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ON THE ORBITAL STABILITY OF SOLITARY WAVES FOR THE

2-COUPLED NONLINEAR SCHRÖDINGER SYSTEM∗

NGHIEM V. NGUYEN†

Abstract. The coupled nonlinear Schrödinger system
{

iut+uxx+(a|u|2+b|v|2)u=0,
ivt+vxx+(b|u|2+c|v|2)v=0,

where u,v are complex valued functions of (x,t)∈R
2, and a,b,c∈R was previously studied by Nguyen

and Wang. In that work, it was shown that for this system of equations, the interplay between
components of solutions in terms of the parameters a,b,c plays an important role in both the existence
and stability of solitary wave. In particular, it was proved that solitary wave solutions of this system
are orbitally stable when either 0<b<min{a,c}, or b>0 with b>max{a,c} and b2>ac. In this
manuscript, the orbital stability result obtained by Nguyen and Wang is further improved. It will
be shown that when a solitary wave is perturbed, the perturbed solution must stay close to a
solitary-wave profile in which the translation and phase parameters are prescribed functions of time.
Properties of these functions are then studied.
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1. Introduction

The coupled nonlinear Schrödinger (CNLS) system

{

iut+uxx+(a|u|2+b|v|2)u=0
ivt+vxx+(b|u|2+c|v|2)v=0

(1.1)

where u,v are complex valued functions of (x,t)∈R
2, and a,b,c∈R, arises physically

under conditions similar to those described by the well-understood cubic, nonlinear
Schrödinger (NLS) equation

iut+uxx±|u|2u=0. (1.2)

For example, in optical fibers and waveguides, propagation of the electromagnetic
waves is described by (1.1). When a= b= c=1, the CNLS system models physical
systems in which there are two wavetrains moving with nearly the same group
velocities. The CNLS system also arises in the Hartree-Fock theory for a double
condensate, i.e., a binary mixture of Bose-Einstein condensates in two different
hyperfine states. Readers are referred to the works [6, 12, 13, 24, 25] for the
derivation as well as applications of this system.

The system (1.1) has the following conserved quantities:

E(u,v)=

∫

R

[

|ux(x,t)|2+ |vx(x,t)|2−
a

2
|u(x,t)|4− c

2
|v(x,t)|4−b|u(x,t)|2|v(x,t)|2

]

dx,

(1.3)
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998 2-COUPLED NONLINEAR SCHRÖDINGER SYSTEM

P (u)=

∫ ∞

−∞

|u(x,t)|2dx, (1.4)

and

P (v)=

∫ ∞

−∞

|v(x,t)|2dx. (1.5)

In other words, when applied to sufficiently regular solutions
(

u(x,t),v(x,t)
)

of (1.1),
E and P are independent of t.

Solitary wave solutions of (1.1) of interest here have the form

(

u(x,t),v(x,t)
)

=
(

ei[(ω−
1

4
θ2)t+( 1

2
θx+m)]Aϕω(x−θt),ei[(ω−

1

4
θ2)t+( 1

2
θx+n)]Bϕω(x−θt)

)

(1.6)

for m,n real constants and ω,θ∈R, with ω− 1
4θ

2>0 and where A=
√

b−c
b2−ac >0 and

B=
√

b−a
b2−ac >0. An important special case arises when m=n=θ=0 and ω=Ω>0.

These special solutions

(

u(x,t),v(x,t)
)

=
(

eiΩtAφΩ(x),e
iΩtBφΩ(x)

)

, (1.7)

where

φΩ(ξ)=
√
2Ω sech(

√
Ω ξ), (1.8)

are often referred to as standing waves. Notice that the function φΩ must satisfy the
equation

−d
2φ

dx2
+Ωφ−|φ|2φ=0. (1.9)

In [17] (see also [18]), it was shown that those standing waves are indeed ground
states, that is, solutions that minimize energy E subject to a fixed charge P . Moreover,
these ground states are orbitally stable. In essence, the results obtained in [18] and
[17] take the following form. Suppose (eiΩtf,eiΩtg) is a ground-state solution of (1.1).
Then for every ǫ>0, there exists δ>0 such that if (u,v) is the solution of (1.1) with
initial data (u0,v0) that satisfies

inf
γ1,γ2,y∈R

{

‖u0−eiγ1f(·+y)‖H1 +‖v0−eiγ2g(·+y)‖H1

}

<δ

then

inf
θ1,θ2,y∈R

{

‖u(·,t)−eiθ1f(·+y)‖H1 +‖v(·,t)−eiθ2g(·+y)‖H1

}

<ǫ

for all t≥0. Define the orbit of the ground-state solutions to be the collection of all
translations in the spatial variable, together with the two phase shifts {

(

eiθ1f(x+

r),eiθ2g(x+r)
)

}r∈R. Then the above result states that the ground-state solutions are
orbitally stable.

While these results are attractive, they still leave open the question of the speed
with which the solution (u,v) propagates. For example, for the Korteweg-de Vries type
equations it is known that the bulk of the disturbance flowing out of the perturbation
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travels at a speed near to the speed of the unperturbed solitary wave. Another
interesting question is in regard to the phase with which the solution propagates.
Because the system (1.1) is invariant under the Galilean transformation

(

u(x,t),v(x,t)
)

→
(

e−i
1

4
θ2t+i 1

2
θxu(x−θt,t),e−i 14 θ2t+i 12 θxv(x−θt,t)

)

, θ∈R,

and the phase transformation
(

u(x,t),v(x,t)
)

→
(

eimu(x,t),einv(x,t)
)

, m,n∈R,

one can always obtain the solitary-wave solutions as in (1.6) from ground states, but
then it is not clear how the phase shifts will be affected in the previously stated
stability results.

