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SEMI-IMPLICIT INTEGRAL DEFERRED CORRECTION

CONSTRUCTED WITH ADDITIVE RUNGE-KUTTA METHODS∗

ANDREW CHRISTLIEB† , MAUREEN MORTON‡ , BENJAMIN ONG§ , AND JING-MEI QIU¶

Abstract. In this paper, we construct high order semi-implicit integrators using integral deferred
correction (IDC) to solve stiff initial value problems. The general framework for the construction
of these semi-implicit methods uses uniformly distributed nodes and additive Runge-Kutta (ARK)
integrators as base schemes inside an IDC framework, which we refer to as IDC-ARK methods.
We establish under mild assumptions that, when an rth order ARK method is used to predict and
correct the numerical solution, the order of accuracy of the IDC method increases by r for each
IDC prediction and correction loop. Numerical experiments support the established theorems, and
also indicate that higher order IDC-ARK methods present an efficiency advantage over existing
implicit-explicit (IMEX) ARK schemes in some cases.

Key words. Defect correction methods, additive Runge-Kutta methods, semi-implicit methods,
integral deferred correction methods, spectral deferred correction methods, implicit-explicit methods.

AMS subject classifications. 65B05, 65L05, 65L20.

1. Introduction

Many physical problems described by time dependent partial differential equations
(PDEs) or ordinary differential equations (ODEs) involve multiple time scales that
necessitate efficient and accurate numerical time integration. For example, chemical
rate equations can have a dynamic range of behaviors which span disparate time
scales. Such equations can be expressed in a simplified model as

y′(t) = fS(t, y) + fN (t, y), t ∈ [0, T ], (1.1)

y(0) = y0,

where fS(t, y) contains stiff terms and fN (t, y) contains the nonstiff terms. The above
system may also arise with a method of lines discretization of PDEs, such as hyperbolic
systems with relaxtion terms, convection-diffusion systems, and convection-diffusion-
reaction systems. Applying explicit numerical integrators to the above initial value
problem (IVP) can result in impractical time step restrictions due to the stiff term,
while fully implicit methods may involve costly Newton iterations.

A general approach to solving system (1.1) is to construct implicit-explicit (IMEX)
methods, where the stiff term is handled implicitly, and the non-stiff term is handled
explicitly, thereby gaining the benefit of the implicit method for the stiffness but
potentially saving computational effort by handling some terms explicitly. In this pa-
per, we construct a class of IMEX-RK methods, also known as additive Runge–Kutta
(ARK) methods, using the defect correction framework. Currently, ARK methods
above 5th order have not been constructed without the use of a defect correction
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framework [21, 22]. It is also possible to contruct IMEX methods using general linear
multi-step schemes. Such methods however require multiple starting values, and their
stabilities deteriorate at higher order [16, 3, 23].

In 2000, Dutt, Greengard, and Rokhlin introduced spectral deferred correction
(SDC) methods [12]. SDC methods compute a provisional solution on a subgrid
and then correct this provisional solution by approximating the error in subsequent
correction loops over the subgrid. A unique feature of SDC is the formulation of the
error equation in an integral form within the correction loops, which provides improved
stability [12, 13]. Several investigations and modifications of SDC followed. For
example, the order of accuracy for SDC methods constructed with Euler integrators
was proved [28]. Krylov deferred correction, which uses SDC with an Euler integrator
as a preconditioner for a Newton-Krylov method, was developed to handle differential
algebraic equations [17, 18]. In [9], a variant of SDC, integral deferred correction
(IDC), constructed using uniform nodes and high order explicit RK integrators in
both the prediction and corrections, referred to as IDC-RK, was introduced. In [9], it
was established that using an explicit RK method of order r in the correction results in
r more degrees of accuracy with each successive correction. In [8] it was demonstrated
that IDC-RK methods are more efficient than SDC methods (constructed with Euler
integrators) of equivalent order. IDC-RK methods were also found to possess better
stability properties than SDC [9] and can be written as RK methods in Butcher table
form [8]. Semi-implicit IDC with backward and forward Euler was developed as an
IMEX method to handle IVPs of the form (1.1) [25], while in [22], semi-implicit IDC
methods using second order base schemes (BDF and RK) in both the prediction and
correction loops were implemented.

In this paper, we provide a general framework for the construction of arbitrary
order IMEX methods that use ARK integrators as base schemes inside the IDC frame-
work. We will refer to this family as IDC-ARK methods. Our framework recovers
the formulation in [22] for the second order ARK case. We do not study multistep
methods embedded in the prediction and correction loops of IDC because multistep
methods in general do not achieve high order accuracy increase after each correction
since the error is not smooth [8]. In Section 3, we analyze the local truncation er-
ror of the IDC-ARK methods. It is found that, when an rth order ARK method is
used to predict and correct the numerical solution, the order of accuracy of the IDC
method increases by r for each IDC prediction and correction loop. A corollary of
the theorem provides the truncation error results for IDC methods constructed us-
ing implicit RK integrators in the prediction and correction loops. The analysis of
the truncation error closely follows the analysis in [9], and, since only the essential
differences are presented in this work, it is recommended that the interested reader
first reads [9] before reading Section 3. Numerical results in Section 5 support the
conclusion of the theorem. As experienced by many IMEX schemes, including ARK,
some order reduction is apparent with increased stiffness. In future work, we plan to
explore using asymptotic preserving ARK schemes (as in [27]) in the prediction and
correction loops of IDC to potentially mitigate the issue of order reduction. In some
scenarios, high order IDC-ARK presents an efficiency advantage over some existing
IMEX ARK schemes.

The paper is organized as follows. An IMEX form of Runge-Kutta methods
known as ARK is explained in Section 2.1. Our formulation of semi-implicit IDC-
ARK schemes, based on [25] and [9], can be found in Section 2.2. Section 3 contains
the analysis of the truncation error. Improved stability of the IDC-ARK over SDC-
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FE/BE is shown in Section 4, and Section 5 summarizes the numerical experiments
conducted, including order of accuracy and efficiency.

2. Formulation of IDC-ARK

In this section, we first present a brief description of ARK methods and their
formulation within the framework of IDC. Then we provide both a general formulation
that constructs arbitrary order semi-implicit IDC methods incorporating (arbitrary
order) ARK integrators and an example involving a second order ARK integrator.

2.1. Additive Runge-Kutta. One method of splitting an ODE is to partition
the right hand side of an IVP into Λ parts [10, 1, 21, 24]:

y′(t) = f(t, y) =

Λ∑

ν=1

f[ν](t, y), y(0) = y0, t ∈ [0, T ], (2.1)

and to treat each f[ν] with a separate numerical method. When different p-stage
Runge-Kutta integrators are applied to each f[ν], the entire numerical method is
called an additive Runge-Kutta (ARK) method. If we define the numerical solution
after one timestep h as η1, which is an approximation to the exact solution y(t0 + h),
then one step of a p-stage ARK method is given by

η1 = y0 + h
Λ∑

ν=1

p∑

i=1

b
[ν]
i f[ν](t0 + c

[ν]
i h, Yi), (2.2)

where Yi = y0 + h

Λ∑

ν=1

p∑

j=1

a
[ν]
ij f[ν](t0 + c

[ν]
j h, Yj).

For the case c
[ν]
j = cj for all j, ν, the ARK method has the Butcher table:

c1 a
[1]
11 a

[1]
12 · · · a

[1]
1p a

[Λ]
11 a

[Λ]
12 . . . a

[Λ]
1p

c2 a
[1]
21 a

[1]
22 · · · a

[1]
2p a

[Λ]
21 a

[Λ]
22 . . . a

[Λ]
2p

...
...

...
. . .

... · · ·
...

...
. . .

...

cp a
[1]
p1 a

[1]
p2 · · · a

[1]
pp a

[Λ]
p1 a

[Λ]
p2 · · · a

[Λ]
pp

b
[1]
1 b

[1]
2 · · · b

[1]
p . . . b

[Λ]
1 b

[Λ]
2 . . . b

[Λ]
p

Under certain conditions on the RK coefficients, an ARK method of desired order can
be obtained without splitting error [11, 1, 24, 21].

