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THE WEAK CONVERGENCE ANALYSIS OF TAU-LEAPING
METHODS: REVISITED∗

YUCHENG HU† , TIEJUN LI‡ , AND BIN MIN§

Abstract. There are two scalings for the convergence analysis of tau-leaping methods in the
literature. This paper attempts to resolve this debate in the paper. We point out the shortcomings
of both scalings. We systematically develop the weak Ito-Taylor expansion based on the infinitesimal
generator of the chemical kinetic system and generalize the rooted tree theory for ODEs and SDEs
driven by Brownian motion to rooted directed graph theory for the jump processes. We formulate the
local truncation error analysis based on the large volume scaling. We find that even in this framework
the midpoint tau-leaping does not improve the weak local order for the covariance compared with the
explicit tau-leaping. We propose a procedure to explain the numerical order behavior by abandoning
the dependence on the volume constant V from the leading error term. The numerical examples
validate our arguments. We also give a general global weak convergence analysis for the explicit
tau-leaping type methods in the large volume scaling.

Key words. Chemical reaction kinetics, large volume scaling, convergence analysis, rooted tree
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1. Introduction

With the observation that biological systems are inherently random [2, 27, 13, 12],
stochastic modeling and simulation of biological systems has become a very important
research field in recent years. As an important tool in scientific research, numerically
direct simulation of this stochastic process is an indispensable strategy to understand
the behavior of microbiological systems. Gillespie’s stochastic simulation algorithm
(SSA) [15, 16] is one of the most popular algorithms. It is essentially the same as
the kinetic Monte Carlo method (KMC) in the condensed matter community for
simulating crystal growth [3]. Both algorithms are considered as exact simulation
methods for discrete state continuous time Markov chains. The implementation of
the SSA is further improved in [14, 32] to reduce the computational complexity.

SSA has the merit that it is exact, but since it keeps track of every reaction
event, it is impractical when the reactions fire very frequently such as in the fast
reversible reaction system. To speed up the simulations, Gillespie [17] proposed the
tau-leaping method. By approximating the number of fired reaction events for each
reaction channel with a Poisson random variable, the tau-leaping method allows us to
leap along the system’s history axis from one subinterval of a deterministic length τ
to the next, instead of stepping along from each reaction event to the next. The idea
is very appealing and proved to be very successful in numerical performance [7, 8].
It is extended to include stiff and multiscale systems [29, 10, 11]. Some attempts to
improve the accuracy of tau-leaping methods are also performed [22, 5, 9].
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As a promising scheme, the numerical analysis of tau-leaping has recently at-
tracted some attention [26, 1, 30]. Actually, there is some debate on the obtained
results between [26, 30] and [1]. The debates focus on the different scalings in the
analysis. The purpose of this paper is to resolve the debates from the viewpoint of
a delicate local truncation error (LTE) analysis. To be more specific, we first need
some basic background.

1.1. Background. Assume that a well-stirred chemical reaction system has N
chemical species {S1, . . . ,SN} interacting through M reaction channels {R1, . . . ,RM}.
The state of the system can be specified by the vector Xt=(X1t, . . . ,XNt)

T , where
Xit denotes the number of molecules for the species Si at time t. Each reaction
Rj is characterized by its propensity function aj(x) and its state-change vector νj =
(ν1j , . . . ,νNj)

T , (j=1, . . . ,M). It is also convenient to define the total propensity

a0(x)=
∑M

j=1aj(x). The underlying rule governing the evolution of the system is
that each reaction Rj happens with a probability of aj(x)dt in the infinitesimal time
dt, and if it happens the state of the system Xt will be changed by νj . With these
notational conventions, the time evolution Xt is a Markov jump process and it obeys
the CME

∂tp(x,t|x0,t0)=

M∑

j=1

aj(x−νj)p(x−νj ,t|x0,t0)−

M∑

j=1

aj(x)p(x,t|x0,t0),

where p(x,t|x0,t0) is the probability that Xt=x conditioning on Xt0 =x0. It is also
called the Kolmogorov forward equation or Fokker-Planck equation in the probability
literature.

Now the Gillespie’s SSA can be implemented with the following three steps re-
cursively:

• Step 1: sampling the waiting time τ as an exponentially distributed random
variable (R.V.) with rate a0(Xt);

• Step 2: sampling an M point R.V. k with probability aj(Xt)/a0(Xt) for the
j-th reaction;

• Step 3: update Xt+τ =Xt+νk; then return to Step 1.

This algorithm is simple and accurate, but it will be very slow when a0(Xt)≫1.
The idea of tau-leaping is to choose a reasonably large τ (compared with that

in the SSA) so that one can freeze the state of system and approximate the reaction
numbers by Poisson random variables. So, given the state Xn at time t, the state
Xn+1 at time t+τ predicted by the tau-leaping is

Xn+1=Xn+

M∑

j=1

νjPj(aj(Xn)τ), (1.1)

where Pj(λj) (j=1. . . ,M) are independent Poisson R.V.s with rate λj . Since this
scheme resembles the explicit Euler method in numerical ODEs, we will term it Euler
tau-leaping in the continued texts. With the Euler tau-leaping scheme, it can leap
along the system’s history axis from one subinterval of a deterministic length τ to the
next, instead of firing each reaction event one by one.

1.2. Analysis of the tau-leaping method. The mathematical analysis of
Euler tau-leaping method was first considered in [30]. In that paper, the authors
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built the concept of the weak local order for LTE of the moments under the scaling
τ →0, which will be termed as traditional scaling in the rest of the paper. They also
obtained the explicit form of the local Taylor series for the evolution of the moments
up to O(τ2) based on the Taylor series expansion of the waiting time probabilities.
They proved that under the scaling τ →0, global weak first order can be achieved
when the propensity function aj(x) is linear:

|EX
(r)
tn

−EX(r)
n |≤Cτ, τ →0, (1.2)

where EX
(r)
tn

is the r-th moment of the exact solution X at time tn.
The convergence result in [30] is further extended to the nonlinear propensity

function case in [26]. Motivated by the theoretical analysis for diffusion processes,
one of the authors proposed to analyze the convergence from the relation between the
scheme and the corresponding stochastic differential equations. A mathematically
equivalent description of Xt, but which emphasizes the trajectories, can be shown to
satisfy the following SDEs driven by Poisson random measure [26, 28]:

dXt=

∫ A

0

M∑

j=1

νjcj(a;Xt−)λ(dt×da), (1.3)

where cj is the characteristic function

cj(a;Xt)=

{
1, if a∈ (hj−1(Xt),hj(Xt)], j=1,2, . . . ,M ,

0, otherwise,

with hj(x)=
∑j

i=1ai(x), and λ(dt×da) is the reference Poisson random measure
associated with a Poisson point process (qt,t≥0) taking values in [0,A] with the
Lebesgue intensity measure m(dt×da)=dt×da. Here we assume that there exist
such a constant A that a0(Xt)≤A for t∈ [0,T ]. With this viewpoint, the Euler tau-
leaping method is exactly the explicit Euler method applied to the SDEs. Many
other methods can also be constructed by comparison with the known schemes for
diffusion processes. In [26], both mean square strong convergence of order 1/2 and
weak convergence of order 1 of the Euler tau-leaping are obtained. The authors also
derived the local truncation error analysis for the midpoint tau-leaping and Poisson
Runge-Kutta methods with this scaling [23].

In the practical simulations, one should consider the basic tau-leaping condition

a0(Xt)τ ≫1, (1.4)

since the tau-leaping method is only effective when (1.4) is satisfied. Otherwise one
will switch to the exact SSA because the random waiting time is big enough. This is
different from the numerical ODEs and diffusion processes since no exact candidate
solvers exist there.

In [1], Anderson et al questioned the scaling τ →0 in [30, 26] because the condition
(1.4) is ignored in the analysis. To enforce this condition, Anderson et al proposed the
key assumption that there exists a volume constant V ≫1 such that XV

t =Xt/V =
xt∼O(1) and corresponding scalings for the rate constants to ensure the large volume
limit [24, 25]. With this assumption and τ =V −β , where 0<β<1, one has τ →0 and
a0(Xt)τ =O(V 1−β)→∞ as V →∞. Under this scaling, which will be termed as large
volume scaling later on, they proved both global strong and weak convergence of the
Euler tau-leaping method.
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• Strong convergence (order 1)

sup
t≤T

E|XV
t −ZV

t |≤CV −β , V →∞, (1.5)

• Weak convergence (order 1)

sup
t≤T

|Ef(XV
t )−Ef(ZV

t )|≤CV −β , V →∞, (1.6)

where XV
t ,Z

V
t =Zt/V are rescaled variables and Zt is the continuous extension of

the numerical solution Xn. f is any continuous differentiable function. For mid-point
tau-leaping, they proved that it achieves a higher order of accuracy in a strong sense
and especially the second order in a weak sense.

Anderson et al’s scaling indeed offers more insight on the analysis of tau-leaping,
which enforces the condition (1.4) as a natural product. But we will argue in what
follows that the previous analysis in [30, 26] is also meaningful with a suitable inter-
pretation. At the same time, the analysis in [1] is not sufficient for explaining the
realistic computations, though theoretically it is preferable. Our arguments have the
following three key aspects:

1. Though the convergence results in [30, 26] are proved with the scaling τ →0,
the estimate (1.2) may also hold with finite size τ , and this τ need not break
the condition (1.4). Note that the breakdown of (1.4) is not a necessary
condition to build the estimate (1.2). Similar cases appear in the numeri-
cal solution of ODEs, in which the convergence estimate is done with the
scaling τ →0, but the practical time step size criterion is obtained from the
stability consideration. In this sense, the numerical order for finite τ is an
extrapolation in the limit τ →0.