In this manuscript, these questions will be addressed. It will be shown first
that when a ground state is perturbed, the perturbed solution must stay close to a
ground state profile in which the translation and phase parameters are prescribed
C1−functions of time. The precise statement for this first part is as follows.

Theorem 1.1. The ground-state solution (eiΩtAφΩ,e
iΩtBφΩ) is orbitally stable in

the sense that for any ǫ>0, there exists δ= δ(ǫ)>0 such that if

inf
γ1,γ2,y∈R

{

‖u0−eiγ1AφΩ(·+y)‖H1 +‖v0−eiγ2BφΩ(·+y)‖H1

}

<δ

then there are C1−mappings θ1,θ2,η : R→R for which the solution
(

u(x,t),v(x,t)
)

emanating from the initial data
(

u(·,0),v(·,0)
)

=(u0,v0) satisfies

‖u(·,t)−eiθ1(t)AφΩ(·−η(t))‖H1 +‖v(·,t)−eiθ2(t)BφΩ(·−η(t))‖H1 <ǫ

for all t≥0. Moreover,

η′(t)=O(ǫ),

θ′i(t)=Ω+O(ǫ)

for i=1,2 as ǫ→0, uniformly in t.

The central argument is based on the fact that, following the ideas introduced
in [8, 23], the functions η and θi are chosen to satisfy the following orthogonality
relations:

Re
{
∫ ∞

−∞

Aφ2Ω(x)φ
′
Ω(x)

(

e−iθ1(t)u
(

x+η(t),t
)

)

dx

+

∫ ∞

−∞

Bφ2Ω(x)φ
′
Ω(x)

(

e−iθ2(t)v
(

x+η(t),t
)

)

dx

}

=0;

Im
{
∫ ∞

−∞

Aφ3Ω(x)

(

e−iθ1(t)u
(

x+η(t),t
)

)

dx

}

=0;

Im
{
∫ ∞

−∞

Bφ3Ω(x)

(

e−iθ2(t)v
(

x+η(t),t
)

)

dx

}

=0.

(1.10)

Indeed, (1.10) results from the first-order conditions corresponding to minimizing the
function R(θ1,θ2,η) defined as

R(θ1,θ2,η)=Ω‖e−iθ1u(·+η)−AφΩ‖2L2 +Ω‖e−iθ2v(·+η)−BφΩ‖2L2

+‖e−iθ1u′(·+η)−Aφ′Ω‖2L2 +‖e−iθ2v′(·+η)−Bφ′Ω‖2L2

(1.11)
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and Equation (2.5) below, which is satisfied by the ground state.
Next, the result is extended to include solitary-wave solutions as well. The argu-

ment for this part is based on the following fact. For any pair (ω,θ)∈R×R such that

Ω=ω− 1

4
θ2>0, let ϕω=TθφΩ, where the operator Tθ :H

1
C
(R)→H1

C
(R) is defined by

(Tθu)(x)=exp

(

iθx

2

)

u(x)

for u∈H1
C
(R). Then if (eiΩtAφΩ,e

iΩtBφΩ) is a ground state of (1.1), then
(eiωtAϕω,e

iωtBϕω) is a solitary-wave solution of (1.1).
It will be shown further that the solution emanating from a perturbed solitary

wave travels at nearly the same speed and phase shifts as the unperturbed solitary
wave. Such a result is to be expected since a similar one has been established for
the cubic, nonlinear Schrödinger Equation (1.2), an equation that arises physically
under conditions similar to those described by (1.1) (see, for example, [8, 9, 23]). The
precise statement for this last part is as follows.

Theorem 1.2. The solitary-wave solutions (eiωtAϕω,e
iωtBϕω) of (1.1) are orbitally

stable in the sense that for any ǫ>0 given, there exists δ= δ(ǫ)>0 such that if

inf
γ1,γ2,y∈R

{

‖u0−eiγ1Aϕω(·+y)‖H1 +‖v0−eiγ2Bϕω(·+y)‖H1

}

≤ δ

then there are C1−mappings p1,p2,q : R→R for which the solution (u,v) of (1.1)
emanating from the initial data (u0,v0) satisfies

‖u(·,t)−eip1(t)Aϕω
(

·−q(t)
)

‖H1 +‖v(·,t)−eip2(t)Bϕω
(

·−q(t)
)

‖H1 ≤ ǫ

for all t≥0. Moreover, p1,p2 and q are close to ω and θ in the sense that

p′1(t)=ω+O(ǫ),

p′2(t)=ω+O(ǫ),

q′(t)=θ+O(ǫ)

as ǫ→0, uniformly in t.

Notation: For 1≤p≤∞, we denote by Lp=Lp(R) the space of all measurable

functions f on R for which the norm |f |p=
(∫∞

−∞
|f |pdx

)1/p
is finite for 1≤p<∞

and |f |∞ is the essential supremum of |f | on R. Whether we intend the functions
in Lp to be real-valued or complex-valued will be clear from the context. H1

C
(R)

is the usual Sobolev space consisting of measurable, complex-valued functions such
that both f and fx are in L2. Let X be a Banach space defined by the Carte-
sian product H1

C
(R)×H1

C
(R). If T >0 and Y is any Banach space, we denote by

C([0,T ],Y ) the Banach space of continuous maps f : [0,T ]→Y , with norms given by
‖f‖C([0,T ],Y )=supt∈[0,T ]‖f(t)‖Y .

