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DISCOVERY OF POINT SOURCES IN THE HELMHOLTZ

EQUATION POSED IN UNKNOWN DOMAINS WITH OBSTACLES∗

YANINA LANDA† , NICOLAY M. TANUSHEV‡ , AND RICHARD TSAI§

Abstract. We consider an inverse source problem for the Helmholtz equation in domains with
possibly unknown obstacles, which are much larger than the wavelength. The inverse problem is to
determine the number and locations of point sources in the domain based on sparse measurements of
the wave field. Our proposed strategy relies on solving a local inverse scattering problem to obtain
the incoming directions of waves passing through an observation location. We formulate the problem
as an L1 constrained minimization problem and solve it using the Bregman iterative procedure. The
wave direction rays are then traced back and sources are uniquely determined at the intersection of
the rays from several observing locations. We present examples in 2D, however all of the formulas
and methods used have direct analogues in 3D.
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1. Introduction

We consider an application in which an autonomous observer, sent into an un-
known environment, must discover the locations of signal sources in an efficient man-
ner. The unknown environment contains non-penetrable solid obstacles, Ω, that
should be avoided along the observer’s path. We assume that Ω is bounded and has
piecewise smooth boundaries and that the signal strength u satisfies the Helmholtz
equation

∆u(x)+k2η(x)2u(x)=
N
∑

n=1

δ(x−xn) for x∈R
2 \Ω, (1.1)

with suitable reflection boundary conditions on ∂Ω and radiation boundary conditions
as |x|→∞. The coefficient η=η(x) is the index of refraction and λ and k=2π/λ are
the wavelength and wavenumber respectively. The signal sources are modeled by
Dirac-δ distributions on the right hand side of (1.1). The observer must determine
the number N of sources and their locations xn based on sparse measurements of the
signal in the environment.

The task of source discovery is an inverse problem that uses the given wave field
values on some subset of the domain to recover the source locations. In order to
determine the locations of the sources, some mathematical models about the source-
sensor relationship is presumed. A set of parameters that characterize the sources
is inferred from the models and these parameters need to be determined from the
data that is typically collected from dense arrays of sensors at fixed locations in a
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simple domain. The data is usually given in the form of measurements of the wave
field on some subset of the domain. A standard way of solving this inverse problem
for finding the source function is to minimize the L2 norm of the difference between
the collected data and simulated data computed with a candidate source function.
This minimization is typically achieved through an iterative procedure that optimizes
the parameters of the candidate source function. To make the inversion more sta-
ble, this least square approach may be regularized with additional terms. Thus, a
numerical solution of the forward problem, in our case Equation (1.1), is a necessary
step for solution methods based on such an approach. When the wavelength λ is
small compared to overall size of the computational domain, the oscillatory behavior
of the solution makes direct numerical simulation of (1.1) computationally expensive:
a substantial number of grid points per wavelength is required to maintain constant
accuracy. For sufficiently high frequencies, it is unrealistic to compute the wave field
directly. For example, visible light has wavelengths of the order of nanometers. Thus,
direct numerical simulations over dimensions on the order of meters is nearly impos-
sible. Audible sound frequencies are in the 20Hz to 20kHz range, which corresponds
to wavelengths of approximately 15m to 15mm. For problems such as underwater
acoustics, even when high frequency techniques become applicable at large distances,
simulations of the wave field in a step of an iterative method is unfeasible.

Inverse problems for wave phenomena typically involve some form of back-
propagation of the waves, or time reversal, from the sensors back into the domain;
this is called imaging or migration in geophysics [32]. Different approximations of the
waves have been explored for the back-propagation; see e.g. the MUSIC algorithm
[45] and Kirchoff migration [32]. The goal of the time reversal problem [4, 20, 3, 19] is
similar to the source discovery problem considered in this paper, however, the under-
lying physical and mathematical structure is very different. In time reversal, one tries
to locate the source by reversing the wave field while estimating the effective Green’s
function without knowing details of the random fluctuation present in the medium.
A key mechanism in time reversal imaging is averaging, which can be realized by
employing multiple uncorrelated sensors and frequencies [27]. Common assumptions
are that the wavelength of the signal is much larger than the scale of the random fluc-
tuations, that there is scale separation of the medium and that statistical properties
of the fluctuations are known. Our approach assumes signals with wavelength smaller
than the scatterers and a smoothly varying medium.

A rigorous study of inverse scattering for the high frequency Helmholtz equation
in the framework of compressive sensing is performed by Fannjiang in [25, 26]. In this
setting, inhomogeneities of the medium are represented by a finite number of point
scatterers on a square lattice. The reconstruction of the scatterers from the scattering
amplitude succeeds only probabilistically due to intrinsic limitations of the problem
formulation in the framework of compressive sensing. The number of measurements
is proportional to the sparsity of the scatterers and a factor of log(m), where m is
the size of the square lattice. In our proposed algorithm, the upper bound on the
number of measurements required to detect the sources in a planar environment with
unknown convex scatterers is 3N+3O, where N and O are the number of scatterers
and sources respectively.

When the obstacles are unknown, the environment needs to be mapped out as the
observer moves. The previous work of [37, 35, 38] on reconstructing the obstacles in
unknown domains is convenient in this regard. A piecewise high-order approximation
of the scattering surfaces can be obtained on-the-fly by processing the visibility point
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cloud data collected along the observer’s path. Additionally, the visibility informa-
tion is necessary to avoid collisions with the obstacles. In [6] and [36], the authors
extend the domain mapping algorithms of [37] and [35] for point source discovery in
complicated environments with obstacles using an approach based on reciprocity of
the linear partial differential operators as well as the maximum principle for the as-
sociated elliptic problems. This approach fails in the case of the Helmholtz equation
which does not satisfy a maximum principle due to the oscillatory structure of the
solution.

Source identification problems have been considered in many other settings as
well. In [39, 34], the authors propose to recover the exact locations of multiple sources
in a Poisson equation, given the initial guess for the locations and Dirichlet data
on the boundary of the domain. To accomplish this, they use the special form of
the free space Green’s function for Poisson’s equation. Other related topics can be
found in [31, 22, 23, 15, 40]. Convex optimization techniques are employed in [14]
to identify multiple sources in Poisson equation in simple domains without obstacles.
In contrast to the typical inverse problem settings, we consider complicated domains,
the possibility of placing the sensors freely in the domain, and the necessary coupling
with visibility information in the case of unknown environments.

In this paper, we consider the high frequency regime in which the wavelength λ is
much smaller than the size of the scatterers in the domain. In this regime, the signal
travels along straight lines in free space and reflects from scattering surfaces following
Snell’s law (angle of incidence equals angle of reflection). We reduce the complexity
and cost of the numerical computations by representing the solution with a fixed
number of unknowns which are independent of the frequency locally near measurement
locations. The quantities that describe the wave field can be obtained via a geometric
optics (GO) interpretation of the solution, which relies on asymptotic expansions
[33, 24, 5, 2]. One natural idea from these methods is to represent the solution
of (1.1) in terms of an explicit dependence on frequency and functions independent
of frequency. In contrast to direct methods, the accuracy of asymptotic methods
improves as frequency increases.