Without loss of generality, we consider the case Λ = 2, where the IVP (2.1)
simplifies to the IVP (1.1), where fS(t, y) is stiff and fN (t, y) is nonstiff. An IMEX
version of ARK is then applied to (1.1), as shown for example in the Butcher table
[21],

0 0 0

c2 aS21 aS22 0 . . . aN21 0
...

...
...

. . .
...

. . .

cp aSp1 aSp2 · · · aSpp aNp1 aNp2 · · · aNp,p−1 0

bS1 bS2 · · · bSp bN1 bN2 · · · bNp−1 bNp
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where to reduce computational cost, an implicit DIRK method, with zero in the first
diagonal entry, is applied to fS , and an explicit method is applied to fN . Note that,
although one can formulate an ARK method with different stage nodes, say cNj and

cSj , taking the same stage nodes, cj
.
= cNj = cSj , simplifies the order conditions, as

presented in [21].
In the literature, the definition of ARK for the case of Λ = 2 usually is presented in

the form of (2.2) [1, 21, 10, 24]. We reformulate the definition of ARK (Λ = 2) below
to suit our analysis. The equivalence of definitions can be seen by simple substitution.
Our alternate definition can be given as follows.

Definition 2.1. Let p denote the number of stages and aNij , a
S
ij ; b

N
j , b

S
j ; cj be real

coefficients. Then the method

kαi = fα


t0 + cih, y0 + h




i−1∑

j=1

aNijk
N
j +

p∑

j=1

aSijk
S
j




 ,

η1 = y0 + h

p∑

i=1

bNi k
N
i + bSi k

S
i , (2.3)

for α = N,S and i = 1, 2, . . . , p, is a p-stage ARK method for solving the IVP (1.1).

Definition 2.2. An ARK method has order r if for a sufficiently smooth IVP (1.1),

‖y(t0 + h)− η1‖ ≤ Khr+1,

for some constant K > 0; i.e., the Taylor series for the exact solution y(t0 + h) and
η1 coincide up to and including the term hr.

2.2. General Formulation of IDC-ARK. Generalizing the formulation from
[9] for IDC-ARK, we obtain a general framework for semi-implicit IDC constructed
using ARK integrators.

Consider the IVP (1.1), where the right hand side is split into stiff and nonstiff
parts, fS(t, y) and fN (t, y), as in Section 2.1. The time interval [0, T ] is discretized
into intervals [tn, tn+1], n = 0, 1, . . . , N − 1, such that

0 = t0 < t1 < t2 < · · · < tn < · · · < tN = T, (2.4)

with timestep Hn = tn+1 − tn. Each interval [tn, tn+1] is discretized again into M
subintervals with quadrature nodes denoted by

tn,0 = tn, tn,m = tn,m−1 + hn,m, m = 1, . . . ,M, (2.5)

where hn,m is a step size that may vary with m, and
∑M

m=1 hn,m = hn (so tn,M =
tn+1). For IDC-ARK methods, we consider only the case of uniform quadrature
nodes ; i.e., hn,m = Hn

M
for m = 1, . . . ,M . Although it is possible to use nonuniform

quadrature nodes, we anticipate that nonuniform nodes will not consistently produce
the desired order of accuracy results, based on the analysis in [8]. Note that the
use of the word uniform does not preclude an adaptive timestepping implementation
of the IDC-ARK methods since, for uniform quadrature nodes, we mean that the
step Hn may be varied as desired, but within each step Hn, the smaller steps hn,m
must remain equal for each m. Since we consider only uniform quadrature nodes, we
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drop the subscript m on hn,m in our analysis. Furthermore, since the focus of this
paper is the construction and order of accuracy of general IDC-ARK methods (and
not adaptive timestepping with such methods), and since the analysis is identical
for any interval [tn, tn+1], we subsequently drop the subscript n and apply the IDC
method to the interval [0, H]. We also note that the numerical solution at the end
of some interval [tn, tn+1] is used as the initial condition for the subsequent interval
[tn+1, tn+2].

A summary of the IDC-ARK algorithm is as follows. First, in the prediction
loop, we compute a provisional solution to the IVP (1.1) with an r0

th order ARK
method. Then for k = 1, . . . ,Kloop correction loops, we compute an approxima-
tion to the error using an rk

th order ARK method and update the provisional so-
lution with this approximate error. Thus an IDC method with order of accuracy
min(r0 + · · ·+ rk + · · ·+ rKloop

,M + 1) is obtained.

Next we provide the details that are necessary for both the implementation of the
IDC-ARK method and the proof of truncation error in Section 3.2.

• Prediction loop: Use an r0
th order numerical method to obtain a provi-

sional solution to the IVP (1.1),

η[0] = (η
[0]
0 , η

[0]
1 , . . . , η[0]m , . . . , η

[0]
M ),

which is an r0
th order approximation to the exact solution

y = (y0, y1, . . . , ym, . . . , yM ),

where ym = y(tm) is the exact solution at tm, form = 0, 1, . . . ,M . We apply a
p0-stage r0

th order ARK scheme (2.3) as follows: for α = N,S; i = 1, 2, . . . , p0
and m = 0, 1, . . . ,M − 1,

kαi = fα


tm + cih, η

[0]
m + h




i−1∑

j=1

aNijk
N
j +

p0∑

j=1

aSijk
S
j




 ,

η
[0]
m+1 = η[0]m + h

p0∑

i=1

(bNi k
N
i + bSi k

S
i ).

• Correction loop: Use the error function to improve the order of accuracy
of the numerical solution at each iteration.
For k = 1 to Kloop (Kloop is the number of correction loops):

1. Denote the error function from the previous step as

e(k−1)(t) = y(t)− η(k−1)(t), (2.6)

where y(t) is the exact solution and η(k−1)(t) is an M th degree polyno-
mial interpolating η[k−1]. Note that the error function e(k−1)(t) is not a
polynomial in general.

2. Denote the residual function as

ǫ(k−1)(t)
.
= (η(k−1))′(t)− fS(t, η

(k−1)(t))− fN (t, η(k−1)(t)),
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and compute the integral of the residual. For example,

∫ tm+1

t0

ǫ(k−1)(τ) dτ

≈ η
[k−1]
m+1 − y0 −

M∑

j=0

γm,j(fS(tj , η
[k−1]
j ) + fN (tj , η

[k−1]
j )), (2.7)

where γm,j are the coefficients that result from approximating the inte-
gral by interpolatory quadrature formulas, as in [12],

and η
[k−1]
j = η(k−1)(tj).

3. Compute the numerical error vector, denoted by

δ[k] = (δ
[k]
0 , . . . , δ[k]m , . . . , δ

[k]
M ), (2.8)

which is an rk
th order approximation to the error

e[k−1] = (e
[k−1]
0 , . . . , e[k−1]

m , . . . , e
[k−1]
M ),

where e
[k−1]
m = e(k−1)(tm) is the value of the exact error function (2.6)

at tm.
To compute δ[k] by an rk

th order ARK method, we first discretize the
integral form of the error equation, which can be found by differentiating
the error,

(e(k−1))′(t) = fS(t, η
(k−1)(t) + e(k−1)(t))− fS(t, η

(k−1)(t))

+ fN (t, η(k−1)(t) + e(k−1)(t))− fN (t, η(k−1)(t))− ǫ(k−1)(t),

letting

E(k−1)(t) =

∫ t

t0

ǫ(k−1)(τ) dτ ,

bringing the residual to the left hand side,

(e(k−1)(t) + E(k−1)(t))′ = fS(t, η
(k−1)(t) + e(k−1)(t))− fS(t, η

(k−1)(t))

+ fN (t, η(k−1)(t) + e(k−1)(t))− fN (t, η(k−1)(t)),

and defining a differential equation in terms of a new variable Q, given
by

Q(k−1)(t) = e(k−1)(t) + E(k−1)(t), (2.9)

so that the error equation whose integral form we discretize is given by

(Q(k−1))′(t) = fS(t, η
(k−1)(t) +Q(k−1)(t)− E(k−1)(t))− fS(t, η

(k−1)(t))

+ fN (t, η(k−1)(t) +Q(k−1)(t)− E(k−1)(t))− fN (t, η(k−1)(t))
.
= FS(t, Q

(k−1)(t)− E(k−1)(t)) + FN (t, Q(k−1)(t)− E(k−1)(t))
.
= GS(t, Q

(k−1)(t)) +GN (t, Q(k−1)(t)),

Q(k−1)(0) = 0, (2.10)
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where

Fα(t, e
(k−1)(t)) = fα(t, η

(k−1)(t) + e(k−1)(t))− fα(t, η
(k−1)(t)),

Gα(t, Q
(k−1)(t)) = Fα(t, e

(k−1)(t)), α = N,S.

