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INFIMAL CONVOLUTION REGULARIZATIONS WITH DISCRETE
ℓ1-TYPE FUNCTIONALS∗

S. SETZER† , G. STEIDL‡ , AND T. TEUBER§

Abstract. As first demonstrated by Chambolle and Lions, the staircasing effect of the Rudin-
Osher-Fatemi model can be reduced by using infimal convolutions of functionals containing higher
order derivatives. In this paper, we examine a modification of such infimal convolutions in a general
discrete setting. For the special case of finite difference matrices, we show the relation of our approach
to the continuous total generalized variation approach recently developed by Bredies, Kunisch and
Pock. We present splitting methods to compute the minimizers of the ℓ22 - (modified) infimal convo-
lution functionals which are superior to previously applied second order cone programming methods.
Moreover, we illustrate the differences between the ordinary and the modified infimal convolution
approach by numerical examples.
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1. Introduction
It is well-known that the staircasing effect visible in the minimizer of the Rudin-

Osher-Fatemi (ROF) model [29]

argmin
u∈L2

{
1

2
‖f − u‖2L2

+ α|u|BV

}
, α > 0

with the semi-norm

|u|BV := sup
V ∈C1

0 ,‖V ‖∞≤1

∫

Ω

u div V dx

=

∫

Ω

|∇u| dx if u and its weak first derivatives are in L1(Ω)

for denoising images f : Ω → R corrupted by white Gaussian noise can be reduced by
incorporating higher order derivatives into the functional. One successful approach in
this direction was given by Chambolle and Lions in [8] who suggested to use the infimal
convolution of functionals with first and second order derivatives as regularizer, i.e.,

inf
u1+u2=u

∫

Ω

α1|∇u1|+ α2|∇(∇u2)| dx.

An alternative approach with |△u2| instead of |∇(∇u2)| was given in [10]. For various
other variational and PDE approaches involving higher order derivatives, see [11, 15,
22, 24, 30, 41, 43]. Among these approaches we only mention that, instead of infimal
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798 INFIMAL CONVOLUTION REGULARIZATION

convolutions, functionals of the form Φ(u) =
∑m

i=1 Φi(u) were proposed, see, e.g.,
[15, 25]. In one dimension, the difference between the minimizers of the functionals

1

2
‖f − u‖2L2

+ (Φ12Φ2)(u) and
1

2
‖f − u‖2L2

+ (Φ1 +Φ2)(u), (1.1)

with Φ1(u) := α1

∫
Ω
|u′(x)| dx and Φ2(u) := α2

∫
Ω
|u′′(x)| dx, is shown in Figure 1.1.

The advantages of the infimal convolution regularization are clearly visible. Finally,
note that infimal convolutions with other operators than derivatives were applied,
e.g., for image decomposition in [1, 2, 36].

In [34], we have applied a modified infimal convolution (MIC) regularization with
first and second order derivatives just for some computational reasons related to sec-
ond order cone programming. In general this modification leads to better numerical
results than the original one by Chambolle and Lions. We have also generalized our
model to tensor-valued images in [35]. Recently, this MIC approach was given a the-
oretical fundament (in the continuous setting for derivatives of arbitrary order) by
Bredies, Kunisch and Pock [5] based on tensor algebra. The corresponding regular-
izer was called total generalized variation (TGV). For other generalizations of TV we
refer to [31].

In this paper we examine, in a discrete setting, more general MIC functionals than
in [34]. These functionals combine ℓ1-type norms with linear operators fulfilling some
general factorization properties. The modifications of the ordinary infimal convolution
appear by tightening the constraints on the dual variable. The corresponding primal
problem contains a modified infimal convolution regularizer with some additional
variables related to the linear operators.

We propose an alternating direction method of multipliers and a primal-dual
hybrid gradient algorithm to compute the minimizers of the functionals as well as
some important intermediate values which are helpful to interpret the overall results.
We show that this method can significantly beat second order cone programming used
in [34] in terms of computational time.

This paper is organized as follows: In Section 2, we recall properties of infimal
convolutions and consider minimization problems with ℓ22 data fitting term and special
ℓ1-type infimal convolutions as regularization terms. Based on the dual formulation
of these problems, we introduce modified dual problems by tightening the constraints
on the dual variable in Section 3. We give a useful formulation of the modified primal
problem which clearly shows its difference to the original problem.

In Section 4, we consider modified ℓ1-type infimal convolutions with finite differ-
ence matrices. We start with the practically most important case of ordinary difference
matrices in Subsection 4.1 and show the relation to TGV regularizers introduced in
[5]. This subsection is related to our previous work [34], where we have introduced
a modified infimal convolution just for computational reasons within second order
cone programming. In Subsection 4.2 we enlarge our considerations to more general
difference matrices.

To compute the minimizers for the infimal convolution regularization term we
apply an alternating direction method of multipliers in Section 5. Moreover, we
use a primal-dual hybrid gradient algorithm for the corresponding MIC-regularized
problem.

In Section 6, we explain the differences between the ordinary and the modified
infimal convolution approaches by numerical examples. The paper finishes with con-
clusions.
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(d) Decomposition of (c) into u1, u2
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(e) Result by Φ1 +Φ2 (α1 = 10, α2 = 20)
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(f) Result by Φ1 +Φ2 (α1 = 0, α2 = 60)
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(g) Signal (a) repeated in vertical direction
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(h) Signal (c) repeated in vertical direction
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(i) Signal (e) repeated in vertical direction
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(j) Signal (f) repeated in vertical direction

Figure 1.1. Results of minimizing the functionals in (1.1) applied to the noisy 1D signal (b)
corrupted by additive Gaussian noise of standard deviation 20. By the infimal convolution approach
both the jump discontinuities and the linear parts in the signal are nicely restored, see (c) and (h).
The corresponding decomposition into the sum of two signals is shown in (d).
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2. ℓ1-type infimal convolutions

We start by considering some general properties of infimal convolutions. The
infimal convolution of the convex functionals Φi : RN → (−∞,+∞], i = 1, . . . ,m,
m ≥ 2 is the functional Φ defined by

Φ(u) = (Φ12 . . .2Φm)(u) = inf
u=u1+...+um

m∑

i=1

Φi(ui). (2.1)

It can be considered as the convex analysis counterpart of the usual convolution. In
the following, let Ψ∗(v) := supw∈RM {〈v, w〉−Ψ(w)} denote the Fenchel conjugate of Ψ.
For a proper, convex, lower semi-continuous (l.s.c.) function Ψ we have that Ψ∗∗ = Ψ.
Moreover, we stress the fact that the support function supv∈C〈·, v〉 of a nonempty,
closed, convex set C ⊂ R

N is the Fenchel conjugate of the indicator function ιC of C
and vice versa. If Ψ is proper, convex, l.s.c., and positively homogeneous, then it is
the support function of a nonempty, closed, convex set. The converse is also true.

Let

(Ψ0+)(v) := lim
λ→∞

Ψ(u+ λv)−Ψ(u)

λ
, u ∈ domΨ

be the recession function of Ψ.

By the following proposition the convexity of the Φi implies the convexity of Φ.
Properness of convex functions is not always preserved by infimal convolution since
the infimum may be −∞. Lower semi-continuity (l.s.c.) is only preserved under
additional conditions. For more information on infimal convolutions we refer to [37].

Theorem 2.1. Let Φ be the infimal convolution of proper, convex functions Φi,
i = 1, . . . ,m. Then Φ has the following properties:

i) Φ is convex.

ii) If the Φi, i = 1, . . . ,m are also l.s.c. and

(Φ10
+)(u1) + · · ·+ (Φm0+)(um) ≤ 0,

(Φ10
+)(−u1) + · · ·+ (Φm0+)(−um) > 0

imply that u1 + · · · + um 6= 0, then Φ is proper, convex, and l.s.c., and the
infimum in the definition of Φ(u) is attained for any u ∈ R

N . In particular,
the above implication holds true if Φi(u) = Φi(−u) for all u ∈ R

N .

iii) If Φi(u) := ‖Riu‖ with Ri ∈ R
Ni,N , i = 1, . . . ,m, and some norm ‖ · ‖ in

R
Ni , then Φ is continuous.

iv) (Φ12 . . .2Φm)∗ = Φ∗
1 + . . .+Φ∗

m.