2. To enforce the condition (1.4), Anderson et al considered the large volume
scaling V →∞. In this limit, the rescaled variable XV

t tends to x(t), which
is the solution of the reaction rate equations (RREs) and the fluctuation is
not important. But in realistic examples when tau-leaping is applied, the
number of molecules is usually of O(102∼103), and the large volume limit is
not straightforwardly achieved. If the number of molecules is too large, one
often takes the Langevin approximation or even ODE approximation [21]. To
apply to the practical examples, one also needs some kind of extrapolation
for finite V .

3. Our objective is to explain the behavior of the practical numerical examples.
In the traditional numerical analysis, one detects the convergence order by
measuring the error reduction compared with the step size reductions. For
example, if the step size τ is halved and the error is also halved, the scheme is
first order accurate. Higher reduction of the error means higher convergence
order. In this procedure, the system size is fixed, which is different from
the assumption made in [1]. We will show that this does not matter for
the convergence order of moments, but this really makes a difference if we
consider the convergence order of covariance.

In fact, the debates about the analysis of the tau-leaping methods arise because the
tau-leaping methods lie on an intermediate regime. In this sense, both scalings above
explore tau-leaping from two sides of a coin. In this paper, we propose to explain the
computational examples by taking into account both the large volume scaling and the
invariance of the system size V . Our results are also verified by numerical examples.
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1.3. Contribution of this paper. Theoretically we will follow the large
volume scaling in this paper since it enforces the condition (1.4). But to explain the
numerical behavior of the algorithm, which keeps the system size invariant, we also
need the idea of extrapolation of the traditional scaling. The main contributions of
this paper are as follows:

• In the scaling τ →0, we systematically develop the weak Ito-Taylor expan-
sion based on the infinitesimal generator of the chemical kinetic system and
generalize the rooted tree theory for ODEs and diffusion processes to rooted
directed graph theory for the jump processes. This structure is interesting
itself and it is also the first step for the analysis of the convergence order in
the large volume scaling. The essential difference between the jump process
and the deterministic process is embodied in the whole local truncation error
analysis. The power of the graph structure is shown in proving Theorem 2.14.

• We formulate the local truncation error analysis based on the large volume
scaling. We find that though midpoint tau-leaping achieves higher local order
for the moments than those of Euler tau-leaping, the local order for the co-
variance is not improved! This is important because the covariance is one key
quantity for characterizing the random variables. For the rescaled variables
in the large volume scaling, the theoretical analysis shows that the covariance
is of local order 2+1/β in τ (see Theorem 3.10), which implies that it is of
global order 1+1/β≥2. But our numerical example shows that it is only first
order accurate.

• We explain the above numerical behavior from the reason that the system size
is kept invariant; the additional order 1/β comes from the size rescaling of the
volume V . After abandoning this effect we obtain the leading truncation order
τ2, which suggests that the global first order conclusion is accurate though
its rigorous proof is still under study. Summarizing the above procedures we
claim the numerical order can be analyzed in the following 3 steps.

– Step 1. Write down the local truncation error estimate in the traditional
scaling τ →0;

– Step 2. Reorder the error terms according to the magnitude of the power
of V under the large volume scaling;

– Step 3. Abandon the dependence on V in the leading order terms and
find the order p on τ , which is the weak local order.

• We generalize the global weak convergence results in [1] to general higher or-
der estimates in the large volume scaling. But our new framework establishes
the global weak convergence of an explicit tau-leaping method based on the
argument that the local truncation estimates imply global convergence (sta-
bility is satisfied automatically for explicit one-step methods). This relieves
the algorithm designer from the abstract analysis by just considering the local
truncation errors.

1.4. Paper outline. The remainder of this paper is arranged as follows. In
Section 2 we will develop the rooted directed graph theory to represent the weak Taylor
expansion for chemical kinetic systems, which is applied to derive the expansion of
the moments and covariance. The power of the graph restructure is shown in proving
Theorem 2.14. In Section 3 we will perform local truncation analysis for Euler tau-
leaping and midpoint tau-leaping in the large volume scaling. Upon using the rooted
directed graph representation, we get a sharp estimate for covariance which reveals
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that midpoint tau-leaping is no more accurate than Euler tau-leaping. In Section 4,
we give the global weak convergence estimate for a general explicit tau-leaping type
method in the large volume scaling. In Section 5, we inspect a numerical example to
compare the numerical behavior of some existing tau-leaping methods. The rooted
tree theory for numerical ODEs and diffusion processes is attached in the Appendix.

2. Weak Taylor expansion for chemical reaction systems
In this section, we aim to use graphical representation to perform weak Taylor ex-

pansion for chemical kinetic systems in the scaling τ →0. This idea was first proposed
by Butcher for ODEs [6] and is nicely reviewed in [20], where the Taylor expansion
is intuitively represented through the growth of rooted trees. Rossler generalized this
theory to SDEs driven by Brownian motion in [31]. In his theory he introduced the
colored rooted tree to describe the effect of the Brownian noise. A concise review for
both the rooted tree and the colored rooted tree theory is presented in the Appendix.
Our analysis shows that we have to use the rooted directed graph structure rather than
the tree structure to describe the weak Ito-Taylor expansion for the chemical kinetic
system. We should remark here that the concept “rooted directed graph” is a bit
confusing since the “root” node does not make any sense in a graph in general. With
a more rigorous statement we mean the uni-source directed acyclic graph (USDAG)
structure as defined in Definition 2.4. In this sense, we call the unique source as our
“root”, and the USDAG as the “rooted directed graph”. This “rooted directed graph”
structure can be used as a systematic tool to investigate the order of schemes, and
inspire people to construct higher order numerical simulation algorithms for chemical
kinetic systems in future works. This is also the first step towards formulating the
local truncation error analysis in the large volume scaling.

2.1. Rooted directed graph representation for the weak Taylor expan-
sions. At first let us recall the infinitesimal generator and the weak Taylor expan-
sion for the chemical kinetic systems without proof. The readers may refer to [18] for
more details.

Lemma 2.1 (Infinitesimal generator for the chemical kinetic system). Assume
that Xt satisfies (1.3) and f(x)∈C(RN ). Then the following equation holds:

Ef(Xt)−Ef(X0)=E

∫ t

0

Lf(Xs)ds, (2.1)

where L is the infinitesimal generator for the chemical kinetic system

Lf(x)= lim
t→0

E
0,xf(Xt)−f(x)

t
=

M∑

i=1

ai(x)
(
f(x+νi)−f(x)

)
. (2.2)

Based on the above lemma, we immediately obtain the following Ito-Taylor ex-
pansion.

Lemma 2.2 (Weak Ito-Taylor expansion). Assume Xt satisfies (1.3) and f(x)∈
C(RN ). Then we have the following expansion:

E
t,xf(Xt+h)=

r∑

n=0

hn

n!
L(n)f(x)+O(hr+1), (2.3)

where L(0)f(x)=f(x),L(n)f(x)=L(L(n−1)f(x)),n=1,2, . . . ,r.



Y. HU, T. LI, AND B. MIN 971

In principle, to derive the local truncation errors for a numerical scheme, the
Equation (2.3) can be applied directly to get all of the terms up to the needed order.
With this viewpoint, the truncation error analysis is just a straightforward compu-
tation. But as observed by Butcher for numerical ODEs [6], this procedure can be
nicely described in a more visual way, that is, through the rooted tree structure. In
this section, we generalize this visual representation for chemical kinetic systems in
the spirit of Butcher. Another generalization for the diffusion processes is pursued by
Rössler in [31]. We would like to emphasize that this representation is not a game but
a practical tool in the later analysis, which is embodied in Section 2.2. This visualiza-
tion is also transparent, and clarifies the qualitative difference between deterministic
ODEs, diffusion processes driven by Brownian motion, and the chemical kinetic jump
processes.

Below we will take index notations similar to those used in ODEs and diffusion
processes. We define the difference

f j(x)=f(x+νj)−f(x) (2.4)

with respect to the j-th reaction for any continuous function f(x). Then formally we
have

f jk(x)=f(x+νj+νk)−f(x+νj)−f(x+νk)+f(x).

We can formulate the index notations for each term in (2.3), which we will only list
the cases for n=1,2 in what follows.

• When n=1, we have the index representation for the infinitesimal generator
of the chemical kinetic system

L(1)f(x)=Lf(x)=aif
i(x) (2.5)

by the Einstein summation convention.

• When n=2, we should consider the product rule for the operator L. The
straightforward calculation shows

L(fg)=
M∑

i=1

aif
igi+

M∑

i=1

aif
ig+

M∑

i=1

aig
if. (2.6)

We still simply denote it as

L(fg)=aif
igi+aif

ig+aig
if (2.7)

with Einstein’s summation convention, though we note that the index i ap-
pears three times in the first term in (2.6). In fact, that is the difference
between the jump process and the deterministic or diffusion processes. With
the product rule (2.7), or applying the infinitesimal generator to the function
f twice, we obtain

L(2)f =aiajf
ij+aja

j
if

i+aja
j
if

ij . (2.8)

Indeed the formula (2.7) is a general tool for larger n cases. We call the terms
appearing in (2.5) and (2.8) elementary differences, which is parallel to the concept of
elementary differentials for the ODEs and diffusion processes. They can be represented
by the rooted directed graph as shown in Figure 2.1.
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n=0 n=1 n=2

i i j i

j

j i

Figure 2.1. The rooted directed graph representation of the elementary differences for SDEs
driven by the state dependent Poisson noises when n=0,1,2. The solid circle in n=2 case represents
the root node, which corresponds to the function f in (2.8). Each empty circle represents one
reaction type, which corresponds to a coefficient function a. The directed graph grows upwards when
n increases. Each connecting arrow for a pair of nodes represents a “Superior-Inferior” relation
directed from the superior node to the inferior node, which corresponds to take a superscript operation
to the Superior node. Note that here the superscript operation i represents the function change after
the i-th reaction fires. It is not taking the derivative with respect to the i-th variable as in the last
two subsections.