This manuscript is organized as follows. In Section 2, a review of existing theory
for the 2-coupled nonlinear Schrödinger system (1.1) is presented, along with a sum-
mary of the main contribution of this manuscript. In Section 3, it will be shown that
the orbital stability result obtained in [17] for ground states can be improved. The
improvement is made by picking unique trajectory and phase shifts that the perturbed
ground states must follow. Properties of these maps are also studied in detail. These
results are then extended in Section 4 to include solitary-wave solutions as well.



N. V. NGUYEN 1001

2. Review of existing theory

In the case when a= c>−1, b=1 (also known as the symmetric case), the non-
linear Schrödinger system (1.1) is known to have explicit solitary wave solution of the
form (see, for example, [18])

(uω(x,t),vω(x,t))=

(

ei(ω−
1

4
θ2)t+i 1

2
θx+imϕ̃ω(x−θt),ei(ω−

1

4
θ2)t+i 1

2
θx+inϕ̃ω(x−θt)

)

(2.1)
for m,n real constants and ω,θ∈R with ω− 1

4θ
2>0 and

ϕ̃ω(x−θt)=
√

2ω

a+1
sech

(√
ω(x−θt)

)

. (2.2)

Since the system (1.1) is invariant under the Galilean and phase transformations,
one may consider the case when θ=m=n=0 and ω=Ω>0 in (2.1) to obtain the
following standing waves :

(

uΩ(x,t),vΩ(x,t)
)

=

(

eiΩt
√

1

a+1
φΩ(x),e

iΩt

√

1

a+1
φΩ(x)

)

, (2.3)

where φΩ(x) is given as in (1.8).

It has been proved by Ohta [18] that in fact these standing waves are ground
states; moreover, these ground state solutions are stable. In particular, his result is
as follows:

Let a= c>−1 and b=1. For any Ω>0, the ground states (uΩ(x,t),vΩ(x,t)) are
orbitally stable in the following sense: for any ǫ>0, there exists δ>0 such that if
(u0,v0)∈X satisfies

inf
γ1,γ2,y∈R

{

‖u0−
√

1

a+1
eiγ1 φΩ(·+y)‖H1 +‖v0−

√

1

a+1
eiγ2 φΩ(·+y)‖H1

}

<δ,

then the solution
(

u(x,t),v(x,t)
)

with
(

u(·,0),v(·,0)
)

=(u0,v0) satisfies

sup
t∈R

inf
θ1,θ2,y∈R

{

‖u(·,t)−eiθ1
√

1

a+1
φΩ(·+y)‖H1

+‖v(·,t)−eiθ2
√

1

a+1
φΩ(·+y)‖H1

}

<ǫ.

Ohta’s result was extended to include more general settings in [17], namely, the
nonsymmetric case a 6= c. Precisely, it was assumed that either

(A1) 0<b<min{a,c};
or

(A2) b>0 with b>max{a,c} and b2>ac.
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For these values of a,b, and c and for some fixed Ω>0, consider the standing
waves

(

eiΩt
√

b−c
b2−ac φΩ(x),e

iΩt

√

b−a
b2−ac φΩ(x)

)

, (2.4)

where φΩ is as given in (1.8). These standing waves are indeed ground states and
they are stable. The precise results (see [17]) are as follows.

Theorem 2.1. Let a,b, and c be real numbers such that either (A1) or (A2) is
satisfied. Then, for any Ω>0 the ground-state solutions given by (2.4)-(1.8) are
orbitally stable in the following sense: for any ǫ>0, there exists δ>0 such that if
(u0,v0)∈X satisfies

inf
γ1,γ2,y∈R

{∥

∥u0−
√

b−c
b2−ac e

iγ1φΩ(·+y)
∥

∥

H1
+
∥

∥v0−
√

b−a
b2−ac e

iγ2φΩ(·+y)
∥

∥

H1

}

<δ

then the solution
(

u(x,t),v(x,t)
)

with
(

u(·,0),v(·,0)
)

=(u0,v0) satisfies

inf
θ1,θ2,y∈R

{∥

∥u−
√

b−c
b2−ac e

iθ1φΩ(·+y)
∥

∥

H1
+
∥

∥v−
√

b−a
b2−ac e

iθ2φΩ(·+y)
∥

∥

H1

}

<ǫ

uniformly for all t≥0.

In the next section, it will be shown that instead of allowing the ground-state
solutions to wander around at random, one can pick unique trajectory and phase
shifts that the ground-state solutions must follow. Properties of these maps are then
studied.

Remark 2.2. 1) In the last several years there have been intensive works studying
the existence of standing waves for nonlinear Schrödinger systems of the form studied
in this paper; for example, see [1, 2, 3, 4, 5, 11, 14, 15, 19] and references therein.
Most of these papers are concerned with the corresponding nonlinear elliptic systems
and various methods have been employed to construct solutions for various parameter
regimes.

2) In [10] a different variational setting than the one in [17] is used to prove the
stability of solitary waves for (1.1), namely using the sum of the L2-norms of the two
components. The two variational problems can have different solitary-wave solutions.
In fact, the last two pages of [10] show that in the case when a= c=α and b<α, the
solitary waves which solve the variational problem in [17] are not the same as the
solitary waves which solve the variational problem in [10].

3) In [20, 21], Song proves stability of standing waves to a system of Schrödinger
equations with combined power-type nonlinearities, which includes (1.1) when the
dimension is n=1. However, due to the nature of problem being posed in higher
dimensions, uniqueness of the ground-state solutions is not studied in [20, 21]; more-
over, the range of stability for the coefficients a,b,c is smaller compared to the one
obtained in [17] (namely, in [20] a,b,c are strictly positive while a,c are allowed to be
negative as well in [17]).