The fα, α = N,S notation above (with Q and the approximation for E)
is used in the numerical computation, while the Gα, α = N,S notation
is employed in the theoretical explanations and proof in Section 3.2.
We apply a pk-stage rk

th order ARK method to (2.10) and denote the

rk
th order numerical approximation to Q

[k−1]
m = Q(k−1)(tm) by Ω

[k]
m . We

therefore have, for α = N,S, i = 1, 2, . . . , pk and m = 0, 1, . . . ,M − 1,

kαi = Gα


tm + cih,Ω

[k]
m + h




i−1∑

j=1

aNijk
N
j +

pk∑

j=1

aSijk
S
j






= Fα(tm + cih,Ω
[k]
m + h




i−1∑

j=1

aNijk
N
j +

pk∑

j=1

aSijk
S
j


 (2.11)

− E[k−1](tm + cjh)),

Ω
[k]
m+1 = Ω[k]

m + h

pk∑

i=1

(bNi k
N
i + bSi k

S
i ). (2.12)

From Equations (2.9), we compute our numerical error vector (2.8),

δ[k] = Ω[k] − E[k−1],

where the components of E[k−1] are E
[k−1]
m = E(k−1)(tm). In fact, we

use

δ
[k]
m+1 = Ω

[k]
m+1 −

∫ tm+1

t0

ǫ(k−1)(τ) dτ

(2.7)
≈ Ω

[k]
m+1 − (η

[k−1]
m+1 − y0 −

M∑

j=0

γm,j(fS(tj , η
[k−1]
j ) + fN (tj , η

[k−1]
j ))),

where we have approximated the integral by interpolatory quadrature
formulas, as in [12].
In computing (2.12), one needs to evaluate fα(t, η(t)), α = N,S, at
some intermediate stage, e.g., at t = t0 + cjh. This results in addi-
tional function evaluations of fα(t, η(t)), which is usually the most ex-
pensive part of an algorithm. In our implementation, we avoid this extra
cost by performing a polynomial interpolation. Specifically, given fα =
(fα(t0, η0), . . . , fα(tm, ηm), . . . , fα(tM , ηM )), we construct anM th degree
Lagrange interpolant, LM (t, fα) and approximate fα(t, η(t))|t=t0+cjh

us-

ing LM (t = t0 + cjh, fα) up to O(hM+1). Again note that fα, Fα are
more useful for understanding the numerical implementation, while Gα

is employed in the theory in Section 3.2.
4. Update the numerical solution η[k] = η[k−1] + δ[k].
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2.3. Example with second order ARK. Now we present an example where
a second order ARK scheme is employed in the IDC framework. We consider the
IMEX RK2 scheme from [2], and illustrate that our formulation reduces to Layton’s
formulation [22] for this specific IMEX RK2 scheme. Writing the ARK scheme (we
denote it by ARK2ARS) in a Butcher table, we have

0 0
g 0 g g
1 0 1− g g d 1− d

0 1− g g 0 1− g g

where g = 1−
√
2
2 and d = − 2

√
2

3 .
The prediction loop solving (1.1), for α = N,S and m = 0, 1, . . . ,M − 1, is

η
[0]
m+1 = η[0]m + h((1− g)(kN1 + kS2 ) + g(kN3 + kS3 )), where

kα1 = fα(tm, η
[0]
m ),

kα2 = fα(tm + gh, η[0]m + hg(kN1 + kS2 )),

kα3 = fα(tm+1, η
[0]
m + h(dkN2 + (1− d)kN2 + (1− g)kS2 + gkS3 )),

The correction loop solving (2.10) is

δ
[k]
m+1 = Ω

[k]
m+1 − E[k−1](tm+1), where

Ω
[k]
m+1 = Ω[k]

m + h((1− g)(kN2 + kS2 ) + g(kN3 + kS3 )),

kα1 = Fα(tm,Ω
[k]
m − E[k−1](tm)),

kα2 = Fα(tm + gh,Ω[k]
m + hg(kN1 + kS2 )− E[k−1](tm + gh)),

kα3 = Fα(tm+1,Ω
[k]
m + h(dkN1 + (1− d)kN2 + (1− g)kS2 + gkS3 )− E[k−1](tm+1)).

Letting η
[k]
m = δ

[k]
m + η

[k−1]
m and Ω

[k]
m = δ

[k]
m + E

[k−1]
m , and noting

Qm+c
m (fS(t, η

(k−1)(t)) + fN (t, η(k−1)(t))) from [22] is an approximation of∫ tm+ch

tm
ǫ(k−1)(τ)dτ , we see that our framework recovers the formulation of IDC con-

structed with ARK2ARS in [22].

φ
(1)
m+g = η

[k−1]
m+g +Ω[k]

m + hg(kN1 + kS2 )− E[k−1](tm + gh),

φ
(2)
m+1 = η

[k−1]
m+1 +Ω[k]

m + h(dkN1 + (1− d)kN2 + (1− g)kS2 + gkS3 )− E[k−1](tm+1),

η
[k]
m+1 = η

[k−1]
m+1 + δ

[k]
m+1,

where the notation on the left is as in [22], while the notation on the right is ours.

3. Theoretical analysis of IDC-ARK

Some mathematical preliminaries related to the smoothness of discrete data sets
are introduced in Section 3.1. Section 3.2 then provides the local truncation error
estimates of IDC-ARK along with a corollary for the local truncation error of IDC
constructed with implicit RK integrators. This paper closely follows the formulation
presented in [9]. Since much of the framework for analyzing the local truncation
error remains unchanged, we only present the essential part of the analysis where it
substantially differs from the construction in [9].
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3.1. Mathematical preliminaries. Several analytical and numerical pre-
liminaries are needed to analyze IDC methods. The smoothness of discrete data sets
will be established, analogously to the smoothness of functions; this idea of smooth-
ness is used to analyze the error vectors. Let ψ(t) be a function for t ∈ [0, T ], and
without loss of generality, consider the first interval, [0, H], of the grid (2.4). Denote
the corresponding discrete data set as

(~t, ~ψ) = {(t0, ψ0), . . . , (tM , ψM )} , (3.1)

where tm are the uniform quadrature nodes given by (2.5).

Definition 3.1 (smoothness of a function). A function ψ(t), t ∈ [0, T ], possesses
σ degrees of smoothness if ‖dsψ‖∞ :=

∥∥ ∂s

∂ts
ψ
∥∥
∞ is bounded for s = 0, 1, 2, . . . , σ, where

‖ψ‖∞ := maxt∈[0,T ] |ψ(t)|.

Definition 3.2 (discrete differentiation). Consider the discrete data set, (~t, ~ψ),
defined in (3.1), and denote LM as the usual the Lagrange interpolant, an M th degree
polynomial that interpolates (t, ψ).

LM (t, ψ) =

M∑

m=0

cm(t)ψm, where cm(t) =
∏

n6=m

t− tn
tm − tn

.

An sth degree discrete differentiation is a linear mapping that maps ~ψ into
−−→
d̂sψ, where

(d̂sψ)m = ∂s

∂ts
LM (t, ψ)|t=tm . This linear mapping can be represented by a matrix

multiplication
−−→
d̂sψ = D̂s · ~ψ, where D̂s ∈ R(M+1)×(M+1) and (D̂s)mn = ∂s

∂ts
cn(t)|t=tm ,

m,n = 0, . . . ,M .

