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DERIVATION OF CONTINUUM MODELS FOR THE MOVING

CONTACT LINE PROBLEM BASED ON THERMODYNAMIC

PRINCIPLES∗

WEIQING REN†
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Abstract. Contact lines arise as the boundaries of free boundaries in fluids. This problem
is interesting and important, not only because it arises in many applications, but also because of
the distinct mathematical and physical features it has, such as singularities, hysteresis, instabilities,
competing scaling regimes, etc. For a long time, this area of study was plagued with conflicting
theories and uncertainties regarding how the problem should be modeled. In the present paper we
illustrate how continuum models for the moving contact line problem can be derived using simple
thermodynamic considerations. Both the sharp interface models and diffuse interface models are
derived.
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1. Introduction

The purpose of this paper is to derive continuum models for contact line dynam-
ics, based on thermodynamic principles. A contact line is the intersection of three
phases, often two fluid phases and a solid phase. The two fluid phases can either be
two immiscible fluids, such as water and oil, or the two phases of the same substance
such as the vapor and liquid phases of water. The solid phase is usually the container
for the fluids. For this reason, contact lines are also the boundaries of the free bound-
ary between the two fluid phases, and is therefore an ubiquitous part of interfacial
phenomena.

The contact line problem is interesting and important, not only for the fact that
it arises in many applications such as coating, printing, porous medium flows, and in
many micro-fluidic devices, but also because of its theoretical interest; for example,
singularities, hysteresis, etc [1, 2, 3, 4, 5, 6].

It is well-known that classical hydrodynamics (i.e. the Navier-Stokes equation and
the no-slip boundary condition) predicts a non-integrable singularity for the viscous
stress [7, 8]. In an effort to remove the singularity, many different continuum models
have been proposed to regularize the model. All of these models introduce an inner
region near the contact line. However, the proposed physical scenarios inside the inner
regions are quite different for the different models. Some typical ideas include:

• The introduction of slip regions, in which the no-slip boundary condition
is replaced either by the Navier boundary condition or by a prescribed slip
profile, or the stress-free condition [3, 9, 10, 11].

• Diffuse interface models [12, 13, 14, 15, 16, 17].
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Fig. 2.1. A droplet on a substrate. xA and xB are the contact lines; θm is the contact angle
at the wall; Γ1, Γ2 and Γ denote the fluid-solid and fluid-fluid interfaces, respectively.

Another type of model is based on the molecular kinetic theory in which the contact
line motion is modeled by an activated process [18, 19]. As we see from the work
of Cox and Jacqmin [11, 13], it is difficult to differentiate these models from their
predictions on the macroscopic flow behavior and apparent contact angle. This also
means that it is difficult to use experimental results to validate these models. To find
out what the right model should be, we have to look elsewhere.

Two complementary approaches have been taken to find the right continuum
models. One approach is to extract the right model from detailed molecular dynamics
studies [20, 21, 22, 23, 14, 24]. In this direction, the most detailed and most systematic
work was done by Qian et al. and their result is formulated as a diffuse interface model
[14]. As an alternative approach, we ask the question, in the spirit of generalized
thermodynamics [25]:

What is the simplest form of boundary condition that is consistent with the

2nd law of thermodynamics?

We will work under the assumption that the system is iso-thermal. Therefore the
second law of thermodynamics simply states that the free energy can not increase. It
is obvious that the philosophy described here works equally well for the more general
case when temperature varies in the system. In that case, one has to work with the
entropy instead of the free energy.

Beginning with an expression for the free energy of the system, the standard
procedure of generalized thermodynamics consists of the following two steps:

• Step 1. Identify all the sources of free energy dissipation. Each contribution
is expressed in the form of the product of a generalized force and the corre-
sponding generalized flux. Along the way, one also identifies the reversible
fluxes – the component of the fluxes that does not contribute to the dissipa-
tion.

• Step 2. Relate the generalized fluxes to the generalized forces.

This simple tool is remarkably effective for the problem at hand, as we see below.
The present paper is limited to the derivation of the models. More detailed dis-

cussions on these continuum models and their applications will be presented elsewhere
[26].

