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A STRUCTURE-PRESERVING NUMERICAL DISCRETIZATION OF

REVERSIBLE DIFFUSIONS∗
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Abstract. We propose a numerical discretization scheme for the infinitesimal generator of a
diffusion process based on a finite volume approximation. The resulting discrete-space operator
can be interpreted as a jump process on the mesh whose invariant distribution is precisely the cell
approximation of the Boltzmann invariant measure and preserves the detailed balance property of the
original stochastic process. Moreover this approximation is robust in the sense that these properties
remain valid independently of the grid size.
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1. Introduction and overview

In many applications, e.g., molecular dynamics [39], reaction kinetics [16], or
systems biology [1], one is interested in discrete-state approximations of the following
class of stochastic differential equations (SDE):

dXt=−∇V (Xt)dt+
√

2β−1dWt , X0=x. (1.1)

Here Wt denotes standard Brownian motion on the state space of Xt, the function V
is a smooth potential, and β=1/(kBT ) denotes inverse temperature with kB being
Boltzmann’s constant (more precise statements are given below).

It is desirable that the numerical approximation of the stochastic process inherits
some of the basic properties of the original equation such as its stationary distribution

or reversibility. The latter is equivalent to the requirement that the discretized process
satisfies detailed balance, which essentially asserts that the probability fluxes between
equilibrium states are balanced [15]; therefore any sensible discretization method for
the problem at hand should be targeted on approximating the corresponding fluxes
(this excludes, e.g., finite differences or finite elements approximations).

A popular method in computational fluid dynamics is the finite volume method
as it is based on evaluating fluxes through the surfaces of the discretization volumes
[43]. Moreover the method is conservative in the sense that the flux entering a certain
volume is equal to the flux coming from the neighboring volumes [26]. The flux
conservation property entails that there is no loss of probability at the boundaries
of the computational domains; see the related works [6] or [2] for a discussion of the
Discontinuous Galerkin method.
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In this paper we follow ideas of Wang, Peskin, and Elston [42], where a detailed
balance preserving numerical algorithm is developed for the study of Brownian mo-
tors, and further work [24, 23] where the authors study Dirichlet problems for the
computation of mean exit times in the low temperature regime (cf. Section 3.2). We
present a numerical approximation of the second-order differential operator

L=β−1∆−∇V (x) ·∇ (1.2)

that is associated with the diffusion (1.1) and that generates the semigroup exp(tL).
More precisely, we are interested in studying elliptic boundary value problems

Lu=f x∈Ω,

Bu+C∇u=g x∈∂Ω,
(1.3)

for given data f and g where Ω⊂R
n is an open subset of R

n with smooth (say,
piecewise continuous) boundary ∂Ω, and B,C are trace operators. Moreover we will
discuss parabolic equations of the form

(

∂

∂t
−L∗

)

ρ=0 (x,t)∈Ω×(0,∞),

ρ=ρ0 (x,t)∈Ω×{0},
(1.4)

where L∗ is the formal L2 adjoint of L, namely,

L∗=β−1∆+∇V (x) ·∇+∆V (x).

If we assume that V ∈C∞(Ω) is bounded below and satisfies the usual growth condi-
tions for |Ω|→∞, then ρ(x,t)=exp(tL∗)ρ0(x) equals the probability distribution

ρ(x,t)dx=P[Xt∈ [x,x+dx)]

of Xt given that X0 follows an initial distribution ρ0. There are several requirements
that the discretization of L or L∗ should fulfill:

1. The spatial discretization of the Boltzmann distribution

dµ(x)=Z−1e−βV (x)dx, Z=

∫

Ω

e−βV (x)dx, (1.5)

that is, the stationary distribution of (1.1), should equal the stationary so-
lution of the discretized Fokker-Planck Equation (1.4). In particular, given
a uniform discretization x1,x2, . . . ,xM of Ω, we require π=(π1, . . . ,πM ) with
πi=exp(−βV (xi)) to be the stationary solution of (1.4), upon discretization
and up to a (constant) normalization factor.

2. The discretization should preserve the forward backward dichotomy, i.e.,
when A denotes the spatial discretization of the infinitesimal generator L,
then we want AT to be the discretization of its adjoint L∗ (including bound-
ary conditions).

3. Being related with the latter, we require that the discretization preserves
detailed balance. That is, for all (x,y)∈Ω and t∈ [0,T ] the transition proba-
bilities satisfy

P[Xt∈ [x,x+dx)|X0=y]dµ(y)=P[Xt∈ [y,y+dy)|X0=x]dµ(x),



J.C. LATORRE, P. METZNER, C. HARTMANN, AND C. SCHÜTTE 1053

which implies that the time-reversed process X̃t=XT−t with stationary
initial condition X0∼µ follows the same SDE as the original process, hence
has the same infinitesimal generator (cf. [15, 18]).

In [42] the problem stated above is approached as follows. From the original SDE
(1.1), the authors find the coefficients (transition rates) of a Markov jump process
(MJP) by balancing the fluxes between adjacent grid points such that the resulting
discrete-state process has the correct invariant distribution (the cell approximation
of the Boltzmann invariant measure) and satisfies the detailed balance condition. In
this paper we wish to extend these ideas by rigorously approximating L and, likewise,
L∗ using a finite volume method. In doing so, the discrete approximation of the
infinitesimal generator L not only results in the infinitesimal generator A of a MJP
with the correct approximation of the invariant distribution of (1.1) and detailed
balance, but also the discretization of the adjoint operator L∗ results precisely in
the adjoint of the discrete generator A, which is an essential property for applying
existing methods for finding transition paths and analyzing rare events in metastable
systems (see Section 3.2). It can be moreover shown that the transition rates of
the MJP found in [42] are, in fact, a further approximation of the transition rates
given by (2.8) found using the finite volume method. The finite volume method
can be applied seamlessly to multi-dimensional systems and provides the means for
using non-rectangular cell geometries as well as computing error estimates, making
possible the study of problems with complex boundary geometries and the use of
mesh-refinement methods (see Sections 2.4 and 4). Finally, this approach allows us
to consistently apply averaging methods for SDE’s and MJP’s in order to reduce the
number of dimensions of the system whenever this is possible (see Section 4).

The article is organized as follows: in Section 2 we derive the structure-preserving
finite volume discretization of the infinitesimal generator that gives rise to discretiza-
tions of the forward equation (Section 2.1) and the backward equation (Section 2.2).
Section 3 contains a couple of numerical examples, both time-dependent and time-
independent. We conclude by a brief discussion of the results in Section 4.

