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STABILITY BEHAVIOR OF THREE NON-NEWTONIAN

MAGNETIC FLUIDS IN POROUS MEDIA∗

KADRY ZAKARIA† , MAGDY A. SIRWAH‡ , AND SAMEH A. ALKHARASHI§

Abstract. The present study deals with stability properties of two-dimensional non-Newtonian
fluid layers moving in porous media, under the influence of uniform magnetic field. The system
is composed of a middle fluid embedded between two semi-infinite fluids. The limiting case of
the stability of one interface between two viscoelastic fluids is discussed. The presented analysis
takes into account the modified Darcy’s law. The principle aim of this work is to investigate the
influence of fluid elasticity and the porosity effect on the growth rate in the presence of a magnetic
field. The stability analysis is performed theoretically and stability diagrams are obtained. The
stability analysis shows that non-Newtonian (viscoelastic) fluid layers have a higher growth rate
than Newtonian fluid layers, indicating that non-Newtonian fluid sheets are more unstable than
Newtonian fluid sheets. It is observed that in fluid sheets the fluid elasticity tends to damp the
stability, whereas the fluid viscosity results in an enhancement of stability. The phenomenon of the
dual role is found to increase the porous parameter as well as the magnetic permeability ratio. It
has been found that the increase of the viscosity coefficient damps the growth rate, while increasing
the Reynolds number has the opposite effect.
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1. Introduction

Interest in flows of non-Newtonian fluids through a porous medium has grown
considerably because of their applications in modern technology and industries, such
as in diesel engines, gas turbine engines, liquid rocket engines, oil burners, spray coat-
ing processes, plastics manufacturing, and metal powder production and lubrication.

A series of studies on hydrodynamic stability has been initiated by many authors;
in particular, Funada and Joseph [1] have discussed the instability of viscous potential
flow in a horizontal rectangular channel. The analysis leads to an explicit dispersion
relation in which the effects of surface tension and viscosity on the normal stress
are not neglected but the effect of shear stresses is. The influence of viscosity on
the stability of the plane interface separating two incompressible superposed fluids
of uniform densities, when the whole system is immersed in a uniform horizontal
magnetic field, has been studied by Bhatia [2]. He has developed the stability analysis
for two fluids of equal kinematic viscosities and different uniform densities. A good
account of hydrodynamic stability problems has also been given by Drazin and Reid [3]
and Joseph [4]. The unsteady electrohydrodynamic stability has been investigated by
Elhefnawy [5], where the stability analysis has been made of a basic flow of streaming
fluids in the presence of an oblique periodic electric field.

Zakaria et al [6] have analyzed the stability properties of periodic superposed
magnetic fluids streaming through porous media under the influence of an oblique
alternating magnetic field, where the system is composed of a middle fluid sheet of
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finite thickness embedded between two other bounded layers. Also, Zakaria et al [7]
have investigated the instability properties of superposed conducting fluids streaming
through porous media under the influence of a uniform magnetic field, where the
system is composed of a middle fluid sheet of finite thickness embedded between two
semi-infinite fluids. They found that the increase of the viscosity coefficient as well
as the porosity plays an irregular role in the stability behavior, while the increase of
the fluid velocity has a destabilizing influence in the stability criteria.

In all the works cited above, the fluids have been considered to be Newtonian
(fluids such as water, air, ethanol, and benzene are Newtonian, while oil, liquid poly-
mers, rubber, colloidal suspension and blood are non-Newtonian fluids). The study
of non-Newtonian fluids is complicated compared with the Newtonian ones due to the
interaction of the fluid viscosity and elasticity [8]. The mechanisms of non-Newtonian
fluid sheets are of both practical and theoretical interest. In practice, it is often nec-
essary to design atomization equipment for fluids which are highly non-Newtonian.
From a theoretical point of view this problem is also of interest since a linear sta-
bility analysis of Newtonian fluids layers successfully predicts the characteristics of
these layers under certain conditions. It is therefore tempting to investigate whether
a linear stability analysis would lead to similar results for non-Newtonian fluids.

In recent years, there have been several studies [9, 10, 11, 12, 13, 14, 15, 16, 17]
on flows of non-Newtonian fluids, not only because of their technological significance,
but also in view of the interesting mathematical features presented by the equations
governing the flow. On the other hand, it is well known that the rheological properties
of many fluids are not well modeled by the Navier-Stokes equations. For example,
in most of these models, a significant reduction of the drag past solid walls has been
observed. Moreover, elastic properties of real fluids can be detected and measured.

Liu et al [9] have studied the instability properties of two-dimensional non-
Newtonian liquid sheets moving in an inviscid gaseous environment. They found that
non-Newtonian liquid sheets have a higher growth rate than Newtonian liquid sheets
for both symmetric and antisymmetric disturbances, indicating that non-Newtonian
liquid sheets are more unstable than Newtonian liquid sheets.

Based on a modified Darcy’s law for a viscoelastic fluid, Tan and Masuoka [13]
extended Stokes first problem to that for an Oldroyd-B fluid in a porous half space,
where an exact solution was obtained by using the Fourier sine transform. Khan et
al [15] have produced analytical solutions for the magnetohydrodynamic flow of an
Oldroyd-B fluid through a porous medium. They obtained the expressions for the
velocity field and the tangential stress by means of the Fourier sine transform. Hayat
et al [18] have discussed two Couette flows of a second grade fluid in a porous layer
when (i) the bottom plate moves suddenly (ii) the bottom plate oscillates. They used
a Laplace transform method to determine the analytic solutions. Kumar and Singh
[19] have investigated the stability of a plane interface separating two viscoelastic
(Rivlin-Ericksen) superposed fluids in the presence of suspended particles. They con-
cluded that the system is stable for stable configuration and unstable for unstable
configuration in the presence of suspended particles.

In this paper, we consider a system composed of a non-Newtonian (viscoelastic)
fluid sheet of finite thickness embedded between two semi-infinite fluids. The system
is influenced by an oblique magnetic field. The objective of the present work is to
investigate the mechanisms of stability of three magnetic fluid layers in porous media,
and to find whether a linear stability analysis for magnetic non-Newtonian fluids layers
would result in conclusions similar to Newtonian fluids. The plan of this work is as
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follows: In next section, we will give a description of the problem including the basic
equations of the fluid mechanics and Maxwell’s equations governing the motion of our
model. In the third section the liner stability analysis and the equilibrium solutions
are derived. The fourth section and its subsections are concerned with the derivation
of the characteristic equations and numerical applications for stability configuration.
Also in this section the streamlines distribution are plotted and discussed. In the fifth
section, the limiting case of the stability of one interface is investigated, where some
stability diagrams are plotted and studied. Finally, the salient results of our analysis
are discussed in the conclusion.

2. Statement of the problem

2.1. Governing equations. Consider an infinite horizontal viscoelastic fluid
sheet of vertical height 2a confined between two semi-infinite superposed viscoelastic
fluids. Figure 2.1 represents a sketch of the system under consideration where the
coordinates are chosen such that the x-axis is parallel to the direction of the fluid
sheet flow and the y-axis is normal to the fluid sheet with its origin located at the
middle plane of the fluid sheet. The lower fluid occupies the region −a<y<−∞, the
middle fluid is contained in the region typified by −a<y<a while the range a<y<
∞ represents the upper fluid. The system is considered to be influenced by the gravity
force g(0, g) in the negative y-direction. The two interfaces between the fluids are
assumed to be well defined, initially flat, and form the interfaces y=−a and y=a. In
fact, sharp interfaces between the fluids may not exist. Rather, there is an ill-defined
transition region in which the two fluids intermix. The width of this transition zone
is usually small compared with the other characteristic length of the motion; hence,
for the purpose of the mathematical analysis, we shall assume that the fluids are
separated by sharp interfaces. The two interfaces are parallel and the flow in each
phase are everywhere parallel to each other. The surface deflections are expressed
by y= ξ1(x,t) at y=−a and y= ξ2(x,t) at y=a, where y=± a are the equilibrium
positions of the two interfaces, i.e. the positions without disturbances, and ξl, (l=1,2)
is the displacement of a point on the surface (the size of the disturbance at a point).
The fluids are initially assumed to be stressed by an oblique uniform magnetic field

H(j)=H(j)
(

cos(θj) ex+sin(θj) ey
)

, j=1,2,3, (2.1)

where H(j) is the amplitude of the field, and θj ∈ [0,π] represents the angle between

the field H(j) and the x-axis. The index j=1,2 and 3 distinguishs the quantities in
the lower fluid, plane sheet and upper phase respectively. The unit vectors ex and ey
are in the x- and y- directions.

The fundamental equation that governs and describes the behavior of fluid bulk
through a porous media can be written as [15, 18, 20]

ρj
du(j)

dt
=−∇p̄(j)+∇· S(j)+R(j). (2.2)

Here d/dt≡∂/∂t+(u(j) ·∇) stands for the convective derivative, ∂/∂t is the partial
derivative with respect to the time t, ∇≡ (∂/∂x,∂/∂y) denotes the horizontal gradient
operator, u(j) is the velocity vector, p̄(j)=p(j)+ρjgy indicates the total hydrostatic

pressure, and R(j) is the Darcy resistance for the Oldroyd-B fluid in a porous medium.

The stress tensor S(j) is described by the Oldroyd-B constitutive equation given
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Fig. 2.1. Sketch of the system under consideration.

by [8, 13, 17]

(

1+λ
(j)
1

∂

∂t

)

S(j)=2µj

(

1+λ
(j)
2

∂

∂t

)

E(j), (2.3)

where E(j) is the strain tensor of the form

E(j)=
1

2
[∇u(j)+(∇u(j))T ], (2.4)

where µj is the dynamic viscosity, λ
(j)
1 denotes the characteristic relaxation time

depending on viscoelasticity and λ
(j)
2 is the constant deformation retardation time.