Proof. For i) we refer to [28, p. 33], and the proof of the first part of ii) can
be found in [28, p. 76]. The last part of ii) is clear since Ψ(u) = Ψ(−u) implies
u ∈ domΨ ⇔ −u ∈ domΨ and we have

(Ψ0+)(−v) = lim
λ→∞

Ψ(u− λv)−Ψ(u)

λ
= lim

λ→∞

Ψ(−u− λv)−Ψ(−u)

λ

= lim
λ→∞

Ψ(u+ λv)−Ψ(u)

λ
= (Ψ0+)(v).
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To prove iii) we consider

Φ(u+ h) = inf
u+h=u1+...+um

m∑

i=1

‖Riui‖

= inf
u1,...,um−1

{
m−1∑

i=1

‖Riui‖+
∥∥∥∥∥Rm

(
u+ h−

m−1∑

i=1

ui

)∥∥∥∥∥

}
.

Since

‖Rm

(
u−

m−1∑

i=1

ui

)
‖ − ‖Rmh‖ ≤ ‖Rm(u+ h−

m−1∑

i=1

ui)‖

≤ ‖Rm(u−
m−1∑

i=1

ui)‖+ ‖Rmh‖,

we conclude that

Φ(u)− ‖Rmh‖ ≤ Φ(u+ h) ≤ Φ(u) + ‖Rmh‖.

This implies that |Φ(u+ h)− Φ(u)| → 0 if ‖h‖ → 0 and we are done.
The proof of iv) is given in [28, p. 145].

The infimal convolution functionals applied in this paper will fulfill both ii) and
iii).

Let ‖ · ‖p, 1 ≤ p ≤ ∞ denote the usual ℓp vector norms on R
N . For V =

(V T
1 , . . . , V T

n )
T ∈ R

nN , Vi ∈ R
N , and positive weight vectors ω = (ωk)

n
k=1, we define

norms on R
nN as follows:

‖V ‖p,ω := ‖
(
ω1V

2
1 + . . .+ ωnV

2
n

) 1
2 ‖p,

where the vector multiplication and the square root are meant componentwise. For
given f ∈ R

N , we are interested in minimizers of the functional

(ℓ22-IC/P) argmin
u∈RN

{1
2
‖f − u‖22 +ΦIC(u)

}

with the infimal convolution ΦIC := Φ12 . . .2Φm of the special ℓ1-type functionals

Φi(u) := αi‖Riui‖1,ωi
. (2.2)

Note that ‖V ‖p,ωi
= ‖

(
ωi,1V

2
1 + . . .+ ωi,ni

V 2
ni

) 1
2 ‖p for V := Riu. Since the func-

tional in (ℓ22-IC/P) is coercive, strictly convex, and by Theorem 2.1 iii) continuous, it
has a unique minimizer which we denote by ûIC .

In this paper, we will propose a modification of the (ℓ22-IC/P) functional. Since our
modification is motivated from the dual functional of (ℓ22-IC/P) we have to establish
the dual problem first. In general, for proper, convex, l.s.c. functions g : RN →
(−∞,+∞] and f : RM → (−∞,+∞] and a linear operator A ∈ R

M,N , the primal
and its dual optimization problems read

(P) min
u∈RN

{g(u) + f(Au)}, (D) − min
v∈RM

{g∗(−ATv) + f∗(v)}. (2.3)
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Thus, using Theorem 2.1 iv) and the fact that ( 12‖f − ·‖22)∗(v) = 1
2‖f + v‖22 − 1

2‖f‖22,
the dual problem of (ℓ22-IC/P) reads

argmin
v∈RN

{1
2
‖f − v‖22 +

m∑

i=1

Φ∗
i (v)

}
.

The functionals Φi are positively homogeneous so that their Fenchel conjugates are
indicator functions ιC of some sets C; more precisely,

Φ∗
i = ιCαi

with Cαi
:= {v = RT

i V : ‖V ‖∞,1/ωi
≤ αi}.

Conversely, we can rewrite Φi as

Φi = ι∗Cαi
= sup

‖V ‖∞,1/ωi
≤αi

〈·, RT

i V 〉.

Hence our dual problem becomes

argmin
v∈RN

{
1

2
‖f − v‖22 +

m∑

i=1

ιCαi
(v)

}
,

or as a constrained problem

(ℓ22-IC/D)
1

2
‖f − v‖22 → min subject to v = RT

1V1 = . . . = RT

mVm,

‖Vi‖∞,1/ωi
≤ αi, i = 1, . . . ,m.

The relation between the minimizers ûIC of (ℓ22-IC/P) and v̂IC of (ℓ22-IC/D) is given
by ûIC = f − v̂IC .

In applications, matrices Ri arising from differential operators as those in the
following example are frequently applied.

Example 2.2. Let m = 2. Take the forward difference matrix (with Neumann/mirror
boundary conditions)

D :=





















−1 1 0 0 · · · 0
0 −1 1 0 · · · 0

.

.

.

.
.
.

.
.
.

.

.

.

0 · · · 0 −1 1 0
0 · · · 0 0 −1 1
0 · · · 0 0 0 0





















∈ R
n,n (2.4)

as a discretization of the first derivative with spatial step size h = 1. Then (−D)TD
is the central difference matrix for second order derivatives. Let A ⊗ B denote the
Kronecker product of A and B. If we reshape square images F of size n×n columnwise
into vectors f of size N = n2 we can use

Dx := In ⊗D, Dxx := In ⊗ (−DT)D, Dxy := (−DT)⊗D,

Dy := D ⊗ In, Dyy := (−DT)D ⊗ In, Dyx := D ⊗ (−DT),

as discrete partial first and second order derivative operators. For simplicity of nota-
tion we use square images although the approach works for rectangular images, too.
Set

D1 :=

(
Dx

Dy

)
, D2,a :=

(
Dxx

Dyy

)
, D2,b :=




Dxx

Dxy +Dyx

Dyy


 , D2,c :=




Dxx

Dyx

Dxy

Dyy


 .
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In particular, D1 ∼ ∇ serves as a frequently used discrete gradient operator and its
negative adjoint as the corresponding discrete divergence −DT

1 ∼ div; see, e.g., [7]. In
applications R1 := D1 and R2 := D2,•, with weights (1, 1) on R

2N , (1, 1
2 , 1) on R

3N

and (1, 1, 1, 1) on R
4N . Note that except for ‖D2,au‖1,(1,1) the corresponding contin-

uous functionals of ‖Riu‖1,wi
, i = 1, 2 are rotationally invariant. The continuous

equivalent of (ℓ22-IC/P) with m = 2 and first and second order derivative operators
was, for example, used in the Chambolle-Lions approach [8].

3. Modified ℓ1-type infimal convolutions

In this section, we propose a modification of the ℓ22-IC functional which is superior
in certain image processing tasks as demonstrated in Figure 3.1.

Figure 3.1. Top: Original image u (left), courtesy of S. Didas [14], and noisy image f (right)
corrupted by additive Gaussian noise of standard deviation 20. Bottom: Denoised images by ℓ22-IC
(left) and ℓ22-MIC (right) with R1 = D1, R2 = D2,a and α1 = 60, α2 = 300, see [34].

To this end, we assume that the matrices Ri are related to Rm via matrices
Li ∈ R

Nm,Nm−i such that

Rm = Lm
i Rm−i = LiRm−i, i = 0, . . . ,m− 1, (3.1)

where we skip the superscript m in the notation of L if its relation to the index i is
clear. Furthermore, we agree that L0 := IN . Note that such a matrix Lm

i exists if
rgRT

m−i = rg (RT
m−i R

T
m).

In particular, we obtain for our discrete differential operators in Example 2.2 the
following factorizations.

Example 3.1. For the matrices R1 = D1 and R2 = D2,• in Example 2.2 it holds that
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D2,• = L1,•D1 with

L1,a =

(
−DT

x 0
0 −DT

y

)
, L1,b =



−DT

x 0
−DT

y −DT

x

0 −DT

y


 , L1,c =




−DT

x 0
0 −DT

x

−DT

y 0
0 −DT

y


 .

We consider the dual problem (ℓ22-IC/D) in its constrained form. Having the
relation v = RT

mVm = RT
i L

T
m−iVm in mind, it is self-evident to deal also with the

slightly modified functional

(ℓ22-MIC/D)
1

2
‖f − v‖22 → min subject to v = RT

mV,

‖LT

m−iV ‖∞,1/ωi
≤ αi, i = 1, . . . ,m.

In other words, in contrast to (ℓ22-IC/D) we have the additional restrictions Vi =
LT
m−iVm, i = 1, . . . ,m − 1. Note that RT

i Vi = RT
i Wi implies Vi = Wi if and only if

N (RT
i ) = {0}, respectively, if and only if R(Ri) = R

Ni . Hence, if the above conditions
hold true for i = 1, . . . ,m − 1, then the two problems (ℓ22-IC/D) and (ℓ22-MIC/D)
coincide.