2. Finite volume approximation of the infinitesimal generator

In this section we derive a spatial discretization of the SDE (1.1) based on a finite
volume approximation [25, 26] of the infinitesimal generator and its adjoint. To this
end, it is convenient to recast the infinitesimal generator (1.2) as

Lu=β−1eβV ∇·
(

e−βV ∇u
)

, (2.1)

and its adjoint as

L∗ρ=β−1∇·
(

e−βV ∇
(

eβV ρ
))

. (2.2)

Use of symbols and standing assumptions. Before we derive the discretiza-
tions of L and L∗, we shall fix some notation that we will use in the following. We
call (see Figure 2.1)

• xi∈Ω: mesh point i, i=1, . . . ,M ; the discrete state space is denoted by S.

• Ωi: finite volume element (cell) of mesh point i∈S,

• m(Ωi): Lebesgue measure (volume) of element Ωi,

• for every i∈S, we denote by {il}, l=1, . . . ,Mi the subsequence, such that the
{xil} are neighbors (adjacent mesh points) of xi,
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• Si,j : boundary (plane segment) between Ωi and Ωj for j∈{il},
• hi,j : line segment connecting xi and xj for j∈{il},
• x̄i,j : Si,j ∩hi,j for j∈{il}.
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Figure 2.1. Finite-volume element Ωi.

We assume throughout that the cell elements Ωi are rectangular. Accordingly,
any vector hi,j connecting two neighboring points xi and xj is perpendicular to the
surface element Si,j dividing the neighboring cells. Note, however, that this does not
imply that the mesh is uniform along the principal coordinate directions.

2.1. Numerical discretization of the forward equation. We firstly
confine our attention to the forward Kolmogorov (Fokker-Planck) equation. To this
end we use (2.2) and rewrite the forward Equation (1.4) as

∂

∂t
ρ(x,t)=β−1∇·

(

e−βV (x)∇
(

eβV (x)ρ(x,t)
))

.

Now given a set of discretization points {xi}Mi=1⊂Ω, we associate a finite volume
element Ωi to each point xi∈Ωi and introduce

pi(t)=

∫

Ωi

ρ(x,t)dx

as the homogeneous probability distribution of Xt on the cell Ωi. Using the divergence
theorem it follows that

d

dt
pi(t)=

∫

Ωi

β−1∇·
(

e−βV (x)∇
(

eβV (x)ρ
))

dx

=
∑

j∈{il}

∫

Si,j

β−1e−βV (x)∇
(

eβV (x)ρ
)

·nds.
(2.3)
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For all j∈{il}, we approximate each surface integral above as a point evaluation of
the integrand at the middle point x̄i,j times the area of Si,j ,

∫

Si,j

β−1e−βV (x)∇
(

eβV (x)ρ
)

·nds

≈β−1e−βV (x̄i,j)∇
(

eβV (x)ρ
)

·n
∣

∣

∣

x=x̄i,j

m(Si,j).

(2.4)

As we assume that the vector hi,j is parallel to the unit normal n to the surface Si,j

dividing the cells Ωi and Ωj , we can write

∇f ·n
∣

∣

∣

x=x̄i,j

=
∇f ·hi,j

m(hi,j)

∣

∣

∣

x=x̄i,j

, j∈{il} (2.5)

for any differentiable function f , where m(hi,j) here is just the length of the line hi,j .
But the last expression is simply the directional derivative of f at x̄i,j . Hence, using
a two-sided finite difference approximation between the points xi and xj , we obtain

∇
(

eβV (x)ρ
)

·n
∣

∣

∣

x=x̄i,j

≈ eβVjρ(xj ,t)−eβViρ(xi,t)

m(hi,j)
,

where for simplicity we have used the shorthand Vk=V (xk). Upon employing the
approximation

pi(t)=

∫

Ωi

ρ(x,t)dx≈ρ(xi,t)m(Ωi),

the probability flux on Si,j can be recast as
∫

Si,j

β−1e−βV (x)∇
(

eβV (x)ρ
)

·nds

≈e−β(Vi,j−Vj)

∆j,i
pj(t)−

e−β(Vi,j−Vi)

∆i,j
pi(t), j∈{il},

where Vi,j =V (x̄i,j) and

1

∆i,j
=

β−1m(Si,j)

m(hi,j)m(Ωi)
, j∈{il}.

Regrouping terms in (2.3), the approximation of (1.4) finally becomes

d

dt
pi(t)=

∑

j∈{il}

e−β(Vi,j−Vj)

∆j,i
pj(t)−





∑

j∈{il}

e−β(Vi,j−Vi)

∆i,j



pi(t) (2.6)

or, in matrix vector notation,

ṗ(t)=ATp(t) (2.7)

with p=(p1, . . . ,pM )T . Here and in the following dotted quantities such as ṗ=dp/dt
denote time derivatives and the elements of the matrix A∈R

M×M are given by

Ai,j =







∆−1
i,j e

−β(Vi,j−Vi), j∈{il},
−∑

k∈{il}
Ai,k, j= i,

0, otherwise.

(2.8)
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The matrix A has row sum zero and off-diagonal entries that are non-negative. Hence
it has all properties of a generator matrix. In more specific terms, A is the infinitesimal
generator of a jump process on the grid {xi} with the Ai,j for i 6= j being the jump
rates between the discrete states xi and xj .

2.2. Finite-volume approximation of the backward equation. Next, we
derive the finite volume approximation of the generator L in terms of the backward
Kolmogorov equation that is the adjoint to (1.4). It turns out that the discretization
of L is precisely the discrete operator A from the previous section; note that this is not
generally the case for any given spatial discretization method (e.g., finite differences).