Given a distribution of quadrature nodes on [0, 1], the differentiation matrices,

D̂
[0,1]
s , s = 1, ...,M have constant entries. If this distribution of quadrature nodes

is rescaled from [0, 1] to [0, H], then the corresponding differentiation matrices are

D̂1 = 1
H
D̂

[0,1]
1 and D̂s =

(
1
H

)s
D̂

[0,1]
s .

Definition 3.3. The (Ŝ,∞) Sobolev norm of the discrete data set (~t, ~ψ) is defined
as

∥∥∥~ψ
∥∥∥
Ŝ,∞

:=

σ∑

s=0

∥∥∥∥
−−→
d̂sψ

∥∥∥∥
∞

=

σ∑

s=0

∥∥∥D̂s · ~ψ
∥∥∥
∞
,

where
−−→
d̂sψ = Id · ~ψ is the identity matrix operating on ~ψ.

Definition 3.4 (smoothness of a discrete date set). A discrete data set, (3.1),

possesses σ (σ ≤M) degrees of smoothness if ‖~ψ‖Ŝ,∞ is bounded as h→ 0.

We emphasize that smoothness is a property of discrete data sets in the limit as

h → 0. We also impose σ ≤ M , because
−−→
d̂σψ ≡ ~0, for σ > M . See [9] for a detailed

discussion.

Example 3.1 (A discrete data set with only one degree of smoothness). Consider
the discrete data set

(~t, ~ψ) =

{
(0, 0),

(
H

4
,
H

4

)
,

(
H

2
,
H

2

)
,

(
3H

4
,
H

4

)
, (H, 0)

}
.
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The first derivative

−−→
d̂1ψ =

(
−
4

3
,
10

3
, 0,−

10

3
,
4

3

)
,

is bounded independent of H, while the second derivative

−−→
d̂2ψ =

(
272

3H
,−

16

3H
,−

112

3H
,−

16

3H
,
272

3H

)
,

is unbounded as H → 0. Therefore, (~t, ~ψ) has one, and only one degree of smoothness
in the discrete sense.

For further details, definitions, and properties of smoothness in the discrete and
continuous sense, we refer the reader to [9].

3.2. Truncation error analysis of IDC-ARK. Here we provide the lo-
cal truncation error estimates for IDC-ARK methods. The analysis easily extends
to implicit-implicit or explicit-explicit IDC-ARK methods, as well as IDC methods
constructed with ARK methods of the form (2.2), designed for differential equations
whose right hand side can be partitioned into more than two parts. Since most IDC-
ARK theoretical results are similar to those in [9], we only present the main theorems
and lemmas, along with some helpful notations, and highlight the portions of the
proof that differ from [9]. The implicit case is presented in Corollary 3.10.

Theorem 3.5. Let y(t), the solution to the IVP (1.1), have at least σ (and fS and fN
have at least σ− 1) degrees of smoothness in the continuous sense, where σ ≥M +2.
Consider one time interval of an IDC method with t ∈ [0, H] and M + 1 uniformly
distributed quadrature points (2.5). Suppose an r0

th order ARK method (2.3) is used
in the prediction step and (r1, r2,. . . , rKloop

)th order ARK methods are used in Kloop

correction steps. For simplicity, assume that cj
.
= cNj = cSj and the number of stages

for the implicit and explicit parts of each ARK method is the same. Let sk =
∑k

j=0 rj.

If sKloop
≤M + 1, then the local truncation error is of order O(hsKloop

+1).

The proof of Theorem 3.5 follows by induction from Lemmas 3.6 and 3.7, below,
for the prediction and correction steps, respectively, which discuss the local truncation
error and smoothness of the rescaled error when general high order ARK schemes are
applied in the prediction and correction loops of IDC methods. Lemma 3.6 is the first
case, and Lemma 3.7 is the induction step.

Lemma 3.6 (Prediction step). Let y(t), fS, and fN satisfy the smoothness re-

quirements in Theorem 3.5, and let η[0] = (η
[0]
0 , η

[0]
1 ,. . . , η

[0]
m ,. . . , η

[0]
M ) be the numerical

solution on the uniformly distributed quadrature points (2.5), obtained using an r0
th

order ARK method (as described in Theorem 3.5) at the prediction step. Then:

1. The error vector e[0] = y − η[0] satisfies ‖e[0]‖∞ ∼ O(hr0+1).

2. The rescaled error vector ẽ[0] = 1
hr0

e[0] has min(σ− r0,M) degrees of smooth-
ness in the discrete sense.

Lemma 3.7 (Correction step). Let y(t), fS, and fN satisfy the smoothness re-
quirements in Theorem 3.5. Suppose e[k−1] ∼ O(hsk−1+1) and ẽ[k−1] = 1

h
sk−1 e

[k−1]

has M + 1− sk−1 degrees of smoothness in the discrete sense after the (k − 1)st cor-
rection step. Then, after the kth correction step, provided an rk

th order ARK method
(as described in Theorem 3.5) is used and k ≤ Kloop,
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1. The error vector e[k] satisfies ‖e[k]‖∞ ∼ O(hsk+1).

2. The rescaled error vector ẽ[k] = 1
hsk

e[k] has M +1− sk degrees of smoothness
in the discrete sense.

Note that the smoothness results of the rescaled error vectors in both lemmas are
essential for the proof of the correction loop in Lemma 3.7. The smoothness proofs of
Lemmas 3.6 and 3.7 (analogous to those in [9]) are quite technical. We instead state
and sketch a proof for the smoothness of the rescaled error vector following a forward-
backward Euler (FBE) prediction step in Lemma 3.8. The smoothness proof for the
more general case is similar in spirit. Once the smoothness of the rescaled error vector
is proved, the magnitude of the error vector follows directly from Definition 2.2.

Lemma 3.8 (FBE prediction step). Consider an IDC method constructed using
M + 1 uniformly distributed nodes, and a FBE integrator for the prediction step. Let
y(t), the solution to the IVP (1.1), have at least σ ≥ M + 2 degrees of smoothness,

and let ~η[0] = (η
[0]
0 , . . . , η

[0]
m , . . . , η

[0]
M ) be the numerical solution computed after the pre-

diction step. Then the rescaled error vector, ~̃e[0] = 1
h
~e[0], has M degrees of smoothness

in the discrete sense.

Proof. We drop the superscript [0] as there is no ambiguity. A FBE discretization
gives

ηm+1 = ηm + hfN (tm, ηm) + hfS(tm+1, ηm+1), (3.2)

and the exact solution satisfies

ym+1 = ym +

∫ tm+1

tm

fN (τ, y(τ))dτ +

∫ tm+1

tm

fS(τ, y(τ))dτ,

= ym + hfN (tm, ym) +

σ−2∑

i=1

hi+1

(i+ 1)!

difN
dti

(tm, ym)

+ hfS(tm+1, ym+1) +
σ−2∑

i=1

hi+1

(i+ 1)!

difS
dti

(tm+1, ym+1) +O(hσ). (3.3)

Subtracting Equation (3.2) from Equation (3.3) gives

em+1 = em + h(fN (tm, ym)− fN (tm, ηm)) + h(fS(tm+1, ym+1)− fS(tm+1, ηm+1))

+
σ−2∑

i=1

hi+1

(i+ 1)!

difN
dti

(tm, ym) +
σ−2∑

i=1

hi+1

(i+ 1)!

difS
dti

(tm+1, ym+1) +O(hσ), (3.4)

where em+1 = ym+1 − ηm+1 is the error at tm+1. Let

um = (fN (tm, ym)− fN (tm, ηm)) + (fS(tm+1, ym+1)− fS(tm+1, ηm+1)),

and

rm =
σ−2∑

i=1

hi+1

(i+ 1)!

