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A STRONGLY DEGENERATE PARABOLIC AGGREGATION

EQUATION∗

F. BETANCOURT† , R. BÜRGER‡ , AND K.H. KARLSEN§

Abstract. This paper is concerned with a strongly degenerate convection-diffusion equation in
one space dimension whose convective flux involves a nonlinear function of the total mass to one side
of the given position. This equation can be understood as a model of aggregation of the individuals
of a population with the solution representing their local density. The aggregation mechanism is
balanced by a degenerate diffusion term describing the effect of dispersal. In the strongly degenerate
case, solutions of the nonlocal problem are usually discontinuous and need to be defined as weak
solutions. A finite difference scheme for the nonlocal problem is formulated and its convergence to the
unique weak solution is proved. This scheme emerges from taking divided differences of a monotone
scheme for the local PDE for the primitive. Some numerical examples illustrate the behaviour of
solutions of the nonlocal problem, in particular the aggregation phenomenon.
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1. Introduction

1.1. Scope. This paper is related to the initial value problem for a strongly
degenerate convection-diffusion equation of the form

ut+

(

Φ′

(
∫ x

−∞

u(y,t)dy

)

u(x,t)

)

x

=A(u)xx, x∈R, 0<t≤T, (1.1)

u(x,0)=u0(x)≥0, x∈R, u0∈ (L1∩L∞)(R), (1.2)

for the density u=u(x,t)≥0, where A(u) is a diffusion function given by
A(u) :=

∫ u

0
a(s)ds, where a(u)≥0 for u∈R. The model (1.1), (1.2) was studied as

a model of aggregation by a series of authors including Alt [1], Diaz, Nagai, and
Shmarev [16], Nagai [30] and Nagai and Mimura [31, 32, 33], all of which assumed
that a(u)=0 at at most isolated values of u. It is the purpose of this paper to study
(1.1), (1.2) under the more general assumption that a(u)=0 on bounded u-intervals
on which (1.1) reduces to a first-order conservation law with nonlocal flux. We assume
that A(s)→∞ as s→∞.

The key observation made in previous work [1, 30, 31, 32, 33] is that if all coeffi-
cients are sufficiently smooth, and u(x,t) is an L1 solution of the problem (1.1), (1.2),
then the primitive defined by

v(x,t) :=

∫ x

−∞

u(ξ,t)dξ, t∈ (0,T ], (1.3)
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†Departamento de Ingenieŕıa Matemática, Facultad de Ciencias F́ısicas y Matemáticas, Universi-
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is a solution of the local initial value problem

vt+Φ(v)x=A(vx)x, x∈R, t∈ (0,T ], (1.4)

v(x,0)=v0(x), x∈R, v0(x) :=

∫ x

−∞

u0(ξ)dξ. (1.5)

As a nonlinear but local PDE, (1.4) is more amenable to well-posedness and numerical
analysis. In this work we use that the transformation to the local Equation (1.4) is
also possible in the strongly degenerate case, in which solutions of (1.1) are usually
discontinuous and need to be defined as weak solutions. We prove that any weak
solution is also an entropy solution. This property allows us to use available L1

stability and uniqueness results in the framework of entropy solutions.
The core, and essential novelty, of the paper is the formulation and convergence

proof of a finite difference scheme for (1.1), (1.2) (in short, “u-scheme”). The scheme
is based on a monotone difference scheme for the initial value problem (1.4), (1.5) (in
short, “v-scheme”) in the strongly degenerate case, which in turn is a special case of
the schemes formulated and analyzed by Evje and Karlsen [19] for the more general
doubly degenerate equation vt+Φ(v)x=B(A(vx))x. The u-scheme is obtained by tak-
ing finite differences of the numerical solution values generated by the v-scheme. The
v-scheme is, in particular, monotonicity preserving, so the discrete approximations
for v are always monotonically increasing when the initial datum v0 is, and therefore
the u-scheme produces nonnegative solutions. Moreover, by modifications of stan-
dard compactness and Lax-Wendroff-type arguments it is proved that the numerical
approximations generated by the u-scheme converge to the unique weak solution of
(1.1), (1.2). An appealing feature is that the primitive (1.3) never needs to be calcu-
lated explicitly (except for the computation of v0). Numerical examples illustrate the
behaviour of solutions of (1.1), (1.2), and recorded error histories demonstrate the
convergence of the v- and u-schemes.

1.2. Assumptions. We assume that u0 has compact support, and that there
exists a constant M such that

TV(u0)<M. (1.6)

We also need that Φ∈C2(R), and that Φ has exactly one maximum:

∃v∗>0 : Φ′(v∗)=0, Φ′(v)>0 for v<v∗, Φ′(v)<0 for v>v∗. (1.7)

This assumption is introduced to facilitate some of the steps of our analysis; it is,
however, not essential. In fact, in our convergence analysis of Section 4 we need to
discuss the local behaviour of the numerical solution for v close to where it includes
the value v∗ since that value is critical in the definition of the numerical flux. If we
employ a function Φ that has several separate extrema, then the locations of solution
values including extrema are spatially well separated since the discrete analogue of
vx is bounded, and the techniques of Section 4 can be extended to that case in a
straightforward manner. We recall that the function A is defined via

A(u) :=

∫ u

0

a(s)ds, where a(u)≥0 for u∈R.

The assumptions on A are the following:

A(s)→∞ as s→∞; ∃Ma>0 : a(s)<Ma for all s∈R. (1.8)
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The first of these assumptions is fundamental in our analysis. If A is bounded, then
v can become discontinuous and and we thus loose our L∞ bound on u. The second
assumption, namely the boundedness of a, is mainly introduced to ensure that the
scheme satisfies a well-defined CFL condition. An implicit version of the present
scheme, which we do not consider herein, would possibly not require this assumption.

Our analysis is restricted to a finite final time T , since some of the constants
appearing in the convergence analysis, which serves here as an existence proof, actually
depend on T . The L∞ bound on u is, however, independent of T .

1.3. Motivation. Equation (1.1), or some specific cases of it, were studied in
a series of papers [1, 16, 30, 31, 32, 33], in all of which it is assumed that a(u)=0 at
at most isolated values of u, so that it is always ensured that A′(u)>0 for u≥0. The
interpretation of (1.1) as a model of the aggregation of populations (e.g., of animals)
can be illustrated as follows. Assume that u(x,t) is the density of the population
under study, and consider the equation

ut+

(

−k

[
∫ x

−∞

u(y,t)dy−
∫ ∞

x

u(y,t)dy

]

u

)

x

=A(u)xx, k>0. (1.9)

Here, the convective term provides a mechanism that moves u(x,t) to the right (re-
spectively, to the left) if

∫ x

−∞

u(y,t)dy<

∫ ∞

x

u(y,t)dy (respectively, . . .> ...).

In other words, an animal will move to the right (respectively, left) if the total pop-
ulation to its right is larger (respectively, smaller) than to its left. Now assume that
the initial population is finite and define

C0 :=

∫

R

u0(x)dx. (1.10)

It is then clear that (1.9) is an example of (1.1) if Φ′(v)=−k(2v−C0), i.e.,

Φ(v)=−kv(v−C0)+const. (1.11)

The aggregation mechanism is balanced by nonlinear diffusion described by the
term A(u)xx, termed density-dependent dispersal in mathematical ecology. A novel
feature addressed by the present analysis is a “threshold effect”, i.e. dispersal only
sets on when the density u exceeds a critical value uc>0. The underlying idea is
that the individuals, animals or humans, would react to variations of the local density
only if that density exceeds a critical value. A similar “behavioristic” motivation of
degenerate diffusion was advanced in the context of a traffic model, see [11, 34]. This
effect is considered in the present model since A may degenerate on intervals. For
example, for a constant a0>0 we may consider

a(u)=

{

0 for u≤uc,

a0 for u>uc,
i.e., A(u)=

{

0 for u≤uc,

a0(u−uc) for u>uc.
(1.12)

To illustrate some of the consequences of the presence of a strongly degenerating
diffusion term, and to compare our findings with the most recent results obtained
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for multi-dimensional aggregation equations, let us consider a strongly degenerating
integrated diffusion coefficient A(u) and the local degenerate parabolic PDE

ut+f(x,t,u)x=A(u)xx, (x,t)∈ΠT ; u(x,0)=u0(x), x∈R, (1.13)

where f should depend smoothly on x and u. It is well known that even in the absence
of a convective term (f ≡0), i.e., for the problem

ut=A(u)xx, (x,t)∈ΠT ; u(x,0)=u0(x), x∈R, (1.14)

solutions of (1.13) may form discontinuities from smooth initial data in finite time
due to the strong degeneracy of A(u). The appearance of discontinuities motivates
why solutions of strongly degenerate parabolic PDEs are studied as weak solutions.
However, the appearance of discontinuities solely due to degenerate diffusion does
not necessarily require the introduction of an entropy solution concept to ensure
uniqueness. In fact, the uniqueness in L1 of weak solutions of (1.14) is a classical
result [10]. This result carries over to such cases of (1.13) that can be transformed
to (1.14), for example the linear case f(x,u)=αu, where α∈R is a constant, or may
possibly depend on x and t (in the latter case, restrictions on the choice of α(x) may
apply).

This discussion motivates why we expect solutions of the problem (1.1), (1.2) to
form discontinuities even from smooth initial data, so this problem should be studied
in a suitably defined space of weak solutions. We may write (1.1) as

ut+
(

Φ′
(

v(x,t)
)

u
)

x
=A(u)xx. (1.15)

In this work we demonstrate that for the present Equation (1.15) weak solutions
are entropy solutions. The main importance of identifying weak solutions as entropy
solutions lies in the easy access to stability and uniqueness results for entropy solutions
(see [15, 22]) which can be applied to (1.1), (1.2), as will be done in Section 3.2.

1.4. Related work. More recently, aggregation equations of the form

ut+∇·(u∇K ∗u)=∆A(u) (1.16)

have seen an enormous amount of interest, where the typical case is A≡0. Here, K
denotes an interaction potential, and K ∗u denotes spatial convolution. The nonlocal
and diffusive terms account for long-range and short-range interactions, respectively,
as is emphasized in [12]. The derivation of (1.16) from microscopic interacting particle
systems and related models, and for particular choices of K and A, is presented in
[4, 9, 12, 28, 29]. Related models also include equations with fractional dissipation
that cannot be cast in the form (1.16); see e.g. [25, 26].