As an unconstrained problem, (ℓ22-MIC/D) reads

argmin
V ∈RNm

{

1

2
‖f −R

T
mV ‖22 + ιK(V )

}

with K := {V : ‖LT
m−iV ‖∞,1/ωi

≤ αi, i = 1, . . . ,m},

(3.2)

respectively,

argmin
V ∈RNm

{
1

2
‖f −RT

mV ‖22 +
m∑

i=1

ιKαi
(V )

}
with Kαi

:= {V : ‖LT

m−iV ‖∞,1/ωi
≤ αi}.

(3.3)
For m = 2 and the special matrices R1 = D1, R2 = D2,a, respectively, R1 = D1,
R2 = D2,c of Example 2.2 the modified dual functional (ℓ22-MIC/D) was suggested in
[34] for the denoising of images.

Since it is hard to see why (ℓ22-MIC/D) could lead to better denoising results
than (ℓ22-IC/D) we give a formulation of the primal problem (ℓ22-MIC/P) which in our
opinion better clarifies the differences between the approaches.

Proposition 3.2. The primal problem of (ℓ22-MIC/D) is given by

(ℓ22−MIC/P) argmin
u∈RN

{
1

2
‖f − u‖22 + ι∗K(Rmu)

}

with

ι∗K(Rmu) := sup
‖LT

m−i
V ‖∞,1/ωi

≤αi

i=1,...,m

〈Rmu, V 〉,

and can be rewritten as

argmin
u∈RN

{
1

2
‖f − u‖22 +ΦMIC(u)

}
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with

ΦMIC(u) := inf
u=u1+...+um

si∈N(RT

i
)

{m−1∑

i=1

αi‖Riui − si‖1,ωi
+ αm‖Rmum +

m−1∑

i=1

Lm−isi‖1,ωm

}
,

(3.4)
where N (RT

i ) denotes the null space (kernel) of the operator RT

i .

The difference between ΦIC and ΦMIC consists in the additional degree of freedom
obtained by the vectors si ∈ N (RT

i ), i = 1, . . . ,m − 1. We see that (ℓ22-MIC/P) is
coercive, strictly convex and l.s.c. Thus its minimizer which we call ûMIC is unique.
It is related to the minimizer v̂MIC of the dual problem by ûMIC = f − v̂MIC .

Proof. By (2.3) the primal problem of (3.2) reads as (ℓ22-MIC/P). By (3.3) the
primal problem is also given by

1

2
‖f − u‖22 +Φ(Rmu),

where by Theorem 2.1 iv)

Φ(Rmu) =

( m∑

i=1

ιKαi

)∗

(Rmu) = inf
Rmu=U1+...+Um

m∑

i=1

ι∗Kαi
(Ui). (3.5)

Using R
Nm = R(Lm−i)⊕N (LT

m−i), we obtain that

ι∗Kαi
(U) = sup

‖LT
m−iV ‖∞,1/ωi

≤αi

〈U, V 〉 = +∞ if U 6∈ R(Lm−i).

Since we are looking for the infimum in (3.5), this implies that U = Lm−ix and
consequently

ι∗Kαi
(U) = sup

‖LT
m−iV ‖∞,1/ωi

≤αi

〈Lm−ix, V 〉 = sup
‖z‖∞,1/ωi

≤αi

z∈R(LT
m−i

)

〈x, z〉

= sup
z
{〈x, z〉 − ι{z:‖z‖∞,1/ωi

≤αi}(z)− ι{z:z∈R(LT
m−i)}

(z)}

=
(
ι{z:‖z‖∞,1/ωi

≤αi} + ι{z:z∈R(LT
m−i)}

)∗
(x)

= inf
x=v+w

{ι∗{z:‖z‖∞,1/ωi
≤αi}

(v) + ι∗{z:z∈R(LT
m−i)}

(w)}
= inf

x=v+w
{αi‖v‖1,ωi

+ ι∗{z:z∈R(LT
m−i)}

(w)}. (3.6)

Since

ι∗{z:z∈R(LT
m−i)}

(w) = sup
v∈R(LT

m−i)

〈v, w〉 = sup
y∈RNi

〈LT

m−iy, w〉,

we conclude that w ∈ N (Lm−i), since otherwise this functional becomes +∞ and
cannot lead to the infimum in (3.6). Hence it follows that

ι∗Kαi
(U) = inf

U=Lm−ix

w∈N(Lm−i)

αi‖x− w‖1,ωi
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and the functional in (3.5) reads

Φ(Rmu) = inf
Rmu=

∑m
i=1

Lm−ixi
wi∈N(Lm−i)

m∑

i=1

αi‖xi − wi‖1,ωi
= inf

Rmu=
∑m

i=1 Lm−ixi

m∑

i=1

αi‖xi‖1,ωi

= inf
xi∈RNi

{m−1∑

i=1

αi‖xi‖1,ωi
+ αm‖Rmu−

m−1∑

i=1

Lm−ixi‖1,ωm

}
.

The structure of ΦMIC follows by setting xi := Riui − si with si ∈ N (RT
i ), um :=

u−∑m−1
i=1 ui and by using (3.1).

In the context of infimal convolutions we mention that

ΦMIC(u) = (Ψ12Ψ2)(Smu) with Sm :=
1

m− 1




R1

...
Rm−1


 , m ≥ 2,

and

Ψ1(x1, . . . , xm−1) :=

m−1∑

i=1

αi‖xi‖1,ωi
, Ψ2(x1, . . . , xm−1) := αm‖

m−1∑

i=1

Lm−ixi‖1,ωm
.

There exists an intermediate problem between ℓ22-IC and ℓ22-MIC. This is discussed
in the following remark.

Remark 3.3. Having the relation v = RT
mVm = RT

i L
T
m−iVm = RT

i Vi in mind and
setting Vi = LT

m−iWi in (ℓ22-IC/D), we obtain the following modification of the ℓ22-IC
functional

(ℓ22-ĨC/D)
1

2
‖f − v‖22 → min subject to v = RT

mW1 = . . . = RT

mWm,

‖LT

m−iWi‖∞,1/ωi
≤ αi, i = 1, . . . ,m,

or in unconstrained form

argmin
v∈RN

{
1

2
‖f − v‖22 +

m∑

i=1

ιCαi
(v)

}
, Cαi

:= {v = RT

mV : ‖LT

m−iV ‖∞,1/ωi
≤ αi}.

(3.7)
Following similar lines as in the proof of Proposition 3.2 the corresponding primal
problem reads

(ℓ22-ĨC/P) argmin
u∈RN

{
1

2
‖f − u‖2 +Φ ˜IC(u)

}
,

Φ ˜IC(u) := inf
u=u1+...+um
wi∈N(Lm−i)

m∑

i=1

αi‖Riui − wi‖1,ωi
. (3.8)

Having a look at the dual problems we conclude that ‖ûIC‖2 ≤ ‖û ˜IC‖2 ≤ ‖ûMIC‖2.

In image restoration applications we are mainly interested in the case m = 2. Let
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us summarize how the penalizers of the primal problems look like for m = 2:

ΦIC(u) = inf
u=u1+u2

{α1‖R1u1‖1,ω1
+ α2 ‖R2u2‖1,ω2

},

= inf
R1u=x1+x2
xi∈R(R1)

{α1‖x1‖1,ω1
+ α2‖L1x2‖1,ω2

}, (3.9)

Φ ˜IC(u) = inf
u=u1+u2
w1∈N(L1)

{α1‖R1u1 − w1‖1,ω1
+ α2‖R2u2‖1,ω2

},

= inf
R1u=x1+x2
xi∈R(R1)
w1∈N(L1)

{α1‖x1 − w1‖1,ω1
+ α2‖L1x2‖1,ω2

},

ΦMIC(u) = inf
u=u1+u2
s1∈N(RT

1 )

{α1‖R1u1 − s1‖1,ω1
+ α2‖R2u2 + L1s1‖1,ω2

}.

= inf
R1u=x1+x2

{α1‖x1‖1,ω1
+ α2‖L1x2‖1,ω2

}. (3.10)

Recall that we originally obtained ℓ22-MIC from ℓ22-IC via ℓ22-ĨC by adding further
constraints on the dual variables. Here, we see that this led to relaxed conditions on
new variables x1, x2; compare e.g. (3.9) and (3.10). For ΦMIC(u) we no longer have
the restriction that xi ∈ R(R1) for i = 1, 2 and thus, R1u can be decomposed into
any x1 and x2. In general, this of course yields different minimizers and minima. In
Section 6 we will see that these modifications improve the restoration results for the
discrete difference operators studied in the next section.

