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NONLINEAR SCHRÖDINGER EQUATION WITH TIME

DEPENDENT POTENTIAL∗

RÉMI CARLES†

Abstract. We prove a global well-posedness result for defocusing nonlinear Schrödinger equa-
tions with time dependent potential. We then focus on time dependent harmonic potentials. This
aspect is motivated by physics (Bose–Einstein condensation), and appears also as a preparation for
the analysis of the propagation of wave packets in a nonlinear context. The main aspect considered in
this paper is the growth of high Sobolev norms of the solution when the potential is exactly quadratic
in space. Such a control is needed to study the large time propagation of nonlinear coherent states.
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1. Introduction

Let d>1, and for x∈Rd consider the nonlinear Schrödinger equation

i∂tu+
1

2
∆u=V (t,x)u+λ|u|2σu; u|t=0=u0, (1.1)

where V ∈R is locally bounded in time and subquadratic in space, λ∈R, and the
nonlinearity is energy-subcritical (σ<2/(d−2) if d>3). We prove that the solution
exists globally and is in

Σ=
{
f ∈H1(Rd); x 7→ |x|f(x)∈L2(Rd)

}
,

provided that u0∈Σ, σ<2/d (mass-subcritical nonlinearity), or σ>2/d and λ>0
(defocusing nonlinearity). We then focus on the case where V is exactly quadratic in
x:

i∂tu+
1

2
∆u=

1

2

d∑

j=1

Ωj(t)x
2
ju+λ|u|2σu; u|t=0=u0, (1.2)

where Ωj ∈R, with Ωj ∈C1(R). In the isotropic case (Ωj=Ω for all j), we show that
the above result is optimal in the sense that for all Ω∈C(R;R), if λ<0 and σ=2/d,
there exist blow-up solutions. We also investigate the growth of high Sobolev norms
for large time.

There are at least two motivations to study (1.1) in general, and (1.2) in par-
ticular. In physics, this external potential may model a time dependent confining
magnetic potential (which is turned on and off successively, hence the dependence
in time): (1.1) and (1.2) appear in Bose–Einstein condensation, typically for σ=1
(or σ=2 sometimes in the one-dimensional case d=1); see e.g. [12, 22, 28]. Equa-
tion (1.2) also appears as an envelope equation in the nonlinear propagation of wave
packets. In the linear case, consider

iε∂tψ
ε+

ε2

2
∆ψε=V (x)ψε; ψε(0,x)=

1

εd/4
ϕ

(
x−x0√

ε

)
ei(x−x0)·ξ0/ε.
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938 NLS WITH TIME DEPENDENT POTENTIAL

In the limit ε→0, ψε can be approximated as follows:

ψε(t,x) ∼
ε→0

1

εd/4
u

(
t,
x−x(t)√

ε

)
eiφ(t,x)/ε,

where (x(t),ξ(t)) is given by the Hamiltonian flow associated to H= |ξ|2

2 +V (x), with
initial data (x0,ξ0),

φ(t,x)=(x−x(t)) ·ξ(t)+
∫ t

0

(
1

2
|ξ(τ)|2−V (x(τ))

)
dτ,

and u is given by the equation

i∂tu+
1

2
∆u=

1

2
〈Q(t)x,x〉u; u|t=0=ϕ.

Here, Q is defined by Q(t)=HessV (x(t)), the Hessian of V at point x(t); see e.g. [15].
We note that the external potential in this case has the form presented in (1.2). To
study the nonlinear propagation of wave packets, another parameter must be taken
into account: the size of the initial data. In [11], it is shown that there exists a critical
size (depending on the nonlinearity and the space dimension), corresponding to a
certain power of ε: for initial data which are smaller (as ε→0) than this critical size,
the nonlinearity is negligible and we retrieve the same description as above; for initial
data which have the critical size, we have a similar description, up to the fact that the
envelope equation is now nonlinear, of the form (1.2). To study the propagation of
wave packets over large times (typically, up to an analogue of Ehrenfest time), one has
to understand the large time behavior of solutions to (1.2). The main contribution of
the present paper is precisely to control the growth of high order Sobolev norms, and
momenta (which are related since the harmonic potential rotates the phase space, and
hence exchanges space and frequency regularity; see e.g. [9]) of the solution to (1.2).

Remark 1.1 (Time dependent nonlinearity). With little modification, we could
also consider the more general equation

i∂tu+
1

2
∆u=

1

2

d∑

j=1

Ωj(t)x
2
ju+h(t)|u|2σu; u|t=0=u0, (1.3)

where h∈C∞(R;R). Following [14] (see also [13]), the regularity assumption on h
could be weakened. We choose to consider an autonomous nonlinearity in most of
this paper though.

Remark 1.2 (Complete integrability). The cubic one-dimensional case d=σ=1
is special: if Ω=0, then the equation is completely integrable ([1]). More generally,
(1.3) has a Lax pair (recall that d=σ=1) provided that Ω and h are related through
the identities ([31, 27])

Ω(t)= f̈(t)− ḟ(t)2; h(t)=aef(t); a∈R, f ∈C∞(R;R).

The case where the above relation is not satisfied is included in Proposition 1.5.

The assumption we make on the external potential V is inspired by [20]:

Assumption 1.3. V ∈L∞
loc(Rt×Rd

x) is smooth with respect to the space variable: for
(almost) all t∈R, x 7→V (t,x) is a C∞ map. Moreover, it is subquadratic in space:

∀T >0, ∀α∈Nd, |α|>2, ∂αxV ∈L∞([−T,T ]×Rd).
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Note that this assumption does not involve spectral properties of V , and demands
very little concerning the dynamical properties of the associated Hamiltonian. The
time dependent harmonic potential that we consider in (1.2) is of course a peculiar
case of such potentials V .

Before stating the main results of this paper, let us emphasize that when the
potential V is linear in x, an extension of the celebrated Avron–Herbst formula (when
V =E ·x with E∈Rd constant; see e.g. [18]) is available. The following result can be
checked by straightforward computations:

Lemma 1.4 (Generalized Avron–Herbst formula). Let E∈L1
loc(R;Rd), and h

some function of t. The solutions to

i∂tv+
1

2
∆v=h(t)|v|2σv; v|t=0=u0,

i∂tu+
1

2
∆u=E(t) ·xu+h(t)|u|2σu; u|t=0=u0,

are related by the formula

u(t,x)=v

(
t,x+

∫ t

0

∫ τ

0

E(s)dsdτ

)
e−ix·

∫

t

0
E(τ)dτ− i

2

∫

t

0 |
∫

s

0
E(τ)dτ|2ds.

In particular, all the results known for (1.1) in the case V =0 are immediately trans-
lated to the case V (t,x)=E(t) ·x. We shall not pursue this aspect here, since our
main motivation is the large time behavior of solutions to (1.2).

1.1. L2-subcritical case. When the energy is L2-subcritical (σ<2/d), we
have:

Proposition 1.5. Let λ∈R, 0<σ<2/d, and V satisfy Assumption 1.3. For all
u0∈L2(Rd), (1.1) has a unique solution

u∈C
(
R;L2(Rd)

)
∩L

4σ+4
dσ

loc

(
R;L2σ+2(Rd)

)
.

Moreover, its L2-norm is independent of time:

‖u(t)‖L2(Rd)=‖u0‖L2(Rd), ∀t∈R.

Sketch of the proof. In view of [20, 21], local in time Strichartz estimates are
available. Therefore, one can reproduce the original proof of [37] (see also [13, 34]),
in order to infer the result.

1.2. Energy subcritical case. In order to encompass the physical case
σ=1 when d=2 or 3, we need to consider the case σ>2/d. We shall restrict our
attention to H1-subcritical nonlinearities: σ<2/(d−2) when d>3. To solve (1.2),
even locally in time, one needs to work in Σ, and not only H1; symmetry is needed
on physical and frequency sides, unless V is sublinear [9]. Local existence in Σ then
follows from the dispersive estimates in [20, 21]; one can work as in the case V ≡0
(where it is possible to work in H1(Rd) only). Instead of considering only (u,∇u) as
the unknown function, one can consider (u,∇u,xu). The three functions are related
through a closed family of estimates, and we get:
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Proposition 1.6. Let λ∈R, V be a potential satisfying Assumption 1.3, and σ>0,
with σ<2/(d−2) if d>3. For u0∈Σ, there exists T and a unique solution u to (1.1)
such that

u,∇u,xu∈C
(
]−T,T [;L2(Rd)

)
∩L

4σ+4
dσ

loc

(
]−T,T [;L2σ+2(Rd)

)
.

Moreover, its L2-norm is independent of time:

‖u(t)‖L2(Rd)=‖u0‖L2(Rd), ∀t∈]−T,T [.

Since only bounded time intervals are considered in [20, 21], we give a more precise
treatment of this result in §2 in order to consider global in time solutions. We have
been careful in the statement of Proposition 1.6 not to write that T depends only on
‖u0‖Σ. To infer global existence results, we wish to replace the initial time t=0 in
(1.1) with t= t0>0. Under the assumptions of Proposition 1.6, it is not guaranteed
that the corresponding T is independent of t0. However, it is proved in [20, 21] that
local dispersive estimates are available, uniformly on finite time intervals.

