s(−λ−
2b2

s

∫ 0
s
‖z(σ)‖2

H3dσ)‖v(s)‖2≤eλs2 η2≤1.

For the second term of the right hand side of (4.10), since G(τ) grows at most polyno-
mially as τ→−∞ P -a.e. and is multiplied by a function which decays exponentially,
the integral in (4.10) converges. From (4.10) we can then deduce the results. The
proof is complete.

Lemma 4.3. Let φi(x)∈H3(R2) and v(t) be the solution of (3.8)-(3.9). For any given
η>0 and us∈H satisfying ‖us‖≤η, there exist random radii r6(ω), r7(ω), r8(ω) and
s1(ω)≤−1, such that for all s≤s1(ω), the following inequalities hold P -a.e.

‖∇v(t)‖2≤ r6(ω), ‖∇u(t)‖2≤ r7(ω), t∈ [−1,0],∫ 0

−1

‖∆v(t)‖2dt≤ r8(ω).

Proof. Taking the inner product of Equation (3.8) with −∆v in H, we obtain

1

2

d

dt
‖∇v‖2 +λ‖∇v‖2 +‖∆v‖2

=(∆z,−∆v)+((α−λ)z,−∆v)+((v+z)×∆(v+z),−∆v)

=(∆z+(α−λ)z,−∆v)+(v×∆z,−∆v)+(z×∆z,−∆v). (4.11)

Moreover, Young’s inequality implies that

|(∆z+(α−λ)z,−∆v)|≤ 1

8
‖∆v‖2 +c(‖∆z‖2 +‖z‖2)≤ 1

8
‖∆v‖2 +c6‖z‖2H2 .

For the third term on the right hand side of (4.3), we have the following estimate

|(z×∆z,−∆v)|≤‖∆v‖‖z×∆z‖≤ 1

8
‖∆v‖2 +c‖z‖2L∞‖∆z‖2≤

1

8
‖∆v‖2 +c7‖z‖4H2 .

For the second term we have the estimate

|(v×∆z,−∆v)|≤‖∆v‖‖v‖L4‖∆z‖L4 ≤ 1

4
‖∆v‖2 +c‖v‖2L4‖∆z‖2L4

≤1

4
‖∆v‖2 +c‖v‖‖∇v‖‖∆z‖‖∇∆z‖≤ 1

4
‖∆v‖2 +c8‖v‖2‖∇v‖2 +c9‖z‖2H2‖z‖2H3 ,

where we use the ε−Young’s inequality and the Gagliardo-Nirenberg inequality:

‖v‖L4 ≤ c‖v‖ 1
2 ‖∇v‖ 1

2 .
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Using the above estimates we obtain the inequality

d

dt
‖∇v‖2 +λ‖∇v‖2 +‖∆v‖2≤2c8‖v‖2‖∇v‖2 +F (t), (4.12)

where F (t) = c10(‖z‖2H2 +‖z‖4H2 +‖z‖2H2‖z‖2H3)≤ c
∑m
k=1(|zk|2 + |zk|4), which grows

at most polynomially as t→−∞ P-a.e.
We then have

d

dt
‖∇v‖2−2c8‖v‖2‖∇v‖2≤F (t). (4.13)

Integrating from θ to t for any −1≤θ≤ t≤0, we have

‖∇v(t)‖2≤e
∫ t
θ

2c8‖v(σ)‖2dσ‖∇v(θ)‖2 +

∫ t

θ

e
∫ t
τ

2c8‖v(σ)‖2dσF (τ)dτ

≤
(
‖∇v(θ)‖2 +

∫ 0

−1

F (τ)dτ

)
e
∫ 0
−1

2c8‖v(σ)‖2dσ. (4.14)

Now integrating with respect to θ on [−1,0] on both sides of (4.14), then there exists
s1(ω) as in Lemma 4.1 , such that for all s<s1(ω) we have

‖∇v(t)‖2≤ (

∫ 0

−1

‖∇v(θ)‖2dθ+

∫ 0

−1

F (τ)dτ)e
∫ 0
−1

2c8‖v(σ)‖2dσ

≤ (r2(ω)+

∫ 0

−1

F (τ)dτ)e2c8r0(ω) := r6(ω). (4.15)

Now we integrate with respect to t on [−1,0] on the both sides of (4.12) and
deduce that ∫ 0

−1

‖∆v‖2ds≤ r8(ω).

