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A TRANSPORT EQUATION FOR CONFINED STRUCTURES
DERIVED FROM THE BOLTZMANN EQUATION∗

CLEMENS HEITZINGER† AND CHRISTIAN RINGHOFER‡

Abstract. A system of diffusion-type equations for transport in 3d confined structures is derived
from the Boltzmann transport equation for charged particles. Transport takes places in confined
structures and the scaling in the derivation of the diffusion equation is chosen so that transport and
scattering occur in the longitudinal direction and the particles are confined in the two transversal
directions. The result are two diffusion-type equations for the concentration and fluxes as functions
of position in the longitudinal direction and energy. Entropy estimates are given. The transport
coefficients depend on the geometry of the problem that is given by arbitrary harmonic confinement
potentials. An important feature of this approach is that the coefficients in the resulting diffusion-
type equations are calculated explicitly so that the six position and momentum dimensions of the
original 3d Boltzmann equation are reduced to a 2d problem. Finally, numerical results are given
and discussed. Applications of this work include the simulation of charge transport in nanowires,
nanopores, ion channels, and similar structures.
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1. Introduction

This paper is concerned with the derivation and analysis of classical sub-band type
models for charged particle transport in narrowly confined geometries. The basic idea
of sub-band modeling is to treat the transport of particles in the confinement direction
on a microscopic level, whereas the transport orthogonal to the confinement direction
is treated asymptotically on a much larger time scale.

Sub-band modeling has been employed very successfully in a quantum mechanical
setting, where the underlying transport picture is given by the Schrödinger equation.
In this case the result is a system of hydrodynamic or diffusion equations for the
densities in each sub-band (i.e., the eigenspace of the Schrödinger operator), whose
transport coefficients have to be computed by solving eigenvalue problems for the
steady-state Schrödinger equation in the confinement direction. We refer the reader
to [5, 11] for an overview of the physics literature. The hydrodynamic transport
picture is then obtained from a large-time asymptotic analysis of the equations for the
coefficients in the eigenfunction expansion of the solution of the Schrödinger equation
and can be derived rigorously under certain assumptions [3, 2].

The present work applies the general sub-band modeling approach to a classical
regime, where the underlying transport mechanism is described by a classical kinetic
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equation. Therefore the discrete energy levels of the Schrödinger operator are replaced
by a continuous energy variable and the final result is a diffusion equation with this
energy as an additional independent variable. There are two main differences between
the model considered in this paper and the works cited above. First, we consider an
essentially arbitrarily complicated geometry. While the papers cited above consider
transport in planar thin plates, we consider transport which is confined by an external
confinement potential that is produced by an irregular assortment of repulsive wall
charges. Second, we consider a regime where the forces produced by these charges are
much larger than the external bias, i.e., the force driving the particles through the
structure.

The applications in mind here are geometrically complex structures, such as ion
channels with a large number of charges on the channel walls [4, 10, 12], nanowires for
sensor applications [15, 13, 14, 9, 7, 6, 8], and nanopores. Consequently, we have to
make some simplifying assumptions on the potential outlined below in §2 as well as on
the collision operator to give explicit expressions for the resulting geometry-dependent
transport coefficients after a Galerkin discretization.

The rest of this paper is organized as follows. In §3, a sub-band transport equation
for confined structures, which takes the form of a diffusion system, is derived from
the Boltzmann transport equation. An entropy estimate is given as well; this is
important for the numerics of the equation. In §4, Galerkin approximations that
satisfy the entropy estimate are given. The transport coefficients are first calculated
in general form and then explicitly for transport in 3d tubes with harmonic (i.e.,
parabolic) confinement potentials in §5. Finally, in §6, numerical solutions are given
to show that the calculations can be performed very efficiently and to illustrate the
physics of the problem. §7 concludes the paper.

2. The transport picture
The Boltzmann equation for the confined structure, the collision operator, and

the dimensionless equation are described in this section.

2.1. The Boltzmann equation.
The basic equation. The basic transport picture considered in this paper is given

by a Hamiltonian transport term forced by an external potential V and collisions with
a background modeled by a Boltzmann-type collision operator. The basic equation is
the Boltzmann equation of the form

∂tf+{E ,f}XP +Q[f ] = 0. (2.1)

Here f(X,P,t) is the kinetic particle density, where X denotes the spatial variable
and P denotes the momentum vector. The Hamiltonian transport term is given by
the standard commutator, or Poisson bracket,

{g,f}XP :=∇P g ·∇Xf−∇Xg ·∇P f =∇X ·(f∇P g)−∇P ·(f∇Xg), (2.2)

and the energy E(X,P ) is given by

E(X,P ) := q0V (X)+
|P |2

2m
,

where V (X) is the external potential, |P |2/(2m) the kinetic energy of the particle,
m the particle mass, and q0 the particle charge. We will use a phenomenological
relaxation term, discussed below, for the collision operator Q in (2.1).
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This paper is concerned with transport in confined geometries, i.e., narrow tubes
or thin plates. We therefore split the position and momentum variables into X= (x,y)
and P = (p,q), where x,p∈Rd denote position and momentum along the tube or plate
and y,q∈R3−d denote position and momentum in the transversal directions. For a
tube d= 1 holds and for a plate d= 2 holds.

We consider the case of a narrow geometry, i.e., the extension of the geometry
in the x-direction is much larger than in the y-direction. In this paper the geometry
is determined entirely by the potential V , which confines the transport to the given
geometry and forces the charged particles through the structure at the same time.
This is motivated by applications such as ionic channels where confinement is given
by fixed repulsive charges on the channel walls. We therefore split the potential V
into two parts of the form

q0V (x,y) =KBT
(
V0

( x
L

)
+V1

( x
L
,
y

εL

))
. (2.3)

Here V0 and V1 are dimensionless functions. The parameter L denotes the characteris-
tic length scale of the structure in the x-direction, i.e., the transport direction, and εL
is the length scale of the structure in the y-direction, i.e., the confinement direction.
Hence the dimensionless parameter ε�1 is the aspect ratio of the thickness of the
tube or plate to its length. V1 denotes the confining potential (given by repulsive wall
charges) and V0 is an external potential driving charged particles through the struc-
ture. Here KB denotes the Boltzmann constant and T is the ambient temperature,
so that V0 and V1 are dimensionless.

Remarks.

• The split V (x,y) =V0(x)+V1(x,y) may seem slightly arbitrary at first, since
there are of course many ways to decompose a given potential V (x,y). This
form is motivated by organizing actual computations, where we want to study
the same structure, i.e., the same confining potential V1, under different bi-
asing conditions, i.e., for different V0. Since the confining potential V1 will
require extensive preprocessing in the following, whereas the driving poten-
tial V0 appears directly in the resulting macroscopic model, splitting the po-
tential in this manner proves to be convenient.

• Note that the form (2.3) implies that |∇yV |=O( 1
ε |∇xV |) holds, i.e., the

forces confining the particle to the tube or plate are much larger than the
external forces driving the particle.

• The confining potential V1 models the shape of the geometry that can depend
on x. For a circular tube or a flat plate, V1 could be independent of x.

Correspondingly, we split the energy and the Poisson bracket into

E(X,P ) :=Ex(x,p)+Ey(x,y,q),

{g,f}XP ={g,f}xp+{g,f}yq,

Ex(x,p) :=KBTV0

( x
L

)
+
|p|2

2m
,

Ey(x,y,q) :=KBTV1

( x
L
,
y

εL

)
+
|q|2

2m
,

{g,f}xp=∇x ·(f∇pg)−∇p ·(f∇xg),

{g,f}yq =∇y ·(f∇qg)−∇q ·(f∇yg).
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Using this notation, the Boltzmann Equation (2.1) becomes

∂tf+{Ex+Ey,f}xp+{Ey,f}yq+Q[f ] = 0. (2.4)

Collisions. The collision operator Q in (2.4) models the inelastic interaction of
the particle with a background such as water molecules in the case of ionic channels
or phonons in the case of transport in a crystal. This interaction will in general
result in a gain or loss of the energy E(x,y,p,q) of the particle. Due to the narrow
geometric configuration, these collisions are much more likely to take place in the
transport x-direction than in the confinement y-direction, i.e., the probability of the
particle to collide with a background particle with the same y-coordinate is much
smaller than the probability to collide with a background particle with the same x-
coordinate. Consequently, we assume that the gain or loss of the cross-directional
part Ey of the energy is negligible compared to the change in the transversal part Ex.
We therefore model collisions by a relaxation operator Q which locally conserves the
cross-directional energy Ey(x,y,q) when averaged over y while relaxing the transversal
kinetic energy Ex(x,p) against a Maxwellian distribution according to thermodynamic
principles. Hence we define Q in Equation (2.4) as

Q[f ](x,y,p,q,t) :=
1

τ

(
f−M(p)

uf (x,Ey(x,y,q),t)

N(x,Ey(x,y,q))

)
, (2.5)

with M(p) being a Maxwellian distribution of the form

M(p) := cexp

(
− |p|2

2mKBT

)
,

so that ∫
M(p)dp= 1

holds. Here c is a normalization constant depending on the dimension d and normal-
izing the probability distribution M . The function N(x,η) denotes the x-dependent
density-of-states function, i.e., the measure of all states with given energy Ey and
defined by

N(x,η) :=

∫
δ(Ey(x,y,q)−η)dyq. (2.6)

The parameter τ in (2.5) denotes the relaxation time of the operator. The function
uf (x,η,t) is defined such that the operator Q locally conserves the cross-directional
energy Ey, i.e., the equation∫

ψ(Ey(x,y,q))Q[f ](x,y,p,q,t)dypq= 0 ∀x,t

holds for all test functions ψ. For the function uf , this implies

uf (x,η,t) :=

∫
δ(Ey(x,y,q)−η)f(x,y,p,q,t)dypq.
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Summary. The transport picture considered in this paper consists of the in-
terplay between a Hamiltonian operator and a dissipative collision mechanism where,
due to the geometry of the structure, the collisions dissipate energy predominately in
the transport x-direction. As will be seen below, this results in a macroscopic trans-
port picture where the conserved part Ey of the energy appears as an independent
variable.