The natural candidate for an energy in the case of (1.1) is

E(t)=
1

2
‖∇u(t)‖2L2 +

λ

σ+1
‖u(t)‖2σ+2

L2σ+2 +

∫

Rd

V (t,x)|u(t,x)|2dx. (1.4)

Proposition 1.7. Under the assumptions of Proposition 1.6, if in addition V is C1

with respect to t, and ∂tV satisfies Assumption 1.3, then E∈C1(]−T,T [;R), and its
evolution is given by

dE

dt
=

∫

Rd

∂tV (t,x)|u(t,x)|2dx. (1.5)

The proof of the above result is straightforward, and follows the same lines as in the
justification of similar evolution laws in, e.g., [13].

Theorem 1.8 (Global existence in Σ). Let λ∈R, σ>0 with σ<2/(d−2) if d>3,
and let V satisfy Assumption 1.3. For u0∈Σ, we can take T =+∞ in Proposition 1.6
in the following cases:

• σ<2/d.

• σ>2/d and λ>0, provided V is C1 in t and ∂tV satisfies Assumption 1.3.

Remark 1.9. This result extends the main one in [7], where typically the (time inde-
pendent) potential −ω2

1x
2
1+ω

2
2x

2
2 is considered. It is established in [7] that if λ>0 and

ω1≫1+ω2, then the solution to (1.2) is global, and there is scattering. The present
theorem extends the existence part, but of course the assumptions of Theorem 1.8
are too general to expect a scattering result; in the case of (1.2) with Ωj=1 ∀j, for
instance, one can construct periodic solutions to (1.2), of the form u(t,x)= e−iωtψ(x).
Indeed, this amounts to finding a non-trivial solution to the elliptic problem

ωψ=Hψ+λ|ψ|2σψ, where H=−1

2
∆+

|x|2
2
. (1.6)

Introduce the quantities

I(ψ)=
1

2
〈Hψ,ψ〉− ω

2
〈ψ,ψ〉 ,

M =

{
ψ∈Σ ;

1

σ+1

∫

Rd

|ψ(x)|2σ+2dx=1

}
,
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and consider

δ= inf
ψ∈M

I(ψ).

If ω>d/2 (the lowest eigenvalue of the harmonic oscillator), then (1.6) has a non-
trivial solution for λ>0. If ω<d/2, then (1.6) has a non-trivial solution for λ<0.
See e.g. [10] for more details.

Theorem 1.8 shows that in the usual cases where global existence is known without
a potential, the introduction of a smooth subquadratic potential V does not change
this property, regardless of the time dependence of V . In the case σ=2/d and λ<0,
we prove that finite time blow-up does occur for time dependent potentials, like in
the case with no potential:

Proposition 1.10 (Finite time blow-up). Let σ=2/d and λ<0. Consider (1.2)
with an isotropic potential: Ωj=Ω∈C(R;R) is independent of j. There exist blow-up
solutions for (1.2). That is, we can find T >0, and u∈C(]0,T ];Σ) solving (1.2) such
that

‖∇u(t)‖L2−→
t→0

∞.

1.3. Growth of higher order Sobolev norms. We now focus on the case of
time dependent harmonic potentials, (1.2). In view of the analysis of nonlinear wave
packets in a semi-classical regime ([11]), the evolution of weighted Sobolev norms of
u over large time intervals is needed.

Consider first the autonomous isotropic case: Ωj=Ω is a constant.
If Ω=0, then when λ>0 and 2/d6σ<2/(d−2) the Sobolev norms of u are

bounded, u∈L∞(R;Hk(Rd)) (provided the nonlinearity is sufficiently smooth), since
we know that there is scattering in H1 (because we know that there is scattering in
Σ, since scattering in H1 only is not known so far in the case σ=2/d); see e.g. [38].
The momenta of u grow algebraically in time (see [2]). We give a short alternative
proof of these properties in an appendix.

If Ω>0, then u∈L∞(R;Σ), as proved by (1.5). The existence of periodic solutions
to the nonlinear problem (see Remark 1.9) shows that we may also have u∈L∞(R;Hk)
and |x|ku∈L∞(R;L2) for all k∈N.

If Ω<0 (repulsive harmonic potential), then it is proved in [6] that every defo-
cusing H1-subcritical nonlinearity is short range as far as scattering theory is con-
cerned; if λ>0 in (1.2), then u(t)∼U(t)u+ as t→+∞, for some u+∈Σ, where
U(t)=exp

(
−it(− 1

2∆+ Ω
2 |x|2)

)
. Assume Ω=−1. Using Mehler’s formula, and a de-

composition of U(t) of the form U =MDFM as in [36] (for the case Ω=0), we notice

U(t)u+(x) ∼
t→+∞

1

sinht
F
(
u+e

|·|2/2
)( x

sinht

)
ei

cosht
sinht

|x|2

2 .

This shows that the L2 norms of ∇U(t)u+ and xU(t)u+ grow exponentially in time.
By the results in [6], so do the L2 norms of ∇u and xu. Note that at least in the
linear case λ=0, we see that the Hk-norms of u grow like ekt as t goes to infinity.

Definition 1.11. Let u∈C(R;Σ) be a solution to (1.2), and k∈N.
• (Alg)k is satisfied if there exists A such that for all admissible pair (p,q),

∀α,β∈Nd, |α|+ |β|6k,
∥∥xα∂βxu

∥∥
Lp([0,t];Lq)

. tA.
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• (Exp)k is satisfied if there exists C such that for all admissible pair (p,q),

∀α,β∈Nd, |α|+ |β|6k,
∥∥xα∂βxu

∥∥
Lp([0,t];Lq)

. eCt.

We wish to consider smooth energy-subcritical nonlinearities. Since we study homo-
geneous nonlinearities, we have to assume: d63, σ∈N, with σ=1 if d=3.

Corollary 1.12. Let d63, λ>0 and σ∈N, with σ=1 if d=3. Let k∈N,

u0∈Hk
(
Rd
)
, with |x|ku0∈L2(Rd).

If Ωj ∈C1(R;R) is compactly supported for all j, then u has the property (Alg)k.

Proof. We may assume that suppΩ⊂ [−M,M ]. By Theorem 1.8, u|t=M ∈Σ. It
is easy to check that the higher regularity is conserved as well. This is straightforward,
since we consider an energy-subcritical nonlinearity. The corollary then follows from
the case Ω=0, where (Alg)k is satisfied, as recalled in the appendix.

In the case where the dependence of Ωj with respect to time is not specified,
the evolution of the energy (1.4) yields no exploitable information. Even in the L2-
subcritical case, we will see that proving exponential control requires some work.

Proposition 1.13 (Exponential growth). Let d63, σ∈N, with σ=1 if d=3,
Ωj ∈C(R;R) be locally Lipschitz, k∈N, k>1, and

u0∈Hk
(
Rd
)
, with |x|ku0∈L2(Rd).

(Exp)k is satisfied (at least) in the following cases:
• σ=d=1 (L2-subcritical nonlinearity), and Ω is bounded.
• σ>2/d, λ>0, and Ωj=Ω60 is independent of j (isotropic repulsive potential).

Remark 1.14 (Optimality). When the potential is repulsive and time-
independent (Ω=−1 typically), the exponential growth is sharp, and C does depend
on k (C=k when Ω=−1), as discussed above.

Remark 1.15. We prove that in the case of an isotropic repulsive potential, there
is scattering provided σ>2/d (Proposition 6.4): morally, (Exp)k is satisfied because
it is satisfied in the linear setting (case λ=0). However, this property on the linear
solution demands a justification; the key is Lemma 6.2.

1.4. Outline of the paper. In Section 2, we prove Theorem 1.8. We then
focus on the study of Equation (1.2). In Section 3, we derive a generalized Mehler for-
mula to express the fundamental solution associated to the linear equation (1.2) with
λ=0. In Section 4, we generalize a lens transform, known in the case of isotropic time-
independent quadratic potentials, to the case of isotropic time-dependent quadratic
potentials. This allows us to infer Proposition 1.10. In Section 5, we introduce some
vector fields, corresponding to Heisenberg derivatives, which yield interesting evolu-
tion laws when the potential is isotropic. In Section 6, we examine the large time
behavior of solutions to (1.2), and prove Proposition 1.13. Finally, we show in an ap-
pendix that when V =0, for large time, the solutions to (1.1) have bounded Sobolev
norms and algebraically growing momenta, provided there is scattering.
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2. Global existence in Σ: proof of Theorem 1.8

2.1. Strichartz estimates. We first recall some results established in [20, 21].
Consider V satisfying Assumption 1.3. It is established in [20] that one can define
U(t,s) as u(t,x)=U(t,s)ϕ(x), where

i∂tu+
1

2
∆u=V (t,x)u; u(s,x)=ϕ(x), (2.1)

along with the following properties:

• U(t,t)=Id.

• The map (t,s) 7→U(t,s) is strongly continuous.

• U(t,s)∗=U(t,s)−1.

• U(t,τ)U(τ,s)=U(t,s).

