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FAST COMMUNICATION

A SHARP BOUND ON THE L2 NORM OF THE SOLUTION OF A

RANDOM ELLIPTIC DIFFERENCE EQUATION∗

TOMASZ KOMOROWSKI† AND LENYA RYZHIK‡

Abstract. We consider a stationary solution of the Poisson equation (λ+Lω)φλ(x;ω) =
−∂∗b(x;ω), where λ>0 and Lω is a random, discrete, elliptic operator given by Lωu(x) :=
∂∗ [a(x;ω)∂u(x)], x∈Z. Here ∂f(x) :=f(x+1)−f(x) and ∂∗f(x) :=f(x−1)−f(x) for an arbitrary
function f :Z→R. The coefficients {(a(x;ω),b(x;ω)), x∈Z} form a stationary random field over a
probability space (Ω,F ,P). We prove that if the field of coefficients is sufficiently strongly mixing

then ‖φλ(0)‖P — the L2 norm of with respect to the probability measure P — behaves as Ĉλ−1/4,

as λ≪1 for some constant Ĉ >0. In addition ‖∂φλ(0)−∂φ0(0)‖P≤Cλ1/4 for λ∈ (0,1] and some
constant C>0. These results complement those of [A. Gloria, F. Otto, preprint, 2010] and [J.C.
Mourrat, preprint, 2010] that hold for an analogous problem in the multidimensional setting.
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1. Introduction

Suppose that {(a(x;ω),b(x;ω))x∈Z} is a stationary random field over a prob-
ability space (Ω,F ,P). We shall be concerned with the stationary solutions of the
equation

(λ+Lω)φλ(x;ω)=−∂∗b(x;ω), (1.1)

where λ>0 is small,

Lωu(x) :=∂∗ [a(x;ω)∂u(x)] , x∈Z,

where u :Z→R, and ∂u(x) :=u(x+1)−u(x) is the discrete difference operator with
adjoint ∂∗u(x) :=u(x−1)−u(x). We assume that there exist constants 0<a∗<a

∗<
+∞ and b∗<+∞, so that

a(x;ω)∈ [a∗,a
∗], |b(x;ω)|≤ b∗, ∀x∈Z,P a.s. in ω. (1.2)

Note that the operator Lω is positive-definite and is the discrete version of (−∇·
(a(x)∇)) in the continuous case, thus all λ>0 belong to its resolvent set. This obser-
vation allows us to find a (unique) stationary solution of (1.1) for any λ>0; see e.g.
[7] for a details. On the other hand, since Lω1=0, λ0=0 belongs to the spectrum of
the operator.

We shall be concerned with the limiting behavior of φλ(x), as λ↓0.
It has been shown recently (somewhat surprisingly) in [6] (see also [8] for another,

more probabilistic, argument) that when d≥3 (d≥9 in [8]), and the coefficients a(x)=
b(x) (in [8] a(x) and b(x) are allowed to be different) are i.i.d., ‖φλ(0)‖P stays bounded
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608 A SHARP BOUND ON THE L2 NORM OF A RANDOM...

as λ↓0. We denote here by ‖·‖P the L2 norm with respect to the probability measure
P:

‖f‖P=
[
∫

f2(ω)dP

]1/2

.

When d=2 one can prove, see ibid., a logarithmic bound ‖φλ(0)‖P≤C logγ λ−1 for
λ∈ (0,1]. In the present note we complete the picture by proving that in one dimension
‖φλ(0)‖P∼ Ĉλ−1/4, with an explicit constant Ĉ >0, as λ↓0 (see Theorem 1.1 below),
provided that the field a(x) is sufficiently strongly mixing. The case when a(x)= b(x)
is of particular interest in the homogenization theory as the respective field φλ(x),
called the corrector, can be used to show the convergence of solutions of equations with
fast varying coefficients. A somewhat related question of determining the convergence
rate for homogenization in one dimension has been considered in [1].

Our second result concerns the rate of convergence of the gradient of the λ-
corrector in one dimension. It has been shown in [13] (see also [2] for the discrete
setting) that in the continuum case when d≥3 and the coefficients are sufficiently
strongly mixing there exist constants C,γ >0 such that ‖∇φλ(0)−∇φ0(0)‖P≤Cλγ ,
λ∈ (0,1]. In fact, in the discrete setting, for an i.i.d. field a(x) one can show that
γ can be chosen arbitrarily in the interval (0,(d−2)/(d+8)); see [2]. When d=2
the corresponding result is slightly weaker (see [10], Lemma 7.1) – it asserts that

‖∇φλ(0)−∇φ0(0)‖P≤Cλγ/ loglog(λ
−1), λ∈ (0,1] for some C,γ >0. We prove that in

the case d=1, under the aforementioned mixing assumption, ‖∂φλ(0)−∂φ0(0)‖P≤
Cλ1/4 for all λ∈ (0,1], where C>0 is a constant.

Finally, we use our approach to obtain estimates of the convergence rate of solu-
tions of parabolic equations with random coefficients and random initial data towards
the expected value of the initial data; see Theorem 3.1. This property is known as
stabilization of solutions of the heat equation and has been introduced by Zhikov in
[14]. Our contribution is to establish the rate of convergence to equilibrium.