2.2. Scaling and dimensionless formulation. In this section we reformu-
late the transport problem (2.4) in dimensionless variables, which will enable us to
derive an approximate macroscopic (and lower-dimensional) transport equation for
a certain asymptotic regime. We scale the spatial variables x and y by L and εL,
respectively. Accordingly, we scale the momentum variables p and q by (mq0V̄ )1/2;
we scale time by a characteristic time scale t0 to be determined; and we scale the
energies Ex and Ey by q0V̄ . Hence we set

f(x,y,p,q,t) :=fs(xs,ys,v,w,ts)

and

xs :=
x

L
, ys :=

y

εL
, v :=

p√
mKBT

, w :=
q√

mKBT
, ts :=

t

t0
.

We scale the energies by the energy scale q0V̄ , i.e., Ex(x,p) =KBTExs(xs,v) and
Ey(x,y,q) =KBTEys(xs,ys,w), and obtain

Exs(xs,v) =V0(xs)+
|v|2

2
, (2.7a)

Eys(xs,ys,w) =V1(xs,ys)+
|w|2

2
. (2.7b)

We scale the collision operator Q in (2.4) by the collision frequency 1/τ setting Q[f ] =:
1
τQs[fs]. The scaled and dimensionless version of Equation (2.4) reads

L
√
m

t0
√
KBT

∂tsfs+{Exs+Eys,fs}xsv+
1

ε
{Eys,fs}ysw+

L
√
m

τ
√
KBT

Qs[fs] = 0, (2.8)

where

{g,f}xsv =∇xs ·(f∇vg)−∇v ·(f∇xsg),

{g,f}ysw =∇ys ·(f∇wg)−∇w ·(f∇ysg)

and the scaled collision operator Qs is given by

Qs[fs](xs,ys,v,w,ts) =fs−Ms(v)
ufs(xs,Eys,ts)
Ns(xs,Eys)

, (2.9a)

ufs(xs,η,ts) =

∫
δ(Eys(xs,ys,w)−η)fs(xs,ys,v,w,ts)dysvw, (2.9b)

Ms(v) = cs exp

(
−|v|

2

2

)
, (2.9c)∫

Ms(v)dv= 1. (2.9d)



834 TRANSPORT EQUATION FOR CONFINED STRUCTURES

Here Ns is the scaled version of the density-of-states function N in (2.6). The scaled
version (2.9) of the collision operator Qs implies the conservation property∫

ψ(Eys(xs,ys,w))Qs[fs](xs,ys,v,w,ts)dysvw= 0 ∀xs,ts (2.10)

for all test functions ψ. We assume that the relaxation time τ is of the order of
the time scale corresponding to transport in the confinement direction y, i.e., that
τ = τsεL

√
m/
√
KBT and τs=O(1) hold.

Finally, we will consider the Boltzmann Equation (2.8) on a diffusion time scale
by setting

t0 :=
L
√
m

ε
√
KBT

and obtaining the scaled equation

ε∂tsfs+{Exs+Eys,fs}xsv+
1

ε
{Eys,fs}ysw+

1

ετs
Qs[fs] = 0. (2.11)

From here on we drop the subscript s for the scaled variables for notational simplicity.

2.3. Summary. We summarize the assumptions describing the physical
regime under consideration.

• Transport occurs in a narrow, irregular pipe or plate (d= 1 or d= 2, respec-
tively) with a geometric aspect ratio ε.

• The confining forces are much larger than the external forces that drive the
particles through the structure and therefore |∇xV |=O(ε|∇yV |) holds.

• Collisions with the background conserve the cross-directional energy Ey while
dissipating the energy Ex in the transport direction x.

• Collisions occur frequently on the time scale of transport in the x-direction
which, for a given potential, is given by L

√
m/
√
KBT .

In the following, a diffusion equation on a large time scale t0 =L
√
m/
(
ε
√
KBT

)
will be derived from the transport Equation (2.11) using a standard Chapman-Enskog
approach. The final result of the asymptotic procedure is a conservation law of the
form

∂tρ(x,η,t)+∇x ·F x(x,η,t)+∂ηF
η(x,η,t) = 0, (2.12)

where the additional variable η denotes the energy Ey in (2.7) on the macroscopic
level. While the large-time asymptotic analysis is quite straightforward, the actual
computation of the transport coefficients is quite involved due to the asymptotic
conservation properties of the effective collision operator {Ey,f}yw+Q[f ] and requires
special considerations and simplifying assumptions (see §5) to make the procedure
computationally efficient. In the end, the transport coefficients are given explicitly.

3. The transport equation for confined structures
In this section we derive a large-time approximation to the dimensionless Equation

(2.11) using a standard Chapman-Enskog type procedure. The result is a diffusion
equation for the density

ρ(x,η,t) :=

∫
δ(Ey(x,y,w)−η)f(x,y,v,w,t)dyvw,
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where the cross-directional energy Ey appears as the additional variable η. We also
derive an entropy estimate showing that the resulting diffusion problem is actually
well-posed.

3.1. The Chapman-Enskog expansion. First, we observe that the linear
relaxation operator Q in (2.9) is a projection operator. We define the projection
operator P by

P[f ](x,y,v,w,t) :=
ρf (x,Ey(x,y,w),t)

N(x,Ey(x,y,w))
M(v), (3.1a)

N(x,η) =

∫
δ(Ey(x,y,w)−η)dyw, (3.1b)∫

ψ(Ey)(P[f ]−f)(x,y,v,w,t)dyvw= 0 ∀x,t (3.1c)

for all test functions ψ(η). Here M(v) denotes the scaled Maxwellian in (2.9) and
N(x,η) is the scaled density-of-states function. As before the definition (3.1) implies
that, for given f , the function ρf (x,η,t) is given by

ρf (x,η,t) :=

∫
δ(Ey(x,y,w)−η)f(x,y,v,w,t)dyvw, (3.2)

and a straightforward calculation yields that P is indeed a projection operator, i.e.,
that P2 =P holds.

Hence the relaxation operator Q in (2.11) is a projection operator of the form Q=
I−P with I being the identity operator. The projection P projects onto the linear
manifold of functions which are multiples of the Maxwellian M(v) and depend on y
and w only through the energy Ex(x,y,w). The Chapman-Enskog expansion consists
of deriving the asymptotic form of the Boltzmann equation in local coordinates on
this manifold. To this end, we split the density function f(x,y,v,w,t) into f =f0 +εf1
with

f0(x,y,v,w,t) :=P[f ](x,y,v,w,t),

f1(x,y,v,w,t) :=
1

ε
(I−P)[f ](x,y,v,w,t).

We also split the evolution Equation (2.11) by applying the projections P and I−P.
Before doing so, we observe that the Poisson bracket {Ey,.}yw is a directional

derivative in a direction orthogonal to the kernel manifold of Q. To compute the
projection P[{Ey,f}yw] for a general function f , we compute

ρ{Ey,f}yw
(x,η,t) =

∫
δ(Ey(x,y,w)−η){Ey,f}ywdyvw

=

∫
{δ(Ey(x,y,w)−η),Ey}ywf dyvw= 0 (3.3)

according to (3.2). The above identity holds because of the cyclicity of the commuta-
tor trace, i.e.,

∫
a{b,c}ywdyw=

∫
{a,b}ywcdyw; moreover, the definition (2.2) of the

Poisson bracket implies that {Ey,φ}yw = 0 holds for any function φ which depends on
y and w only through the energy Ey. Because of (3.3) and the definition of P, we
therefore have the identity

P[{Ey,f}yw] = 0 ∀f.
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Hence applying the projections P and I−P to the Boltzmann Equation (2.11)
yields the system

ε∂tf0 +P[{Ex+Ey,f0 +εf1}xv] = 0, (3.4a)

ε2∂tf1 +(I−P)[{Ex+Ey,f0 +εf1}xv]+
1

ε
{Ey,f0 +εf1}yw+

1

τ
f1 = 0. (3.4b)

The system (3.4) can be simplified further using again the algebraic properties
of the Poisson bracket and the projection operator P. First, we note that the func-
tion f0 as well as the energy Ex+Ey are even functions of the velocity v; therefore
the commutator {Ex+Ey,f0}xv is an odd function of v, the integral with respect
to v in the definition (3.1) and (3.2) of the projection operator vanishes, and thus
P[{Ex+Ey,f0}xv] = 0 holds. Second, f0 depends on y and w only through the en-
ergy Ey; therefore, and because of the definition (2.2) of the commutator, we have
{Ey,f0}yw = 0. Using these two properties in the system (3.4), we obtain

ε∂tf0 +P[{Ex+Ey,εf1}xv] = 0, (3.5a)

ε2∂tf1 +{Ex+Ey,f0 +εf1}xv−P[{Ex+Ey,εf1}xv]+
1

ε
{Ey,εf1}yw+

1

τ
f1 = 0. (3.5b)

Equation (3.5a) gives the evolution on the kernel manifold of the operator Q and
Equation (3.5b) gives the evolution on the orthogonal complement. The macroscopic
approximation is now obtained by formally dropping the O(ε) terms in (3.5b), i.e.,
the term εf1 will stay small for all time assuming that we start on the kernel manifold
(i.e., εf1 = 0 holds at t= 0). This yields the system

∂tf0 +P[{Ex+Ey,f1}xv] = 0, (3.6a)

{Ex+Ey,f0}xv+{Ey,f1}yw+
1

τ
f1 = 0. (3.6b)

3.2. The conservation law. Using the definition of the projection operator P,
Equation (3.6a) can be written as a conservation law for the density ρf (x,η,t). To see
this, we integrate (3.6a) against the test function ψ= δ(Ey(x,y,w)−η) with respect
to y, v, and w and use the definition (3.1) and (3.2) of the projection operator to find

∂tρf0(x,η,t)+Φ(x,η,t) = 0,

where

Φ(x,η,t) :=

∫
δ(Ey(x,y,w)−η){Ex+Ey,f1}xvdyvw.