It is assumed that λ
(j)
1 ≥λ(j)2 ≥0 (see [13]). The superscript T indicates the matrix

transpose.

By analogy with the Oldroyd-B model, the following phenomenological model,
which relates the pressure drop and velocity for a viscoelastic fluid in an unbounded
porous medium, has been introduced [13, 21]:

(

1+λ
(j)
1

∂

∂t

)

∇p(j)=−µjφj
q

(

1+λ
(j)
2

∂

∂t

)

u(j), (2.5)

where φ denotes the porosity and q is the permeability of the porous media. In general,
permeability is a tensor which depends on the porous medium microstructure (shape,
size, and orientation of pores), but in the case of isotropy it reduces to a scalar;
furthermore, when the Reynolds number is small, it is independent of the flow rate
and the fluid properties. On the other hand, we apply the Brinkman approximation
[17, 22, 23], in which the fluid viscosity given by Equation (2.3) and the effective
viscosity of the porous media in Equation (2.5) are equal to each other. The above

equation shows that when λ
(j)
1 =λ

(j)
2 =0, the modified Darcy’s law can be simplified

to Darcy’s law.
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The relation between the flow resistance R(j) and velocity u(j) can be inferred
from Equation (2.5) to satisfy the following Equation:

(

1+λ
(j)
1

∂

∂t

)

R(j)=−µjφj
qj

(

1+λ
(j)
2

∂

∂t

)

u(j). (2.6)

It is useful at this point to nondimensionalize the governing equations and the bound-
ary conditions. In fact, we will use dimensionless variables to provide improved insight
into the physics and in order to better understand hydrodynamic stability. We shall
use an asterisk as a superscript to the dimensional form and omit the asterisk for the
dimensionless form where it is desirable to use the forms of the same physical quan-
tities. Thus, we may henceforth write u∗(x∗,t∗) for the dimensional and u(x,t) for
the dimensionless total velocity of a disturbed flow, since we define the corresponding
dimensionless variables using the half thickness of the middle fluid sheet a: the stream
velocity u∗=

√
ag u, the time t∗=

√

a/g t, the pressure p∗=agρ2 p, the stream func-

tion ψ∗=
√

a3g ψ, and (x∗,y∗)=a (x,y). The applied magnetic field and the magnetic

potential are made dimensionless by H∗=
√

agρ2/µe2 H and χ∗=
√

a3gρ2/µe2 χ re-
spectively.

Assuming a quiescent initial state, the base state velocity in the fluid layers in
which the flow is steady and fully developed is zero. Thus in the dimensionless form
Equation (2.2) along with Equation (2.3), (2.6) yields

ρ̂j

(

1+λ
(j)
1

∂

∂t

)

∂u(j)

∂t

=−
(

1+λ
(j)
1

∂

∂t

)

∇p̄(j)+ µ̂j

Re2

(

1+λ
(j)
2

∂

∂t

){

2 ∇. E(j)+
u(j)

Qj

}

, (2.7)

associated with the continuity equation which expresses the conservation of mass:

∇. u(j)=0, (2.8)

where ρ̂j =ρj/ρ2 is the fluid density ratio, the parameter µ̂j =µj/µ2 represents the

ratio of the dynamic viscosities, Re2=ρ2
√

a3g/µ2 denotes the Reynolds number of

the middle layer, and Qj =
qj/a
φj

is the permeability parameter. Note that Equation

(2.7) can be simplified to the empirical modified Darcy’s law Equation (2.5) if the

unsteady term ∂u(j)/∂t and the viscous term ∇. E(j) are ignored.
We shall assume that there are no free currents at the surface of separation in

the equilibrium state, and hence, in the magneto quasi-static system with negligible
displacement current, Maxwell’s equations are reduced to Gauss’s and Ampér’s laws
[24, 25], which are

∇. B(j)=0, (2.9)

∇×h(j)=0, (2.10)

where, the notation × refers to the vector product of two vectors, B(j)=µej h(j) is

the magnetic induction vector, µej is the magnetic permeability, and h(j) is the total
magnetic field.

Equation (2.9) and (2.10) show that there exists a magnetic scalar potential
χ(j)(x,y,t) in each of the regions occupied by the fluids such that

h(j)=H(j)−∇χ(j). (2.11)
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Therefore the magnetic scalar potential satisfies Laplace’s equation

∇2χ(j)(x,y,t)=0. (2.12)

2.2. Boundary conditions. In order to complete the formulation of the
problem, the boundary conditions have to be specified. At the boundaries, the flu-
ids and the magnetic stresses must be balanced. The components of these stresses
consist of the hydrodynamics pressure, surface tension, porosity effects, and magnetic
stresses [25]. The boundary conditions represented here are prescribed at the inter-
face y= ξl(x,t), where ξl is the height of the disturbed interfaces away from its initial
position (y=±1) which is defined in the next section. As the interface is deformed,
all variables are slightly perturbed from their equilibrium values. Because the inter-
facial displacement is small, the boundary conditions on the perturbation interfacial
variables need to be evaluated at the equilibrium position rather than at the interface.
Therefore, it is necessary to express all the physical quantities involved in terms of
Taylor series about y=±1.

(i) Kinematics boundary conditions:

The flow field solutions of the above governing equations have to satisfy the
kinematic and dynamic boundary conditions at the two interfaces, which can be taken
as y≈±1 (the first order approximation for a small displacement of the interfaces due
to the disturbance).

1- The normal component of the velocity vector in each of the phases of the system
is continuous on the dividing surface. This implies that

nl.u
(l)=nl.u

(l+1), y=(−1)l, l=1,2, (2.13)

where nl is the outward normal unit vector to the interfaces which is given from
the relation nl=∇Fl/ |∇Fl |, and Fl(x,y,t) is the surface geometry defined by Fl=
y−ξl(x,t)=±1.

2- Since the interfaces are moving with the fluids (DFl/Dt=0), we require that

ul,(l+1)
y +

∂ξl
∂t

=0, y=(−1)l, l=1,2. (2.14)

3- The jump in the shearing stresses must be zero across the interfaces, so that

Sxy =0 or

∣

∣

∣

∣

∣

[

µ̂l(ω) (
∂u

(l)
x

∂y
+
∂u

(l)
y

∂x
)

]∣

∣

∣

∣

∣

l+1

l

=0, y=(−1)l, l=1,2, (2.15)

where, (ux,uy) are the velocity components due to disturbances and µ̂l(ω) is the
frequency-dependent viscosity ratio defined in the following section. The notation
|[X]| is used here to signify the difference in some quantity X across the interfaces.

(ii) Maxwell’s conditions, for the magnetic potential

We use Maxwell’s conditions on the magnetic field where no free surface charges
are present on the interfaces as follows:

1- The continuity of the normal component of the magnetic displacement at the
interfaces gives

nl. µ̂el H
(l)=nl. H

(l+1), y=(−1)l, l=1,2, (2.16a)
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for which the zero order term reads

µ̂el H
(l) sin(θl)=H

(l+1) sin(θl+l), (2.16b)

where µ̂e1=µe1/µe2 and µ̂e2=µe3/µe2 are the magnetic permeability ratios. Using
the zero order term to express both H(2), H(3), and θ2, θ3 in terms of H(1) and θ1
respectively, the first order reads

∂χ(2)

∂y
− µ̂e1

∂χ(1)

∂y
=(µ̂e1−1) H(1) cos(θ1)

∂ξ1
∂x

, y=−1,

∂χ(2)

∂y
− µ̂e2

∂χ(3)

∂y
=(µ̂e2−1) H(1)cos(θ1)

∂ξ2
∂x

, y=1.

(2.16c)

2- The tangential component of the magnetic field is zero across the interfaces,
so that

nl×H(l)=nl× H(l+1), y=(−1)l, l=1,2. (2.17a)

From this equation, the zero order term reads

H(l) cos(θl)=H
(l+1) cos(θl+l), (2.17b)

and the first order term has the form

∂χ(2)

∂x
− ∂χ(1)

∂x
=(µ̂e2−1) H(1) sin(θ1)

∂ξ1
∂x

, y=−1,

∂χ(3)

∂x
− ∂χ(2)

∂x
=(µ̂e1/µ̂e2− µ̂e1) H

(1) sin(θ1)
∂ξ2
∂x

, y=1.

(2.17c)

(iii) Component of the normal stress tensor

The normal component of the stress tensor is discontinuous by the amount of the
surface tension [6]. Thus, the balance at the dividing surfaces gives (the dynamical
boundary conditions)

∣

∣

[

nl. S .nl

]∣

∣

l+1

l
=Wl ∇. nl, y=(−1)l, l=1,2. (2.18)

Here, Wl=Tl/a
2gρ2 is the dimensionless Weber number, where Tl represents the

interfacial surface tension coefficient, and S is the total stress tensor at the interfaces
given by

Smn=−p δmn+µ(ω)

(

∂um
∂xn

+
∂un
∂xm

)

+µeHmHn−
1

2
µeH

2δmn, (2.19)

where δmn is the Kronecker’s delta symbol which equals 1 if m=n and 0 otherwise.