The method of the proof relies on a Feynman-Kac type of representation of the
gradient of the corrector given by Formula (2.4) below. This representation in turn
allows us to write the corrector itself in terms of the Green’s function of the symmetric,
simple random walk, which is given explicitly. These formulas together allow us to
describe the precise asymptotics of both φλ(0) and φ

′
λ(0), as λ↓0; see Theorem 1.1.

The main result. We assume that the field {(a(x),b(x)),x∈Z} satisfies (1.2),
and the following:

(1) Stationarity: For any N ≥1, x1, . . . ,xN and x∈Z the laws of
(a(x1),b(x1), . . . ,a(xN ),b(xN )) and (a(x1+x),b(x1+x), . . . ,a(xN +x),b(xN +
x)) are identical. Under this hypothesis there exists a unique stationary so-
lution to (1.1) for each λ>0; see [7].

(2) Mixing: Denote by
∫

Z
the summation over all integers, B(x) := b(x)/a(x) and

α(x) :=
1

a(x)
− 1

â
, β(x)=B(x)− b̂,

where â := 〈a−1(0)〉−1
P

, and b̂= 〈B(0)〉P, so that 〈α(0)〉P= 〈β(0)〉P=0. We
require that the two point statistics satisfy

∫

Z

x2[|〈α(x)α(0)〉P|+ |〈β(x)β(0)〉P|]dx<+∞, (1.3)
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and, in addition, the higher moments satisfy

IN := sup
x2,...,x2N

∫

[x1≥x2≥...≥x2N−1≥x2N ]

∣

∣

∣

∣

∣

〈

2N
∏

i=1

γki
(xi)

〉

P

∣

∣

∣

∣

∣

dx1dx3 ...dx2N−1<+∞

(1.4)

for N =1, . . . ,5, ki=0,1, and γ0=α(x), γ1(x)=β(x).
The main result of this note is the following.

Theorem 1.1. Under the foregoing hypotheses we have

‖φλ(0)‖P=C∗λ−1/4+O(1) as λ↓0, C∗= â1/4G1/2
0 /2 (1.5)

where

G0 :=

∫

Z

〈Γ(x)Γ(0)〉Pdx

and

Γ(x) := âb̂α(x)+β(x). (1.6)

In addition, there exists Ĉ >0 such that

‖∂φλ(0)−∂φ0(0)‖P≤ Ĉλ1/4 for all λ∈ (0,1]. (1.7)

2. The proof of Theorem 1.1

2.1. The proof of (1.5). In order to obtain a precise asymptotics in (1.5) we
will split the field φλ into several terms (see decomposition (2.7) below), and estimate
each of them separately. Denote ψλ(x) :=a(x)∂φλ(x). Using Equation (1.1) we obtain

φλ(x)=− 1

λ
∂∗fλ(x), (2.1)

where

fλ(x) :=ψλ(x)−ψ0(x). (2.2)

Note that the field ψλ(x) converges, as λ→0+, in L2(P) to ψ0(x) := âb̂−b(x). This
can been seen as follows. Using Theorem 2.4 of [11] one can deduce that ∂φλ(x)
converges to some stationary field Φ∗(x) in L

2(P). From (1.1) we get ∂∗[a(x)Φ∗(x)]=
−∂∗b(x), hence Φ∗(x)=−B(x)+Ca−1(x) for some deterministic constant C. Since

〈Φ∗(x)〉P=0 we conclude that C= âb̂ and the assertion follows due to the fact that
ψ0(x)=a(x)Φ∗(x).

Observe that ψλ(x) satisfies

(λ/2)a−1(x)ψλ(x)+(1/2)∂∗∂ψλ(x)=−(1/2)∂∗∂b(x), ∀λ>0. (2.3)

Therefore, it can be written as

ψλ(x)=−1

2

∫ +∞

0

E [eλ(t,x)∂
∗∂b(Xx

t )]dt, (2.4)
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where

eλ(t,x) :=exp

{

−(λ/2)

∫ t

0

a−1(Xx
s )ds

}

.

Here {Xx
t , t≥0} is a symmetric, simple random walk on Z with continuous time start-

ing at x, given over another probability space (Σ,A,Q), and E denotes the expectation
with respect to Q. We shall drop the superscipt x in the case when the walk starts
at the origin. Using the fact that

Mt= b(X
x
t )−b(x)+

1

2

∫ t

0

∂∗∂b(Xx
s )ds

is a mean zero martingale, we conclude that (recall B(x)= b(x)a−1(x))

ψλ(x)=

∫ +∞

0

E [eλ(t,x)db(X
x
t )]dt=

λ

2

∫ +∞

0

E[eλ(t,x)B(Xx
t )]dt−b(x)

=ψ0(x)− âb̂+
n
∑

i=0

D
(i)
λ (x)+R

(n)
λ (x), (2.5)

where

D
(i)
λ (x) :=

1

i!

(

λ

2

)i+1∫ +∞

0

E

{

B(Xx
t )

[
∫ t

0

α(Xx
s )ds

]i
}

exp
{

−tâ−1λ/2
}

dt,

and

R
(n)
λ (x) :=

λ

2

∫ +∞

0

E

{

B(Xx
t )

[

eλ(t,x)−exp
{

−tâ−1λ/2
}

×
n
∑

i=0

1

i!