• U(t,s) is unitary on L2: ‖U(t,s)ϕ‖L2 =‖ϕ‖L2 .
In addition, we know from [21] that for all T >0, t,s∈ [−T,T ],

‖U(t,0)U(s,0)∗ϕ‖L∞(Rd)=‖U(t,s)ϕ‖L∞(Rd)6
C

|t−s|d/2 ‖ϕ‖L1(Rd), (2.2)

provided that |t−s|<η. It is implicitly assumed in [20] that η may depend on T ; in
Example 2.4 below, we show that indeed it does in the case of the time dependent
harmonic potential if the functions Ωj are not bounded.

Recall the standard definition in the context of Schrödinger equations:

Definition 2.1. A pair (p,q) is admissible if 26 q< 2d
d−2 (26 q6∞ if d=1, 26 q<∞

if d=2) and

2

p
= δ(q) :=d

(
1

2
− 1

q

)
.

The general results on Strichartz estimates (see e.g. [26]) then yield, as a consequence
of the dispersive estimate (2.2):

Proposition 2.2. Recall that U(t,s) is defined by (2.1), where V satisfies Assump-
tion 1.3. Let T >0. There exists η>0 such that the following holds:

(1) For any admissible pair (p,q), there exists Cq such that

‖U(·,s)ϕ‖Lp([s,s+η];Lq)6Cq‖ϕ‖L2 , ∀ϕ∈L2(Rd), ∀s∈]−T,T −η[.

(2) For s∈R, denote

Ds(F )(t,x)=

∫ t

s

U(t,τ)F (τ,x)dτ.

For all admissible pairs (p1,q1) and (p2,q2), there exists C=Cq1,q2 independent of
s∈]−T,T −η[ such that

‖Ds(F )‖Lp1 ([s,s+δ];Lq1 )6C ‖F‖
Lp′2

(

[s,s+δ];Lq′2

) , (2.3)

for all F ∈Lp′2(I;Lq′2) and 06 δ6η.
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Example 2.3 (Standard harmonic oscillator). Assume that V (t,x)= |x|2

2 . The
above result is then standard (see e.g. [13]). The fact that one has to consider finite
time intervals for the above result to be valid stems for instance from the existence of
eigenvalues for the harmonic oscillator: let g(x)= e−|x|2/2 be the ground state associ-
ated to the harmonic potential, and denote u(t,x)= e−itd/2g(x). It solves

i∂tu+
1

2
∆u=

|x|2
2
u; u|t=0=g.

We compute ‖u‖Lp(I;Lq)= |I|1/p‖g‖Lq , which shows that Proposition 2.2 becomes false
with η=∞.

Example 2.4. We show that in general, the above result is false with T =∞. Let

V (t,x)=
1

2
Ω(t)|x|2.

If Ω is not bounded, then the above uniformity with respect to s fails: let

Ω(t)=n2 if 4n+1= tn6 t64n+2.

Since we have
(
−1

2
∆+

n2

2
|x|2
)
e−n|x|

2/2=
nd

2
e−n|x|

2/2,

the function u(t,x)= e−ind(t−tn)/2−n|x|
2/2 solves (2.1) with s= tn. If Proposition 2.2

was true with T =∞, we would have:

‖u‖Lp([4n+1,4n+1+η];Lq)=η
1/p

(
2π

nq

)d/(2q)
6C‖u(tn)‖L2 =C

(π
n

)d/4
,

where C does not depend on n. For all q>2, letting n go to infinity leads to a
contradiction. Since (2.2) implies Proposition 2.2, this shows that (2.2) is valid for
|t−s|<η, where η depends on T , unless Ω is bounded.

2.2. Local existence in Σ. Since (1.1) is not autonomous, we consider the
same problem with a varying initial time:

i∂tu+
1

2
∆u=V (t,x)u+λ|u|2σu; u|t=s=u0, (2.4)

with s∈R.

Proposition 2.5. Let λ∈R, σ>0 with σ<2/(d−2) if d>3, and let V sat-
isfy Assumption 1.3. Let M>0, and s∈]−M,M [. For all u0∈Σ, there exists
T =T (‖u0‖Σ,M) and a unique solution u solution to (2.4), such that

u,∇u,xu∈C
(
]s−T,s+T [;L2(Rd)

)
∩L

4σ+4
dσ

loc

(
]s−T,s+T [;L2σ+2(Rd)

)
.

Moreover, its L2-norm is independent of time:

‖u(t)‖L2(Rd)=‖u0‖L2(Rd), ∀t∈]s−T,s+T [.

If V is C1 in t, then the energy E (defined by (1.4)) evolves according to (1.5).
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Sketch of the proof. We present here only the main steps of the classical argument.
Duhamel’s formulation for (2.4) reads

u(t)=U(t,s)u0− iλ
∫ t

s

U(t,τ)
(
|u|2σu

)
(τ)dτ.

Denote the right hand side by Φs(u)(t). Proposition 2.5 follows from a fixed point
argument in the space

XT =
{
u∈C(IT ;Σ) ; u,xu,∇u∈L

4σ+4
dσ

(
IT ;L

2σ+2(Rd)
)}
,

where IT =]s−T,s+T [. Introduce the Lebesgue exponents

q=2σ+2; p=
4σ+4

dσ
; θ=

2σ(2σ+2)

2−(d−2)σ
.

Then (p,q) is admissible, and

1

q′
=

2σ

q
+

1

q
;

1

p′
=

2σ

θ
+

1

p
.

Proposition 2.2 and Hölder inequality yield

‖Φs(u)‖Lp(IT ;Lq)∩L∞(IT ;L2)6C‖u0‖L2 +C
∥∥|u|2σu

∥∥
Lp′ (IT ;Lq′ )

6C‖u0‖L2 +C‖u‖2σLθ(IT ;Lq)‖u‖Lp(IT ;Lq),

where C is independent of s∈ [−M,M ] and T 6η. Using Sobolev embedding,

‖Φs(u)‖Lp(IT ;Lq)∩L∞(IT ;L2)6C‖u0‖L2 +CT 2σ/θ‖u‖2σL∞(IT ;H1)‖u‖Lp(IT ;Lq).

We have

∇Φs(u)(t)=U(t,s)∇u0− iλ
∫ t

s

U(t,τ)∇
(
|u|2σu

)
(τ)dτ

− i
∫ t

s

U(t,τ)(Φs(u)(τ)∇V (τ))dτ.

We estimate the second term of the right hand side as above and get, since ∇V is
sublinear by assumption,

‖∇Φs(u)‖Lp(IT ;Lq)∩L∞(IT ;L2)6C‖∇u0‖L2 +CT 2σ/θ‖u‖2σL∞(IT ;H1)‖∇u‖Lp(IT ;Lq)

+C‖Φs(u)∇V ‖L1(IT ;L2)

6C‖∇u0‖L2 +CT 2σ/θ‖u‖2σL∞(IT ;H1)‖∇u‖Lp(IT ;Lq)

+CT‖xΦs(u)‖L∞(IT ;L2)+CT‖Φs(u)‖L∞(IT ;L2),

where, again, C does not depend on s∈ [−M,M ]. We have similarly

‖xΦs(u)‖Lp(IT ;Lq)∩L∞(IT ;L2)6C‖xu0‖L2 +CT 2σ/θ‖u‖2σL∞(IT ;H1)‖xu‖Lp(IT ;Lq)

+CT‖∇Φs(u)‖L∞(IT ;L2).
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Choosing T sufficiently small, one can then prove that Φs maps a suitable ball in
XT into itself. Contraction for the norm ‖·‖Lp(IT ;Lq) is proved similarly, and one
concludes by remarking that XT equipped with this norm is complete.

We can now infer the analogue to the standard result (which is not straightfor-
ward since we consider a non-autonomous equation, in the presence of an external
potential):

Corollary 2.6. Let λ∈R, σ>0 with σ<2/(d−2) if d>3, V satisfy Assump-
tion 1.3, and u0∈Σ. Either the solution to (1.2) is global in time (in the future),

u,∇u,xu∈C
(
R+;L

2(Rd)
)
∩L

4σ+4
dσ

loc

(
R+;L

2σ+2(Rd)
)
,

or there exists T >0, such that

‖∇u(t)‖L2 −→
t→
<
T
+∞.

Proof. Let M>0. Proposition 2.5 shows that the only obstruction to well-
posedness on [0,M ] is the existence of a time 0<T <M such that

‖xu(t)‖L2 +‖∇u(t)‖L2 −→
t→
<
T
+∞.

So long as u∈C([0,t];Σ), we have (see e.g. [13] for the arguments that make the
computation rigorous)

d

dt

∫

Rd

x2j |u(t,x)|2dx=2Im

∫

Rd

xju(t,x)∂ju(t,x)dx. (2.5)

Suppose u∈L∞([0,T ];H1). Then the above formula, Cauchy–Schwarz inequality,
and Gronwall’s Lemma show that xu∈L∞([0,T ];L2), a contradiction. The corollary
follows since M>0 is arbitrary.

Therefore, to prove global existence in Σ in the H1-subcritical case, it suffices to
exhibit a priori bounds for ∇u in L2.