Substituting Equation (2.19) into Equation (2.18) yields

∣

∣

[

−p+2µ(ω)
∂uy
∂y

+µe(H
2
n−

1

2
H2)

]∣

∣

l+1

l
=Wl ∇. nl. (2.20)

3. Stability analysis
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3.1. Linear perturbation. In order to investigate the stability of the present
problem, the interfaces between the fluids will be assumed to be perturbed about their
equilibrium location and will cause a displacement of the material particles of the fluid
system. This displacement may be described by the equation

ξl(x,t)= ξ̂l e
ikx+ωt+c.c, l=1,2, (3.1)

where ξ̂l is the initial amplitude of the disturbance, which is taken to be much smaller
than the half-thickness a of the middle sheet, k is the wave number of the disturbance,
which is assumed to be real and positive (k=2π/λ, where λ is the wavelength of the
disturbance), ω is a complex frequency (ω=ωr+ iωi, where ωr represents the rate of
growth of the disturbance, ωi is 2π times the disturbance frequency), the symbol i
denotes

√
−1, the imaginary number and c.c represents the complex conjugate of the

preceding terms.
The deformation in the interfaces y=±1 is due to the perturbation about the

equilibrium values of all the other variables. The form of horizontal variation for all
the other perturbed variables will be the same as the displacement description (3.1).
In accordance with the interface deflection given by (3.1) and in view of a standard
Fourier decomposition, we may similarly assume that the bulk solutions are periodic
functions in x and exponential functions in t, which are regarded as













S

E

u

χ
p













=













Ŝ(y)

Ê(y)
û(y)
χ̂(y)
p̂(y)













eikx+ωt+c.c. (3.2)

Substituting Equation (2.4) and (3.2) into Equation (2.3) yields

S(j)=2 µj(ω) E
(j), (3.3)

where

µj(ω)=µj
1+λ

(j)
2 ω

1+λ
(j)
1 ω

.

It should be noted that this model is sometimes called Maxwell-Jeffreys fluid and

includes, as special cases, the Maxwell model at λ
(j)
2 =0, and when λ

(j)
1 =λ

(j)
2 =0, the

sheet of viscoelastic fluid transfors into a Newtonian one. Thus, in this linearized
stability analysis about the static base state, the only way in which viscoelasticity
appears in the calculation is through the growth-rate dependence of viscosity. In
principle, one could therefore obtain the dispersion relation relating the growth rate
to the wave number by simply substituting the frequency-dependent viscosity µj(ω)
instead of the constant viscosity in the characteristic equation for a Newtonian fluid.

3.2. Lines of solutions. The equations of motion and the boundary condi-
tions mentioned previously will be solved under the assumption that the perturbations
are small; so, all equations of motion and boundary conditions will be linearized in
the perturbed quantities. Eliminating the pressure term by taking the rotation of
Equation (2.7), using (2.8) we get the equation

{

ρ̂j ω+
µ̂j(ω)

Qj Re2

}

∇×u(j)=
2µ̂j(ω)

Re2
∇×∇. E(j), (3.4)
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since we define the divergence of the tensor as [24]

∇. E=eκ
∂

∂xκ
(Emn em en)=en

∂Emn

∂xm
, m,n,κ ∈ {x,y}. (3.5)

The solution of the above system of governing equations and boundary conditions
can be facilitated by defining a stream function ψ of the time and space coordinates,
which automatically satisfies Equation (2.8), where

ux=
∂ψ

∂y
, uy =−∂ψ

∂x
. (3.6)

Using the normal mode approach we write the perturbations in the form

ψ= ψ̂(y) eikx+ωt+c.c. (3.7)

Substituting Equation (3.6) into Equation (3.4) (taking into account Equation (3.5)),
we obtain the equation

∇4ψ(j)−(L2
j −k2)∇2ψ(j)=0, (3.8)

where

Lj =

√

k2+
ρ̂j Re2 ω

µ̂j(ω)
+

1

Qj
.

Using the solution (3.7), Equation (3.8) can be transformed into the following form:

d4ψ̂(j)

dy4
−(L2

j +k
2)
d2ψ̂(j)

dy2
+k2L2

j ψ̂
(j)=0. (3.9)

It is obvious that the analytical solution of Equation (3.9) is of the form

ψ̂(j)(y)=A
(j)
1 eky+A

(j)
2 e−ky+A

(j)
3 eLjy+A

(j)
4 e−Ljy. (3.10)

Since the boundary conditions require that the disturbances vanish as y→±∞ (i.e.

A
(1)
2 =A

(1)
4 =A

(3)
1 =A

(3)
3 =0), we have the stream function in the three layers:

ψ(1)=(A
(1)
1 eky+A

(1)
3 eL1y) eikx+ωt+c.c, y<−1,

ψ(2)=(A
(2)
1 eky+A

(2)
2 e−ky+A

(2)
3 eL2y+A

(2)
4 e−L2y) eikx+ωt+c.c, −1<y<1,

ψ(3)=(A
(3)
2 e−ky+A

(3)
4 e−L3y) eikx+ωt+c.c, y>1. (3.11)

The coefficients A’s can be determined from the above boundary conditions, where

A
(1)
1 =A

(1)
11 ξ̂1+A

(1)
12 ξ̂2, A

(1)
3 =A

(1)
31 ξ̂1+A

(1)
32 ξ̂2,

A
(2)
1 =A

(2)
11 ξ̂1+A

(2)
12 ξ̂2, A

(2)
2 =A

(2)
21 ξ̂1+A

(2)
22 ξ̂2,

A
(2)
3 =A

(2)
31 ξ̂1+A

(2)
32 ξ̂2, A

(2)
4 =A

(2)
41 ξ̂1+A

(2)
42 ξ̂2,

A
(3)
2 =A

(3)
21 ξ̂1+A

(3)
22 ξ̂2, A

(3)
4 =A

(3)
41 ξ̂1+A

(3)
42 ξ̂2, (3.12)

and the values A
(j)
ql , (q=1, ...,4) are given in Appendix A.
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To determine the pressure, Equation (3.2) along with (2.7, 3.3) yields

p(j)=
1

ik

{ µ̂j(ω)

Re2

[∂3ψ(j)

∂y3
+
∂3ψ(j)

∂x2∂y
− 1

Qj

∂ψ(j)

∂y

]

− ρ̂j
∂2ψ(j)

∂x∂t

}

. (3.13)

The solution of the magnetic potential, in view of Equation (2.12) and (3.2), may be
taken to be of the form

χ(1)=B
(1)
1 eikx+ky+ωt+c.c, y<−1,

χ(2)=(B
(2)
1 eky+B

(2)
2 e−ky) eikx+ωt+c.c, −1<y<1,

χ(3)=B
(3)
2 eikx−ky+ωt+c.c, y>1. (3.14)

The coefficients B’s are determined from the boundary conditions, where

B
(1)
1 =B

(1)
11 ξ̂1+B

(1)
12 ξ̂2, B

(2)
1 =B

(2)
11 ξ̂1+B

(2)
12 ξ̂2,

B
(2)
2 =B

(2)
21 ξ̂1+B

(2)
22 ξ̂2, B

(3)
2 =B

(3)
21 ξ̂1+B

(3)
22 ξ̂2, (3.15)

and the algebraic expressions of the coefficients B
(r)
pl ,(r,p,l=1, 2) are defined in Ap-

pendix B.

4. Derivation of the characteristic equations and their stability

In this section, we will determine the boundary-value problem cited above, in
which we obtain the characteristic equation governing the interfacial waves. The
components of these stresses consist of hydrodynamic pressure, porosity effects, sur-
face tension stresses, and magnetic stresses, and must be balanced at the boundaries
among the fluids. Inserting Equation (3.11-3.15) into the dynamical conditions (2.20),

we get a linear system of homogenous algebraic equations in terms of ξ̂1 and ξ̂2. This
homogeneous system of equations can be written in matrix form as

AX=0, (4.1)

where matrix A and X take the following form:

A=

(

Ω11 Ω12

Ω21 Ω22

)

, X=

(

ξ̂1
ξ̂2

)

. (4.2)

Here, the first row in matrix A is given by

Ω1m=
−1

Q2Re2

2
∑

l=1

e(−1)lk
{

µ̂2(ω)+Q2Re2
[

ω+2i(−1)lk2µ̂2(ω)
]

}

A
(2)
lm

− µ̂1(ω)

Q1Re2

{

e−k
[

1−2ik2Q1Re2
]

A
(1)
1m−2ikL1e

−L1Q1Re2A
(1)
3m

}

+2ikL2e
−L2 µ̂2(ω)

[

e2L2A
(2)
4m−A(2)

3m

]

− ρ̂1ωe−kA
(1)
1m−(2−m)

×(ρ̂1−k2W1−1)+f1m,

f1m=kH(1)e−k
{

µ̂e1 sin(θ1)
(

B
(1)
1m−B(2)

1m+e2kB
(2)
2m

)

+ icos(θ1)
(

B
(2)
1m− µ̂e1B

(1)
1m

+e2kB
(2)
2m

)

}

,
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and the second row is taken the form

Ω2m=
−1

Q2Re2

2
∑

l=1

e(−1)l+1k
{

µ̂2(ω)+Q2Re2
[

ω+2i(−1)lk2µ̂2(ω)
]

}

A
(2)
lm

+
µ̂3(ω)

Q3Re2

{

e−k
[

1+2ik2Q3Re2
]

A
(3)
2m+2ikL3e

−L3Q3Re2A
(3)
4m

}

+2ikL2e
−L2 µ̂2(ω)

[

e2L2A
(2)
3m−A(2)

4m

]

+ ρ̂3ωe
−kA

(3)
2m+(m−1)

×(ρ̂3+k
2W2−1)+f2m,

f2m=kH(1)e−k
{

µ̂e1 sin(θ1)
(

B
(3)
2m−B(2)

2m+e2kB
(2)
1m

)

+ icos(θ1)
(

B
(2)
2m− µ̂e2B

(3)
2m

+e2kB
(2)
1m

)

}

.