{

λ

2

∫ t

0

α(Xx
s )ds

}i
]}

dt.

(2.6)

Substituting (2.5) into the right hand side of (2.1) we obtain

φλ(x)=

n
∑

i=0

φ
(i)
λ (x)+r

(n)
λ (x), (2.7)

where

φ
(0)
λ (x)=

1

λ
∂∗
[

âb̂−D(0)
λ (x)

]

, (2.8)

φ
(i)
λ (x)=− 1

λ
∂∗D

(i)
λ (x), for i=1, . . . ,n,

and

r
(n)
λ (x)=− 1

λ
∂∗R

(n)
λ (x). (2.9)

As we will see, the main contribution to φλ comes from φ
(0)
λ (x)+φ

(1)
λ (x) and is of

the order O(λ−1/4), while the other terms are of the size at most O(1), provided that
n≥3.
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Before we proceed to the estimates, note that simple symmetry considerations
give, for i≥1,

D
(i)
λ (x)=

(

λ

2

)i+1∫ +∞

0

exp
{

−tâ−1λ/2
}

dt

∫

∆i(t)

E

{

B(Xx
t )

[

i
∏

k=1

α(Xx
sk
)

]}

ds1 . . .dsi

=

(

λ

2

)i+1∫ +∞

0

ds1

∫ +∞

s1

ds2 . . .

∫ +∞

si−1

dsi

∫ +∞

si

dsi+1exp
{

−si+1â
−1λ/2

}

×
∫

Zi+1

{

B(xi+1)p(si+1−si,xi+1−xi)

×
[

i
∏

k=1

α(xk)p(sk−sk−1,xk−xk−1)

]

}

dx1 . . .dxi,

(2.10)

where ∆i(t) := [(s1, . . . ,si) : 0≤s1≤ . . .≤si], s0 :=0, and x0 :=x. Recall that the
Green’s function corresponding to the operator µ+(1/2)∂∗∂ is

Gµ(x) :=

∫ +∞

0

e−µtp(t,x)dt,

where p(t,x) :=Q[Xt=x] for t>0, x∈Z. It is explicitly given by (see, e.g. (3.134) p.
141 of [4])

Gµ(x)= ξ(1−ξ2)−1/2q
|x|
ξ , x∈Z, (2.11)

with ξ := (1+µ)−1 and qξ := (1−
√

1−ξ2)ξ−1. Observe that for small µ we have

ξ1=1−µ+o(µ), (2.12)

and

qξ1 =
1−
√

1−ξ21
ξ1

=1−
√

2µ+o(
√
µ). (2.13)

Integrating out the si+1-variable in (2.10) and using the definition of the Green’s
function we can write

D
(i)
λ (x)=

(

λ

2

)i+1∫

Zi+1

i
∏

k=1

[

α(xk)Gλ/(2â)(xk−1−xk)
]

(2.14)

×B(xi+1)Gλ/(2â)(xi−xi+1)dx1 . . .dxi+1, i≥1. (2.15)

When i=0 we can write

D
(0)
λ (x)− âb̂= λ

2

∫

Z

Gλ/(2â)(x−x1)β(x1)dx1, (2.16)

where, as we recall, β(x)=B(x)− b̂.
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Asymptotics of r
(n)
λ . We begin the proof of (1.5) with the estimate of r

(n)
λ since

some elements of the proof of this bound will be used later in estimating the other
terms.

Lemma 2.1. Suppose that n≥3 is odd. Then there exists a constant Cr such that

‖r(n)λ ‖P≤Crλ
(n+1)/4−1, ∀λ∈ (0,1]. (2.17)

Proof. It suffices to prove that there exists a constant C>0 so that

‖R(n)
λ ‖P≤Cλ(n+1)/4, ∀λ∈ (0,1], (2.18)

with R
(n)
λ (x) given by (2.6), and R

(n)
λ :=R

(n)
λ (0). We use an elementary inequality

∣

∣

∣

∣

∣

e−a−
n
∑

i=0

e−b (b−a)i
i!

∣

∣

∣

∣

∣

≤ 1

(n+1)!
max{e−a,e−b}|b−a|n+1,

valid for any a,b>0. This inequality and the ellipticity assumption (1.2) together
imply that

|R(n)
λ |≤C1λ

n+2

∫ +∞

0

V (t)exp
{

−(λ/2)(a∗)−1t
}

dt, (2.19)

where

V (t) :=E

[
∫ t

0

α(Xs)ds

]n+1

,

with a deterministic constant C1>0. Calculations similar to those leading to (2.14)
yield

|R(n)
λ |≤C2λ

n+1

∫

Zn+1

n+1
∏

k=1

[α(xi)Gλ1
(xi−xi−1)]dx1 . . .dxn+1, (2.20)

where λ1 :=a
∗λ/2, and thus

〈[R(n)
λ ]2〉P≤C2

2λ
2n+2

∫

Z2n+2

∣

∣

∣

∣

∣

〈

2n+2
∏

k=1

α(xi)

〉

P

∣

∣

∣

∣

∣

×
n+1
∏

i=1

[Gλ1
(xi−xi−1)Gλ1

(xi+n+2−xi+n+1)]dx1 . . .dx2n+2, (2.21)

where x0=x2n+3=0. Using (2.11), we conclude that

〈[R(n)
λ ]2〉P

≤C3λ
n+1

∫

Z2n+2

∣

∣

∣

∣

∣

〈

2n+2
∏

k=1

α(xi)

〉

P

∣

∣

∣

∣

∣

n+1
∏

i=1

[

q
|xi−xi−1|
ξ1

q
|xi+n+2−xi+n+1|
ξ1

]

dx1 . . .dx2n+2,

(2.22)
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and ξ1 := (1+λ1)
−1.