On the other hand, we can obtain

‖∇u(t)‖2≤2‖∇v(t)‖2 +2‖∇z(t)‖2≤2r6(ω)+2 sup
0≤t≤−1

‖∇z(t)‖2 := r7(ω).

The proof is complete.

Lemma 4.4. Let φi(x)∈H3(R2), η>0 be given and us∈H satisfy ‖us‖≤η. Then for
every ε>0 and P -a.e. ω∈Ω, there exist s∗(ω,ε)≤−1 and R∗(ω,ε)>0, such that for
all s≤s∗(ω,ε) and R>R∗(ω,ε), the solution v(t) of (4.2) with vs=us−z(s) satisfies∫

|x|≥R∗
|v(t)|2dx≤ε, t∈ [−1,0].

Proof. Let ρ(s) be a smooth function defined on R+ such that 0≤ρ≤1 for all
s∈R+, and

ρ(s) =

{
0, for 0≤s≤1,
1, for s≥2.
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Then there exists a positive constant c such that |ρ′(s)|≤ c for all s∈R+. Taking the

inner product of Equation (4.2) with ρ
(
|x|2
k2

)
v in H, we obtain

1

2

d

dt

∫
R2

ρ|v|2dx+λ

∫
R2

ρ|v|2dx+

(
−∆v,ρ

(
|x|2

k2

)
v

)
=

(
∆z+(α−λ)z,ρ

(
|x|2

k2

)
v

)
+

(
(v+z)×∆(v+z),ρ

(
|x|2

k2

)
v

)
. (4.16)

Noting that(
−∆v,ρ

(
|x|2

k2

)
v

)
=

(
∇v,∇

(
ρ

(
|x|2

k2

)
v

))
=

∫
R2

ρ|∇v|2dx+

(
∇v,vρ′(s)2x

k2

)
,

from (4.16) we have

1

2

d

dt

∫
R2

ρ|v|2dx+λ

∫
R2

ρ|v|2dx+

∫
R2

ρ|∇v|2dx

=−
(
∇v,vρ′(s)2x

k2

)
+

(
∆z+(α−λ)z,ρ

(
|x|2

k2

)
v

)
+

(
(v+z)×∆(v+z),ρ

(
|x|2

k2

)
v

)
. (4.17)

Now we estimate the first term of the right side of (4.17):

|−(∇v,vρ′(s)2x

k2
)|≤ 2

√
2

k

∫
k≤|x|≤

√
2k

|v||ρ′(s)||∇v|dx≤ c

k
(‖v‖2 +‖∇v‖2).

The second term of the right hand side of (4.17) is bounded by∣∣∣∣(∆z+(α−λ)z,ρ

(
|x|2

k2

)
v

)∣∣∣∣≤ λ8
∫
R2

ρ|v|2dx+c

∫
R2

ρ(|∆z|2 + |z|2)dx.

For the third term on the right hand side of (4.17), we have(
(v+z)×∆(v+z),ρ

(
|x|2

k2

)
v

)
=

(
z×∆v,ρ

(
|x|2

k2

)
v

)
+

(
z×∆z,ρ

(
|x|2

k2

)
v

)
(4.18)

The second term of the right hand side of (4.18) is bounded by∣∣∣∣(z×∆z,ρ

(
|x|2

k2

)
v

)∣∣∣∣≤ λ8
∫
R2

ρ|v|2dx+

∫
R2

ρ|z|2|∆z|2dx

≤λ
8

∫
R2

ρ|v|2dx+c‖z‖2L∞
∫
R2

ρ|∆z|2dx≤ λ
8

∫
R2

ρ|v|2dx+c‖z‖2H2

∫
R2

ρ|∆z|2dx.