2.3. L2-subcritical case. In the case σ<2/d, recall that the classical argu-
ment of [37] can be applied directly to infer Proposition 1.5. The a priori bound for
(∇u,xu) in L2 then follows by resuming the computations presented in the proof of
Proposition 2.5. Keeping the same notations, we have in particular

‖∇Φs(u)‖Lp(IT ;Lq)∩L∞(IT ;L2)+‖xΦs(u)‖Lp(IT ;Lq)∩L∞(IT ;L2)

6C‖u0‖Σ+C‖u‖2σLθ(IT ;Lq)

(
‖∇u‖Lp(IT ;Lq)+‖xu‖Lp(IT ;Lq)

)

+CT
(
‖Φs(u)‖L∞(IT ;L2)+‖xΦs(u)‖L∞(IT ;L2)+‖∇Φs(u)‖L∞(IT ;L2)

)
,

where we recall that

q=2σ+2; p=
4σ+4

dσ
; θ=

2σ(2σ+2)

2−(d−2)σ
,

and, in view of Proposition 2.5, we know that u=Φs(u). In the case σ<2/d, we have
1/p<1/θ, and thus

‖u‖Lθ(IT ;Lq)6 (2T )1/θ−1/p‖u‖Lp(IT ;Lq)=(2T )
(2−dσ)(σ+1)

2σ(2σ+2) ‖u‖Lp(IT ;Lq).
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By Proposition 1.5, u∈Lploc(R;Lq(Rd)). Splitting any given time interval [−M,M ]
into finitely many (tiny) pieces, we obtain an a priori bound for (∇u,xu) in
L∞([−M,M ];L2). Since M>0 is arbitrary, Corollary 2.6 yields the first point of
Theorem 1.8.

2.4. Defocusing energy-subcritical case. We now consider the case λ>0,
with σ<2/(d−2) if d>3. To complete the proof of Theorem 1.8, we resume the
computation initiated in the proof of Corollary 2.6 in order to infer a virial identity:

Lemma 2.7. Let λ∈R, σ>0 with σ<2/(d−2) if d>3, and V satisfy Assump-
tion 1.3. Let u0∈Σ, and u∈C(]−T,T [;Σ) be the solution to (1.1) given by Proposi-
tion 2.5 (case s=0). Denote

y(t)=

∫

Rd

|x|2|u(t,x)|2dx.

Then y∈C2(]−T,T [), and satisfies

d2y

dt2
=2‖∇u(t)‖2L2 −2

∫

Rd

x ·∇V (t,x)|u(t,x)|2dx+2λ
dσ

σ+1
‖u(t)‖2σ+2

L2σ+2 .

Proof. We present the formal part of the proof, and refer to [13] for the arguments
that make the proof rigorous. We first resume the computation made in the course of
the proof of Corollary 2.6. Differentiating (2.5) again with respect to time, we have:

d2

dt2
‖xju‖2L2 =2Im

∫

Rd

xj∂tu∂ju+2Im

∫

Rd

xju∂j∂tu

=−2Im

∫

Rd

(u+2xj∂ju)∂tu=2Re

∫

Rd

(u+2xj∂ju)i∂tu

=2Re

∫

Rd

(u+2xj∂ju)

(
−1

2
∆u+V (t,x)u+λ|u|2σu

)

The terms in the right hand side simplify easily, and we infer:

d2

dt2
‖xju‖2L2 =‖∇u‖2L2 +2

∫

Rd

V (t,x)|u(t,x)|2dx+2λ‖u‖2σ+2
L2σ+2

−2Re

∫

Rd

xj∂ju∆u+4Re

∫

Rd

V (t,x)xju∂ju

+4λRe

∫

Rd

xj |u|2σu∂ju

=‖∇u‖2L2 +2

∫

Rd

V (t,x)|u(t,x)|2dx+2λ‖u‖2σ+2
L2σ+2

−‖∇u‖2L2 +2‖∂ju‖2L2 +2

∫

Rd

xjV (t,x)∂j
(
|u|2
)

− 2λ

σ+1
‖u‖2σ+2

L2σ+2

=2‖∂ju‖2L2 −2

∫

Rd

xj∂jV (t,x)|u(t,x)|2dx+2λ
σ

σ+1
‖u‖2σ+2

L2σ+2 .

The result then follows by summing over j.
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To complete the proof of Theorem 1.8, fix M>0, and for t∈ [0,M ], let

f(t)=y(t)+ |ẏ(t)|.

We have

ḟ(t)6 |ẏ(t)|+ |ÿ(t)|6 |ẏ(t)|+2‖∇u‖2L2 +C+Cy(t)+C‖u‖2σ+2
L2σ+2 ,

where we have used Lemma 2.7, the estimate

|x ·∇V (t,x)|6C(M)
(
1+ |x|2

)
, ∀(t,x)∈ [0,M ]×Rd,

and the conservation of mass. Since u0∈Σ, (1.4)–(1.5) (this is where we have to
assume that V is C1 in t) yield

‖∇u‖2L2 +‖u‖2σ+2
L2σ+2 .1+y(t)+ sup

06s6t
y(s).1+ sup

06s6t
y(s).

Gronwall’s Lemma implies f ∈L∞([0,M ]). We infer y∈L∞
loc(R). With the above

inequality, this implies ∇u∈L∞
loc(R;L2), and Theorem 1.8 then follows from Corol-

lary 2.6.

3. Generalized Mehler formula

In the rest of this paper, we consider the case where V is exactly quadratic in x,
and study some properties associated to (1.2).

3.1. The formula. Classically, Mehler’s formula refers to the explicit formula
for the fundamental solution of the linear equation

i∂tulin+
1

2
∆ulin=

1

2

d∑

j=1

Ωj(t)x
2
julin; ulin|t=0=u0, (3.1)

in the case Ω̇j=0, with Ωj>0; see e.g. [19]. It was generalized (still with Ω̇j=0) in
[23] to a framework where, typically, Ωj ∈R has no specified sign.

The case of time dependent harmonic potentials with d=1 was considered in [16],
along with other terms corresponding, for instance, to time dependent magnetic and
electric fields. Since the case d>1 for (3.1) follows by taking the tensor product of
the one dimensional case, we shall simply rewrite the results of [16] (and adapt them
to our conventions).

Seek formally the solution to (3.1) as

ulin(t,x)=




d∏

j=1

1

2iπµj(t)




1/2∫

Rd

e
i
2φ(t,x,y)u0(y)dy, (3.2)

where

φ(t,x,y)=
d∑

j=1

(
αj(t)x

2
j+2βj(t)xjyj+γj(t)y

2
j +2δj(t)xj+2ǫj(t)yj

)
+θ(t),

and all the functions of time involved in this formula are real-valued. For in-
stance, when Ω=0, we have µ(t)= t, α=β=γ=1/t and δ= ǫ=θ=0: the convergence
ulin(t)→u0 as t→0 is recovered (at least formally) by applying the stationary phase
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formula. Note that in view of the results of D. Fujiwara [20, 21], we know that there
exists η>0 such that for |t|<η, the solution to (3.1) can be expressed as

ulin(t,x)=
1

(2iπt)d/2

∫

Rd

eiϕ(t,x,y)a(t,x,y)u0(y)dy,

where a(0,x,y)=1, ∂αx ∂
β
y a∈L∞(]−η,η[×Rd×Rd) for all α,β∈Nd, and

ϕ(t,x,y)=
|x−y|2

2t
+ tξ(t,x,y),

with ∂αx ∂
β
y ξ∈L∞(]−η,η[×Rd×Rd) as soon as |α+β|>2.

Applying the differential operator i∂t+
1
2∆ to (3.2), and identifying the terms (in

x2j ,xjyj . . .) in (3.1), we find:

x2j : α̇j+α
2
j +Ωj=0; xjyj : β̇j+αjβj=0.

y2j : γ̇j+β
2
j =0; xj : δ̇j+αjδj=0.

yj : ǫ̇j+βjδj=0; Im(C) : µ̇j=αjµj .

Re(C) : θ̇+
d∑

j=1

δ2j =0.

We infer that µj is given by

µ̈j+Ωj(t)µj=0; µj(0)=0, µ̇j(0)=1. (3.3)

We also have

αj=
µ̇j
µj
.

Note that as in the standard cases (Ω̇j=0), αj(t)∼1/t as t→0. For βj , we have

β̇j+
µ̇j
µj
βj=0, hence βj(t)=

C

µj(t)
,

and the stationary phase formula (as t→0) yields C=−1. We also find

γj(t)=
1

µj(t)µ̇j(t)
−
∫ t

0

Ωj(τ)

(µ̇j(τ))
2 dτ.

Since δj(0)= ǫj(0)=θ(0)=0, we have δj= ǫj=θj≡0.

Remark 3.1. The case of the usual harmonic potential (Ωj=1) shows that singu-
larities may be present in the fundamental solutions for positive times, corresponding
to the zeroes of µj ; see e.g. [17, 24, 39, 40].

Remark 3.2. The dispersive properties associated to (3.1) are measured by the µj ’s.
We will see for instance that if Ωj60 for all j, then global in time Strichartz estimates
are available, as in the case Ωj=0. To summarize, we have:

Lemma 3.3. Let d>1, and Ωj ∈C(R;R) be locally Lipschitz. There exists T >0 such
that for u0∈S(Rd), the solution to (3.1) is given, for |t|<T , by:

ulin(t,x)=




d∏

j=1

1

2iπµj(t)




1/2∫

Rd

e
i
2

∑d
j=1(αj(t)x

2
j+2βj(t)xjyj+γj(t)y

2
j )u0(y)dy,
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where

µ̈j+Ωj(t)µj=0; µj(0)=0, µ̇j(0)=1,

αj=
µ̇j
µj

; βj=− 1

µj
; γj(t)=

1

µj(t)µ̇j(t)
−
∫ t

0

Ωj(τ)

(µ̇j(τ))
2 dτ.