The essential research problem associated with (1.16) (or variants of this equation)
is the well-posedness of this equation together with bounded initial data u(x,0)=
u0(x) for x∈R

d, where d denotes the number of space dimensions. While the short-
time existence of a unique smooth solution for smooth initial data is known in most
situations, one wishes to determine criteria in terms of the functions K and A (or
related diffusion terms), and possibly of u0, that either ensure that smooth solutions
exist globally in time, or that compel the solutions of (1.16) to blow up in finite time.
This problem is analyzed in [2, 3, 4, 5, 6, 7, 9, 12, 14, 24, 25, 26, 27] (this list is far
from being complete).
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Here and in what follows, “blow-up” of a solution refers to L∞ norm blow-up (as
opposed to the finite time loss of classical regularity generic to problems with degen-
erate diffusion). The occurrence of blow-up was analyzed in terms of the properties of
K for A≡0 in [4, 5]; if K is radial, i.e., K=K(|x|), then blow-up occurs if the Osgood
condition for the characteristic ODEs is violated, as occurs e.g. for K(x)=exp(−|x|),
while for a C2 kernel this does not occur [4]. Li and Rodrigo [25, 26] consider this
particular kernel and describe the circumstances under which blow-up occurs if the
aggregation equation is equipped with fractional diffusion. Special cases of (1.16)
have also been studied in the context of Patlak-Keller-Segel models, where K is the
fundamental solution to an elliptic PDE (see e.g. [2, 8]).

We can write (1.1) as a one-dimensional version of (1.16) only in very special
cases. However, and as was already pointed out in [31], (1.9) can be written as

ut+(uK̃ ∗u)x=A(u)xx, (1.17)

with the odd kernel K̃(x)=−ksgn(x). Equation (1.17), or equivalently, (1.1) with
Φ given by (1.11), becomes a one-dimensional example of (1.16) if we observe that
K̃ ∗u=K ′ ∗u, where K ′ denotes the derivative of K, if we choose the even kernel

K(x)=−k|x|+C, (1.18)

where C is a constant. We can write this as K(x)=−κ(|x|) for κ(r)= r−C. Suppose
that one uses this kernel in the multi-dimensional Equation (1.16). It is then straight-
forward to verify that in absence of dispersal (A≡0), the kernel (1.18) satisfies the
integral condition for blow-up in finite time; see [4]. One result of our analysis is then
that the condition (1.8) is sufficient to ensure that L∞ blow-up of solutions of (1.1)
does not occur.

In fact, in the context of aggregation models that are based either on (1.1) or on
the more recently studied Equation (1.16), the present work is the first that incorpo-
rates a strongly degenerate diffusion term, i.e., involves a function A(u) that is flat
on a u-interval of positive length. So far, diffusion terms that have been considered
in (1.1) degenerate at at most isolated u-values. Nagai and Mimura [31] studied the
Cauchy problem for Equation (1.1) under the assumptions A(0)=0, A′(u)>0 being
an odd function. The initial function for the Cauchy problem in [31] is assumed to
be bounded, nonnegative and integrable. Nagai and Mimura [31] prove existence and
uniqueness of a bounded and continuous solution to the initial value problem. In [32]
the asymptotic behaviour of solutions to the same problem was studied for the specific
choice

A(u)=um, m>1. (1.19)

It seems that the analysis of (1.16) with degenerate diffusion has just started. Li
and Zhang [27] study this equation in one space dimension for the diffusion function
A(u)=u3/3, which degenerates at u=0 only. On the other hand, the numerical
simulations presented herein show that under strongly degenerate diffusion, typical
features of the aggregation phenomenon such as “clumped” solutions with very sharp
edges [35] appear.

Let us briefly mention some of the recent results concerning (1.16). If diffusion
is absent (A≡0), (1.16) becomes an inviscid nonlocal transport law, which are well
known to be have better regularity properties than general quasi-linear conservation
laws. In particular, Laurent [24] and Bertozzi and Laurent [5] show that if the initial
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condition is smooth, then solutions of (1.16) remain smooth for as long as the Lp

norms remains bounded. In particular, discontinuities can only occur if they were
present in the initial data. Moreover, according to [27], the addition of nonlinear
diffusion will cause higher regularity of weak solutions to be lost in finite time, i.e.,
the spatial gradient of the solution will experience L∞ blow-up in finite time. This
contrasts with the expected solution behaviour of (1.1), (1.2) described in Section 1.3,
namely that strong discontinuities form from smooth data.

Regarding uniqueness of weak solutions, it has been shown that in dimensions
two and higher, entropy conditions are not required to ensure that weak solutions to
(1.16) are unique. For the inviscid case, see Bertozzi and Brandman [3] or Bertozzi
et al. [6]. For the case with diffusion, uniqueness is shown by Bertozzi and Slepčev in
[7] and in more generality by Bedrossian et al. [2]. These results are consistent with
ours.

1.5. Outline of the paper. The remainder of this paper is organized as
follows. In Section 2 we state the definition of weak and entropy solutions of (1.1),
(1.2). While it is standard to verify that any entropy solution is a weak solution, we are
able to prove that for the present equation, any weak solution is an entropy solution.
In Section 3.1 we state jump conditions that can be derived from the definition of weak
solutions, and in Section 3.2 we prove the uniqueness of a weak solution, using that
any weak solution is, in fact, an entropy solution. Section 4 presents a convergence
analysis for the u-scheme. In Section 4.1, the schemes are described. Section 4.2
contains a series of lemmas stating uniform estimates on the numerical approximations
generated by the v- and the u-schemes, which allow to employ standard compactness
arguments to deduce that both schemes converge to the unique weak solution. The
final convergence result (Theorem 4.1) and its proof are presented in Section 4.3.
This proof follows a standard Lax-Wendroff argument. Some numerical examples are
presented in Section 5.

2. Definition of a weak solution

Definition 2.1. A measurable function u is said to be a weak solution of the initial
value problem (1.1), (1.2) if it satisfies the following conditions:

1. We have u∈L∞(ΠT )∩L∞(0,T ;BV (R)), and A(u)∈L2(0,T ;H1(R)), where
ΠT :=R×(0,T ).

2. The initial condition (1.2) is satisfied in the following sense:

lim
t↓0

∫

R

∣

∣u(x,t)−u0(x)
∣

∣dx=0. (2.1)

3. If v(x,t) is defined by (1.3), then the following equality is satisfied for all test
functions φ∈C∞

0 (ΠT ):
∫∫

ΠT

{

u
(

φt+Φ′(v)φx

)

+A(u)φxx

}

dxdt=0. (2.2)

Definition 2.2. A measurable, nonnegative function u is an entropy solution of
(1.1), (1.2) if it satisfies items (1) and (2) of Definition 2.1 and if for all nonnegative
test functions ϕ∈C∞

0 (ΠT ), the following entropy inequality is satisfied:

∀k∈R :

∫∫

ΠT

{

|u−k|
(

ϕt+Φ′(v)ϕx

)

−sgn(u−k)ukΦ′′(v)ϕ

+
∣

∣A(u)−A(k)
∣

∣ϕxx

}

dxdt≥0.

(2.3)
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It is straightforward to check that an entropy solution of the initial value problem
(1.1), (1.2) is a weak solution.

Lemma 2.1. Assume that u is an entropy solution of the initial value problem (1.1),
(1.2) (cf. Definition 2.2). Then u is a weak solution (cf. Definition 2.1).

Proof. Choosing k≥‖u‖L∞(ΠT ) in (2.3) we obtain

∫∫

ΠT

{

−(u−k)
(

φt+Φ′(v)φx

)

−A(u)φxx

}

dxdt≥−k

∫∫

ΠT

uΦ′′(v)φdxdt

or equivalently,

∫∫

ΠT

{

u
(

φt+Φ′(v)φx

)

+A(u)φxx

}

dxdt≤k

∫∫

ΠT

{

φt+
(

Φ′(v)φ
)

x

}

dxdt=0. (2.4)

On the other hand, since we look for nonnegative solutions, it suffices to set k=0 in
(2.3) to deduce that we always have

∫∫

ΠT

{

u
(

φt+Φ′(v)φx

)

+A(u)φxx

}

dxdt≥0.

Combining this with (2.4) we see that u satisfies (2.2).

The following lemma states that conversely, any weak solution of the initial value
problem (1.1), (1.2) is an entropy solution. Lemma 2.2 is inspired by Carrillo [13] and
Kobayasi [23, Lemmas 3.1 and 3.3].

Lemma 2.2. Let u be a weak solution of problem (1.1), (1.2). Then u is also an
entropy solution.

Proof. Let us define α(x,t) :=Φ′(v(x,t)). Then we recall that u is a weak
solution of (1.1) if for all test functions φ∈C∞

0 (ΠT ),

∫∫

ΠT

{

u
(

φt+α(x,t)φx

)

+A(u)φxx

}

dxdt=0,

or equivalently,

∫∫

ΠT

{

u
(

φt+α(x,t)φx

)

−A(u)xφx

}

dxdt=0. (2.5)

In what follows we will utilize the functions defined by

H0(x) :=

{

1 if x>0,

0 if x≤0,
H1(x) :=

{

1 if x≥0,

0 if x<0,
Hε(x) :=











1 if x>ε,

x/ε if x∈ [0,ε],

0 if x<0.

and the multi-valued function (see [13, 23])

H(x) :=











1 if x>0,

[0,1] if x=0,

0 if x<0.
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To simplify the argument, let us concentrate on the case of a single u-
interval [m,M ] of degeneracy, assuming that A′(s)=0 for s∈ [m,M ] and A′(s)>
0 for s /∈ [m,M ], where 0≤m,M <∞. Now let us use as a test function
φ(x,t)=Hε(A(u)−A(k))ϕ(x,t) with k /∈ [m,M ], where ϕ is an admissible test func-
tion. Following the proof of Lemma 2.4 in [22] we find

∫∫

ΠT

{

|u−k|+ϕt+H0(u−k)
(

α(x,t)(u−k)−A(u)x
)

ϕx

−H0(u−k)αx(x,t)kϕ
}

dxdt≥0 for k /∈ [m,M ],

(2.6)

where |z|+ :=H0(z)z. Since M<∞ we can construct a sequence {sn}n∈N such that
sn>M , sn→M , and H0(u−sn)→H0(u−M) as n→∞. Setting k=sn in (2.6) and
sending n→∞, we get

∫∫

ΠT

{

|u−M |+ϕt+α(x,t)|u−M |+ϕx−H0(u−M)A(u)xϕx

−H0(u−M)αx(x,t)Mϕ
}

dxdt≥0.