In this high frequency setting, we propose a source discovery algorithm for a
domain in which the scatterers are not known a priori but can be mapped via the
visibility at the locations where wave data is gathered. Furthermore, we do not
assume the knowledge of the total number of sources present in the domain. There
are two key components in our algorithm. The first is to identify all significant local
wave directions passing through the observation point and the second is to trace
these rays back to the sources and form an image of the possible source locations
using the fact that the sources must lie at the intersection of rays from multiple
observation points. The problem of identifying the significant local wave directions
was formulated by Benamou et al. in [2]. We use their framework with one key
difference: Since we are looking for a small number of directions in a possibly noisy
signal, we use an L1 constrained minimization instead of the Tikhonov regularized L2

minimization proposed in [2] to solve the frequency-independent sparse linear system.
We employ a fast Bregman iterative solver [18, 47, 7] to yield an accurate solution,
which is robust against the noise in the initially sampled signal. This solution contains
information about the number of waves crossing at the observer’s location as well as
their directions. It is worth pointing out that the minimization problem is solved
in a lower dimensional domain with a cost that is independent of the wave number.
The second key component involves a source imaging procedure which is based on
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back-propagation of the detected incoming wave. The visibility algorithm that we
employ for unknown environments [37, 35], summarized in Algorithm 2, provides the
necessary information for determining the validity of the back-propagated rays and
for computing the ray reflections. One can also use these secondary rays to locate the
sources, however, our proposed algorithm does not use these reflected rays, as tracing
reflections off convex surface is inherently sensitive to errors in the ray directions and
surface geometry. Nonetheless, we point out to the reader that these rays can be used
to guide the selection of new measurement locations, and this is in accordance with
our formulation of the source location problem.

Our strategy for source discovery has a natural limit due to the nature of the
scattering problem. When the number of connected scatterers between the measure-
ment locations and the sources is too big, the wave field at the measurement location
may be highly attenuated and may contain rays coming from every direction. Addi-
tionally, when the size and the number of scattering solids in the domains scales in
a certain special way with the wavelength, the Helmholtz formulation will no longer
be adequate. In these cases, one has to resort to a different formulation using ef-
fective equations [30]. This is one of our current research directions. However, we
shall demonstrate that our high frequency wave based algorithm does provide good
solutions for source identification in a domain containing many convex scatters whose
size is only on the order of 10 wavelengths.

The rest of the paper is outlined as follows. In Section 2, we describe how to
estimate wave directions at an observation location. In Subsection 2.1, we present the
mathematical formulation of the inverse problem defined in [2]. We detail the numer-
ical solution of the inverse problem and introduce the results based on constrained
L1 minimization problem in Subsection 2.2. Our proposed strategy has two major
components: imaging the sources based on observations from a set of fixed locations
and adaptively choosing the observation locations, so that the sources can be identi-
fied in finitely many observations. Section 3 contains the description of the functional
used to image the sources in the domain. The adaptive algorithm for choosing the
observing locations, along with examples, is described in Section 4.

2. Determining wave directions at an observation location

As mentioned in the introduction, a major component of our algorithm is esti-
mating the wave directions at an observation location. To accomplish this, we use a
modified version of the algorithm presented in [2]. We begin by describing in detail
the formulation of [2] and our L1 modification of the minimization. We also present
comparisons between our numerical solution method and the Tikhonov regularized
L2 formulation presented in [2].

2.1. Mathematical formulation. The theory of geometric optics allows for
the approximation of a high frequency wave field by a phase and amplitude computed
on a special set of curves through space. The curves, phase, and amplitudes are
independent of the frequency and hence provide a frequency independent method for
numerical simulations. In a medium with constant wave speed, the curves (or rays)
are straight lines and the amplitudes can be determined by the geometric spreading
of the rays.

The asymptotic representation of the solution of (1.1) is usually based upon su-
perpositions of the geometric optics ansatz [1, 24]

u(x)≃
M
∑

n=1

An(x)e
ikφn(x). (2.1)
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Each phase φn(x) and amplitude An(x) are independent of frequency (away from
caustics) and they are real valued solutions of the Eikonal and transport equations:

|∇φn|=η(x) (2.2)

2∇φn ·∇An(x)+An△φn=0. (2.3)

The rays are the projection of the bicharacteristics of the Eikonal equation onto x
space.

If the amplitudes An and phases φn are smooth in a neighborhood of an obser-
vation point y, a first order linear approximation around y, along with (2.1), gives a
local plane wave decomposition

u(x)≃
M
∑

n=1

Bn(y)e
ik(x−y)·∇φn(y), (2.4)

where Bn(y) :=An(y)e
ikφn(y) is the “complex amplitude”.

In [2], the authors pose the following inverse problem:
Given an analytical or numerical solution u(x) in a neighborhood of a

fixed observation point y, determine the number M of waves crossing

at y and compute the GO quantities (Bn,∇φn) for n=1, . . .M .

By solving this problem, we are able to approximate the solution by smooth functions
An(x) and φn(x), which can be represented by a fixed number of unknowns, indepen-
dent of the frequency. Note that for large k, the function Bn(y) is highly oscillatory,
and it may be difficult to recover φn(y) from a numerical approximation. Its modulus,
on the other hand, is smooth and equal to |An(y)|.

The numerical algorithm proposed in [2] samples the wave field locally along the
circumference of a small circle centered at the observation point y. By analyzing this
data, information about the number of waves crossing at y and their corresponding
complex amplitudes can be extracted. Below we describe the numerical formulation
of the problem as well the filtering procedure based on the Jacobi-Anger formula,
introduced in [2].