4) Notice that for any fixed Ω>0, the ground states satisfy

{

−Aφ′′Ω+ΩAφΩ=(a|AφΩ|2+b|BφΩ|2)AφΩ,
−Bφ′′Ω+ΩBφΩ=(b|AφΩ|2+c|BφΩ|2)BφΩ,

(2.5)
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where A=
√

b−c
b2−ac >0 and B=

√

b−a
b2−ac >0. In [22], Wei and Yao have established

uniqueness of positive solutions to (2.5) for a range of a,b, and c. They proved that
for 0≤ b /∈{min(a,c),max(a,c)}, all solutions are given by (AφΩ,BφΩ). In fact, when
b>0 all possible solitary waves are classified and the nondegeneracy is also proven in
[22].

3. Result for ground-state solutions

As noted in [8, 23], the crucial argument for choosing the functions θ1,θ2,η is
deduced from appreciating that the first-order conditions corresponding to minimizing
the function

R(θ1,θ2,η)=Ω‖e−iθ1u(·+η)−AφΩ‖2L2 +Ω‖e−iθ2v(·+η)−BφΩ‖2L2

+‖e−iθ1u′(·+η)−Aφ′Ω‖2L2 +‖e−iθ2v′(·+η)−Bφ′Ω‖2L2

(3.1)

produce the orthogonality relations

Re
{
∫ ∞

−∞

Aφ2Ω(x)φ
′
Ω(x)

(

e−iθ1u
(

x+η,t
)

)

dx

+

∫ ∞

−∞

Bφ2Ω(x)φ
′
Ω(x)

(

e−iθ2v
(

x+η,t
)

)

dx

}

=0;

Im
{
∫ ∞

−∞

Aφ3Ω(x)

(

e−iθ1u
(

x+η,t
)

)

dx

}

=0;

Im
{
∫ ∞

−∞

Bφ3Ω(x)

(

e−iθ2v
(

x+η,t
)

)

dx

}

=0.

(3.2)

Following this idea, we consider the vector-valued function Q :X×R
3−→R

3 defined
by

Q
(

(ψ1,ψ2),θ1,θ2,η
)

=(F,G,H),

where

F
(

(ψ1,ψ2),θ1,θ2,η
)

=Re
{
∫ ∞

−∞

Aφ2Ω(x)φ
′
Ω(x)

(

e−iθ1ψ1(x+η)

)

dx

+

∫ ∞

−∞

Bφ2Ω(x)φ
′
Ω(x)

(

e−iθ2ψ2(x+η)

)

dx

}

;

G
(

(ψ1,ψ2),θ1,θ2,η
)

=Im
{
∫ ∞

−∞

Aφ3Ω(x)

(

e−iθ1ψ1(x+η)

)

dx

}

;

H
(

(ψ1,ψ2),θ1,θ2,η
)

=Im
{
∫ ∞

−∞

Bφ3Ω(x)

(

e−iθ2ψ2(x+η)

)

dx

}

.

(3.3)

The following Lemma is needed in defining the advertised C1−maps.

Lemma 3.1. When evaluating at
(

(AφΩ,BφΩ),0,0,0
)

, one has

a) Q
(

(AφΩ,BφΩ),0,0,0
)

=(0,0,0);

b)
∂Q

∂(θ1,θ2,η)

(

(AφΩ,BφΩ),0,0,0
)

<0.
(3.4)
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Proof. Statement a) follows easily from the fact that φΩ(x)=
√
2Ω sech(

√
Ωx)

and
∫ ∞

−∞

sech4x dx=
4

3
.

Another calculation reveals that at the point
(

(AφΩ,BφΩ),0,0,0
)

, the value for
∂Q

∂(θ1,θ2,η)
is

det







0 0 −(A2+B2)
∫∞

−∞
φ2Ω(x)

(

φ′Ω(x)
)2
dx

−A2
∫∞

−∞
φ4Ω(x)dx 0 0

0 −B2
∫∞

−∞
φ4Ω(x)dx 0







=−A2B2(A2+B2)

(
∫ ∞

−∞

φ4Ω(x)dx

)2(∫ ∞

−∞

φ2Ω(x)
(

φ′Ω(x)
)2
dx

)

<0,

which proves statement b).

For β>0, define an X−neighborhood of the trajectory of (eiθ1AφΩ,e
iθ2BφΩ) by

Uβ=
{

(ψ1,ψ2)∈X : inf
θ1,θ2,η∈R

{

‖e−iθ1ψ1(·+η)−AφΩ‖H1

+‖e−iθ2ψ2(·+η)−BφΩ‖H1

}

<β

}

.

The next Lemma provides a choice of functions θ1,θ2,η by demanding the satisfaction
of the orthogonality condition (3.3).

Lemma 3.2. Fix Ω>0. There exist β>0 and C1−maps

θ1,θ2,η : Uβ−→R

such that for all (ψ1,ψ2)∈Uβ the following statements hold:

1) Re
{
∫ ∞

−∞

Aφ2Ω(x)φ
′
Ω(x)

(

e−iθ1(ψ1,ψ2)ψ1

(

x+η(ψ1,ψ2)
)

)

dx

+

∫ ∞

−∞

Bφ2Ω(x)φ
′
Ω(x)

(

e−iθ2(ψ1,ψ2)ψ2

(

x+η(ψ1,ψ2)
)

)

dx

}

=0;

2) Im
{
∫ ∞

−∞

Aφ3Ω(x)

(

e−iθ1(ψ1,ψ2)ψ1

(

x+η(ψ1,ψ2)
)

)

dx

}

=0;

3) Im
{
∫ ∞

−∞

Bφ3Ω(x)

(

e−iθ2(ψ1,ψ2)ψ2

(

x+η(ψ1,ψ2)
)

)

dx

}

=0,

(3.5)

with θi(AφΩ,BφΩ)=0 for i=1,2, η(AφΩ,BφΩ)=0, and

Q
(

(ψ1,ψ2),θ1(ψ1,ψ2),θ2(ψ1,ψ2),η(ψ1,ψ2)
)

=(0,0,0).