(2.7)

Similarly, we may construct a sequence {sn}n∈N such that sn<m, sn→m and
H0(u−sn)→H1(u−m) as n→∞. Setting k=sn in (2.6) and sending n→∞ yields

∫∫

ΠT

{

|u−m|+ϕt+α(x,t)|u−m|+ϕx−H1(u−m)A(u)xϕx

−H1(u−m)αx(x,t)mϕ
}

dxdt≥0.

(2.8)

Now we take in the entropy inequality (2.8) a test function ϕ(x,t)= ξ(x,t)ζ(x,t),
where ζ is a smooth function such that 0≤ ζ≤1 and ξ is an admissible test function,
and in (2.7) we use ϕ(x,t)= ξ(x,t)(1−ζ(x,t)). Adding both resulting expressions we
obtain the inequality I1+I2+I3+I4≥0 with the following terms, where we drop the
argument (x,t) wherever convenient:

I1 :=

∫∫

ΠT

{

(

|u−m|+−|u−M |+
)

(ξζ)t+ |u−M |+ξt
}

dxdt,

I2 :=

∫∫

ΠT

{

α
(

|u−m|+−|u−M |+
)

(ξζ)x+α|u−M |+ξx
}

dxdt,

I3 :=

∫∫

ΠT

{

αx

(

H0(u−M)M−H1(u−m)m
)

ξζ−αxH0(u−M)Mξ
}

dxdt,

I4 :=−
∫∫

ΠT

(

H1(u−m)−H0(u−M)
)

A(u)x(ξζ)xdxdt

−
∫∫

ΠT

H0(u−M)A(u)xξxdxdt. (2.9)

Assume now that ρn=ρn(x) is a standard sequence of mollifier functions in R, and
let us define |u−m|+n := |u−m|+ ∗ρn and |u−M |+n := |u−M |+ ∗ρn for n∈N. Now we
select the function ζ= ζ(x,t) defined by

ζ= ζn,ε :=Hε

(

|u−m|+n +m−s−|u−M |+n
)

, s∈ [m,M ].
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Let us denote the versions of Ip obtained by replacing | · |+ by | · |+n and ζ= ζn,ε by
Ip(n,ε), p=1, . . . ,4. Since m and s are constant and ξζn,ε has compact support, we
get after an integration by parts

I1(n,ε)=

∫∫

ΠT

{

(

|u−m|+n +m−s−|u−M |+n
)

(ξζn,ε)t+ |u−M |+n ξt
}

dxdt

=

∫∫

ΠT

{

−Hε

(

|u−m|+n +m−s−|u−M |+n
)

×
(

|u−m|+n +m−s−|u−M |+n
)

t
ξ+ |u−M |+n ξt

}

dxdt.

Taking ε↓0 and again integrating by parts yields

I1(n,0)=

∫∫

ΠT

{

−
(

∣

∣|u−m|+n +m−s−|u−M |+n
∣

∣

+
)

t
ξ+ |u−M |+n ξt

}

dxdt

=

∫∫

ΠT

{

∣

∣|u−m|+n +m−s−|u−M |+n
∣

∣

+
ξt+ |u−M |+n ξt

}

dxdt,

and letting n→∞ we find that |u−m|+n +m−s−|u−M |+n converges to |u−m|++
m−s−|u−M |+ in L1(R) and ζn,0=H0(|u−m|+n +m−s−|u−M |+n ), or at least a
subsequence, converges weak-∗ to some H̃ in L∞(ΠT ). Since H is maximal monotone,
it follows that H̃ ∈H(|u−m|++m−s−|u−M |+). Noting that H(w)w=H0(w)w for
any function w, we arrive at

I1=

∫∫

ΠT

{

∣

∣|u−m|++m−s−|u−M |+
∣

∣

+
+ |u−M |+

}

ξtdxdt=

∫∫

ΠT

|u−s|+ξtdxdt.

(2.10)

Next, we deal with I4. Since A′(u)=0 for u∈ [m,M ], we have

H0(u−M)A(u)x=H0(u−s)A(u)x=H1(u−m)A(u)x

for all s∈ [m,M ], which gives

I4= lim
n→∞

lim
ε↓0

I4(n,ε)=−
∫

ΠT

H0(u−s)A(u)xξxdxdt. (2.11)

To deal with I2, we proceed in a similar way as for I1. We get

I2(n,ε)=

∫∫

ΠT

{

α
(

|u−m|+n +m−s−|u−M |+n
)

(ξζn,ε)x

+(s−m)α(ξζn,ε)x+α|u−M |+n ξx
}

dxdt

=−
∫∫

ΠT

αxHε

(

|u−m|+n +m−s−|u−M |+n
)

×
(

|u−m|+n +m−s−|u−M |+n
)

ξdxdt

−
∫∫

ΠT

α
(

|u−m|+n +m−s−|u−M |+n
)

x

×Hε

(

|u−m|+n +m−s−|u−M |+n
)

ξdxdt

+

∫∫

ΠT

α|u−M |+n ξxdxdt+
∫∫

ΠT

α(s−m)(ξζn,ε)xdxdt.
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Taking ε↓0 we get, after integration by parts,

I2(n,0)=−
∫∫

ΠT

αx

∣

∣|u−m|+n +m−s−|u−M |+n
∣

∣

+
ξdxdt

−
∫∫

ΠT

α
(

∣

∣|u−m|+n +m−s−|u−M |+n
∣

∣

+
)

x
ξdxdt

+

∫∫

ΠT

α|u−M |+n ξxdxdt+lim
ε↓0

∫∫

ΠT

α(s−m)(ξζn,ε)xdxdt

=−
∫∫

ΠT

αx

∣

∣|u−m|+n +m−s−|u−M |+n
∣

∣

+
ξdxdt

+

∫∫

ΠT

αx

∣

∣|u−m|+n +m−s−|u−M |+n
∣

∣

+
ξdxdt

+

∫∫

ΠT

α
∣

∣|u−m|+n +m−s−|u−M |+n
∣

∣

+
ξxdxdt

+

∫∫

ΠT

α|u−M |+n ξxdxdt+lim
ε↓0

∫∫

ΠT

α(s−m)(ξζn,ε)xdxdt,

where the two first terms obviously cancel. Sending n→∞ and proceeding like in the
case I1 we arrive at

I2=

∫∫

ΠT

α
(

|u−M |++
∣

∣|u−m|++m−s−|u−M |+
∣

∣

+
)

ξxdxdt

+ lim
ε↓0

n→∞

∫∫

ΠT

(s−m)α(ξζn,ε)xdxdt

=

∫∫

ΠT

α|u−s|+ξxdxdt+ lim
ε↓0

n→∞

∫∫

ΠT

(s−m)α(ξζn,ε)xdxdt. (2.12)

The last term of the last expression will be incorporated into the analysis of I3. In
fact, taking into account that

I3(n,ε)=

∫∫

ΠT

αx

{

(

H0(u−M)M−H1(u−m)m
)

×Hε

(

|u−m|+n +m−s−|u−M |+n
)

−H0(u−M)M
}

ξdxdt

and that

lim
ε↓0

n→∞

∫∫

ΠT

(s−m)α(ξζn,ε)xdxdt=− lim
ε↓0

n→∞

∫∫

ΠT

(s−m)αxξζn,εdxdt,

we obtain

I3+ lim
ε↓0

n→∞

∫∫

ΠT

(s−m)α(ξζn,ε)xdxdt

= lim
ε↓0

n→∞

(

I3(n,ε)−
∫∫

ΠT

(s−m)αxξζn,εdxdt

)

= lim
ε↓0

n→∞

∫∫

ΠT

{

αx

(

H0(u−M)M−s+m−H1(u−m)m
)

ξζn,ε

−αxH0(u−M)Mξ
}

dxdt.
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Proceeding as in the cases I1 and I2 we find

I3+ lim
ε↓0

n→∞

∫∫

ΠT

(s−m)α(ξζn,ε)xdxdt

=

∫∫

ΠT

αx

{

(

H0(u−M)M+m−s−H1(u−m)m
)

×H̃
(

|u−m|++m−s−|u−M |+
)

−H0(u−M)M
}

ξdxdt.

If u>M , then the expression in curled brackets in the last integrand equals

{. . .}=(M−s)H̃(M−s)−M =−s=−H̃(u−s)s.

Likewise, for each of the cases M ≥u>s>m, M>s≥u>m, and M>s>u≥m we
verify that {. . .}=−H̃(u−s)s, and also for m>u we obtain

{. . .}=(m−s)H̃(m−s)=0=−H̃(u−s)s,

and finally, the result is also valid if s=m or s=M . We therefore conclude that

I3+ lim
ε↓0

n→∞

∫∫

ΠT

(s−m)α(ξζn,ε)xdxdt=−
∫

ΠT

αxH̃(u−s)sξdxdt. (2.13)

Now, combining (2.10)–(2.13), we obtain the inequality
∫∫

ΠT

{

|u−s|+
(

ξt+α(x,t)ξx
)

−αx(x,t)H̃(u−s)sξ

−H0(u−s)A(u)xξx

}

dxdt≥0 for all s∈ [m,M ].

Now, for any s∈ [m,M) there exists a sequence {sn}n∈N such that sn<s<M and
sn→s. Then H̃(u−sn)→H0(u−s) and H0(u−sn)→H0(u−s) almost everywhere.
Hence we get

∫∫

ΠT

{

|u−s|+
(

ξt+α(x,t)ξx
)

−αx(x,t)H0(u−s)sξ

−H0(u−s)A(u)xξx

}

dxdt≥0 for all s∈ [m,M ].