For the nontrivial solutions of the unknown coefficients ξ̂1 and ξ̂2 of the system of
equations, the determinant of the matrix A must be equal to zero, which gives the
dispersion relation of the present problem. It should be noted that this yields a
relation of the form

|A|=D(ω,k)=0, (4.3)

which represents the linear dispersion equation for surface waves propagating through
a non-Newtonian layer embedded between two other fluids with the influence of a
constant oblique magnetic field. This dispersion relation describes the relationship
between perturbation frequency ω and wavenumber k for different parameters and
controls the stability in the present problem. That is, each negative of the real part
of ω corresponds to a stable mode of the interfacial disturbance. On the other hand,
if the real part of ω is positive, the disturbance grows in time and the flow becomes
unstable.

4.1. Special cases. It is clear that the eigenvalue relation (4.3) is somewhat
more general and quite complex since Lj involves square roots and so one can obtain
other characteristic relations as limiting cases.

(i) For an inviscid fluid we get the characteristic equation as a special case of

Equation (4.3) when µj =λ
(j)
1 =λ

(j)
2 =0. Thus, by collecting the real and the imag-

inary terms in power order of ω with the help of symbolic computation software
Mathematica, Equation (4.3) can be transformed into the form

ω4+(α11+ iα12)ω
3+(α21+ iα22)ω

2+(α31+ iα32)ω+α41+ iα42=0, (4.4)

where the coefficients α’s are clear from the context. Zakaria et al [6] obtained a
similar equation in their study of temporal stability of an inviscid fluids in porous
media. All the roots of Equation (4.4) will have negative real parts, and hence the
corresponding system is stable, as the following conditions are satisfied [6, 26]:

υ1>0, υ2>0, υ3>0, υ4≥0, (4.5)

where, the values υ’s are given in Appendix C.

(ii) In the special case of a viscous fluid layer embedded in two viscous fluids

(i.e. λ
(j)
1 =λ

(j)
2 =0), we obtain a characteristic equation not different from the general

form of Equation (4.3), which is also an implicit dispersion relation between the
growth rate and the wave number since the value Lj is given by (3.8) reduced to

Lj =
√

k2+
ρ̂j Re2 ω

µ̂j
+ 1

Qj
.
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Fig. 4.1. Non-dimensional growth rate of different fluids versus non-dimensional wave number
at ρ̂1=0.5, ρ̂3=0.1, µ̂e1=2, µ̂e2=1 , µ̂1=2, µ̂3=2, Re2=800, Q1=2, Q2=5, Q3=3, W1=
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Fig. 4.2. Effects of the density ratio ρ̂3 in the plane (ωr−k) at H(1)=5, θ1=0, ρ̂1=5, µ̂e1=

1, µ̂e2=2, µ̂1=3, µ̂3=4, Re2=15, Q1=0.1, Q2=0.2, Q3=0.3, W1=2, W2=1, λ
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2 =0.3, λ
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(3)
2 =0.4, on the wave growth rate of both Newtonian and non-

Newtonian fluid layers with ρ̂3=3, 5.

4.2. Applications. In order to discuss the stability diagrams, we first specify
the parameters of Equation (4.3) which are used to control the stability behavior.
These include the magnetic field, the magnetic permeability, the porosity effect, the
density, the viscosity, and retardation and relaxation times. In the calculations given
below all the physical parameters are sought in the dimensionless form as defined in
Section 2.1. The stability of fluid sheets corresponds to negative values of the distur-
bance growth rate (i.e. ωr<0), and the disturbance growth rates of different fluids can
be gained through solving the above corresponding dispersion relation numerically.

Figure 4.1 shows the variation of the non-dimensional growth rate ωr with the
non-dimensional wave number k for a system having the parameters given in the
caption of Figure 4.1. In this figure the continuous line represents the Newtonian
fluid, the dotted curve denotes the inviscid fluid, and the dashed curve corresponds to
the non-Newtonian fluid. It can be shown from Figure 4.1 that the maximum growth
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Fig. 4.3. Influence of the Reynolds number Re2 in the plane (ωr−k) on the wave growth rate
of both Newtonian and non-Newtonian fluid layers with Re2=100, 1000 at the same system given
in Figure 4.2 but with ρ̂3=3.
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Fig. 4.4. Effects of the Reynolds number on non-dimensional growth rate of non-Newtonian
fluids versus non-dimensional wave number at H(1)=0.1, θ1=0, ρ̂1=0.1, ρ̂3=0.15, µ̂e1=2, µ̂e2=
1, µ̂1=2, µ̂3=2, Q1=2, Q2=5, Q3=3, W1=2, W2=1, with Re2=100 (solid), 300 (dashed),
1000 (dotted).

rate for any non-Newtonian fluid lies above that corresponding to a Newtonian fluid
and below that corresponding to an inviscid fluid. Similar results were reported by
Liu et al [9] in their studies of the instability of two-dimensional non-Newtonian
liquid sheets. The cutoff wave number (also called the critical wave number) can
be defined as [9] the value of the wave number at the point where the growth rate
curve crosses the wave number axis in the plots of wave growth rate versus wave
number. In other words, the critical wave number is the value of the wave number
which separates the stable motions from the unstable ones, and conversely can be
obtained from the corresponding dispersion relations by setting ωr=0. Since the
stability arises according to the negative sign of the real part of the complex frequency
ω, when the wave number is over the cutoff wave number the fluid sheet is stable.
Therefore, it is concluded that, in the range of flow parameters associated with the



780 STABILITY BEHAVIOR OF THREE NON-NEWTONIAN MAGNETIC FLUIDS

0.0 0.5 1.0 1.5

�0.005

0.000

0.005

0.010

0.015

0.020

� k

Ωr

Μ
�

e1
� 1.42

� 1.55

�1.72

Fig. 4.5. The graph is constructed for ωr versus k, for H(1)=3, θ1=0, ρ̂1=0.05, ρ̂3=

0.01, µ̂1=2, µ̂3=3, Re2=1300, Q1=2, Q2=5, Q3=3, W1=2, W2=1, λ
(1)
1 =0.5, λ

(1)
2 =

0.1, λ
(2)
1 =0.5, λ

(2)
2 =0.2, λ

(3)
1 =0.5, and λ

(3)
2 =0.1, with µ̂e1=1.42, 1.55, 1.72.

0.0 0.5 1.0 1.5

�0.01

0.00

0.01

0.02

� k

Ωr

Μ
�

e2
� 1.983

� 1.998

� 2.007

Fig. 4.6. The stability diagram in the plane (ωr−k) for the same system given in Figure 4.5,
with µ̂e1=1.5 at µ̂e2=1.983 (solid), 1.998 (dashed), 2.007 (dotted).

results of Figure 4.1, the region 0<k<0.58 (the left side of the cutoff wave number) is
unstable. Moreover, in this range, we observe that the sheet of such a non-Newtonian
fluid is more unstable than a Newtonian fluid sheet. On the other hand the region
0.58<k<0.74 (the negative values of the disturbance growth rate) is stable, and we
notice that non-Newtonian fluid layer is more stable than a Newtonian fluid sheet.

The examination of the increase of the density ratio ρ̂3 (=ρ3/ρ2) on the wave
growth rate of both Newtonian and non-Newtonian fluid layers is displayed in Figure
4.2. In this graph the solid line represents the Newtonian fluid, the dashed curve
denotes the non-Newtonian fluid at the density ratio ρ̂3=5, while the dotted line and
the dashed dotted curves denote respectively the Newtonian and the non-Newtonian
fluids at the density ratio ρ̂3=8. It can be discovered from Figure 4.2 that when
the fluid density ratio ρ̂3=5 is increased, both the growth rates and the cutoff wave
number of Newtonian and non-Newtonian fluid layers increase. Thus we conclude
that the increase of the density ratio ρ̂3=5 plays a destabilizing role in the stability
behavior in the presence of the horizontal magnetic field.
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In order to investigate the effect of the Reynolds number Re2 on the stability
criteria, numerical calculations for the dispersion relation (4.3) are made. The results
of these calculations are displayed in Figure 4.3 in the plane (ωr−k). The graph
displayed in this plane is evaluated for the same system given in Figure 4.2, but with
ρ̂3=3. In this graph the dotted line and the dashed dotted curves denote respectively
the Newtonian and the non-Newtonian fluids at the Reynolds number Re2=100,
while the solid curve represents the Newtonian fluid and the dashed line corresponds
to the non-Newtonian fluid at Re2=1000. It can be seen from Figure 4.3 that when
the Reynolds number is increased, the growth rate of Newtonian and non-Newtonian
fluid layers increase. Thus we conclude that the increase of the Reynolds number
plays a destabilizing role in the stability of the movement of the fluid.

Figure 4.4 is the plot of the wave number k versus the growth rate ωr for different
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Fig. 4.9. Streamlines contours for a system having the same parameters considered in Figure
4.2, with , Re2=500, k=0.8, t=0.1, ξ̂1=0.05, ξ̂2=0.07. while W2 = 2, 5, 8, and 10 of the parts
(a), (b), (c) and (d), respectively.

values of the Reynolds number of the middle layer, with the values of the other
parameters fixed, as given in the caption of Figure 4.4. In this figure the solid curve
is plotted at the value Re2=100, the value Re2=300 corresponds to the dashed line,
and the dotted curve represents the value Re2=1000. Note that the regions above the
wave number axis (i.e. the range to the left of the cutoff wave numbers) and below the
curves are assumed to be unstable, according the positive sign of the real part of the
complex frequency, while the areas below the wave number axis (i.e. the range right
to the cutoff wave numbers) which represent the negative values of the disturbance
growth rate, are stable. In this sense, we have three cutoff wave numbers which are
1.58, 1.95, and 2.1 corresponding to the values 100, 300, and 1000 of Re2 respectively.
Thus, it is obvious that as the Reynolds number increases both the growth rate and
the cutoff wave numbers increase, and hence we conclude that the Reynolds number
has a destabilizing influence on the movement of the layers (see [9]).