We assume the solution u of the Helmholtz Equation (1.1) can be sampled on a
circle Cr(y) of radius r :=α/kη(y) around the observation point y:

Uα(s) :=u(Cr(y)). (2.5)

Here, α is a given positive number and s parameterizes the circle

Cr(y)=y+r(cosθ(s),sinθ(s)). (2.6)

Let dn(y)=(cosθn,sinθn) denote the direction of propagation of the nth wave,

∇φn(y)=η(y)dn(y). (2.7)

Along the circle Cr(y), the restriction of the plane wave superposition (2.4) has the
form

Uα(s)≃
M
∑

n=1

Bn(y)e
iα(cosθ(s),sinθ(s))·dn(y). (2.8)

The goal is to recover the ray directions from the knowledge of Uα(s). The idea of [2]
is to remove the effect of the exponential factor by filtering and to calculate a function
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βα(s) that has distinct peaks along the wave vectors and approaches Bn in the limit
as α approaches infinity. To accomplish this, we use the 2D Jacobi-Anger expansion
[17]:

eiα(cosθ(s),sinθ(s))·dn(y)= eiαcos(θn−θ(s))=

∞
∑

l=−∞

ilJl(α)e
−il(θn−θ(s)), (2.9)

where Jl(α) is the Bessel function of order l. Inserting (2.9) into (2.8), we get the
expansion

Uα≃
∞
∑

l=−∞

ilJl(α)

(

M
∑

n=1

Bne
il(θ(s)−θn)

)

. (2.10)

Note that when α is held fixed, Jl(α) goes to zero more than exponentially fast as
|l|→∞ [17]. Therefore, the series can be truncated at some threshold |l|≤L(α) [16].
A suitable choice of L(α) in our computations is provided in [2, 16]:

L(α)=α+8log(α). (2.11)

We now introduce the space of square summable sequences

l2=

{

γl=
1

2π

∫

S1

α(s)e−ilθ(s)ds,−∞<l<∞,

∞
∑

l=−∞

|γl|2<∞
}

, (2.12)

and let the Fourier transform on the unit circle F :L2(S1) 7→ l2 be given by

(

FA(s)
)

l
:=

1

2π

∫

S1

A(s)e−ilθ(s)dσ(s), (2.13)

with inverse
(

F−1γ
)

(s)=
1

2π

∑

l

γle
ilθ(s). (2.14)

Let Dα : l
2 7→ l2 be the division and restriction operator

(

Dαγ
)

l
:=

{ 2π
2L(α)+1

1
ilJl(α)

γl, |l|≤L(α),

0, otherwise,
(2.15)

assuming Jl(α) 6=0 for |l|≤L(α). We now define the function

βα :=F−1DαFUα. (2.16)

As a result of the above spectral inversion procedure, the function βα, computed from
the local values around the observation point, will have sharp peaks in the directions
of propagation of the waves passing through y when α is large enough [2]. In other
words, for a fixed s we have

lim
α→∞

βα(s)=

{

Bn, s=dn,
0, otherwise.

(2.17)

Thus, the larger the parameter α, and therefore the size of the observation circle,
the better the accuracy of the result. On the other hand, the size of the neighborhood
must not exceed the domain of validity of the local plane wave approximation (2.4).
In the following section we will discuss the numerical approximation of βα.
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2.2. Numerical solution. The key to finding the unknown number of rays,
their complex amplitudes and directions is the function βα defined in (2.16). There-
fore, we first compute a numerical approximation of βα on a uniform discretization of
the unit circle.

We begin by introducing a uniform grid {θ̃m} with M ≥2L(α)+1 points on the
unit circle,

θ̃m=m∆θ, ∆θ=
2π

M
, m=0, . . . ,M−1.

Let
{

Ũm

}

be the grid function that samples the given function Uα(s) on the grid

along the observation circle,

{

Ũm

}

=Uα

(

d̃m

)

, d̃m=
(

cos θ̃m,sin θ̃m

)

.

Then, the discretized version of (2.16), βα

(

θ̃m

)

≃ bm, is given by

{bm}=2π FFT−1







(

FFT
{

Ũm

})

l

MilJl(α)







, (2.18)

where we have taken precisely

M =2L(α)+1, (2.19)

since FFT maps N dimensional vectors to N dimensional vectors.
We remark that the same discretization can applied to the original plane wave

representation (2.8) to obtain the linear system

Ũn=

M
∑

m=1

b̃meiαd̃n·d̃m , n=0, . . . ,M−1. (2.20)

The resulting circulant matrix could be solved for {b̃m} directly at a cost comparable
to solving (2.18), O(M logM) [29]. However, as M grows, the condition number of
the matrix deteriorates rapidly and the problem becomes very ill-conditioned when
M ≥L(α) [2]. The FFT-based Jacobi-Anger inversion proposed in [2] is, in fact, a
stabilized approximation (b̃m∼ bm) of the standard fast way to solve this circulant
matrix problem.

Let us rewrite (2.18) as a linear system with b={bm} as the unknown:

Gb= Û , G={gl,m} , gl,m=MilJl(α)e
−ilθ̃m , Û =

{

Ûl

}

, (2.21)

l=−L(α), . . . ,L(α), m=0, . . . ,M−1.

The matrix G is (2L(α)+1)×M and, since in this formulation we are not using
the inverse FFT, the number of samples along the unit circle is not restricted by
the constraint (2.19) on M . Thus, in general, the system (2.21) may be overdeter-
mined. However, in our computations, we avoid the extra parameters by considering
the square version of (2.21) under the constraint (2.19). It is clear that zeros of the
Bessel function Jl(α) may be a problem in the numerical solution of this system. Even
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though some of the small values of the Bessel function are eliminated by truncating
the series when |l|→∞, the Bessel function as a function of α may have zeros, and
there is no guarantee that α is not close to one of them. The rows at which Jl(α)=0
make the effective row space smaller. This can be resolved by introducing suitable
regularization. The numerical algorithm proposed in [2] consists of two steps involv-
ing Tikhonov regularization procedure followed by simple filtering and a non-linear
optimization procedure. The Tikhonov regularized L2 system is

(G∗G+ǫI)bǫ=G∗Û , (2.22)

where I is the identity matrix and ǫ is the regularizaiton parameter. The exact
Tikhonov regularization would consist of choosing ǫ so that the relative error be-
tween the actual and regularized problem is smaller than a prescribed precision. The
inversion formula (2.18) becomes

{bǫm}=2πFFT−1

{

ÛlMJl(α)

il[M2Jl(α)2+4ǫπ2]

}

(2.23)

and remains bounded even when Jl(α) is zero or close to zero. In the post-processing
step, the data obtained from the above spectral inversion is used as initial data in the
fitting of the plane wave expansion (2.4) to the values sampled along the observation
circle. This is done by non-linear minimization of the residual. As a result, the
accuracy of the rays’ complex amplitudes and directions can be significantly improved.

The above approach of [2] does not take into account the sparsity of the so-
lution, nor does is seem to be robust to noise in the signal. Thus, we propose to
modify this approach using a convex optimization technique, namely, constrained L1

minimization. Our modified approach exploits the sparse nature of the solution, is
computationally efficient, and is robust to signal noise.