(2.14)

This proof uses only that αx is bounded, which is indeed the case for our choice
α(x,t)=Φ′(v(x,t)), since Φ is assumed to be smooth and vx(x,t)=u(x,t) is bounded.
On the other hand, considering in the weak formulation a test function φ(x,t)=
Hε(A(k)−A(u))ϕ(x,t) with k /∈ [m,M ] and following essentially the same steps as
before we find

∫∫

ΠT

{

|s−u|+
(

ξt+α(x,t)ξx
)

+αx(x,t)H0(s−u)sξ

+H0(s−u)A(u)xξx

}

dxdt≥0 for all s∈ [m,M ].

(2.15)

Adding (2.14) and (2.15) we get
∫∫

ΠT

{

|u−s|
(

ξt+α(x,t)ξx
)

−αx(x,t)sgn(u−s)sξ

−sgn(u−s)A(u)xξx

}

dxdt≥0 for all s∈ [m,M ].

(2.16)

Moreover (2.16) is valid for all s 6∈ [m,M ] (cf. [22]). This implies that any weak
solution is an entropy solution.
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3. Jump conditions and uniqueness

3.1. Rankine-Hugoniot condition. Assume that u is a weak solution having
a discontinuity at a point (x0,t0)∈ΠT between the approximate limits u+ and u− of u
taken with respect to x>x0 and x<x0, respectively. Standard results from the theory
of strongly degenerate parabolic equations imply that such a discontinuity is possible
only if A(u) is flat for u∈I(u−,u+) := [min{u−,u+},max{u−,u+}]. In that case, the
propagation velocity of the jump is given by the Rankine-Hugoniot condition, which
is derived by standard arguments from the weak formulation (2.2):

s=
1

u+−u−

(

Φ′(v+)u+−Φ′(v−)u−−
(

A(u)x
)+

+
(

A(u)x
)−
)

. (3.1)

Here, (A(u)x)
+ and (A(u)x)

− denote the approximate limits of A(u)x taken with
respect to x>x0 and x<x0, respectively, and v+ and v− denote the corresponding
limits of v. Since v is continuous, we actually have v+=v−, and (3.1) reduces to

s=Φ′
(

v(x0,t0)
)

− (A(u)x)
+−(A(u)x)

−

u+−u−

.

3.2. Uniqueness of weak solutions. The uniqueness of weak solutions
is an immediate consequence of Lemma 2.2 and a result proved in [22] (cf. also [15])
regarding continuous dependence of entropy solutions with respect to the flux function.
More precisely, we have the following theorem.

Theorem 3.1. Let u and ū be two weak solutions of (1.1), (1.2) (in the sense of
Definition 2.1) with initial data u0 and ū0, respectively. Then there exists a constant
C=C (max |Φ′|) such that

∥

∥u(·,t)− ū(·,t)
∥

∥

L1(R)
≤C‖u0− ū0‖L1(R), ∀t∈ (0,T ].

In particular, weak solutions of (1.1), (1.2) are unique.

Proof. According to Lemma 2.2, u and ū are entropy solutions (in the sense of
Definition 2.2) with initial data u0 and ū0, respectively. To be able to apply the L1

stability and uniqueness results from [15, 22], we rewrite the equations satisfied by u
and ū as

ut+
(

V (x,t)u
)

x
=A(u)xx, V (x,t) :=Φ′

(
∫ x

−∞

u(y,t)dy

)

,

with initial data u(0,x)=u0(x) and

ūt+
(

V̄ (x,t)ū
)

x
=A(ū)xx, V̄ (x,t) :=Φ′

(
∫ x

−∞

ū(y,t)dy

)

.

with initial data ū(0,x)= ū0(x), respectively. Keeping in mind that u and ū are of
bounded variation, i.e., u,ū∈L∞(0,T ;BV (R)), we now may apply Theorem 1.3 in
[22] to conclude that there exists a constant C such that

∥

∥u(·,t)− ū(·,t)
∥

∥

L1(R)
≤‖u0− ū0‖L1(R)+

∫ t

0

∣

∣Vx(x,s)− V̄x(x,s)
∣

∣ds

+

∫ t

0

∣

∣V (x,s)− V̄ (x,s)
∣

∣TV(u(·,s))ds

≤‖u0− ū0‖L1(R)+C

∫ t

0

∣

∣Vx(x,s)− V̄x(x,s)
∣

∣ds.
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Observe that

∫ t

0

∣

∣Vx(x,s)− V̄x(x,s)
∣

∣ds≤max |Φ′|
∫ t

0

∣

∣u(x,s)− ū(x,s)
∣

∣ds,

so that by the Gronwall inequality we arrive at

∥

∥u(·,t)− ū(·,t)
∥

∥

L1(R)
≤ exp(max |Φ′|t)‖u0− ū0‖L1(R).

4. Convergence analysis of numerical schemes

4.1. Preliminaries. We define the vectors Un :={un
j+1/2}j∈Z and

V n :={vnj }j∈Z, and discretize R by xj := j∆x, j∈Z, and the time interval [0,T ]
by tn=n∆t, n=0, . . . ,N , ∆t :=T/N , N ∈N. We denote by un

j+1/2 the cell av-
erage over Ij := [xj ,xj+1] at time tn and j∈Z. We also define λ :=∆t/∆x and
µ :=∆t/∆x2=λ/∆x and wherever convenient use the spatial difference operators
∆+φj :=φj+1−φj , ∆−φj :=φj−φj−1, and

∆2φj :=∆+∆−φj =φj+1−2φj+φj−1.

We assume that the initial datum u0 is discretized via

u0
j+1/2 :=

1

∆x

∫

Ij

u0(ξ)dξ, j∈Z.

Moreover, we define the operator S∆x and its inverse S−1
∆x via

S∆x(U
n;j) :=∆x

j−1
∑

l=−∞

un
l+1/2, S−1

∆x(V
n;j) :=

vnj+1−vnj
∆x

. (4.1)

Clearly, S∆x and S−1
∆x are the discrete analogues of the integral and differential oper-

ators that convert u(·,tn) into v(·,tn) and vice versa, respectively. Since we assume
that u0 is compactly supported, the sum in (4.1) is actually finite.

The numerical scheme for the initial value problem (1.1), (1.2) can be compactly
written as follows:

Un+1=
[

S−1
∆x ◦H◦S∆x

]

Un, n=0, . . . ,N−1, (4.2)

where the basic idea is to utilize a standard scheme of the form

V n+1=H(V n), n=0, . . . ,N−1 (4.3)

for approximate solutions of the local PDE (1.4), starting from the initial data

v0j :=∆x

j−1
∑

l=−∞

u0
l+1/2=

∫ xj

−∞

u0(ξ)dξ, j∈Z.

Clearly, if C0 is the total mass defined in (1.10), then we have that

0≤v0j ≤C0, v0j ≤v0j+1 for all j∈Z. (4.4)
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Let us emphasize here that (4.2) implies that

Un=
[

S−1
∆x ◦H◦S∆x

]n
U0=

[

S−1
∆x ◦Hn ◦S∆x

]

U0.

This means that for the actual computation of Un from U0, the operators S∆x and
S−1
∆x need to be applied only once, and not for every time step.

To derive properties of the scheme (4.2), we first analyze the scheme (4.3), which
is here given by the marching formula

vn+1
j =vnj −λ∆+

[

h
(

vnj−1,v
n
j

)

−A
(

∆−v
n
j /∆x

)]

, j∈Z, n=0,1,2, . . . , (4.5)

where λ is subject to the CFL condition stated below, and

h(w,z) :=Φ(0)+Φ+(w)+Φ−(z) (4.6)

is the Engquist-Osher flux [17], where we define the functions

Φ+(v) :=

∫ v

0

max
{

0,Φ′(s)
}

ds, Φ−(v) :=

∫ v

0

min
{

0,Φ′(s)
}

ds. (4.7)

We assume that ∆t and ∆x satisfy the CFL stability condition

2λ max
v∈[0,C0]

∣

∣Φ′(v)
∣

∣+2µmax
u∈R

∣

∣a(u)
∣

∣≤1. (4.8)

The scheme for u can be written as

un+1
j+1/2=un

j+1/2−λ∆+G
n
j +µ∆2A

(

un
j+1/2

)

, j∈Z, n=0,1,2, . . . , (4.9)

where we define

Gn
j :=

1

∆x
∆+h

(

vnj−1,v
n
j

)

=
1

∆x

(

∫ vn
j

vn
j−1

Φ′
+(s)ds+

∫ vn
j+1

vn
j

Φ′
−(s)ds

)

. (4.10)

For the ease of reference, we will refer to (4.5)–(4.7) and (4.6), (4.7), (4.9), (4.10)
as “v-scheme” and “u-scheme”, respectively. Both schemes are, in particular, conser-
vative, so the total mass C0 is preserved.

The v-scheme (4.5)–(4.7) is a special case of the scheme studied by Evje and
Karlsen [19] for the more general doubly degenerate parabolic equation vt+Φ(v)x=
B(A(vx))x. While Evje and Karlsen prove that their scheme converges to an entropy
solution of that equation, we are here only interested in the property that the scheme
is monotone, therefore TVD and monotonicity preserving, and produces solutions for
which the discrete analogue of vx is uniformly bounded. This makes it possible here
to take finite differences of that scheme to generate the u-scheme for the nonlocal
Equation (1.1) satisfied by u=vx. The convergence of the u-scheme will be analyzed
separately.

4.2. Uniform estimates on {vnj } and {un
j+1/2}. We establish the com-

pactness and regularity estimates on the discrete soutions {vnj } and {un
j+1/2} in a

series of lemmas. In Lemma 4.1 we prove that the v-scheme is monotone, and derive
from this that the numerical solution {vnj } satisfies an L1 Lipschitz continuity in time
property (Lemma 4.2). This result, in combination with the unboundedness of A(u)
for u→∞, allows us to prove (in Lemma 4.3) a uniform L∞ bound for {un

j+1/2}.
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Then, in Lemma 4.4, we prove that the spatial total variation of A(Un) is uniformly
bounded. With the help of Lemma 4.5, which states that the cell that includes v∗

can move at most one position to the left or the right in one time step, we are then
able to show (Lemma 4.6) that the spatial total variation of Un is bounded uniformly
with respect to the discretization parameters; the bound depends, however, on the
final time T . Then, in Lemma 4.7, we prove that the solution {un

j+1/2} is L1 Hölder
continuous in time. Finally, we establish in Lemmas 4.8 and 4.9 L2 inequalities re-
lated to spatial and temporal translates of {A(un

j+1/2)}. The series of lemmas then
permits us to prove the main convergence result, Theorem 4.1, which states that the
numerical solutions {un

j+1/2} produced by the u-scheme indeed converge to the unique
weak solution (under conditions, and in a sense made precise in the theorem).