Remark 3.4. The fact that the quadratic potential has no rectangle term is not
necessary in order to get such a result. If we consider

i∂tulin+
1

2
∆ulin=

1

2
〈M(t)x,x〉ulin,

where M(t) is a (time dependent) symmetric matrix, then a similar formula is avail-
able. Of course, the formula is more involved, and since it does not really bring new
information, we do not carry out the computation here.

3.2. Some consequences. In this paragraph, we assume that the functions
Ωj are bounded. This assumption was discussed in Example 2.4.

As a consequence of the boundedness of Ωj , we infer a uniform local bound from
below for the functions µj . It follows from the growth of the functions µj ’s, which is
at most exponential:

Lemma 3.5. Assume that for all j∈{1, . . . ,d}, Ωj ∈C(R;R) is locally Lipschitz and
bounded. For s∈R, define µsj and νsj as the solutions to

µ̈sj+Ωj(t)µ
s
j =0 ; µsj(s)=0, µ̇sj(s)=1. (3.4)

ν̈sj +Ωj(t)ν
s
j =0 ; νsj (s)=1, ν̇sj (s)=0. (3.5)

There exists C>0 independent of s∈R such that

|µsj(t)|+ |µ̇sj(t)|+ |νsj (t)|+ |ν̇sj (t)|6CeC|t−s|, ∀t∈R.

Proof. Introduce fsj (t)= |µ̇sj(t)|+ |µsj(t)|. We have

ḟsj (t)6 |µ̈sj(t)|+ |µ̇sj(t)|= |Ωj(t)µsj(t)|+ |µ̇sj(t)|
6‖Ωj‖L∞ |µsj(t)|+ |µ̇sj(t)|.fsj (t).

Gronwall’s Lemma yields, since fsj (s)=1,

fsj (t). e
C|t−s|,

for some C>0 independent of j,s and t. The first part of lemma then follows. The
second estimate is similar.

In view of the initial data for µsj and νsj , we infer:

Lemma 3.6. Assume that for all j∈{1, . . . ,d}, Ωj ∈C(R;R) is locally Lipschitz and
bounded. There exists η>0 such that for all j, and all s∈R,

|µsj(t)|>
|t−s|
2

,
1

2
6 |νsj (t)|6

3

2
, ∀t, |t−s|<η,

where µsj and νsj are given by (3.4) and (3.5), respectively.

This yields a uniform local dispersion in (2.2), and we infer a property which will
be crucial in the study of the large time behavior of high Sobolev norms:

Proposition 3.7. Assume that for all j, Ωj ∈C(R;R) is locally Lipschitz and
bounded. Then Proposition 2.2 remains valid with T =∞.
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4. Generalized lens transform

4.1. The formula. It was noticed in [25] that in the case of the L2-critical
nonlinearity (σ=2/d), an explicit change of unknown function makes it possible to
add or remove an isotropic harmonic potential: if v solves

i∂tv+
1

2
∆v=λ|v|4/dv ; v|t=0=u0, (4.1)

where λ∈R, then u, given for |t|<π/(2ω) by the lens transform

u(t,x)=
1

(cos(ωt))
d/2

v

(
tan(ωt)

ω
,

x

cos(ωt)

)
e−i

ω
2 |x|2 tan(ωt) (4.2)

solves

i∂tu+
1

2
∆u=

ω2

2
|x|2u+λ|u|4/du; u|t=0=u0.

See also [30, 5, 35]. Note that the change for the time variable is locally, not globally,
invertible. The case of a repulsive harmonic potential,

i∂tu+
1

2
∆u=−ω

2

2
|x|2u+λ|u|4/du; u|t=0=u0,

is obtained by replacing ω by iω. A formula similar to (4.2) follows, where the
trigonometric functions are replaced by hyperbolic functions (and the discussion on
the time interval becomes different); see [6]. A heuristic way to understand why this
approach works only in the case of isotropic potentials is that even though there would
be a “natural” candidate to change the space variable in the anisotropic case, there
is no satisfactory candidate to change the time variable.

The lens transform can be generalized to the case of (1.2) provided that the
potential is isotropic in the sense that Ωj(t)=Ω(t) is independent of j. Seek an
extension of (4.2) of the form

u(t,x)=
1

b(t)d/2
v

(
ζ(t),

x

b(t)

)
e

i
2a(t)|x|

2

, (4.3)

with a,b,ζ real-valued,

b(0)=1; a(0)= ζ(0)=0. (4.4)

Suppose also that v solves a more general non-autonomous equation

i∂tv+
1

2
∆v=H(t)|v|2σv; v|t=0=u0. (4.5)

We want u to solve

i∂tu+
1

2
∆u=

1

2
Ω(t)|x|2u+h(t)|u|2σu; u|t=0=u0. (4.6)

Apply the Schrödinger differential operator to the formula (4.3), and identify the
terms so that u solves (4.6). We find:

ḃ=ab; ȧ+a2+Ω=0; ζ̇=
1

b2
; b(t)dσ−2H (ζ(t))=h(t).
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Introduce the solution to
{
µ̈+Ω(t)µ=0 ; µ(0)=0, µ̇(0)=1.

ν̈+Ω(t)ν=0 ; ν(0)=1, ν̇(0)=0.
(4.7)

Note that since the Wronskian of µ and ν is constant, we have µ̇ν−µν̇=1 for all
time. This relation extends the identities cos2 t+sin2 t=1 and cosh2 t−sinh2 t=1. In
view of (4.4), we infer:

a=
ν̇

ν
; b=ν; ζ=

µ

ν
.

Note that ζ is locally invertible since ζ(0)=0 and

ζ̇=
1

b2
=

1

ν2
, hence ζ̇(0)=1.

Therefore, the lens transform is locally invertible. Moreover, since b(0)=ν(0)=1, we
can write, locally in time,

H(t)= b
(
ζ−1(t)

)2−dσ
h
(
ζ−1(t)

)
=ν

((µ
ν

)−1

(t)

)2−dσ

h

((µ
ν

)−1

(t)

)
.

Proposition 4.1. Let v solve

i∂tv+
1

2
∆v=H(t)|v|2σv ; v|t=0=u0.

Let Ω∈C(R;R). There exists T >0 such that the following holds. Define u by

u(t,x)=
1

ν(t)d/2
v

(
µ(t)

ν(t)
,
x

ν(t)

)
ei

ν̇(t)
ν(t)

|x|2

2 , |t|6T,

where (µ,ν) is given by (4.7). Then for |t|<µ(T )/ν(T ), u solves

i∂tu+
1

2
∆u=

1

2
Ω(t)|x|2u+h(t)|u|2σu; u|t=0=u0,

where h(t)=ν(t)dσ−2H (µ(t)/ν(t)).

Remark 4.2. We do not require Ω to be locally Lipschitz: all we need is the local
existence of a C2 solution to (4.7), so we can rely on Peano existence theorem.

4.2. Proof of Proposition 1.10. We assume in this paragraph that the
nonlinearity is focusing : λ<0. By homogeneity, we can assume λ=−1. It is well
known that the equation

i∂tv+
1

2
∆v=−|v|4/dv (4.8)

possesses solutions which blow up in finite time, with different possible rates (see e.g.
[3, 13, 29, 33, 34] and references therein).

By adapting Proposition 4.1 to isolate the initial time t=0, we see that the lens
transform maps a solution to (4.8) which blows up at time t=0 to a solution to

i∂tu+
1

2
∆u=

1

2
Ω(t)|x|2u−|u|4/du (4.9)

which blows up at time t=0. Note that the blow-up rate is not altered by the lens
transform, since ν(t)≈1 and µ(t)/ν(t)≈ t as t→0.



R. CARLES 953

Typically, consider the (unstable) minimal mass blow-up solution to (4.8):

v(t,x)=
1

td/2
Q
(x
t

)
ei

|x|2

2t − i
t ,

where Q is the ground state, defined as the unique positive radial solution to

−1

2
∆Q+Q=Q1+4/d.

The lens transform yields a corresponding blow-up solution to (4.9) given by

u(t,x)=
1

µ(t)d/2
Q

(
x

µ(t)

)
ei

µ̇(t)
µ(t)

|x|2

2 −i
ν(t)
µ(t) .

To our knowledge, this gives the first example of an explicit blow-up solution in the
presence of a time-dependent external potential.

Note that we have considered the explicit case of minimal mass blow-up solutions
for convenience. Any blow-up solution for (4.8) gives rise to a blow-up solution for
(4.9), with the same blow-up rate.

Note also that without the extra assumption on Ω, the Sobolev norms of u may
have an arbitrary growth rate as t→∞.

Example 4.3. Consider µ(t)=exp(1−et)−exp
(
1−e2t

)
(which satisfies µ(0)=0

and µ̇(0)=1). Then the growth of Sobolev norms of the function u given by the above
formula is given by a double exponential in time, since

‖u(t)‖Hs ∼
t→+∞

Cs
|µ(t)|s .