2. A sharp-interface contact line model

Consider the spreading of a liquid droplet on a solid surface (see Figure 2.1). The
most important physical parameters are the three surface tension coefficients, γ1,γ2
and γ, where γ is the fluid-fluid surface tension, γ1 and γ2 are the surface tension
parameters between the solid and the two fluid phases. The spreading parameter S
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is defined as

S=γ2−(γ1+γ). (2.1)

S≥0 corresponds to the case of complete wetting, and S<0 corresponds to the case
of partial wetting. In the case of partial wetting, the static contact angle θY is
determined by the Young’s relation:

γ2−γ1=γ cosθY . (2.2)

To begin with, let us first note that existing evidence suggests that for simple
fluids, the accuracy of the linear constitutive relation in the bulk seems quite ade-
quate; even though the viscous stresses near the contact line can be quite large, they
are quite far from being large enough to cause significant deviation from the linear
response regime. This issue was examined quite carefully in the work of Qian et al
[14]. Therefore, we will assume that the standard Navier-Stokes equations hold in the
bulk Ωi, i=1,2:

ρi (∂tu+u ·∇u)=−∇p+∇·τd, (2.3a)

∇·u=0, (2.3b)

and

τd=ηi
(

∇u+(∇u)T
)

. (2.4)

Here ηi’s are the viscosities of the fluids. We will also neglect any complications
on the fluid-fluid interface, and assume that the standard Laplace-Young interfacial
condition holds. Therefore our focus will be on the boundary conditions at the solid
surface.

The total free energy of the system can be written as:

E=
∑

i=1,2

∫

Ωi

1

2
ρi |u|

2
dx+(γ1−γ2)|Γ1|+γ|Γ|+

∫

Γ1

V (h)dσ, (2.5)

where the first term is the kinetic energy, the second and third terms are the interfacial
energy (|Γ1| and |Γ| are the length of the interfaces), and the last term is the energy
due to long-range molecular interactions between the solid substrate and the fluids
[27, 2], where h is the height of the droplet. A straightforward calculation gives, in
two dimensions,

dE

dt
=−

∑

i=1,2

∫

Ωi

ηi |∇u|
2
dx+

∑

i=1,2

∫

Γi

(t ·τd ·n)usdσ

+(γ (cosθm−1)−S+V (0))uℓ, (2.6)

where we have used the dynamic equations in (2.3), the constitutive relation (2.4),
and the following interface conditions at the fluid interface:

[p]−V ′(h)+γκ=n · [τd] ·n, t · [τd] ·n=0, (2.7)

where κ is the curvature of the fluid interface, n and t are the unit normal vector
and the unit tangent vector to the fluid interface, respectively. In (2.6), us is the slip
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velocity of the fluids at the wall (for simplicity we have assumed the wall is at rest),
uℓ is the (outward) normal velocity of the contact line, θm is the dynamic contact
angle, t and n are the unit tangent vector and the unit normal to the solid surface.
Similar results can be obtained in three dimensions. In [28], the form of the energy
dissipation (2.6) was used to derive the condition for the dynamic contact angle in
the case when there is no energy dissipation at the contact line.

Let us focus at the fluid-solid interfaces Γ1 and Γ2. There, we have the standard
no-penetration condition u ·n=0. In the language of the generalized thermodynamics
[25], the slip velocity us and the contact line velocity uℓ are the generalized fluxes,
τs= t ·τd ·n and τY =γ (cosθm−1)−S+V (0) are the generalized forces. The next
step in the generalized thermodynamics formalism is to relate the generalized forces
to the generalized fluxes. These relations are the constitutive relations. We will
assume the simplest form of the constitutive relations, namely that the generalized
forces are local functions of the generalized fluxes. This gives us

t ·τd ·n=fs(us), (2.8a)

γ (cosθm−1)−S+V (0)=fℓ(uℓ), (2.8b)

where the two functions fs and fℓ have to be determined by other means, for example,
molecular dynamics simulation or experimental measurements. The second law of
thermodynamics requires that

u ·fs(u)≤0, u ·fℓ(u)≤0. (2.9)

Equations (2.8a) and (2.8b) are certainly not the most general form of constitutive
relations one can have. But they are the simplest, and for now, we will stick with this
form.