Now let us generalize the rooted directed graph theory to n>2 cases. We have
the general product rule for the operator L.

Proposition 2.3. For general n∈N, the following expansion holds:

L(f1f2 . . .fn)=

n∑

k=1

∑

|S|=k

aj
∏

u∈S

f j
u

∏

v∈Sc

fv. (2.9)

Here S⊆{1,2, . . . ,n} and the Einstein summation convention is applied.

Proof. The proof is a direct induction by applying the Equation (2.7) recur-
sively.

Remark 2.1. According to the Proposition 2.3, the number of terms after the action
of the infinitesimal generator of the chemical kinetic system to one product of n-terms
grows with the rate 2n−1. This is very different from that of the ODEs with the order
n.

To state the general weak Ito-Taylor expansion similar to those for ODEs and
SDEs driven by Brownian motion, we need the following concepts borrowed from
graph theory [19].

Definition 2.4. The following notions are standard in directed graph theory.

1. Ordered pair.
An ordered pair is a pair of nodes with an order associated with them. If the
two nodes are i and j, then we denote this ordered pair as i→ j or j→ i. In
general they are different because of the order.

2. Binary relation.
A binary relation from a set A to a set B is a set of ordered pairs i→ j where
i is an element of A and j is an element of B. When A =B, we call it a
binary relation on A .
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3. Superior and Inferior sets.
For a graph g=(A ,E), where A is the set of nodes and E is the binary
relation on A , we denote the Superior-set of i∈A as S(i)={j1, . . . ,jm}⊂A

if the ordered pairs jk→ i (k=1, . . . ,m) belong to the binary relation E, and the
Inferior-set of i∈A as I(i)={j1, . . . ,jm}⊂A if the ordered pairs i→ jk (k=
1, . . . ,m) belong to the binary relation E. If the node i does not have Superiors
or Inferiors, we will define S(i) or I(i) as empty set φ, respectively.

4. Directed acyclic graph.
A directed acyclic graph is a graph g=(A ,E) where A is the set of nodes
and E is the binary relation on A with the property that there are no directed
cycles in it.

5. Degree, source, and sink.
The outdegree of i∈A in a directed graph g=(A ,E) is the times that i ap-
pears in ordered pairs i→ j, j 6= i. The indegree of i∈A in a directed graph
g=(A ,E) is the times that i appears in ordered pairs j→ i, j 6= i. When the
indegree or outdegree of i equals 0, we call the node i a source or a sink of
the directed graph, respectively.

Definition 2.5 (Labeled uni-source directed acyclic graph (LUSDAG)). Suppose
A is an ordered chain of indices A ={R<i<j<k<l< · · ·} and #(A )= q≥1. A
labeled uni-source directed acyclic graph (LUSDAG) g=(A ,Eg) satisfies the following
conditions:

1. g is a directed acyclic graph;

2. The node {R} is the unique source, which is also called “root” in accordance
with the concept in numerical ODEs;

3. for every ordered pair i1→ i2∈Eg (i1,i2∈A ), i1<i2.

The order of a LUSDAG g is equal to the number of its nodes, which is denoted
by ρ(g)= q. The number of edges of a LUSDAG g is denoted as γ(g). The set of all
LUSDAGs of order q is denoted by LGq.

k

j iik

j

R R

Figure 2.2. The labeled uni-source directed acyclic graph. Here ρ(g)= q=4 for both graphs.
Each node is named with an index from the set A . With the notations for LUSDAG, the left figure
corresponds to the elementary difference a

j
iajakf

i,k; the right figure corresponds to the elementary

difference aki ajakf
i,j . These two graphs are equivalent in the sense of Definition 2.7.

The above definition can be schematically shown in Figure 2.2, where ρ(g)= q=4.
Every LUSDAG g∈LGq is associated with an elementary difference.

Definition 2.6 (Elementary difference). For a LUSDAG g∈LGq we call

f(g)(x)=a
I(i1)
i1

· · ·a
I(iq−1)
iq−1

f I(R) (2.10)
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its corresponding elementary difference. The summand is a product of (q−1) a’s and
one f , where the lower index ik (k=1, . . . ,q−1) of each a corresponds to each node
of g except the root, and the upper indices of it are its corresponding Inferiors. If
I(i)=φ, the upper index of a will be left empty correspondingly. The upper indices
of f run through all of the Inferiors of the root. Here we have used the Einstein
summation convention. Two examples are shown in Figure 2.2.

Definition 2.7 (Equivalence of LUSDAGs). Two LUSDAGs g=(A ,Eg),h=
(A ,Eh)∈LGq are equivalent if there exists a permutation σ :A →A , such that
σ(R)=R and Sgσ=σSh on A \{R}, where Sg and Sh are the Superior-set finding
operators defined in Definition 2.4 for g and h, respectively.

Definition 2.8 (Uni-source directed acyclic graph (USDAG)). An equivalence
class of q-th order LUSDAG is called a USDAG of order q. The set of all this type
of graphs of order q is denoted by Gq. The order of a USDAG g∈Gq is defined as
the order of a representative and is again denoted by ρ(g). Furthermore we denote by
α(g) (for g∈Gq) the number of elements in the equivalence class g.

Definition 2.9 (T Gq as the subset of Gq). Define the subset of Gq which includes
g satisfying ρ(g)=γ(g)+1 as T Gq.

It is straightforward to see that T Gq can be mapped one-to-one to Tq (see Ap-
pendix A), which includes all rooted trees in ODE satisfying ρ(t)= q. This fact is
very important in that we can use facts in ODE to investigate the properties of T Gq.
It is also straightforward to observe the following fact.

Proposition 2.10 (Equivalence of the definition of α(g)). If g∈T Gq, then the
multiplicity function α(g) is equal to α(g) when g is viewed as an object in Tq (refer
to Appendix A for the definition).

We can now state the weak Ito-Taylor expansion of the exact solution with uni-
source directed acyclic graph representation.

Theorem 2.11 (Weak Ito-Taylor expansion with rooted directed graph nota-
tions). Assume Xt satisfies (1.3) and f(x)∈C(RN ). Then we have the following
expansion:

E
t,xf(Xt+h)=

r+1∑

q=1

∑

g∈LGq

hρ(g)−1

(ρ(g)−1)!
f(g)(x)+O(hr+1)

=

r+1∑

q=1

∑

g∈Gq

hρ(g)−1

(ρ(g)−1)!
α(g)f(g)(x)+O(hr+1). (2.11)

Proof. The theorem is true for q=1,2,3 by a simple comparison between Figure
2.1 and the equations (2.5) and (2.8). Suppose that it holds for q. To prove it holds
for q+1 case, we first observe that each elementary difference term is different and
complete in LGq. Then the action of the operator L to each elementary difference
term will generate 2q−1 terms according to the product rule (2.9). For each new term
aj
∏

u∈S f
j
u

∏
v∈Sc fv it corresponds to generating a new link from the index u∈S to

a new index j which is listed after all of the previous indices in the ordered index set
A in the graphical representation. These graphs traverse all of the possibilities from
one node, two nodes, . . . , in LGq to j, so it is clear that all labeled uni-source directed
acyclic graphs of order q+1 appear in the coefficients of the hq+1 term, each of them
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exactly once. Grouping together the terms with identical elementary differences, we
have the second expression in (2.11).

2.2. Moment expansion based on the rooted directed graph theory.
By using the rooted directed graph theory, we can obtain the weak Taylor expansion
for any function to arbitrarily high order. Especially, using the facts in rooted tree
theory for ODEs, we can get more details about the expansion of covariance, which
is the main object in the next section.

The following proposition is the direct result of applying rooted directed graph
for each component of x(r), the r-fold tensor product for the vector x.

Proposition 2.12 (The O(τ3) local expansion for the moments). If Xt satisfies
Equation (1.3), then we have

E
t,xX

(r)
t+τ =x(r)+τaj [x

(r)]j+
τ2

2
ajak[x

(r)]jk+
τ2

2
akj ak[x

(r)]j+
τ2

2
akj ak[x

(r)]jk

+
τ3

6
ajakal[x

(r)]jkl+
τ3

2
akj akal[x

(r)]jl

+
τ3

6
akj a

l
kal[x

(r)]j+
τ3

6
aklj akal[x

(r)]j

+
τ3

6

∑

g∈G4,γ(g)≥ρ(g)

α(g)x(r)(g)+O(τ4) (2.12)

for the r-th moments. Here the superscript for j, k, or l takes the definition in (2.4).

When r=1, xjk will be zero! So it may be relatively easy to obtain the higher
order expansions for the mean. We have the following proposition by straightforwardly
using the rooted directed graph expansion for f(x)=x.

Proposition 2.13. If Xt satisfies Equation (1.3), then

E
t,xXt+τ =x+τajνj+

τ2

2
akj akνj

+
τ3

6
aklj akalνj+

τ3

6
akj a

l
kalνj+

τ3

6
aklj alkalνj

+O(τ4), (2.13)

where the three O(τ3) terms can be represented by rooted directed graphs as in Figure
2.3.

Now let us address the issue about the expansion of the covariance. The following
theorem precisely describes the weak expansion of the covariance and will play an
important role in the next section.

