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THE GENERALIZED CONSTANTIN-LAX-MAJDA EQUATION
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Abstract. We continue our study of the generalized Constantin-Lax-Majda equation, which is
an evolution equation in one space dimension modeling three-dimensional vorticity dynamics. First,
we show that the BMO-norm of the vorticity controls the singularity formation for smooth solutions
if the parameter a equals 2, and we proceed by demonstrating that there are small solutions which
exist indefinitely in the presence of viscosity if a < —2.

Key words. The generalized Constantin-Lax-Majda equation, Beale-Kato-Majda blowup cri-
terion, small solutions.

AMS subject classifications. 35Q35, 76B03, 35B44.

1. Introduction
In this work, we proceed with our study of the generalized Constantin-Lax-Majda
equation (henceforth abbreviated as “the gCLM equation”)

%w(t,x)—l—ava%w:w%v t>0, a€eR,
Lo(t,x)=Huw(t,x)=(P.V.) [T_w(ty) cot (52) dy (1.1)
w(0,2) =w(zx), r €S ~R/27Z.

This equation was first introduced and analyzed in full generality by OKAMOTO,
SAKAJO & WUNSCH [20]; in particular, it was proven that periodic solutions exist
locally in time, and that there is a continuation criterion strikingly similar to the
one derived by BEALE, KATO & MAJDA [1] for the incompressible Euler equations
in three space dimensions, the only difference being that the criterion for the gCLM
equation involves the supremum norm of the Hilbert transform of the vorticity, and
not of the vorticity itself.

Special cases of (1.1) have been studied before by several authors. If a=0, (1.1)
reduces to the classical one-dimensional vorticity model equation w; =wHw of CON-
STANTIN, LAX & MAJDA [4], which has an abundance of solutions blowing up in
finite time. There are, however — as pointed out by SCHOCHET [23] — solutions to the
viscous CLM equation which become singular before the corresponding solutions to
the inviscid CLM equation. DE GREGORIO [8] attributed this highly counterintuitive
and arguably unphysical feature to an inherent deficiency of the CLM equation: the
convective derivative in the original 3D vorticity equation was replaced in [4] just by
a time derivative, resulting in the loss of the convection term (v-V)w. DE GREGORIO
[8, 9] accordingly reintroduced the convection term; his model is thus the particular
case a=1 in (1.1). There is compelling numerical evidence that there are solutions
to DE GREGORIO’s equation existing globally [20]; however, an analytic proof of this
observation is still outstanding.

Other, more general, viscous extensions of the Constantin-Lax-Majda equation
were proposed by WEGERT & MURTHY [24] and SAKAJO [21, 22]. While these models
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have physically reasonable properties (e.g., delayed blowup times), they fail to capture
fundamental features of the corresponding 3D Navier-Stokes equations (cf. [22]).

If a=-1, the gCLM Equation (1.1) becomes the model equation, differenti-
ated once in space, of CORDOBA, CORDOBA & FONTELOS [6, 7] for the 2D quasi-
geostrophic equations and the Birkhoff-Rott equations describing the evolution of vor-
tex sheets with surface tension. By using integral inequalities involving the Hilbert
transform, it was shown that solutions to this model equation must blow up in finite
time. More recently, CASTRO & CORDOBA [3] proved that there are solutions to the
gCLM Equation (1.1) losing their initial regularity in finite time if the parameter lies
in the negative half-line.

A general and more heuristic motivation for the study of the gCLM equation is
the paradigm of OHKITANI & OKAMOTO [19] that the interplay of convection vw,
and stretching v,w leads to creation or depletion of finite-time singularities: the size
of the parameter a in (1.1) can thus monitor the impact of the convection. As an
illustration of the adequacy of the gCLM Equation (1.1) for testing this paradigm,
OKAMOTO ET AL. [20] proved that if a =00, corresponding to an “absolutely domi-
nating” convection, there are global solutions, in contrast to the case of there being
no convection at all, a=0 (cf. [4]).

We finally mention that the gCLM Equation (1.1) with parameter a=—1/2 has
an interesting geometric interpretation: It describes the geodesic flow of a fractional
Sobolev metric on the Lie group of orientation-preserving circle diffeomorphisms mod-
ulo rotations (cf. WUNSCH [26]). In fact, all the members of the gCLM family of
equations (except the CLM equation itself) can be interpreted geometrically as re-
expressions of geodesic flows with respect to linear connections; c¢f. ESCHER, KOLEV
& WunscH [11] and ESCHER & WUNSCH [12]. However, it turns out that both
De Gregorio’s model equation and the quasi-geostrophic model equation can only be
realized as non-metric Euler equations (see ESCHER & KOLEV [10] and [12]).

The rest of this paper is organized as follows. In Section 2, we introduce the
required notation and state some preliminary results from harmonic analysis. Section
3 contains an improved continuation criterion for the gCLM equation with a=2.
The local-in-time existence of solutions to the gCLM equation with a viscous term is
proven in Section 4, while the existence of global small solutions to the viscous gCLM
equation if a <—2 is demonstrated in Section 5.