Moreover,

η
(

ψ1(·+τ),ψ2(·+τ)
)

=η(ψ1,ψ2)+τ. (3.6)
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Proof. It is clear that Q is C1 on U ×R
3. In fact, the derivatives of Q with

respect to components η and θi exist up to any order. Now, for any ρ>0, denote the
ball centered at (eiθ1AφΩ,e

θ2BφΩ)∈X with radius ρ as

Bρ(eiθ1AφΩ,eiθ2BφΩ)
=
{

(ψ1,ψ2)∈X :‖e−iθ1ψ1−AφΩ‖H1 +‖e−iθ2ψ2−BφΩ‖H1 <ρ
}

.

The implicit function theorem together with Lemma 3.1 imply the existence of
positive numbers β,r and unique C1−functions

θ1,θ2,η : Bβ(eiθ1AφΩ,eiθ2BφΩ)−→ (−r,r)

such that for all (ψ1,ψ2)∈Bβ(eiθ1AφΩ,eiθ2BφΩ),

θi(AφΩ,BφΩ)=0, i=1,2;

η(AφΩ,BφΩ)=0; and

Q
(

(ψ1,ψ2),θ1(ψ1,ψ2),θ2(ψ1,ψ2),η(ψ1,ψ2)
)

=(0,0,0).

The first three statements now follow. To see that η
(

ψ1(·+τ),ψ2(·+τ)
)

=η(ψ1,ψ2)+

τ , let (ψ1,ψ2)∈Bβ(eiθ1AφΩ,eiθ2BφΩ) and τ ∈R be such that
(

ψ1(·+τ),ψ2(·+τ)
)

∈
Bβ(eiθ1AφΩ,eiθ2BφΩ). Then the translation invariance of Lebesgue measure says that

1) Re
{
∫ ∞

−∞

Aφ2Ω(x+τ)φ
′
Ω(x+τ)

(

e−iθ1(ψ1,ψ2)ψ1

(

x+η(ψ1,ψ2)+τ
)

)

dx

+

∫ ∞

−∞

Bφ2Ω(x+τ)φ
′
Ω(x+τ)

(

e−iθ2(ψ1,ψ2)ψ2

(

x+η(ψ1,ψ2)+τ
)

)

dx

}

=0;

2) Im
{
∫ ∞

−∞

Aφ3Ω(x+τ)

(

e−iθ1(ψ1,ψ2)ψ1

(

x+η(ψ1,ψ2)+τ
)

)

dx

}

=0;

3) Im
{
∫ ∞

−∞

Bφ3Ω(x+τ)

(

e−iθ2(ψ1,ψ2)ψ2

(

x+η(ψ1,ψ2)+τ
)

)

dx

}

=0.

As the value of η(ψ1,ψ2) is unique, it must be the case that

η
(

ψ1(·+τ),ψ2(·+τ)
)

=η(ψ1,ψ2)+τ.

The mapping η can be easily extended to all of Uβ , where β is the radius assured by
the implicit-function theorem. If for some τ ∈R,

‖e−iθ1ψ1(·+τ)−AφΩ‖H1 +‖e−iθ2ψ2(·+τ)−BφΩ‖H1 <β,

then define η(ψ1,ψ2)=η
(

(ψ1(·−τ),ψ2(·−τ))
)

+τ . This definition makes sense since
if

‖e−iθ1ψ1(·+τ1)−AφΩ‖H1 +‖e−iθ2ψ2(·+τ1)−BφΩ‖H1 <β,

then both
(

ψ1(·−τ),ψ2(·−τ)
)

and
(

ψ1(·−τ1),ψ2(·−τ1)
)

belong to
Bβ(eiθ1AφΩ,eiθ2BφΩ). Since (3.6) holds in Bβ(eiθ1AφΩ,eiθ2BφΩ), it follows
that

η
(

ψ1(·−τ1),ψ2(·−τ1)
)

=η
(

ψ1(·−τ−(τ1−τ)),ψ2(·−τ−(τ1−τ))
)

=η
(

ψ1(·−τ),ψ2(·−τ)
)

−τ1+τ,
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which is the same as

η
(

ψ1(·−τ1),ψ2(·−τ1)
)

+τ1=η
(

ψ1(·−τ),ψ2(·−τ)
)

+τ.

This completes the proof of Lemma 3.2.

Remark 3.3. It follows immediately from Lemma 3.2 and the definition of the
extension of η to all of Uβ that, for any ǫ with 0<ǫ<r, there exists a δ with 0<δ<β
such that for all (ψ1,ψ2)∈Bδ

(

eiθ1AφΩ(·+τ),eiθ2BφΩ(·+τ)
)

,

|η(ψ1,ψ2)−τ |<ǫ.