(
difN
dti

(tm, ym) +
difS
dti

(tm+1, ym+1)

)
. (3.5)

To prove the smoothness of the rescaled error vector, ẽ = e/h, we will use an
inductive approach with respect to s, the degree of smoothness. First, note that a
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discrete differentiation of the rescaled error vector gives,

(d1ẽ)m =
ẽm+1 − ẽm

h
=
um
h

+
rm
h2

+O(hσ−2), (3.6)

We are now ready to prove that ~̃e has M degrees of smoothness by induction. Since
‖~̃e‖∞ ∼ O(h), ~̃e has at least zero degrees of smoothness in the discrete sense. Assume

that ~̃e has s ≤M − 1 degrees of smoothness. We will show that
−→
d1ẽ has s degrees of

smoothness, from which we can conclude that ~̃e has (s+ 1) degrees of smoothness.
First,

um =

σ−2∑

i=1

1

i!
eim

∂ifN
∂yi

(tm, ym) +

σ−2∑

i=1

1

i!
eim+1

∂ifS
∂yi

(tm+1, ym+1) (3.7)

+O((em)σ−1) +O((em+1)
σ−1)

=

σ−2∑

i=1

1

i!
ẽimh

i ∂
ifN
∂yi

(tm, ym) +

σ−2∑

i=1

1

i!
ẽim+1h

i ∂
ifS
∂yi

(tm+1, ym+1)

+O((hẽm)σ−1) +O((hẽm+1)
σ−1),

where we have performed a Taylor expansion of fN (t, ηm) about y = ym and of

fS(t, ηm+1) about y = ym+1. Denote fyi to represent either ∂ifN
∂yi or ∂ifS

∂yi . Since fyi has

(σ−i−1) degrees of smoothness in the continuous sense,
−→
fyi = [fyi (t0, y0), . . . , fyi (tM , yM )]

has (σ − i − 1) degrees of smoothness in the discrete sense. Consequently, hi−1−→fyi

has (σ − 2) degrees of smoothness, which implies that um

h
has min (σ − 2, s) degrees

of smoothness. Also rm
h2 has at least s degrees of smoothness from the smoothness

property of the IVP (1.1). Hence the fact that
−→
d1ẽ has s degrees of smoothness implies

that ~̃e has (s + 1) degrees of smoothness. Since this argument holds for σ ≥ M + 2,

we can conclude that ~̃e has M degrees of smoothness.

Note that most results for IDC-ARK methods stated in Lemmas 3.6, 3.7 and the
proofs are similar to the analysis in [9]. However, there is a main difference between
the proof of the truncation error for IDC-RK [9] and IDC-ARK methods within the
proof of Lemma 3.7, described below within the proof of Proposition 3.9. For clarity,
we outline the proofs of the lemmas and provide the essential details where the proofs
differ.

Proof of Lemma 3.6.

Proof. We drop the superscript [0] since there is no ambiguity. First, we Taylor
expand the error, em+1 = ym+1−ηm+1, where ym+1 is the exact solution and ηm+1 is
the numerical solution obtained using an r0th order ARK method. In [9], for IDC-RK
methods, the expansion is about t = tm, whereas in this paper, for semi-implicit IDC-
ARK methods, the expansion is analogous to (3.4), given in the proof of Lemma 3.8,
above. That is, the explicit part is expanded about t = tm, and the expansion for the
implicit part is about t = tm+1. Then the error can be written in the form

em+1 = em + hUm

(
fN (tm, ym), em, fS(tm+1, ym+1), em+1

)

+Rm

(
h, fN (tm, ym), fS(tm+1, ym+1)

)
+O(hσ),

where Um is analogous to (3.7) with f(tm, ηm) and f(tm+1, ηm+1) expanded about
ym and ym+1, respectively, Rm is analogous to (3.5), and Rm is O(hr0+1). Now we
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may bound ‖e[0]‖∞ by induction. By definition, e0 = 0, so certainly, e0 ∼ O(hr0+1).
Now assume em ∼ O(hr0+1). We already know that Rm ∼ O(hr0+1). Since Um

is analogous to (3.7), we know that its terms consist of derivatives of fN and fS
multiplied by powers of em and em+1. Trivially, any terms with em are at worst
O(hr0+1), which would complete the proof for IDC-RK methods, but not for IDC-
ARK methods. For IDC-ARK methods, we are left with

em+1 = O(hr0+1) + ha1em+1 + ha2e
2
m+1 + · · ·+ haσ−2 e

σ−2
m+1 +O(h eσ−1

m+1),

where ai are constants depending on derivatives of fN and fS , so clearly em+1 ∼
O(hr0+1), which completes the inductive proof.

Smoothness results are proved analogously to Lemma 3.8.

Before proving the IDC-ARK correction loop, Lemma 3.7, we first introduce some
notational details related to the rescaling of the error equation, and refer back to the
error Equation (2.10). The analysis for the correction steps in this section will rely
on this form of the error equation.

Assume that after the (k − 1)th correction, the method is O(hsk−1). We rescale
the error e(k−1) (2.6), and Q(k−1) and Gα from the error Equation (2.10), by hsk−1 .
Define the rescaled quantities as

ẽ(k−1)(t) =
1

hsk−1
e(k−1)(t), (3.8a)

Q̃(k−1)(t) =
1

hsk−1
Q(k−1)(t), (3.8b)

G̃(k−1)
α (t, Q̃(k−1)(t)) =

1

hsk−1
Gα(t, h

sk−1Q̃(k−1)(t)), α = N,S. (3.8c)

Then the rescaled error equation is given by

(Q̃(k−1))′(t) = G̃
(k−1)
N (t, Q̃(k−1)(t)) + G̃

(k−1)
S (t, Q̃(k−1)(t)), (3.9)

Q̃(k−1)(t) = 0.

The rescaled Equation (3.8) and (3.9) are O(1) (see [9]).
A p-stage, rth order ARK method (2.3) applied to (3.9) gives, for i = 1, 2, . . . , p

and α = N,S,

k̃αi = G̃(k−1)
α


t0 + cih, Q̃

[k−1]
0 + h




i−1∑

j=1

aNij k̃
N
j +

p∑

j=1

aSij k̃
S
j




 ,

Ω̃
[k]
1 = Q̃

[k−1]
0 + h

p∑

i=1

(bNi k̃
N
i + bSi k̃

S
i ), (3.10)

where the Greek letter Ω̃ denotes the rescaled solution in the numerical space, and

Q̃
[k−1]
0 = Q̃(k−1)(t0). In the actual implementation, we discretize (2.10) as in Equa-

tions (2.12) with FN , FS . We use (2.12) with GN , GS instead of FN , FS for the
analysis. Proof of Lemma 3.7.

Proof. The smoothness results are analogous to, but more tedious than, the
proof of Lemma 3.8. Thus they will not be presented in this paper.

The outline of the proof of the truncation error is:
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1. Subtract the numerical error vector from the integrated error equation,

e
[k]
m+1 = e

[k−1]
m+1 − δ

[k]
m+1,

and make appropriate substitutions and expansions using the rescaled equa-
tions. This is quite similar to the proof in [9].

2. Bounding ‖e[k]‖∞ using an inductive argument, similarly to the proof of
Lemma 3.6, and similarly to the proof in [9].

The details of bounding ‖e[k]‖∞ require several minor propositions, which can be
found in [9], and one quite important proposition, which we state and prove below,
that claims the equivalence of the rescaled and unscaled error vectors and shows the
truncation error of the rescaled error vector. Employing the rescaled Equations (3.9),
(3.8), and (3.10) greatly simplifies the proof of the truncation error.

The proof of the following proposition is where the essential difference between
the proof of the truncation error for IDC-RK [9] and IDC-ARK methods lies.

Proposition 3.9. The Taylor series for the rescaled exact error, ẽ(k−1)(t0 + h) =
1

h
sk−1 e

(k−1)(t0+h), and for the rescaled numerical error, 1
h
sk−1 δ

[k]
1 in (2.12), coincide

up to and including the term hr for a sufficiently smooth error function ẽ(k−1)(t),
when the exact solution y(t) has σ and fN , fS have σ − 1 degrees of smoothness.