Theorem 2.14. Assume that Xt satisfies Equation (1.3). Then the expansion coef-
ficients of the τ q (q≥1) terms of Cov(Xt+τ ) must take the form

a
I(i1)
i1

· · ·a
I(iq)
iq

νj1νj2 , (2.14)

where we have dropped the superscript {t,x} of the covariance function Cov for sim-
plicity. Define the characteristic number

λq :=κq−q+2,
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j j j

k k kll

l

Figure 2.3. The rooted directed graph representations for three O(τ3) terms for the mean.
There are much fewer terms here since many of them are zeros because of the linearity of the
function f(x)=x.

where κq =
∑q

k=1#(I(ik)) is the number of superscripts in the a terms in (2.14). Then
we have

λq ≥1.

For q=1,2 the corresponding error terms are

τajν
(2)
j ,

τ2

2
akj akν

(2)
j +

τ2

2
akj ak(νjνk+νkνj).

Proof. By applying the weak Ito-Taylor expansion (2.11) to each component of
f(x)=x(2) and f(x)=x, we obtain that the coefficient of τ q (q≥1) of the expansion
of Cov(Xt+τ ) has the following form:

∑

g∈Gq+1

α(g)

(ρ(g)−1)!
x(2)(g)−

∑

q1+q2=q

q1,q2≥0

∑

g1∈Gq1+1

g2∈Gq2+1

α(g1)

(ρ(g1)−1)!

α(g2)

(ρ(g2)−1)!
x(g1)x(g2).

(2.15)
To prove the desired results, we separate the terms in the first summation in (2.15)
to two cases which are schematically shown in Figures 2.4 and 2.5. We will consider
these two cases one by one.

Case 1: There are two Inferiors for the root node (Figure 2.4).

At first, we have the identity

[x(2)]ij =νiνj+νjνi, x
i=νi.

If the graph g displays a tree structure, we have

λq =(ρ(g)−3)−q+2=0.

Otherwise λq ≥1. When g has the tree structure we denote it as

g=[ĝ1, ĝ2]
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ij

g

g
2

^
1

ĝ

g g
2

j i

1

Figure 2.4. The schematics of the rooted directed graph for Case 1. In the left part of the
figure g corresponds to the graph in the first term of (2.15), in the right part of the figure g1,g2

correspond to the graphs in the second term of (2.15).

by borrowing the tree notation in Appendix A, where ĝ1, ĝ2 are two branches of the
graph g after cutting the root node. Thanks to (A.8) and Proposition 2.10 we have

α(g)

(ρ(g)−1)!
=

α(ĝ1)

ρ(ĝ1)!

α(ĝ2)

ρ(ĝ2)!

1

µ!
=

α(g1)

(ρ(g1)−1)!

α(g2)

(ρ(g2)−1)!

1

µ!
,

where

g1=[ĝ1], g2=[ĝ2].

When ĝ1 6= ĝ2, we have µ=1 and

x(2)(g)=(νiνj+νjνi)ai(ĝ1)aj(ĝ2)=x(g1)x(g2)+x(g2)x(g1).

When ĝ1= ĝ2, we have µ=2 and thus

1

2
x(2)(g)=

1

2
(νiνj+νjνi)ai(ĝ1)aj(ĝ1)=x(g1)x(g1).

To summarize, in Case 1 all the terms of the first summation in (2.15) with λq =0
exactly cancel with the corresponding terms in the second summation.

jj j

g g g g1 2
g

g^ g g
2

^ ^

3 4

3

3

Figure 2.5. The schematics of the rooted directed graph for Case 2. In the left part of the
figure g corresponds to the graph in the first term of (2.15), and in the right parts of the figure
(g1,g2), (g3,g4) correspond to two possibilities for the graphs in the second term of (2.15).
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Case 2: There is only one Inferior for the root node (Figure 2.5).

We have the identity

[x(2)]j =xνj+νjx+νjνj .

For the last term, we have

λq ≥ (ρ(g)−2)−q+2=1,

and the identity only holds when g is a tree. So only the first two terms interesting.
For the second summation in (2.15), we consider the cases q1=0, q2= q or q1= q,q2=0.
It is not difficult to derive the following identities from Figure 2.5:

x(2)(g)=(xνj+νjx)aj(ĝ)=x(g1)νjaj(ĝ2)+aj(ĝ3)νjx(g4)

=x(g1)x(g2)+x(g3)x(g4).

The coefficients of these terms are also the same. These facts show that in Case 2 the
cancellation for the first summation with λq =0 (g is a tree in this case) also holds.

For the second summation in (2.15), only the pattern corresponding to the right
part of the Figure 2.4 exists because of cancellation. A calculation shows

λq ≥ (q1−1)+(q2−1)−q+2=0.

and the identity only holds when g1 and g2 both have tree structure. But these terms
also disappear because of cancellation!

When q=1,2, the error terms can be derived by direct calculations. The proof is
complete.

3. Local truncation error analysis in large volume scaling

In this section we will perform the local weak consistency analysis for Euler tau-
leaping and midpoint tau-leaping in the large volume scaling. Though the global weak
convergence for the rescaled variables has been proved in [1], the LTE analysis has
the merit that it is more transparent and instructive for constructing new methods.
It is also the first step for analyzing the global weak convergence order. By using
the rooted directed graph representation developed in the previous section, we get
a sharp estimate for covariance which reveals that midpoint tau-leaping is no more
accurate than Euler tau-leaping. This is also consistent with our numerical results
in the next section. Since the covariance is more important than the second moment
about the origin to characterize the fluctuation behavior of the random variables, it
also motivates us to explore weakly higher order methods in future studies. Note also
that the analysis for the covariance is not included in [1].

3.1. Notations and backgrounds. To perform the weak consistency anal-
ysis for tau-leaping methods in the large volume scaling, we borrow some notations
from [1]. Let L

V ={y |y=X/V,X ∈Z
N}. We also make the same assumptions as

introduced in [1].

Assumption 3.1. The following basic assumptions are needed in the large volume
scaling:

1. State variables Xt=O(V ) for i=1, . . . ,N where V ≫1.
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2. Propensities aj(Xt) (j=1, . . . ,M) are O(V ) such that the following scaling
holds:

aj(Xt)=V aVj (X
V
t ), XV

t =Xt/V ∼O(1). (3.1)

For simplicity we will denote x=XV
t in the later text. The rescaled propen-

sities aVj (x) satisfies the continued condition.

3. aVj (x) (j=1, . . . ,M) are C∞
0 functions with compact support Ω with respect

to x, and thus satisfy

sup
x∈RN ,|α|<∞

|DαaVj (x)|≤Lj , (3.2)

where α∈N
N .

One key property of the above scaling is if we define

τ =1/V β , 0<β<1, (3.3)

then we have

τ
∑

j

aj(Xt)=1/V βV
∑

k

aVj (x)=O(V 1−β)≫1, (V ≫1),

which satisfies the tau-leaping condition automatically.

Definition 3.1 (Difference in the large volume scaling). Let us define the dif-
ference notation in the large volume scaling as

fV,j(x)=V (f(x+νj/V )−f(x)) (3.4)

for x∈L
V , and recursively define

fV,jk(x)=
(
fV,j

)V,k
(x)

=V 2
(
f(x+νj/V +νk/V )−f(x+νj/V )−f(x+νk/V )+f(x)

)
(3.5)

and higher order differences.

Remark 3.2. We should remark here that though notationally (aj)
V,k(x) and

(aVj )
k(x) look similar, they are indeed different since

(aj)
V,k(x)=V (aj(x+νk/V )−aj(x))

and

(aVj )
k(x)=aVj (x+νk)−aVj (x)=V −1(aj(V x+V νk)−aj(V x)).

But in fact this confusion will never appear because when we use the traditional
difference notation (2.4), x must be the primitive variable in N

N ; while when we
use the large volume difference notation (3.4), x must have been transformed to the
rescaled variable in L

V . With this convention in mind, both notations (aj)
V,k(x) and

(aVj )
k(x) do not make sense. For notational convenience, we will simply take

aV,kj := (aVj )
V,k, aV,klj := (aVj )

V,kl, . . . (3.6)
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in the later texts.

We notice that when the rescaled variable x=Xt/V ∼O(1), which is independent
of V , then

[
x(r)

]V,j
=O(1),

[
x(r)

]V,jk
=O(1), . . . . (3.7)

Similar results also hold for (f(x))V,jk, etc., when f is a rescaled function which is
independent of V .

To analyze the convergence of tau-leaping, it is natural to introduce a continuous
extension of the numerical solution

dY t=

∫ A

0

M∑

j=1

νjcj(a;Y ◦η(t))λ(dt×da), (3.8)

where η(s)= tn if tn≤s<tn+1. For the midpoint tau-leaping method also proposed
by Gillespie [17]





Xn+ 1
2
=Xn+

M∑

k=1

νk

1

2
τak(Xn),

Xn+1=Xn+

M∑

k=1

νkPk(ak(Xn+ 1
2
),τ),

(3.9)

the corresponding continuous extension may be taken as

dZt=

∫ A

0

M∑

j=1

νjcj(a;µ◦Z ◦η(t))λ(dt×da), (3.10)

where

µ(z)=z+
1

2
τ
∑

i

ai(z)νi.

In [1], Anderson et al carried out the error analysis for Euler tau-leaping and
midpoint tau-leaping with the rescaled variables

XV
t ,Xt/V, Y

V
t ,Y t/V, Z

V
t ,Zt/V.

In the large volume scaling they got the following global weak convergence results:

Theorem 3.2 (Anderson, Ganguly, Kurtz). For any f ∈C2
0 (R

N ), there exist
constants C1=C1(f,T )>0, C2=C2(f,T )>0 such that

V β |Ef(XV
T )−Ef(Y V

T )|≤C1, (3.11)

V 2β |Ef(XV
T )−Ef(ZV

T )|≤C2. (3.12)

In the following context we will use the “rooted directed graph” expansion to discuss
the local version of the estimates for all moments about the origin and especially the
covariance.
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3.2. Local truncation errors for the moments about the origin.
Lemma 3.3 (Transformation from traditional scaling to large volume scaling).