For the first term of the right hand side of (4.18) we have the estimate∣∣∣∣(z×∆v,ρ

(
|x|2

k2

)
v

)∣∣∣∣≤ ∣∣∣∣(∇z×∇v,ρ( |x|2k2

)
v

)∣∣∣∣+ ∣∣∣∣(z×∇v,vρ′(s)2x

k2

)∣∣∣∣
≤1

4

∫
R2

ρ|∇v|2dx+b2‖z‖2H3

∫
R2

ρ|v|2dx+
c

k
(‖∇v‖2 +‖z‖2H2‖v‖2).
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Using the above estimates we obtain the inequality

d

dt

∫
R2

ρ|v|2dx+(λ−2b2‖z‖2H3)

∫
R2

ρ|v|2dx+

∫
R2

ρ|∇v|2dx

≤c12

k
(‖v‖2 +‖∇v‖2)+

c13

k
‖z‖2H2‖v‖2

+c14(‖z‖2H2

∫
R2

ρ|∆z|2dx+

∫
R2

ρ(|∆z|2 + |z|2)dx). (4.19)

We let E(t) = c14(‖z‖2H2

∫
R2 ρ|∆z|2dx+

∫
R2 ρ(|∆z|2 + |z|2)dx): It is easy to see that

E(t)≤ c
∑m
k=1(|zk|2 + |zk|4), which grows at most polynomially as t→−∞ P -a.e.

Then we have

d

dt

∫
R2

ρ|v|2dx+(λ−2b2‖z‖2H3)

∫
R2

ρ|v|2dx

≤c12

k
(‖v‖2 +‖∇v‖2)+

c13

k
‖z‖2H2‖v‖2 +E(t). (4.20)

By Gronwall’s inequality for s≤−1 and t∈ [−1,0], we have∫
R2

ρ|v(t)|2dx

≤e−
∫ t
s

(λ−2b2‖z(σ)‖2
H3 )dσ

∫
R2

ρ|v(s)|2dx

+

∫ t

s

e−
∫ t
τ

(λ−2b2‖z(σ)‖2
H3 )dσ

[c12

k
(‖v‖2 +‖∇v‖2)+

c13

k
‖z‖2H2‖v‖2 +E(τ)

]
dτ

≤eλe−s(−λ− 2b2

s

∫ 0
s
‖z(σ)‖2

H3dσ)‖v(s)‖2

+eλ
c

k

∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)(‖v‖2 +‖∇v‖2)dτ

+eλ
c

k

∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)(‖z‖2H2‖v‖2)dτ

+eλ
∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ
‖z(σ)‖2

H3dσ)E(τ)dτ. (4.21)

As in the former discussion, we know that there exists s2(ω)<s1(ω) such that for
all s<s2(ω) we have

e−s(−λ−
2b2

s

∫ 0
s

∑m
k=1 |zk(σ)|2dσ)≤eλs2 ,

which decays exponentially as s→−∞. Then there exists s∗<s2(ω) such that for all
s≤s∗ we have

eλe−s(−λ−
2b2

s

∫ 0
s
‖z(σ)‖2

H3dσ)‖v(s)‖2≤ ε
4
.

For the second term of the right of the (4.21), there exists R1>0 such that for all
k>R1 we have

eλ
c

k

∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ

(‖z(σ)‖2
H3dσ)(‖v‖2 +‖∇v‖2)dτ ≤ ε

4
,
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according to Lemma 4.2.
For the third term of the right of the (4.21), we have

eλ
c

k

∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ

(‖z(σ)‖2
H3 )dσ(‖z‖2H2‖v‖2)dτ

≤eλ c
k

∫ 0

−∞
e
λτ
4 ‖z‖2H2e−

τ
2 (−λ− 2b2

τ

∫ 0
τ

(‖z(σ)‖2
H3 )dσ‖v‖2dτ.

Since
∑m
k=1(|zk|2 + |zk|4) grows at most polynomially, we know that e

λτ
4 ‖z‖2H2 is

bounded for all τ <0. Therefore, by Lemma 4.1 there exists R2>0 such that for all
k>R2 we have

eλ
c

k

∫ 0

−∞
e−τ(−λ− 2b2

τ

∫ 0
τ

(‖z(σ)‖2
H3 )dσ(‖z‖2H2‖v‖2)dτ

≤eλ c
k

∫ 0

−∞
e−

τ
2 (−λ− 2b2

τ

∫ 0
τ

(‖z(σ)‖2
H3 )dσ‖v‖2dτ ≤ ε

4
.