Figure 4.5 exhibits the effects of the the magnetic permeability ratio µ̂e1 (=
µe1/µe2) on the stability behavior of the fluid layers. In this graph the solid, dashed
and dotted curves represent the values 1.42, 1.55, and 1.72 of the ratio µ̂e1 respectively.
Having noted the stability chart of this diagram, it is observed that the increasing
of the magnetic permeability in the range 0<k<0.8 leads to an extension in the
width of the instability regions (the regions under the curves and above the wave
number axis correspond to the positive sign of the disturbance growth rate). On the
other hand the growth rates of instabilities with different µ̂e1 stay almost identical
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Fig. 4.10. The same system as that considered in Figure 4.9, while Re2=100, 500, 1000 and
1300 of the parts (a), (b), (c) and (d), respectively.

for the wave numbers in the range 0.8<k<1.5. In addition, the fluid sheet is stable
in the region 0.8<k<0.25 and both the cutoff wave numbers and the growth rates
are increased due to the increasing of the magnetic permeability ratio µ̂e1. It is clear
that the magnetic permeability µ̂e1 has a stabilizing effect on the movement of the
fluid sheets. In other words, the horizontal field has a stabilizing influence on the
movement of the waves when the magnetic permeability of the middle fluid µe2 is less
than its counterpart of the lower fluid µe1.

The influence of changes of the magnetic permeability parameter µ̂e2 (=µe3/µe2),
on the stability behavior in the plane (ωr−k) is illustrated in Figure 4.6. The
calculations are made for a system having the same parameters given in Figure 4.5,
while the permeability parameter µ̂e2 has some variation for the sake of comparison.
In the Figure 4.5 the values 1.983, 1.998, and 2.007 are selected for µ̂e2 correspond
to the the solid, dashed, and dotted curves respectively. It is apparent from the
inspection of Figure 4.6, under the influence of the permeability parameter µ̂e2, that
the growth rates with different magnetic permeability ratios are almost identical for
wave numbers less than 0.3, but increase correspondingly at higher values of the
wave number. Further, the plane (ωr−k) is divided into two regions: the first is
0<k<1, which represents a stabilizing effect for increasing the parameter µ̂e2, since
in this range we notice that when the permeability ratio µ̂e2 is increased, both the
growth rates and the cutoff wave numbers of non-Newtonian fluid sheets are decreased.
The second region lies in the range 1<k<2, and it is worthwhile to notice that the



784 STABILITY BEHAVIOR OF THREE NON-NEWTONIAN MAGNETIC FLUIDS

�0.08
�0.06

�0.04

�0.02

0

0

0

0

0.02

0.04

0.06
0.08

0 2 4 6

�1.0

�0.5

0.0

0.5

1.0

x

y

�a�

�0.08 �0.06

�0.04

�0.02
0

0

0

0.02

0.04

0.06

0.08

0 2 4 6

�1.0

�0.5

0.0

0.5

1.0

x

y

�b�

�0.2

�0.15

�0.1

�0.0

�0.05

0
0

0.05 0.05

0.1

0.15

0.2

0 2 4 6

�1.0

�0.5

0.0

0.5

1.0

x

y

�c�

�0.1

�0.1

�0.05

�0.05
0

0

0.05

0.05

0.05

0.1

0.1

0 2 4 6

�1.0

�0.5

0.0

0.5

1.0

x

y

�d�

Fig. 4.11. The same system as that considered in Figure 4.10, while Q1 =1, 30 ,60, and 65 on
the partitions (a), (b), (c) and (d), respectively.

destabilizing role is found for the increasing the parameter µ̂e2, where a slight increase
of the value of the magnetic permeability leads to a drastic increase in both the growth
rates and the cutoff wave numbers. A general trend revealed by Figure 4.5 is that
the phenomenon of the dual (irregular) role is observed for increasing the magnetic
permeability µ̂e2: one of the two roles is a stabilizing influence in the range 0<k<1,
and the other is a destabilizing influence in the range 1<k<2.

An inspection of Figures 4.5 and 4.6 then shows that, broadly speaking, the ratio
between the permeabilities µe1, µe3, and µe2 has a principle role in the administration
of the behavior of the horizontal field. This suggests that when the permeability of
the upper fluid µe3 is more than its counterpart of the middle fluid µe2, the field keeps
its energy and absorbs a part of the kinetic energy of the surface waves. On the other
hand, when the permeability of the inner fluid µe2 is less than that of the lower fluid
µe1, the field sometimes keeps its energy and absorbs a parts of the kinetic energy
of the interfacial waves, while transmitting its energy to these waves, which leads to
instability of the motion of other waves.

In order to explore the effects of the retardation time λ
(2)
2 on the stability criteria,

three values of λ
(2)
2 are collected in Figure 4.7 in the plane (ωr−Re2). In this figure we

select the values λ
(2)
2 = 0.4, 0.5, and 0.6 correspond to the solid, dashed, and dotted

curves respectively. Investigation of the stability diagram of Figure 4.7 reveals that
there are three values of the cutoff Reynolds number which are Re2=2.26,2.45,2.56

correspond to the values 0.4, 0.5, and 0.6 of λ
(2)
2 respectively. Thus, we conclude that

the increase of the cutoff Re2 leads to an increase of the retardation time λ
(2)
2 . On
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the other side the stability areas under the curves are contracted due to the increase

of the retardation time λ
(2)
2 . At this end, it can be demonstrated that the increase

of the retardation time λ
(2)
2 plays a destabilizing role in the stability behavior. This

result is in agreement with that obtained in [27].
Figure 4.8 illustrates the influence of the density ratio ρ̂1 (=ρ1/ρ2, the lower layer

to the middle sheet) on the wave growth rate. The graph shown in the plane (ωr−k)
are achieved for three values of the ratio ρ̂1 =0.04, 0.1, and 0.16, corresponding to
the continuous, dashed, and dotted lines respectively, where the other quantities are
held fixed. In this figure the areas lying under the k−axis and above the curves are
stable and may be called stability regions (corresponding to the negative values of ωr).
The inspection of the stability diagram of Figure 4.8 reveals that the increase of the
density ratio ρ̂1 leads to increase in the width of the stability regions. The conclusion
that may be drawn here is that the ratio ρ̂1 has a stabilizing influence on the stability
behavior of the waves. This result confirms the fact that the system is stable when
the lower fluid is more heavy than the upper.

4.3. Streamlines configuration. This section investigates the influence of
the physical parameters (such as the porosity effect, Reynolds and Weber numbers)
on the flow behavior in terms of the streamlines field (a curve formed by the velocity
vectors of each fluid particle at a certain time is called a streamline, in which the
tangent at each point of this curve indicates the direction of fluid at that point). The
streamlines (curvilinear) in the physical domain are thus mapped into horizontal grid
lines in the computational plane, resulting in a rectangular computational region.
The streamlines are effective tools to visualize a qualitative impression of the flow
behavior during the motion. The streamlines picture is achieved by fixing the value
of all the physical parameters except for one. Snapshots of instantaneous streamlines
of the stream function are shown in Figure 4.9–4.11.

The influence of the Weber numberW2 is presented throughout the parts of Figure
4.9 for a system having the same parameters considered in Figure 4.2, with Re2=
500, k=0.8, t=0.1, ξ̂1=0.05, ξ̂2=0.07. Inspection of Figure 4.9(a) reveals that the
flow consists of two cells (contours) consisting of clockwise (right, positive values of
streamlines) and anti clockwise (left, negative values of streamlines) circulations. In
parts (b) and (c) of this graph, the values of W2 are increased to 5 and 8 respectively.
It is worthwhile to notice that streamlines contours are divided into four cells, two of
which have positive values (clockwise) which lie in the upper right and bottom left
sides and the others are negative (anti clockwise). Further increase of W2 (= 10) is
introduced in part (d) of the 4.9. It is discovered from this part that the contours
again are transformed into two sets of cells and this is due to the increasing of the
Weber number. A conclusion that may be made from the comparison among the
parts (a-d) of Figure 4.9 is that higher Weber numbers increase the concentration of
the streamlines in the movement of the fluids.

Figure 4.10 illustrates streamlines under the same values considered in the above
system of Figure 4.9, while the Reynolds number Re2 has four different values
(=100, 500, 1000, 1300) for the sake of comparison. It is shown that the flow consists
of cells (contours) consisting of anti clockwise circulations. It is observed from Figure
4.10(a), (b) that the increasing of the Reynolds number leads to a reduction in the
density of the streamlines cells. In part (c) of this graph, we note that the middle
contour of the streamlines is contracted at the center, until it is divided into two
contours in part (d) of Figure 4.10.

Figure 4.11 is made in order to see the effects of porosity in the lower layer of the
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fluid on the streamlines distribution, for the same parameters considered in Figure
4.9 and at four different values of the porous parameter Q1 varying from 1 to 65. In
light of the stability configuration, we notice that corresponding to the parts (a-d) of
Figure 4.11 there are four different values of the disturbance growth rate (ωr), which
are −0.034,−0.135,−0.603 and 0.396. Since the stability of fluid sheets arises from
negative growth rates, thus it can be observed that the parts (a-c) of Figure 4.11
represent streamlines for stable system while in Figure 4.11(d) we deduce that the
central contour moves towards up and down and decreases in size when the system is
unstable.