Using the representation (2.1) of the generator L, we proceed. As before, the
backward Kolmogorov equation reads

∂

∂t
u(x,t)=β−1eβV (x)∇·

(

e−βV (x)∇u(x,t)
)

. (2.9)

Setting ui(t)=u(xi,t) and integrating (2.9) over the cell element Ωi, we find

d

dt
ui(t)m(Ωi)≈

∫

Ωi

β−1eβV (x)∇·
(

e−βV (x)∇u
)

≈β−1eβV (xi)∇·
(

e−βV (x)∇u
)∣

∣

∣

x=xi

m(Ωi),

where in the first equality we have made the approximation

d

dt
ui(t)m(Ωi)≈

d

dt

∫

Ωi

u(x,t)dx

and we have again approximated the volume integral as a point evaluation at x=xi

times the volume of Ωi. Doing a backward substitution, the divergence term in the
above equation can be rewritten as

∇·
(

e−βV (x)∇u
)∣

∣

∣

x=xi

m(Ωi)≈
∫

Ωi

∇·
(

e−βV (x)∇u
)

dx

=
∑

j∈{il}

∫

Si,j

e−βV (x)∇u ·nds.
(2.10)

where the second line follows again from the divergence term. For each individual
surface integral over Si,j , j∈{il} we may then write

∫

Si,j

e−βV (x)∇u ·nds≈ e−βV (x)∇u ·n
∣

∣

∣

x=x̄i,j

m(Si,j)

= e−βVi,j
∇u ·hi,j

m(hi,j)

∣

∣

∣

x=x̄i,j

m(Si,j)

≈ e−βVi,j
u(xj , ·)−u(xi, ·)

m(hi,j)
m(Si,j)

=
e−βVi,jm(Si,j)

m(hi,j)
uj−

e−βVi,jm(Si,j)

m(hi,j)
ui. (2.11)

As we did for the forward Kolmogorov equation, the surface integral has been approx-
imated as a point evaluation of the integrand at x= x̄i,j , while the resulting normal
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derivative was replaced by a centered difference at the points x=xi and x=xj . After
regrouping terms in (2.10), we obtain

d

dt
ui(t)=

∑

j∈{il}

e−β(Vi,j−Vi)

∆i,j
uj(t)−

∑

j∈{il}

e−β(Vi,j−Vi)

∆i,j
ui(t)

=
∑

j∈{il}

Ai,j uj(t)−





∑

j∈{il}

Ai,j



ui(t)

or, in matrix vector notation,

u̇(t)=Au(t), (2.12)

where Ai,j is precisely given by (2.8), thus proving that the finite volume approxima-
tion (FVA) of the backward Kolmogorov equation results in the adjoint equation of
the forward Kolmogorov (master) Equation (2.7) for the discrete-state system.

2.3. Properties of the semi-discretized Kolmogorov equations.

1. Recall that the Boltzmann distribution

µ(dx)=Z−1e−βV (x)dx, Z=

∫

Ω

e−βV (x)dx

is the unique invariant distribution of the continuous state space process (1.1).
On the other hand the homogeneous probability distribution of the process
on the discretized state space S reads

P[X ∈Ωi]=

∫

Ωi

dµ(x)

≈Z−1e−βVim(Ωi).

It can be readily seen that the vector

π=(π1, . . . ,πM ), πi∝ e−βVim(Ωi). (2.13)

is indeed a solution to the stationary Fokker-Planck equation for the discrete-
state system, i.e., ATπ=0. To see this, we substitute π into (2.6):

[ATπ]i=
∑

j∈{il}

e−β(Vi,j−Vj)

∆j,i
e−βVjm(Ωj)−

∑

j∈{il}

e−β(Vi,j−Vi)

∆i,j
e−βVim(Ωi)

=
∑

j∈{il}

e−β(Vi,j)

∆j,i
m(Ωj)−

∑

j∈{il}

e−β(Vi,j)

∆i,j
m(Ωi)

=
∑

j∈{il}

β−1m(Si,j)

m(hj,i)
e−β(Vi,j)−

∑

j∈{il}

β−1m(Si,j)

m(hi,j)
e−β(Vi,j)

= 0,

where we have used x̄i,j = x̄j,i, m(Si,j)=m(Sj,i) and m(hi,j)=m(hj,i), j∈
{il}. Hence (2.13) is a stationary distribution of (2.7). In particular, the
restriction of exp(−βV ) to the grid points is a stationary distribution if the
grid is uniform.
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2. It is an immediate consequence of (2.7) and (2.12) that the diagram

∂tu=Lu adjoint in L2

−−−−−−−−→ ∂tρ=L∗ρ

FVA





y





y
FVA

u̇=Au
adjoint in R

n

−−−−−−−−→ ṗ=ATp.

commutes. Hence the finite volume approximation (FVA) yields adjointness
of the discrete backward and forward equations.

3. Last but not least, the discretization preserves detailed balance, i.e., re-
versibility of the original process (i.e., Xt and XT−t have the same generator).
For a jump process with infinitesimal generator A, the detailed balance con-
dition reads

Ai,jπi=Aj,iπj ∀i,j∈S. (2.14)

For our jump process with master Equation (2.6) the last equation holds true
since Ai,j =Aj,i=0 for j /∈{il}, which immediately implies Ai,jπi=Aj,iπj ; for
j∈{il}, we have

πiAi,j =e−βVim(Ωi)
e−β(Vi,il

−Vi)

∆i,il

=
β−1m(Si,il)

m(hi,il)
e−βVi,il ,

while

πjAj,i=e−βVilm(Ωil)
e−β(Vil,i

−Vil
)

∆il,i

=
β−1m(Si,il)

m(hi,il)
e−βVi,il ,

which proves the assertion that the discrete system is again reversible.
We would like to emphasize that these properties are satisfied independently of the
size of the cell elements1. In other words, the discrete operator A is the infinitesimal
generator of a jump process independently of the size of the cell elements. Moreover its
invariant distribution is given by (2.13) and it satisfies the detailed balance condition
with respect to this distribution.

2.4. On the accuracy of the method and non-rectangular grids. Before
we conclude this section we would like to briefly elaborate on the order of accuracy of
finite volume approximation as well as comment on the assumptions underlying the
definition of the cell elements.

Assuming a uniform mesh, every cell has the same length h in each spatial-
direction. Hence the finite volume approximation of the special backward generator
(2.1) is equivalent to using centered finite differences at each mesh point xi. To be
more precise, for the divergence term in (2.1) one can use a centered finite difference
between the points xi+1/2 and xi−1/2 (for each coordinate direction in Ω), resulting

1Without concerns regarding the accuracy or stability of the approximation.
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in the evaluation of the potential at the “mid-points” x̄il . The gradient ∇u at x̄il can
then be approximated by a centered finite difference between the points xi and xi±1

as before. This will result in the discrete state approximation (2.8) of the infinitesimal
generator L. Given these simplifying assumptions and assuming some regularity of
the potential V , the finite volume discretization (2.8) turns out to be a consistent
approximation of the infinitesimal generator (1.2) that is second-order accurate [7,
40, 26]. This assertion will be verified numerically in Section 3.1 where we show the
solution of Dirichlet problems of the type Lu=f . In [42], where a similar numerical
scheme is considered, it is argued that the numerical algorithm is robust even for
potentials that may have discontinuities. In Section 3 we present more details on how
the boundary conditions are seamlessly incorporated into the method in the context
of the numerical examples.