Proof. It suffices to prove the following claim:

hsk−1 k̃αi = kαi +O(hσ−1), ∀ i = 1, 2, . . . , p, α = N,S, (3.11)

where kαi and k̃αi are as in Equations (2.12) and (3.10). Note in [9], the O(hσ−1) term
is not required due to the explicit nature of IDC-RK methods, whereas here for semi-
implicit IDC-ARK methods, although the term may not be necessary, it allows for
the structure of the proof that we provide. The claim (3.11) states the equivalence of
the rescaled and unscaled error vectors. More specifically, it asserts that the rescaled
error vectors (rescaled by hsk−1), obtained from formally applying ARK methods to
a rescaled error equation, are equivalent (up to order O(hσ−1)) to the error resulting
from the numerical formulation that we implement. Thus, since an rk

th order ARK
method applied to the rescaled error equations achieves rk

th order, the (unscaled)
numerical implementation is O(hsk−1+rk), provided the exact solution y(t) and the
functions fN , fS are sufficiently smooth.

Before proving (3.11), we set

Ai
.
= h




i−1∑

j=1

aNijh
sk−1 k̃Nj +

p∑

j=1

aSijh
sk−1 k̃Sj


 = h

p∑

j=1

(aNijh
sk−1 k̃Nj + aSijh

sk−1 k̃Sj ),

(3.12)

Bi
.
= h




i−1∑

j=1

aNijk
N
j +

p∑

j=1

aSijk
S
j


 = h

p∑

j=1

(aNijk
N
j + aSijk

S
j ), (3.13)

Cα
lj

.
=

1

l!

∂l

∂yl
Gα(t0 + cjh,Q

(k−1)
0 )

l∑

v=1

Al−v
j Bv−1

j ,
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where α = N,S, and the equalities in (3.12) and (3.13) hold since aNij = 0 for j ≥ i.

Now, to prove claim (3.11), we prove that hsk−1 k̃αi −k
α
i = O(hn) for n = 1, 2, . . . , σ−1,

for i = 1, 2, . . . , p, and α = N,S using induction with respect to n; i.e., we show that

hsk−1 k̃αi − kαi

= hn
∑

l,n

∑

j,n

(βαN

lj,n(h
sk−1 k̃Njn − kNjn) + βαS

lj,n(h
sk−1 k̃Sjn − kSjn)) +O(hσ−1),

(3.14)

where the notation is as follows.

∑

l,n

=

σ−2∑

l1

σ−2∑

l2

· · ·

σ−2∑

ln

,
∑

j,n

=

p∑

j1

p∑

j2

· · ·

p∑

jn

,

βαN

lj,n =

2n−1∑

1

n∏

1

Ca, βαS

lj,n =

2n−1∑

1

n∏

1

Ca,

where for the β coefficients, C represents some CN
lj or CS

lj , a represents some aNij or

aSij , and
αN and αS denote that the C, a coefficients that appear in the sums depend

on α and N or α and S, respectively. For example, if n = 2, then

βαN

lj,2 = Cα
l1i
aNij1C

N
l2j1

aNj1j2 + Cα
l1i
aSij1C

S
l2j1

aNj1j2 ,

βαS

lj,2 = Cα
l1i
aNij1C

N
l2j1

aSj1j2 + Cα
l1i
aSij1C

S
l2j1

aSj1j2 ,

which is clarified in the expansions below.

We prove (3.14), and hence (3.11), using induction with respect to n, the power
of h in equation (3.14).

• n = 1: Using the rescaled quantities (3.8) and Taylor expanding Gα(t, y)

about Q
(k−1)
0 in y, we obtain for α = N,S,

hsk−1 k̃αi − kαi

= hsk−1G̃(k−1)
α (t0 + cih, Q̃

(k−1)(t0) + h

p∑

j=1

(aNij k̃
N
j + aSij k̃

S
j ))

−Gα(t0 + cih,Q
(k−1)(t0) + h

p∑

j=1

(aNijk
N
j + aSijk

S
j ))

= Gα(t0 + cih, h
sk−1(Q̃(k−1)(t0) + h

p∑

j=1

(aNij k̃
N
j + aSij k̃

S
j )))

−Gα(t0 + cih,Q
(k−1)(t0) +Bi)

= Gα(t0 + cih,Q
(k−1)(t0) +Ai)−Gα(t0 + cih,Q

(k−1)
0 +Bi)

=

σ−2∑

l1=1

1

l1!

∂l1

∂yl1
Gα(t0 + cih,Q

(k−1)(t0))((Ai)
l1 − (Bi)

l1) +O(hσ−1). (3.15)
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Factoring (Ai)
l1 − (Bi)

l1 = (Ai −Bi)
∑l1

v=1A
l1−v
i Bv−1

i , ∀i = 1, 2, . . . , p, then

hsk−1 k̃αi − kαi (3.16)

=

σ−2∑

l1=1

Cα
l1i
(Ai −Bi) +O(hσ−1)

= h

σ−2∑

l1=1

Cα
l1i

p∑

j1=1

(aNij1(h
sk−1 k̃Nj1 − kNj1 ) + aSij1(h

sk−1 k̃Sj1 − kSj1)) +O(hσ−1)

= h

σ−2∑

l1=1

p∑

j1=1

(Cα
l1i
aNij1(h

sk−1 k̃Nj1 − kNj1 ) + Cα
l1i
aSij1(h

sk−1 k̃Sj1 − kSj1)) +O(hσ−1)

= h1
∑

l,1

∑

j,1

(βαN

lj,1(h
sk−1 k̃Nj1 − kNj1 ) + βαS

lj,1(h
sk−1 k̃Sj1 − kSj1)) +O(hσ−1).

Note here that βαN

lj,1 = Cα
l1i
aNij1 , and β

αS

lj,1 = Cα
l1i
aSij1 .

• n+1: Assume (3.14) holds for n < σ− 1 (for both α = N and S). Following
the same process of Taylor expanding as in Equations (3.15) and (3.16) in
the n = 1 case , we see that for α = N,S:

hsk−1 k̃αi − kαi

= hn
∑

l,n

∑

j,n

(βαN

lj,n(h
sk−1 k̃Njn − kNjn) + βαS

lj,n(h
sk−1 k̃Sjn − kSjn)) +O(hσ−1)

(3.16)
= hn

∑

l,n

∑

j,n

(βαN

lj,n(h

σ−2∑

ln+1=1

p∑

jn+1=1

(CN
ln+1jn

aNjnjn+1
(hsk−1 k̃Njn+1

− kNjn+1
)

+ CN
ln+1jn

aSjnjn+1
(hsk−1 k̃Sjn+1

− kSjn+1
)) +O(hσ−1))

+ βαS

lj,n(h

σ−2∑

ln+1=1

p∑

jn+1=1

(CS
ln+1jn

aNjnjn+1
(hsk−1 k̃Nj1 − kNj1 )

+ CS
ln+1jn

aSjnjn+1
(hsk−1 k̃Sjn+1

− kSjn+1
)) +O(hσ−1))) +O(hσ−1)

= hn+1
∑

l,n+1

∑

j,n+1

((βαN

lj,nC
N
ln+1jn

aNjnjn+1
+ βαS

lj,nC
S
ln+1jn

aNjnjn+1
)(hsk−1 k̃Nj1 − kNj1 )

+ (βαN

lj,nC
N
ln+1jn

aSjnjn+1
+ βαS

lj,nC
S
ln+1jn

aSjnjn+1
)(hsk−1 k̃Sjn+1

− kSjn+1
)) +O(hσ−1)

= hn+1
∑

l,n+1

∑

j,n+1

(βαN

lj,n+1(h
sk−1 k̃Njn+1

− kNjn+1
) + βαS

lj,n+1(h
sk−1 k̃Sjn+1

− kSjn+1
))

+O(hσ−1), ∀i = 1, 2, . . . , p,

where

βαN

lj,n+1 = βαN

lj,nC
N
ln+1jn

aNjnjn+1
+ βαS

lj,nC
S
ln+1jn

aNjnjn+1
,

βαS

lj,n+1 = βαN

lj,nC
N
ln+1jn

aSjnjn+1
+ βαS

lj,nC
S
ln+1jn

aSjnjn+1
,

which completes the inductive proof, so it follows that (3.11) holds.
The rest of the proof of Proposition 3.9 is similar to the IDC-RK analysis in [9].
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In particular,

δ[k−1] .
= hsk−1 Ω̃

[k−1]
1 −

∫ t1

t0

ǫ(k−1)(τ)dτ

= hsk−1 Q̃(k−1)(t0) + h

p∑

j=1

bNj hsk−1 k̃Nj + h

p∑

j=1

bSj hsk−1 k̃Sj −

∫ t1

t0

ǫ(k−1)(τ)dτ

= Q(k−1)(t0)−

∫ t1

t0

ǫ(k−1)(τ)dτ + h

p∑

j=1

bNj (kNj +O(hσ−1)) + h

p∑

j=1

bSj (kSj +O(hσ−1))

= e
[k−1]
0 −

∫ t0+h

t0

ǫ(k−1)(τ)dτ + h

p∑

j=1

bNj kNj + h

p∑

j=1

bSj kSj +O(hσ).