4. Discrete difference matrices
In this section, we are interested in matrices Ri related to differential operators

since this is the most relevant case in practice. We restrict our attention to finite
difference matrices arising from differential operators on rectangular domains with
Neumann/mirror boundary conditions. Similar results can be obtained for matrices
related to zero or periodic boundary conditions. We start with simple i-th order
difference matrices Ri in Subsection 4.1. Then, in Subsection 4.2, we turn to more
general difference matrices. The corresponding general differential operators appear
for example in the definition of L-splines [32] which can be represented in terms of
the Green function of such operators [32]. Applications of such operators and their
discrete counterparts can be found in [38, 39].

4.1. Simple difference matrices. Let D be the first order forward difference
matrix (2.4) from Example 2.2. For j ∈ N, we consider the following i-th order finite
difference matrices:

D1 := D, D2j := (−DTD)j , D2j+1 := DD2j . (4.1)

Moreover, we use the notation D0 := In. If we neglect the rows of Dj which depend on
the boundary conditions, the kernels are given by the following remark. The kernels
are of special interest here, since they determine which vectors will be preferred as
minimizers of our functionals. This will be further illustrated in Subsection 4.2 by
Figure 4.1.

Remark 4.1. Replacing the first and last j rows of D2j ∈ R
n,n, n > 2j and the first

j and last j + 1 rows of D2j+1 ∈ R
n,n, n > 2j + 1 by zero rows, we obtain that the

kernel of the i-th modified matrix is given by the span of the discrete polynomials of
degree ≤ i− 1; i.e., by

span{
(
kr
)n
k=1

: r = 0, . . . , i− 1}.
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One-dimensional setting. Let us first have a look at matrices related to
differential operators on the interval, more precisely we deal with Ri := Di. Since the
matrices Di are singular of rank n−1, there are many ways to choose Lm−i such that
(3.1) is fulfilled. Indeed different choices of Lm−i may lead to different functionals
ΦMIC. Related to the factorization in (4.1) a self-evident choice is

Lm−i :=

{
Dm−i for i even,
Dm−i−1(−DT) for i odd .

(4.2)

Indeed this choice can also be explained in another way: Based on the singular value
decomposition D = UΣV T we obtain that

Di =

{
(−1)i/2V ΣiV T i even,
(−1)(i−1)/2UΣiV T i odd.

Using this relation it is easy to check that Lm−i in (4.2) can also be written as

Lm−i = DmD†
i , where D†

i denotes the Moore-Penrose inverse of Di.
Proposition 4.2. Let the matrices Ri = Di be given by (4.1) and the matrices Li

by (4.2). Then

ΦMIC(u) = Φ ˜IC(u) = inf
u=u1+...+um

si∈N(DT

i
)

{m−1∑

i=1

αi‖Diui − ǫisi‖1 + αm‖Dmum‖1
}
,

ǫi =

{
1 for i even,
0 for i odd,

holds true for all m ∈ N and in particular ΦIC = Φ ˜IC = ΦMIC for m = 2.

Proof. Since

N (D2j) = N (DT

2j) = N (D2j+1) = N (Lm−2j) = {c 1n : c ∈ R},
N (DT

2j+1) = N (Lm−2j−1) = {(0, . . . , 0, c)T : c ∈ R}, (4.3)

where 1n denotes the vector of length n consisting only of entries 1, we see that
N (DT

i ) = N (Lm−i). Hence si = wi in the definitions (3.4) and (3.8). Moreover, the
last sum in (3.4) vanishes and N (L0) = {0} so that ΦMIC and Φ ˜IC coincide. Further,
considering ‖D2j+1u2j+1 − s2j+1‖1, s2j+1 ∈ N (DT

2j+1), we conclude by

R(D2j+1) = {(x1, . . . , xn−1, 0)
T : xi ∈ R} (4.4)

and the definition of Φ ˜IC that s2j+1 = 0. This finishes the proof.

Two-dimensional setting. We consider matrices related to partial differen-
tial operators on rectangles; more precisely, we restrict our attention to the following
two cases a and b. For more sophisticated discretizations of partial derivative opera-
tors via finite mimetic differences we refer to [23, 42].

Case a: We use

Ri,a :=

(
Di,x

Di,y

)
with Di,x := In ⊗Di, Di,y := Di ⊗ In,

D̃m−i,x := In ⊗Dm−i−1(−DT), D̃m−i,y := Dm−i−1(−DT)⊗ In
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and

Lm−i,a :=

{
diag(Dm−i,x, Dm−i,y) for i even,

diag(D̃m−i,x, D̃m−i,y) for i odd.

In particular, this involves the setting in Example 2.2, namely R1,a = D1, R2,a = D2,a,
and L2

1,a coincides with the corresponding matrix in Example 3.1.
By definition we see that the elements of N (Lm−(2j+1),a) and R(R2j+1,a) are

special compositions of the vectors in (4.3) and (4.4), respectively. Then we can
conclude similarly as in the one-dimensional setting that w2j+1 = 0 in the definition
of Φ ˜IC . Therefore, for m = 2, the functionals ΦIC and Φ ˜IC coincide again. The
functional ΦMIC is indeed different. This is discussed in more detail in the Examples
6.1 and 6.2.

Case b: Here, we use the matrices R1,b := D1, R2,b := D2,b from Example 2.2 and L2
1,b

from Example 3.1. Appropriate matrices for m = 3 fulfilling R3,b = L3
1R2,b = L3

2R1,b

can be chosen as follows:

R3,b =









Dxxx

Dxxy +Dxyx +Dyxx

Dxyy +Dyxy +Dyyx

Dyyy









:=









In ⊗D(−DT)D
D ⊗ (−DT)D + (−DT)⊗DD +D ⊗D(−DT)
D(−DT)⊗D +DD ⊗ (−DT) + (−DT)D ⊗D

D(−DT)D ⊗ In









,

L
3
2,b =









In ⊗D(−DT) 0
D ⊗ (−DT) + (−DT)⊗D In ⊗D(−DT)

D(−DT)⊗ In D ⊗ (−DT) + (−DT)⊗D

0 D(−DT)⊗ In









,

L
3
1,b =









In ⊗D 0 0
D ⊗ In In ⊗D 0

0 D ⊗ In In ⊗D

0 0 D ⊗ In









.

For case b the functionals ΦMIC can be considered as discrete variants of the
continuous ℓ22-TGVm

α , m = 2, 3 functionals introduced in [5]. To verify this relation
let us recall the definition of TGVm

α from [5].

Definition of TGVm
α : Let

Symm(Rd) := {v : Rd × · · · × R
d

︸ ︷︷ ︸
m

→ R : v m− linear, symmetric}

be the space of m-linear, symmetric mappings over R
d to R, i.e., the space of sym-

metric, covariant m-tensors. These symmetric m-tensors are completely determined
by the values v(ej1 , . . . , ejm) = vj1,...,jm , where ej denotes the j-th unit vector in
R

d and ji ∈ {1, . . . , d}, j1 ≤ . . . ≤ jm. We consider symmetric m-tensor fields
V : Ω → Symm(Rd) with Ω ⊂ R

d. The total generalized variation of order m with
weighting vector α > 0 is defined by

TGV m
α (u) := sup

{∫

Ω

u divmV dx : V ∈ Cm
c (Ω, Symm(Rd)),

‖divm−iV ‖∞ ≤ αi, i = 1, . . . ,m

}
,
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where Ck
c (Ω, Sym

m(Rd)) denotes the space of k times continuously differentiable sym-
metric m-tensor fields with compact support in Ω and

diviV (x) := tri((∇i ⊗ V )(x)),

tr(v)(a) :=
d∑

j=1

v(ej , a, ej), a ∈ R
d × . . .× R

d

︸ ︷︷ ︸
m−2

,

(∇i ⊗ V )(x)(a1, . . . , am+i) := Di(V )(x)(a1, . . . , ai)(ai+1, . . . , am+i).

HereDi(V ) : Ω → L
(
(Rd)i, Symm(Rd)

)
is the i-th Fréchet derivative of V (componen-

twise Fréchet derivative) and L
(
(Rd)i, Symm(Rd)

)
is the space of i-linear, continuous

mappings from (Rd)i into Symm(Rd).
Note that for a symmetric m-tensor field V we have that diviV is an m− i tensor

field.
In our applications, we are only interested in rectangular domains Ω ⊂ R

2, i.e.,
d = 2. To see the relation to our setting, consider ΦMIC from (ℓ22-MIC/P) in Propo-
sition 3.2:

ΦMIC(u) = sup
V ∈RNm

{
〈u,RT

mV 〉 : ‖LT

m−iV ‖∞,1/ωi
≤ αi, i = 1, . . . ,m

}
.