While Lemmas 4.1 to 4.7 are based on the original CFL condition (4.8), we
need to employ a strengthened condition ((4.22), stated in Lemma 4.8) to prove
Lemmas 4.8 and 4.9, and eventually Theorem 4.1. Finally, we mention that the
proofs of Lemmas 4.1 to 4.3 follow the treatment in [19].

Lemma 4.1. Under the CFL condition (4.8), the v-scheme defined by (4.5)–(4.7) is
monotone.

Proof. We rewrite the scheme (4.5) as

vn+1
j =H

(

vnj−1,v
n
j ,v

n
j+1

)

=:Hn
j , j∈Z, n=0,1, . . . ,N−1.

Since a≥0, we then have

∂Hn
j

∂vnj±1

=∓λmin
{

0,Φ′
(

vnj±1

)}

+µa
(

∆±v
n
j /∆x

)

≥0,

while the CFL condition (4.8) implies that

∂Hn
j

∂vnj
=1−λ

(

max
{

0,Φ′
(

vnj
)

}−min
{

0,Φ′
(

vnj
)

}
)

−µ∆+a
(

∆−v
n
j /∆x

)

=1−λ
∣

∣Φ′
(

vnj
)
∣

∣−µ∆+a
(

∆−v
n
j /∆x

)

≥0.

As a monotone scheme, the scheme (4.5) is total variation diminishing (TVD)
and monotonicity preserving. Since (4.5) represents an explicit three-point scheme,
for a fixed discretization (∆x,∆t) we will always have

vnj =0 for j <−K, vnj =C0 for j >K, (4.11)

for a sufficiently large constant K>0. Thus, we can state the following corollary.

Corollary 4.1. If (4.4) and the CFL condition (4.8) hold, then the numerical
solution {vnj } produced by the v-scheme (4.5)–(4.7) satisfies

0≤vnj ≤C0, vnj ≤vnj+1 for all j∈Z, n=1, . . . ,N . (4.12)

As a direct consequence, the numerical solution values V n={vnj }j∈Z satisfy the (triv-
ial) uniform total variation bound

TV(V n)=
∑

j∈Z

∣

∣vnj+1−vnj
∣

∣=C0.
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Lemma 4.2. The numerical solution {vnj } produced by the v-scheme (4.5)–(4.7)
satisfies the L1 Lipschitz continuity in time property, i.e., there exists a constant C1,
which is independent of ∆:=(∆x,∆t), such that

∑

j∈Z

∣

∣vn+1
j −vnj

∣

∣≤C1λ. (4.13)

Proof. For j∈Z, the quantity w
n+1/2
j :=vn+1

j −vnj satisfies

w
n+3/2
j −w

n+1/2
j =−λ∆+

[

h
(

vn+1
j−1 ,v

n+1
j

)

−h
(

vnj−1,v
n
j

)]

+λ∆+

[

A
(

∆−v
n+1
j /∆x

)

−A
(

∆−v
n
j /∆x

)]

.
(4.14)

We define

θ(s) :=

{

1/s if s 6=0,

0 otherwise,

and the quantities

B
n+1/2
j :=

[

h
(

vnj−1,v
n+1
j

)

−h
(

vnj−1,v
n
j

)]

θ
(

vn+1
j −vnj

)

,

C
n+1/2
j :=

[

h
(

vn+1
j ,vn+1

j+1

)

−h
(

vnj ,v
n+1
j+1

)]

θ
(

vn+1
j −vnj

)

,

D
n+1/2
j :=

[

A
(

∆+v
n+1
j /∆x

)

−A
(

∆+v
n
j /∆x

)]

θ
(

∆+v
n+1
j −∆+v

n
j

)

.

(4.15)

Since h is a monotonically non-decreasing function of its first argument and a mono-
tonically non-increasing function of its second argument, and A is a monotonically
non-decreasing function, we have

C
n+1/2
j ≥0, D

n+1/2
j ≥0, B

n+1/2
j ≤0. (4.16)

After some manipulations and using (4.12) we obtain, from (4.14),

w
n+3/2
j =w

n+1/2
j

[

1−λC
n+1/2
j +λB

n+1/2
j −λ

(

D
n+1/2
j−1 +D

n+1/2
j

)]

+w
n+1/2
j−1 λ

(

C
n+1/2
j−1 +D

n+1/2
j−1

)

+w
n+1/2
j+1 λ

(

−B
n+1/2
j+1 +D

n+1/2
j

)

.

Using the CFL condition we find

∣

∣w
n+3/2
j

∣

∣≤
∣

∣w
n+1/2
j

∣

∣

[

1−λ
(

C
n+1/2
j −B

n+1/2
j +D

n+1/2
j−1 +D

n+1/2
j

)]

+
∣

∣w
n+1/2
j−1

∣

∣λ
(

C
n+1/2
j−1 +D

n+1/2
j−1

)

+
∣

∣w
n+1/2
j+1

∣

∣λ
(

−B
n+1/2
j+1 +D

n+1/2
j

)

.

Summing this over j∈Z, and using (4.16) and (4.12), we obtain

∑

j∈Z

∣

∣w
n+3/2
j

∣

∣≤
∑

j∈Z

∣

∣w
n+1/2
j

∣

∣,

which implies that

∑

j∈Z

∣

∣w
n+3/2
j

∣

∣≤
∑

j∈Z

∣

∣w
1/2
j

∣

∣.
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From (4.5) with n=0 we get

∑

j∈Z

∣

∣w
1/2
j

∣

∣=
∑

j∈Z

∣

∣v1j −v0j
∣

∣=
∑

j∈Z

λ
∣

∣∆+

(

h
(

v0j−1,v
0
j

)

−A
(

∆−v
0
j /∆x

))∣

∣.

Using (1.6) we arrive at (4.13).

Lemma 4.3. The numerical solution {vnj } produced by the v-scheme (4.5)–(4.7) sat-
isfies the inequality |∆+v

n
j /∆x|≤C3 with a constant C3, which is independent of ∆.

Equivalently, the solution {un
j+1/2} generated by the u-scheme (4.6), (4.7), (4.9),

(4.10) satisfies the uniform L∞ bound

∣

∣un
j+1/2

∣

∣≤C3 for all j∈Z, n=0, . . . ,N . (4.17)

Proof. It is sufficient to show that A(∆+v
n
j /∆x)≤C2 for a constant C2 that is

independent of ∆. Taking into account (4.11) we get

∣

∣A
(

∆+v
n
j /∆x

)
∣

∣−
∣

∣h
(

vnj ,v
n
j+1

)
∣

∣

≤
∣

∣A
(

∆+v
n
j /∆x

)

−h
(

vnj ,v
n
j+1

)
∣

∣

=

∣

∣

∣

∣

∣

Φ(0)+

j
∑

k=−∞

∆−

(

A
(

∆+v
n
k /∆x

)

−h
(

vnk ,v
n
k+1

))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

j
∑

k=−∞

vn+1
k −vnk

λ
+Φ(0)

∣

∣

∣

∣

∣

≤ 1

λ

∑

k∈Z

∣

∣vn+1
k −vnk

∣

∣+
∣

∣Φ(0)
∣

∣.

Due to Lemma 4.2, we see that |A(∆+v
n
j /∆x)|≤C2 if we choose C2=C1+ |Φ(0)|.

Taking into account (1.8) concludes the proof.

Lemma 4.4. The solution {un
j+1/2} generated by the u-scheme (4.6), (4.7), (4.9),

(4.10) satisfies the following inequality, where the constant C4 is independent of ∆:

TV
(

A(Un)
)

=
∑

j∈Z

∣

∣∆+A
(

un
j−1/2

)
∣

∣≤C4.

Proof. Using the marching formula (4.5) we can write

∣

∣∆+A
(

un
j−1/2

)∣

∣≤ 1

λ

∣

∣vn+1
j −vnj

∣

∣+
∣

∣∆+h
(

vnj−1,v
n
j

)∣

∣

≤ 1

λ

∣

∣vn+1
j −vnj

∣

∣+
∣

∣

[

h
(

vnj ,v
n
j+1

)

−h
(

vnj ,v
n
j

)]

θ
(

vnj+1−vnj
)
∣

∣

∣

∣∆+v
n
j

∣

∣

+
∣

∣

[

h
(

vnj ,v
n
j

)

−h
(

vnj−1,v
n
j

)]

θ
(

vnj −vnj−1

)
∣

∣

∣

∣∆−v
n
j

∣

∣.

Summing over j∈Z yields

∑

j∈Z

∣

∣∆+A
(

un
j−1/2

)∣

∣≤ 1

λ

∑

j∈Z

∣

∣vn+1
j −vnj

∣

∣+2‖Φ′‖∞
∑

j∈Z

∣

∣∆+v
n
j

∣

∣.

The right-hand side is uniformly bounded due to Lemma 4.2 and Corollary 4.1.

Lemma 4.4 does, in general, not permit to establish a uniform bound on the spatial
total variation TV(Un) of the solution values {un

j+1/2} generated by the u-scheme.
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We now prove that TV(Un) is nevertheless uniformly bounded, but by a bound
that depends on the final time T . Our analysis will appeal to assumption (1.7).
From (4.11) and (4.12) we deduce that if v∗<C0, where we recall that C0 is defined
in (1.10), and {vnj } is the numerical solution produced by the v-scheme (4.5)–(4.7),
then at each time level there exists a unique index k such that vnk <v∗≤vnk+1. The
following lemma informs about the behavior of this index with each time iteration.
(In light of the discussion of Section 1.3, the case v∗<C0 is the most relevant for the
phenomenon of aggregation.)

Lemma 4.5. Assume that v∗<C0, and that the data {vnj }j∈Z and {vn+1
j }j∈Z have

been produced by the v-scheme (4.5)–(4.7) starting from the monotone data {v0j }j∈Z

under the CFL condition (4.8). Let k,k̄∈Z be the uniquely defined indices that satisfy
vnk <v∗≤vnk+1 and vn+1

k̄
<v∗≤vn+1

k̄+1
, respectively. Then k̄∈{k−1,k,k+1}.