We have the relation

f(g)(Xt)∼O(V ρ(g)−γ(g)) (3.13)

for each elementary difference as in (2.10) with the function f(Xt)=V fV (x) and
fV (x)∼O(1) which is independent of V . Thus

f(g)(Xt)∼O(V )

if g∈T Gq and

f(g)(Xt)∼O(V p), p≤0 and p∈Z

if g∈Gq\T Gq.
Proof. The proof can be obtained by the straightforward application of Equa-

tions (3.4) and (3.5), the convention (3.6) and the transformation x=Xt/V . We
have

a
I(j))
j =V 1−#(I(j))a

V,I(j)
j , f I(R)=V 1−#(I(j))fV,I(R). (3.14)

Thus the power of V is

q−1∑

j=1

(
1−#(I(ij))

)
+1−#(I(R))= q−γ(g)=ρ(g)−γ(g)

for any g∈Gq.

Lemma 3.4. If Xt satisfies Equation (1.3) and x=XV
t =Xt/V , then

E
t,x[XV

t+τ ]
(r)=x(r)+τaVj [x

(r)]V,j+
τ2

2
aVj a

V
k [x

(r)]V,jk

+
τ2

2
aV,kj aVk [x

(r)]V,j+
τ2

2
V −1aV,kj aVk [x

(r)]V,jk

+
τ3

6
aVj a

V
k a

V
l [x

(r)]V,jkl+
τ3

2
aV,kj aVk a

V
l [x

(r)]V,jl

+
τ3

6
aV,kj aV,lk aVl [x

(r)]V,j+
τ3

6
aV,klj aVk a

V
l [x

(r)]V,j

+O(V −4β), (3.15)

where the notation E
t,x means the expectation with respect to the initial state x at

time t for the rescaled process XV
t .

Proof. Straightforward application of Lemma 3.3 and the fact

(
X

(r)
t

)I(R)

=V r−#(I(R))
(
x(r)

)V,I(R)

(3.16)

gives

(
X

(r)
t

)
(g)∼O(V r−1+ρ(g)−γ(g)) (3.17)
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for each elementary difference as in (2.10) with the root label R. We get (3.15) by
combining (2.12), the fact β<1, and the above result.

For the LTE estimate of Euler tau-leaping methods, we have

Lemma 3.5. If Y t satisfies Equation (3.8), then

E
t,x[Y V

t+τ ]
(r)=x(r)+τaVj [x

(r)]V,j+
τ2

2
aVj a

V
k [x

(r)]V,jk

+
τ3

6
aVj a

V
k a

V
l [x

(r)]V,jkl+O(V −4β). (3.18)

Proof. From the continuous extension of tau-leaping methods (3.8), we obtain
an expansion similar to Equation (2.12) except that the jumping rate ak should be
constant. So all the terms including the difference of ak will disappear. The proof is
completed.

For the LTE estimate of midpoint tau-leaping methods, we have

Lemma 3.6. If Zt satisfies Equation (3.10), then

E
t,x[ZV

t+τ ]
(r)=x(r)+τaVj [x

(r)]V,j+
τ2

2
âV,kj aVk [x

(r)]V,j

+
τ2

2
aVj a

V
k [x

(r)]V,jk+
τ3

6
aVj a

V
k a

V
l [x

(r)]V,jkl

+
τ3

2
aVj â

V,l
k aVl [x

(r)]V,jk+
τ3

8
âV,klj aVk a

V
l [x

(r)]V,j

+O(V −4β), (3.19)

where

âV,kj :=
∑

p

∂aVj
∂xp

νkp, âV,klj :=
∑

p,q

∂2aVj
∂xp∂xq

νkpνlq. (3.20)

Proof. Based on arguments similar to those in Lemma 3.5, we get

E
t,x[ZV

t+τ ]
(r)=x(r)+τaVj (µ

V (x))[x(r)]V,j+
τ2

2
aVj (µ

V (x))aVk (µ
V (x))[x(r)]V,jk

+
τ3

6
aVj (µ

V (x))aVk (µ
V (x))aVl (µ

V (x))[x(r)]V,jkl+O(V −4β), (3.21)

where µV (x) is the rescaled version of µ(x) defined as

µV (x)=x+
1

2
τ
∑

k

aVk (x)νk.

For aVj (µ
V (x)), we have

aVj (µ
V (x))=aVj (x)+

1

2
τ âV,kj aVk +

1

8
τ2âV,klj aVk a

V
l +O(V −3β). (3.22)

Substituting aVj (µ
V (x)) to (3.21) and noticing that [x(r)]V,jk=[x(r)]V,kj , we get the

desired result.
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Now we can obtain the LTE for the moments about the origin for Euler tau-leaping
and midpoint tau-leaping.

Proposition 3.7 (LTE for the moments of origin). If Xt, Y t, and Zt satisfy
the Equations (1.3), (3.8), and (3.10) respectively, then

∣∣∣Et,x[XV
t+τ ]

(r)−E
t,x[Y V

t+τ ]
(r)
∣∣∣=O(V −2β), (3.23)

∣∣∣Et,x[XV
t+τ ]

(r)−E
t,x[ZV

t+τ ]
(r)
∣∣∣=O(V −3β). (3.24)

Proof. It is straightforward to prove (3.23) by (3.15) and (3.18). To prove (3.24),
using Lemma 3.4 and Lemma 3.6 we obtain

∣∣∣Et,x[XV
t+τ ]

(r)−E
t,x[ZV

t+τ ]
(r)
∣∣∣= τ2

2
(aV,kj − âV,kj )aVk [x

(r)]V,j+
τ2

2
V −1aV,kj aVk [x

(r)]V,jk

+
τ3

2
aVj (a

V,l
k − âV,lk )aVl [x

(r)]V,jk

+
τ3

6
aV,kj aV,lk aVl [x

(r)]V,j+
τ3

6
aV,klj aVk a

V
l [x

(r)]V,j

−
τ3

8
âV,klj aVk a

V
l [x

(r)]V,j+O(V −4β). (3.25)

Using the scaling relation (3.7), the assumption β<1, and the fact

aV,kj − âV,kj =O(V −1),

we get the order of the leading terms is O(V −3β).

The result is consistent with that in [1]. Here special attention should be paid to
the term

τ2

2
V −1aV,kj aVk [x

(r)]V,jk.

in (3.25). It is negligible compared with O(τ3) in large volume scaling. However, as
we will reveal in the following subsection, the analogous term in the covariance will
become dominant.

3.3. Local truncation errors for the covariance.

Proposition 3.8. If Xt satisfies Equation (1.3), then for given 0<β<1, Cov(XV
t+τ )

has the following expansion:

Cov(XV
t+τ )= τV −1aVj ν

(2)
j +

τ2

2
V −1aV,kj aVk ν

(2)
j

+
τ2

2
V −1aV,kj aVk (νjνk+νkνj)+O(V −3β−1). (3.26)

Proof. Given 0<β<1, there exists a positive integer ζ such that ζβ >3β+1.
Then we apply Theorem 2.14 to Xt until ζ-th order and transfer to the rescaled
variables. Notice that

a
I(j))
j →V 1−#(I(j))a

V,I(j)
j . (3.27)
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So the power of V for the rescaled coefficients is

q∑

j=1

(
1−#(I(ij))

)
−2=−λq ≤−1.

Therefore

Cov(XV
t+τ )= τV −1aVj ν

(2)
j +

τ2

2
V −1aV,kj aVk ν

(2)
j

+
τ2

2
V −1aV,kj aVk (νjνk+νkνj)+O(V −3β−1)+O(V −ζβ)

= τV −1aVj ν
(2)
j +

τ2

2
V −1aV,kj aVk ν

(2)
j

+
τ2

2
V −1aV,kj aVk (νjνk+νkνj)+O(V −3β−1). (3.28)

The proof is completed.

We have the following estimates for the covariance of Y V
t and ZV

t .

Proposition 3.9. If Y t, Zt satisfy Equation (3.8), (3.10) respectively, then

Cov(Y V
t+τ )= τV −1aVj ν

(2)
j +O(V −3β−1), (3.29)

Cov(ZV
t+τ )= τV −1aVj ν

(2)
j +

τ2

2
V −1âV,kj aVk ν

(2)
j +O(V −3β−1). (3.30)

Proof. Equation (3.29) is a direct application of (3.26) with the condition that
the propensity functions ak are constants. To prove (3.30), we have from (3.21)

Cov(ZV
t+τ )=x(2)+τaVj (µ

V (x))[x(2)]V,j+
τ2

2
aVj (µ

V (x))aVk (µ
V (x))[x(2)]V,jk

−[x+τaVj (µ
V (x))xV,j ](2). (3.31)

From the expansion

aVj (µ
V (x))=aVj (x)+

1

2
τ âV,kj aVk +O(V −2β),

we obtain

Cov(ZV
t+τ )= τaVj (µ

V (x))
(
[x(2)]V,j−xxV,j−xV,jx

)

= τV −1aVj ν
(2)
j +

τ2

2
V −1âV,kj aVk ν

(2)
j +O(V −3β−1).

The proof is completed.

Now we have the covariance error of Euler tau-leaping and midpoint tau-leaping.