This constitutes a conservation law, since we have

∫
Φ(x,η,t)dxη=

∫
{Ex+Ey,f1}xvdxyvw= 0,
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and therefore we should be able to write Φ in divergence form as Φ =∇x ·F x+∂ηF
η.

Integrating Φ(x,η,t) against a test function ψ(x) yields∫
ψ(x)Φ(x,η,t)dx

=

∫
ψ(x)δ(Ey−η){Ex+Ey,f1}xvdxyvw

=

∫
{ψ(x)δ(Ey−η),Ex+Ey}xvf1dxyvw

=

∫ (
∇v
(
ψ(x)δ(Ey−η)

)
·∇x(Ex+Ey)−∇x

(
ψ(x)δ(Ey−η)

)
·∇v(Ex+Ey)

)
f1dxyvw

=−
∫
∇x
(
ψ(x)δ(Ey−η)

)
·∇v(Ex+Ey)f1dxyvw

=−
∫
δ(Ey−η)∇xψ(x) ·vf1dxyvw−

∫
ψ(x)δ′(Ey−η)∇xV1 ·vf1dxyvw

=

∫
ψ(x)∇x ·(δ(Ey−η)vf1)dxyvw+

∫
ψ(x)∂η

(
δ(Ey−η)(∇xV1 ·v)f1

)
dxyvw. (3.7)

This constitutes the weak (in x) definition of the fluxes F x and F η. The conservation
law is given by

∂tρf0(x,η,t)+∇x ·F x+∂ηF
η = 0, (3.8)

where the fluxes are

F x(x,η,t) :=

∫
δ(Ey−η)vf1dyvw,

F η(x,η,t) :=

∫
δ(Ey−η)(∇xV1 ·v)f1dyvw.

Remarks.
• Equation (3.8) constitutes a conservation law for the mesoscopic fluid density
ρf0 , which still depends on the free energy η=Ey. Thus the resulting model is
similar to a SHE (spherical-harmonics expansion) model [1] for the Boltzmann
equation except that only a part of the energy appears as an independent
variable.

• The challenge is of course to compute the fluxes F x and F η in (3.8), i.e., to
compute the density f1 from (3.6b) for a given f0 of the form f0(x,y,v,w,t) =
M(v)ρf0(x,Ey,t)/N(x,Ey).

• It is easy to see that the resulting mesoscopic equation for ρf0 will contain
second-order partial derivatives with respect to x and η. This raises the
question of well-posedness of Equation (3.8). We will address this issue below
by providing an entropy estimate for the system.

3.3. An entropy estimate. The goal of this section is twofold. The first
goal is to show that the system (3.6) is well-posed. To that end, we will show that
there is a convex functional of the density ρ—an entropy—which decays in time. To
make the system (3.6) amenable to actual computations, it will be necessary to solve
(3.6b) approximately via a form of series expansion. The second goal of this section
is therefore to characterize the structure of the system (3.6) in such a way that we
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can formulate a Galerkin approximation to (3.6b) which retains the same stability
properties.

We start from the system (3.6) and express the kinetic density f0 in terms of the
mesoscopic density ρf0 as f0(x,y,v,w,t) =ρf0(x,Ey,t)M(v)/N(x,Ey). (For notational
simplicity, we drop the subscript f0 of the mesoscopic density ρf0 from here on.) We
write the system (3.6) in terms of linear operators L1 and L2 as

∂tρ(x,η,t)+L1[f1](x,η,t) = 0, (3.9a)

L2[ρ](x,y,v,w,t)+{Ey,f1}yw+
1

τ
f1 = 0, (3.9b)

with the operators L1 and L2 defined by

L1[f1](x,η,t) :=

∫
δ(Ey(x,y,w)−η){Ex+Ey,f1}xvdyvw, (3.10a)

L2[ρ](x,y,v,w,t) :=

{
Ex+Ey,M(v)

ρ(x,Ey,t)
N(x,Ey)

}
xv

. (3.10b)

The operator L1 maps functions of the form f1(x,y,v,w,t) to functions of the form
ρ(x,η,t), whereas the operator L2 operates in the opposite direction. The operator L2

is related to the adjoint of the operator L1 by Lemma 3.1 below. Since we will use
a combination of trigonometric basis functions for the Galerkin procedure in the
next section and it will be notationally convenient to write these basis functions as
complex exponentials, we define the adjoint of an operator over the complex numbers;
the solutions ρ and f1 are of course real functions.

Let Ladj
1 denote the adjoint of L1 with respect to the L2 inner product, i.e.,∫
ρ(x,η,t)∗L1[f ](x,η,t)dxη=

∫
Ladj
1 [ρ](x,y,w,t)∗f(x,y,v,w,t)dxyvw

holds, where ∗ denotes the complex conjugate.

Lemma 3.1 (adjoint property). Let Ladj
1 denote the adjoint of L1. Then the

operators L1 and L2 in (3.10) are related by the equation

L2[ρ](x,y,v,w,t) =−ce−Ex−EyLadj
1

[
eV0(x)+ηρ(x,η,t)

N(x,η)

]
(x,y,v,w,t). (3.11)

Here the constant c denotes the normalization constant of the Maxwellian so that
M(v) = cexp(−|v|2/2) holds. Furthermore the identity

Re
(∫

eEx+Eyf∗{Ey,f}ywdyw
)

= 0 ∀x (3.12)

holds for all complex functions f(y,w), where Re denotes the real part.

The proof is deferred to Appendix A.
Using Lemma 3.1, the system (3.9) becomes

∂tρ(x,η,t)+L1[f1](x,η,t) = 0, (3.13a)

−ce−Ex−EyLadj
1

[
eV0(x)+ηρ(x,η,t)

N(x,η)

]
(x,y,v,w,t)+{Ey,f1}yw+

1

τ
f1 = 0. (3.13b)
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The significance of the form (3.13) of the system is twofold. First, it allows for the
straightforward proof of an entropy estimate below and therefore guarantees that the
resulting diffusion system is well-posed. Second, as will be seen in the next section,
expressing f1 in terms of ρ from (3.13b) is a nontrivial matter, and will have to be done
numerically in general. In order for this numerical approximation (and the resulting
diffusion equation) to obey the same entropy estimate, we will use the form (3.13).

As a consequence of Lemma 3.1, we immediately obtain the entropy estimate.

Proposition 3.2 (entropy estimate). Solutions (ρ,f1) of the system (3.13) sat-
isfy the entropy estimate

1

2
∂t

∫
eV0(x)+η

N(x,η)
|ρ(x,η,t)|2dxη=− 1

cτ

∫
eEx+Ey |f1|2dxyvw≤0.

Proof. Integrating (3.13a) against eV0(x)+ηρ(x,η,t)∗/N(x,η) with respect to x
and η, integrating (3.13b) against 1

c e
Ex+Eyf∗1 with respect to x, y, v, and w, and

adding yields∫
eV0+ηρ∗

N
∂tρ(x,η,t)dxη+

∫
eV0+ηρ∗

N
L1[f1]dxη−

∫
f∗1L

adj
1

[
eV0+ηρ

N

]
dxyvw

+
1

c

∫
eEx+Eyf∗1 {Ey,f1}ywdxyvw+

1

cτ

∫
eEx+Ey |f1|2dxyvw= 0.

Taking the real part and using Lemma 3.1 concludes the proof.

4. Galerkin approximations
Equation (3.13b) must be solved approximately by a form of series-expansion

method for practical computations. To prepare the system for this approximation
procedure, we will perform two steps below, while guaranteeing that the structure and
the stability estimate given by Lemma 3.1 and Proposition 3.2 remain unchanged.

4.1. Eliminating the lateral velocity v. We observe that the dependence
of the operator L2 in (3.10b) on the velocity v takes the form of a multiple of the
function M(v)v, i.e.,

L2[ρ](x,y,v,w,t) =M(v)v ·
(
∇x
(
ρ(x,Ey,t)
N(x,Ey)

)
+
ρ(x,Ey,t)
N(x,Ey)

∇x(V0 +V1)

)
holds. Since the Poisson bracket {Ey,f1}yw does not operate on the velocity compo-
nent v, Equation (3.9b) allows a solution of the form

f1(x,y,v,w,t) =M(v)v ·g(x,y,w,t).