To determine the corresponding function Ω, we compute

µ̈(t)=
(
e2t−et

)(
exp

(
1−et

)
−4exp

(
1−e2t

))
,

and therefore

Ω(t)=
exp(1−et)−4exp

(
1−e2t

)

exp(1−et)−exp(1−e2t)
(
et−e2t

)
.

We note that Ω(t)∼−e2t as t→+∞; the harmonic potential is repulsive (Ω<0), and
becomes exponentially stronger as time increases.

5. Vector fields

The aim of this paragraph is to show that there exists vector fields which may be
useful to study the nonlinear equation (1.2), in the same spirit as in [6, 8]. Consider
the solutions to

{
µ̈j+Ωj(t)µj=0 ; µj(0)=0, µ̇j(0)=1.

ν̈j+Ωj(t)νj=0 ; νj(0)=1, ν̇j(0)=0.
(5.1)

We define

Aj= µ̇jxj+ iµj∂j= iµje
i
x2
j
2

µ̇j
µj ∂j

(
e
−i

x2
j
2

µ̇j
µj ·
)
= iµje

i
∑

k

x2
k
2

µ̇k
µk ∂j

(
e
−i

∑

k

x2
k
2

µ̇k
µk ·
)
,

Bj= ν̇jxj+ iνj∂j= iνje
i
x2
j
2

ν̇j
νj ∂j

(
e
−i

x2
j
2

ν̇j
νj ·
)
= iνje

i
∑

k

x2
k
2

ν̇k
νk ∂j

(
e
−i

∑

k

x2
k
2

ν̇k
νk ·
)
.
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Note that the last two expressions for A or B show that A and B act on gauge
invariant nonlinearities like derivatives; the modulus ignores the multiplication by the
exponential.

Example 5.1 (Ω̇j=0). When Ωj=0, Bj= i∂j and Aj=xj+ it∂j, which are
Heisenberg derivatives commonly used in the theory of nonlinear Schrödinger equa-

tions (see e.g. [13]). When Ωj=ω
2
j >0, Aj=xj cos(ωjt)+ i

sin(ωjt)
ωj

∂j and Bj=

ωjxj sin(ωjt)+ icos(ωjt)∂j, and hence we recover classical Heisenberg derivatives (see
e.g. [18]). In these two cases (as well as in the case Ωj=−ω2

j <0), we have

Aj=UV (t)xjUV (−t); Bj=UV (t)i∂jUV (−t),

where UV (t)=exp
(
−it(− 1

2∆+V (x))
)
, V (x)=

∑d
k=1Ωkx

2
k.

More generally, consider η̇jxj+ iηj∂j . We check that this operator commutes with
the linear operator

i∂t+
1

2
∆− 1

2

d∑

k=1

Ωk(t)x
2
k

if and only if ηj satisfies η̈j+Ωjηj=0, in view of the identity

[
i∂t+

1

2
∆− 1

2

d∑

k=1

Ωk(t)x
2
k, η̇jxj+ iηj∂j

]
=

[
i∂t+

1

2
∂2j −

1

2
Ωj(t)x

2
j , η̇jxj+ iηj∂j

]

= iη̈jxj− η̇j∂j+ η̇j∂j+ iηjΩjxj .

Remark 5.2. This computation could be extended to the case where the center of
the harmonic potential depends on time:

i∂tu+
1

2
∆u=

1

2

d∑

k=1

Ωk(t)(xk−ck(t))2u.

Replacing η̇jxj+ iηj∂j with η̇j (xj−yj(t))+ iηj∂j , we can repeat the above compu-
tation and check that the two operators commute if and only if η̈j+Ωjηj=0 and
η̈jyj+ η̇j ẏj+ηjΩjcj=0. We choose not to investigate this case in detail here.

To show that the Σ-norm of u is related to the L2-norms of Aju and Bju, write

(
Aj
Bj

)
=Mj

(
xj
i∂j

)
, where Mj=

(
µ̇j µj
ν̇j νj

)
.

We note that the determinant of Mj is the Wronskian of µj and νj :

detMj=νj µ̇j−µj ν̇j≡1.

Therefore
(
xj
i∂j

)
=

(
νj −µj
−ν̇j µ̇j

)(
Aj
Bj

)
. (5.2)
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We shall use these vector fields in the isotropic case, where they provide a priori
estimates:

i∂tu+
1

2
∆u=

1

2
Ω(t)|x|2u+λ|u|2σu. (5.3)

Since A commutes with the linear part of (5.3) and acts on gauge invariant nonlin-
earities like a gradient, we have

1

2

d

dt
‖Au‖2L2 =λσ Im

∫

Rd

|u|2σ−2u2
(
Au
)2
.

Expanding (Au)2, we eventually obtain

d

dt

(
1

2
‖Au‖2L2 +

λµ2

σ+1
‖u‖2σ+2

L2σ+2

)
=

λ

σ+1
µµ̇(2−dσ)‖u‖2σ+2

L2σ+2 , (5.4)

d

dt

(
1

2
‖Bu‖2L2 +

λν2

σ+1
‖u‖2σ+2

L2σ+2

)
=

λ

σ+1
νν̇ (2−dσ)‖u‖2σ+2

L2σ+2 . (5.5)

These evolution laws are the analogue of the pseudo-conformal conservation law (see
[8] for the case Ω̇=0). They will allow us to infer scattering results in the case Ω60,
λ>0 (§6.3).

6. Growth of higher order Sobolev norms and momenta

6.1. The linear case. In this paragraph, we assume λ=0. We recall that in
general, Mehler’s formula is valid only locally in time, since singularities may appear
in the fundamental solution; see e.g. [17, 24, 39, 40]. To understand the long time
behavior of the solution ulin to (3.1), one may use Egorov’s Theorem (see e.g. [4]).
Since we deal with a time-dependent potential, modifications would be needed in
Egorov’s Theorem, and we follow instead another strategy to have some estimates in
the linear case (instead of an exact asymptotic behavior, as Egorov’s Theorem would
give us). This approach is based on the vector fields introduced in §5.

We remark that since the L2-norm of ulin does not depend on time, and since the
operators Aj and Bj introduced in §5 commute with Equation (3.1), the L2-norm of
Aj1Bj2 . . .Ajkulin is constant for whichever combination of these vector fields. In view
of (5.2) we infer, for k∈N,

‖|x|kulin(t)‖L2 +‖ulin(t)‖Hk .

d∑

j=1

(
|µj(t)|k+ |νj(t)|k

)
.

Lemma 3.5 shows that if Ωj ∈C(R;R) is locally Lipschitz and bounded, then the
above quantity grows at most exponentially in time. By Proposition 3.7, we conclude
that (Exp)k is satisfied for all k, provided u0 is sufficiently smooth and localized. We
recall that the case Ωj=−1 shows that the exponential growth may occur, and that
in (Exp)k, the constant C must be expected to depend on k (C=k when Ω=−1 is
sharp).

6.2. The L2-subcritical case.

Lemma 6.1. Let σ,k∈N, with σ62/d, Ωj ∈C(R;R) be locally Lipschitz and
bounded, and

u0∈Hk
(
Rd
)
, with |x|ku0∈L2(Rd).
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Suppose that there exists f ∈C(R+;R+) with f(0)=0 such that

‖u‖Lθ([s,s+τ ];Lq)6f(τ), ∀s,τ ∈R, (6.1)

where

q=2σ+2; θ=
2σ(2σ+2)

2−(d−2)σ
.

Then the solution to (1.2) satisfies (Exp)k.

Proof. The first step consists in resuming the computations carried out in the
proof of Proposition 2.5, in the case k=0. The case k>1 will follow by induction
(recall that the constant C in the exponential growth must be expected to depend on
k).
Case k=0. Let us pretend that the L2-norm of u is not conserved, to simplify
the induction. Resuming the same numerology as in the proof of Proposition 2.5,
Strichartz estimates yield, for all t∈R and τ >0,

‖u‖Lp([t,t+τ ];Lq)∩L∞([t,t+τ ];L2).‖u(t)‖L2 +‖u‖2σLθ([t,t+τ ];Lq)‖u‖Lp([t,t+τ ];Lq)

.‖u(t)‖L2 +f(τ)2σ‖u‖Lp([t,t+τ ];Lq).

Fix τ≪1 once and for all so the last term of the right hand side can be absorbed
by the left hand side, up to doubling the estimation constant. At every increment
of time of length τ , the L2 norm is multiplied (at most) by some fixed constant C.
This implies that it grows at most exponentially. Using Strichartz estimates again,
we conclude that (Exp)0 is satisfied (and actually, (Alg)0 is also true).