We divide Z2n+2 into simplicies ∆σ := [xσ(2n+2)≥ . . .≥xσ(1)], where σ is a per-

mutation of the set {1, . . . ,2n+2}. Each simplex is further split as ∆σ =∆
(1)
σ ∪∆

(2)
σ .

Here (x1, . . . ,x2n+2) is in ∆
(1)
σ if 0∈ [xσ(2),xσ(2n+2)), and in ∆

(2)
σ if 0 6∈ [xσ(2),xσ(2n+2)).

Lemma 2.2. We have

n+1
∏

i=1

[

q
|xi−xi−1|
ξ1

q
|xi+n+2−xi+n+1|
ξ1

]

≤ qxσ(2n+2)+|xσ(2)|

ξ1
on ∆

(1)
σ , (2.23)

n+1
∏

i=1

[

q
|xi−xi−1|
ξ1

q
|xi+n+2−xi+n+1|
ξ1

]

≤ qxσ(2n+2)

ξ1
on ∆

(2)′

σ :=∆
(2)
σ ∩ [xσ(2n+2)>0], (2.24)

and

n+1
∏

i=1

[

q
|xi−xi−1|
ξ1

q
|xi+n+2−xi+n+1|
ξ1

]

≤ q|xσ(2)|

ξ1
on ∆

(2)′′

σ :=∆
(2)
σ ∩ [xσ(2n+2)<0]. (2.25)

Proof. In order to show (2.23), suppose that xσ(2)=xj and xσ(2n+2)=xk. If
j≤n+1 and k≥n+2, then since x2n+3=x0=0 and

xσ(2)≤0≤xσ(2n+2) on ∆
(1)
σ , (2.26)

it is clear that

xσ(2n+2)+ |xσ(2)|≤ |xk−xk+1|+ . . .+ |x2n+2−x2n+3|+ |x0−x1|+ . . .+ |xj−1−xj |,
(2.27)

and (2.23) holds since qξ1 ∈ (0,1). When j,k≤n+1 we can write, using (2.26),

xσ(2n+2)+ |xσ(2)|= |xσ(2n+2)−xσ(2)|≤ |x0−x1|+ . . .+ |xn−xn+1|, (2.28)

whence (2.23) holds. The case j,k≥n+2 can be verified analogously.
In order to verify that (2.24) and (2.25) hold, we simply note that, say, for (2.24)

if σ(2n+2)≤n+1 then we would use the fact that

xσ(2n+2)= |xσ(2n+2)−x0|≤ |x1−x0|+ · · ·+ |xn+1−xn|,

and the other cases are very similar.

We now finish the proof of Lemma 2.1. The integral in (2.22) can be written as

∫

∆σ

∣

∣

∣

∣

∣

〈

2n+2
∏

k=1

α(xi)

〉

P

∣

∣

∣

∣

∣

n+1
∏

i=1

[

q
|xi−xi−1|
ξ1

q
|xi+5−xi+4|
ξ1

]

dx1 . . .dx2n+2= I1+I2,

where Iℓ correspond to the integration over domains ∆
(ℓ)
σ , ℓ=1,2. Using the mixing

condition (1.4) for N =n+1 and (2.23) we conclude that, with

A(1)
σ :=

{

[xσ(2n+2)≥xσ(2n)≥ . . .≥xσ(2)],0∈ [xσ(2),xσ(2n+2)]
}

,
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we have

I1≤

∫

A
(1)
σ

q
xσ(2n+2)+|xσ(2)|

ξ1
dxσ(2) ...dxσ(2n+2)

× sup
xσ(2n+2),...,xσ(2)





∫

Zn+1

∣

∣

∣

∣

∣

〈

2n+2
∏

k=1

α(xi)

〉

P

∣

∣

∣

∣

∣

dxσ(1) ...dxσ(2n+1)





≤In+1

∫

A
(1)
σ

q
xσ(2n+2)+|xσ(2)|

ξ1
dxσ(2) ...dxσ(2n+2)

≤In+1

∫

Zn+1

q
(
∑n+1

i=1 |xi|)/n+1

ξ1
dx1 ...dxn+1

≤In+1

(

1−q
1/(n+1)
ξ1

)−(n+1)

≤
C

λ(n+1)/2

for some constant C>0. We have used (2.13) in the last step. On the other hand
the mixing conditions (1.4) and (2.24), (2.25) yield

I2≤C
∫

[xσ(2n+2)≥xσ(2n)≥...≥xσ(2)≥0]

q
xσ(2n+2)

ξ1
dxσ(2) . . .dxσ(2n+2)≤

C

λ(n+1)/2

Coming back to (2.22) we conclude that

〈[R(n)
λ ]2〉P≤Cnλ

(n+1)/2, (2.29)

which in turn implies (2.18). This finishes the proof of Lemma 2.1.