In the derivation of the numerical algorithm we have assumed that the cell ele-
ments are n-dimensional hyperrectangles and that, along each direction, the neigh-
boring points of each mesh point are connected by a vector normal to the cell dividing
surfaces. This hypothesis can be relaxed; in fact, each cell element may have any ar-
bitrary convex polygonal as long as condition (2.5) is satisfied. This condition states
that the line segment connecting two neighboring mesh points in perpendicular to the
hyperplane dividing their respective cells. Under these circumstances the derivation
of the method follows exactly as it was done throughout this section, while preserving
all the aforementioned properties (see Section 4 for further comments on this matter).
If condition (2.5) is not satisfied, one could consider cells with arbitrary convex polyg-
onal shape without affecting the overall method — probably even without affecting
reversibility or the forward-backward dichotomy, but we could no longer approximate
the probability flux along each boundary as in (2.4) simply using finite differences; as
a consequence the scheme would not admit an expression for the discrete generator
as simple as (2.8), but rather require the computation of certain surface integrals
which may be tedious if the problem becomes high-dimensional (cf. also [3] and the
references therein). There are clearly other methods to approximate fluxes in a finite
volume setting (see e.g. [11]), but these may not result in the desired form of the
infinitesimal generator.

3. Numerical experiments

In this section we illustrate the finite volume approximation (FVA) with several
test problems. The first example is concerned with solving mixed boundary value
problems involving the backward generator L. In the second and third example we
demonstrate several properties of the FVA, which go beyond standard applications
by exploiting the fact that the discretization matrix A can be interpreted as an in-

finitesimal generator of a MJP exhibiting the structural and dynamical properties of
the original Markov diffusion process. In the second example we apply the FVA to
rare events problems and study the rearrangement of a three-particle Lennard-Jones
cluster in the plane. Finally, in the third example we show how the FVA can be used
to sample the original stochastic dynamics (1.1) in cases when the direct numerical
simulation (DNS) is not feasible, e.g., when the system is highly metastable so that
the time discretization errors accumulate and thus bias the stationary distribution (if
it exists at all).

3.1. Committor for the two-well potential. The evolution of statisti-
cal objects associated with stochastic processes of the form (1.1) such as conditional
expectations or initial probability densities are governed by the backward generator
L and its adjoint L∗. Computing those objects amounts to solving partial differen-
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tial equations involving these operators with a set of problem-dependent boundary
conditions. In first example we apply FVA to a class of mixed boundary value prob-

lems arising in the analysis of rare events of Markov diffusion processes, particularly
in Transition Path Theory (TPT). We shall come back to TPT type problems in
Section 3.2.

The mixed boundary value problems are of the type



















Lq=0 in Ω,

q=0 on ∂A,

q=1 on ∂B,

∇q ·n=0 on ∂Ω,

(3.1)

where L is the backward generator given in (1.2), Ω⊂R
n is a compact set with smooth

boundary ∂Ω, the sets A,B⊂Ω are open, disjoint subsets with smooth boundaries
∂A,∂B, and n denotes the outward pointing unit normal to ∂Ω. The solution of the
problem (3.1) is called forward committor function and is the key object in TPT.

Before we explain our numerical experiment in detail, we would like to briefly
comment on the standard numerical methods to which the FVA is compared. The
guiding property for selecting standard methods for the comparison is the neighbor-
hood relation of the boxes involved in the discretization stencil of the FVA. As one
can see from the definition of the discretization matrix in (2.8), only direct neighbors
are involved, i.e., boxes which have a face in common. Thus, it is fairly reasonable to
compare the FVA only with methods whose stencils are defined on a box discretiza-
tion or on its dual grid and, even more importantly, solely involve direct neighbors.
Therefore we confine ourselves to finite differences methods with accuracy order no
more than two and excludes, e.g., finite element methods as well as finite difference
and finite volume methods of higher order of accuracy.

In our numerical experiment, we consider a two-well potential in two dimensions,

V (x,y)=
5

2

(

1−x2
)

+5y2, (3.2)

on a rectangular domain Ω=[−1,1]× [−0.8,0.8]. The contour plot of the potential
landscape is given in the left panel of Figure 3.1. If the sets A and B are chosen as

A={(x,y) :x<−0.8}∩Ω and B={(x,y) :x>0.8}∩Ω,

then the committor equation in (3.1) admits the analytical solution [10]

q(x,y)=

(∫ 0.8

−0.8

e
5

2
(1−z2)2dz)

)−1∫ x

−0.8

e
5

2
(1−z2)2dz (3.3)

that is shown in the right panel of Figure 3.1. Notice that the exact committor
function only depends on the coordinate x (because the sets A and B do) and it can
be sufficiently accurately computed using quadrature.

The exact committor function allows for numerically computing the order of accu-
racy of our scheme that is expected to be of second order. To this end the committor
equation is numerically solved with the finite volume scheme on a sequence of grids
on ΩA,B , where each grid consists of M2 equal sized boxes (cells) for M =20, . . . ,200
and covers the set Ω\(A∪B). Notice that the Neumann boundary condition in (3.1),

∇q ·n=0,
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Figure 3.1. Left panel: The contour plot of the two-well potential given in (3.2) on the domain
Ω=[−1,1]× [−0.8,0.8]. Right panel: The level sets of the exact committor function q(x,y) given
in (3.3) for the inverse temperature β=1. The value q(x,y) admits a probabilistic interpretation; it
is the probability that the process starting in (x,y) reach the set A={(x,y) :x<−0.8}∩Ω first rather
than the set B={(x,y) :x>0.8}∩Ω.

would directly translate into a zero entry in the discretization matrix A if the cell
under consideration had a neighbor cell in the direction of n (cf. Equation 2.11).
Consequently, unlike, e.g., in the method of finite differences, the discretization stencil
for a boundary cell Ωi is unaffected in the sense that the entries Aij corresponding
to neighbor cells remain the same (cf. (2.8)). In other words, the detail balance
condition (2.14) with respect to the discrete Boltzmann distribution is invariant under
imposing Neumann-boundary conditions. Furthermore, observe that neglecting a cell
in the discretization directly corresponds to imposing Neumann boundary conditions
on the neighbored cells.