5. Stability of two layers as a special case

The main goal of this section is to investigate the limiting case when the thickness
of the inner layer tends to zero (i.e. a→0 ). Define the characteristic dimensionless
length as

√

T/gρ2 (since for any physical quantities defined above the medium 3 tends
to the medium 2, for example ρ3→ρ2, µ3→µ2). At this stage the dispersion equation,
which controls the stability process of the interface between the two superimposed
non-Newtonian fluids, is

{

µ̂1(ω)

(

2ik2− 1

Q1Re2

)

− ρ̂2 ω
}

Ã
(1)
1 +

{

µ̂2(ω)

(

2ik2− 1

Q2Re2

)

+ ρ̂1 ω
}

Ã
(2)
2

+ 2ik
{

L1 µ̂1(ω) Ã
(1)
3 +L2 µ̂2(ω) Ã

(2)
4

}

+k H(1)
{(

µ̂e1 sin(θ1)− icos(θ1)
)

B̃
(1)
1

+µ̂e1

(

sin(θ1)− icos(θ1)
)

B̃
(2)
2

}

+ ρ̂1+k
2 W −1=0, (5.1)

where,

Ã
(1)
1 =

iω
[

Ã0(k−L1)−2k
(

kµ̂1(ω)+L2µ̂2(ω)
)]

k(k−L1)Ã0

,

Ã
(1)
3 =

2iω
(

kµ̂1(ω)+L2µ̂2(ω)
)

(k−L1)Ã0

,

Ã0= µ̂1(ω)
(

k+L1

)

+ µ̂2(ω)
(

k+L2

)

,

Ã
(2)
2 =

iω
[

Ã0(k−L2)−2k
(

L1µ̂1(ω)+kµ̂2(ω)
)]

k(k−L2)Ã0

,

Ã
(2)
4 =

2iω
(

L1µ̂1(ω)+kµ̂2(ω)
)

(k−L2)Ã0

,

B̃(m)
m =

(−1)m−1H(1)(1− µ̂e1)
[

µ̂m−1
e1 sin(θ1)+ icos(θ1)

]

(1+ µ̂e1)
, m=1, 2.

Equation (5.1) is the general equation describing two-dimensional motion of one in-
terface between two magnetic non-Newtonian fluids. It accounts for gravity, porosity
effects, and viscoelastic and magnetic stresses. A special case can be obtained from
Equation (5.1), which is the case of a clear fluid (non-porous medium, i.e. Qj →∞
or φj =0) in which highly viscous fluids are considered. Under these assumptions, we
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Fig. 5.1. Non-dimensional growth rate of different fluids versus non-dimensional wave number

at H(1)=1, θ1=0, µ̂e1=2, ρ̂1=2, µ̂1=0.2, Re2=500, Q1=8, Q2=1, W =1, λ
(1)
1 =0.5, λ

(1)
2 =

0.4, λ
(2)
1 =0.5 and λ

(2)
2 =0.8.

have

Ll=
[

k2+
Re2 ρ̂l ω

µ̂l

]
1
2

=k
[

1+
Re2 ρ̂l ω

2k2 µ̂l

]

, l=1, 2, (5.2)

so that

Ll−k=
Re2 ρ̂l ω

2k2 µ̂l
. (5.3)

Substituting the values of L1 and L2 from Equation (5.3) into Equation (5.1) and
simplifying, we obtain the dispersion relation

ω5+(α̂11+ iα̂12)ω
4+(α̂21+ iα̂22)ω

3+(α̂31+ iα̂32)ω
2+(α̂41+ iα̂42)ω+ α̂51+ iα̂52=0,

(5.4)
where the coefficient α̂’s are clear from the context. Equations similar to (5.4) have
been obtained by Kumar and Singh [19] and Sunil et al [28].

5.1. Applications. In Figures 5.1–5.7, our aim is to determine the numerical
profiles for the stability pictures of the waves propagating through the interface which
separates two superposed non-Newtonian fluid layers in a porous medium. In order to
facilitate this examination, numerical calculations for the dispersion Equation (5.1)
are performed. Figure 5.1 shows the variation of the non-dimensional growth rate
disturbances versus the non-dimensional wave number for different fluid layers for a
system having H(1)=1, θ1=0, µ̂e1=2, ρ̂1=2, µ̂1=0.2, Re2=500, Q1=8, Q2=

1, W =1, λ
(1)
1 =0.5, λ

(1)
2 =0.4, λ

(2)
1 =0.5, and λ

(2)
2 =0.8. It is obvious that in Figure

5.1 the maximum growth rate for any non-Newtonian fluid is larger than that of a
Newtonian fluid sheet and smaller than that of an inviscid fluid sheet. Therefore, we
conclude that in the range of flow parameters associated with the results of Figure
5.1, a sheet of such a non-Newtonian fluid is more unstable than a sheet of Newtonian
liquid against small disturbances. This behavior coincides with that observed in
Figure 4.1 in the case of two interfaces between three layers.
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Fig. 5.2. Refers to the same system considered in Figure 5.1 in the limiting case of non porous
medium.
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Fig. 5.3. Refers to the same system considered in Figure 5.2, but with λ
(1)
1 =0.5 (solid), 1

(dashed), 1.5 (dotted).
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Fig. 5.4. Considered the same system given in Figure 5.2, but with λ
(1)
2 =0.5, 1, 1.5.
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Fig. 5.5. Represents the stability diagrams in the plane (ωr− ρ̂1) at H(1)=0.5, θ1=0, k=

1, µ̂e1=1.2, µ̂1=0.1, Re2=1000, Q2=2, W =5, λ
(1)
1 =0.1, λ

(1)
2 =0.4, λ

(2)
1 =0.5, and λ

(2)
2 =0.15,

with Q1 =0.2, 0.7, and 1.1.
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Fig. 5.6. Shows the effects of the porous parameter Q2 on the growth rates in the plane (ωr−

k), for a system having H(1)=0.1, θ1=0, ρ̂1=0.5, µ̂e1=2, µ̂1=2, Re2=800, Q1=0.8, W =

1.5, λ
(1)
1 =0.01, λ

(1)
2 =0.04, λ

(2)
1 =0.05, and λ

(2)
2 =0.08, with Q2 =2.3, 2.6, and 3.2.

In the limiting case of non porous media (i.e. continuum fluids), numerical cal-
culations for Equation (5.1) are made. The results for calculations are displayed in
Figure 5.2, in the plane (ωr−k). The analysis displayed in this figure further confirms
that the non-Newtonian fluid sheets are more unstable than Newtonian ones.

In summary of Figure 4.1, 4.2 (two interfaces) and Figure 5.1, 5.2 (one interface),
for non-Newtonian fluids, both viscosity and elasticity effects may exist at the same
time, which makes the instability behavior much more complicated than for Newto-
nian fluids. In general, the fluid viscosity tends to weaken the instability in com-
parison with inviscid fluids through decreasing the disturbance growth rate, whereas
fluid elasticity results in an enhancement of the instability. Under the common action
of the fluid viscosity and elasticity effects, the growth rate curve of non-Newtonian
fluid sheets should lie between those of inviscid and Newtonian ones. On the basis of
the above analysis, it is believed that the area between the growth rate curves of the
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Fig. 5.7. Illustrated in the plane (ωr−Re2) at H(1)=10, θ1=90, ρ̂1=0.5, µ̂e1=2, k=

1, Q1=7, Q2=8, W =4, λ
(1)
1 =0.01, λ

(1)
2 =0.04, λ

(2)
1 =0.05, and λ

(2)
2 =0.1, with viscosity ratio

µ̂1=0.2, 0.4, 0.8.

inviscid and viscoelastic fluid sheets is induced by the interaction of the fluid viscosity
and elasticity effects in fluids. In this sense, this area is called the viscoelasticity-
induced region, and the area between the growth rate curves of the Newtonian and
non-Newtonian fluid sheets is termed the elasticity enhanced region.

The effects of both relaxation time λ
(1)
1 and the retardation time λ

(1)
2 on the evolu-

tion of stabilities of non-Newtonian fluid sheets are presented in Figure 5.3 and Figure
5.4 in the plane (ωr−k). In these two graphs the system is selected for the the same

values considered in Figure 5.1, where in Figure 5.3 the relaxation time λ
(1)
1 is varied

stepwise from 0.5 to 1.5. The inspection of Figure 5.3 indicates that as the relaxation
time is increased both the growth rates and the cutoff wave numbers are reduced, or
alternatively that the unstable regions under the curves are decreased. Therefore it
is concluded that the relaxation time effects have a stabilizing influence in the fluid

sheets. In Figure 5.4, the retardation time λ
(1)
2 is also varied stepwise from 0.5 to

1.5 with λ
(1)
1 =0.4. Having checked the stability picture of this figure, it is discovered

that increasing the retardation time leads to growth of the instability areas above the
wave number axis, and consequently the retardation time has a destabilizing effect.
On the other hand from the comparison of Figure 5.3 and Figure 5.4 we deduce that

increasing the value λ
(1)
2 /λ

(1)
1 , which is the ratio of deformation retardation time to

stress relaxation time (the time constant ratio for short), has a destabilizing influence
on the considered system. Goldin et al [29] have obtained a similar conclusion in their
studies of axisymmetric instability of non-Newtonian jets.