Proof. Since vnk <v∗≤vnk+1 we analyze two cases: vnk <v∗<vnk+1 and vnk <v∗=
vnk+1. In the first, the monotonicity of the v-scheme and (4.12) imply that

vn+1
k−1 ≤vnk <v∗<vnk+1≤vn+1

k+2 ,

such that either vn+1
k−1 <v∗≤vn+1

k , or vn+1
k <v∗≤vn+1

k+1 , or vn+1
k+1 <v∗<vn+1

k+2 , which
means that k̄={k−1,k,k+1}. In the second, we find that

vn+1
k−1 ≤vnk <v∗=vnk+1≤vn+1

k+2 ,

so either vn+1
k−1 <v∗=vn+1

k , or vn+1
k <v∗≤vn+1

k+1 , or v
n+1
k+1 <v∗≤vn+1

k+2 . We conclude the
proof by noting that vn+1

k+2 <v∗ is impossible due to the monotonicity of the v-scheme
and (4.12).

The next lemma states the announced bound on TV(Un).

Lemma 4.6. Assume that the CFL condition (4.8) is satisfied. Then there ex-
ist constants C5 and C6, which are independent of ∆, such that the solution values
Un={un

j+1/2}j∈Z satisfy the uniform total variation bound

TV(Un)=
∑

j∈Z

∣

∣un
j+1/2−un

j−1/2

∣

∣≤
(

C5+TV(U0)
)

exp(C6T ), n=1, . . . ,N. (4.18)

Proof. From (4.9) we obtain

∆+u
n+1
j−1/2=∆+u

n
j−1/2−µ∆+∆

2h
(

vnj−1,v
n
j

)

+µ∆+∆
2A
(

un
j−1/2

)

.

Let us assume that v∗<C0, so that there exists an index k such that vnk <v∗≤vnk+1

(cf. Lemma 4.5), and let us split Z into the subsets

A :=An :={j∈Z |j≤k−2},
B :=Bn :={j∈Z |k−2<j≤k+2},
C :=Cn :={j∈Z |k+2<j}.

(4.19)

(If v∗≥C0, the following arguments for j∈A apply to all j∈Z, i.e. we may choose
A=Z, and formally B=C=∅.)

Let wn
j :=∆+u

n
j−1/2 and anj :=∆+A(u

n
j−1/2)θ(∆+u

n
j−1/2). For j∈A, we obtain

wn+1
j =wn

j −µ∆−∆
2Φ
(

vnj
)

+µ∆2
(

anj w
n
j

)

. (4.20)
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Using a Taylor expansion about vnj we find that there exist numbers αn
j ∈ [vnj ,v

n
j+1]

and βn
j ∈ [vnj−1,v

n
j ] such that

∆2Φ
(

vnj
)

=Φ′(vnj )w
n
j ∆x+

1

2
Φ′′
(

αn
j

)(

∆+v
n
j

)2
+

1

2
Φ′′
(

βn
j

)(

∆−v
n
j

)2
.

Substituting this into (4.20) we obtain

wn+1
j =wn

j −λ∆−

(

Φ′
(

vnj
)

wn
j

)

+µ∆2
(

anj w
n
j

)

− µ

2
∆−

(

Φ′′
(

αn
j

)(

∆+v
n
j

)2)

− µ

2
∆−

(

Φ′′
(

βn
j

)(

∆−v
n
j

)2)

=wn
j −λ∆−

(

Φ′
(

vnj
)

wn
j

)

+µ∆2
(

anj w
n
j

)

− µ

2

(

∆−Φ
′′
(

αn
j

)(

∆+v
n
j

)2
+Φ′′

(

αn
j−1

)(

vnj+1−vnj−1

)

wn
j ∆x

+∆−Φ
′′
(

βn
j

)(

∆−v
n
j

)2
+Φ′′

(

βn
j−1

)(

vnj −vnj−2

)

wn
j−1∆x

)

=wn
j

[

1−λΦ′
(

vnj
)

−2µanj
]

+wn
j−1

[

µanj−1+λΦ′
(

vnj−1

)]

+µwn
j+1a

n
j+1

+O(∆t)
(

wn
j−1+wn

j +∆+v
n
j +∆−v

n
j

)

.

In an analogous way we find, for j∈C,

wn+1
j =wn

j

[

1+λΦ′
(

vnj
)

−2µanj
]

+wn
j+1

[

µanj+1−λΦ′
(

vnj+1

)]

+µwn
j−1a

n
j−1

+O(∆t)
(

wn
j +wn

j+1+∆+v
n
j +∆−v

n
j

)

.

Now we deal with j∈B. For j=k−1, using that v∗ is a maximum of Φ and following
analogous steps as before, we get

wn+1
k−1 =wn

k−1−µ
(

Φ(vnk+1)−Φ(v∗)+∆−∆
2Φ
(

vnk−1

))

+µ∆2
(

ank−1w
n
k−1

)

=wn
k−1−µ

(

Φ′(ξ)
(

vnk+1−v∗
)

+∆−∆
2Φ
(

vnk−1

))

+µ∆2
(

ank−1w
n
k−1

)

=wn
k−1−µ

((

Φ′(ξ)−Φ′(v∗)
)(

vnk+1−v∗
)

+∆−∆
2Φ
(

vnk−1

))

+µ∆2
(

ank−1w
n
k−1

)

=wn
k−1

[

1−λΦ′
(

vnk−1

)

−2µank−1

]

+wn
k−2

[

µank−2+λΦ′
(

vnk−2

)]

+µwn
ka

n
k

+O(∆t)
(

1+wn
k−2+wn

k−1+∆+v
n
k−1+∆−v

n
k−1

)

.

For j=k, using that Φ′(v∗)=0 we compute

wn+1
k =wn

k −µ
[

Φ
(

vnk+2

)

−2Φ(vnk+1)+Φ(vnk )−
{

Φ(vnk )−2Φ(vnk−1)+Φ
(

vnk−2

)}]

−µ
[

Φ(vnk−1)−Φ(vnk )+2
(

Φ(v∗)−Φ(vnk )
)

+Φ(v∗)−Φ(vnk+1)
]

+µ∆2
(

ankw
n
k

)

=wn
k −µ

[

∆+∆
2Φ(vnk )+∆−∆

2Φ(vnk )
]

+µ∆2
(

ankw
n
k

)

−µ
[

Φ
(

vnk−1

)

−Φ(vnk )+2
(

Φ(v∗)−Φ(vnk )
)

+Φ(v∗)−Φ
(

vnk+1

)]

=wn
k

(

1−2µank
)

+wn
k−1

[

µank−1+λΦ′
(

vnk−1

)]

+wn
k+1

[

µank+1−λΦ′
(

vnk+1

)]

+O(∆t)
(

1+wn
k−1+wn

k +wn
k+1+∆+v

n
k +∆−v

n
k

)

.

For j=k+1 and j=k+2, the following steps are analogous to the previous cases.
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Using that Φ′(v∗)=0 we obtain

wn+1
k+1 =wn

k+1−µ
[

∆+∆
2Φ(vnk+1)+3(Φ(vnk )−Φ(v∗))+Φ(vnk )−Φ(vnk−1)

]

+µ∆2
(

ank+1w
n
k+1

)

=wn
k+1

[

1+λΦ′
(

vnk+1

)

−2µank+1

]

+wn
kµa

n
k +wn

k+2

[

µank+2−λΦ′
(

vnk+2

)]

+O(∆t)
(

1+wn
k+1+wn

k+2+∆+v
n
k+1+∆−v

n
k+1

)

,

wn+1
k+2 =wn

k+2−µ
[

∆+∆
2Φ(vnk+2)+Φ(vnk )−Φ(v∗)

]

+µ∆2
(

ank+2w
n
k+2

)

=wn
k+2

[

1+λΦ′
(

vnk+2

)

−2µank+2

]

+wn
k+3

[

µank+3−λΦ′
(

vnk+3

)]

+µwn
k+1a

n
k+1

+O(∆t)
(

1+wn
k+2+wn

k+3+∆+v
n
k+2+∆−v

n
k+2

)

.

Finally, summing over j we find that there exist constants C6 and C7 such that
∑

j∈Z

∣

∣wn+1
j

∣

∣≤
∑

j∈Z

∣

∣wn
j

∣

∣(1+C6∆t)+C7∆t,

which implies that

∑

j∈Z

∣

∣wn+1
j

∣

∣≤
∑

j∈Z

∣

∣w0
j

∣

∣exp(C6T )+
C7

C6
exp(C6T ),

which proves (4.18).

The next lemma states L1 Hölder continuity with respect to the variable t of the
solution generated by (4.9).

Lemma 4.7. The solution {un
j+1/2} generated by the u-scheme (4.6), (4.7), (4.9),

(4.10) satisfies the following inequality, where the constant C8 is independent of ∆:
∑

j∈Z

∣

∣um
j+1/2−un

j+1/2

∣

∣∆x≤C8

√

∆t(m−n) for m>n, and m,n∈N0. (4.21)

Proof. We first establish weak Lipschitz continuity in the time variable. To
this end, let φ(x) be a test function and φj :=φ(j∆x). Multiplying Equation (4.9) by
φj∆x, summing over n and j and applying a summation by parts, we get

∣

∣

∣

∣

∣

∆x
∑

j∈Z

φj

(

un+1
j+1/2−un

j+1/2

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∆t
∑

j∈Z

Gn
j (φj−φj−1)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

λ
∑

j∈Z

(φj−φj−1)
(

A
(

un
j+1/2

)

−A
(

un
j−1/2

))

∣

∣

∣

∣

∣

.

Using Lemma 4.4 and the fact that φ is smooth we obtain
∣

∣

∣

∣

∣

∆x
∑

j∈Z

φj

(

un+1
j+1/2−un

j+1/2

)

∣

∣

∣

∣

∣

≤C‖φ′‖∆t,

where C is independent of ∆ and φ. Consequently, for m>n the following weak
continuity result holds:

∣

∣

∣

∣

∣

∆x
∑

j∈Z

φj

(

um
j+1/2−un

j+1/2

)

∣

∣

∣

∣

∣

≤C‖φ′‖∆t(m−n).
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Since Ej :=um
j+1/2−un

j+1/2 has bounded variation on R, we arrive at the inequality
(4.21) by proceeding as in [18, Lemma 3.6].