Here the function g(x,y,w,t)∈Rd is vector valued for the case of a plate and scalar
in the case of a tube. Correspondingly, we define the operators Λ1 and Λ2 as

Λ1[g](x,η,t) :=L1[M(v)v ·g](x,η,t), (4.1a)

L2[ρ](x,y,v,w,t) =M(v)v ·Λ2[ρ](x,y,w,t), (4.1b)

Λ2[ρ](x,y,w,t) :=∇x
(
ρ(x,Ey,t)
N(x,Ey)

)
+
ρ(x,Ey,t)
N(x,Ey)

∇x(V0 +V1) (4.1c)
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and the system (3.9) becomes

∂tρ(x,η,t)+Λ1[g](x,η,t) = 0, (4.2a)

Λ2[ρ](x,y,w,t)+{Ey,g}yw+
1

τ
g= 0. (4.2b)

Here Λ2[ρ] and g are d-dimensional vector functions and the commutator {Ey,g}yw
acts componentwise on g. Correspondingly, we define the adjoint of the operator Λ1

(over the complex numbers) by∫
ρ(x,η,t)∗Λ1[g](x,η,t)dxη=

∫
Λadj
1 [ρ](x,η,t)Hg(x,y,w,t)dxη ∀ρ,g,

where gH denotes the Hermitian conjugate gH = (gT )∗.

Lemma 4.1 (adjoint property). The operator Λ1 is of the form

Λ1[g](x,η,t) =

∫
∇x ·

(
δ(Ey−η)g(x,y,w,t)

)
+∂η

(
δ(Ey−η)∇xV1(x,y) ·g

)
dyw, (4.3)

and the operator Λ2 is given in terms of the adjoint of Λ1 by

Λ2[ρ](x,y,w,t) =−e−V0−EyΛadj
1

[
eV0+η

ρ(x,η,t)

N(x,η)

]
(x,y,w,t). (4.4)

Furthermore the identity

Re
(∫

eEx+EygH{Ey,g}ywdyw
)

= 0 ∀x (4.5)

holds for all complex functions g(y,w).

The proof is deferred to Appendix B.
Thus, using Lemma 4.1, the system (4.2) becomes

∂tρ(x,η,t)+Λ1[g](x,η,t) = 0, (4.6a)

−e−V0−EyΛadj
1

[
eV0+η

ρ(x,η,t)

N(x,η)

]
(x,y,w,t)+{Ey,g}yw+

1

τ
g(x,y,w,t) = 0. (4.6b)

4.2. Energy and angle variables. In order to obtain a closed equation for
the mesoscopic density ρ(x,η,t), Equation (4.6b) has to be inverted for g in terms
of ρ. For a general confinement potential V1(x,y), this must be done approximatively.
This approximation will take the form of a series expansion, i.e., Galerkin solution, of
(4.6b). To facilitate this procedure, we assume the existence of a one-to-one variable
transformation in (y,w) space mapping the (6−2d)-dimensional vector (y,w) into the
scalar energy u=Ey(x,y,w) and a (5−2d)-dimensional angular variable θ. This means
we assume the existence of an x-dependent variable transformation (u,θ) = Γ(x,y,w)
and its functional inverse (y,w) = Ω(x,u,θ) satisfying

Ey(x,Ω(x,u,θ)) =u, Γ(x,Ω(x,u,θ)) = (u,θ), Ω(x,Γ(x,y,w)) = (y,w)

for all x∈Rd, y,w∈R3−d, u∈R, and θ∈R5−2d. The Galerkin approximation will
then take the form of a series expansion in the angular variable θ. Employing the
transformation (y,w) = Ω(x,u,θ), we define the operator A as

g1(x,u,θ,t) :=g(x,Ω(x,u,θ),t), (4.7a)

A[g1](x,η,t) := Λ1[g](x,η,t). (4.7b)
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To compute the system (4.6) after the transformation (y,w) = Ω(x,u,θ), we have to

compute the appropriate transforms of the operators Λ1, Λadj
1 , and {Ey,g}yw.

We compute the transformed operator A first. To this end, it will be necessary
to split the transformation Ω into(

y
w

)
= Ω(x,u,θ) =

(
Ωy(x,u,θ)
Ωw(x,u,θ)

)
.

We also define the Jacobian matrices

∂Ω(x,u,θ) :=
∂(y,w)

∂(u,θ)
, ∂Γ(x,y,w) :=

∂(u,θ)

∂(y,w)

and the volume element σ(x,u,θ) := |det(∂Ω(x,u,θ))|. The following lemma gives the
operator A and its adjoint Aadj.

Lemma 4.2. The operator A defined in (4.7) is given by

A[g1](x,η,t) =

∫
∇x ·

(
σg1(x,η,θ,t)

)
+∂η

(
σ(x,η,θ)∇1V1(x,Ωy(x,η,θ)) ·g1

)
dθ. (4.8)

Its adjoint, defined by
∫
gH1 Aadj[ρ]dxuθ=

∫
A[g1]∗ρdxη for all g1 and ρ, is given by

Aadj[ρ](x,u,θ,t) =σ(x,u,θ)Λadj
1 [ρ](x,Ω(x,u,θ),t). (4.9)

Proof. Integrating A[g1] against a test function φ(x,η) yields∫
φ(x,η)A[g1](x,η,t)dxη

=−
∫
δ(Ey−η)

(
∇xφ(x,η) ·g(x,y,w)+∂ηφ(x,η)∇xV1(x,y) ·g

)
dxywη

after a calculation similar to (3.7) and using the identity
∫
vT vM(v)dv= I (see the

beginning of Appendix B for this identity). Substituting (y,w) = Ω(x,u,θ) and dyw=
σ(x,u,θ)duθ in the integral yields∫

φ(x,η)A[g1]dxη=−
∫
δ(u−η)

·
(
∇xφ(x,η) ·g1(x,u,θ,t)+∂ηφ(x,η)∇1V1(x,Ωy(x,u,θ)) ·g1

)
σ(x,u,θ)dxuθη,

where we denote the partial gradient of V1 with respect to the first variable by ∇1V1.
Since a zero energy u=Ey = 0 will correspond to infinitely many angles θ, σ(x,0,θ) = 0
will hold giving the usual singularity at the origin of spherical-type variable trans-
formations. Therefore integrating out the variable u and integrating by parts with
respect to x and η gives the strong formulation of the operator A in (4.8).

To prove Equation (4.9), we compute∫
ρ∗Λ1[g](x,η,t)dxη=

∫
ρ∗A[g1](x,η,t)dxη=

∫
Λadj
1 [ρ]Hg(x,y,w,t)dxyw

for all ρ, g, and g1 and obtain the identity∫
ρ∗A[g1](x,η,t)dxη=

∫
Λadj
1 [ρ](x,y,w,t)Hg1(x,Γ(x,y,w),t)dxyw.
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Substituting (y,w) = Ω(x,u,θ) in the last integral gives∫
Aadj[ρ]Hg1(x,u,θ,t)dxuθ=

∫
σ(x,u,θ)Λadj

1 [ρ](x,Ω(x,u,θ),t)Hg1(x,u,θ,t)dxuθ

for all ρ and g1, which yields Equation (4.9).

It remains to compute the transformation of the Poisson bracket {Ey,g}yw un-
der the variable transformation (y,w) = Ω(x,u,θ). Since for a function φ of the form
φ(x,y,w) =φ(x,Ey(x,y,w)) the Poisson bracket satisfies {Ey,φ}yw = 0, the commu-
tator {Ey,.}yw is essentially a directional derivative along the equipotential surface
Ey(x,y,w) =u. Therefore, after the transformation (y,w) = Ω(x,u,θ), the transformed
Poisson bracket contains only derivatives with respect to the angular variable θ. This
fact is expressed in Lemma 4.3 below. But first we partition the Jacobian matrices
∂Ω and ∂Γ into

∂Ω(x,u,θ) =
∂(y,w)

∂(u,θ)
=

(
∂y
∂u

∂y
∂θ

∂w
∂u

∂w
∂θ

)
=:

(
ω11 ω12

ω21 ω22

)
,

∂Γ(x,y,w) =
∂(u,θ)

∂(y,w)
=

(
∂u
∂y

∂u
∂w

∂θ
∂y

∂θ
∂w

)
=:

(
γ11 γ12
γ21 γ22

)
.

Lemma 4.3. Under the transformation (y,w) = Ω(x,u,θ) with g(x,y,w,t) =
g1(x,u,θ,t), the Poisson bracket {Ey,g}yw becomes

{Ey,g}yw(x,Ω(x,u,θ),t) = (S ·∇θ)g1(x,u,θ,t), (4.10)

with the (5−2d)-dimensional vector S given by

S(x,u,θ) := (γ21γ
T
12−γ22γT11)(x,Ω(x,u,θ)). (4.11)

Furthermore, the identity

Re
(∫

σ(x,u,θ)eEx+ug1(x,u,θ,t)H(S ·∇θ)g1(x,u,θ,t)duθ
)

= 0 ∀x (4.12)

holds for all vector functions g1.

The proof is deferred to Appendix C.
Remarks.
• S is a vector in R5−2d, i.e., it has the same dimension as the angle θ, and

therefore the operator S ·∇θ is scalar and acts componentwise on the vector g1
in (4.10).

• Lemma 4.3 expresses the fact that the commutator {Ey,.}yw is in fact a
directional derivative. If g(x,y,w,t) is of the form g=g(x,Ey(x,y,w),t), then
g1 is of the form g1(x,u,θ,t) =g1(x,u,t) and (S ·∇θ)g1 = 0 holds.