Since the Taylor series for Q̃(k−1)(t0 + h) and Ω̃
[k]
1 coincide up to and including the

term hr (since Ω̃
[k]
1 is an rth order ARK approximation to Q̃(k−1)(t0 + h)), then the

Taylor series for 1
h
sk−1 e

(k−1)(t0 + h) and 1
h
sk−1 δ

[k]
1 also coincide up to and including

the term hr.

Corollary 3.10. Let y(t) be the solution to the IVP

y ′(t) = f(t, y), t ∈ [0, T ],

y(0) = y0,

and suppose y(t) has at least σ (σ ≥ M + 2) and f has at least σ − 1 degrees of
smoothness in the continuous sense. Consider one time interval of an IDC method
with t ∈ [0, H] and uniformly distributed quadrature points (2.5). Suppose an r0

th

order implicit RK method is used in the prediction step and (r1, r2,. . . , rKloop
)th order

implicit RK methods are used in Kloop correction steps. Let sk =
∑k

j=0 rj. If sKloop
≤

M + 1, then the local truncation error is of order O(hsKloop
+1).

Proof. The result follows from Theorem 3.5, if we set fN = 0.

4. Stability

It is well accepted that the linear stability of an explicit or implicit scheme can
be measured by the stability region [15]. However, the stability measure for a mixed
scheme, such as ARK, is much more complicated. In the literature, different measures
for stability have been proposed for semi-implicit (including additive Runge-Kutta)
methods [3, 2, 26, 24]. We adopt the stability measure from [3, 2], which is explained
clearly in [25] via the following definitions.

Definition 4.1. The amplification factor, Am(λ) with λ = α+iβ, for a semi-implicit
method, is interpreted as the numerical solution to

y′(t) = αy(t) + iβy(t), y(0) = 1, (4.1)

where the explicit component of the semi-implicit method is applied to the imaginary
part iβy(t), and the implicit component of the semi-implicit method is applied to the
real part αy(t), after a time step of size 1 for α ∈ R and β ∈ R, i.e., Am(λ) = y(1).

Definition 4.2. The stability region, S, for a semi-implicit method, is the subset
of the complex plane C consisting of all λ such that Am(λ) ≤ 1 for ODE 4.1, i.e.,
S = {λ : Am(λ) ≤ 1}.
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Definition 4.3. The scaled stability region, S̃, for a semi-implicit method, is the
stability region S divided by the number of implicit function evaluations.

For IDC methods, the number of implicit function evaluations is sM(Kloop + 1),
where s is the number of stages of the implicit RK method embedded inside IDC,
and M is the number of intervals. For example, an (M +1)st order IDC-FBE method
requires M(M + 1) implicit function evaluations since BE involves only one stage,
and an (M + 1)st order IDC-ARK3KC method requires 4M((M + 1)/3) function
evaluations since ARK3KC has 4 stages and (M + 1)/3 loops are required to achieve
(M + 1)st order accuracy.

In Figure 4.1a, the scaled stability regions for 3rd, 6th, 9th, and 12th order IDC-
FBE (IDC constructed using forward and backward Euler, or SISDC with uniform
quadrature nodes) with 2, 5, 8, and 11 correction loops, respectively, are computed
numerically and plotted. The regions are similar to the stability regions of the SISDC
methods that use Gauss-Lobatto quadrature nodes [25]. Figure 4.1b shows 3rd, 6th,
9th, and 12th order IDC-ARK3KC (IDC constructed with 3rd order ARK3KC) with
0, 1, 2, and 3 correction loops, respectively. The scaled stability regions of IDC-ARK
schemes are significantly larger than those of IDC-FBE schemes. This correlates
with results in [9], where IDC-RK methods were found to possess better stability
properties than SDC methods [9]. Such a stability measure has implications on the
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0 0.1 0.2
0

0.2

0.4

0.6

Re(λ)

Im
(λ

)

scaled IDC−ARK3KC

 

 

3rd
6th
9th
12th

(b) IDC-ARK3KC

Fig. 4.1: Scaled stability regions for 3rd, 6th, 9th, and 12th order IDC constructed using (a) forward
and backward Euler and (b) 3rd order ARK3KC. The inside of each stability region is the region to
the left and below the portion of its boundary that is shown. IDC-ARK3KC regions are significantly
larger than IDC-FBE regions.

stability property of the IDC-ARK method, especially when applied to the convection-
diffusion problem in Section 5.1, where the convection term is treated explicitly and
diffusion term implicitly. We remark that the stability property of the semi-implicit
scheme greatly depends on the splitting of Equation (1.1), therefore, the stability
analysis we presented has to be adapted for specific problems.

5. Numerical results

We now summarize numerical experiments applying IDC-ARK methods to a lin-
ear advection-diffusion equation and a nonlinear Brusselator problem. Accuracy re-
sults that support Theorem 3.5 and efficiency results are presented. Several different
ARK methods of various orders were tested within the IDC prediction and correction
loops: second order ARK2A1 [24] and ARK2ARS [2], third order ARK3KC [21] and
ARK3BHR (Appendix 1. in [7]), and fourth order ARK4A2 [24] and ARK4KC [21].
For brevity, we select only a few of these to present. For the convergence studies, error
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is plotted versus the time step size H. In each implementation, we anticipate that
# loops * ARK order = expected IDC order. To compare efficiency, the IDC-ARK
methods were compared with their constituent ARK methods and with IDC-FBE
methods (which are SISDC methods with uniform quadrature nodes [25]).

We further comment that the focus of our study is not the choice of fN , fS , and
thus we make naive choices of fN and fS in each example below, acknowledging that
better choices are likely to exist (in particular, there is much study on the choice of
fN , fS for PDEs, such as in [19, 20, 14]). Note also that, in most of the literature, the
examples of semi-implicit methods used to solve problems with stiff regions only test
convergence and efficiency up to the time just before the stiff layer, at which point
they claim that adaptive steps should be taken [21, 7, 2]. In this work, we also present
most tests in the standard way, computing solutions up to the time just before the
stiff layer, at which point we assume adaptive steps should be taken if we were to
continue the computation.

5.1. Advection-diffusion example. Consider the advection-diffusion equa-
tion

ut = −ux + uxx, x ∈ [0, π/2], t ∈ [0, 0.1], (5.1a)

u(x, 0) = 2 + sin(4x), (5.1b)

with periodic boundary conditions. We solve (5.1) via the method of lines with
fast Fourier transform (FFT) for the spatial derivatives and time-stepping with semi-
implicit IDC-ARK, where the advection term is treated explicitly (fN = −ux) and the
diffusion term is treated implicitly (fS = uxx). This choice of methods ensures that
the error is dominated by the time-stepping. The numerical solution is compared to a
reference solution, computed with a ninth order IDC-FBE method with ∆x = π/780,
∆t = 1/24800. Error is calculated as the l1 spatial norm of the absolute error at the
final time T = 0.1.