Asymptotics of φ
(0)
λ (0)+φ

(1)
λ (0). Here, we identify the leading order contribu-

tion in (1.5).

Lemma 2.3. We have

‖φ(0)λ (0)+φ
(1)
λ (0)‖P=C∗λ−1/4+O(1) as λ↓0, (2.30)

with the constant C∗ as in (1.5).

Proof. From (2.8) and (2.16) we conclude that

φ
(0)
λ (0)=−1

2

∫

Z

∂∗Gλ/(2â)(x1)β(x1)dx1=
1

2

∫

Z

g(x1;ξ1)q
|x1|
ξ1

β(x1)dx1, (2.31)

where ξ1 := [1+λ/(2â)]−1, and

g(x;ξ) :=































1+

√

1−ξ
1+ξ

, when x≥1, |ξ|≤1,

−
(

1−
√

1−ξ
1+ξ

)

, when x≤0, |ξ|≤1.

There exists a constant C>0 such that

|g(x;ξ)−sgn(x)|≤C
√
λ, ∀x∈Z, λ∈ (0,1], |ξ|∈ [1/2,1], (2.32)
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with the convention sgn(x) :=1 for x≥1 and sgn x :=−1 for x≤0. Likewise, using
(2.8) and (2.10) we obtain that

φ
(1)
λ (0)=−λ

4

∫

Z2

∂∗Gλ/(2â)(x1)Gλ/(2â)(x2−x1)α(x1)B(x2)dx1dx2

=
λξ1

4
√

1−ξ21

∫

Z2

g(x1;ξ1)q
|x1|
ξ1

q
|x1−x2|
ξ1

α(x1)B(x2)dx1dx2. (2.33)

Using the decomposition B(x)= b̂+β(x), we obtain from (2.31) and (2.33) that

φ
(0)
λ (0)+φ

(1)
λ (0)=J1+J2, with

J1=
1

2

∫

Z

g(x1;ξ1)q
|x1|
ξ1

Γ(x1)dx1dx2,

and

J2=
(âλ)1/2

2
√
2

(

ξ1
1+ξ1

)1/2∫

Z2

g(x1;ξ1)q
|x1|
ξ1

q
|x1−x2|
ξ1

α(x1)β(x2)dx1dx2.

Here Γ(x) is given by (1.6).

Asymptotics of J1. By virtue of (1.3) and (2.32), we deduce that, as λ↓0,

‖J1‖2P=
1

4

∫

Z2

g(x;ξ1)g(x
′;ξ1)q

|x|+|x′|
ξ1

〈Γ(x−x′)Γ(0)〉Pdxdx′

=
1

4

∫

Z2

sgn xsgn x′q
|x|+|x′|
ξ1

〈Γ(x−x′)Γ(0)〉Pdxdx′+O(1)

=
1

8π

2π
∫

0

|F (qξ1eiζ)|2G(ζ)dζ+O(1), (2.34)

where

F (z)=−1+2iIm

[
∫

x≥1

zx
]

=2i(Imz)|1−z|−2−1,

and

G(ζ) :=

∫

Z

eiζx〈Γ(x)Γ(0)〉Pdx. (2.35)

Bochner’s theorem implies that

0≤G(ζ)≤G∗ :=

∫

Z

|〈Γ(x)Γ(0)〉P|dx<+∞,

due to (1.3). In order to pass to the limit λ↓0 we use (2.12) and (2.13), and obtain

ξ1=1− λ

2â
+o(λ)

and

qξ1 =
1−
√

1−ξ21
ξ1

=1−
√

λ

â
+o(

√
λ).



616 A SHARP BOUND ON THE L2 NORM OF A RANDOM...

Thanks to (1.3) we have |G(ζ)−G(0)|∼ ζ2 for ζ≪1. One can conclude that

C2
∗ := lim

λ↓0

√
λ‖J1‖2P

=
1

4
lim
λ↓0

√
λ

2π
∫

0

|F (qξ1eiζ)|2G(ζ)
dζ

2π

=
G(0)

4
lim
λ↓0

√
λ

2π
∫

0

|F (qξ1eiζ)|2
dζ

2π
. (2.36)

However, we have

1

2π

∫ 2π

0

|F (qξ1eiζ)|2dζ=
1

2π

∫

Z2

∫ 2π

0

sgn xsgn x′q
|x|+|x′|
ξ1

eiζx−iζx′

dxdx′dζ

=

∫

Z

q
2|x|
ξ1

dx=
1+q2ξ1
1−q2ξ1

,

whence

C2
∗ =

G(0)

4
lim
λ↓0

λ1/2
1+q2ξ1
1−q2ξ1

=
â1/2G(0)

4
, (2.37)

which is the constant appearing in (1.5) in Theorem 1.1.