Lemmas 4.2 and 4.3 allow us to write the system (4.6) from the previous section
in terms of the transformed variables (u,θ) = Γ(x,y,w). Hence we obtain the system

∂tρ(x,η,t)+A[g1](x,η,t) = 0, (4.13a)

−e−V0−uAadj

[
eV0+η

ρ(x,η,t)

N(x,η)

]
(x,u,θ,t)+σ(S ·∇θ)g1 +

σ

τ
g1(x,u,θ,t) = 0, (4.13b)
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A[g1](x,η,t) =

∫
∇x ·

(
σg1(x,η,θ,t)

)
+∂η

(
σ(x,η,θ)∇1V1(x,Ωy(x,η,θ)) ·g1

)
dθ,

(4.13c)

S(x,u,θ) = (γ21γ
T
12−γ22γT11)(x,Ω(x,u,θ)), (4.13d)

σ(x,u,θ) = |det(∂Ω(x,u,θ))| . (4.13e)

Remark: Since the operator A in (4.13c) is such that the function g1 is evaluated
only at u=η, no confusion is produced by renaming the independent variable from u
to η in Equations (4.13b), (4.13d), and (4.13e) from here on.

4.3. Series expansions. In order to obtain a closed system for the density ρ,
Equation (4.13b) must be solved for g1 in terms of ρ and the result must be substituted
for g1 in (4.13a). This inversion cannot be performed exactly in general, but must
be approximated by a series expansion. The point of Sections 4.1 and 4.2 was to
transform the system into a form such that the resulting approximate equation still
satisfies the entropy estimate of Proposition 3.2 in §3.3 because of the adjoint structure
in Equation (4.13).

We choose an orthonormal system of basis functions κK(θ) with K ∈K satisfying∫
κK(θ)∗κK′(θ)dθ= δKK′ ,

where K is a multiindex varying in a (5−2d)-dimensional index set K. We expand
the function g1 in (4.13) into the basis functions by setting

g1(x,η,θ,t) =
∑
K∈K

κK(θ)GK(x,η,t). (4.14)

Since we will use a combination of trigonometric functions for the basis functions
κK , we allow for complex valued basis functions κK and therefore the coefficients
GK(x,η,t) are d-dimensional complex valued coefficient vectors. (Of course, the com-
plex exponentials sum so that g1 and ρ are real functions.) Equation (4.13b) is then
replaced by

−
∫
κK(θ)∗e−V0−ηAadj

[
eV0+η

ρ(x,η,t)

N(x,η)

]
(x,η,θ,t)dθ

+

∫
κK(θ)∗

(
σ(x,η,θ)(S ·∇θ)g1 +

σ

τ
g1(x,η,θ,t)

)
dθ= 0 ∀K ∈K. (4.15)

We remark that, because of the construction via adjoint operators, the entropy esti-
mate from §3.3 carries over directly to the approximate system regardless of the choice
of basis functions. Multiplying Equation (4.15) by eV0+ηGHK , summing over the in-
dex K, integrating with respect to x and η, taking real parts, and using Equation
(4.12) yields

−Re
(∫

eV0+η
ρ(x,η,t)∗

N(x,η)
A[g1](x,η,t)dxη

)
+

∫
σ

τ
eV0+η|g1(x,η,θ,t)|2dxηθ= 0.

Integrating (4.13a) against eV0+ηρ(x,η,t)∗/N(x,η) and adding the two equations then
yields again the entropy estimate

1

2
∂t

∫
eV0+η

|ρ(x,η,t)|2

N(x,η)
dxη=−

∫
σ

τ
eV0+η|g1(x,η,θ,t)|2dxηθ≤0 (4.16)
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regardless of the choice of basis functions and the number of terms used in the Galerkin
approximation.

The rest of this section is devoted to computing the flux terms F x and F η given
by ∇x ·F x+∂ηF

η =A[g1] in Equation (4.13) which, because of Equation (4.8) in
Lemma 4.2, are of the form

F x=

∫
σg1(x,η,θ,t)dθ,

F η =

∫
σ∇1V1(x,Ωy(x,η,θ)) ·g1dθ

for a given confining potential V1 and a given variable transformation Ω. Applying
the operator A in (4.13c) to a function g1 of the form g1(x,u,θ,t) =κK(θ)G(x,η,t)
yields

A[κKG](x,η,t) =∇x ·
(
aK(x,η)G(x,η,t)

)
+∂η

(
AK(x,η) ·G(x,η,t)

)
,

where the scalars aK and the d-dimensional vectors AK are given by

aK(x,η) :=

∫
κK(θ)σ(x,η,θ)dθ,

AK(x,η) :=

∫
κK(θ)σ(x,η,θ)∇1V1(x,Ωy(x,η,θ))dθ.

After using the Galerkin approximation, the conservation law (4.13a) becomes

∂tρ(x,η,t)+
∑
K∈K
∇x ·

(
aK(x,η)GK(x,η,t)

)
+∂η

(
AK(x,η) ·GK(x,η,t)

)
= 0. (4.17)

We remark that the variable transformation (y,w) = Ω(x,η,θ) will necessarily be
singular at η= 0, since a zero energy will correspond to any possible angle. Therefore,
as is always the case in a transformation onto spherical coordinates, σ(x,0,θ) = 0 will
hold and therefore the coefficients aK and AK will vanish at η= 0 as well.

We now turn to computing the matrix elements in Equation (4.15). We first
compute the term

RK(x,η,t) :=

∫
κK(θ)∗e−V0(x)−ηAadj

[
eV0+η

ρ(x,η,t)

N(x,η)

]
(x,η,θ,t)dθ.

Integrating RK against a vector valued test function eV0+ηφ(x,η) yields∫
(eV0+ηφ(x,η))HRK(x,η,t)dxη

=

∫
(κK(θ)φ(x,η))HAadj

[
eV0+η

ρ(x,η,t)

N(x,η)

]
(x,η,θ,t)dxηθ

=

∫
A[κK(θ)φ(x,η)]∗eV0+η

ρ(x,η,t)

N(x,η)
dxηθ

=

∫ (
∇x ·

(
aK(x,η)φ(x,η)

)
+∂η

(
AK(x,η) ·φ(x,η)

))∗
eV0+η

ρ(x,η,t)

N(x,η)
dxη

=

∫
−aK(x,η)∗φ(x,η)H∇x

(
eV0+η

ρ

N

)
−AK(x,η)∗φ(x,η)H∂η

(
eV0+η

ρ

N

)
dxη.
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This implies

eV0+ηRK(x,η,t) =−aK(x,η)∗∇x
(

eV0+η
ρ

N

)
−AK(x,η)∗∂η

(
eV0+η

ρ

N

)
.

The second term in Equation (4.15) does not operate on the variables x and η.
Therefore inserting the expansion (4.14) for g1 into (4.15) results just in multiplication
with an (x,η)-dependent matrix C. With the definition

CKK′(x,η) :=

∫
κK(θ)∗

(
σ(x,η,θ)(S ·∇θ)κK′(θ)+

σ

τ
κK′(θ)

)
dθ,

Equation (4.15) becomes

aK(x,η)∗e−V0∇x
(

eV0
ρ

N

)
+AK(x,η)∗e−η∂η

(
eη
ρ

N

)
+
∑
K′∈K

CKK′(x,η)GK′(x,η,t) = 0 ∀K ∈K. (4.18)

Summary. For a given confinement potential V1(x,y) and for a given variable
transformation (y,w) = Ω(x,η,θ) = (Ωy,Ωw) and (η,θ) = Γ(x,y,w), we have to compute
the coefficients aK(x,η), AK(x,η), and CKK′(x,η) given by

aK(x,η) =

∫
κK(θ)σ(x,η,θ)dθ, (4.19a)

AK(x,η) =

∫
κK(θ)σ(x,η,θ)∇1V1(x,Ωy(x,η,θ))dθ, (4.19b)

CKK′(x,η) =

∫
κK(θ)∗σ(x,η,θ)

(
(S ·∇θ)κK′(θ)+

1

τ
κK′(θ)

)
dθ, (4.19c)

S(x,η,θ) = (γ21γ
T
12−γ22γT11)(x,Ω(x,η,θ)), (4.19d)

σ(x,η,θ) = |det(∂Ω(x,η,θ))| (4.19e)

and solve the coupled system (4.17), (4.18) for the density ρ(x,η,t) and the d-
dimensional expansion coefficients GK(x,η,t), K ∈K. Using the inverse of the ma-
trix C (assuming it exists) to express the coefficients GK in (4.18) in terms of the
density ρ in (4.17) yields the conservation law

∂tρ(x,η,t)+∇x ·F x(x,η,t)+∂ηF
η(x,η,t) = 0, (4.20)

where the d-dimensional flux vector F x and the scalar flux F η are given by

F x(x,η,t) =−
∑

K,K′∈K
aK(x,η)C−1KK′(x,η) ·

·
(
aK′(x,η)∗e−V0∇x

(
eV0

ρ

N

)
+AK′(x,η)∗e−η∂η

(
eη
ρ

N

))
, (4.21a)

F η(x,η,t) =−
∑

K,K′∈K
AK(x,η)TC−1KK′(x,η) ·

·
(
aK′(x,η)∗e−V0∇x

(
eV0

ρ

N

)
+AK′(x,η)∗e−η∂η

(
eη
ρ

N

))
. (4.21b)
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Remarks.