Because of the stability result stated in Theorem 2.1,
(

u(·,t),v(·,t)
)

∈Uβ and hence

the corresponding functions θ1,θ2, and η are defined on
(

u(·,t),v(·,t)
)

; one can now
consider the functions θ1,θ2, and η from R to R as

η(t)=η
(

u(·,t),v(·,t)
)

, (3.7)

and for i=1,2,

θi(t)=θi
(

u(·,t),v(·,t)
)

. (3.8)

Notice that since (u,v) is a solution of (1.1), it must satisfy

{

ut= i
[

uxx+(a|u|2+b|v|2)u
]

,

vt= i
[

vxx+(b|u|2+c|v|2)v
]

.
(3.9)

Proposition 3.4. The function Q as defined in (3.3) is continuously differentiable
with respect to t.

Proof. It has been proved (Chapter 4 in [9]) that for any (u(x,0),v(x,0))∈X,
there exists a unique solution

(

u(x,t),v(x,t)
)

of (1.1) in C(R;X) emanating from
(u(x,0),v(x,0)), and such that (u(x,t),v(x,t)) satisfies

P (u(x,t))=P (u(x,0)), P (v(x,t))=P (v(x,0)),

E(u(x,t),v(x,t))=E(u(x,0),v(x,0)).

Thus
(

u(x,t),v(x,t)
)

is differentiable as a distribution-valued function of t with
(ut,vt)∈C(R,H−1×H−1). Hence for any functions χ1,χ2 in the Schwarz class S,
the action

〈

(u,v),(χ1,χ2)
〉

=

∫ ∞

−∞

[u(x,t)χ1(x)+v(x,t)χ2(x)]dx

of u(·,t) and v(·,t) on χ1 and χ2 will be a differentiable function of t, with derivative

〈

(ut,vt),(χ1,χ2)
〉

=

〈

(

i[uxx+a|u|2u+b|v|2u],χ1

)

,
(

i[vxx+b|u|2v+c|v|2v],χ2

)

〉

,

which is a continuous function of t, where an application of (3.9) is used. Because
φΩ∈S, it follows that Q is continuously differentiable with respect to t.
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We now proceed to show that the orbital stability result obtained in [17] for
ground states can be improved in the sense explained above. Recall that the ground
states are given by (2.4)-(1.8).

Theorem 3.5. The ground-state solution (eiΩtAφΩ,e
iΩtBφΩ) is orbitally stable in

the sense that for any ǫ>0, there exists δ= δ(ǫ)>0 such that if

inf
γ1,γ2,y∈R

{

‖u0−eiγ1AφΩ(·+y)‖H1 +‖v0−eiγ2BφΩ(·+y)‖H1

}

<δ

then there are C1−mappings θ1,θ2,η : R→R for which the solution
(

u(x,t),v(x,t)
)

emanating from the initial data
(

u(·,0),v(·,0)
)

=(u0,v0) satisfies

‖u(·,t)−eiθ1(t)AφΩ(·−η(t))‖H1 +‖v(·,t)−eiθ2(t)BφΩ(·−η(t))‖H1 <ǫ

for all t≥0. Moreover,

η′(t)=O(ǫ),

θ′i(t)=Ω+O(ǫ)

for i=1,2 as ǫ→0, uniformly in t.

Proof. Proposition 3.4 guarantees that the function Q is continuously differen-
tiable with respect to t, hence we can differentiate Q

(

u(·,t),v(·,t),θ1(t),θ2(t),η(t)
)

=
(0,0,0) with respect to the variable t to obtain the following equations:

1) Re
{
∫ ∞

−∞

(

utAe
−iθ1(t)φ2Ωφ

′
Ω− iuAe−iθ1(t)θ′1(t)φ2Ωφ′Ω−η′(t)uAe−iθ1(t)φ2Ωφ′′Ω

)

dx

+

∫ ∞

−∞

(

−2uAe−iθ1(t)φΩ(φ
′
Ω)

2η′(t)−2vBe−iθ2(t)φΩ(φ
′
Ω)

2η′(t)

)

dx

+

∫ ∞

−∞

(

vtBe
−iθ2(t)φ2Ωφ

′
Ω− ivBe−iθ2(t)θ′2(t)φ2Ωφ′Ω−η′(t)vBe−iθ2(t)φ2Ωφ′′Ω

)

dx

}

=0;

2) Im
{
∫ ∞

−∞

(

utAe
−iθ1(t)φ3Ω− iuAe−iθ1(t)θ′1(t)φ3Ω−3η′(t)uAe−iθ1(t)φ2Ωφ

′
Ω

)

dx

}

=0;

3) Im
{
∫ ∞

−∞

(

vtBe
−iθ2(t)φ3Ω− ivBe−iθ2(t)θ′2(t)φ3Ω−3η′(t)vBe−iθ2(t)φ2Ωφ

′
Ω

)

dx

}

=0,

(3.10)

where u=u
(

x+η(t),t
)

, v=v
(

x+η(t),t
)

and φΩ=φΩ(x). Define the functions h and
k by

h(x,t)= e−iθ1(t)u
(

x+η(t),t
)

−AφΩ(x)=h1+ ih2,
k(x,t)= e−iθ2(t)v

(

x+η(t),t
)

−BφΩ(x)=k1+ ik2.
(3.11)

Then

e−iθ1(t)u=AφΩ+h1+ ih2 and e−iθ2(t)v=BφΩ+k1+ ik2.