Asymptotics of J2. The L2-norm of J2 satisfies

‖J2‖2P≤Cλ
∫

Z4

q
|x1|
ξ1

q
|x3|
ξ1

q
|x1−x2|
ξ1

q
|x3−x4|
ξ1

|〈α(x1)α(x3)β(x2)β(x4)〉P|dx1dx2dx3dx4,

with some constant C>0. To estimate the right side we use the mixing condition
(1.4) in the same way as in the proof of Lemma 2.1. We divide the domain of inte-
gration Z4 into subdomains of the form ∆σ := [xσ(1)≥xσ(2)≥xσ(3)≥xσ(4)] where σ is
a permutation of (1,2,3,4). In case the permutation equals identity we can estimate
it by

C ′λ

∫

x2,x4

q
|x2|
ξ1

q
|x4|
ξ1

dx2dx4

{

sup
x2,x4

∫

[x1≥x2≥x3≥x4]

|〈α(x1)α(x3)β(x2)β(x4)〉P|dx1dx3
}

This expression can be further estimated by

C ′′λ(1−qξ1)−2≤C1, ∀∈λ∈ (0,1],

with some C ′′,C1. The cases corresponding to other domains can be dealt with
similarly. This completes the proof of Lemma 2.3.

Asymptotics of φ
(i)
λ for i≥2. Next, we show that the contribution of both φ

(2)
λ

and φ
(3)
λ in φλ is small.

Lemma 2.4. There exist constants C(i)
∗ , i=2,3 such that

‖φ(i)λ (0)‖P≤C(i)
∗ λi/2−1 for λ∈ (0,1]. (2.38)
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Proof. We start with the argument for i=2. A simple calculation, using (2.1)
and (2.14), shows that

φ
(2)
λ (0)=−λ

2

8

∫

Z

[

∂∗Gλ/(2â)(x1)
]

Gλ/(2â)(x2−x1)Gλ/(2â)(x3−x2)

×α(x1)α(x2)B(x3)dx1dx2dx3

=K1+K2, (2.39)

where

K1 :=23/2ξ
1/2
1 (1+ξ1)

−1/2λ
1/2â3/2b̂

8

∫

Z2

g(x1;ξ1)q
|x1|
ξ1

q
|x1−x2|
ξ1

α(x1)α(x2)dx1dx2,

K2 :=
âλξ1

4(1+ξ1)

∫

Z3

g(x1;ξ1)q
|x1|
ξ1

q
|x1−x2|
ξ1

q
|x2−x3|
ξ1

α(x1)α(x2)β(x3)dx1dx2dx3.

The L2 norm of K1 satisfies

‖K1‖2P≤Cλ
∫

Z4

g(x1;ξ1)g(x3;ξ1)q
|x1|
ξ1

q
|x1−x2|
ξ1

q
|x3|
ξ1

q
|x3−x4|
ξ1

∣

∣

∣

∣

∣

〈

4
∏

i=1

α(xi)

〉

P

∣

∣

∣

∣

∣

dx1dx2dx3dx4

≤C ′λ

∫

Z4

q
|x1|
ξ1

q
|x3|
ξ1

q
|x1−x2|
ξ1

q
|x3−x4|
ξ1

∣

∣

∣

∣

∣

〈

4
∏

i=1

α(xi)

〉

P

∣

∣

∣

∣

∣

dx1dx2dx3dx4, (2.40)

with some constants C,C ′>0. To estimate the utmost right side of (2.40) we use the
mixing condition (1.4) with N =2. We divide the domain of integration Z4 into the
subdomains of the form ∆σ := [xσ(1)≥xσ(2)≥xσ(3)≥xσ(4)], where σ is a permutation
of (1,2,3,4), and use an argument detailed in the proof of Lemma 2.2 below. When
the permutation equals the identity we can estimate this term by

C ′λ

∫

Z2

q
|x2|
ξ1

q
|x4|
ξ1

dx2dx4

{

sup
x2,x4

∫

[x1≥x2≥x3≥x4]

∣

∣

∣

∣

∣

〈

4
∏

i=1

α(xi)

〉

P

∣

∣

∣

∣

∣

dx1dx3

}

.

The last expression can be further estimated by

C ′′λ(1−qξ1)−2≤C1, ∀∈λ∈ (0,1]

for some C ′′,C1. The other domains of integration can be dealt with similarly. The

considerations for ‖K2‖2P are similar. Finally, to estimate ‖φ(i)λ (0)‖2
P
for i≥3 we can

easily generalize the above argument applying the mixing condition (1.4) for N = i.

To finish the proof of Theorem 1.1 we use expansion (2.7) for n=3. The result is
a direct consequence of Lemmas 2.1, 2.3, and 2.4.

2.2. The gradient estimate. We now prove (1.7).
Proof. It suffices to show that

‖ψλ(0)−ψ0(0)‖P≤Cλ1/4, ∀λ∈ (0,1], (2.41)

for some constant C>0. Using (2.5) it is enough to estimate

‖D(0)
λ +D

(1)
λ − âb̂‖P,
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‖D(i)
λ ‖P for i=2,3, and ‖Rλ‖P. We have used a shorthand notation D

(i)
λ :=D

(i)
λ (0).

From (2.14) we obtain after elementary calculations the decompositionD
(1)
λ =L1+L2,

where

L1 :=
λ

2

∫

Z

Γ(x1)Gλ/(2â)(x1)dx1,

L2 :=
λâξ21

4(1+ξ1)

∫

Z2

α(x1)β(x2)q
|x1−x2|
ξ1

q
|x1|
ξ1

dx1dx2.