Figures 5.5 and 5.6 display the effects of the porosity through the porous param-
eters on the growth rate of non-Newtonian fluid sheets. In Figure 5.5 the influence
of the porous parameter Q1 on the stability of the fluid layers is depicted in a sys-
tem with parameters H(1)=0.5, θ1=0, k=1, µ̂e1=1.2, µ̂1=0.1, Re2=1000, Q2=

2, W =5, λ
(1)
1 =0.1, λ

(1)
2 =0.4, λ

(2)
1 =0.5, and λ

(2)
2 =0.15, with Q1 =0.1, 0.4, and

0.7 in solid, dashed and dotted curves respectively, and in which the growth rates are
plotted against the density ratio ρ̂1. It is seen from Figure 5.5 that the system is stable
in the range ρ̂1<1 (corresponding to the negative values of the growth rates) and un-
stable in the range 1<ρ̂1<3 (corresponding to the positive values of ωr). In addition,
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increasing the porous parameter Q1 in the range ρ̂1<1 leads to decreasing growth
rates, which means that the porous parameter Q1 plays a stabilizing role. Moreover,
when the porous parameter Q1 increases in the region 1<ρ̂1<3, the instability areas
under the curves increases, i.e. Q1 has a destabilizing effect on the movement of the
fluid layers. In general, from Figure 5.5, it is noticed that there are two roles played
by the variation of the the porous parameter Q1: the first one is stabilizing when
the density ratio ρ̂1 less than the value 1, and the other role is destabilizing when ρ̂1
lies between the values 1 and 2. Hence the phenomenon of the dual role is found for
increasing the porous parameter Q1.

Figure 5.6 shows the effects of the porous parameter Q2 on the growth rates
in the plane (ωr−k), where the values 2.3, 2.6, and 3.2 are chosen for Q2. It is
obvious from this graph that for every value of the Q2 the corresponding curve crosses
the wave number axis at three points (the cutoff wave numbers) and forms three
stability and instability regions. Two of these regions lie under the k−axis and are
stable (negative ωr−axis), while the area which lies above the k−axis and under every
curve is unstable (positive ωr− axis). Inspection of Figure 5.7 revels that increasing
the porous parameter Q2 in the range k<0.7 induces a contraction in the width of
the stability regions (stabilizing role), whereas the instability region is reduced by
increasing Q2 in the range 0.7<k<1.2 (destabilizing effect). It is clear that from
Figure 5.5 and Figure 5.6 that both of the porous parameters Q1 and Q2 have a dual
influence on the stability of the movement of the waves.

The change of the lower to the upper fluid viscosity ratio µ̂1 in the stability criteria
is illustrated in Figure 5.7. The graph shown in the plane (ωr−Re2) is calculated for
three values of the viscosity ratio µ̂1=0.2, 0.4, and 0.8, where the other quantities are
held fixed as considered in Figure 5.6 with Q2=0.7. It is observed that from Figure 5.7
there are three cutoff (critical) Reynolds numbers corresponding to the three values
of the above viscosity ratio (Re2=1.4, 1.9 and 2.6), indicating that increasing the
viscosity ratio results in an increasing growth rate of disturbances on the fluid sheets,
which destabilizes the fluid sheets. A similar result was reported by Ozen et al [30]
in their studies of electrohydrodynamic linear stability of two immiscible fluids in
channel flow.

6. Conclusions

The stability properties of two-dimensional non-Newtonian fluid layers moving in
porous media under the influence of uniform magnetic field were investigated. The
solution of the linearized equations of motion under the boundary conditions leads
to an implicit dispersion relation between the growth rate and wave number. The
limiting case of the stability of one interface between two fluids has been discussed.
The stability analysis has been performed theoretically and numerically with the
physical parameters are put in the dimensionless form. Some stability diagrams have
been plotted and discussed. The stability examination yields the following results:

1. Non-Newtonian fluid sheets have a higher growth rate than Newtonian fluid
sheets for both three layer- and two layer- types of disturbances, indicating
that non-Newtonian fluid sheets are more unstable than Newtonian fluid
sheets. This result is in agreement with that obtained by Liu et al [9].

2. For the fluid sheets, the viscoelasticity-induced region in the plots of growth
rate versus wave number results from the interaction of the fluid viscosity and
the elasticity effects; the fluid elasticity tends to damp the stability, whereas
the fluid viscosity enhances stability.
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3. It has been found that increasing the viscosity coefficient ratio as well as the
porosity damps the growth rate, where a part of its kinetic energy may be ab-
sorbed. However, it is expected that a more careful investigation would show
that the motion of the interfacial waves will be more stable after increasing
the value of the viscosity as well as the porosity.

4. Increasing the ratio of deformation retardation time to stress relaxation time

λ
(1)
2 /λ

(1)
1 (the time constant ratio) has a destabilizing influence on the stability

criteria. A similar result was reported in [27]. Also, Goldin et al [29] have
obtained a similar conclusion in their studies of axisymmetric instability of
non-Newtonian jets.

5. The horizontal magnetic field plays a stabilizing role, and the vertical plays
a destabilizing role on the stability behavior in the cases of two interfaces
and one interface among the fluids. In other words, when the magnetic field
is increased, the field sometimes keeps its energy and absorbs a part of the
kinetic energy of the interfacial waves while transmitting its energy to these
waves, which leads to the instability in the motion of the waves.

6. A destabilizing effect is observed by increasing of Reynolds number. On
the other hand, the phenomenon of the dual role is found for increasing the
magnetic permeability ratio on the movement on the fluid. A similar result
was reported by Ozen et al [30] in their studies of electrohydrodynamic linear
stability of two immiscible fluids in channel flow.

7. An increase of the lower-to-upper fluid density ratio enhances both the growth
rate and the instability range of the fluid sheet, whereas the converse is true
for increasing the upper-to-lower fluid density ratio, leading to an enhance-
ment of stability.

Appendix A. The values of the coefficients appearing in Equation (3.12) are

A
(1)
11 =

−2iωµ̂2(ω)ek+2(L2+k)

k(k−L1)e2(L2+k)A0

{

µ̂1(ω)(k
2+L2

1)
[

µ̂2(ω)(k
2
−L2

2)
(

kcosh(2k)sinh(2L2)−L2 cosh(2L2)

×sinh(2k)
)

+ µ̂3(ω)(k+L3)
(

2k(L2−L2 cosh(2L2)cosh(2k))+(k2+L2
2)sinh(2k)sinh(2L2)

)]

+µ̂2(ω)
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µ̂2(ω)(k
2
−L2

2)
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2
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2)sinh(2k)−k(k2
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)
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(
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2
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A0=2µ̂2(ω)(k
2
−L2

2)
[

µ̂2(ω)(k
2
−L2
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(
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(
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k
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(
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)
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(
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,
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A
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(

k3(1−e4L2 )+
(

2(3k2+L2
2)e

2(k+L2)
−e4k

×(e4L2 (k−L2)
2+(k+L2)

2)−k(2k−L2+e4L2 (2k+L2))
)

)]}

,

A
(1)
32 =

iωµ̂2(ω)(k2−L2
2)e

L1

(k−L1)e2(L2+k)A0

{

2µ̂2(ω)e
2(k+L2)

(

(k2+L2
2)sinh(2L2)−2kL2 sinh(2k)

)

+ µ̂3(ω)

×

(

k(k−L3)(1−e4L2 )e2k−L2

(

2ke2L2 +2L3e
2(2k+L2)

−(k+L3)(1+e4L2 )e2k
)

)}

,

A
(2)
11 =

−iωe2L2+k

ke2(L2+k)A0

{

µ̂2(ω)
[

µ̂2(ω)(L
4
2−k4)sinh(2L2)+ µ̂3(ω)(L3+k)

(

(L2
2+k2)

(

ksinh(2L2)

+L2 cosh(2L2)
)

−2L2 k2 e2k
)]

+ µ̂1(ω)
[

µ̂2(ω) (k2−L2
2)
(

k(k−L1)sinh(2L2)−L2

×(k+L1)cosh(2L2)
)

+ µ̂3(ω)(k+L1)
(

2kL1L2 cosh(2L2)−2kL1L2e
2k+sinh(2L2)

×

(

k2(L1−k)+L2
2(L1+k)

)

)]}

,

A
(2)
12 =

−iωe2L2+k

ke2(L2+k)A0

{

µ̂2(ω)(k
2
−L2

2)e
2k

[

µ̂3(ω)L2(k+L3)cosh(2L2)+sinh(2L2)
(

µ̂2(ω)(k
2+L2

2)

−k µ̂3(ω) (k−L3)
)

]

+ µ̂1(ω)(k+L1)
[

2k2L2(µ̂2(ω)− µ̂3(ω))−L2 cosh(2L2)
(

µ̂2(ω)(k
2

+L2
2)− 2k2µ̂3(ω)

)

e2k+sinh(2L2)
(

kµ̂2(ω)(k
2+L2

2)− µ̂3(ω)
(

k2(k−L3)+L2
2(k+L3)

))

e2k
]}

,

A
(2)
21 =

−iωek

2ke2(L2+k)A0

{

µ̂2(ω)
[

(k4−L4
2)(1−e4L2 ) e2k+ µ̂3(ω) (k+L3)

(

(k+L2)(k
2+L2

2) e2k

−(k−L2)(k
2+L2

2) e2k+4L2
−4k2L2 e2L2

)]

+2µ̂1(ω) e2L2

[

µ̂2(ω) (k2−L2
2)
(

k(k−L1)

×sinh(2L2)−L2(k+L1)cosh(2L2)
)

e2k+ µ̂3(ω) (k−L3)
(

2k2L2−2k2L2 cosh(2L2)

×e2k+sinh(2L2)
(

k2(k−L1)+L2
2(k+L1)