The orbital stability result for
(

eiΩtAφΩ,e
iΩtBφΩ

)

obtained in [17] coupled with
Lemma 3.2 imply the existence of δ>0 such that if

inf
γ1,γ2,y∈R

{

‖u0−Aeiγ1φΩ(·+y)‖H1 +‖v0−Beiγ2φΩ(·+y)‖H1

}

<δ
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then the solution
(

u(x,t),v(x,t)
)

with
(

u(·,0),v(·,0)
)

=(u0,v0) satisfies

‖h(x,t)‖H1 +‖k(x,t)‖H1 <ǫ. (3.12)

Attention is now turned to the functions η and θi. Using the definitions of h,k and
the fact that (u,v) must solve (3.9), the first equation in (3.10) can be expressed in
terms of h and k rather than u and v as

∫ ∞

−∞

(

Ah′2
(

φ2Ωφ
′
Ω

)′−(a|u|2+b|v|2)h2Aφ2Ωφ′Ω+θ′1(t)Ah2φ
2
Ωφ

′
Ω−η′(t)Ah1φ2Ωφ′′Ω

−2η′(t)A2φ2Ω(φ
′
Ω)

2−2η′(t)h1AφΩ(φ
′
Ω)

2−η′(t)A2φ3Ωφ
′′
Ω

)

dx

+

∫ ∞

−∞

(

Bk′2
(

φ2Ωφ
′
Ω

)′−(b|u|2+c|v|2)k2Bφ2Ωφ′Ω+θ′2(t)Bk2φ
2
Ωφ

′
Ω−η′(t)Bk1φ2Ωφ′′Ω

−2η′(t)B2φ2Ω(φ
′
Ω)

2−2η′(t)k1BφΩ(φ
′
Ω)

2−η′(t)B2φ3Ωφ
′′
Ω

)

dx=0.

Because of (3.12) and the fact that ‖u(·,t)‖L2 +‖v(·,t)‖L2 ≤C for some constant C>0
independent of t, one can readily justify that

η′(t)=O(ǫ)+O(ǫ)

(

θ′1(t)+θ
′
2(t)

)

(3.13)

as ǫ→0, uniformly in t. Similarly, the second equation in (3.10) can be rewritten as

∫ ∞

−∞

(

A2φ′′Ωφ
3
Ω+Ah1(φ

3
Ω)

′′+A2φ4Ω(a|u|2+b|v|2)+(a|u|2+b|v|2)Ah1φ3Ω

−θ′1(t)A2φ4Ω−θ′1(t)Ah1φ3Ω−3η′(t)Ah2φ
2
Ωφ

′
Ω

)

dx=0,

from which one can deduce, using (2.5)-(3.12), that

θ′1(t)

∫ ∞

−∞

A2φ4Ω=

∫ ∞

−∞

A2φ3Ωφ
′′
Ω+A2φ4Ω(a|u|2+b|v|2)+O(ǫ)+O(ǫ)η′(t) (3.14)

as ǫ→0, uniformly in t. It is straightforward to see that

∫ ∞

−∞

A2φ4Ω(a|u|2+b|v|2)=
∫ ∞

−∞

A2φ4Ω(a|AφΩ|2+b|BφΩ|2)+O(ǫ) (3.15)

as ǫ→0, uniformly in t. It is then concluded using (3.14), (3.15), and the first equation
in (2.5) that

θ′1(t)=Ω+O(ǫ)+O(ǫ)η′(t) (3.16)

as ǫ→0, uniformly in t. Likewise, the last equation in (3.10) can be written in terms
of h and k as

∫ ∞

−∞

(

B2φ′′Ωφ
3
Ω+Bk1(φ

3
Ω)

′′+B2φ4Ω(b|u|2+c|v|2)+(b|u|2+c|v|2)Bk1φ3Ω

−θ′2(t)B2φ4Ω−θ′2(t)Bk1φ3Ω−3η′(t)Bk2φ
2
Ωφ

′
Ω

)

dx=0,
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which gives

θ′2(t)=Ω+O(ǫ)+O(ǫ)η′(t) (3.17)

as ǫ→0, uniformly in t. We can now deduce from (3.13), (3.16) and (3.17) that

η′(t)=O(ǫ),

θ′i(t)=Ω+O(ǫ)

for i=1,2 as ǫ→0, uniformly in t.

4. Result for solitary-wave solutions

The result obtained in Section 3 is now broadened to include solitary-wave so-
lutions and improved by providing a more detailed view of the connection between
the functions η and θi. Using the same approach employed in [8], a relation between
ground states and solitary-wave solutions is first exhibited as follows. For θ∈R, define
the operator Tθ :H

1
C
(R)→H1

C
(R) by

(Tθu)(x)=exp

(

iθx

2

)

u(x)

for u∈H1
C
(R). Then for any θ∈R,

(1+ |θ|)−1‖u‖H1 ≤‖Tθu‖H1 ≤ (1+ |θ|)‖u‖H1 . (4.1)

For any pair (ω,θ)∈R×R such that Ω=ω− 1
4θ

2>0, let

ϕω=TθφΩ. (4.2)

A straightforward calculation reveals the following lemma whose proof is omitted.

Lemma 4.1. If (eiΩtAφΩ,e
iΩtBφΩ) is a ground state solution of (1.1), then

(eiωtAϕω,e
iωtBϕω) is a solitary-wave solution of (1.1).

The stability theory for solitary-wave solutions is as follows.

Theorem 4.2. The solitary-wave solutions (eiωtAϕω,e
iωtBϕω) are orbitally stable

in the sense that for any ǫ>0 given, there exists δ= δ(ǫ)>0 such that if

inf
γ1,γ2,y∈R

{

‖u0−eiγ1Aϕω(·+y)‖H1 +‖v0−eiγ2Bϕω(·+y)‖H1

}

≤ δ

then there are C1−mappings p1,p2,q : R→R for which the solution (u,v) of (1.1)
emanating from the initial data (u0,v0) satisfies

‖u(·,t)−eip1(t)Aϕω
(

·−q(t)
)

‖H1 +‖v(·,t)−eip2(t)Bϕω
(

·−q(t)
)

‖H1 ≤ ǫ

for all t≥0. Moreover, p1,p2, and q are close to ω and θ in the sense that

p′1(t)=ω+O(ǫ),

p′2(t)=ω+O(ǫ),

q′(t)=θ+O(ǫ)

as ǫ→0, uniformly in t.
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We need the following calculations before we present the proof of Theorem 4.2.
For (u,v) a solution of the initial-value problem for (1.1) with initial data (u0,v0),
define

f(x,t)= ei(
1

2
θx− 1

4
θ2t)u(x−θt,t);

g(x,t)= ei(
1

2
θx− 1

4
θ2t)v(x−θt,t).