For the fourth term of the right hand side of (4.21) there exists R3>0 such that for
all k>R3 we have

eλ
∫ 0

−∞
e−τ(−λ− c

τ

∫ 0
τ

(‖z(σ)‖2
H3 )dσE(τ)≤ ε

4

when k is large enough, because E(t)≤ε
∑m
k=1 |zk|2 when |x|>R3 and

∑m
k=1 |zk|2

grows at most polynomially. We then know that for any ε>0, there exists s∗ and
R∗>

√
2max{R1,R2,R3}, such that for all s≤s∗ we have∫
|x|≥R∗

|v(t)|2dx≤
∫
|x|≥
√

2k

|v(t)|2dx≤
∫
R2

ρ|v(t)|2dx≤ε, t∈ [−1,0]. (4.22)

The proof is complete.

Lemma 4.5. Let φi(x)∈H3(R2), η>0 be given and us∈H satisfy ‖us‖≤η. Then for
every ε>0 and P -a.e. ω∈Ω, there exist s∗∗(ω,ε)≤−1 and R∗∗(ω,ε)>0, such that
for all s≤s∗∗(ω,ε) and R>R∗∗(ω,ε), the solution u(t) satisfies∫

|x|≥R∗∗
|u(t)|2dx≤ ε

4
, t∈ [−1,0].

Proof. Let s∗ and R∗ be the constants in Lemma 4.4. Choosing R∗∗>R∗ and
s∗∗<s∗, for all s≤s∗∗ and |x|≥R∗∗>

√
2k>R∗ we have∫

|x|≥R∗∗
|z(t)|2dx=

∫
|x|≥R∗∗

|
m∑
i=1

φi(x)zi(t)|2dx

≤m2

∫
|x|≥R∗∗

m∑
i=1

|φi(x)|2|zi(t)|2dx≤
ε

4
, t∈ [−1,0], (4.23)

and ∫
|x|≥R∗∗

|v(t)|2dx≤ ε
4
, t∈ [−1,0]. (4.24)
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Then by (4.23) and (4.24), for all s≤s∗∗ and |x|≥R∗∗ we have∫
|x|≥R∗∗

|u(t)|2dx=

∫
|x|≥R∗∗

|v(t)+z(t)|2dx

≤2

∫
|x|≥R∗∗

|v(t)|2dx+2

∫
|x|≥R∗

|z(t)|2dx

≤ε, t∈ [−1,0], (4.25)

which completes the proof.

Similar to the arguments in the proofs of Lemma 4.3 and Lemma 4.5, we can
obtain the following lemmas. In contrast to Lemma 4.5, the higher regularity for φi
is necessary in Lemma 4.7 due to the estimates in the higher space H1(R2).

Lemma 4.6. Let φi(x)∈H3(R2) and v(t) be the solution of (3.8)-(3.9). For
any given η>0 and us∈H1(R2) satisfying ‖us‖≤η, there exist random radii
r9(ω), r10(ω), r11(ω) and s2(ω)≤−1, for all s≤s2(ω), such that the following inequal-
ities hold P -a.e.:

‖∆v(t)‖2≤ r9(ω),‖∆u(t)‖2≤ r10(ω), t∈ [−1,0],∫ 0

−1

‖∇∆v(t)‖2dt≤ r11(ω).

Lemma 4.7. Let φi(x)∈H5(R2), η>0 be given and us∈H1(R2) satisfy ‖us‖≤η.
Then for every ε>0 and P -a.e. ω∈Ω, there exist s∗∗∗(ω,ε)≤−1 and R∗∗∗(ω,ε)>0,
such that for all s≤s∗∗∗(ω,ε) and R>R∗∗∗(ω,ε), the solution u(t) satisfies∫

|x|≥R∗∗∗
|∇u(t)|2dx≤ ε

4
, t∈ [−1,0].

5. Random attractors
In this section, we prove the existence of random attractors for the stochastic

dynamical system S(t,s;ω) associated with the stochastic hydrodynamical equations
in the entire space R2. We first prove the asymptotic compactness of S in L2(R2) by
using the uniform estimates on the tails of solutions.