Equation (2.8a) is the boundary condition for the slip velocity us at the solid
surface. When fs is linear, it reduces to the well-known Navier boundary condition:

t ·τd ·n=−βus, (2.10)

where β is the friction coefficient.
Equation (2.8b) is the boundary condition for the contact angle θm. In the case of

partial wetting (S<0) it is a common practice to neglect the surface potential V (h),
so that Equation (2.8b) reduces to

γ(cosθm−cosθY )=fℓ(uℓ), (2.11)

where θY is the static contact angle satisfying the Young’s relation (2.2). This special
case when fℓ is linear has been discussed in [24].

In the case of complete wetting (S≥0), the disjoining pressure is essential for the
thin film dynamics. In the case when S=V (0) [2], one may note that the left-hand
side of (2.8b) becomes τY =γ (cosθm−1), which is non-positive. The non-positivity
condition in (2.9) requires that

(cosθm−1) ·uℓ≤0, (2.12)

from which we conclude that

1) uℓ≥0 ; or 2) θm=0 if uℓ<0. (2.13)
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The latter case corresponds to the situation when the droplet recedes. Therefore, when
the droplet recedes, the dynamic contact angle θm has to vanish. To summarize, in
the case of complete wetting the boundary condition (2.8b) becomes

γ (cosθm−1)=

{

fℓ(uℓ), if uℓ≥0,
0, if uℓ<0.

(2.14)

When the friction law is linear and the contact angle is small, the above equation
further reduces to

1

2
γθ2m=

{

β∗uℓ, if uℓ≥0,
0, if uℓ<0,

(2.15)

where β∗ is the friction coefficient at the contact line, and it has the dimension of
viscosity.

The boundary condition (2.14) is derived from (2.8b) under the assumption
V (0)=S. In the general situation when V (0) and S are two independent param-
eters [29], both contribute to the driving force for the contact line motion. The above
argument still applies but the boundary conditions need to be modified.

To summarize, the sharp-interface model derived above consists of the Navier-
Stokes equations (2.3) and (2.4), the interface conditions in (2.7), and the boundary
conditions in (2.8) for us and θm. The functions fs and fℓ still need to be specified
for the model to be complete. In [26], these functions were computed from molecular
dynamics.

3. Diffuse interface models

Next we apply the same methodology as used in the last section to derive diffuse
interface models for moving contact lines. Diffuse interface models have been used
for the computation of flows associated with complex interface morphologies and
topological changes (see [30] for a review), and have also been used to model moving
contact lines [12, 13, 14, 15, 16, 17]. Here our main purpose is to derive the boundary
conditions for the phase-field models. We will distinguish two cases. We first consider
the dynamics of one-component fluids (e.g. a liquid-vapor system) on solid surfaces.
Then we discuss two-component fluids.

3.1. One-component fluids. Let ρ denote the mass density of the fluid. The
total free energy is written as

E(t)=

∫

Ω

(

1

2
κ |∇ρ|

2
+f(ρ)+ρV ′(y)

)

dx

+

∫

Ω

1

2
ρ|u|

2
dx+

∫

∂Ω

(γwf (ρ)+ρV (0))dσ

=Ep+Ek+Es, (3.1)

where the three terms represent the potential energy (Ep), the kinetic energy (Ek)
and the surface energy (Es), respectively; f(ρ) is a double well potential with two
minima at ρ=1 and ρ=0 corresponding to the liquid phase and the vapor phase,
respectively; V (y) is the surface potential at y — the coordinate normal to the solid
wall; γwf is the interfacial energy between the fluid and the solid.
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Define the material derivative Dt=∂t+u ·∇. The equations in the bulk are writ-
ten in the form of compressible fluids:

Dtρ=−ρ∇·u, (3.2a)

ρDtu=∇·τ+Ju, (3.2b)

where τ is the viscous stress and is assumed to be linear:

τ =ν(∇u+∇uT )+λ(∇·u). (3.3)

Ju consists of non-dissipative forces which will be determined below.
Define the chemical potential:

µ=−κ∆ρ+f ′(ρ). (3.4)