Thus,

‖L1‖
2
P=

ξ21λ
2

4(1−ξ21)

∫

Z2

q
|x|+|x′|
ξ1

〈Γ(x−x
′)Γ(0)〉Pdxdx

′=
λâ

24π

∫ 2π

0

|F1(qξ1e
iζ)|2G(ζ)dζ+O(λ),

where G(ζ) is given by (2.35), F1(z) :=(1−|z|2)|1−z|−2 is the Poisson kernel in
dimension d=2. Since |G(ζ)−G(0)|∼ ζ2 for ζ≪1 one can easily deduce that

‖L1‖2P=
G(0)λâ

24π

∫ 2π

0

|F1(qξ1e
iζ)|2dζ+O(λ).

We have

∫ 2π

0

|F1(qξ1e
iζ)|2dζ≤C1

∫

R

dζ

1−qξ1 +ζ2

for λ∈ (0,1] and some constant C1>0 and 1−qξ1 ∼λ1/2. Hence, after elementary
computations, we get

‖L1‖2P≤C2λ
1/2

for λ∈ (0,1] and some constant C2>0.
To estimate ‖L2‖2P we repeat essentially the estimates of ‖J2‖2P and obtain

‖L2‖2P≤Cλ

for λ∈ (0,1] and some constant C>0.

The computation that ‖D(i)
λ (0)‖2

P
≤Ciλ

1/2 for i=2,3 (in fact both these quanti-
ties are of order o(λ1/2)) is quite routine, taking into account the arguments contained
in the proofs of Lemmas 2.1 and 2.4. This ends the proof of (1.7) and that of Theo-
rem 1.1.

3. Asymptotics of transition semigroup of the environment process

Expansion (2.8) can be used to describe the asymptotics of the solution of the
initial value problem

(∂t+L
ω)Φ(t,x;ω)=0, (3.1)

Φ(0,x;ω)= c(x;ω),

as t→+∞, where {(a(x;ω),c(x;ω)), x∈Z} is a stationary field satisfying assumptions
(1) and (2) from Section 1. In addition, we assume 〈c(0)〉P=0.

We obtain, in the one dimensional situation, an estimate of the rate of convergence
in the stabilization problem. Namely, the following result holds.
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Theorem 3.1. Under the above assumptions there exists a constant C>0 such that

1

T

∫ T

0

‖Φ(t,x)‖2
P
dt≤ C

T 1/2
, ∀x∈Z, T >1. (3.2)

Remark 3.1. The property expressed in (3.2) is known as the stabilization (in the
mean) of solutions of the heat conduction equation (see [14]), and has been considered
in various versions in a number of papers; see e.g. [15, 16, 3] and the references
therein.

Proof of Theorem 3.1. The proof of this result shall be done in a number of
steps.

Step 1: Representation of Φ(t,x). Suppose that {Y x,ω
t , t≥0} is a random

walk starting at x and corresponding to the generator −Lω. We have

Φ(t,x;ω)=E[c(Y x,ω
t )]= c(x;ω)−Lt(x;ω), (3.3)

where

Lt(x;ω) :=

∫ t

0

ELωc(Y x,ω
s )ds.

Let

ϕ(t) :=

∫ t

0

‖Φ(s,0)‖2
P
ds.

Since

‖Φ(t,x)‖2
P
=‖Φ(t,0)‖2

P
=‖c(0)‖2

P
−2〈c(0),Lt(0)〉P+‖Lt(0)‖2P,

we obtain

ϕ̂(λ) :=

∫ +∞

0

e−λtϕ(t)dt=
1

λ2
[

‖c(0)‖2
P
−2〈φλ(0),c(0)〉P+〈φλ(0),φλ/2(0)〉P

]

, λ>0,

(3.4)

with φλ(x) the solution of (1.1) corresponding to b(x) :=a(x)∂c(x). Indeed, denote
F (t,x;ω) :=−ELωc(Y x,ω

t ;ω) and F (t) :=F (t,0). Then

φλ(x;ω)=

∫ +∞

0

e−λtF (t,x;ω)dt.

A direct application of the integration by parts formula gives

−2

∫ +∞

0

e−λtdt

∫ t

0

〈c(0),Ls(0)〉Pds=− 2

λ2
〈c(0),φλ(0)〉Pds. (3.5)

For any t> t′≥0 we have

〈F (t,x),F (t′,x)〉P= 〈F (t),F (t′)〉P= 〈F (t− t′),F (2t′)〉P. (3.6)
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We prove this identity momentarily but first use it to verify (3.4). We have

∫ +∞

0

e−λtdt

∫ t

0

‖Ls(0)‖2Pds = 2

∫

[t≥s≥s1≥s2≥0]

e−λt〈F (s2),F (s1)〉Pdtdsds1ds2

(3.6)
=

2

λ2

∫

[s1≥s2≥0]

e−λs1〈F (s1−s2),F (2s2)〉Pds1ds2

=
2

λ2

∫

[s2≥0]

e−λs2〈φλ(0),F (2s2)〉Pds2

=
1

λ2
〈φλ(0),φλ/2(0)〉P

and the second equality in (3.4) follows.