(4.3)

The proof of the following Lemma is straightforward, hence omitted.

Lemma 4.3. Let (u,v) be a solution of the initial-value problem for (1.1) with initial
data (u0,v0). Then the pair (f,g) defined as in (4.3) is a solution of the initial-value
problem

{

ift+fxx+(a|f |2+b|g|2)f =0,

igt+gxx+(b|f |2+c|g|2)g=0

with initial data
(

f(x,0),g(x,0)
)

=(f0,g0)=(Tθu0,Tθv0).

Consider initial data (f0,g0) which lies close to a solitary wave (eiωtAϕω,e
iωtBϕω)

in X and define

(u0,v0)=(T−θf0,T−θg0).

Let (f,g) and (u,v) be the solutions of (1.1) with initial data (f0,g0) and (u0,v0)
respectively. Notice that from (4.1),

‖u0−eiγ1AφΩ‖H1 +‖v0−eiγ2BφΩ‖H1

=‖T−θf0−eiγ1AT−θϕω‖H1 +‖T−θg0−eiγ1BT−θϕω‖H1

≤ (1+ |θ|)‖f0−eiγ1Aϕω‖H1 +(1+ |θ|)‖g0−eiγ2Bϕω‖H1 . (4.4)

Proof. (of Theorem 4.2.) Let ǫ>0 be fixed, let ǫ̃= ǫ/(1+ |θ|), and let δ be such
that the stability result established in Theorem 3.5 holds relative to ǫ̃ for the ground
state

(

eiΩtAφΩ(x,t),e
iΩtBφΩ(x,t)

)

, that is,

‖u(·,t)−eiθ1(t)AφΩ(·−η(t))‖H1 +‖v(·,t)−eiθ2(t)BφΩ(·−η(t))‖H1 <ǫ̃ (4.5)

for all t≥0, provided

inf
γ1,γ2,y∈R

{

‖u0−eiγ1AφΩ(·+y)‖H1 +‖v0−eiγ2BφΩ(·+y)‖H1

}

<δ.

But then according to (4.4),

inf
γ1,γ2,y∈R

{

‖u0−eiγ1AφΩ(·+y)‖H1 +‖v0−eiγ2BφΩ(·+y)‖H1

}

≤ δ

provided ‖f0−eiγ1Aϕω‖H1 +‖g0−eiγ2Bϕω‖H1 ≤ δ/(1+θ). Now, because of Lemma
4.3, it follows that

u(x,t)= e−i(
1

2
θx+ 1

4
θ2t)f(x+θt,t);

v(x,t)= e−i(
1

2
θx+ 1

4
θ2t)g(x+θt,t).
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Hence (4.5) can be rewritten as

∥

∥

∥

∥

e−
i

2
θx

{

e−
i

4
θ2tf(·+θt,t)−ei[θ1(t)+ 1

2
θη(t)]Aϕω

(

·−η(t)
)

}∥

∥

∥

∥

H1

∥

∥

∥

∥

e−
i

2
θx

{

e−
i

4
θ2tg(·+θ,t)−ei[θ2(t)+ 1

2
θη(t)]Bϕω

(

·−η(t)
)

}∥

∥

∥

∥

H1

≤ ǫ̃

for all t≥0. Using the above inequality and (4.1), it is concluded that

‖f(·,t)−ei
(

θ1(t)+
1

4
θ2t+ 1

2
θη(t)

)

Aϕω(·−η(t)−θt)‖H1

+‖g(·,t)−ei
(

θ2(t)+
1

4
θ2t+ 1

2
θη(t)

)

Bϕω(·−η(t)−θt)‖H1 ≤ (1+ |θ|)ǫ̃= ǫ
(4.6)

for all t≥0. Thus (eiωtAϕω,e
iωtBϕω) is seen to be orbitally stable in the sense

specified in the statement of the Theorem if one chooses

p1(t)=θ1(t)+
1

4
θ2t+

1

2
θη(t);

p2(t)=θ2(t)+
1

4
θ2t+

1

2
θη(t);

q(t)=η(t)+θt.

(4.7)

This completes the proof of Theorem 4.2.

5. Conclusion

The solitary-wave solutions of (1.1) have been shown to be orbitally stable in X.
Moreover, it was established that the solution emanating from a perturbed solitary
wave travels at nearly the same speed and phase shifts as the unperturbed solitary
wave.

There are, however, some very interesting questions that remain open. First, are
these waves stable to rougher perturbations? For example, it has been shown in [16]
that for the Korteweg-de Vries equation, the solitary waves are stable even in L2(R).
Second, are those solitary waves also stable in smaller spaces such as Hs

C
(R)×Hs

C
(R)

for s>1? Again, the solitary waves for the nonlinear Schrödinger equation (1.2)
and Korteweg-de Vries equation, for example, are known to be stable in Hk(R) for
k=2,3,4, . . . (see [7]).

Acknowledgement. The author would like to thank the referees for their valu-
able comments, suggestions and for pointing out some related references.
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