Case k>1. For k>1, suppose that (Exp)k−1 is satisfied. To avoid a lengthy pre-
sentation, we denote by wℓ the family of combinations of α momenta and β space
derivatives of u, with |α|+ |β|= ℓ (w0=u). We have, rather formally,

i∂twk+
1

2
∆wk=

1

2

d∑

j=1

Ωj(t)x
2
jwk+V(u,wk)+F +L(wk), (6.2)

where V is homogeneous of degree 2σ with respect to its first argument, R-linear with
respect to its second argument, F satisfies the pointwise estimate

|F |.
∑

06ℓj6k−1

|wℓ1 | . . . |wℓ2σ+1
|,

where the sums carries over combinations such that in addition
∑
ℓj=k (F =0 in the

case k=1), and L is linear with respect to its argument. A word of explanation is
needed about L: this term stems from the fact that x and ∇ do not commute with
the linear part of the equation. One might argue that we could proceed as in the
linear case, and use repeatedly the vector fields Aj and Bj . The problem is that even
though Aj and Bj act on gauge invariant nonlinearities like derivatives, this is not so,
for instance, for AjBj (the phases do not cancel in the factored formula). We might
use the operators Aj1 . . .Ajk and Bj1 . . .Bjk , but this does not suffice to recover the
momenta and derivatives of u since “rectangle” terms (like AjBj) would be needed.
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We proceed in the same spirit as in the case k=0:

‖wk‖Lp([t,t+τ ];Lq)∩L∞([t,t+τ ];L2).‖wk(t)‖L2 +‖u‖2σLθ([t,t+τ ];Lq)‖wk‖Lp([t,t+τ ];Lq)

+
∑

06ℓj6k−1

‖wℓ1‖Lθ([t,t+τ ];Lq) . . .‖wℓ2σ‖Lθ([t,t+τ ];Lq)‖wℓ2σ+1
‖Lp([t,t+τ ];Lq)

+‖L(wk)‖L1([t,t+τ ];L2)

Fixing τ≪1 independent of t∈R, the second term of the right hand side is absorbed
by the left hand side. The sum is treated thanks to (Exp)k−1. We notice that since
σ62/d, we have θ6p, where we recall that (p,q) is admissible: for 16 j62σ,

‖wℓj‖Lθ([t,t+τ ];Lq)6 τ
1/θ−1/p‖wℓj‖Lp([t,t+τ ];Lq). τ

1/θ−1/peC(t+τ),

where we have used (Exp)k−1. The last term of the sum is estimated similarly.
Finally, the term L(wk) is handled by the Gronwall’s Lemma, and (Exp)k follows.

The proof of Proposition 1.13 in the one-dimensional cubic case follows readily.
Since this case is L2-subcritical, we have θ<p. Using a Strichartz estimate, we infer,
for s,τ ∈R,

‖u‖Lp([s,s+τ ];Lq)6C(p)
(
‖u0‖L2 +‖u‖2σLθ([s,s+τ ];Lq)‖u‖Lp([s,s+τ ];Lq)

)

6C(p)
(
‖u0‖L2 +τ2σ(1/θ−1/p)‖u‖2σ+1

Lp([s,s+τ ];Lq)

)
,

for some C(p) is independent of s and τ , where we have used the conservation of mass.
Choosing τ sufficiently small, a bootstrap argument implies that there exists C>0
such that

‖u‖Lp([s,s+τ ];Lq)6C, ∀s∈R, 0<τ 6 τ0.

Again since θ<p, we conclude that (6.1) is satisfied with f(τ)=Cτ1/θ−1/p.

6.3. Isotropic repulsive potential. We assume σ>2/d, and λ>0 (defo-
cusing nonlinearity). We show that in the isotropic repulsive case Ωj=Ω>0 (a case
where the energy E defined in (1.4) is not a positive functional), the evolution laws
derived in §5 show us that the nonlinearity is negligible for large time, and there is
scattering. In this paragraph, we also assume that Ω is locally Lipschitz, without
systematically recalling this assumption. We start with the straightforward result:

Lemma 6.2. Assume Ωj(t)60 for all t>0. Then the solutions to (5.1) satisfy

νj(t)>1, µj(t)> t, ν̇j(t)>0, µ̇j(t)>1, ∀t>0.

Remark 6.3. As a consequence of this lemma, Proposition 2.2 remains valid with
T =∞, even if Ω60 is not bounded.

We can then prove:

Proposition 6.4. Assume Ωj=Ω is independent of j, with Ω(t)60 for all t>0.
Let 2/d6σ(<2/(d−2) if d>3), λ>0, and u0∈Σ. The solution to (1.2) is global in
time, and there is scattering:

∃u+∈Σ, ‖Ψ(t)(u(t)−U(t,0)u+)‖L2 −→
t→+∞

0,
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for any Ψ∈{Id,Aj ,Bj}, and where U(t,0) corresponds to the free evolution (3.1).

Proof. Since λ>0 and σ>2/d, (5.4), (5.5), and Lemma 6.2 yield

d

dt

(
1

2
‖Au‖2L2 +

λµ2

σ+1
‖u‖2σ+2

L2σ+2

)
60;

d

dt

(
1

2
‖Bu‖2L2 +

λν2

σ+1
‖u‖2σ+2

L2σ+2

)
60.

We infer a priori bounds for Au and Bu in L2. Duhamel’s formula reads, for s∈R:

u(t)=U(t,s)u(s)− iλ
∫ t

s

U(t,τ)
(
|u|2σu(τ)

)
dτ.

For Ψ∈{Id,A,B}, apply Ψ to the above formula:

Ψ(t)u(t)=U(t,s)Ψ(s)u(s)− iλ
∫ t

s

U(t,τ)Ψ(τ)
(
|u|2σu(τ)

)
dτ,

where we have used the fact that Ψ commutes with the linear part of the equation.
Since Ψ acts on gauge invariant nonlinearities like a derivative, we have, thanks to
Strichartz estimates:

‖Ψu‖Lp([s,t];Lq)∩L∞([s,t];L2).‖Ψ(s)u(s)‖L2 +‖u‖2σLθ([s,t];Lq)‖Ψu‖Lp([s,t];Lq),

with the same numerology as in the proof of Proposition 2.5. Since u, Au, and Bu
belong to L∞(R+;L

2(Rd)), we have

‖u(t)‖Lq =‖u(t)‖L2σ+2 .
1

〈t〉dσ/(2σ+2)
, (6.3)

where we have used the factorization formula for A and B, the Gagliardo–Nirenberg
inequality, and Lemma 6.2. We infer that u∈Lθ(R+;L

q):

θ
dσ

2σ+2
=

2dσ2

2−(d−2)σ
>1,

since 2dσ2+(d−2)σ=2σ(dσ−1)+dσ>2. Dividing R into a finite number of inter-
vals on which the LθLq-norm of u is small, we infer that Ψu∈Lp(R+;L

q). Scattering
follows easily:

U(0,t)u(t)=u0− iλ
∫ t

0

U(0,s)
(
|u|2σu(s)

)
ds.

For Ψ̃∈{Id,∇,x}, apply Ψ̃ to the above formula to obtain

Ψ̃U(0,t)u(t)=Ψ̃u0− iλ
∫ t

0

Ψ̃U(0,s)
(
|u|2σu(s)

)
ds

=Ψ̃u0− iλ
∫ t

0

U(0,s)Ψ
(
|u|2σu(s)

)
ds,

where Ψ=Id if Ψ̃=Id, Ψ=−iB if Ψ̃=∇, and Ψ=A if Ψ̃=x, respectively. We have

‖Ψ̃U(0,t2)u(t2)−Ψ̃U(0,t1)u(t1)‖L2 .

∥∥∥∥
∫ t

t1

U(0,s)Ψ
(
|u|2σu(s)

)
ds

∥∥∥∥
L∞([t1,t2];L2)

.
∥∥Ψ
(
|u|2σu

)∥∥
Lp′ ([t1,t2];Lq′ )

.‖u‖2σLθ([t1,t2];Lq)‖Ψu‖Lp([t1,t2];Lq) −→
t1,t2→+∞

0.
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Therefore, U(0,t)u(t) converges to some u+∈Σ, and the proposition follows.

This result strongly suggests that the solution to the nonlinear equation has the
same behavior as the solution to the linear equation as time goes to infinity. It should
therefore not be surprising that (Exp)k is satisfied in this case. However, the delicate
issue is to measure high order Sobolev norms. To do so, we modify the argument of
Lemma 6.1. We will use the operators A and B once, and just once in view of the
discussion in the proof of Lemma 6.1.

We have seen in the course of the proof of Proposition 6.4 that u∈Lθ(R;Lq)
and Ψu∈Lp(R;Lq) for Ψ∈{Id,A,B}. As announced above, we modify the induction
argument of Lemma 6.1: we first apply either A or B to (1.2), and then apply a
combination of xα and ∂βx . We still denote by wℓ the family of combinations of α
momenta and β space derivatives, now applied to either Au or Bu, with |α|+ |β|=
ℓ−1. This will (eventually) not alter the conclusion in view of (5.2) and Lemma 3.5.
Despite this small change in the definition of wℓ, we still have (6.2) for k>2 (the
case k61 is of no interest, since we know that Ψu∈Lp(R;Lq)∩L∞(R;L2) for Ψ∈
{Id,A,B}). Resume the key estimate for wk:

‖wk‖Lp([t,t+τ ];Lq)∩L∞([t,t+τ ];L2)

.‖wk(t)‖L2 +‖u‖2σLθ([t,t+τ ];Lq)‖wk‖Lp([t,t+τ ];Lq)

+
∑

06ℓj6k−1

‖wℓ1‖Lθ([t,t+τ ];Lq) . . .‖wℓ2σ‖Lθ([t,t+τ ];Lq)‖wℓ2σ+1
‖Lp([t,t+τ ];Lq)

+‖L(wk)‖L1([t,t+τ ];L2)

Fixing τ≪1 independent of t∈R, the second term of the right hand side is absorbed
by the left hand side. The only difficulty consists in analyzing the sum. We may
assume that ℓ2σ+1 corresponds to the largest value of indices ℓ. For 16 j62σ, if
ℓj6k−2, then we simply estimate

‖wℓj‖Lθ([t,t+τ ];Lq)6 τ
1/θ‖wℓj‖L∞([t,t+τ ];Lq). τ

1/θ‖wℓj‖L∞([t,t+τ ];H1)

. τ1/θ‖wℓj+1‖L∞([t,t+τ ];L2). e
C(t+τ),

where we have used (Exp)k−1. So the only case we have to examine is when ℓ2σ+1=
k−1= ℓj0 for some 16 j062σ. Note that since

∑
ℓj=k, this may happen only when

k=2. In that case, we can assume that the term wℓ2σ+1
is of the form Au or Bu (a

term which is Lp(R;Lq)), and estimate as above

‖wℓj0 ‖Lθ([t,t+τ ];Lq). τ
1/θ‖w2‖L∞([t,t+τ ];L2).