)

e2k
)]}

,

A
(2)
22 =

iωe2L2+k

ke2(L2+k)A0

{

µ̂1(ω)(k+L1)
[

µ̂2(ω)
(

2k2L2e
2k

−(k2+L2
2)
(

ksinh(2L2)+L2 cosh(2L2)
)

)

−µ̂3(ω)
(

2kL2L3(cosh(2L2)−e2k)−k2(k−L3)sinh(2L2)+L2
2(k+L3)sinh(2L2)

)]

+ µ̂2(ω)

×(k2−L2)
[

µ̂3(ω)L2(k+L3)cosh(2L2)+
(

µ̂2(ω)(k
2+L2

2)−kµ̂3(ω)(k−L3)
)

sinh(2L2)
]}

,

A
(2)
31 =

iωeL2

e2(L2+k)A0

{

µ̂1(ω)(k+L3)
(

L1(k−L2)(e
2L2

−e2k)+k(k−L2)(1−e2(k+L2))
)

− µ̂2(ω)

×(k2−L2
2)(k+L2e

4k)
]

+ µ̂2(ω)
[

µ̂3(ω)(k+L3)
(

k
(

L2−k−(k+L2)
)

+(k2+L2
2)e

2(k+L2)
)

+kµ̂2(ω)(k
2
−L2

2)(1−e4k)
]}

,

A
(2)
32 =

−iωeL2

e2(L2+k)A0

{

µ̂1(ω)(k−L1)e
2k

[

µ̂2(ω)(k
2
−L2

2)− µ̂3(ω)
(

k(k−L3)+L2(k−L3)
)]

+e2L2

×

[

(L2−k)
(

kµ̂2(ω)+L3µ̂3(ω)
)

(

µ̂1(ω)(k+L1)+ µ̂2(ω)(k+L2)
)

e4k−k
(

µ̂2(ω)− µ̂3(ω)
)

×(k+L2)
(

µ̂1(ω)(k+L1)− µ̂2(ω)(k−L2)
)]}

,
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A
(2)
41 =

−iωeL2

e2(L2+k)A0

{

µ̂3(ω)(k+L3)e
2k

[

µ̂1(ω)
(

L1(k−L2)−k(k+L2)
)

+ µ̂2(ω)(k
2+L2

2)
]

−k(k+L2)

×(µ̂1(ω)− µ̂2(ω))e
2L2

(

µ̂2(ω)(k−L2)− µ̂3(ω)(k+L3)
)

−(k−L2)(L1µ̂1(ω)+kµ̂2(ω))

×

(

µ̂2(ω)(k+L2)+ µ̂3(ω)(k+L3)
)

e2(2k+L2)
}

,

A
(2)
42 =

iωeL2

e2(L2+k)A0

{

µ̂2(ω)(k
2
−L2

2)
(

kµ̂2(ω)(1−e4k)− µ̂3(ω)(k−L3e
4k)

)

− µ̂1(ω)(k+L1)
[

µ̂2(ω)

×

(

k
(

k−L2+(k+L2)e
4k

)

−(k2+L2
2)e

2(k+L2)
)

+ µ̂3(ω)
(

(

k(k−L3)−L2(k+L3)
)

e2(k+L2)

+L3(k+L2)e
4k

−k(k−L2)
)]}

,

A
(3)
21 =

iωµ̂2(ω)(k2−L2
2)e

k

(k−L3)e2(L2+k)A0

{

µ̂1(ω)
[

2L2(k+L1e
4k)e2L2

−

(

k(k+L2)−L1(k−L2)
)

e2k+e2k+4L2

×

(

k(k−L2)−L1(k+L2)
)

]

−2µ̂2(ω)
[

(k2+L2
2)sinh(2L2)−2kL2 sinh(2k)

]

e2(k+L2)
}

,

A
(3)
22 =

iωek

2(k−L3)e2(L2+k)A0

{

4µ̂2(ω)(k
2
−L2

2)e
2(k+L2)

[

µ̂2(ω)
(

sinh(2L2)
(

k(k2+L2
2)cosh(2k)−L3

×(k2−L2
2)sinh(2k)

)

−2k2L2 cosh(2L2)sinh(2k)
)

− µ̂3(ω)(k
2+L2

3)
(

kcosh(2k)sinh(2L2)

−L2 cosh(2L2)sinh(2k)
)

]

+ µ̂1(ω)(k+L1)
[

µ̂2(ω)
(

k4(1−e4k)(1−e4L2 )+2e2(k+L2)
(

2kL2

×

(

3k2+L2
2+3kL2 sinh(2k)sinh(2L2)−(3k2+L2

2)cosh(2k)cosh(2L2)
)

−2L3(k
2
−L2

2)

×

(

kcosh(2k)sinh(2L2)−L2 cosh(2L2)sinh(2k)
)

))

− µ̂3(ω)(k
2+L2

3)
(

k2(1−e4k)(1−e4L2 )

+4L2e
2(k+L2)

(

2k(1−cosh(2k)cosh(2L2))+L2 sinh(2k)sinh(2L2)
)

)]}

,

A
(3)
41 =

−iωµ̂2(ω)(k2−L2
2)e

L3

(k−L3)e2(L2+k)A0

{

µ̂1(ω)
(

2L2(k+L1e
4k)e2L2 +e2k

(

L1(k−L2)−k(k+L2)
)

+e2(2L2+k)

×

(

k(k−L2)−L1(k+L2)
)

)

−2µ̂2(ω)
(

(k2+L2
2)sinh(2L2)−2kL2 sinh(2k)

)}

,

A
(3)
42 =

iωeL3

(k−L3)e2(L2+k)A0

{

µ̂2(ω)(L
2
2−k2)

[

µ̂2(ω)
(

kL2(1−e4k)(1+e4L2 )−k2(1−e4L2 )−L2
2

×(1−e4L2 )e4k
)

+kµ̂3(ω)
(

k(1+e4k)(1−e4L2 )−L2(1−e4k)(1+e4L2 )
)]

+ µ̂1(ω)(k+L1)

×

[

µ̂2(ω)
(

L2

(

k
(

2k−L2+e4L2 (2k+L2)
)

+e4k
(

e4L2 (k−L2)
2+(k+L2)

2
)

−2(3k2+L2
2)

×e2(k+L2)
)

−k3(1−e4L2 )
)

+kµ̂3(ω)
[

k2(1−e4k)(1+e4L2 )+4L2e
2(k+L2)

(

2k(1−cosh(2k)

×cosh(2L2)+L2 sinh(2k)sinh(2L2)
)

]]}

.

Appendix B. The formulas for the quantities which are used in Equation (3.15)
are

B
(1)
11 =(1/B0)

{

2(1− µ̂e1)H
(1)e3k

(

µ̂e2 sin(θ1) cosh(2k)+sin(θ1)sinh(2k)

+ i
[

µ̂e2 cos(θ1)sinh(2k)+cos(θ1)cosh(2k)
]

)}

,
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B0=(1+ µ̂e1)(1+ µ̂e2)e
4k−(1− µ̂e1)(1− µ̂e2),

B
(1)
12 =(1/B0)

{

2H(1)e3k(µ̂e2−1)
(

µ̂e1 sin(θ1)+ icos(θ1)
)}

,

B
(2)
11 =(1/B0)

{

H(1)ek(µ̂e1−1)(1− µ̂e2)
(

µ̂e1 sin(θ1)− icos(θ1)
)}

,

B
(2)
12 =(1/B0)

{

H(1)e3k(1+ µ̂e1)(µ̂e2−1)
(

µ̂e1 sin(θ1)+ icos(θ1)
)}

,

B
(2)
21 =(1/B0)

{

H(1)e3k(1+ µ̂e2)(µ̂e1−1)
(

µ̂e1 sin(θ1)− icos(θ1)
)}

,

B
(2)
22 =(1/B0)

{

H(1)ek(1− µ̂e1)(1− µ̂e2)
(

µ̂1 sin(θ1)+ icos(θ1)
)}

,

B
(3)
21 =(1/B0)

{

2H(1)e3k(µ̂e1−1)
(

µ̂e1 sin(θ1)− icos(θ1)
)}

,

B
(3)
22 =((1− µ̂e2)H

(1)ek/µ̂e2 B0)
{

(1+ µ̂e1)
(

µ̂e1 sin(θ1)− iµ̂e2 cos(θ1)
)

e4k

+(µ̂e1−1)
(

µ̂e1 sin(θ1)+ i µ̂e2 cos(θ1)
)}

.

Appendix C. The values of υ’s which are used in relation (4.5) are

υ1=α11,

υ2=α11

(

α11 α21+α12 α22−α31

)

−α2
22,

υ3=υ2
(

α11

(

α21 α31+α22 α32−α11 α41−α12 α42

)

−α2
31

)

−
(

α11

(

α11 α32−α12 α31

)

−α11 α42+α22 α31

)2
,

υ4=υ41 υ42−υ243,

υ41=υ2
(

α11

(

α31 α41+α32 α22

)

−α2
42

)

−
(

α11

(

α11 α41+α12 α42

)

−α22 α42

)2
,

υ42=υ2
(

α11

(

α31 α21+α32 α22

)

−α11

(

α11 α41+α12 α41

)

−α2
31

)

−
(

α11

(

α11 α32−α12 α31

)

−α11α42+α22α31

)2
,

υ43=υ2
(

α11

(

α42 α21−α41 α22

)

−α31 α42

)

+
(

α11

(

α11 α41+α12 α42

)

−α42 α22

)(

α11

(

α11α32−α12α31

)

−α11α42+α31α22

)

.
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