• Without making any further assumptions on the confining potential V1, no
more specific information is available about the coefficients aK and AK in
(4.19a) and (4.19b).

• Computationally, the actual challenge lies in computing the inconspicuous
looking term C−1KK′(x,η) in (4.21). K is a multiindex of the same dimension
as the angular variable θ, and θ denotes an angle in the (6−2d)-dimensional
(y,w)-space. Hence K and θ have 5−2d components.
For the case of a plate where d= 2, K is a scalar and the matrix C(x,η) must
be inverted for every point (x,η).
For the case of a tube where d= 1, the multiindex K has three components
and the resulting tensor C(x,η) is very large even if a moderate number of
expansions terms are used in each component of θ.

• Computing C−1KK′(x,η) for a general confining potential V1 still represents
a reduction in computational complexity compared to solving the original
Boltzmann equation, since the inversion of C must be performed only once
for a given structure.

• Since the idea of deriving large-time asymptotic approximations to the Boltz-
mann equation is to arrive at a relatively simple macroscopic system, we
will treat, in the next section, the special case where the confinement poten-
tial V1 is harmonic, i.e., where V1(x,y) is a quadratic function of the (3−d)-
dimensional vector y with general x-dependent coefficients.

Boundary conditions. So far we have not specified the boundary conditions
for the conservation law (4.20). The boundary conditions in the x-direction depend
on the application under consideration. Usually, they will consist of a combination
of insulating walls (i.e., ν ·F x= 0 where ν is the normal vector) and connections to
a bath meaning that the density ρ is prescribed by a given equilibrium bath density.
The conservation law must hold for η∈ [0,∞) and F η(x,0,t) = 0 must hold because of
mass conservation.

5. Harmonic confinement potentials

As will be seen in this section, the formulas (4.21) for the flux vectors F x and F y

simplify dramatically in the case where the potential V1 is quadratic in the variable y.
Since the inversion of the matrix C in (4.21) presents a major computational challenge
only in the case of transport in a tube (d= 1), we will restrict ourselves to this case
here. Hence, for the rest of this section, we will assume that x,v∈R and y,w∈R2.
The coefficients AK in (4.21) are therefore scalar and the gradient ∇x becomes a
partial derivative ∂x. In this case we assume that the confinement potential V1(x,y)
is of the form

V1(x,y) =
1

2

(
y−b(x)

)T
B(x)

(
y−b(x)

)
, (5.1)

where y,b∈R2 and the diagonal matrix B(x) is given by

B(x) =

(
B1(x) 0

0 B2(x)

)
.

We require that B1(x)>0 and B2(x)>0 for all x so that the particles are indeed
confined.
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5.1. Constructing approximate harmonic potentials. Assuming that the
confinement potential V1 has the quadratic form (5.1) may seem slightly arbitrary at
first. The physical relevance of the resulting model depends to a large extent on the
quality of the approximate expression (5.1). However, this assumption will drastically
simplify the resulting conservation law as seen below.

The immediate question is how to choose the coefficients Bj and bj , j∈{1,2},
for a given potential V1(x,y). The guiding principle is that the forces acting in the
confinement direction y on the particle due to the exact potential V1 should be ap-
proximated optimally by the approximate expression (5.1). Therefore the coefficients
in (5.1) should be chosen so that the resulting approximate field in the y-direction,
which is of the form B(x)(y−b(x)), approximates the exact field ∇yV1 locally for
every value of x. Hence we choose the coefficients Bj and bj , j∈{1,2}, in (5.1) to
locally minimize the functional∫

B

∣∣B(x)(y−b(x))−∇yV1(x,y)
∣∣2dy

for every value of x. Here B denotes an appropriate domain in the y-space enclosing
the structure. We choose to approximate the forces in the L2-norm, since this yields
a simple nonlinear least squares problem for every value of x. Thus the coefficients Bj
and bj , j∈{1,2}, are computed from the equations∫

B
(yj−bj)(Bj(yj−bj)−∂yjV1)dy= 0 ∀j∈{1,2}, (5.2a)∫

B
Bj(yj−bj)−∂yjV1dy= 0 ∀j∈{1,2} (5.2b)

giving four—albeit nonlinear—equations for the four coefficient functions Bj(x)
and bj(x), j∈{1,2}. If the potential V1(x,y) is given either in analytic or tabular
form, the solution of the system (5.2) is straightforward.

5.2. The fluxes for harmonic confinement potentials. We define the
variable transformation (y,w) = Ω(x,η,θ) in two stages. First, we transform (yj ,wj),
j∈{1,2}, using polar coordinates. We set

yj =: bj+

√
2rj
Bj

cosθj , wj =:
√

2rj sinθj ,

with rj ∈ [0,∞) and θj ∈ [−π,π) for j∈{1,2}. This gives the energy Ey as Ey(x,y,w) =
r1 +r2. Next, we use the transformation

η := r1 +r2, θ3 :=
r2−r1
r2 +r1

, r1 =η
1−θ3

2
, r2 =η

1+θ3
2

,

with η∈ [0,∞) and θ3∈ [−1,1]. Now the energy Ey is given by Ey(x,y,w) =η. Com-
bining the two transformations yields

(
y
w

)
= Ω(x,η,θ) =

(
Ωy(x,η,θ)
Ωw(x,η,θ)

)
=


b1 +

√
η(1−θ3)
B1

cosθ1

b2 +
√

η(1+θ3)
B2

cosθ2√
η(1−θ3)sinθ1√
η(1+θ3)sinθ2

 .
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Transforming the volume element in the involved integrals according to the two trans-
formations yields dyw= 1√

B1B2
dr1r2θ1θ2 = η

2
√
B1B2

dηθ1θ2θ3 and hence we find

σ(x,η,θ) = |det(∂Ω(x,η,θ))|= η

2
√
B1(x)B2(x)

(5.3)

in (4.19). For the density of states function N , we immediately obtain

N(x,η) =

∫
σ(x,η,θ)dθ=

4π2η√
B1(x)B2(x)

. (5.4)

The variable θ is a three-dimensional angle in the four-dimensional (y,w)-space and
θ3 is the sine of the azimuthal angle varying in the interval (−π2 ,

π
2 ). Therefore the

natural choice for the basis functions in §4.3 is

κK(θ) :=
1

2π
eik1θ1+ik2θ2Lk3(θ3), K= (k1,k2,k3),

where Lk3(θ3) the Legendre polynomial of degree k3 normalized in the L2-norm on
the interval [−1,1].

We now turn to computing the coefficients aK , AK , and CKK′ in (4.19). Using
the fact that the zero-order basis function κ0 :=κ(0,0,0) is given by κ0(θ) = 1/(2π

√
2),

the coefficient aK in (4.19a) simplifies to

aK(x,η) =

∫
κKσdθ=

√
2π

η√
B1B2

∫
κ∗0κK dθ=

√
2πη√
B1B2

δ0,K . (5.5)

To compute the coefficient AK(x,η) in Equation (4.19b), we first compute the

term ∂xV1(x,y) =
∑2
j=1

1
2∂xBj(yj−bj)

2−Bj(y−bj)∂xbj . After the variable transfor-
mation it becomes

∂1V1(x,Ωy(x,y,θ))

=

2∑
j=1

(
1

2
∂x(lnBj)η(1+(−1)jθ3)cos2θj−

√
Bjη(1+(−1)jθ3)cosθj∂xbj

)
,

which yields the coefficient AK in (4.19b) as

AK(x,η) =
η

4π
√
B1B2

∫ 1

−1

∫ π

−π

∫ π

−π
eik1θ1+ik2θ2Lk3(θ3) ·

·
2∑
j=1

(
1

2
∂x(lnBj)η(1+(−1)jθ3)cos2θj−

√
Bjη(1+(−1)jθ3)cosθj∂xbj

)
dθ1θ2θ3.

After integrating and defining

L±k3 :=

∫ 1

−1

√
1±θ3Lk3(θ3)dθ3, (5.6)

we find

AK(x,η) =
πη

2
√
B1B2

(1

4
η∂x(lnB1)δk2,0(δk1,−2 +2δk1,0 +δk1,2)(

√
2δk3,0−

√
2/3δk3,1)

+
1

4
η∂x(lnB2)δk1,0(δk2,−2 +2δk2,0 +δk2,2)(

√
2δk3,0 +

√
2/3δk3,1)

−
√
ηB1∂xb1δk2,0(δk1,−1 +δk1,1)L−k3−

√
ηB2∂xb2δk1,0(δk2,−1 +δk2,1)L+

k3

)
. (5.7)
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Explicit expressions for L±k3 are given in Lemma D.1 in Appendix D.

To compute the matrix element CKK′ in (4.19c), we first have to compute the
vector S(x,η,θ) = (γ21γ

T
12−γ22γT11)(x,Ω(x,η,θ)). Computing the matrix elements γjk

represents an elementary but quite tedious calculation. In the special case of a har-
monic potential, it is actually easier to compute the vector S by directly transforming
the Poisson bracket. The equation {Ey,φ}yw =ST∇θφ1 must hold for any function
φ(y,w) =φ1(η,θ). Given the shape (5.1) of the potential V1, the equation

{Ey,φ}yw =

2∑
j=1

(wj∂yjφ−Bj(yj−bj)∂wjφ)

holds and straightforward calculus yields

{Ey,φ}yw =−
2∑
j=1

√
Bj∂θjφ1(η,θ).