Theorem 3.10 (LTE for the covariance). If Xt,Y t, and Zt satisfy Equations
(1.3), (3.8), and (3.10) respectively, then

|Cov(XV
t+τ )−Cov(Y V

t+τ )|=O(V −2β−1), (3.32)

|Cov(XV
t+τ )−Cov(ZV

t+τ )|=O(V −2β−1). (3.33)
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Proof. Thanks to Propositions 3.8 and 3.9, we have

Cov(XV
t+τ )−Cov(Y V

t+τ )=
τ2

2
V −1aV,kj aVk (νjνk+νkνj)+

τ2

2
V −1aV,kj aVk ν

(2)
j

+O(V −3β−1),

Cov(XV
t+τ )−Cov(ZV

t+τ )=
τ2

2
V −1aV,kj aVk (νjνk+νkνj)

+
τ2

2
V −1(aV,kj − âV,kj )aVk ν

(2)
j +O(V −3β−1).

Noticing that aV,kj − âV,kj ∼O(V −1), we get the desired result.

The above result shows that the covariance obtained by midpoint tau-leaping is
no more accurate than that of tau-leaping, at least in order. This is very interesting
because though both methods achieve high order in the large volume scaling, the
local consistency orders are the same — O(τ2V −1)! This fact is in sharp contrast
with the result for approximating the moments about the origin, in which midpoint
tau-leaping is shown to be superior to Euler tau-leaping. This paradoxical analysis of
the order originates from the essential difference between the infinitesimal generators
for deterministic ODEs and jump process here.

Theorem 3.10 is also instructive for explaining the numerical behavior of Euler
tau-leaping and midpoint tau-leaping for computing the covariance in the non-scaled
version in Section 5. We will observe that numerically both methods performs sim-
ilarly as first order schemes. We explain this numerical behavior from the fact that
the system size is kept invariant in realistic computations. A careful observation re-
veals that the additional order in Equations (3.32) and (3.33) comes from the term
O(V −1), which is due to the rescaling of the system size. After abandoning this effect
we obtain the leading truncation terms with O(τ2), which suggests global first order
accuracy. This is consistent with the practical computations. Based on the above
considerations we claim that the realistic numerical order for any leaping scheme can
be analyzed in the following 3 steps.

• Step 1. Write down the local truncation error estimate in the traditional
scaling τ →0;

• Step 2. Reorder the error terms according to the magnitude of the power of
V under the large volume scaling;

• Step 3. Abandon the dependence on V in the leading order terms and find
the lowest order p on τ , which is the weak local order.

Remark 3.3. The special consideration for the truncation error analysis of the
covariance also highlights the necessity of design for the higher order methods in
tau-leaping simulations, which is one aim of our future work.

4. Global weak convergence in the large volume scaling

This section is concerned with the global weak convergence of general explicit
tau-leaping type methods in large volume scaling. It establishes the weak convergence
order of a tau-leaping method resting on properties of its one-step approximation only.
This work is motivated by Anderson et al in [1], where weak convergence for Euler
tau-leaping and mid-point tau-leaping in large volume scaling are proved.
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4.1. Assumptions and notations. Consider a general explicit tau-leaping
type approximation

X̄t+τ =X̄t+A(X̄t,τ ;ξ0, . . . ,ξs), (4.1)

where ξu (u=0,1, . . . ,s) are random vectors depending on X̄t,τ,ξ0, . . . ,ξu−1, and A is
a vector function with integer values. It is easy to see that Euler tau-leaping, mid-
point tau-leaping and Poisson Runge-Kutta tau-leaping are among this framework.
For instance, Euler tau-leaping can be expressed as

AE(X̄t,τ ;ξ0)=

M∑

j=1

νjξ0,j ,

where ξ0={ξ0,j}
M
j=1={Pj(aj(X̄t)τ)}

M
j=1.

Without loss of generality, we suppose the interval [0,T ] is partitioned into n
subintervals with stepsize τ =T/n, that is, 0= t0<t1< · · ·<tn=T and tk+1− tk= τ .
According to (4.1), we construct the numerical solutions

X̄0=X0, X̄k+1=X̄k+A(X̄k,τ ;ξ0,k, . . . ,ξs,k), k=0,1, . . . ,n−1.

In the large volume scaling, the approximation (4.1) becomes

X̄
V

t+τ =x+AV (x,τ ;ξV0 , . . . ,ξ
V
s ). (4.2)

provided x=X̄t/V as before. For example, Euler tau-leaping has the form

(AE)V (x,τ ;ξ0)=

M∑

j=1

νj

V
ξV0,j ,

where ξV0 ={ξV0,j}
M
j=1={Pj(V aVj (x)τ)}

M
j=1. Thus we have the transformed numerical

schemes

X̄
V

0 =X0/V, X̄
V

k+1=X̄
V

k +AV (X̄
V

k ,τ ;ξ
V
0,k, . . . ,ξ

V
s,k), k=0,1, . . . ,n−1. (4.3)

To formulate the general convergence theorem, we borrow some notations from [1].
Let L

V ={y : y=X/V,X ∈Z
N}. For x∈L

V and any function f(x)∈C∞
0 (RN ), we

define the Markov semigroup

(Ttf)(x)=v(t,x) :=E
0,xf(XV

t ), (4.4)

and the Markov semigroup Tτ associated with the numerical method (4.3) by

(Tτf)(x) :=E
0,xf(X̄

V

1 ), (4.5)

with initial condition XV
0 =x for XV

t . Standard results give that v(t,x) satisfies the
following backward equation

∂v(t,x)

∂t
=LV v(t,x)=aVj v

V,j(t,x)=V aVj (x)
(
v(t,x+νj/V )−v(t,x)

)
, (4.6)

v(0,x)=f(x), x∈L
V ,
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where the Einstein summation convention is applied. The above equation can be
viewed as a finite dimensional linear system because of Condition 3 in Assumption
3.1 on the intensity functions aVj . That is, recalling that aVj (x)=0 for all x outside
the compact set Ω, we have v(t,x)=f(x) for all t>0 and x /∈Ω.

Definition 4.1 (The function space DQ
0 (R

N )). We define the function space

DQ
0 (R

N ) as the set of functions f(x) which have compact support in R
N and satisfy

the condition

sup
i=0,1,...,Q

sup
j1,...,ji≤M

sup
x∈LV

|fV,j1j2...ji(x)|≤KQ, (4.7)

where the positive constant KQ is independent of V .

Definition 4.2 (Weak p-th order consistency). We say that a tau-leaping type
scheme has weak p-th order consistency if for any x∈L

V and f(x)∈Dp+1
0 (RN ), there

exists a constant K>0, independent of V and x, such that
∣∣∣(Tτf)(x)−(Tτf)(x)

∣∣∣≤K sup
i=0,1,...,p+1

sup
j1,...,ji≤M

sup
x∈LV

|fV,j1j2...ji(x)|τp+1 (4.8)

for sufficiently small τ =V −β as V →∞.

4.2. Global weak convergence. We will establish a general global weak
convergence theorem for the explicit tau-leaping type method based on its one-step
local truncation error in the large volume scaling. This is a generalization of the
work by Anderson et al in [1], where the weak convergence for Euler tau-leaping
and mid-point tau-leaping in large volume scaling is proved. However we take the
classical approach for proving the convergence of numerical ODEs, which says that
O(τp+1) local error implies O(τp) global error since the stability condition is satisfied
automatically for explicit one-step methods.

To prove global weak convergence, we need the following lemma for the regularity
of higher order differences of v(t,x) compared with those in [1].

Lemma 4.3 (Regularity of v(t,x)). Suppose the initial data f(x)∈Cp+1
0 (RN ).

Then there exists constants Ki independent of V such that

sup
j1,...,ji≤M

sup
t≤T

sup
x∈LV

|vV,j1...ji(t,x)|≤Ki, i=0,1, . . . ,p+1. (4.9)

The proof of this Lemma will be deferred to the end of this subsection. Now we
present our global weak convergence theorem.

Theorem 4.4. Under the Assumption 3.1 and the weak p-th order consistency
condition (Definition 4.2), we have the following global weak p-th order convergence:

∣∣∣(Tnτf)(x)−(Tn
τ f)(x)

∣∣∣≤Cτp, nτ ≤T (4.10)

for sufficient small τ =V −β as V →∞, where C is a constant independent of V .

Remark 4.1. The readers may easily deduce the local truncation error estimates
for the explicit Euler tau-leaping and midpoint tau-leaping methods based on the
analysis in Sections 2 and 3. This will lead to the same weak convergence results in
[1]. We will omit the details here. But this framework does not in principle contain
the global weak convergence analysis for the moments in Section 3 since x(r) is not
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compactly supported. It also does not contain the analysis for the covariance, even
for the compactly supported f(x). because the covariance function Cov(f(x)) cannot
be represented as the expectation of a single function g(x).

Proof. (of Theorem 4.4)

∣∣(Tnτf)(x)−(Tn
τ f)(x)

∣∣=
∣∣

n∑

k=1

(T k−1
τ (Tτ −Tτ )Tτ(n−k)f)(x)

∣∣

≤

n∑

k=1

E
0,x
∣∣(Tτ −Tτ )(Tτ(n−k)f)(X̄

V

k−1)
∣∣.

Notice that (Tτ(n−k)f)(x)=v(τ(n−k),x)∈Dp+1
0 (RN ) for k=0,1, . . . ,n from Lemma

4.3. Combining Definition 4.2 and Lemma 4.3 we have

∣∣(Tnτf)(x)−(Tn
τ f)(x)

∣∣≤
n∑

k=1

E
0,x
∣∣(Tτ −Tτ )v(τ(n−k),X̄

V

k−1)
∣∣

≤K

n∑

k=1

sup
i=0,1,...,p+1

sup
j1,...,ji≤M

sup
x∈LV

|vV,j1j2...ji(τ(n−k),x)|τp+1

≤KTτp sup
i=0,1,...,p+1

sup
j1,...,ji≤M

sup
t≤T

sup
x∈LV

|vV,j1j2...ji(t,x)|,

≤Cτp.

which is the desired result.