2.2.1. Fast L1 solution methods. The Tikhonov regularization of the sys-
tem described in [2] typically returns solutions with all non-zero entries. Instead, we
are interested in a solution with the least number of non-zeros which would corre-
spond to the directions of the rays. Based on the linear system (2.21) we formulate
an L1 constrained minimization problem, which resembles the formulation of com-
pressive sensing (CS) [21, 9, 10]. The theory of compressive sensing determines how
well a sparse signal can be reconstructed from measurements in a different basis.
The key results reduce sparsity to an equivalent convex minimization, specifically, L1

minimization, which is known to be of great importance in problems of this type.
A CS problem may be described as follows. Suppose we observe f =Au, where u∈

R
n is the sparse function we wish to reconstruct, f ∈R

m are available measurements,
and A is a known m×n matrix. In typical compressive sensing settings, we are
interested in the underdetermined case with fewer equations than unknowns, i.e.

m<n, and wish to reconstruct u with good accuracy.
The most straightforward way to solve the CS problem is to consider the mini-

mization problem

min
u∈Rn

{|u|0 :Au=f}, (2.24)

which can be solved approximately by matching pursuit [41, 44, 13]. However, the
matching pursuit method is not computationally efficient for typical applications and
it does not guarantee the finding of a global minimizer of (2.24) in general.
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It has been shown in [9, 10, 21] that the solution to an equivalent convex opti-
mization problem, specifically L1 constrained minimization,

min
u∈Rn

{|u|1 :Au=f}, (2.25)

recovers u exactly, provided the linear measurements satisfy the Restricted Isometry
Property (RIP) hypotheses of [12, 11, 8].

There has been a recent burst of research in compressive sensing, which involves
solving (2.25). This was led by Candès et al. [11, 12, 9], Donoho [21], and others [47].
Conventional linear programming techniques are not tailored for the large scale dense
matrices and sparse solutions that arise in (2.25). A robust and efficient way to solving
L1 related regularized problems was developed by Osher et al. [18, 28, 47, 7, 43]. These
kinds of algorithms are generally referred to as Bregman iterative methods. Bregman
iterative techniques consider minimizing a problem of the form

min
u∈H

J(u)+H(u,f), (2.26)

where J and H are two convex functions defined on a Hilbert space H. The Bregman
iteration algorithm proposed in [47] is written in two lines:

uk+1=arg min
u∈Rn

{

J(u)−J(uk)−
〈

u−uk,fk
〉

+H(u,f)
}

, (2.27)

fk+1=fk−∇uH(uk+1,f),

with u0=0 and f0=0. This algorithm generates a sequence {uk} such that H(uk,f)
decreases monotonically. Furthermore, it has been proven in [47] that if J(u)∈C2(Ω)
and is strictly convex in Ω, then H(uk,f) decays exponentially whenever uk ∈Ω for
all k.

The compressive sensing type of problems, such as (2.25), corresponds to the
special case where J(u)= |u|1 and H(u,f)= 1

2 ||Au−f ||22. The minimizer of J(u) is
sought under the constraint H(u,f)=0. In this case, the sequence uk, obtained
through Bregman iterations (2.27), converges in finitely many steps to the solution
of (2.25). Furthermore, for such quadratic fitting term type problems, the Bregman
iteration (2.27), after some manipulation, can be written as

uk+1=arg min
u∈Rn

{

J(u)+
1

2
||Auk−fk||2

}

, (2.28)

fk+1=fk+f−Auk+1,

with f0=0 and u0=0 [47, 42]. Thus, the Bregman iteration scheme solves the con-
strained minimization problem via solutions of a sequence of unconstrained problems.

To further improve on the computational simplicity, the linearized Bregman al-
gorithm was devised in [18]. By linearizing the quadratic fitting term around the
previous iterate uk and seeking the minimizer near it, the two-line linearized Breg-
man algorithm can be written component-wise as

uk=shrink(vk−1,µ) :=signum(vk−1)max
{

|vk−1|−µ,0
}

, (2.29)

vk=vk−1= δA⊤(Auk−f),

for µ,δ>0. This algorithm takes advantage of the simple exact solution formula for
the scalar problem:

argmin

(

µ|u|+ 1

2
|f−u|2

)

=shrink(f,µ). (2.30)
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The linearized Bregman algorithm is proven to solve the original L1 constrained min-
imization problem for sufficiently large µ [46].

Since Bregman iterative algorithms demonstrate great speed, accuracy, and po-
tential for extensions [43], we use a Bregman iterative method for detecting the ray
directions. We begin by transforming the complex-valued matrix G∈C

M×M and the
measurements vector Û ∈C

M from (2.21) to real-valued matrix A and vector f by
separating real and imaginary parts:

A∈R
2M×2M , f ∈R

2M :A=

(

ℜG ℑG
−ℑG ℜG

)

,f =

(

ℜÛ
ℑÛ

)

. (2.31)

However, the solution to our problem can be either non-unique with only few mea-
surements or non-existent when the measurements are not consistent due to noise or
other uncertainties. Thus, we replace the exact equality in (2.25) by an inequality
with an L2 norm:

min
u∈Rn

{|u|1 : ||Au−f ||<ǫ} , (2.32)

where ǫ>0 is a small number. We now apply the linearized Bregman iterations
(2.29) to solve the L1 constrained minimization problem (2.32) to obtain the solution
u∈R

2M , which can then be easily transformed back into complex form bm∈C
M . The

absolute value of bm has peaks in the directions of the rays and corresponds to the
complex amplitude Bn in (2.4).

2.3. Summary of Algorithm for determining wave directions. The
steps necessary to determine the wave directions at each observation location can be
summarized as follows:

Algorithm 1 Determining wave directions at an observation point.

1: Discretize the circle Cr(y) (2.6) centered at the observation location y. Use a
uniform grid {θ̃m} with the number of points defined by (2.19) and (2.11).

2: Sample the solution
{

Ũm

}

on the grid.

3: Define
{

Ûl

}

=FFT
{

Ũm

}

.

4: Setup the matrix G (2.21).

5: Solve the L1 constrained optimization problem (2.32) using linearized Bregman
(2.29). Here, the matrix A and the measurement vector f are defined in (2.31).

6: Convert the real-valued solution u to complex-valued approximation bm of βα

defined in (2.16). The absolute value of bm is zero (or nearly zero in the presence
of noise) everywhere except along the directions of incoming rays.

2.4. Results. The following simple model problem in free space is used in the
experiments described in this section:

∆uk+k2uk=

N
∑

n=1

4i
√
kδxn

,
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where N =5. The Dirac-δ masses are centered at the source locations {xn}Nn=1=
{(±0.8,−0.6),(±0.4,−0.6),(0,−0.6)} and normalized so that the exact solution can
be written as the sum of Hankel functions with decaying amplitudes centered at xn:

uk(x)=

N
∑

n=1

√
kH1

0 (k|x−xn|).

We would like to recover the ray directions with nonzero amplitudes in the local ap-
proximation of the wave field at the observation point y=(0,0.2). The exact solution,
observation point along with the observation circle, and the point sources are shown
in Figure 2.1 (a). The performance in the presence of noise of the constrained L1 mini-
mization is compared to the Tikhonov regularized L2 minimization in Figure 2.1 (b-c).
In this experiment, the wave number is k=103. The radius of the observation circle
is r=α/k, where α is a variable parameter set to 3π. The number of measurements
along the observation circle is M =55.