The numerical error ‖q− q̂‖∞ between the exact committor function q evaluated
at the box centers and the numerical solution q̂ is depicted in Figure 3.2 as a function
of the box width (here: in the x-direction, hx). The double logarithmic plot reveals
the second order accuracy of our scheme. Additionally, the committor equation is
numerically solved with standard finite differences schemes [17] on the grid spanned
by the box centers of the grid. In particular, the finite volume scheme is compared
to a central differences scheme (resulting from a second order discretization of the
gradient term in L via central differences) and an upwind scheme (resulting from a
first order upwind discretization of L). It can be seen that the finite volume scheme
clearly has a smaller error than the finite differences schemes.

3.2. Application to Lennard-Jones cluster rearrangement. The pur-
pose of this second example is to illustrate that the FVA is more than “simply”
a discretization method by demonstrating the interplay between our discretization
scheme and discrete Transition Path Theory (TPT), a recently introduced method to
investigate rare events in Markov jump processes, i.e., transitions between metastable
regions. More specifically, we analyze the rearrangement of a Lennard-Jones cluster
in the plane via discrete TPT by exploiting the fact that the discretization matrix A

can be interpreted as the infinitesimal generator of a MJP. By construction, the MJP
is reversible with respect to the (discrete) Boltzmann distribution and, hence, it is a
discrete analog of the reversible diffusion process (discrete TPT heavily relies on this
property). The strategy to analyze rare events which we will describe in this section
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Figure 3.2. Numerical error ‖q− q̂‖∞ between the exact committor function q and the nu-
merical solution q̂ of the committor Equation (3.1) as a function of the spatial discretization in the
x-direction, hx.

has successfully been applied to detect mechanisms of protein-ligand association and
its modulation by protein mutations [19].

3.2.1. Transition Path Theory. Transition Path Theory is concerned with
transitions in Markov processes and has first been developed in [10, 41, 30] in the
context of diffusion processes, in particular for systems of the form in (1.1). The basic
idea is to single out two disjoint subsets in state space, say A,B⊂Ω, and determine the
“preferred” mechanism by which the dynamics makes a transition (reaction) from A to
B. Typically the sets A and B are metastable regions representing, e.g., conformations
of biomolecules [38]. Transitions between metastable regions are rare events and
therefore any sampling-based method for the detection of transitions mechanisms and
transition rates would cause an enormous numerical effort.

TPT goes beyond sampling in that the underlying committor function completely
encodes the statistical properties of the ensemble of all reactive trajectories (transi-
tions) can be efficiently computed by solving a mixed boundary value problem in (3.1).
TPT provides expressions for the probability distribution of reactive trajectories, the
associated probability current and flux, and the corresponding transition rates. In
applications one is often interested in identifying the most probable transition mecha-
nism from A to B, i.e, in the region in state space through which the most transitions
happen per unit of time. Accordingly the transition tubes are characterized by the
current of reactive trajectories. Accurately solving the PDE (3.1) is of course impossi-
ble if the problem’s dimension is high. The remedy then is discrete TPT - Transition

Path Theory for Markov jump processes — a generalization of TPT to the Markov
jump processes [31]. Within the discrete TPT framework the reactive properties of
a system are captured in a discrete transition network and the preferred transition
pathways can effectively computed via graph algorithms [29].

3.2.2. Lennard-Jones cluster. Inspired by the considerations in [8, 44], we
will take a look at the rearrangement of a cluster of three particles in the plane whose
dynamics is governed by the Smoluchowski dynamics (1.1). The interaction of the
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particles is described by the Lennard-Jones potential

VLJ(x
1,x2,x3)=

∑

1≤i<j≤3

4ǫ

[

(

σ

| xi−xj |

)12

−
(

σ

| xi−xj |

)6
]

, (3.4)

where xi∈R
2, i=1,2,3 denotes the position of i-th particle. The potential assumes

its minimum at

(m1,m2,m3)∈
{

(x1,x2,x3) :‖ xi−xj‖2=21/6σ, 1≤ i<j≤3
}

,

with V (m1,m2,m3)=−3ǫ. Geometrically this minimizer corresponds to a triangular
arrangement of the three particles with constant distance rmin=21/6σ. Although the
potential is invariant under translation and rotation, we assume that the particles are
distinguishable. Therefore there are two essentially different equilibrium configura-
tions as is schematically illustrated in Figure 3.3. In the following we refer to the left
configuration in the figure as 1−2−3 and to the right one as 1−3−2.

2

31

1 3

2

?

Figure 3.3. Schematic illustration of the two different equilibrated configurations of the three
particle Lennard-Jones cluster in the plane. The interaction of the particle is described by the
potential in (3.4). We are interested in the rearrangement of the left configuration (denoted by
1−2−3) to the right configuration (denoted by 1−3−2) under the Smoluchowski dynamics.

The question now is the following: what is the preferred rearrangement of the
cluster starting in the 1−2−3 configuration and ending up in the 1−3−2 one, and
how does the preferred transition path changes as temperature is varied?

Formulated in the language of discrete TPT, we ask what is the dominant reaction

pathway from 1−2−3 (set A) to 1−3−2 (set B)? Notice that the rearrangement from
the configuration 1−2−3 to 1−3−2 is non-trivial because it cannot be described by
translation or rotation. This, together with the fact that the interaction potential is
invariant under translations and rotations, allows us to reduce the dimensionality of
the problem by restricting the motion of the Lennard-Jones cluster as follows. First,
we fix particle one in the origin and, secondly, we restrict the movement of particle
three to the x-axis of the plane. The dynamics of the restricted cluster are then
governed by a three-dimensional potential landscape of the form

V (x2
1,x

2
2,x

3
1)

def
= VLJ

(

(0,0),(x2
1,x

2
2),(x

3
1,0)

)

.

The corresponding MJP as a discrete analog of (1.1) results from a coarse 30×30×
30 box discretization of the rectangular domain Ω=[0,rcut]× [−rcut,rcut]× [0,rcut]
with rcut=2.5σ≈2.22 ·10−1. For the well-depth ǫ=5, the configurations 1−2−3
and 1−3−2 are metastable configurations. To ensure that the MJP is irreducible
— at least for all practical purposes — only boxes with a potential energy below
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a prescribed threshold are considered. In other words, grid points with too high
potential energy (compared to the minimum −3ǫ) are negligible as their invariant
measure is vanishingly small and henceforth omitted.