Therefore the equation S(x,η,θ) =−
(√

B1(x),
√
B2(x),0

)T
holds. Computing the

matrix element CKK′ in (4.19c) yields

CKK′(x,η) =
1

8π2

η√
B1B2

∫
e−ik1θ1−ik2θ2Lk3(θ3) ·

·

−
√B1√

B2

0

 ·
ik′1Lk′3(θ3)

ik′2Lk′3(θ3)
∂θ3Lk′3(θ3)

+
1

τ
Lk′3(θ3)

eik
′
1θ1+ik′2θ2 dθ

=
1

8π2

η√
B1B2

∫
e−ik1θ1−ik2θ2Lk3(θ3) ·

·
(
−ik′1

√
B1− ik′2

√
B2 +

1

τ

)
eik

′
1θ1+ik′2θ2Lk′3(θ3)dθ,

and after integrating out θ we obtain

CKK′(x,η) =
η

2
√
B1B2

(
1

τ
− ik1

√
B1− ik2

√
B2

)
δKK′ .

Thus the choice of a harmonic confinement potential makes the matrix C(x,η) diag-
onal and the elements C−1KK′(x,η) of its inverse are given by

C−1KK′(x,η) =
2τ
√
B1B2

η

1+τ(k1
√
B1 +k2

√
B2)i

1+τ2(k1
√
B1 +k2

√
B2)2

δKK′ . (5.8)

We note that the inverse always exists.

The formulas (5.5), (5.7), and (5.8) provide all the details to compute the ex-
pression for the fluxes in (4.21). It still remains to choose the index set K, i.e., the
number of terms used in the expansion (4.14) of g1(x,η,θ,t). We note that because
of (5.5) the term aK only gives a contribution for K= 0. Also the coefficient AK in
(5.7) vanishes for |k1|>2 and |k2|>2, since the complex exponentials are orthogonal
to cosθj and cos2θj for all j∈{1,2} in this case. Therefore, regardless of the number
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of terms used in the expansion, the fluxes F x and F η in (4.21) are of the form

F x(x,η,t) =−a0(x,η)C−100 (x,η) ·

·
(
a0(x,η)∗e−V0∇x

(
eV0

ρ

N

)
+A0(x,η)∗e−η∂η

(
eη
ρ

N

))
, (5.9a)

F η(x,η,t) =−
2∑

k1=−2

2∑
k2=−2

∞∑
k3=0

AK(x,η)C−1KK(x,η) ·

·
(
δ0,Ka0(x,η)∗e−V0∇x

(
eV0

ρ

N

)
+AK(x,η)∗e−η∂η

(
eη
ρ

N

))
. (5.9b)

Therefore we can use all terms in θ1 and θ2 in the expansion (4.14) of g1(x,η,θ,t)
and choose the index sets of both k1 and k2 as Z. This means that in the case of a
harmonic confinement potential V1 the components of the initial density f(x,y,v,w,t=
0) corresponding to the higher modes in θ1 and θ2 do not contribute to the large-time
dynamics after the projection in §3.

We proceed to calculate explicit expressions for the fluxes. To simplify notation,
we define T1 := e−V0∇x

(
eV0 ρ

N

)
and T2 := e−η∂η

(
eη ρN

)
. We find

F x(x,η,t) =− 4π2τη√
B1B2

T1−
π2τη2√
B1B2

(
∂x(lnB1)+∂x(lnB2)

)
T2 (5.10)

and

F η(x,η,t) =− π2τη2√
B1B2

(
∂x(lnB1)+∂x(lnB2)

)
T1

−
∞∑
k3=0

π2τη2

24
√
B1B2

(
4η∂x(lnB1)∂x(lnB2)(3δk3,0−δk3,1)

+

(
η(3+8τ2B1)(∂x(lnB1))2

1+4τ2B1
+
η(3+8τ2B2)(∂x(lnB2))2

1+4τ2B2

)
(3δk3,0 +δk3,1)

+
24B1(∂xb1)2

1+τ2B1
(L−k3)2 +

24B2(∂xb2)2

1+τ2B2
(L+

k3
)2
)
T2.

Using the expressions for L±k3 in Lemma D.1, the sums over (L±k3)2 become

K3∑
k3=0

(L+
k3

)2 =

K3∑
k3=0

(L−k3)2 =
16(2K4

3 +8K3
3 +11K2

3 +6K3 +1)

(4K2
3 +8K3 +3)2

and clearly their limit as K3→∞ is 2. Therefore we can choose the index set of k3
as Z+

0 and the whole index set as K :=Z×Z×Z+
0 . Finally we obtain

F η(x,η,t) =− π2τη2√
B1B2

(
∂x(lnB1)+∂x(lnB2)

)
T1

− π2τη2

6
√
B1B2

(
12B1(∂xb1)2

1+τ2B1
+

12B2(∂xb2)2

1+τ2B2
+2η∂x(lnB1)∂x(lnB2)

+
η(3+8τ2B1)(∂x(lnB1))2

1+4τ2B1
+
η(3+8τ2B2)(∂x(lnB2))2

1+4τ2B2

)
T2. (5.11)
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Equations (5.10) and (5.11) give the constitutive relations for the fluxes used in
the conservation law

∂tρ(x,η,t)+∂xF
x(x,η,t)+∂ηF

η(x,η,t) = 0

in the case of a tube with a harmonic confinement potential after inserting the expres-
sions for ak, AK , and C−1KK from (5.5), (5.7), and (5.8). The resulting equation is a
diffusion equation because of the first-order partial derivatives with respect to x and η
in the definition of the fluxes (5.9). The resulting diffusion matrix has automatically
the right eigenvalues, since the entropy estimate (4.16) holds.

All the coefficients of the derivatives in the fluxes are indeed real numbers. Im-
portantly, the three infinite sums over k1, k2, and k3 have been reduced to explicit
expressions. In summary, numerical solutions of this problem can be calculated as
fast as solutions of the two-dimensional drift-diffusion equations.

6. Numerical results
Using the explicit form of the transport coefficients, solutions of the diffusion

system can be calculated very efficiently. A finite-volume scheme was implemented
for the case of tubes (d= 1). The numerical examples presented in the following
illustrate the features of the solutions due to confinement.

6.1. First example. We consider an example with no applied potential first.
The simulation domain is defined by x∈ [0,10] and η∈ [0,10]. We set V0(x) := 0, τ := 1,
B1(x) :=B2(x) := 1+5exp(−(x−5)2/2), and b1(x) := b2(x) := 0. The boundary con-
ditions are the Maxwellian distributions ρ(0,η) := 2exp(−η) and ρ(10,η) := exp(−η);
this means that the concentration gradient between the two baths drives the current.

The resulting concentration ρ and fluxes F x and F η are shown in Figure 6.1.
The influence of the boundary conditions and the reduction in concentration due to
confinement in the middle of the channel at x= 5 is seen in the concentration ρ. The
streamlines plot for the fluxes shows that the particles are pushed towards higher
energies because of the confinement potential and some of the particles are reflected
back to the left boundary.

To illustrate the convergence properties as the grid becomes finer, the values for
the current

∫
F x(10,η)dη are noted here since it is important in applications: for a

grid spacing of ∆x := ∆η := 1 the current is 0.048108; for 1/2 it is 0.057327, for 1/4 it
is 0.061520, for 1/8 it is 0.062836, for 1/16 it is 0.063117, and for 1/32 it is 0.063120.

6.2. Second example. In the second example, we apply a potential V0(x) :=x
and leave the rest of the parameters unchanged. This potential drives particles from
the right to the left in opposite direction to the concentration gradient of the baths.

The resulting concentration ρ and fluxes F x and F η are shown in Figure 6.2.
Again it is observed that the confinement potential drives the particles towards higher
energies in the middle of the channel at x= 5. Additionally, we see in the plot of the
concentration that the influx of particles from the right boundary due to the strong
applied potential and the confinement in the middle result in a pile-up of particles at
around x= 7.

The current values for different grid sizes are the following: for a grid spacing of 1
the current is −0.932237, for 1/2 it is −0.916781, for 1/4 it is −0.905318, for 1/8 it is
−0.897971, for 1/16 it is −0.893613, and for 1/32 it is −0.891181. Due to the applied
potential, the current has opposite sign now and it is much larger.
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Fig. 6.1. The concentration ρ(x,η) (left) and a streamlines plot of the flux Fx(x,η)ex+
F η(x,η)eη (right). Large values are red, small values blue.

Fig. 6.2. The concentration ρ(x,η) (left) and a streamlines plot of the flux Fx(x,η)ex+
F η(x,η)eη (right). Large values are red, small values blue.

7. Conclusion

We have derived a diffusion-type equation for particle transport in confined struc-
tures from the Boltzmann transport equation. In the case of confinement in cylindrical
structures or pipes, the six independent spatial and momentum variables in the Boltz-
mann transport equation are reduced to two independent variables, namely position
in the longitudinal spatial direction and energy. The Galerkin approximation and the
variable transformation are chosen so that the geometry dependent transport coeffi-
cients can be given explicitly and therefore the diffusion-type equation can be solved
efficiently. Entropy estimates are given for solutions of the diffusion equation.
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A numerical scheme for the resulting diffusion equation was implemented. The
responses of the numerical solutions to changes in the parameters, the confinement po-
tential, and the boundary conditions are consistent with the physics of the underlying
transport problem.
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Appendix A. Proof of Lemma 3.1.
Proof. To prove Equation (3.11), we have to show that the identity

−
∫
f(x,y,v,w,t)∗L2[ρ]dxyvw= c

∫
L1[e−Ex−Eyf ](x,η)∗

eV0(x)+ηρ(x,η,t)

N(x,η)
dxη (A.1)

holds for all functions f(x,y,v,w,t) and ρ(x,η,t). Inserting for L1 yields

c

∫
L1[e−Ex−Eyf ]∗

eV0(x)+ηρ(x,η,t)

N(x,η)
dxη

= c

∫
{Ex+Ey,e−Ex−Eyf∗}xv

eV0(x)+Eyρ(x,Ey,t)
N(x,Ey)

dxyvw.