Then using the equations in (3.2), we obtain

dEp

dt
=

∫

Ω

(−κ∆ρ+f ′(ρ)+V ′(y))∂tρdx+

∫

∂Ω

κ∂nρ∂tρdσ

=−

∫

Ω

(µ+V ′(y))∇·(ρu)dx+

∫

∂Ω

κ∂nρ∂tρdσ

=

∫

Ω

ρu ·∇(µ+V ′(y))dx+

∫

∂Ω

κ∂nρ∂tρdσ, (3.5a)

dEk

dt
=

∫

Ω

ρu ·Dtudx

=

∫

Ω

u ·(∇·τ+Ju)dx

=

∫

Ω

(−∇u : τ+u ·Ju)dx+

∫

∂Ω

u ·(τn)dσ, (3.5b)

dEs

dt
=

∫

∂Ω

(

γ′
wf (ρ)+V (0)

)

∂tρdσ. (3.5c)

Therefore,

dE

dt
=−

∫

Ω

∇u : τ dx+

∫

Ω

u ·(Ju+ρ∇(µ+V ′(y))) dx

+

∫

∂Ω

(B[ρ]∂tρ+u ·τn) dσ, (3.6)

where in the last integral the operator B[ρ] is defined as

B[ρ]=κ∂nρ+γ′
wf (ρ)+V (0). (3.7)

On ∂Ω, ρ satisfies an equation of the form

∂tρ+(us ·∇s)ρ=Jb, (3.8)
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where us is the slip velocity on ∂Ω, Jb is a dissipative contribution yet to be deter-
mined. Then from (3.6) we obtain

dE

dt
=−

∫

Ω

∇u : τ dx+

∫

Ω

u ·(Ju+ρ∇(µ+V ′(y)))dx

+

∫

∂Ω

Jb ·B[ρ]dσ+

∫

∂Ω

us ·(τn−B[ρ]∇sρ) dσ, (3.9)

where each term is in the form of a “generalized flux” multiplied by a “generalized
force”. The first term is the rate of viscous dissipation. The second term is non-
dissipative (or reversible), from which we obtain

Ju=−ρ∇(µ+V ′(y)). (3.10)

For the two boundary terms, under the linear response assumption we get

Jb=−Mb(ρ)B[ρ], (3.11a)

−β(ρ)us= τn−B[ρ]∇sρ. (3.11b)

To summarize, the diffuse interface model for a single-component fluid consists
of the dynamic equations in (3.2), where τ and Ju are given in (3.3) and (3.10)
respectively; the boundary condition for ρ is given in (3.8) and (3.11a); the boundary
conditions for u consists of (3.11b) and the no-penetration condition u ·n=0.

3.2. Two-component fluids. In the case of two-component fluids, we use
the mass fraction of one of the two fluids as the phase variable, and denote it by ϕ

[30, 31]. The total free energy in this case is

E(t)=

∫

Ω

(

1

2
κ |∇ϕ|

2
+ρf(ρ,ϕ)+ϕV ′(y)

)

dx

+

∫

Ω

1

2
ρ|u|

2
dx+

∫

∂Ω

(γwf (ϕ)+ϕV (0))dσ

=Ep+Ek+Es, (3.12)

where the three terms are the potential energy (Ep), the kinetic energy (Ek) and the
surface energy (Es), respectively; V is the surface potential. The equations in the
bulk will be written as

Dtρ=−ρ∇·u, (3.13a)

ρDtϕ=∇·Jϕ, (3.13b)

ρDtu=∇·τ+Ju, (3.13c)

where τ is the viscous stress. As in the one-component case, τ is assumed to be linear:

τ =ν(∇u+∇uT )+λ(∇·u). (3.14)
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The diffusion current Jϕ, the non-dissipative force from the free energy Ju, and the
boundary conditions will be determined below.