Figure 2.1 (b) depicts the solution of the Tikhonov regularized L2 system (2.22)
using the inversion formula (2.23). Note, however, that we do not apply the post-
processing step discussed in [2]. The vertical dashed lines indicate the exact angular
positions of the point sources with respect to the observer. The exact solution would
thus have peaks along the dashed lines and be zero everywhere else. The L2 solution
is almost never zero and has many oscillations away from source locations. As the
Signal-to-Noise Ratio (SNR) decreases, the solution becomes more oscillatory, so that
the true peaks are lost in the spurious oscillations.

In contrast, the solution of the L1 constrained minimization problem (2.32), shown
in Figure 2.1 (c), is zero almost everywhere and does not deteriorate much in the
presence of noise. The spurious oscillations that appear as SNR decreases have small
amplitudes and can be easily filtered out by simple thresholding.

In Figure 2.2, the maximum error in the ray directions θn is plotted as a function of
α (proportional to the radius of the observation circle). The number of measurements
along the circle is calculated using (2.19) and (2.11). The error in the ray directions
is bounded below by the grid resolution. When α is very small, the radius of the
observation circle is small, and the mesh is rather coarse, consisting of just a few
points. The error decreases as α becomes larger. However, when α is too big, the error
increases again possibly due to the violation of the local plane wave approximation
(2.4).

In the absence of noise, the accuracy of the solution of the L1 problem is compa-
rable to the accuracy of the results obtained solving Tikhonov regularization problem.
Further convergence analysis is provided in [2].

3. Source discovery via back-propagating rays

In this section, we describe how to determine the source locations from a fixed
set of observation points without complete knowledge of the scattering objects in the
domain. At each observation location O, we assume that a set of incoming wave
directions are detected by the algorithm described in the previous section. Associated
with each of these directions is a ray coming either directly from a source or indirectly
via reflections. Thus, all the sources must lay at intersections of these rays, when no
error is present in the detection of the incoming wave directions or in the reflection
angles. A natural idea is to propagate rays back into the part of the domain that
has been explored by the navigation algorithm and look for the sources among the
intersections of these rays. Instead of looking for these intersections one by one, which
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lem (2.32) using linearized Bregman iterations.

Fig. 2.1. Solution of the Helmholtz equation with five sources at different noise levels. Vertical
dashed lines in subfigures (b) and (c) indicate the exact angular positions of the sources with respect
to the observer’s location.
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Fig. 2.2. The error in the ray directions θn as a function of α. Fixed wave number k=103.
The radius of the observation circle is r=α/k and the number of measurements along the circle is
given by (2.19).
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has many drawbacks such as instability, we propose to image the sources by forming
a density that reflects the estimated positions of the sources. After a renormalization,
the image produced by our algorithm can be thought of as a probability density.

At each observation location O, we propagate rays back towards the detected
wave directions, which we will refer to as the primary rays. The visibility function at
O provides all of the necessary information to find the reflections of any primary rays
that reach an obstacle, since the obstacle geometry is resolved by the visibility function
and we can find the normal to the obstacle boundary locally, which determines the
angle of reflection through Snell’s law. However, after a ray reflects, its secondary part
can enter regions of the domain which have not been explored yet, thus, there may not
be the necessary information to find how they reflect from obstacles. Furthermore,
the errors in ray direction and in the normal vector to the obstacle boundaries tend to
significantly degrade the information contained in the secondary rays. Thus, we have
found that using only the primary rays is more efficient and provides a better image
compared to using also the secondary reflected parts of the rays. In addition, the
solution for the Helmholtz equation decays rapidly away from the source, supporting
the idea that most of the wave direction information at each observation location is
contained in the primary rays. For the remainder of this section, we will refer to the
primary rays as simply the rays.

We remark that given a fixed set of observation locations and the wave directions
at each of them, there are many different ways of forming an imaging functional. In
designing such a functional, we have found that certain properties are necessary to
produce a good image. We will present our arguments about why these properties
are important and then summarize them in a list.

3.1. Imaging functional. First, we begin by looking at the simple case of
only one observation location. At such a location O, we back-propagate each detected
incoming wave direction. Each ray begins at O and terminates by either reaching
an obstacle or by exiting the domain, which can be determined by the visibility
information at O. Thus at the observation location O, we obtain a set of back-
propagated line segments {Rm(O) :m=1,2, · · · ,MO}. A source may reside anywhere
along these line segments. Of course, due to reflections and other errors, this is not
necessarily the case. However, given no other information, our best analysis of the
situation is that a source is most likely to be somewhere on a ray. Thus, we form
a distribution that decays exponentially away from each line segment. Furthermore,
due to the angular discretization of the directions, we decrease the decay rate based
on the distance away from the observation location:

IS(x;O)= max
m∈[1,M ]

[

exp

(

− ν1
|O−x∗

m|2 |x−x∗
m|2
)]

,

where O is the observation location, ν1 is a positive constant, and x∗
m is the closest

point to x on the line segment associated with the m-th detected direction, Rm. Note
that I(x;O) is independent of the ordering of the detected wave directions.

To combine information from several sources, there are two immediate ways of in-
corporating the additional information by either adding or multiplying the functional
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IS evaluated at different observation locations:

IΣ(x;O1, . . . ,ON )=

N
∑

n=1

IS(x;On), (3.1)

IΠ(x;O1, . . . ,ON ) =

N
∏

n=1

IS(x;On). (3.2)

Note again that these two imaging functionals are invariant with respect to the order-
ing of the observations and detected directions. Such invariance is obviously desirable
since the observation and wave direction carry qualitatively similar information. Fur-
thermore, each of these imaging functionals correlates information from different ob-
servations, either additively or multiplicative, which is also desirable. However, they
both have shortcomings which we will highlight with an example. Suppose that there
are two sources and five observation locations as shown in Figure 3.1. In the case of
IΣ, there are many places where at least two rays cross. It is difficult to discern the
true sources from artifacts in the image produced by the IΣ functional. Additionally,
as more observation locations are added, the image does not become sharper. On
the other hand, IΠ produces a sharp image and adding observation locations further
sharpens the image. Now, consider the case where one of the observation locations
misses a direction, perhaps due to noise or wave cancelation. The IΣ image function
is robust in such cases, since there will still be many other rays that pass through
each source location. Unfortunately, the image produced by IΠ will not illuminate
the location of the missed source, even if new observation locations are added. This
example is illustrated in Figure 3.1. To improve the shortcomings of these two ap-
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Fig. 3.1. Comparisons of three different imaging functionals. The black lines are back-
propagated rays, the observer locations are shown as white dots with a black center and the source
locations are indicated by a white cross. The top row of figures shows the ability of IΠ and JΣΠ

(3)

to localize a source when all wave directions are identified at each observation location. The second
row of figures shows the effect of missing a direction in the detection step on each of the imaging
functionals and the robustness of JΣΠ

(3)
in such cases.

proaches, we consider an imaging functional which includes components from both
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IΣ and IΠ:

IΣΠ
(3) (x;O1, . . . ,ON )=

∑

1≤i<j<k≤N

∏

q={i,j,k}

IS(x;Oq). (3.3)

That is, we take all combinations of the information from sets of three observation
locations, correlate them using IΠ, and sum over all combinations to form the image
IΣΠ
(3) . Similarly, we could also form image functionals IΣΠ

(n) , taking all combinations of

the information from sets of n observation locations, correlating them with IΠ, and
summing. We specifically use IΣΠ

(3) for 2D, since almost all lines in the plane intersect

and this creates many artifacts in the image. For 3D, we expect that IΣΠ
(2) will provide

a good image functional.