The proof of (3.6). To show (3.6) we use the notation pω(t,x,y) to denote
transition probabilities corresponding to Y x,ω

t . The first equality follows easily from
the stationarity of the environment so we only need to prove the second one. Because
the generator −Lω is in a divergence form and counting measure is invariant and
reversible we have pω(t,x,y)=pω(t,y,x) for all x,y∈Z. The middle term in (3.6)
equals

∫

Z2

Lωc(y)Lωc(y′)pω(t,0,y)pω(t′,0,y′)dydy′

=

∫

Z2

Lωc(y)Lωc(y′)pω(t,0,y)pω(t,0,z)pω(t′− t,z,y′)dydy′

=

∫

Z3

Lωc(y)Lωc(y′)pω(t,0,y)pω(t,0,z)pω(t′− t,z,y′)dydy′dz.

Using stationarity of the environment we can rewrite the right hand side as being
equal to

∫

Z3

Lωc(y−z)Lωc(y′−z)pω(t,−z,y−z)pω(t,−z,0)pω(t′− t,0,y′−z)dydy′dz.

Changing variables y :=y−z, y′ :=y′−z, z :=−z and using symmetry of pω(t,z,0) we
obtain that the above expression equals

∫

Z3

Lωc(y)Lωc(y′)pω(t,z,y)pω(t,0,z)pω(t′− t,0,y′)dydy′dz

=

∫

Z2

Lωc(y)Lωc(y′)pω(2t,0,y)pω(t′− t,0,y′)dydy′,

and the last equality in (3.6) follows.

Step 2: Estimates of the resolvent. We make use of computations made in
Section 2.1 with b(x)=a(x)∂c(x). Notice that B(x)=∂c(x) and b̂= 〈B(0)〉P=0. We
prove the following.

Proposition 3.2. Under the above assumptions there exist C1,C2>0 such that

‖φλ(0)−φ(0)λ (0)‖P≤C1λ
1/2, (3.7)

and

‖c(0)+φ(0)λ (0)‖P≤C2λ
1/2, λ∈ (0,1]. (3.8)
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Proof. The argument is very similar to what has been done in Section 2.1.
This time, however, we use the expansion (2.5) with n=6. From Lemma 2.1 we

can estimate ‖r(6)λ ‖P≤Crλ
1/2. To estimate ‖φ(1)λ (0)‖P we use representation (2.33).

Because b̂=0 we get (recall that B(x)=∂c(x))

φ
(1)
λ (0)=−λ

4

∫

Z2

∂∗Gλ/(2â)(x1)∂
∗Gλ/(2â)(x2−x1)α(x1)c(x2)dx1dx2

=−λ
4

∫

Z2

g(x1;ξ1)g(x2;ξ1)q
|x1|
ξ1

q
|x2−x1|
ξ1

α(x1)c(x2)dx1dx2. (3.9)

Using the mixing assumption in the same way as in the proof of Lemma 2.3 we
conclude that

‖φ(1)λ (0)‖P≤C1λ
1/2, λ∈ (0,1]. (3.10)

A slight modification of the proof of estimates of φ
(i)
λ for i≥2 is also possible due to

the fact that B(x) is a gradient of a zero mean field c(x). In that case we can write

φ
(i)
λ (0)=− λi

2i+1

∫

Zi+1

∂∗Gλ/(2â)(x1)

i−1
∏

k=1

Gλ/(2â)(xk+1−xk)∂∗Gλ/(2â)(xi+1−xi)

×
i
∏

k=1

α(xk)c(xi+1)dx1 . . .dxi+1

=−λ
(i+1)/2

2i+1

∫

Zi+1

g(x1;ξ1)g(xi+1;ξ1)q
|x1|
ξ1

×
i
∏

k=1

[

q
|xk+1−xk|
ξ1

α(xk)
]

c(xi+1)dx1 . . .dxi+1.

(3.11)

Using the mixing lemma for N = i+1 we arrive at the estimate

‖φ(i)λ (0)‖P≤C1λ
i/2, λ∈ (0,1]. (3.12)

This, and expansion (2.33), implies (3.7). To show (3.8) observe (see (2.31)) that

φ
(0)
λ (x)=−1

2

∫

Z

∂∗Gλ/(2â)(x−x1)∂c(x1)dx1

=−1

2

∫

Z

∂∗∂Gλ/(2â)(x−x1)c(x1)dx1

=
λ

2â

∫

Z

Gλ/(2â)(x−x1)c(x1)dx1−c(x)

=
λξ1

2â(1−ξ21)1/2
∫

Z

q
|x−x1|
ξ1

c(x1)dx1−c(x).

Hence,

‖φ(0)λ (0)+c(0)‖2
P
≤Cλ

∥

∥

∥

∥

∫

Z

q
|x1|
ξ1

c(x1)dx1

∥

∥

∥

∥

2

P

.

The L2 norm on the right hand side is of order of magnitude λ−1/2, which can
be seen analogously to the estimates of J1 done previously; see (2.34) and following
estimates.
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Step 3: The end of the proof of Theorem 3.1. Note also that, directly from
the definition in (3.4), it follows that λ−1ϕ

(

λ−1
)

≤ ϕ̂(λ), hence

λϕ
(

λ−1
)

≤λ2ϕ̂(λ), ∀λ∈ (0,1]. (3.13)

This in turn implies that, with λ=T−1,

1

T

∫ T

0

‖Φ(t,x)‖2
P
dt≤T−2ϕ̂(T−1). (3.14)

By virtue of (2.34) and Theorem 3.2 we conclude that the right hand side of (3.14)
can be estimated by CT−1/2, which implies (3.2).
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