The corresponding term in the sum can therefore be absorbed by the left hand side
(like V). In the other cases, we estimate ‖wℓ2σ+1

‖Lp([t,t+τ ];Lq) thanks to (Exp)k−1.
Having examined all the possibilities, we conclude that (Exp)k is satisfied. Note that
Proposition 6.4 suggests that the large time behavior of higher (weighted) Sobolev
norms of u is the same as in the linear case, so the exponential growth is sharp in
general.

Appendix A. The case with no potential. Consider the nonlinear
Schrödinger equation without potential:

i∂tv+
1

2
∆v=λ|v|2σv; v|t=0=v0, (A.1)
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with energy-subcritical or energy-critical nonlinearity, σ62/(d−2) if d>3.
Lemma A.1. Let σ∈N with σ>2 if d=1, and σ62/(d−2) if d>3. Let

(p1,q1)=

(
2σ+2,

2d(σ+1)

d−2+dσ

)
.

Assume that (A.1) possesses a global solution v∈Lp1(R;W 1,q1(Rd)). Let k∈N. If
v0∈Hk(Rd), then v∈L∞(R;Hk(Rd)), and more generally, v∈Lp0(R;W k,q0(Rd))
for all admissible pairs (p0,q0).

Remark A.2. The assumption σ∈N is made only to simplify the presentation. The
proof could be adapted to the case where the map z 7→ |z|2σz is Ck.

Remark A.3. The main assumption of the lemma states essentially that asymptotic
completeness holds in a suitable space. We could even assume that the nonlinearity
is (2σ+1)-homogeneous, and not necessarily gauge invariant. However, scattering
is known with no size assumption on v0 in the defocusing gauge invariant case (see
below), hence our choice. Note that in the case d=1, an algebraic control of the
growth of Sobolev norms is known, regardless of gauge invariance [32].

Proof. We remark that the pair (p1,q1) is admissible, and

1

p′1
=

2σ+1

p1
;

1

q′1
=

1

q1
+

2σ

dσ(σ+1)
.

We prove the lemma by induction on k. We first prove

v∈Lp1(R;W k,q1)∩L∞(R;Hk).

We start with k=1: applying ∇ to (A.1), Strichartz estimates on I=[t0,t] yield

‖∇v‖L∞(I;L2)∩Lp1 (I;Lq1 )6C
(
‖∇v(t0)‖L2 +

∥∥|v|2σ∇v
∥∥
Lp′1 (I;Lq′1 )

)

6C
(
‖v(t0)‖L2 +‖v‖2σLp1 (I;Ldσ(σ+1))‖∇v‖Lp1 (I;Lq1 )

)
,

where we have used Hölder’s inequality. Notice the embedding

W 1,q1(Rd)⊂Ldσ(σ+1)(Rd).

In view of the assumption of the lemma, this implies v∈Lp1(R;Ldσ(σ+1)). Therefore,
we can split R into finitely many intervals on which C‖v‖2σ

Lp1 (I;Ldσ(σ+1))
61/2. On

each such interval I, we have

‖∇v‖L∞(I;L2)∩Lp1 (I;Lq1 )62C‖∇v(t0)‖L2 .

The conclusion follows in the case k=1.
Assume now that the result is known for k>1, and that the nonlinearity is Ck+1.

Differentiating (A.1) k+1 times with respect to space variable, we find, for |α|=k+1,
(
i∂t+

1

2
∆

)
∂αv=N1(v)+N2(v),

with the pointwise controls

|N1(v)|. |v|2σ|∂αv| ; |N2(v)|.
∑

|αj |6k

|∂α1v| . . . |∂α2σ+1v|.
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Strichartz estimates on the time interval I=[t0,t] yield

‖∂αv‖L∞(I;L2)∩Lp1 (I;Lq1 ).‖∂αv(t0)‖L2 +
∑

j=1,2

‖Nj(v)‖Lp′1 (I;Lq′1 )

.‖∂αv(t0)‖L2 +‖v‖2σLp1 (I;Lq2 )‖∂αv‖Lp1 (I;Lq2 )

+
∑

J

‖∂α1v‖Lp1 (I;Lq2 ) . . .‖∂α2σv‖Lp1 (I;Lq2 )‖∂α2σ+1v‖Lp1 (I;Lq1 ),

where we have denoted q2=dσ(σ+1), and we have used the ordering

J =
{
|α1|, . . . , |α2σ−1|6k−1 ; |α2σ|, |α2σ+1|6k;

∑
αj=α

}
.

Proceeding as in the case k=1, we consider finitely many time intervals on which

‖∂αv‖L∞(I;L2)∩Lp1 (I;Lq1 ).‖∂αv(t0)‖L2

+
∑

J

‖∂α1v‖Lp1 (I;Lq2 ) . . .‖∂α2σv‖Lp1 (I;Lq2 )‖∂α2σ+1v‖Lp1 (I;Lq1 ).

We use the embedding W 1,q1 ⊂Lq2 and the induction assumption: when α2σ=k,
we proceed like for the term N1 (when summing over all α’s such that |α|=k+1),
and in all the other cases, we deal with a controllable source term. This yields the
lemma for the pair (p0,q0)=(∞,2). The estimate for general admissible pairs follows
by using Strichartz estimates again.

Proposition A.4. Let λ>0, and let σ>2/d be an integer, with σ62/(d−2) if d>3.
Suppose v0∈Σ. Let k∈N, k>1.

(i) If v0∈Hk(Rd), then v∈Lp0(R;W k,q0(Rd)) for all admissible pairs (p0,q0).

(ii) If in addition x 7→ |x|kv0∈L2(Rd), then |x|kv∈C(R;L2(Rd)) and for all ad-
missible pairs (p0,q0),

∀α∈Nd, |α|6k, ‖xαv‖Lp0 ([0,t];Lq0 ). 〈t〉|α| .

Remark A.5. In the case σ>2/d, (i) remains valid without assuming v0∈Σ. The
point to notice is that one can apply Lemma A.1 as in the proof below, since the
assumptions of the lemma are known to be satisfied thanks to Morawetz estimates,
which yield asymptotic completeness in H1. In the case σ=2/d, this aspect is still
an open question.

Proof. Under our assumptions on λ and σ, we know that there exists a unique
global solution v∈C(R;Σ) to (A.1), with v∈L∞(R;H1). The pseudo-conformal con-
servation law yields

d

dt

(
1

2
‖J(t)v‖2L2 +

λt2

σ+1
‖v‖2σ+2

L2σ+2

)
=

tλ

σ+1
(2−dσ)‖v‖2σ+2

L2σ+2 ,

where J(t)=x+ it∇. The right hand side is non-positive for t>0: this yields an a
priori bound for J(t)v in L∞(R;L2). Since

J(t)= itei
|x|2

2t ∇
(
e−i

|x|2

2t ·
)
, (A.2)
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the Gagliardo–Nirenberg inequality yields

‖v‖Lρ .
1

|t|δ ‖v‖
1−δ
L2 ‖J(t)v‖δL2 , where δ=d

(
1

2
− 1

ρ

)
, and 26ρ6

2d

d−2
.

We infer v∈Lp1(R;Lq1). Resume the value

θ=
4σ(σ+1)

2−(d−2)σ

(
θ=∞ if σ=

2

d−2

)
.

In view of the identities

(p,q)=

(
4σ+4

dσ
,2σ+2

)
;

1

p′
=

1

p
+

2σ

θ
;

1

q′
=

2σ+1

q
,

Strichartz estimates yield

‖∇v‖Lp(I;Lq)∩Lp1 (I;Lq1 ).1+‖v‖2σLθ(I;Lq)‖∇v‖Lp(I;Lq).

We note that v∈Lθ(R;Lq) (and ‖v(t)‖Lq →0 uniformly as t→∞): splitting R into
finitely many intervals, we infer that ∇v∈Lp1(R;Lq1): the first point of the proposi-
tion then follows from Lemma A.1.

The second point of the proposition is obtained by mimicking the proof of
Lemma A.1: instead of considering ∇ and its powers, consider J =x+ it∇ and its
powers. In view of (A.2), we can follow the same computations since the nonlinearity
we consider is gauge invariant: |J |kv∈L∞(R;L2). The algebraic growth of the mo-
menta then stems from triangle inequality.
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