Since the Poisson bracket obeys the product rule of differentiation, we find

{Ex+Ey,e−Ex−Eyf∗}xv ={Ex+Ey,f∗}xve−Ex−Ey +{Ex+Ey,e−Ex−Ey}xvf∗

={Ex+Ey,f∗}xve−Ex−Ey ,

due to the identity {Ex+Ey,e−Ex−Ey}xv = 0. Hence we have

c

∫
L1[e−Ex−Eyf ]∗

eV0(x)+ηρ(x,η,t)

N(x,η)
dxη

= c

∫
{Ex+Ey,f∗}xv

eV0(x)−Exρ(x,Ey,t)
N(x,Ey)

dxyvw.

Using the identity ceV0(x)−Ex =M(v) and the cyclicity of the commutator under the
trace, this can be written as

c

∫
L1[e−Ex−Eyf ]∗

eV0(x)+ηρ(x,η,t)

N(x,η)
dxη

=

∫
f∗
{

M(v)

N(x,Ey)
ρ(x,Ey,t),Ex+Ey

}
xv

dxyvw=−
∫
f(x,y,v,w,t)∗L2[ρ]dxyvw

yielding (A.1) and consequently (3.11). To show (3.12), we set and calculate

I :=

∫
eEx+Eyf∗{Ey,f}ywdyw=

∫
{eEx+Eyf∗,Ey}ywf dyw

=

∫
eEx+Ey{f∗,Ey}ywf dyw+

∫
f∗{eEx+Ey ,Ey}ywf dyw

=

∫
eEx+Eyf{f∗,Ey}ywdyw=−

∫
eEx+Eyf{Ey,f}∗ywdyw=−I∗,
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which implies Re(I) = 0.

Appendix B. Proof of Lemma 4.1.
Proof. We start with the observation that, since the Maxwellian M is of the form

M(v) = ce−|v|
2/2 with

∫
M(v)dv= 1, integration by parts yields the matrix identity∫

vT vM(v)dv= I, where I is the d×d identity matrix. Inserting the definition of L1

into (4.1a) and integrating against a test function φ(x) gives∫
φ(x)Λ1[g](x,η,t)dx=

∫
φ(x)δ(Ey−η){Ex+Ey,M(v)v ·g}xvdxyvw.

Using the cyclicity of the commutator under the trace yields∫
φ(x)Λ1[g](x,η,t)dx=

∫
{φ(x)δ(Ey−η),Ex+Ey}xvM(v)v ·gdxyvw

=

∫ (
∇v(φ(x)δ(Ey(x,y,w)−η)) ·∇x(Ex+Ey)−∇x(φ(x)δ(Ey−η)) ·∇v(Ex+Ey)

)
·

·M(v)v ·gdxyvw

=

∫ ((
−δ(Ey−η)∇xφ(x)−φ(x)δ′(Ey−η)∇xV1

)
·v
)
M(v)v ·gdxyvw.

Then, using the identity
∫
vT vM(v)dv= I, we obtain∫

φ(x)Λ1[g](x,η,t)dx=

∫ (
−δ(Ey−η)∇xφ(x)−φ(x)δ′(Ey−η)∇xV1

)
·gdxyw

=

∫
φ(x)

(
∇x ·(δ(Ey−η)g)+∂η(δ(Ey−η)∇xV1 ·g)

)
dxyw,

which proves Equation (4.3).
The relation (4.4) is essentially the same as the adjoint relation (3.11) in

Lemma 3.1: Equation (3.11) implies that∫
f∗L2[ρ]dxyvw=−c

∫
L1[e−Ex−Eyf ]∗

eV0+ηρ(x,η,t)

N(x,η)
dxη

holds for all functions f(x,y,v,w,t) and ρ(x,η,t). Using the definition (4.1) of Λ1

and Λ2 and setting f(x,y,v,w,t) := eEx+EyM(v)v ·g(x,y,w,t) gives∫
eEx+EyM(v)2gHv(v ·Λ2[ρ])dxyvw=−c

∫
Λ1[g]∗

eV0+ηρ(x,η,t)

N(x,η)
dxη.

Using the identities eExM(v) = ceV0 and
∫
vT vM(v)dv= I yields

c

∫
eV0+EygHΛ2[ρ]dxyw=−c

∫
Λ1[g]∗

eV0+ηρ

N
dxη,

and therefore

eV0+EyΛ2[ρ] =−Λadj
1

[
eV0+ηρ

N

]
holds, which proves Equation (4.4). Finally, the relation (4.5) is essentially the same
as Equation (3.12) in Lemma 3.1 formulated for vector valued functions g.
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Appendix C. Proof of Lemma 4.3.
Proof. For any function φ(x,y,w) and its transform φ1(x,u,θ) =

φ1(x,Γ(x,y,w)) :=φ(x,y,w), their gradients are related by

∇yφT =∂uφ
T
1 γ11 +∇θφT1 γ21, ∇wφT =∂uφ

T
1 γ12 +∇θφT1 γ22. (C.1)

Differentiating the identity Ey(x,Ω(u,θ)) =u with respect to u and θ gives, using the
chain rule, the relations ∇yETy ω11 +∇wETy ω21 = 1 and ∇yETy ω12 +∇wETy ω22 = 0 or, in
matrix form,

(∇yETy ,∇wETy )∂Ω = (1,0).

Multiplying with ∂Γ =∂Ω−1 from the right gives(∇yETy ,∇wETy ) = (γ11,γ12) and hence
we have

γ11(x,y,w) =∇yEy(x,y,w)T , γ12(x,y,w) =∇wEy(x,y,w)T .

Computing the (scalar) commutator as

{Ey,φ}yw(x,y,w) =∇wETy ∇yφ−∇yETy ∇wφ=γ12∇yφ−γ11∇wφ
=∇yφT γT12−∇wφT γT11

and using the transformation (C.1) of the gradients of φ yields

{Ey,φ}yw(x,y,w) =∂uφ1(x,Γ)(γ11γ
T
12−γ12γT11)+∇θφ1(x,Γ)T (γ21γ

T
12−γ22γT11).

Considering the dimensions of the matrix elements γjk, i.e., γ11 and γ12 are both
1×(3−d)-dimensional matrices and γ11γ

T
12 is a scalar, we find that γ11γ

T
12−γ12γT11 = 0

holds. Thus we have

{Ey,φ}yw(x,y,w) =∇θφ1(x,Γ(x,y,w))TS(x,Γ(x,y,w))

= (S(x,Γ(x,y,w)) ·∇θ)φ1(x,Γ(x,y,w)).

The relation (4.12) is obtained directly from (4.5) in Lemma 4.1 by performing the
appropriate variable substitution in the integral. This concludes the proof.

Appendix D. The integrals L±n .
Here we prove explicit formulas for the integrals L±n defined in (5.6).

Lemma D.1. Let Ln be the Legendre polynomials on the interval [−1,1] normalized
in the L2-norm. Then the equation

L±n =

∫ 1

−1

√
1±xLn(x)dx=

−4(∓1)n

(2n+3)(2n−1)
√

2n+1
∀n∈N

holds.

Proof. We denote the non-normalized Legendre polynomials with Pn(1) = 1
by Pn. Since ‖Ln‖= 1 and ‖Pn‖2 = 2/(2n+1),

Ln=

√
2n+1

2
Pn
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holds. It is well-known that the Legendre polynomials Pn can be written as

Pn(x) =
1

2nn!
∂nx (x2−1)n

using Rodrigues’ formula. This expression yields

L±n =
1

2nn!

√
2n+1

2

∫ 1

−1

√
1±x∂nx (x2−1)ndx

=
1

2nn!

√
2n+1

2
(∓1)n

[
1

2

]
n

∫ 1

−1
(1±x)−n+1/2(x2−1)ndx

after n partial integrations. Here [a]n denotes the falling sequential product

[a]n :=

n−1∏
j=0

(a−j).

It is straightforward to see that the boundary terms vanish; the derivatives of (x2−1)n

vanish at ±1, since they all contain a factor x2−1. The last integral can be written
as a beta function after substituting y := (1±x)/2, yielding∫ 1

−1
(1±x)−n+1/2(x2−1)ndx= (±1)n

∫ 1

−1

√
1±x(x∓1)ndx

= 2
√

2(−2)nB(3/2,n+1) = 2
√

2(−2)n
Γ(3/2)Γ(n+1)

Γ(n+5/2)
=

√
2(−2)nn!

[n+3/2]n+2
,

since Γ(n+5/2) = [n+3/2]n+2
√
π. In summary, we obtain

L±n = (±1)n
√

2n+1
[1/2]n

[n+3/2]n+2
= (±1)n

√
2n+1

(−1)n−1[n−3/2]n−1(−1/2)

[n+3/2]n+2

= (∓1)n
√

2n+1
1

(n+3/2)(n+1/2)(n−1/2)
,

which concludes the proof.
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