Remark 3.1. Notice that the detailed balance relation is unaffected by neglect-
ing boxes (with high potential energy), since neglecting a box imposes reflecting
boundary conditions, i.e. Neumann-boundary conditions, on the neighbored boxes
(cf. Sect. 3.1).

In principle only two different transition mechanisms are possible for the transi-
tion from the 1−2−3 to the 1−3−2 configuration; either particle two moves down
on a vertical straight line while particle three is sidestepping, or particle three re-
mains fixed while particle two is circumventing. Notice that the symmetric case, i.e.,
circumventing particle one, is excluded by the choice of Ω. The computation of the
dominant reaction pathway via discrete TPT shows that at high temperature, β=1,
the first mechanism is preferred, whereas at low temperature, β=5, the second one
is preferred. For a schematic illustration of the pathways see Figure 3.4. From a
physical point of view this behavior is reasonable as the path through the “middle”
is admissible only if particle three is far away enough from particle one, so that par-
ticle two can slip through. At high temperature this scenario is relatively probable,
for particle three moves rapidly back and forth and there is a “finite window” for
particle two to slip through. However the window becomes smaller and smaller the
lower temperature gets. Therefore the dynamics prefers the circumventing route at
low temperature since it is not conditioned by the position of particle number three.

A mathematical argument for the validity of the explanation is given by the theory
of Freidlin and Wentzell [13], which states that at low temperature the dynamics
prefers the transition pathways along the lowest energy barriers; the potential energies
of the two respective dominant reaction paths is depicted in Figure 3.4. As indicated
by the dashed lines, the highest barrier at low temperature (left panel) is indeed
less than the one at high temperature (right panel). Besides the preferred reaction
pathway, discrete TPT gives us the transition rate kAB , i.e., the average number of
transitions from A to B per unit of time. Note that at low temperature, β=5, the
transition rate between these metastable states is kAB =2.9 ·10−8. The numerical
approximation of the governing dynamics presented in this article makes it possible
to apply TPT for Markov jump processes and thus find these pathways.

3.3. Sampling the invariant distribution. In many applications (e.g., pro-
teins dynamics [12, 14, 20]) DNS, by means of the classical Euler-Maruyama scheme,
is the method of choice, although it is well known that it is biased and, specifically,
does not preserve reversibility (for details see Section 3.3.2).

This last example is devoted to propose the FVA as an alternative method for
sampling stochastic processes of the form (1.1). Once again, the basic idea is to
interpret the discretization matrix A as an infinite generator of a MJP which i) is a
discrete analog of the original process and ii) preserves reversibility with respect to
the approximated Boltzmann measure. Consequently, drawing sample paths from the
MJP allows for the exploration of the state space in order to, e.g., compute observables
of interest such as free energy or to detect metastable regions. For instant, in the
context of reaction kinetics, this sampling approach is well known as the Gillespie
algorithm [16] and has been successfully applied to study high dimensional reactions.

To assess FVA as an numerical sampling scheme, we compare it to standard
schemes, here to the prominent Euler-Maruyama scheme. In the remainder of this
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Figure 3.4. Potential energy along the reaction pathway from the initial cluster configuration
1−2−3 to the final cluster configuration 1−3−2. Left panel: Energy profile for the low temperature
β=5. Right panel: Energy profile for the high temperature β=1. Results are shown for ǫ=5 and
a 30×30×30 box discretization of the rectangular domain Ω=[0,rcut]× [−rcut,rcut]× [0,rcut] with
rcut=2.5σ≈2.22 ·10−1.

section, we explain in detail such a comparison by sampling the invariant distribution
of a low dimensional potential landscape. Particularly, we elaborate on how to com-
pare a sampling scheme based on a spatial discretization with a scheme arising from
a discretization in time. Regarding the application to high dimensional dynamics, we
also comment on the computational cost of the FVA scheme.

3.3.1. Sampling from MJP. To sample the stationary distribution of the
SDE (1.1) we exploit the characterization of the matrix A as the infinitesimal gen-
erator of a Markov jump process (MJP) on the discrete state space S which i) is a
discrete analog of the original process and ii) preserves reversibility with respect to
the approximated Boltzmann measure. The idea now is to draw a realization from
the MJP, i.e., a sequence (i1,ti1 ;i2,ti2 ; . . . ;iN ,tiN ) of states ik ∈S and residence times
tik that the process spends in the state ik before jumping to the next state ik+1. A
realization of a MJP with generator A can be generated by the following iteration [34]:
Suppose the MJP starts in i0∈S. Then

1. draw a resident time tik according to

tik =log(u)(Aik,ik)
−1

with u uniformly distributed on [0,1],

2. draw the next state ik+1 with probability

P[ik+1= j]∝Aik,j j 6= ik.

3.3.2. Convergence to the invariant measure. Now we may ask how fast
does our scheme sample the invariant measure and how does it perform compared to
a standard integrator like Euler-Maruyama. Suppose that at time t=0 the MJP is
distributed according to the initial probability distribution ν. Further let p(t) be the
distribution at time t≥0 that is governed by the master equation [5],

dp(t)

dt
=ATp(t), p(0)=ν.
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By construction, the invariant measure of our MJP π solvesATπ=0. Given a uniform
grid on Ω the vector π has the elements

πi=Z−1exp(−βV (xi)), i∈S,

with Z−1 being the normalization constant and xi being the center of cell Ωi. Re-
versibility implies that the MJP converges exponentially to its invariant measure.
More precisely, let 0=λ1>λ2≥λ3≥ . . .≥λ|S| be the eigenvalues of A. By reversibil-
ity, all eigenvalues are real and the following estimate holds [32, 33]:

‖p(t)−π‖1≤Keλ2t, t≥0,

where ‖·‖1 is the discrete l1-norm and K>0 is a constant depending on A.
Conversely for SDEs of the type (1.1), applying the Euler-Maruyama scheme (see,

e.g., [22]) yields an time-discrete iteration of the form

X̂k+1= X̂k−∇V (X̂k)τ+
√

2β−1τ η, (3.5)

where X̂k denotes the time-discrete approximation of Xtk with X̂0=X0, τ = tk+1− tk
is the integration time step, and η is a N (0,1) Gaussian random variable.