We are looking for appropriate matrices RT
m playing the discrete role of divm and

matrices LT
m−i which can be considered as discrete versions of divm−i. Such a discrete

setting is given in the above case b. We explain the relation for m = 2. For symmetric
2-tensor fields V = (V T

1,1, V
T
1,2, V

T
2,2)

T we obtain that the 0-tensor field (scalar function)

div2V is given by

div2V = tr2((∇2 ⊗ V )(·)) = tr
(
tr((∇2 ⊗ V )(·))

)

= tr((∇2 ⊗ V )(·))(e1, e1) + tr((∇2 ⊗ V )(·))(e2, e2)
= (∇2 ⊗ V )(·)(e1, e1, e1, e1) + (∇2 ⊗ V )(·)(e2, e1, e1, e2)

+ (∇2 ⊗ V )(·)(e1, e2, e2, e1) + (∇2 ⊗ V )(·)(e2, e2, e2, e2)
= D2V (·)(e1, e1)(e1, e1) +D2V (·)(e2, e1)(e1, e2)

+ D2V (·)(e1, e2)(e2, e1) +D2V (·)(e2, e2)(e2, e2)

=
∂2

∂x2
V1,1 +

(
∂2

∂y∂x
+

∂2

∂x∂y

)
V1,2 +

∂2

∂y2
V2,2,

and the 1-tensor field (vector function with two components) div1V reads

div1V (·)(a) = tr((∇⊗ V )(·))(a) = (∇⊗ V )(·)(e1, a, e1) + (∇⊗ V )(·)(e2, a, e2)
= DV (·)(e1)(a, e1) +DV (·)(e2)(a, e2),

div1V (·)(e1) =
∂

∂x
V1,1 +

∂

∂y
V1,2,

div1V (·)(e2) =
∂

∂x
V1,2 +

∂

∂y
V2,2.

On the other hand, for a vector V = (V T
1,1, V

T
1,2, V

T
2,2)

T with V1,1, V1,2, V2,2 ∈ R
N ,

N = n2, which acts as a discrete version of the above tensor field, we have indeed
that

RT

2,bV = (Dxx, Dxy +Dyx, Dyy)V = DxxV1,1 + (Dxy +Dyx)V1,2 +DyyV2,2,

(L2
1,b)

TV =

(
−Dx −Dy 0
0 −Dx −Dy

)
V = −

(
DxV1,1 +DyV1,2

DxV1,2 +DyV2,2

)
.
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Furthermore, we have in case b that ω1 := (1, 1) and ω2 := (1, 1
2 , 1), which correspond

to the weights used in [5, Section 4.1].

4.2. General difference matrices. Although the finite difference matrices
of the previous subsection are mainly applied in practical image processing tasks,
other difference operators may be useful for special applications as well; see [39]. We
consider the polynomial

PL(x) := xm + am−1x
m−1 + . . .+ a1x+ a0, ai ∈ R,

=
m∏

k=1

(x− ξk), ξk ∈ C, (4.5)

and the corresponding differential operator

L(u) = u(m) + am−1u
(m−1) + . . .+ a1u

′ + a0u.

The motivation for the following consideration of a discrete version of L comes from
[38]. We also refer to [38] for more material on the role of L in signal processing
including references, in particular, in connection with L-splines. Let ξmj

, j = 1, . . . , m̃
denote the pairwise different values of ξj in (4.5) and assume that ξmj

appears with
multiplicity dj . Then, the kernel of L is given by

N (L) := span{xreξmi
x : mi = 1, . . . , m̃; r = 0, . . . , di − 1}. (4.6)

In the following, we restrict our attention to operators with ξk ∈ R, k = 1, . . . ,m. As
the discrete counterpart of L we use

D(ξ1) := D − ξ1In,

D(ξ1, ξ2) := (−DT − ξ2In)(D − ξ1In),

D(ξ1, . . . , ξ2j) :=

j∏

l=1

((−DT − ξ2lIn)(D − ξ2l−1In)) ,

D(ξ1, . . . , ξ2j+1) := (D − ξ2j+1In)

j∏

l=1

((−DT − ξ2lIn)(D − ξ2l−1In)) ,

where we use the agreement that
∏j

l=1 Al := Aj . . . A1. Note that the ordering of the
matrix multiplication plays only a role for the first and last j rows of D(ξ1, . . . , ξ2j)
and for the first j and last j + 1 rows of D(ξ1, . . . , ξ2j+1).

Remark 4.3. Let us briefly discuss the relation to (4.6). Replacing the first and
last j rows in D(ξ1, . . . , ξ2j) and the first j and last j + 1 rows in D(ξ1, . . . , ξ2j+1) by
zero rows, we obtain for ξ2j+1 6= −1 and ξ2j 6= 1 that the kernels of the corresponding

modified matrices D̃(ξ1, . . . , ξn) are given by

D̃(ξ1) :span{
(
(1 + ξ1)

k
)n−1

k=0
},

D̃(ξ1, ξ2) :span{
(
(1 + ξ1)

k
)n−1

k=0
,
(
(1− ξ2)

n−k−1
)n−1

k=0
} if ξ2 6= ξ1

1 + ξ1
,

span{
(
(1 + ξ1)

k
)n−1

k=0
,
(
k(1 + ξ1)

k
)n−1

k=0
} if ξ2 =

ξ1
1 + ξ1

,

...
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Note that eξi = 1 + ξi +O(ξ2i ) as ξi → 0.
We have that D(ξ) = Di for ξ = (ξ1, . . . , ξi) = (0, . . . , 0). Therefore, we assume in

the following that ξi 6= 0, i = 1, . . . ,m. Moreover, we choose ξ2j+1 6= −1 and ξ2j 6= 1 so
that the matrices D(ξ) are invertible. Then, in the one-dimensional setting with Ri :=
D(ξ) the matrices Lm

m−i in (3.1) are uniquely determined. Moreover, N (Lm
m−i) =

N (RT
i ) = {0}, so that the problems ℓ22-IC, ℓ

2
2-ĨC and ℓ22-MIC are again equivalent.

Figure 4.1 shows the behavior of the functional ℓ22-IC with general difference operators
for denoising a signal in the kernel ofD(ξ1, ξ2). If we choose the parameters αi, i = 1, 2
large enough, we obtain a very good result for such signals in contrast to ℓ22-IC with
ordinary first and second order difference operators.

A two-dimensional approach involving the operators D(ξ) instead of Di can be
obtained in the same way as in the previous subsection. Example 6.4 shows the
differences between the minimizers of the ℓ22-IC and the ℓ22-MIC functionals for the
setting in case a with D(ξ).

5. Numerical algorithms
There exist several algorithms to compute the minimizer of the above problems.

Second order cone programming (SOCP) was used, e.g., by some of the authors in
[34].

The fast iterative shrinkage threshold algorithm (FISTA) of Beck and Teboulle
[3, 4] was applied with outer and inner FISTA loops, e.g., in [5]. Note that FISTA is
based on a multistep algorithm proposed by Nesterov [26].

Sparked by [12, 13, 21, 40, 44], splitting methods which make use of the addi-
tive structure of the objective function have become popular recently in image pro-
cessing. The idea is to solve in each iteration several subproblems which deal with
the different components of the objective function individually. For our minimiza-
tion problems ℓ22-IC and ℓ22-MIC it turns out that the alternating direction method
of multipliers (ADMM) and the primal-dual hybrid gradient method (PDHG) are
very useful. ADMM and the PDHG method can be derived by considering the La-
grangian function and the augmented Lagrangian function, respectively, and mini-
mizing alternatingly with respect to the primal and the dual variable. Furthermore,
ADMM can also be deduced via Douglas-Rachford splitting applied to the dual prob-
lem or via Bregman proximal point methods. The PDHG algorithm turns out to be
equivalent to Arrow-Hurwicz method. More on theses algorithms can be found in
[6, 9, 16, 17, 18, 19, 20, 21, 33, 44] and the references therein.

The starting point to apply ADMM and PDHG is to rewrite a general problem
of the form

argmin
v∈RD

r∑

i=1

Fi(Civ) + Fr+1(v), Ci ∈ R
Mi,D, Fi : R

Mi → (−∞,+∞] (5.1)

as a constrained problem

argmin
v∈RD,zi∈RMi

r∑

i=1

Fi(zi) + Fr+1(v) subject to zi = Civ, i = 1, . . . , r, (5.2)

with C := (CT
1 . . . CT

r )
T for Ci ∈ R

Mi,D and z(k) := (z
(k)
1 , . . . , z

(k)
r )T.