Now, following the treatment in [21] we prove an L2 estimate for the discrete
version of A(u)x.

Lemma 4.8. Assume that the following strengthened CFL condition is satisfied for a
constant ε>0:

CFLε :=2λmax
u∈R

∣

∣Φ′(u)
∣

∣+4µmax
u∈R

a(u)≤1−ε. (4.22)

Then the solution {un
j+1/2} generated by the u-scheme (4.9), (4.10) satisfies the fol-

lowing inequality, where the constant C9 depends on ε, but is independent of ∆:

N
∑

n=1

∑

j∈Z

(

∆−A(u
n
j+1/2)

∆x

)2

∆t∆x≤C9. (4.23)

Proof. Multiplying (4.9), by un
j+1/2∆x, summing the result over n=0, . . . ,N−1

and j∈Z, and using summations by parts we get

λ
N−1
∑

n=0

∑

j∈Z

(

∆−A
(

un
j+1/2

))(

∆−u
n
j+1/2

)

=∆t

N−1
∑

n=0

∑

j∈Z

Gn
j

(

∆−u
n
j+1/2

)

−∆x

2

N−1
∑

n=0

∑

j∈Z

((

un+1
j+1/2

)2−
(

un
j+1/2

)2)

+
∆x

2

N−1
∑

n=0

∑

j∈Z

(

un+1
j+1/2−un

j+1/2

)2
,

where we used that

(

un+1
j+1/2−un

j+1/2

)

un
j+1/2=

1

2

[

(

un+1
j+1/2

)2−
(

un
j+1/2

)2−
(

un+1
j+1/2−un

j+1/2

)2
]

.

In light of Lemma 4.3, we can also write

(

∆−A
(

un
j+1/2

))(

∆−u
n
j+1/2

)

≥ 1

a∗
(

∆−A
(

un
j+1/2

))2
, a∗ :=max

u
a(u),

since a(u)≥0. Using this observation, we find that

λ

a∗

N−1
∑

n=0

∑

j∈Z

(

∆−A
(

un
j+1/2

))2≤∆t

N−1
∑

n=0

∑

j∈Z

Gn
j

(

∆−u
n
j+1/2

)

+
∆x

2

∑

j∈Z

(

u0
j+1/2

)2

+
∆x

2

N−1
∑

n=0

∑

j∈Z

(

un+1
j+1/2−un

j+1/2

)2
.

(4.24)

On the other hand, from (4.9) and the inequality (a+b)2≤2a2+2b2 we obtain

1

2

(

un+1
j+1/2−un

j+1/2

)2≤λ2
(

∆+G
n
j

)2
+2µ2

(

(

∆+A
(

un
j+1/2

))2
+
(

∆−A
(

un
j+1/2

))2
)

.
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Multiplying the last inequality by ∆x and summing the result over n and j yields

∆x

2

N−1
∑

n=0

∑

j∈Z

(

un+1
j+1/2−un

j+1/2

)2≤ ∆t2

∆x

N−1
∑

n=0

∑

j∈Z

(

∆+G
n
j

)2

+4µ2∆x
N−1
∑

n=0

∑

j∈Z

(

∆−A
(

un
j+1/2

))2
.

The new CFL condition (4.22) now implies that

4µ2∆x=4µ
∆t

∆x
≤ ∆t(1−ε)

∆xa∗
,

and therefore

∆x

2

N−1
∑

n=0

∑

j∈Z

(

un+1
j+1/2−un

j+1/2

)2

≤∆t2

∆x

N−1
∑

n=0

∑

j∈Z

(

∆+G
n
j

)2
+

∆t(1−ε)

∆xa∗

N−1
∑

n=0

∑

j∈Z

(

∆−A
(

un
j+1/2

))2
.

(4.25)

Summing (4.24) and (4.25) yields

ελ

a∗

N−1
∑

n=0

∑

j∈Z

(

∆−A
(

un
j+1/2

))2

≤∆t

N−1
∑

n=0

∑

j∈Z

Gn
j

(

∆−u
n
j+1/2

)

+
∆x

2

∑

j∈Z

(

u0
j+1/2

)2
+

∆t2

∆x

N−1
∑

n=0

∑

j∈Z

(

∆−G
n
j+1

)2≤C,

where we used Lemma 4.6, the bound on Gn
j and the fact that ∆t=O(∆x2).

With the help of Lemma 4.8 we can prove

Lemma 4.9. Under the assumptions of Lemma 4.8 there exists a constant C10 which
is independent of ∆ such that

∑

j∈Z

∣

∣A
(

um
j+1/2

)

−A
(

un
j+1/2

)∣

∣

2
∆x≤C10(m−n)∆t for m>n. (4.26)

Proof. Using Lemma 4.3, the fact that A′(u)≥0, and (4.9), we get
∑

j∈Z

(

A
(

um
j+1/2

)

−A
(

un
j+1/2

))2
∆x

≤a∗
∑

j∈Z

(

A
(

um
j+1/2

)

−A
(

un
j+1/2

))(

um
j+1/2−un

j+1/2

)

∆x=:A+B,
(4.27)

where we define

A :=−∆ta∗
∑

j∈Z

(

A
(

um
j+1/2

)

−A
(

un
j+1/2

))

m−1
∑

l=n

∆+G
l
j ,

B :=λa∗
∑

j∈Z

(

A
(

um
j+1/2

)

−A
(

un
j+1/2

))

m−1
∑

l=n

∆2A
(

ul
j+1/2

)

.
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Summing by parts we get

A=∆ta∗
∑

j∈Z

m−1
∑

l=n

Gl
j

(

∆−A
(

um
j+1/2

)

−∆−A
(

un
j+1/2

))

.

We can write

A=∆t∆xa∗
∑

j∈Z

m−1
∑

l=n

Gl
j

(

∆−A
(

um
j+1/2

)

∆x
−

∆−A
(

un
j+1/2

)

∆x

)

.

Using that ab≤a2+b2, we find

A≤ ∆t

2
a∗
∑

j∈Z

m−1
∑

l=n

∣

∣Gl
j

∣

∣





(

∆−A(u
m
j+1/2)

∆x

)2

+

(

∆−A(u
n
j+1/2)

∆x

)2


∆x

+∆ta∗
∑

j∈Z

m−1
∑

l=n

∣

∣Gl
j

∣

∣∆x=O
(

(m−n)∆t
)

,

where we have used Lemma 4.8 and the bound on Gn
j .

Proceeding in the same way for B yields

B=−λa∗
∑

j∈Z

{

[

A
(

um
j+1/2

)

−A
(

un
j+1/2

)

−
(

A
(

um
j−1/2

)

−A
(

un
j−1/2

))]

×
m−1
∑

l=n

∆−A
(

ul
j+1/2

)

}

=−λa∗
∑

j∈Z

{

(

∆−A
(

um
j+1/2

)

−∆−A
(

un
j+1/2

))

m−1
∑

l=n

∆−A
(

ul
j+1/2

)

}

=−λa∗
∑

j∈Z

m−1
∑

l=n

(

∆−A
(

um
j+1/2

)

·∆−A
(

ul
j+1/2

)

−∆−A
(

un
j+1/2

)

·∆−A
(

ul
j+1/2

)

)

≤2(m−n)∆ta∗
∑

j∈Z

(

∆−A(u
n
j+1/2)

∆x

)2

∆x=O
(

(m−n)∆t
)

.

Inserting into (4.27) that A,B=O((m−n)∆t) concludes the proof.

Let us now denote by u∆ the piecewise constant function

u∆(x,t) :=

N−1
∑

n=0

∑

j∈Z

χjn(x,t)u
n
j+1/2,

where χjn denotes the characteristic function of Ij× [tn,tn+1), and let us denote
by v∆ its primitive. From the L∞ bound (Lemma 4.3), the uniform bound on the
total variation in space (Lemma 4.6), and the L1 Hölder continuity in time result
(Lemma 4.7) we infer that there is a constant C such that

‖u∆‖L∞(ΠT )+‖u∆‖L1(ΠT )≤C;
∣

∣u∆(·,t)
∣

∣

BV (R)
≤C for all t∈ (0,T ], (4.28)
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uniformly as ∆x,∆t↓0, while Lemmas 4.8 and 4.9 imply (cf. [20]) that there are
constants C11 and C12 independent of ∆ such that

∥

∥A(u∆(·+y, ·))−A(u∆(·, ·))
∥

∥

L2(ΠT )
≤C11

√

|y|(|y|+∆x),
∥

∥A(u∆(·, ·+τ))−A(u∆(·, ·))
∥

∥

L2(ΠT−τ )
≤C12

√
τ .

(4.29)

4.3. Convergence to the weak solution.

Theorem 4.1. Assume that ∆x and ∆t satisfy the CFLε condition (4.22), and that
u0 is compactly supported and satisfies (1.6). Then the piecewise constant solutions
u∆ generated by the u-scheme (4.6), (4.7), (4.9), (4.10) converge in the strong topology
of L1(ΠT ) to the unique weak solution of (1.1), (1.2) (in the sense of Definition 2.1).

Proof. Since u∆∈L∞(ΠT )∩L∞(0,T ;BV (R))∩C1/2(0,T ;L1(R)), we deduce
from (4.28) that there exists a sequence {∆i}i∈N with ∆i ↓0 for i→∞ and a function
u∈L∞(ΠT )∩L1(ΠT )∩L∞(0,T ;BV (R)) such that u∆→u a.e. on ΠT . Moreover,
in light of (4.29) we have A(u∆)→A(u) strongly on L2

loc(ΠT ), and we have that
A(u)∈L2(0,T ;H1(R)). Lemma 4.7 ensures that u satisfies the initial condition (2.1).
It remains to prove that u satisfies the weak formulation (2.1). To this end, we apply
a standard Lax-Wendroff-type argument. Now, multiplying (4.10) by

∫

Ij
ϕ(x,tn)dx,

where Ij := [xj ,xj+1] and ϕ is a suitable smooth test function, and summing the results
over j∈Z, we obtain W1+W2+W3=0, where we define

W1 :=

N−1
∑

n=0

∑

j∈Z

(

un+1
j+1/2−un

j+1/2

)

∫

Ij

ϕ(x,tn)dx,

W2 :=λ

N−1
∑

n=0

∑

j∈Z

∆+G
n
j

∫

Ij

ϕ(x,tn)dx,

W3 :=−µ

N−1
∑

n=0

∑

j∈Z

∆2A(un
j+1/2)

∫

Ij

ϕ(x,tn)dx.