For a general, multi-well potential V , sampling the Boltzmann distribution using
(3.5) requires exponentially long trajectories. Therefore the time discretization in-
evitably introduces a bias in the invariant distribution of the SDE, even as τ →0. Even
worse, if the gradient field ∇V is non-globally Lipschitz then the Euler-Maruyama
scheme is transient for all τ >0 with unbounded moments [28]. The bias can be
removed by augmenting the iteration (3.5) with an additional Metropolis-Hastings
acceptance step, thereby using the Euler iteration merely as a proposal generator for
a Monte-Carlo sampler [37, 4]. Using an approximation to the true dynamics for
generating proposals rather than completely random moves guarantees that the pro-
posals are “physically sensible” and the rejection rate is low. Moreover the scheme
converges with probability one to the correct Boltzmann distribution for any stable
step size τ >0.

3.3.3. On how to compare MJP with Euler-Maruyama. Comparing
a MJP with the Euler-based Monte-Carlo scheme sounds like comparing apples and
oranges, for Euler-Maruyama is a time discretization method, whereas our approach
is based on a spatial discretization of the infinitesimal generator. In addition, the
Euler-Maruyama scheme is stochastic in a continuous state space, whereas the MJP
is stochastic in a discrete state space and stochastic in time. In the first case, moreover,
the state space is unbounded. Hence, for a comparison of both schemes, the process
is restricted to a bounded domain Ω⊂R

n (here: n=2) where restriction means that
Ω is chosen such the probability to find the equilibrated process in regions close to
the boundary of Ω is of the order of the machine accuracy.

Now let S={Ω1, . . . ,ΩM2} be a grid (box discretization) covering the domain
Ω⊂R

2 with M2 equal sized boxes. The invariant distribution of the SDE restricted
on the boxes is then given by the discrete Boltzmann distribution

π̂=(π̂1, . . . ,π̂M2), π̂i=Z−1

∫

Ωi

exp(−βV (x,y))dxdy,

with Z being a normalization constant. Although the exact stationary distribution of
the corresponding MJP is different, namely,

π=(π1, . . . ,πM2), πi∝ exp(−βV (xi,yji)),
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we may still compare the MJP and the Euler-Maruyama scheme in terms of their
convergence to π̂, for the difference between π and π̂ is negligible.

We measure the convergence of either method by the l1-norm,

E [‖π̂− p̃(T )‖1] , (3.6)

where p̃(T )=(p̃1(T ), . . . , p̃M2(T )) denotes the state probability distribution resulting
from a finite realization of the MJP or the Euler-Maruyama scheme at time T >0. To
be more precise, the state probability distribution, p̃(T ), associated with a realization
of the MJP, (i0,ti0 ; . . . ;iN ,tiN =T ), is computed by the time average

p̂j(T )=
1

T

N
∑

k=0

tikδj,ik ∀j∈S,

whereas the distribution of the Metropolis-adjusted Euler scheme is computed from
a normalized histogram whose bins are defined by the cells Ωi.

In order to make the convergence results of both methods comparable, the sim-
ulations are coupled such that they require the same total numerical effort. To un-
derstand the following algorithmic procedure it is helpful to bear in mind that we
are interested in computing expectation values. Therefore we generate an ensemble

consisting of L>0 trajectories with a total time T >0 from either method and approx-
imate the expectation value by averaging over the different realizations. Furthermore
it is important to realize that the number of jumps N of a MJP-trajectory of total
time T >0 is random, and hence the total numerical effort of generating L trajectories,

CMJP =

L
∑

i=1

Ni, (3.7)

is random too. Consequently, choosing NEuler=CMJP /L and τ =T/NEuler in the
Metropolis-adjusted Euler-Maruyama scheme leads to the same total numerical effort
as for the MJP scheme. The numerical experiment is summarized as follows:

1. For a fixed total time T >0, generate L>0 MJP-trajectories.

2. Approximate the expectation in (3.6) by running averages of ‖π̂− p̃(T )‖1.
3. Generate L>0 trajectories with the Metropolis-Euler-Maruyama scheme of

constant length NEuler=CMJP /L and constant time step τ =T/NEuler.

4. Approximate the expectation in (3.6) by running averages.

Before we present our numerical experiments, we discuss and compare the com-
putational complexity of both methods in terms of potential evaluations, respectively.
First of all, both schemes are one-step schemes because the next sample is computed
from the current sample in one step. The evaluation of the gradient in the Euler-
Maruyama scheme (usually done by finite differences) involves 2d+1 evaluations of
the potential plus drawing of d univariate Gaussian random variables. The compu-
tational cost of the FVA scheme is then comparable to that of the Euler-Maruyama
scheme, since jumping to a new state of the MJP involves drawing two uniform ran-
dom variables and 2d+1 evaluations of the potential. It is important to notice that
no explicit spacial discretization is needed for sampling via FVA2. We conclude that

2That is, the mesh and the transition matrix A of the MJP do not need to be computed and
stored a priori, but instead at each step the transition rates to the neighboring mesh points can be
computed on the fly.
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the computational cost of one step in both methods scales linearly with the dimension
d. In the next section we give numerical evidence that the overall performance of both
schemes is comparable as well.

3.3.4. Numerical results. As a potential in (1.1) we choose the 2-
dimensional three-well potential

V (x,y)=3e
−x2−

(

y−
1
3

)2

−3e
−x2−

(

y−
5
3

)2

−5e−(x−1)2−y2 −5e−(x+1)2−y2

+ 1
5x

4+ 1
5

(

y− 1
3

)4
(3.8)

that is a well-known test example for studying rare events (see, e.g., [21, 35, 31]). As
the left panel of Figure 3.5 shows, the potential (3.8) has two deep minima approx-
imately at (±1,0), a shallow minimum approximately at (0,1.5), three saddle points
approximately at (±0.6,1.1),(−1.4,0) and a maximum at (0,0.5).
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Figure 3.5. Left panel: Contour plot of the three-well potential in (3.8). Right panel: The
invariant distribution, exp(−βV ), of the Markov process in (1.1) for the inverse temperature β=1.67
indicates metastability.

For the inverse temperature β=1.67, the invariant distribution µ∝ exp(−βV ) is
shown in the right panel of Figure 3.5. The sharp peaks located at the minima of the
potential indicate that the dynamics (1.1) are metastable, i.e., the process spends a
long time in the vicinity of a minimum before it makes a transition to another well.
In other words, the process exhibits a slow time scale which prevents the process from
fast equilibrating, implying slow convergence of any sampling procedure.