Using this notation, ADMM reads:
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Figure 4.1. Top: Noisy signal f of the mirrored original signal u = 5
(

(1 + 0.03)k
)128

k=1
+

5
(

(1 + 0.02)129−k
)128

k=1
corrupted by additive Gaussian noise of standard deviation 20. Mid-

dle/down: Denoised signal by ℓ22-IC with α1 = α2 = 1000 and difference operators Di, i = 1, 2
(middle) as well as D(0.03), D(0.03,−0.02) (down). The dash-dotted signal is the original one.
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Algorithm (ADMM for (5.2) )
Initialization: z(0), b(0)

For k = 0, . . . repeat until a stopping criterion is reached:

v(k+1) = argmin
v∈RD

{
Fr+1(v) +

γ

2
‖b(k) + Cv − z(k)‖22

}
(5.3)

z(k+1) = argmin
zi∈RMi

{ r∑

i=1

Fi(zi) +
γ

2
‖b(k) + Cv(k+1) − z‖22

}

b(k+1) = b(k) + Cv(k+1) − z(k+1)

Let us assume that the functions Fi are proper, convex and closed. Furthermore,
suppose that (5.1) and its dual problem have a solution and that the duality gap is
zero. Then, the sequence (b(k))k∈N converges for every step length parameter γ > 0 to

a point b̂ whose scaled version 1
γ b̂ is a solution of the dual problem of (5.1). Moreover,

every cluster point of (v(k))k∈N is a minimizer of (5.1).

Algorithm (PDHG for (5.2) )
Initialization: v(0), z(0), b(0)

For k = 0, . . . repeat until a stopping criterion is reached:

v(k+1) = argmin
v∈RD

{
Fr+1(v) +

1

2τ
‖v − v(k) + τγCTb(k)‖22

}

z(k+1) = argmin
zi∈RMi

{ r∑

i=1

Fi(zi) +
γ

2
‖b(k) + Cv(k+1) − z‖22

}

b(k+1) = b(k) + Cv(k+1) − z(k+1)

Note that using the notation p(k) := 1
γ b

(k) the above PDHG algorithm is often written
as follows in the literature:

v(k+1) = argmin
v∈RD

{
Fr+1(v) +

1

2τ
‖v − v(k) + τCTp(k)‖22

}
,

p(k+1) = argmin
pi∈RMi

{( r∑

i=1

Fi

)∗

(p1, . . . , pr) +
1

2γ
‖p− p(k) − γCv(k+1)‖22

}
.

The following convergence result for PDHG was shown in [9]: Assume again that
the functions Fi are proper, convex and closed, that the primal problem (5.1) and
its dual problem have a solution and that the duality gap is zero. Moreover, we
suppose that the domain of (

∑r
i=1 Fi)

∗ is bounded and that τγ < 1
||C||2 . Then, the

sequences (v(k))k∈N and ( 1γ b
(k))k∈N generated by the above PDHG algorithm converge

to a solution of the primal and the dual problem, respectively. Note that a similar
convergence result for a slightly different algorithm was given earlier in [18]. It was
observed in [9, 18, 44] that a dynamic choice of the step length parameters (τ (k), γ(k))
is advantageous. This is not implemented in the experiments reported in this paper.
We also do not use the acceleration techniques, e.g. based on FISTA, which are
proposed in [9] .

We now want to apply ADMM and PDHG to the primal ℓ22-IC and ℓ22-MIC prob-
lems. There are different ways to implement the above algorithms depending on the
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formulation of the constrained problem. In our experiments, it turned out that for
the ℓ22-IC problem an ADMM performs best; cf. Subsection 5.1. For the ℓ22-MIC
problem we found that a PDHG method which we describe in Subsection 5.2 is very
fast. Observe that since we are using finite difference operators with a constant step
size equal to 1, the above condition τγ < 1

||C||2 is not too restrictive here.

5.1. ADMM for ℓ2
2
-IC/P. For m = 2 it holds that ℓ22-IC/P can be written

as a constrained problem of the form (5.2) with r = 2, which reads

argmin
u∈RN

{
1

2
‖f − u‖22 + inf

u=u1+u2

{α1‖R1u1‖1,ω1
+ α2‖R2u2‖1,ω2

}
}

(5.4)

= argmin
u1,u2,z1,z2

{
1

2
‖f − u1 − u2‖22
︸ ︷︷ ︸

F3(v)

+α1‖ |z1| ‖1︸ ︷︷ ︸
F1(C1v)

+α2‖ |z2| ‖1︸ ︷︷ ︸
F2(C2v)

}

subject to

(
R̃1 0

0 R̃2

)

︸ ︷︷ ︸
C

(
u1

u2

)

︸ ︷︷ ︸
v

=

(
z1
z2

)

︸ ︷︷ ︸
z

,

where we use the notation R̃i =
(√

ωi,1R
T
i,1, . . . ,

√
ωi,ni

RT
i,ni

)T
assuming that Ri =(

RT
i,1, . . . , R

T
i,ni

)T ∈ R
niN,N with Ri,j ∈ R

N,N . Here, ‖ | · | ‖1 := ‖ · ‖1,ω for ω =
(1, . . . , 1). Hence, the corresponding ADMM reads

(
u
(k+1)
1

u
(k+1)
2

)
= argmin

u1,u2

{
1

2
‖f − u1 − u2‖22 +

γ

2

∥∥∥∥∥b
(k) + C

(
u1

u2

)
−
(
z
(k)
1

z
(k)
2

)∥∥∥∥∥

2

2

}
, (5.5)

(
z
(k+1)
1

z
(k+1)
2

)
= argmin

z1,z2

{
α1‖ |z1| ‖1 + α2‖ |z2| ‖1 +

γ

2

∥∥∥∥∥b
(k) + C

(
u
(k+1)
1

u
(k+1)
2

)
−
(
z1
z2

)∥∥∥∥∥

2

2

}
,

(5.6)

b(k+1) = b(k) + C

(
u
(k+1)
1

u
(k+1)
2

)
−
(
z
(k+1)
1

z
(k+1)
2

)
.

In the first step (5.5) we have to solve following system of linear equations:

0 = u
(k+1)
1 + u

(k+1)
2 + γR̃T

1 R̃1u
(k+1)
1 − (f − γR̃T

1 (b
(k)
1 − z

(k)
1 )︸ ︷︷ ︸

=:t1

),

0 = u
(k+1)
1 + u

(k+1)
2 + γR̃T

2 R̃2u
(k+1)
2 − (f − γR̃T

2 (b
(k)
2 − z

(k)
2 )︸ ︷︷ ︸

=:t2

).

This can be rewritten as

u
(k+1)
1 = t2 − (I + γR̃T

2 R̃2)u
(k+1)
2 , (5.7)

u
(k+1)
2 = t1 − (I + γR̃T

1 R̃1)u
(k+1)
1 . (5.8)

If we substitute (5.8) into (5.7) and solve for u
(k+1)
1 we obtain

u
(k+1)
1 = 1

γ (R̃
T

2 R̃2 + (I + γR̃T

2 R̃2)R̃
T

1 R̃1)
†((I + γR̃T

2 R̃2)t1 − t2), (5.9)

u
(k+1)
2 = t1 − (I + γR̃T

1 R̃1)u
(k+1)
1 .
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Observe that (5.4) has a unique solution with respect to u. This implies that (u(k))k∈N,

defined by the sequences (u
(k)
i )k∈N, i = 1, 2 of the above ADMM via u(k) = u

(k)
1 +u

(k)
2 ,

converges to the solution of ℓ22-IC/P; cf., e.g., [33]. On the other hand, the matrix

R̃T
2 R̃2+(I+γR̃T

2 R̃2)R̃
T
1 R̃1 is not invertible in general; in other words, u

(k)
1 and u

(k)
2 are

not unique in contrast to their sum u(k). Nevertheless, a pair of solutions (u
(k)
1 , u

(k)
2 )

of (5.5) always exists and in our implementation we compute u
(k)
1 to be the one with

minimal ℓ2-norm; i.e., we apply the Moore-Penrose inverse. It is easy to see that this

also implies that the sequences (u
(k)
i )k∈N, i = 1, 2, converge. In the example described

below, see also Table 5.1, we use the difference operators of case a in Example 2.2. In
this case, we can solve (5.9) explicitely via the discrete cosine transform since both

R̃T
1 R̃1 and R̃T

2 R̃2 can be diagonalized by this transformation; see, e.g., [27].

Interestingly, the second step (5.6) in the ADMM algorithm is very easy to com-

pute since it can be solved separately with respect to z
(k+1)
1 and z

(k+1)
2 ; i.e., we have

z
(k+1)
i = argmin

zi

{
αi‖ |zi| ‖1 +

γ

2
‖b(k)i + R̃iu

(k+1)
i − zi‖22

}
, i = 1, 2.