By standard summation by parts and using that ϕ has compact support, we get

W1=−∆t

N−1
∑

n=0

∑

j∈Z

un+1
j+1/2

∫

Ij

ϕ(x,tn+1)−ϕ(x,tn)

∆t
dx,

W2 :=−∆t

N−1
∑

n=0

∑

j∈Z

Gn
j+1

∫

Ij

ϕ(x+∆x,tn)−ϕ(x,tn)

∆x
dx,

W3 :=−∆t

N−1
∑

n=0

∑

j∈Z

A(un
j+1/2)

∫

Ij

ϕ(x+∆x,tn)−2ϕ(x,tn)+ϕ(x−∆x,tn)

∆x2
dx.

A direct application of the convergence of u∆ gives us the desired result for W1 and
W3. It remains to analyzeW2. Since for each fixed n∈{0, . . . ,N−1}, the data {vnj }j∈Z

are monotone, there exists an index k such that vnk <v∗≤vnk+1. Thus, if A, B and
C are the sets defined in (4.19), we may write W2=W2,A+W2,B+W2,C , where the
subindex denotes the summation over j from the sets A, B and C, respectively. For
j∈A we have

Gn
j+1=

∆+Φ(v
n
j )

∆x
=

∆+Φ(v
n
j )

∆+vnj
un
j+1/2 if un

j+1/2 6=0 and Gn
j+1=0 otherwise,
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since Φ′>0 for the values of vnj with j∈A. For j∈C we have

Gn
j+1=

∆+Φ(v
n
j )

∆+vnj
un
j+1/2+

∆2Φ(vnj+1)

∆x
if un

j+1/2 6=0 and Gn
j+1=0 otherwise.

We can write

∆2Φ
(

vnj+1

)

=Φ′
(

vnj+1

)

∆+u
n
j+1/2∆x

+
1

2

(

Φ′′
(

ξnj+3/2

)(

∆+v
n
j+1

)2
+Φ′′

(

ξj+1/2

)(

∆+v
n
j

)

)

,

where ξnj+1/2∈ [vnj ,v
n
j+1]. Using Lemmas 4.3 and 4.6 we get

W2,C =−∆t
N−1
∑

n=0

∑

j∈C

∆+Φ(v
n
j )

∆+vnj
un
j+1/2

∫

Ij

ϕ(x+∆x,tn)−ϕ(x,tn)

∆x
dx+O(∆x).

The case j∈B can be treated in the same way as j∈C using that Φ′(v∗)=0 and that
B is a finite index set. Taking the limit ∆↓0 we finally get the result.

5. Numerical examples

The examples presented here illustrate the qualitative behavior of weak solutions
of the initial value problem (1.1), (1.2) and the convergence properties of the numerical
scheme. For the first purpose, we select a relatively fine discretization and present
the corresponding numerical solutions as three-dimensional sequences of profiles at
selected times or contour plots that should almost be free of numerical artifacts,
while the convergence properties of the scheme are demonstrated by error histories in
some examples. For all numerical examples we specify ∆x and use µ=∆t/∆x2=0.1,
i.e., ∆t=0.1∆x2.

5.1. Example 1. In Example 1 we calculate the numerical solution of (1.1),
(1.2) for Φ(v)=−(1−v)2 and the degenerating integrated diffusion coefficient (1.12)
with uc=10 and a0=0.1. The initial datum is given by

u0(x)=

{

5 for 0.1≤x≤0.2, 7 for 0.8≤x≤0.9,

8 for 0.6≤x≤0.7, 0 otherwise.

Note that C0=2 in Example 1, where C0 is defined in (1.10), and v∗=C0/2=1, so
that the function Φ corresponds to (1.11), where the constant of integration is −1, and
that u0 is chosen such that (1.6) is satisfied. Moreover, in our case Φ′′(v)=−2<0,
and Φ(0)=Φ(C0)=−1. Nagai and Mimura [32] show that under these conditions,
and for the integrated diffusion coefficient given by (1.19), the solution converges in
time to a compactly supported, stationary travelling-wave solution, which represents
the aggregated group of individuals and is defined by the time-independent version
of (1.1).

In Figure 5.1 we show the numerical approximations for v and u for 0≤ t≤0.5
and for ∆x=0.001. As predicted, for each fixed time the data {vnj } are monoton-
ically increasing, and the numerical solution for u indeed displays the aggregation
phenomenon, and terminates in a stationary profile, even though the assumptions on
A stated in [32] are not satisfied here. This supports the conjecture that a similar
travelling wave analysis can also be conducted in the present strongly degenerate case,
to which we will return in a separate paper.
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Fig. 5.1. Example 1: Numerical approximation of v (top) and corresponding approximation
of u (bottom), obtained via (4.2) with ∆x=0.001.

In Table 5.1 we show the error at t1=0.1 and t2=0.25 in the L1 norm for u
(denoted as etiu , i=1,2) and in the L∞ norm for v (denoted as etiv , i=1,2), where we
take as a reference the solution calculated with ∆x=0.0002. We find an experimental
rate of convergence in both cases greater than one. For small ∆x this behavior is
possibly related to the proximity of the reference solution. One should expect a real
order of convergence at most one since the v-scheme is monotone. Similar convergence
rates have been observed for the other examples.

In Figure 5.2 we compare the numerical approximations for v and a for different
mesh sizes at the simulated time t=0.25.

5.2. Example 2. This example represents a slight modification of Example 1,
namely we choose Φ and A as in Example 1, but we consider a smooth initial datum
u0 given by u0(x)=2−2cos(4πx) for x∈ [0,1] and u0(x)=0 otherwise. In Figure 5.3
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Fig. 5.2. Example 1: Numerical approximation of v (top) and u (bottom) for several mesh
sizes at t=0.25.

we show the numerical approximation of u for 0≤ t≤0.5 and ∆x=0.001. We ob-
serve that strong discontinuities form after finite time from the smooth initial datum.
This behavior contrasts with the regularity of other related problems [5, 24], where
discontinuities can occur only if they are present in the initial data.

5.3. Example 3. We now choose Φ and u0 as in Example 1, but define A by

A(u)=











0.05u for 0≤u≤5,

0.25 for 5<u≤10,

0.05u−0.25 for u>10.

Figure 5.4 shows the results for ∆x=0.001 and t∈ [0,0.5]. Again, a stationary single-
peak solution is forming, including a jump between u=5 and u=10, in agreement
with the flatness of A(u) for u∈ [5,10].
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∆x et1v
conv.
rate et2v

conv.
rate et1u

conv.
rate et2u

conv.
rate

0.020 0.239 - 0.317 - 0.915 - 0.695 -
0.010 0.133 0.845 0.146 1.122 0.513 0.834 0.442 0.655
0.005 0.061 1.135 0.069 1.070 0.246 1.062 0.200 1.144
0.004 0.048 1.018 0.054 1.090 0.181 1.369 0.164 0.891
0.002 0.021 1.168 0.024 1.161 0.082 1.150 0.073 1.163
0.001 0.008 1.360 0.009 1.399 0.036 1.167 0.032 1.200

Table 5.1. Example 1: Numerical error at t1=0.1 and t2=0.25.
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Fig. 5.3. Example 2: Numerical approximation of u, obtained via (4.2) with ∆x=0.001.

5.4. Example 4. We now utilize the function Φ(v)=−0.5(cos(vπ)+1) com-
bined with the degenerating integrated diffusion coefficient (1.12) with uc=10 and
a0=0.1 from Examples 1 and 2 and the initial datum

u0(x)=











10 for x∈ [0.05,0.15], 9 for x∈ [0.6,0.7],

14 for x∈ [0.3,0.5], 8 for x∈ [0.9,1],

0 otherwise.

The result is shown in Figure 5.5 for ∆x=0.001. We observe the formation of
three groups, but the third moves to the right “looking for more” mass since it is not
a full state, in the sense of the Nagai and Mimura [32] condition for the formation
of stationary travelling waves. In addition to Figure 5.5 we show in Figure 5.6 a
contour plot of the numerical approximation of v for this example. The contour lines
of v correspond to trajectories of “individuals”. This example has been included to
illustrate the solution behaviour when Φ has several extrema and inflection points.
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Fig. 5.4. Example 3: Numerical approximation of u, obtained via (4.2) for ∆x=0.001.
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Fig. 5.5. Example 4: Numerical approximation of u, obtained via (4.2) for ∆x=0.001.

5.5. Example 5. Here we calculate the numerical approximation of u for A
as in Examples 1, 2 and 4, but with Φ and u0 given by the respective equations

Φ(v)=

{

−0.5(cos(vπ)+1) for 0≤v≤2,

(v−2)2−1 for v>2,

u0(x)=

{

14 for x∈ [0.15,0.3], 18 for x∈ [0.8,0.95],

17 for x∈ [0.6,0.7], 0 otherwise.

In Figure 5.7 we show the result for ∆x=0.001. We see that the spare mass (i.e.
the mass that can not get in the first group) “dilutes” to the right. This dissipation



740 STRONGLY DEGENERATE PARABOLIC AGGREGATION EQUATION

x

t

0 0.2 0.4 0.6 0.8 1
0

0,1

0,2

0,3

0,4

0,5

Fig. 5.6. Example 4: Contour lines of the numerical approximation of v for ∆x=0.001.
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Fig. 5.7. Example 5: Numerical approximation of u, obtained via (4.2) for ∆x=0.001.

of the right-moving mass is driven by the choice of Φ, and not by that of A. Clearly,
as in the previous example, Φ does not satisfy the assumption stated in (1.7). This
example illustrates that solutions of (1.1), (1.2) will not always evolve into a finite
number of stationary or moving, aggregated “herds”.
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F. BETANCOURT, R. BÜRGER, AND K.H. KARLSEN 741

REFERENCES

[1] W. Alt, Degenerate diffusion equations with drift functionals modelling aggregation, Nonlin.
Anal. TMA, 9, 811–836, 1985.
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