Define the chemical potential:

µ=∂ϕf−
κ

ρ
∆ϕ. (3.15)

Then using the equations in (3.13), we obtain

dEp

dt
=

∫

Ω

ρDt

(

κ

2ρ
|∇ϕ|2+f(ρ,ϕ)+

ϕ

ρ
V ′(y)

)

dx

=−

∫

Ω

Jϕ ·∇

(

µ+
1

ρ
V ′(y)

)

dx

+

∫

Ω

u ·
(

∇
(

ρ2fρ−
κ

2
|∇ϕ|2

)

+∇·(κ∇ϕ⊗∇ϕ)−V ′(y)∇ϕ
)

dx+

∫

∂Ω

κ∂nϕ∂tϕdσ,

(3.16a)

dEk

dt
=

∫

Ω

ρu ·Dtudx=−

∫

Ω

(∇u : τ−u ·Ju) dx+

∫

∂Ω

u ·τndσ, (3.16b)

dEs

dt
=

∫

∂Ω

(

γ′
wf (ϕ)+V (0)

)

∂tϕdσ. (3.16c)

On ∂Ω, ϕ satisfies an equation of the form

∂tϕ+(us ·∇s)ϕ=Jb, (3.17)

where us is the slip velocity on ∂Ω and Jb is a dissipative contribution yet to be
determined. Combining (3.16a), (3.16b), (3.16c) and using (3.17), we obtain

dE

dt
=−

∫

Ω

∇u : τ dx−

∫

Ω

Jϕ ·∇

(

µ+
1

ρ
V ′(y)

)

dx

+

∫

Ω

u ·
(

Ju+∇
(

ρ2∂ρf−
κ

2
|∇ϕ|2

)

+∇·(κ∇ϕ⊗∇ϕ)−V ′(y)∇ϕ
)

dx

+

∫

∂Ω

Jb ·B[ϕ]dσ+

∫

∂Ω

us ·(τn−B[ϕ]∇sϕ)dσ, (3.18)

where each term is in the form of a “generalized flux” multiplied by a “generalized
force”. The operator B[ϕ] in the boundary terms is defined as

B[ϕ]=κ∂nϕ+γ′
wf (ϕ)+V (0). (3.19)

The first term in (3.18) is the rate of viscous dissipation. The second term is the rate
of energy dissipation due to diffusion. If we assume linear response, then we obtain

Jϕ=M∇

(

µ+
1

ρ
V ′(y)

)

. (3.20)

The third term is non-dissipative (or reversible), from which we obtain

Ju=−∇
(

p−
κ

2
|∇ϕ|2

)

−∇·(κ∇ϕ⊗∇ϕ)+V ′(y)∇ϕ, (3.21)
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where p=ρ2∂ρf is the thermodynamic pressure. The boundary conditions for ϕ and
us are obtained from the last two terms in (3.18):

∂tϕ+(us ·∇s)ϕ=f1 (B[ϕ]) , (3.22a)

τn−B[ϕ]∇sϕ=f2 (us) , (3.22b)

together with the no-penetration conditions at the wall:

∂n

(

µ+
1

ρ
V ′(y)

)

=0, u ·n=0. (3.23)

The functions f1 and f2 in the above boundary conditions need to be determined
by other means, e.g. molecular dynamics simulations. When the two functions are
linear and without the surface potential, we recover the generalized Navier boundary
condition [14].

To summarize, the diffuse-interface model for two-component fluids consists of
the dynamical equations in (3.13), where τ , Jϕ, and Ju are given in (3.14), (3.20),
and (3.21) respectively, and the boundary conditions in (3.22) and (3.23).

We remark that the philosophy we followed here is different from that of the On-
sager’s minimum energy dissipation rate principle pursued in [15]. Strictly speaking,
Onsager’s minimum energy dissipation rate principle should not be considered as a
first principle, but rather a mathematical reformulation of the dissipative structure
of the model. One has to postulate a specific dissipation function in order to use On-
sager’s principle. Often this already amounts to assuming the constitutive relation. If
the dissipation function is postulated to be quadratic, then one obtains a linear con-
stitutive relation. If the underlying constitutive laws (here the boundary conditions)
are smooth, then linear response theory can always be applied in a limited regime
as a consequence of Taylor expansion. However, as we have already seen here, the
boundary conditions are not necessarily smooth, as in the case of complete wetting.
Therefore a more general derivation as we described here is necessary. As we have
seen, it is also quite accessible.
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