Proof. (of Lemma 4.3) We build the regularity estimate (4.9) by induction. The
cases i=1,2 have been established in [1]. The case i=0 can also be established
similarly, and is omitted here. In fact, to prove that the estimate holds for bigger i
we will find the proof of essentially the estimate of the leading order is always similar
as proving it for smaller i cases because of the special “convective"-type structure of
the system which v satisfies.

Let us define I={j1,j2, . . . ,ji} and Îk={j1, . . . ,jk−1, ,jk+1, . . . ,ji}, k=1,2, . . . ,i.
We proceed with the two steps described below. The Einstein summation convention
is not applied here.

Step 1: First establish the differential equation which vV,I satisfies.

∂tv
V,I(t,x)=V

(
−aV0 (x)v

V,I(t,x)+

M∑

j=1

aVj (x)v
V,I(t,x+νj/V )

)

+

i∑

k=1

M∑

j=1

aV,jkj vV,Îk,j(t,x+νjk/V )+w(t,x;I), (4.11)

where aV0 (x) is the rescaled total propensity function, w(t,x;I) only involves the

summation of finite lower order difference terms including the product of some aV,Ĩ1

j s

and one vV,Ĩ2(t,y) (y∈L
V ), where both Ĩ1 and Ĩ2 are index sets, #(Ĩ1)≤ i but

#(Ĩ2)<i.
The proof of (4.11) can be completed by induction. At first it is obvious when

i=0,1. Suppose it holds for I={j1, . . . ,ji}, and take the difference operation with
respect to ji+1 to both sides of (4.11). With the fact

(gh)V,j(x)=g(x)hV,j(x)+gV,j(x)h(x+νj/V ),
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we have

∂tv
V,I,ji+1(t,x)=V

(
−aV0 (x)v

V,I,ji+1(t,x)+
M∑

j=1

aVj (x)v
V,I,ji+1(t,x+νj/V )

)

+V
(
−a

V,ji+1

0 (x)vV,I(t,x+νji+1
/V )

+

M∑

j=1

a
V,ji+1

j (x)vV,I(t,x+νj/V +νji+1
/V )

)

+

i∑

k=1

M∑

j=1

aV,jkj (x)vV,Îk,j,ji+1(t,x+νjk/V )+w(t,x;I,ji+1)

=P1+P2+P3,

where P1, P2, and P3 correspond to the different lines above. We have

P2=

M∑

j=1

a
V,ji+1

j (x)vV,I,j(t,x+νji+1
/V ).

Combining this with P3 we obtain that Equation (4.11) also holds for the i+1 case.
The induction is finished.

Step 2: Prove the regularity estimate (4.9) by induction.
Suppose it holds for i−1 case. Notice that (4.11) can be viewed as a finite

dimensional ODE system with the label (I,x) as its one component, and define the
L∞-norm of v with respect to all of the possible labels (I,x) as

‖vV,I(t,x)‖∞ := sup
j1,...,ji≤M

sup
x∈LV

|vV,j1...ji(t,x)|.

Suppose in time [0,T1] this L∞-norm is achieved at the label (I,x). We have from
(4.11)

1

2
∂t

(
vV,I(t,x)

)2
=−V aV0 (x)

(
vV,I(t,x)

)2
+V

M∑

j=1

aVj (x)v
V,I(t,x+νj/V )vV,I(t,x)

+

i∑

k=1

M∑

j=1

aV,jkj vV,Îk,j(t,x+νjk/V )vV,I(t,x)+w(t,x;I)vV,I(t,x)

≤−V aV0 (x)
(
vV,I(t,x)

)2
+V aV0 (x)‖v

V,I(t,x)‖2∞

+

(
iM sup

x∈LV

sup
j,k≤M

|aV,kj (x)|+
1

2

)
‖vV,I(t,x)‖2∞+

1

2
|w(t,x;I)|2

≤Ki‖v
V,I(t,x)‖2∞+KI ,

where

Ki= iM sup
x∈LV

sup
j,k≤M

|aV,kj (x)|+
1

2
, KI =

1

2
sup
t≤T

sup
x∈LV

|w(t,x;I)|2

are positive constants independent of x, t, and V from the Assumption 3.1 and the
induction hypothesis. Thus we obtain

‖vV,I(t,x)‖2∞≤‖fV,I(x)‖2∞+2Ki

∫ t

0

‖vV,I(s,x)‖2∞ds+KIt
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τ tauleap midpoint GRC

0.8 -127.65 ( 1.87 ) -3.44 ( 3.77 ) -3.45 ( 3.77 )
0.4 -66.15 ( 1.93 ) -0.89 ( 3.85 ) -0.89 ( 3.89 )
0.2 -33.69 ( 1.96 ) -0.22 ( 3.99 ) -0.22 ( 4.01 )
0.1 -17.00 ( 1.98 ) -0.06 ( 3.59 ) -0.06 ( 4.02 )

Table 5.1. Error of the mean for the Euler tau-leaping method (tauleap), the midpoint tau-
leaping method (midpoint), and the GRC-tau-leaping method (GRC). The first column shows the
time stepsize. The quantities outside of the parentheses from column 2 to 4 are the numerical errors
with the corresponding τ . The constants in the parentheses from column 2 to 4 show the ratio of the
error in the upper row over the error in the current row (we do not show the results with τ =1.6).
The result implies that only Euler tau-leaping method is of first order, the other two methods are of
second order for the mean.

for t∈ [0,T1]. From Gronwall’s inequality we have

‖vV,I(t,x)‖2∞≤ (‖fV,I(x)‖2∞++KIT )exp(2KiT ).

where ‖fV,I(x)‖2∞ is bounded since f ∈Cp+1
0 (RN ). We can continue this process in

time [T1,T2], [T2,T3], . . . until the final time T is achieved. Thus the induction is
finished.

5. Numerical comparisons
In this section we numerically check the aforementioned analysis on different

methods. We compare the Euler tau-leaping method, the midpoint tau-leaping
method, and the Gaussian random correction tau-leaping method (GRC-tau-leaping)
[22]. We first summarize some theoretical results.

• The Euler tau-leaping method. The Euler tau-leaping method is first
order consistent for all moments and the covariance in both traditional and
large volume scaling.

• The midpoint tau-leaping method (unrounded version). The mid-
point tau-leaping method is second order consistent for all moments and first
order consistent for the covariance in the large volume scaling.

• The Gaussian random correction tau-leaping method (GRC-tau-
leaping). The GRC-tau-leaping method is second order consistent for both
the mean and covariance in the traditional scaling. We will not list the scheme
here. The readers are referred to [22] for more details.

Here p-th order consistency means that the leading remainder term in LTE is
O(τp+1).

Next we implement the above mentioned methods to a simple model problem 1

S→2S.

This system has one reaction with propensity function a(x)= cx, where the rate
constant is c=0.1. The state-change vector is ν=1. The initial condition is X0=
1000. The exact mean and variance of XT can be solved explicitly, E[XT ]=X0e

cT ,

1We did not choose the more commonly used example S→∅ because in it the number of molecules
of S decays exponentially with time T and the numerical errors will be comparable with sampling
fluctuations, which prevent us from observing clear order relations.
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τ tauleap midpoint GRC

0.8 -767226.75 ( 1.83 ) -21592.04 ( 3.72 ) -21175.49 ( 3.76 )
0.4 -401672.22 ( 1.91 ) -5728.62 ( 3.77 ) -5447.49 ( 3.89 )
0.2 -205683.40 ( 1.95 ) -1497.58 ( 3.83 ) -1358.81 ( 4.01 )
0.1 -104083.24 ( 1.98 ) -445.40 ( 3.36 ) -337.87 ( 4.02 )

Table 5.2. Error of the second moment for the Euler tau-leaping method (tauleap), the mid-
point tau-leaping method (midpoint), and the GRC-tau-leaping method (GRC). The first column
shows the time stepsize. The quantities outside of the parentheses from column 2 to 4 are the nu-
merical errors with the corresponding τ . The constants in the parentheses from column 2 to 4 show
the ratio of the error in the upper row over the error in the current row (we do not show the results
with τ =1.6). The result implies that only Euler tau-leaping method is of first order, the other two
methods are of second order for the second order moment.

τ tauleap midpoint GRC

0.8 -1060.35 ( 1.77 ) -501.42 ( 1.97 ) -45.75 ( 3.60 )
0.4 -564.89 ( 1.88 ) -252.36 ( 1.99 ) -12.37 ( 3.70 )
0.2 -292.06 ( 1.93 ) -124.94 ( 2.02 ) -3.43 ( 3.61 )
0.1 -149.93 ( 1.95 ) -63.04 ( 1.98 ) -0.83 ( 4.15 )

Table 5.3. Error of the variance for the Euler tau-leaping method (tauleap), the midpoint
tau-leaping method (midpoint), and the GRC-tau-leaping method (GRC). The first column shows
the time stepsize. The quantities outside of the parentheses from column 2 to 4 are the numerical
errors with the corresponding τ . The constants in the parentheses from column 2 to 4 show the
ratio of the error in the upper row over the error in the current row (we do not show the results
with τ =1.6). The result implies that only GRC-tau-leaping method is of second order, the other
two methods are of first order for the variance.