The convergence of the schemes is compared using three differently sized grids,
M =20,40,60, each covering the same rectangular domain Ω=[−2,2]× [−1.5,2.5]; for
a detailed description of the numerical experiment see the previous section. The
discrete Boltzmann distribution is sufficiently accurately computed on these grids
by using quadrature. The expected numerical error in (3.6) is approximated by an
average, 〈‖π̂− p̂(T )‖1〉, computed from L=1000 realizations where each realization
starts in the same state, namely, in the center of the cell covering the point (−1,0)
being the center of the left minimum.

The average l1-error as a function of the total time T =10000,20000, . . . ,100000 is
illustrated in Figure 3.6. As one can see, the convergence of the methods considerably
differs on the coarsest grid (see left panel). The double logarithmic plot reveals
geometric convergence of the metropolized Euler-Maruyama scheme with rate 1/2,
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Figure 3.6. Convergence of the schemes with respect to the discrete Boltzmann distribution
π̂ is illustrated by the average l1-error as a function of the total time T =10000,20000,··· ,100000.
The MJP (solid line) is compared to Metropolis-Euler-Maruyama scheme (dashed lines) using three
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Figure 3.7. The graph shows the first nontrivial eigenvalue, λ2<0, of the generator matrix A

(defined in (2.8) as a function of the total number of discretization boxes. The quick convergences
indicate that the MJP, even for a coarse grid well, captures the essential dynamics of the underlying
SDE. Results for M =20,40,... ,300 and β=1.67.

but the MJP converges at a slower rate. Even worse, the average 〈‖π̂− p̃(T )‖1〉 seems
to be bounded from below by a constant. Explaining this behavior is simple: the lower
bound (as indicated by the dashed line) is the error ‖π− π̂‖1. The graph particularly
shows that the observable p̃(T ) is almost converged at the final time T =100000. The
plots in the middle and in the right panel reveal that the convergence on a finer but
still coarse grid (M =40,60) is comparable with the convergence of the Metropolis-
adjusted Euler-Maruyama scheme (which is also reversible).

Next we turn our attention to the first non-trivial eigenvalue, λ2<0, of the genera-
tor matrix A as a function of the total number of discretization boxes. The eigenvalue
λ2 indicates the slowest time scale of the MJP which, here, is the transition process
between the two metastable regions in the three-well potential (cf. Fig. 3.5).3 As

3Notice that the numerical computation of the eigenvalues and vectors of the generator matrix A

is well-conditioned since A is algebraically similar to a symmetric matrix, diag(π1/2)Adiag(π−1/2)
with π being the stationary distribution of the MJP.
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one can see in Figure 3.7, the eigenvalue λ2 quickly converges as the number of the
boxes increases (M =20,40,60, . . . ,300). Particularly, the graph shows that even for a
coarse discretization, e.g., M =40, the essential dynamics of the SDE, i.e., the hopping
between the two major metastable sets is well captured by the MJP.

4. Conclusion and outlook

In this paper we have developed a numerical algorithm based on a finite volume
discretization of the infinitesimal generator L of stochastic differential equations of
Smoluchowski type. The resulting discretized operator, A, can be interpreted as the
infinitesimal generator (rate matrix) of a Markov jump process (MJP) on the chosen
grid. By simulating the jump process one can then generate trajectories on the dis-
cretized state space (as opposed to discrete-time trajectories as in standard numerical
discretization of SDEs). We have shown that our numerical method preserves impor-
tant properties associated with the original continuous process such as the invariant
measure, the forward-backward dichotomy and detailed balance (reversibility), inde-
pendently of the grid size. Since the discretization preserves detailed balance, the
eigenvalues of the discretized infinitesimal generator remain real-valued.

We have also shown with some simple numerical examples that our discretiza-
tion is suitable for solving boundary value problems as they arise in Transition Path
Theory for, e.g., detecting transition mechanisms in molecules, even on a coarse grid.
Moreover we have demonstrated that the discrete MJP provides an (ergodic) sam-
pling scheme that allows for computing the discretized Boltzmann distribution with-
out bias, further being exponentially convergent with a rate that is comparable to a
Metropolis-adjusted Euler-Maruyama scheme.

There are some issues that arise from any space discretization that we should
mention: When the dimension of state space is too large, a spatial discretization by
boxes is clearly infeasible. We are currently investigating the possibility of directly
computing coarse-grained generator matrices when the system exhibits temporal or
spatial scale separation, in which case averaging principles or homogenization theory
applies. Here we briefly present the main idea behind this. It is often the case that
complex systems present time-scale separation between many fast, irrelevant degrees
of freedom which can be “averaged out” in favor of the remaining slow, important di-
rections [27]. Our numerical method preserves the structure of such averaged systems
in the sense that the following diagram commutes,











dxt=−∇xV (xt,yt)dt+
√
2σdWt,

dyt=− 1
ǫ∇yV (xt,yt)dt+

√

2σ
ǫ dWt,

FVA for full system−−−−−−−−−−−−→ u̇=
(

A1+
1
ǫA0

)

u





y

Averaging for SDE’s Averaging for MJP





y

dXt=−∇xΨ(Xt)dt+
√
2σdWt

FVA for averaged system−−−−−−−−−−−−−−−→ U̇= ĀU.

In the diagram above, y are the fast, high dimensional directions, while x rep-
resents the slow and, hopefully, low-dimensional directions which are relevant in the
system, and ǫ≪1 is the time-scale separation parameter. The effective equation for
the averaged dynamics Xt involves the computation of the free energy

Ψ(x)=−β−1 lnZ(x), Z(x)=

∫

Sy

e−βV (x,y)dy.

The FVA method preserves this structure in the sense that averaging the full MJP
approximation results in a new jump process whose transition rates are precisely
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the equivalent of the transition rates (2.8) for the free energy case. With this in
mind, effective coefficients such as free energy, Fixman potential or effective drift
and diffusivity (see [36, 23]) can then be recovered and computed consistently from
the continuous state process and may be estimated from short simulations of the
high dimensional system (e.g., using Monte Carlo sampling). Such an approach is
much in the spirit of heterogeneous multiscale methods [9] and will be addressed in a
forthcoming article.

A further extension of the finite volume scheme, that we mention here only for
completeness, is the formulation of the method on unstructured meshes, e.g., Delaunay
triangulation involving an orthogonality condition. In order to avoid the combinatorial
explosion in the number of cells in higher dimensions this implies that one needs to
derive a priori error estimates as indicated in [3] to allow for adaptive mesh refinement.
Eventually, being independent of specific grid geometries would make the method
applicable to real world problems such as conformation dynamics of biomolecules.
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