This problem is well-known to have the analytic solution z
(k+1)
i = shrinkαi

γ
(b

(k)
i +

R̃iu
(k+1)
i ). The operator shrinkλ : RdM → R

dM is called coupled shrinkage and given
componentwise for pT :=

(
pT
1 , . . . , pT

d

)
, pi := (pij)

M
j=1, i = 1, ..., d, by

shrinkλ(pij) :=

{
pij − λpij/

√
p21j + · · ·+ p2dj if

√
p21j + · · ·+ p2dj ≥ λ,

0 otherwise.

In summary, we obtain the following algorithm:

Algorithm (ADMM for ℓ2
2
-IC/P)

Initialization: M = R̃T
2 R̃2 + (I + γR̃T

2 R̃2)R̃
T
1 R̃1, u

(0)
i = 1

2f , z
(0)
i = 1

2 R̃if , b
(0)
i = 0,

i = 1, 2
For k = 0, . . . repeat until a stopping criterion is reached:

u
(k+1)
1 = 1

γM
†
(
(I + γR̃T

2 R̃2)
(
f − γR̃T

1 (b
(k)
1 − z

(k)
1 )
)
−
(
f − γR̃T

2 (b
(k)
2 − z

(k)
2 )
))

u
(k+1)
2 = f − γR̃T

1 (b
(k)
1 − z

(k)
1 )− (I + γR̃T

1 R̃1)u
(k+1)
1

z
(k+1)
i = shrinkαi

γ
(b

(k)
i + R̃iu

(k+1)
i ), i = 1, 2

b
(k+1)
i = b

(k)
i + R̃iu

(k+1)
i − z

(k+1)
i , i = 1, 2

Output: u
(k+1)
1 , u

(k+1)
2 , u(k+1) := u

(k+1)
1 + u

(k+1)
2

In the first two rows of Table 5.1 we compare the running times of the above ADMM
algorithm with SOCP as implemented in the commercial software MOSEK 6.0 for the
denoising experiment of Figure 6.8. Our computations were performed with MATLAB
7.7 on an Intel Core Duo CPU with 2.66 GHz and 4GB RAM. Note that we use the
difference operators of case a in Example 2.2. We report the computation times for
SOCP and ADMM to reach a maximal difference in the gray value in every pixel of
smaller than 1.0 and 0.1 with respect to a reference solution. Clearly, we see that
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ADMM is much faster for both cases. Note that the gray values of the original image
in Figure 6.8 range from 0 to 255 and therefore even a maximal error of 1.0 yields a
solution which is visually the same as the reference solution.

5.2. PDHG for ℓ2
2
-MIC/P. For m = 2 problem ℓ22-MIC/P can be written as

argmin
u

{
1

2
‖f − u‖22 + inf

R1u=x1+x2

{α1‖x1‖1,ω1
+ α2‖L1x2‖1,ω2

}
}

= argmin
u,x1,x2,y

{
1

2
‖f − u‖22
︸ ︷︷ ︸

F3(v)

+α1‖ |x1| ‖1︸ ︷︷ ︸
F1(C1v)

+α2‖ |y| ‖1︸ ︷︷ ︸
F2(C2v)

}

subject to

(
R̃1 −Ĩ

0 L̃1

)

︸ ︷︷ ︸
C

(
u
x2

)

︸ ︷︷ ︸
v

=

(
x1

y

)

︸ ︷︷ ︸
z

,

where we use the notation R̃1 =
(√

ω1,1R
T
1,1, . . . ,

√
ω1,n1

RT
1,n1

)T
,

Ĩ =
(√

ω1,1IN , . . . ,
√
ω1,n1

IN
)T

and L̃1 =
(√

ω2,1L
T
1,1, . . . ,

√
ω2,n2

LT
1,n2

)T
for L1,i ∈

R
N,n1N . For the above splitting, the matrix inversion which appears when applying

ADMM is much harder to compute than for the problem ℓ22-IC/P in Subsection 5.1.
We therefore use the PDHG method for this problem. It reads

(
u(k+1)

x
(k+1)
2

)
= argmin

u,x2

{
1

2
‖f − u‖22 +

1

2τ
‖
(
u
x2

)
−
(
u(k)

x
(k)
2

)
+ τγCTb(k)‖22

}
,

(
x
(k+1)
1

y(k+1)

)
= argmin

x1,y

{
α1‖ |x1| ‖1 + α2‖ |y| ‖1 +

γ

2

∥∥∥∥b
(k) + C

(
u(k+1)

x
(k+1)
2

)
−
(
x1

y

)∥∥∥∥
2

2

}
,

b(k+1) = b(k) + C

(
u(k+1)

x
(k+1)
2

)
−
(
x
(k+1)
1

y(k+1)

)
.

Now the first step is very easy to solve. We have

u(k+1) =
1

1 + τ
(τf + u(k) − τγR̃T

1 b
(k)
1 ),

x
(k+1)
2 = x

(k)
2 + τγ(Ĩb

(k)
1 − L̃T

1 b
(k)
2 ).

In the second step, the minimization with respect to x1 and y decouples again and
we can solve the corresponding problems in the same way as in Subsection 5.1 using
the coupled shrinkage operator.

In summary, we obtain the following algorithm:

Algorithm (PDHG for (ℓ2
2
-MIC/P))

Initialization: u(0) = f , x
(0)
1 = 1

2 R̃1f , x
(0)
2 = 1

2 L̃1R̃1f , b
(0)
1 = b

(0)
2 = 0
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For k = 0, . . . repeat until a stopping criterion is reached:

u(k+1) =
1

1 + τ
(τf + u(k) − τγR̃T

1 b
(k)
1 )

x
(k+1)
2 = x

(k)
2 + τγ(Ĩb

(k)
1 − L̃T

1 b
(k)
2 )

x
(k+1)
1 = shrinkα1

γ
(b

(k)
1 + R̃1u

(k+1) − x
(k+1)
2 )

y(k+1) = shrinkα2
γ
(b

(k)
2 + L̃1x

(k+1)
2 )

b
(k+1)
1 = b

(k)
1 + R̃1u

(k+1) − x
(k+1)
2 − x

(k+1)
1

b
(k+1)
2 = b

(k)
2 + L̃1x

(k+1)
2 − y(k+1)

Output: u(k+1), x
(k+1)
1 , x

(k+1)
2

The last two rows of Table 5.1 illustrate that this algorithm is much faster than
SOCP via MOSEK. Note that the pairs (τ, γ) used to obtain the results in Table 5.1
do not satisfy the assumption τγ < 1

‖C‖2 of the convergence proof in [9]. However,

we use them since the resulting algorithms still seem to converge and are much faster.
Similar observations were reported in [18].

max. error
< 1.0 < 0.1

ℓ22-IC/P
SOCP 73.5 sec 81.4 sec
ADMM 3.6 sec 145 iter. 19.1 sec 806 iter.

ℓ22-MIC/P
SOCP 18.0 sec 42.8 sec
PDHG 1.7 sec 162 iter. 19.6 sec 1929 iter.

Table 5.1. Computation time to achieve a maximal difference smaller than 1.0 and 0.1 in
each pixel with respect to a reference solution for the experiment shown in Figure 6.8. We use the
difference operators of case a in Example 2.2. Since, in our implementation, ADMM performed
better than PDHG for ℓ22-IC/P we only report the result for ADMM here (step length parameters γ:
7.6 and 25.1 for a maximal error of 1.0 and 0.1, respectively). For ℓ22-MIC/P, PDHG turned out to
be faster and we chose τ and γ to be (0.07, 5.9) and (0.04, 9.1), respectively.

6. Numerical examples

Finally, we want to illustrate the differences between the ℓ22-IC and ℓ22-MIC models
in two dimensions by numerical examples.

Note that in our numerical examples the ℓ22-IC and ℓ22-MIC models corresponding
to the different cases a and b described in the Examples 2.2 and 3.1 show only marginal
differences as depicted in Figure 6.1. For this reason, we restrict our attention to
the difference operators of case a in the numerical experiments. Furthermore, we
concentrate on the practically important case m = 2. For experiments with m = 3
we refer to [5].