Var[XT ]=X0

(
e2cT −ecT

)
. We simulate the system from t=0 to T =11.2 with fixed

time-step τ and compute the numerical error at the final time T =11.2. The stepsize
τ is chosen from 1.6 to 0.1 by halving one by one. Note that in this case

E(a0(Xt)τ)≥1000×0.1×0.1=10≫1, t∈ [0,T ], (5.1)

which means the tau-leaping condition is always satisfied during the simulation pro-
cess. In order to demonstrate the order of accuracy, we follow a procedure that is
widely used in the numerical study of ODEs. If the sample size is large enough, the
statistical fluctuations in Eτ (the sample mean of XT with stepsize τ) can be ne-
glected. Then we double the stepsize to 2τ and obtain the sample mean E2τ . If the
simulation method has p-th order accuracy for the mean, there exists a constant C
such that

|Eτ −EX|≈Cτp.

It follows that

R :=
|E2τ −EX|

|Eτ −EX|
≈

C(2τ)p

Cτp
=2p.

For example, if p=2 then |E2τ −EX|≈4|Eτ −EX|, i.e., the absolute error of the mean
will be approximately four times larger when the stepsize is doubled. The ratios R
are shown in the parentheses in Tables 5.1, 5.2, and 5.3.
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Table 5.1, 5.2, and 5.3 list the errors of sample mean, second-order moment, and
variance of XT , respectively, with a sample size of 108. We can see that the Euler tau-
leaping method is first order accurate for mean, second-order moment, and variance;
midpoint tau-leaping is second-order accurate for the mean but first order accurate
for the variance, which is consistent with the above analysis.

6. Conclusion
There are two scalings for the convergence analysis of tau-leaping methods in

the literature [1, 30, 26]. We try to resolve this debate in this paper. We point out
the shortcomings of both scalings. Theoretically we follow the large volume scaling
in [1]. We find even in this framework that the midpoint tau-leaping does not im-
prove the weak local order for the covariance compared with the explicit tau-leaping.
We propose a procedure to explain the numerical order behavior by abandoning the
dependence on the volume constant V from the leading error term. The numerical
examples validate this argument. We also generalize the global weak convergence
analysis in [1] for any explicit tau-leaping type method in the large volume scaling,
which can relieve the algorithm designer from the abstract analysis by just considering
the local truncation errors. A rigorously proof of the convergence order of the covari-
ance for these different methods is an interesting analysis problem to be considered
in the future. Better algorithms to compute the covariance more exactly are needed.

Acknowledgement. The authors are supported by the National Science Foun-
dation of China under grant 10871010. They also thank the referees for their con-
structive comments and suggestions to improve the paper.

Appendix A. Rooted tree theory for ODE. Consider a deterministic ODE
in d dimensional real space

dx(t)

dt
=a(x(t)), x(0)=x0∈R

d. (A.1)

The infinitesimal generator of this ODEs has the form

Lf(x)= lim
t→0

f(x(t))−f(x)

t
=

d∑

i=1

ai(x)∂if (A.2)

for any f ∈C1(Rd). In this section, we will use the Einstein summation convention to

denote
∑d

i=1ai(x)∂if as aif
i, where the superscript notation f i means the derivative

of f with respect to xi.
The Taylor expansion of f can be represented by the infinitesimal generator as

f (x(t+h))∼

∞∑

n=0

hn

n!
L(n)f(x(t)), (A.3)

where L(0)f(x)=f(x) and L(n)f(x)=L(L(n−1)f(x)), n=1,2, . . .. From (A.2) we have

L(1)f =aif
i, L(2)f =aiajf

ij+aja
j
if

i, (A.4)

and so on.
To analyze the Runge-Kutta methods for ODEs, Butcher developed the rooted

tree theory which relates the Taylor series expansion in terms of combinations of
elementary differentials which can be derived in a recursive fashion [6]. When n=
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n=0 n=2n=1

i i j i

j

Figure A.1. The rooted tree representations of the elementary differentials for ODEs when
n=0,1,2, where each tree corresponds to an element in Tn+1. The solid circle represents the root
node, which corresponds to the function f in (A.4). The empty circle represents the leaf node,
which corresponds to the coefficients a. The tree grows upwards when n increases. The neighboring
bottom-top pair nodes are assumed to have the father-son relation. If the node i is the father of
another node j, it means that there is a derivative with respect to the j-th variable for the coefficient
ai corresponding to the node i.

0,1,2, the elementary differentials are shown in Figure A.1. Each time n increases
by 1, one additional leaf node will be added into the tree. It can be connected into
any existing node to form a new expanded tree. This property originates from the
product rule of Newton calculus

d(fg)=f ·dg+g ·df, (A.5)

which is valid for the infinitesimal generator (A.2). We define the rooted tree repre-
sentation. Let T be the set of rooted trees and let t=[t1, . . . ,tl] be the tree formed by
joining each t1, . . . ,tl by a branch to a common root. Let ǫ be the unique tree with
1 node, which takes the convention l=0. For the function f ∈C∞(Rd), define the
notation

f(ǫ)(x)=f(x) (A.6)

and the recursive definition of f(t)(x) as

f(t)(x)=f (l)(x) ·(a(t1)(x), · · · ,a(tl)(x)), (A.7)

where the tensor f (l)(x) is the l-th order derivative of f . The right hand side of
(A.7) means the multiplication of an l-th order tensor with respect to l d-vectors.
For each t, a number of useful combinatorial properties can be defined. ρ(t),α(t)
will denote, respectively, the number of nodes and the number of possible different
monotonic labellings of t with root labeled first. If t=[t1, . . . ,tl], then they can be
defined recursively as





ρ(t)=1+
l∑

j=1

ρ(tj),

α(t)=

(
ρ(t)−1

ρ(t1), . . . ,ρ(tl)

) l∏

j=1

α(tj)
1

µ1!µ2! · · ·

(A.8)
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and we take the following initial conditions and conventions:

ρ(ǫ)=1, α(ǫ)=1, 0!=1,

(
m

0

)
=1 (m∈N). (A.9)

Here the integers µ1,µ2, . . . count the equal trees among t1, . . . ,tl and the multinomial
coefficient in the representation of α(t) counts the possible partitions of the labels
2, . . . ,ρ(t) to the l trees. In addition, let Tq denote the set of all trees with q nodes
and T1={ǫ}. Given these definitions and relationships, the following result holds:

Theorem A.1. The Taylor expansion (A.3) can be written as

f(x(t+h))∼
∞∑

q=1

∑

t∈Tq

hρ(t)−1

(ρ(t)−1)!
α(t)f(t)(x). (A.10)

For further details, the readers are referred to [20, 4]. 2

Appendix B. Rooted tree theory for SDEs driven by Brownian motion.
Suppose Xt satisfies the Ito SDEs driven by Brownian motion:

dXt=a(Xt)dt+σ(Xt) ·dW t, Xt|t=0=X0∈R
d, (B.1)

where σ :Rd→R
d×m, W t=(W1t, . . . ,Wmt) is an m-dimensional Wiener process. The

infinitesimal generator of these SDEs has the form

Lf(x)= lim
t→0

E
0,xf(Xt)−f(x)

t
=
(
aif

i+
1

2
bi1i2f

i1i2
)
(x),

where the notation E
0,x means the expectation with the initial state x at time t=0,

and we have taken the definition that the matrix B=σσT . With Ito formula we have

E
t,xf(Xt+h)∼

∞∑

n=0

hn

n!
L(n)f(x).

When n=0,1,2, the terms in the weak Taylor expansion are

L(0)f =f, L(1)f =aif
i+

1

2
bi1i2f

i1i2 , (B.2)

L(2)f =aiajf
ij+aja

j
if

i+aibj1j2f
ij1j2 +

1

2
ajb

j
i1i2

f i1i2 +
1

2
bj1j2a

j1j2
i f i

+bj1j2a
j2
i f ij1 +

1

4
bi1i2bj1j2f

i1i2j1j2 +
1

4
bj1j2b

j1j2
i1i2

f i1i2 +
1

2
bj1j2b

j2
i1i2

f i1i2j1 .

(B.3)

To study the higher order Runge-Kutta methods for the weak approximation of
the SDEs (B.1), Rössler proposed the colored rooted tree theory [31], in which the
additional type of stochastic nodes is introduced except at the root node and at the
deterministic nodes for the ODEs. Neglecting the coefficients for each term in (B.3),
we can draw the labeled S-trees for the elementary differentials appearing in (B.2)
and (B.3) in Figure B.1. Each time when n increases by 1, one additional type of leaf

2Some of our representations are a bit different from those in [20, 4] because we try to represent
them in a unified way for ODEs, diffusion processes, and jump processes.



Y. HU, T. LI, AND B. MIN 995

��
��
��
��

��
��
��
��

��
��
��

��
��
��

n=0

i i

n=1

i1 2

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

i

n=2

i j

j

ij j1 2 i i

j

1 2

i

j j
1

i

j

j
2

1 i i j j1 12 2

i i

j

1

1

12

2
j

i i j

j

12

2

2

Figure B.1. The S-tree representations of the elementary differentials for SDEs driven by
Brownian motion when n=0,1,2. The solid circle represents the root node, which corresponds to
the function f in (B.3). The empty circle represents the deterministic node, which corresponds to
the coefficient functions a, and the shaded circle represent the stochastic node, which corresponds to
the coefficients b. The tree grows upwards when n increases. The neighboring bottom-top pair nodes
are assumed to have the father-son relation. Similar to the ODE case, the father-son relationship
means there is a derivative for the coefficient corresponding to the father node. Notice that the index
with subindices like i1, i2, or j1,j2 corresponds to the integrated coefficient bi1i2 or bj1j2 , but the
derivatives are taken for their corresponding father nodes.

node (or nodes) will be added into the tree. They may be one deterministic node or
two stochastic nodes, which is labeled by empty circles or shaded circles in Figure B.1,
respectively. Then they are connected into the existing nodes to form a new expanded
tree. The readers are referred to [31] for further information.
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