In Figure 5.1, we see the expected theoretical orders or accuracy; that is, orders of
convergence increase by two and three for IDC constructed with second and third order
ARK integrators, respectively. Here ∆x = π/260 ≈ 10−2. Notice that ∆t ≫ ∆x2, a
key reason for employing semi-implicit methods.
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(a) IDC-ARK2A1
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Fig. 5.1: Convergence study of various IDC schemes applied to the advection-diffusion equation at
T = 0.1. In (a), we have 2nd, 4th, and 6th order IDC constructed using 2nd order ARK2A1 and
(b), 3rd, 6th, and 9th order IDC constructed using 3rd order ARK3KC. The numerical results agree
with the theoretical order of accuracy (dotted lines).

A reasonable measure of efficiency is the number of implicit function evaluations
versus the error (as in [25]), since the implicit calls will often dominate due to the
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Newton iterations. It is not surprising that higher order IDC-ARK methods require
fewer function evaluations for accurate solutions, as shown in Figure 5.2. IDC6-
ARK3KC is more efficient than IDC6-FBE and IDC6-ARK2A1.
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(a) Various IDC2, IDC4 and IDC6 schemes
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(b) Various IDC3, IDC6 and IDC9 schemes

Fig. 5.2: Efficiency study of various IDC schemes applied to the advection diffusion equation. The
number of implicit function evaluations is plotted as a function of the error at T = 0.1. High order
IDC-ARK methods require fewer function evaluations to obtain accurate solutions.

5.2. Brusselator example. We now consider the Brusselator problem with
diffusion,

ut = A+ u2v − (B + 1)u+ αuxx, x ∈ [0, 1], t ∈ [0, 10], (5.2)

vt = Bu− u2v + αvxx, A = 1, B = 3, α = 0.02,

u(0, t) = u(1, t) = 1, v(0, t) = v(1, t) = 3,

u(x, 0) = 1 + sin(2πx), v(x, 0) = 3.

We solve (5.2) via the method of lines with second order centered differencing for
the spatial derivatives and time-stepping with semi-implicit IDC-ARK, where the
nonlinear term, fN = [A + u2v − (B + 1)u,Bu − u2v]T , is treated explicitly and the
diffusion term, fS = [αuxx, αvxx]

T is treated implicitly. Error is computed by taking
the maximum of the l1 spatial norm of u and v, as compared with successive solutions
at the final time T = 10.

Figures 5.3 also shows that our IDC-ARK methods attain the expected theoretical
orders of accuracy; that is, orders of convergence increase by two and three for IDC
constructed with second and third order ARK integrators. For this problem, IDC-
ARK methods have a smaller error coefficient. Again, these computations are stable
(∆t≫ ∆x2 ∼ 10−4), the key motivation behind implementing semi-implicit methods.

In Figure 5.4, it is again observed that higher order IDC-ARK methods re-
quire fewer function evaluations for accurate solutions, as shown in Figure 5.2. The
ARK2ARS and ARK3BHR1 methods are more efficient than the IDC2-FBE and
IDC3FBE. IDC6-ARK2ARS is more efficient than IDC6-FBE, and IDC9-ARK3BHR1
is more efficient than IDC9-FBE. It would seem that the efficiency is dependent on
the embedded ARK scheme.
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Fig. 5.3: Convergence study of various IDC schemes applied to the Brusselator with ∆x = 1/50
at T = 10. (a) shows the convergence of IDC constructed with forward-backward Euler, (b) shows
the convergence of IDC constructed with ARK3BHR, (c) shows the convergence of IDC constructed
with ARK2ARS. The numerical results agree with the theoretical order of accuracy (dotted lines).
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Fig. 5.4: Efficiency studies of various IDC schemes applied to the Brusselator. The number of
implicit function evaluations is plotted as a function of error at T = 10. High order IDC-ARK
methods require fewer function evaluations to obtain accurate solutions.

5.3. Van der Pol’s example. Finally, we examine a standard nonlinear
oscillatory test problem, Van der Pol’s equation [7],

y′1(t) = y2(t), y′2(t) =
1

ǫ
(−y1(t) + (1− y1(t)

2)y2(t)), t ∈ [0, 0.55139], (5.3)

y1(0) = 2, y2(0) = −
2

3
+

10

81
ǫ−

292

2187
ǫ2 −

1814

19683
ǫ3,

and we choose fN = [y2, 0]
T , fS = [0, (−y1 + (1− y21)y2)/ǫ]

T , and ǫ = 10−6. Error is
calculated by taking the absolute error between successive solutions at the final time.
We comment that semi-implicit ARK methods (and hence IDC-ARK methods) in
general were not designed to handle problems similar to Van der Pol’s oscillator, but
we include this example since it appears frequently in the literature. We refer to y1 as
the differential variable and y2 as the algebraic variable, since, in the limit as ǫ → 0,
(5.3) becomes a differential-algebraic equation that involves only the derivative of y1.

Figure 5.5 shows the convergence of various IDC schemes for the stiff oscillator
(ǫ = 10−6). Despite the stiffness, the differential variable, y1, attains the full theoret-
ical order of accuracy. The algebraic variable, y2, on the other hand, displays order
reduction that appears to depend on the order of the base scheme. That is, although
the error still decreases with successive corrections, IDC-FBE methods degrade to first
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order convergence in y2, while the IDC-ARK3BHR1 methods degrade to third order
convergence in y2. IDC-ARK3BHR methods have smaller error coefficients compared
to IDC-FBE methods. It is not unusual for certain implicit RK and semi-implicit
methods, to exhibit order reduction for very stiff problems (small ǫ) [16, 21, 25]. In
some cases, additional conditions on the structure of an RK or ARK method may
mitigate or remove order reduction [16, 6, 4, 5]. Since IDC methods have a similar
structure to RK methods [8], it is reasonable to look for IDC methods that maintain
full order of accuracy in stiff regimes. Furthermore, the third order IDC-FBE method
displays no order reduction for large timesteps (Figure 5.5a), and interestingly, ap-
pears to be more accurate than the ARK3BHR1 (no IDC) method in this timestep
range. This surprising result is more obvious in the efficiency study in Figure 5.6, and
provides impetus for investigating whether any other IDC methods that maintain full
theoretical order of accuracy in stiff situations may be constructed.
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Fig. 5.5: Convergence study of various IDC schemes applied to Van der Pol’s oscillator with
ǫ = 10−6, T = 0.55139 vs H. The differential variables, y1 attain their theoretical order of accuracy,
while the differential variable suffers from order reduction (Dotted lines indicate theoretical order of
accuracy).

The efficiency plot, Figure 5.6, is particularly interesting. It appears for the Van
der Pol’s oscillator, that IDC-FBE methods are more efficient at attaining solutions
that are accurate to 10−8, before the onset of order reduction. Once order reduction
sets in, IDC-ARK methods are more efficient.
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Fig. 5.6: Efficiency studies of various IDC schemes applied to the stiff Van der Pol’s oscillator
(ǫ = 10−6). IDC-FBE methods are more efficient at attaining solutions that are accurate to 10−8,
before the onset of order reduction. Once order reduction sets in, IDC-ARK methods are more
efficient.
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6. Concluding remarks

We have provided a general framework for the simple construction of arbitrary
order IMEX methods. These semi-implicit IDC-ARK methods use ARK integrators
as base schemes inside the IDC framework and can thus be constructed to higher order
easily, with no need to consider the complicated order conditions that are typically
required for the construction of ARK methods. High order IDC-ARK methods can be
used to solve multiscale differential equations that involve disparate time scales more
efficiently than popular ARK schemes. We have performed an analysis of the local
truncation error of IDC-ARK methods, shown improved stability, and conducted nu-
merical results showing order of convergence and improved efficiency. We are presently
examining the use of asymptotic preserving ARK schemes (as in [27]) in the prediction
and correction loops of IDC as a potential way to mitigate the issue of order reduction
that arises with increased stiffness. We also have begun an investigation of embedded
IDC methods, including IDC-ARK, and their implementation in an adaptive setting.
We anticipate that adaptivity will provide additional efficiency gains over IDC-ARK.
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