Finally, we remark that since the solution for the Helmholtz equation decays
away from the source and waves travel in straight lines when the index of refraction is
constant, we expect the signal from sources behind obstacles or from sources that are
far from the observation locations to have very small contribution to the measured
data. Thus, in correlating the rays from different observation locations, we will only
consider the regions of the domain that are in the intersection of the visibility regions
of the considered observation location. Furthermore, we expect that if a source is
closer to the observer the likelihood of missing the direction to the source is smaller
than the likelihood of missing the direction to a more distant source. In accordance
with this, when forming the image at a point x, we weight the closer observation
locations more heavily. Observation locations immediately next to image points are
also weighted less heavily since the plane wave approximation breaks down for sources
too close to the observation. We also note that since the imaging functionals above use
a sum, we have to carefully rescale the results so that if there are many observations
in a particular area of the domain it does not get overly emphasized.

As noted earlier there are many image functionals that satisfy these heuristic
rules. In particular, we use the following image functional:

JΣΠ
(3) (x;O1, . . . ,ON )=

∑

1≤i<j<k≤N

∏

q={i,j,k}

H(φ(x;Oq))ρ(|x−Oq|)
1

3 IS(x;Oq)

Z0



1+
∑

1≤i<j<k≤N

∏

q={i,j,k}

H(φ(x;Oq))ρ(|x−Oq|)
1

3





, (3.4)

where H is the Heaviside function, φ is the visibility function (positive in the visible
regions, negative in the invisible regions, and zero along the shadow boundary), Z0 is a

normalization constant so that JΣΠ
(3) ∈ [0,1] and ρ(s)=se−ν2s

2

with ν2 the localization
parameter. In all of the examples, we take ν2=1. The only other parameter is ν1,
which appears in the definition of IS(x;O). We take ν1=2M , so that is it proportional
to the angular discretization which has M points. Again, we design this imaging
functional specifically for 2D, by correlating rays from three observation points at a
time. However, this imaging functional can be easily modified to correlate the rays
from n observation locations at a time by simply taking the sum to be over all possible
groups of n observation locations indices, changing the product to include all indices
and replacing the 1/3 exponent to be 1/n. For example, in 3D, as we expect that
correlations of rays from two observation locations will provide good results, we would
use the version with n=2.
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3.2. Summary of properties of the imaging functional. We summarize
the important properties of the imaging functional:

1. Scaling:

• The imaging functional takes on values in [0,1].

• The imaging functional is scaled to account for density of observation
locations.

2. Invariance:

• The image is invariant under reordering of detected directions.

• The image is invariant under reordering of observation locations.

3. Correlation: Rays are correlated as sources are likely to be located at inter-
sections of rays.

4. Fault tolerance: The image is not qualitatively changed if a wave direction is
missed at an observation location.

5. Localization:

• Rays are only correlated in the intersection of the visibility regions of
their associated observation locations.

• Information from closer observation locations is weighted more heavily.

4. Adaptive algorithm

In the above section, we have described how to image the sources detected from
several observation locations. Below we are going to present an algorithm for choosing
the observing locations so that all the sources are detected with a finite number of
observations. The algorithm proposed here is derived from the visibility-based envi-
ronment exploration algorithm introduced in [37, 35]. The algorithm was originally
proposed to explore bounded planar environments with unknown obstacles using the
range data to the occluding surfaces. Subsequently, it has been applied to discovering
point sources (modeled by elliptic PDEs) in unknown environments [6] and navigation
on uneven terrains. Here is the summary of the basic algorithm:
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Algorithm 2 Environment exploration from [37].

1: At a current observing location O, make a 360◦ sweep to collect the range data
from the surrounding surfaces in a plane fixed at the range sensor’s height.

2: From the range data, reconstruct a piecewise smooth representation of the visible
surfaces of occluding objects and the visibility function. The visibility is repre-
sented by a piecewise-smooth distance function ρO to occluding surfaces/domain
boundary in any direction ν from the observer at O:

ρO(ν) := min
O+rν∈Ω̄∪∂B(O,M)

r,

where Ω is the domain, B(y,M)=
{

y′∈R
d : |y−y′|<M

}

, and M is the maximum
range of the sensor. See [37] or [35] for more details.

3: Determine the location of horizons, or edges, on the visibility map, i.e., the dis-
continuities of ρO.

4: Choose the nearest horizon to the observer. Store the rest in a list. Approach the
horizon and overshoot by the amount depending on the curvature of the obstacle’s
surface near the horizon (note that the curvature of the occluding surfaces can be
extracted from the piecewise-high-order visibility function). Mark all the visible
horizons cleared.

5: If all the currently visible horizons have already been seen, revisit the unexplored
horizons from the list. Repeat from step 1.

6: The algorithm terminates once there are no more unexplored horizons left.

It was shown in [37] that the above algorithm always terminates in a finite number
of observations and that the entire bounded domain is explored, i.e. all the obstacles
are mapped, at the termination. As a result, a complete map of the environment is
reconstructed. In the case where all the obstacles are convex, the maximum number
of steps required to explore the entire domain is three times the number of obstacles.
This is easy to see if we bound each convex obstacle by a circle. Then, the three ver-
tices of the equilateral triangle surrounding the circle (which are naturally chosen by
the above algorithm as observation points) are sufficient to “see” the entire boundary
of the obstacle. In practice, however, the number of observations is much smaller than
this upper bound [37].

4.1. Discovery of all sources in the domain. We adapt Algorithm 2
for a simultaneous mapping of the environment and discovery of the sources. Based
on the imaging functional JΣΠ

(3) (3.4), once a source is detected by at least three

local observers (that is, at least three rays intersect at a source point), it appears
in the resulting image. Therefore, if every point in the domain outside the obstacles
is observed from at least three locations within a certain predefined range, we are
guaranteed to detect all the sources in the domain. The proximity of the observers to
the source is prescribed by the localization parameter in the imaging functional. This
restriction can be easily embedded into the exploration Algorithm 2 by specifying a
finite range for the sensor.