This material has been adapted and extended from the author’s PhD thesis [25].

2. Notation and preliminaries

Throughout the sequel, we will employ the following notations.

First, H*(S') will denote the space of all 27-periodic functions (function equiva-
lence classes) which, together with their distributional derivatives up to order k>0,
are square integrable on the torus S! ~R/27Z. The subspace H*(S')/R consists of all
f € H*(S') with vanishing mean: ["_f(z) dz=0. The norms of elements in H*(S')
and the subspace just described will be written as ||.||x; if k=0, we will suppress the
subscript and just write ||.||.

Second, we define the spaces BMO and Re $' (see KASHIN & SAAKYAN [13],
pp. 160). Denote by BMO D L>(S') the set of functions of bounded mean oscillation
which consists of all Lebesgue-integrable functions f € L!(S!) satisfying

fn<f>:=sgp{|f—1 1= dx}<+oo,

where f;=|[I|"" [, f(z) dz, and the supremum is taken over all generalized intervals,
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i.e., intervals in [—m,7] or sets of the form I=[—m,a)U(b,7|, where —T<a<b<m.
BMO is a Banach space with norm

=)+ 5| [ sto) as). ()

The dual of the space BMO is the Hardy space of first order, Re $§' [13]. It is
composed of all f € L'(S') whose Hilbert transform (cf. BUTZER & NESSEL [2])

1) =) [ ) ot (52 a,

(where the integral is taken in the Cauchy principal value sense) is summable as well.
The corresponding norm of an element in Re $' will be indicated by

1flre s = f o) +IH s (2.2)

3. Continuation of solutions

Let us first recall a result confirming the local existence of periodic solutions to
(1.1).

THEOREM 3.1 (OKAMOTO ET AL. [20]). Let a€R be given. For all @€
HY(SY)/R, there exists a T >0 depending only on a and ||@.|| such that there ex-
ists a unique solution

weCo([0,T];H'(SY)/R)NC([0,T]; H*(S') /R)

of (1.1) with w(0,z)=w(x).

We will now present, for the case a =2, a new condition on the time continuability of
solutions to the gCLM equation. This condition constitutes a significant improvement
in comparison to [20].

PROPOSITION 3.2. Let w(t,x) be a solution to the generalized CLM FEquation (1.1)
with parameter a=2, and assume that @€ L?>(SY)/R. Let T be a positive time of
existence. If

T
|t dr< e (3.1)

then the solution w can be extended in H'(S')/R at least until T+6 for a number
0>0.

Proof.  The main ingredient for the proof is the duality between BMO and
Re $'. From the definition of the Hardy-space norm (2.2), we get, using Young’s and
the triangle inequality,

I5H e o = FH Lo+ | H )
1 2 2 1 2 2
<5 [N+ dotg [ |22 ds

st
<2|fI% (3.2)
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where the last identity holds because the Hilbert transform is an L?(S!) isometry for
functions with vanishing mean. Thus

1d
S w7 = / OJQdeSL'—Q/ ww,v d
2dt St St
= 2/ w(wHw) dx
St
S llw( )l llw(t ) Hw(t, )l re 51
(3.2)

< (el flotta )
An application of Gronwall’s lemma gives
2 2 !
ot 12 S 1012 exp{ [ sl s (33

We now inspect the evolution of ||w,(¢,.)||*:

/ wwzHw,, dm—2/ VWyWeg AT — wafc dzr
Sl

st st
= / ww;Hw, dx
Sl

(3.2) ,
S llwlls ooz |1

1d ,
5@”“’90(@-)”

Again, Gronwall’s lemma yields

e (£, )17 < Nl |2 exp{/ot llw(s, )]« d5}~ (34)

Summing up inequalities (3.3) and (3.4), we see that a bound on the time integral
of the BMO-norm of w furnishes a bound on the H'(S')-norm of the solution. The
proof is thus complete. ad

REMARK 3.3. Proposition 3.2 beautifully resembles the breakdown criteria for the
incompressible Euler and Navier-Stokes equations in two and three space dimensions
of KozoNo & TANIUCHI [16, 17], which also involve the BMO-norm of the vorticity.

3.1. A Beale-Kato-Majda blowup criterion. For later reference, we
restate here a general result obtained by OKAMOTO ET AL. [20] which is analogous
to the Beale-Kato-Majda blowup criterion [1] for the 3D vorticity equation.

THEOREM 3.4 (OKAMOTO ET AL. [20]). Suppose that e H'(S')/R, that the
solution to (1.1) exists in [0,T), and that

T
/ | Hoot)]] o 1) it < 0. (3.5)
0

Then the solution can be continued at least until T+6 for some 6 > 0.
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4. The viscous gCLM equation
In this subsection, we will study the generalized CLM equation with a viscous
term:

(4.1)

wi(z,t) =wHw—aw, H) —vAPw, A:=(-A)Y/2
w(z,0) =w(z).