Lemma 5.1. Assume that φi(x)∈H3(R2). Then the random dynamical system
S(t,s;ω) is asymptotically compact in L2(R2); that is, for P -a.e. ω∈Ω, the sequence
u(0,sn;ω) has a convergent subsequence in L2(R2) provided sn→−∞.

Proof. Let sn→−∞. Then by Lemma 4.1, for P -a.e. ω∈Ω, we have that

{u(0,sn;ω)}∞n=1 is bounded in L2(R2).

Then there is ξ∈L2(R2) such that

u(0,sn;ω)→ ξ weakly in L2(R2) as sn→−∞. (5.1)

Next we prove that the weak convergence of (5.1) is actually strong convergence.
Given ε>0, by Lemma 4.4 there is T1(η,ω,ε) and R(ω,ε) such that for all s<T1 we
have ∫

|x|≥R
|u(0,s;ω)|2dx≤ ε

6
. (5.2)
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Since sn→−∞, there is N1(η,ω,ε) such that sn<N1 for every n>N1. Therefore it
follows from (5.2) that for all n>N1 we have∫

|x|≥R
|u(0,sn;ω)|2dx≤ ε

6
. (5.3)

On the other hand, by Lemma 4.1 and Lemma 4.2 there are T2(η,ω) and r(ω) such
that for all s<T2, we have

‖u(0,sn;ω)‖2H1(R2)≤ r(ω). (5.4)

Denote the set {x∈R2 : |x|≤R} by QR. By the compactness of the embedding
H1(QR) ↪→L2(QR), it follows from (5.4) that there is a subsequence

u(0,sn;ω)→ ξ strongly in L2(QR) as sn→−∞, (5.5)

which shows that for given ε>0 there exists N3(η,ω,ε) such that for all n>N3,

‖u(0,sn;ω)−ξ‖2L2(QR)≤
ε

3
.

Note that ξ∈L2(R2), so there exists R
′
(ε)>R such that∫

|x|≥R′
|ξ|2≤ ε

6
, (5.6)

and

‖u(0,sn;ω)−ξ‖2L2(Q
R
′ )≤

ε

3
. (5.7)

Let N4 = max{N1,N3}. By (5.3), (5.6), and (5.7), we find that for all n≥N4

‖u(0,sn;ω)−ξ‖2L2(R2)≤
∫
|x|≥R′

|u(0,sn;ω)−ξ|2dx+

∫
|x|≤R′

|u(0,sn;ω)−ξ|2dx

≤ε, (5.8)

which shows that

u(0,sn;ω)→ ξ strongly in L2(R2) as sn→−∞, (5.9)

as desired. The proof is complete.

Through a similar discussion, we can prove the asymptotic compactness of S in
H1(R2) by using the uniform estimates on the tails of solutions.

Lemma 5.2. Assume that φi(x)∈H5(R2). Then the random dynamical system
S(t,s;ω) is asymptotically compact in H1(R2); that is, for P -a.e. ω∈Ω, the sequence
u(0,sn;ω) has a convergent subsequence in H1(R2) provided sn→−∞.

Theorem 5.1. Assume that φi(x)∈H5(R2). Then the stochastic dynamical system
S(t,s;ω) has a unique random attractor in H1(R2).

Proof. Notice that S(t,s;ω) has a random absorbing set A(ω) in H1(R2) by
Lemma 4.1 and Lemma 4.3, and is asymptotically compact in L2(R2) and H1(R2) by
Lemma 5.1 and Lemma 5.2. Hence the existence of a unique random attractor for
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S follows from Theorem 2.6 immediately; see also [18]. The proof of Theorem 5.1 is
complete.

In fact, the regularity of the random attractor is also obtained in the course of
the proof. From Lemma 4.6 and Lemma 4.7, we can see that the attractor can be
much smoother than the initial data, which implies the asymptotic smoothing effect
of the equation in a probabilistic sense.

Note that the above investigation mainly worked with the entire plane. If we
consider the unbounded domain, it is trivial that the results above can be extended
under the imposed condition u= 0 for an infinite strip domain, x∈∂Ω. For more
details of the infinite strip, one can refer to [2], where the authors investigated the
existence of a compact attractor in an unbounded channel. In the cases of others, we
will further do some discussion for the extra difficulties produced by boundary terms
in the future.
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