Our proposed algorithm simultaneously explores the unknown environment and
confirms the candidate sources, which are detected along the way. The observer
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proceeds as in the exploration Algorithm 2, while a small neighborhood around each

candidate source is treated as an obstacle, which we will call the possible source re-
gions. In other words, once the imaging function indicates a possible source region, the
observer must explore it as if it were a physical obstacle. Correspondingly, these ad-
ditional obstacles will add new horizons to the list maintained in Algorithm 2. Hence,
Algorithm 2 will ensure that the possible source regions are reinspected. Typically,
three observations are enough to see the entire boundary of such a region. In order to
confirm a source, a ray from each of the three observing positions must pass through
the neighborhood in question. As a result of such exploration, some of the candi-
date sources regions may shift their locations or disappear. Our proposed strategy is
described in Algorithm 3 below.

Algorithm 3 Discovery of all sources in the domain.

1: For the first three observations, proceed as in the basic exploration Algorithm 2.

2: Repeat

3: After the third observation, compute the imaging functional JΣΠ
(3) (3.4) and find

its local extrema (maxima), which correspond to the candidate sources.

4: Represent each candidate source by a circular region centered at the local maxi-
mum. The radius of the circle is r=R/2, where R=argmaxρ(s), ρ(s) is defined
below the imaging functional JΣΠ

(3) (3.4).

5: Continue exploring source regions as if they were obstacles according to Algo-
rithm 2. As a result, each candidate source will be surrounded by at least three
observations at the vertices of an equilateral triangle surrounding the source.

6: If all the currently visible horizons have already been seen, then
7: Revisit the unexplored horizons on the obstacles from the list defined in

Algorithm 2.
8: End if

9: Until no more unexplored horizons left.

10: Optional: Filter out those candidate sources, where the number of intersecting
rays is less than three.

Let us clarify some of the steps of the proposed algorithm. Since the imaging
functional JΣΠ

(3) (3.4) is defined for three or more observations, the source detection
begins only after the initial three steps of the environment exploration. Once the
imaging functional is computed, and we smooth it by convolving with a Gaussian
kernel, then the local maxima can be easily identified by thresholding and looking
for the points in the image whose values are greater than those of nearest and next-
to-nearest neighbors in the image grid. Local extrema which are too close to the
obstacles’ boundaries are excluded.

In step 4, we construct a circular artificial obstacle around each detected max-
imum. To explore the resulting source region, the algorithm leads us to place the
observer at the vertices of an equilateral triangle surrounding the circle. If the can-
didate source is the true source, there will be three rays, each coming from a vertex,
intersecting at the source location in the center of the circle. As we remarked in the
previous section, the likelihood of detecting a source is greater if the source is closer to
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the observer. The localization function ρ in the imaging functional JΣΠ
(3) (3.4) is intro-

duced to emphasize the nearby regions. The radius of the artificial circular obstacle
surrounding a candidate source is chosen so that the resulting observing locations are
the optimal distance away from the source with respect to the peak of the imaging
functional. Note that during the exploration some of the candidate sources may shift
their positions or disappear.

Unlike the original exploration algorithm, where the next position is chosen by
approaching the nearest horizon, our modified algorithm prioritizes exploration of the
candidate sources before continuing with the rest of the environment. Of course, vis-
ibility information is accumulated with each step and is used both for obstacle avoid-
ance and the imaging functional updates. Once there are no more unexplored can-
didate sources, the observer continues mapping the environment and may encounter
new sources along the way, for example, if the sources were previously shielded by the
obstacles.

The resulting image is used to identify the sources at its local maxima. As a final
optional step, we check the number of rays intersecting at each identified source and
filter out those sources, where the number of rays is less than three. We further note
that our proposed strategy does not miss any of the sources in the domain. However,
in cluttered environments a few false sources may be identified.

In an environment with convex disjoint obstacles, the upper bound on the num-
ber of observations required to detect all the sources is three times the sum of the
number of the obstacles and the number of sources. Experimentally, the number of
required observations is much smaller. Note that the complexity of the proposed al-
gorithm, unlike most of the methods in the literature, is independent of the domain
discretization and neither the sources nor the observation locations need to be bound
to any grid. The algorithm adaptively chooses the next observation location, based
on previous observations, and terminates once all the sources have been identified.

4.2. Results. The numerical simulations below are performed at a frequency
corresponding to 440 Hz, a reference pitch to which a group of musical instruments
are typically tuned for a performance. The sample domain has physical dimensions
of 130×130 m2. A few circular scatterers are added to the domain. We assume that
every obstacle is at least ten wavelengths in diameter. Even though the piecewise-
smooth visibility representation allows for accurate reconstruction of surface geometry
and reflecting directions, the reflected secondary and higher order rays are excluded
from our source reconstruction procedure due to additional errors introduced during
the reconstruction. Sources can be placed anywhere in the environment outside the
obstacles.

Figure 4.1 illustrates the setup for our first example. There are seven obstacles
(circles) and five sources (crosses). The goal is to detect all the sources while avoid-
ing collisions with the obstacles. The exploration begins at the left bottom corner
of the domain. From Figure 4.1(a), one can see a single ray from the initial ob-
server’s position passing between the two sources, instead of two rays going through
each source. This is the result of wave cancellations due to proximity of the sources,
which is inherent in the solution of the Helmholtz equation. Another problem arises
in Figure 4.1(b), where the sources appear to be collinear with respect to the sec-
ond observation location. As a result, a single ray is cast in the direction of both
sources. Also note that both rays terminate on the scatterers, from which we can
only conclude that the sources are either somewhere along the depicted primary rays
or along the secondary reflections, which we are not considering. Furthermore, one
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of the sources on the left should be detectable from this location, however, its ray
direction is not detected. During the third observation, depicted in Figure 4.1(c), five
rays are detected. While two of the rays seem to pass near or through the sources,
the rest are the refections from the numerous surrounding scatterers. The examples
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(c) Step 3.

Fig. 4.1. Example 1: 7 obstacles and 5 sources. The first three steps of the algorithm. Primary
rays from each observer’s position.

in Figure 4.1 illustrate some of the challenges present in detecting the incoming wave
directions in cluttered domains. Our proposed method addresses these challenges by
using the imaging functional JΣΠ

(3) (3.4). While the first three steps of the exploration
are chosen by the environment mapping algorithm, the imaging functional is com-
puted after the third step, and the observer begins to explore candidate sources. For
clarity, we do not show the visibility changes after each step, as it was the subject of
previous publications [37, 35]. Instead, we show the accumulated visible surfaces at
each corresponding step of the navigation.