Example 6.1. We start with the original and noisy images in Figure 6.2.
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Figure 6.1. Left: Result ûMIC,a from Figure 3.1 (bottom right) obtained by ℓ22-MIC with
R1 = D1, α1 = 60 and R2 = D2,a, α2 = 300. Middle: Result ûMIC,b of the same experiment with

R2 = D2,b, α2 = 260. Since ‖R2,au‖1,ω2a ≤ ‖R2,bu‖1,ω2b
with ω2a = (1, 1) and ω2b = (1, 1

2
, 1), the

value of α2 has been adjusted. The difference image ûMIC,a − ûMIC,b on the right shows that there
are small differences between these two images which are in the images themselves hard to recognize
at all.
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Figure 6.2. Original image u (left) and noisy image f (right) corrupted by additive Gaussian
noise of standard deviation 20.

In this example we study the difference between the penalizers

ΦIC(u) = inf
u=u1+u2

{α1‖R1u1‖1,ω1
+ α2‖R2u2‖1,ω2

}

= inf
R1u=x1+x2
xi∈R(R1)

{α1‖x1‖1,ω1
+ α2‖L1x2‖1,ω2

},

ΦMIC(u) = inf
u=u1+u2
s1∈N(RT

1 )

{α1‖R1u1 − s1‖1,ω1
+ α2‖R2u2 + L1s1‖1,ω2

}

= inf
R1u=x1+x2

{α1‖x1‖1,ω1
+ α2‖L1x2‖1,ω2

}.

Figures 6.3 and 6.4 show decompositions by ΦIC and ΦMIC of the image u given
in Figure 6.2 (left). Note that for a better visual impression the gray values of the
images depicting R1u, x1 and x2 are restricted to the interval [−10, 10] and all values
outside of this interval are represented by the gray values −10 and 10.

In image restoration the aim of a regularization term is usually to penalize the
noise contained in u without penalizing structures of the original noisefree image.
This example will show that for appropriate α1, α2, the functional

ΦMIC penalizes linear regions of our noisefree test image much less than ΦIC .
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(f) x2,1 = R1,xu2
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(i) x2,2 = R1,yu2

Figure 6.3. Decomposition of the original images u and R1u in Figure 6.2 by ΦIC(u) with
α1 = 60 and α2 = 150.

In the first row of Figures 6.3 and 6.4, we can see that the images u1 and u2

look quite similar for both functionals. However, the decompositions of R1u into the
vectors xi =

(
xT
i,1, xT

i,2

)T
for i = 1, 2 depicted in the second and third row of Figures

6.3 and 6.4 are fundamentally different.

In ΦMIC(u) the additional variable s1 allows for a decomposition such that
x1 = R1u1 − s1 contains only the gradients of the edges whereas x2 = R1u2 + s1
comprises the gradients of the linear parts; see also Figure 6.5. Hence, by α1‖x1‖1,ω1

the functional ΦMIC(u) penalizes only the gradients at the edges, and since within
linear regions the second derivatives are zero, α2‖L1x2‖1,ω2

penalizes only the bound-
aries of the linear regions of u.

In contrast, for ΦIC(u) it is not possible to choose the same xi, i = 1, 2, due to
the restriction that xi must be in R(R1), or, equivalently, the absence of the variable
s1. Thus, we see in the second and third row of Figure 6.3 that x1 and x2 do not
separate R1u into a part which contains the gradients of the edges and the linear
components, respectively. Especially x1,2 comprises a significant part of the gradients
of the linear regions which is then penalized by α1‖x1‖1,ω1

. This leads to a higher
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(f) x2,1 = R1,xu2 + s1,1
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(h) x1,2 = R1,yu1 − s1,2
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(i) x2,2 = R1,yu2 + s1,2

Figure 6.4. Decomposition of the original images u and R1u in Figure 6.2 by ΦMIC(u) with
α1 = 60 and α2 = 150.

value of the penalizer ΦIC(u) compared to the value of ΦMIC(u); i.e. for appropriate
αi the functional ΦIC wrongly penalizes linear regions much more than does ΦMIC(u).

Example 6.2. Our next Figures 6.6 and 6.7 illustrate what happens if we apply
(ℓ22-IC/P) and (ℓ22-MIC/P) to the noisy image depicted in Figure 6.2 (right). First of
all, a slight smoothing of the edges of the restored image û is visible for both problems,
in particular if we look at the images of R1,xu and R1,yu. However, due to our choice
of α1 < α2 this smoothing is of minor extent so that it is hardly visible by looking at
the restored image û compared to the original image u. Visually more eye-catching
are the staircasing artifacts of the restoration result of (ℓ22-IC/P). These artifacts can
be explained as follows: If we assume that u2 is given as in Figure 6.6, then u1 is the
solution of the functional

inf
u1

{
1

2
‖(f − u2)− u1‖22 + α1‖R1u1‖1,ω1

}
.

This functional is nothing else than the ROF functional applied to f − u2, which
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(c) R1,yu2

Figure 6.5. The components s1,2, R1,yu1 and R1,yu2 which allow the favorable decomposition
R1,yu = x1,2 + x2,2 depicted in the third row of Figure 6.4.
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Figure 6.6. Results of (ℓ22-IC/P) applied to the noisy image f in Figure 6.2 (right) for α1 = 60
and α2 = 150.

is known to produce staircasing at linear regions of û − u2. By choosing a larger
α1 and thus bringing u2 closer to u, these artifacts can be reduced, although visible
blurring artifacts at the edges are introduced. In contrast to (ℓ22-IC/P) the result of
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=

 

 

−50

0

50

100

150

(b) û1
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Figure 6.7. Results of (ℓ22-MIC/P) applied to the noisy image f in Figure 6.2 (right) α1 = 60
and α2 = 150.

(ℓ22-MIC/P) is nearly perfect without any staircasing. The reason for this is that all
gradients at the linear regions of the original image u are contained in x2 rather than
x1.

Example 6.3. For natural images, the ℓ22-IC and the ℓ22-MIC approach with ordinary
difference matrices work quite similar and for most images there will be no visual
differences. The image of a car shown in Figure 6.8 contains affine sets and sharp
edges so that the ℓ22-MIC approach is again superior to ℓ22-IC.

Example 6.4. Finally, we give a denoising example for ℓ22-IC/MIC with the differ-
ence matrices D(ξ1) and D(ξ1, ξ2) in Figure 6.9, where ξ1 = 0.03 and ξ2 = −0.03. We
mention that the denoised image for ℓ22-MIC with Di, i = 1, 2 (i.e. ξ1 = ξ2 = 0) looks
quite similar while ℓ22-IC with these matrices shows fewer staircasing effects.

7. Conclusions
We have presented a general discrete approach to modify infimal convolutions

containing ℓ1-type functionals with linear operators. For the special case of finite
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Figure 6.8. Top: Original image u (left), image size: 200 × 270, copyright P. Allert, Allert
and Hoess Photography GbR, München, and noisy image f (right) corrupted by additive Gaussian
noise of standard deviation 20. Middle: Denoised images by ℓ22-IC (left) and ℓ22-MIC (right) with
ordinary difference matrices Di, i = 1, 2 with α1 = 23 and α2 = 60. Bottom: Part of the denoised
images by ℓ22-IC (left) and ℓ22-MIC (right).

difference matrices we obtain the results from our previous paper [34] and a discrete
version of [5]. However, in contrast to [34], we also considered the primal problem,
which in our opinion outlines the differences between the original and the modified
version in a better way. We illustrated these differences by numerical examples show-
ing also decompositions of the primal variables appearing in the functional. An open
question is the role of different factorizations in (3.1). Besides, it remains to examine
other useful operators for image processing tasks as, e.g., frame analysis operators. A
first step in this direction was done by considering more general difference matrices
known from L splines. This paper also contributes to finding fast algorithms to solve
problems with infimal convolutions containing ℓ1-type functionals. In particular, we
apply two splitting methods, the alternating direction method of multipliers and the
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Figure 6.9. First row: Original image u (left) and noisy image f (right) corrupted by additive
Gaussian noise of standard deviation 20. Second row: Plots of the 99th row of the images in the
first row. Third row: Denoised images by ℓ22-IC (left) and ℓ22-MIC (right) for α1 = 27 and α2 = 100.
Fourth row: Plots of the 99th row of the images in the third row.

primal-dual hybrid gradient algorithm. Both of them use the additive structure of
our objective functions and solve in each iteration subproblems corresponding to these
terms. We show numerically that the resulting algorithms are much faster than the
commercial software MOSEK which implements second order cone programming.
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