Recall that A:=v (—A)#/2 is the infinitesimal generator of a C°-group on H°(S') (cf.
SAKAJO [22]). We choose 5> 1.

THEOREM 4.1. Let a€R be given. For all e H'(S')/R=D(A)/R, there is a T >0
dependent only on a and ||&z|| such that there exists a unique solution w in the class

CO([0,T]; HY(SY)/R)NCH([0,T]; HO(SY) /R) with w(z,0)=w(x).

Proof.  This theorem is a corollary of Theorem 3.1 in [20] which itself is an
application of a theorem given by KATO & LAT [14].
We define

Ay (w) = avw, —vzw+ vAPw

and observe that Ag(w)=avw, —v,w equals A(w) in [20]. We denote the H' inner
product by (.,.).
Let us show first that

{w, Ao (w)) =y (Ilwll?)
for a monotonously increasing function ~(.). Now
weW:=H'(SY)/R=veV:=H*S"/R.
Therefore, Sobolev’s inequality implies that

[A@)II <lalllv]| L llws || + [[Hwl[[w] o
< colal [[ve[[[lws| + collw||lwz |
= co(lal+Dwllllwz |-

Similarly, we have
[A(w) = AD <A+ lal) ([wel| +[1¢x ) [lwz = Cal-

This shows that A: W — X is strongly continuous (so that we may discard the .,
subscripts stemming from the original theorem in [14]). We then consider

(w,A(w)>:(ww,A(wI)2r _
:(%—1)/ vz(t,x)ww(t,x)Qdac—/ wwz Hwy dx.

—T —T

Using the bound

Ifllz~ <collfoll  for feH'(S")/R,
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™

Vo we arrive at the estimate

where ¢ =

|{w, Aw))| <C(L+]al)|Jws |® (4.2)

with an absolute constant C'. Therefore the condition of [14] is satisfied with v(r)=
C(1+]al)r2, which shows that solutions exist locally for the operator Ag. For the
remaining viscosity term vAPw,, we compute

V(NP w,w,) =v|[A 2 w2 >0
> —cl|wy H2
Hence the Kato-Lai condition is still fulfilled for A,. This completes the proof of local

existence of solutions to (4.1).
For showing uniqueness, we observe that

w— G =—av(w—C)p—a(v—u)ly —vAP (w—0)
+Ug (w - C) + (’U - u)wCa
where v, = Hw and u, = H(, such that we have the estimate

G3le®=cOP =232 [ oo ¢ de-viat -0

—T

+/¢wAMwaofa@w4uxwfo

SCA+al)M|lw(t) =< ()],

with M :=maxo<i<7(||wg(¢)||+1/¢z(¢)]]), which implies the uniqueness of solutions to
(4.1). O

5. Global existence for small data
The following theorem states that there are global small solutions to the viscous gCLM
equation if the parameter is chosen to be a=—2.

THEOREM 5.1. Assume that

14

W g la <
|| HL‘ I(St) \/ﬂ[1+\a|(27r)(|“‘_2)/2‘“q

and  [|&[l g1/2g1y) <C (5.1)
for a positive finite constant C'. Then the corresponding solution to the viscous gCLM
Equation (4.1) with an even parameter a <—2 and =1 exists indefinitely.

Proof. Let us set |a] =p for notational convenience. First, we observe that the
LP-norm of w(t,.) decreases:
1d —1 -1
faﬂw(t,.)Hp: wPHw dz+p | vwP ™ w, de—v [ wP7 Awdx
p

:—V/|w\p_2 wAw dx.
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In view of the positivity lemma (Lemma 2.5) of [5], w thus decays in LP(S'). But also
for the norm of the homogeneous fractional-order Sobolev space H/2(S!) we have

Ld
2dt

/Aw wde;v—i—p/Aw vw, dr—v|Aw(t,.)|)?
s s

2
[w (&, ) r1r2s)

IN

oo (8, )| NlowHwoll+pllo(t, Ml zoe o (8, )12 = ][ Acw 2, ) 1
V2 (oot e (8 I +pV2R oot e (8,11

vl Aw(t, I

{Var [14p@m) 272 w(t, s —v P llwa (8]

{Vam [14p(2m) @ 272) @] 1o —o w1,

IA

IN

N

(5.1)
< 0.

This decay implies the boundedness of w(t,.) in H'/2:
2 2
lw(t, Mz <@llge <C?,

whence we infer that

t
1

wy(s,.)||* ds <

/OH (s,)]l *2[V7\/%(1+p(27(—)(p*2)/2p)HQ_.)HLP}

is finite for any finite time. Since

[Hwl|Loe < V2 [|we ],

)
[@lF12

it follows that the Beale-Kato-Majda blowup criterion (3.5) is satisfied.
This finishes the proof of the theorem. ]

REMARK 5.2. Global existence of small solutions for the case a=—1 was presented
in [6]. The difference to our result lies in the better regularity properties of the former
equation, as it can be written down as a transport equation for the spatial primitive
of w.
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