Figure 4.2 contains some key steps of the exploration: the observing locations,
the imaging functional, and the estimated sources. The image reconstructed after
the first three steps is depicted in Figure 4.2(a). A local maximum is detected and
surrounded by a small circular source region. Now the observer must surround the
region with at least three observation points. During this process a new maximum is
detected (Figure 4.2(b)) and the first candidate source shifts its position toward the
true source location, as shown in Figure 4.2(c). After the first seven steps, there are no
more candidate source regions left to explore and, therefore, the observer continues by
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exploring the boundary of the nearby obstacle, Figure 4.2(d). New candidate sources
appear in Figure 4.2(d) and 4.2(e). In step 11, Figure 4.2(f), one of the candidate
sources shifts toward the correct location of the nearby source. Once all the candi-
date sources on the middle right hand side of the domain have been explored, the
observer moves on to explore the rest of the environment in the top left corner, where
it encounters a few more sources shown in Figure 4.2(g). At step 20 (Figure 4.2(h)),
after one of the candidate source regions is surrounded with three observers, it dis-
appears along with another candidate source region. At this step, exploration of the
candidate sources is finished and the remaining three steps complete the environment
exploration. The last step of the algorithm is depicted in Figure 4.2(i).

After the exploration is completed, the image of the sums of the rays IΣ (3.1)
presented in Figure 4.3(a) is analyzed to filter out sources in the regions where the
number of passing rays is less than three. As a result, one source (marked by circle),
detected during the exploration, is excluded from the detected sources. The final
image is depicted on Figure 4.3(b). Note that unlike the image of the sums IΣ (3.1),
the proposed image functional JΣΠ

(3) (3.4) has very few extrema, which are concentrated
around the sources.

The algorithm terminates in 23 steps, while the upper bound for this example is
36 steps (7 obstacles plus 5 sources times 3). The observation locations are automat-
ically chosen in the vicinity of obstacles and sources, while the empty regions are not
unnecessarily observed. Despite the errors and ambiguities associated with detection
of incoming rays, illustrated in Figure 4.1, our adaptive sampling algorithm combined
with a suitable imaging functional resulted in a reconstruction of the sources and the
scatterers.

Our next example is a bit more complicated: there are ten obstacles and seven
sources (d+). The experiment setup is shown in Figure 4.4. We omit the details of
the exploration as they are similar to the previous example: candidate sources are
detected, then verified. During the exploration, some source regions shift or disappear.
Once there are no more new possible sources detected, the observer continues to
explore the domain. The exploration terminates in 28 steps, detecting nine sources
(marked by × in Figure 4.4(a)). The two extra sources are artifacts caused by the
clutter from scattering objects and nearby sources. Filtering based on the number
of rays intersecting at the source does not eliminate the spurious sources since there
are many rays passing through their neighborhood. In fact, Figure 4.4(b) displays
all the primary rays detected from the observation locations. One can see that it is
difficult to extract any information about the source locations from just the primary
rays. On the other hand, the imaging functional provides concise information about
the locations of the sources. Note that the algorithm terminates in 28 steps while
the upper bound for this example is 51 steps. The true sources are a subset of the
detected sources and one could use an alternative technique to further validate the
true sources and exclude the spurious ones.

5. Conclusion

In this paper, we studied the inverse problem for the Helmholtz equation in com-
plicated domains with possibly unknown obstacles, which are much larger than the
wavelength. We proposed an algorithm which determines the number and the loca-
tions of point sources in the domain based on sparse measurements of the wave field.
At each observation location the directions of incoming rays are determined from
solving a local inverse scattering problem, initially stated in [2]. We formulated the
problem as an L1 constrained minimization problem and solved it using the Bregman
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Fig. 4.2. Example 1: 7 obstacles and 5 sources. Some of the steps of the domain exploration
and source detection.
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(a) Sums IΣ(O1,... ,ON ) (3.1). Color bar in-
dicates the number of rays passing through
every point of the domain outside the obsta-
cles. The source that has been filtered out is
marked by a circle.
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Fig. 4.3. Example 1: 7 obstacles and 5 sources. Sums IΣ (3.1) and the final image JΣΠ
(3)

(3.4).

Exact source locations: +, estimated source locations: ×.
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(b) Primary rays at each observing loca-
tion.

Fig. 4.4. Example 2: 10 obstacles and 7 sources. The final imaging functional JΣΠ
(3)

(3.4) with

detected sources and the primary rays.

iterative procedure [47, 18]. The resulting solution is sparse and robust against the
noise in the signal measurements. The wave directions can then be traced back to
determine the locations of sources at the intersection of rays from several observing
positions. The process of detecting ray intersections is prone to instabilities. Instead,
we imaged the sources by forming a density functional, which can be thought of as
probability density after a renormalization. The resulting image has a few sparse
peaks concentrated around the candidate sources.

The observation locations are chosen adaptively based on the imaging functional
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for the previous locations and the visibility information for the domain. The nav-
igation algorithm [37, 35] was adapted to this problem, where it has been used to
explore unknown environments with obstacles. The algorithm terminates once all the
candidate sources and the environment have been explored. To explore a candidate
source, the observer must measure the wave field at three locations surrounding the
corresponding peak in the imaging functional. As a result, a candidate source may
shift its position, disappear, or remain at its current location. In the case when the
obstacles are convex, the upper bound on the number of observations needed is three
times the sum of the number of obstacles and the number of sources in the domain.
However, our numerical simulations indicate that the actual number of steps required
to complete the exploration is much smaller than this upper bound. Unlike most
methods described in recent literature, the complexity of our proposed strategy is in-
dependent of the discretization of the domain for the imaging functional and depends
only on the number of sources and obstacles in the domain.

As a result of the exploration, all the sources in the domain are detected and
the map of the environment is reconstructed. However, some spurious sources may
have also been detected. This happens due to the complex nature of the scattering
problem. For example, in a very cluttered environment with many obstacles, the
wave field at the measurement location may be complicated by constructive and de-
structive interference leading to detected rays from many directions. Also, if the size
of the scattering obstacles scales in a special way with the wavelength, the resulting
wave field may no longer be adequately represented by the local geometric optics
approximation. In such cases, alternative formulations (e.g. [30]) must be used.

We finally remark that even though we have presented and validated our algo-
rithm in 2D, the extension to 3D is not complicated. All of the necessary ingredients,
visibility algorithm, incoming ray direction detection and imagining functional can
be extended to 3D. For the visibility algorithm the obstacles will be surrounded by
a sphere and thus instead of 3 observation locations, one would need 4, all laying on
the vertices of a tetrahedron [35]. Once again, the observer will calculate the local
curvature and proceed by over-shooting the boundary. The incoming ray direction
algorithm is already formulated in [2] based on Legendre polynomials and spherical
harmonics. The application of the Bregman iterative methods is direct even in this
case. Finally, the imaging function JΣΠ

(3) is dimension independent. As we have re-
marked earlier, we expect that in 3D one should be able to successfully use the imaging
functional JΣΠ

(2) , which correlates pair of rays (rather than triples of rays as JΣΠ
(3) ), since

3D does not suffer from the fact that in 2D almost all pairs of lines intersect in at
least one point.
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