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HOMOGENIZATION OF THE G-EQUATION WITH

INCOMPRESSIBLE RANDOM DRIFT IN TWO DIMENSIONS∗

JAMES NOLEN† AND ALEXEI NOVIKOV‡

Abstract. We study the homogenization limit of solutions to the G-equation with random drift.
This Hamilton-Jacobi equation is a model for flame propagation in a turbulent fluid in the regime of
thin flames. For a fluid velocity field that is statistically stationary and ergodic, we prove sufficient
conditions for homogenization to hold with probability one. These conditions are expressed in terms
of travel times for the associated control problem. When the spatial dimension is equal to two and
the fluid velocity is divergence-free, we verify that these conditions hold under suitable assumptions
about the growth of the random stream function.
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1. Introduction

We study the asymptotic behavior as ǫ→0 of the solution of the initial value
problem

uǫ
t+V

(x

ǫ
,ω
)

·Duǫ= |Duǫ|, t>0, x∈Rd, (1.1)

uǫ=u0(x), t=0, x∈Rd.

The vector field V :Rd×Ω→Rd is assumed to be random, statistically stationary, and
ergodic with respect to x; (Ω,F ,P) is a given probability space, ω∈Ω. The initial
condition u0(x) is assumed to be bounded and uniformly continuous. Under suitable
hypotheses on V , we prove that with probability one the function uǫ converges (as
ǫ→0) locally uniformly in [0,∞)×Rd to a function ū(t,x) which satisfies an equation
of the form

ūt= H̄(Dū), t>0, x∈Rd,

with the same initial condition ū(0,x)=u0(x). The function H̄ :Rd→ [0,∞) is convex
and homogeneous of degree one.

The level-set Equation (1.1) is called the G-equation, and it is used as a model
for turbulent combustion in the regime of thin flames [26, 21]. In this model, the level
sets of uǫ represent the flame surface, and V is the velocity of the underlying fluid
(assumed to be independent of uǫ). Wherever uǫ is differentiable and |Duǫ| 6=0, the
level sets of uǫ move with normal velocity ν=1+V · n̂, where n̂=−Duǫ/|Duǫ|. When
V ≡0, the level sets move with constant speed sL=1, which is called the laminar
speed of flame propagation. An important scientific problem is to understand how
turbulent transport affects the speed of the spreading flame [22].

Let us state our assumptions on V . We suppose that V :Rd×Ω→Rd is a sta-
tionary random vector field, with (Ω,F ,P) a given probability space. Specifically, we
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assume that there is a group {πx}x∈Rd of transformations of (Ω,F) which is measure-
preserving:

P(πx(A))=P(A), ∀A∈F ,

and which acts ergodically on (Ω,F), which means that if A∈F and πx(A)=A for
all x∈Rd, then either P(A)=0 or P(A)=1. We assume that the map (x,ω) 7→πxω
from Rd×Ω to Rd is jointly measurable, and that

V (x,ω)= V̂ (πxω), ∀x∈Rd,

for some random variable V̂ ∈L∞(Ω,F ,P). We assume that, with probability one,
V (·,ω) defines a vector field that is C1 and satisfies the bound

‖V (·,ω)‖L∞(Rd)=‖V̂ ‖L∞(Ω)=V∞<∞.

We do not assume that V∞<sL=1, and this presents the fundamental mathematical
difficulty, as we will describe. In particular, the Hamiltonian H(p,x)= |p|−V (x) ·p
is not coercive in p at every point x∈Rd, so existing results on homogenization of
random Hamilton-Jacobi equations ([25, 23]) do not apply here.

If the deterministic function u0 is bounded and uniformly continuous, then with
probability one there exists a unique family of viscosity solutions {uǫ}ǫ>0 to (1.1). Our
main result is a sufficient condition on V which guarantees that homogenization occurs
in dimension d=2. In addition to the preceding assumptions on V , we assume that
with probability one V is divergence free: ∇·V (x,ω)=0 for all x∈R2. In this case, the
vector field V may be associated with a stream function: V =∇⊥Ψ=(−∂x2

Ψ,∂x1
Ψ),

where Ψ(x,ω) :R2×Ω→R.

Theorem 1.1. Let V :R2×Ω→R2 be a stationary random vector field, uniformly
bounded, C1, and divergence-free, P-almost surely. Suppose that E[V (0,ω)]=0 and
that V =∇⊥Ψ=(−∂x2

Ψ,∂x1
Ψ) for some stream function Ψ which satisfies

∫ ∞

0

P

(

sup
|x|≤r

|Ψ(x,ω)−Ψ(0,ω)|>r/6

)

dr<∞. (1.2)

Let u0(x) be bounded and uniformly continuous in x∈R2. Then there is a convex
function H̄ :R2→ [0,∞) such that the following holds with probability one: for any
T >0 and R>0,

lim
ǫ→0

sup
t∈[0,T ]

sup
|x|≤R

|uǫ(t,x,ω)− ū(t,x)|=0, (1.3)

where ū is the unique viscosity solution of the initial value problem

ūt= H̄(Dū) x∈R2, t>0, (1.4)

ū(0,x)=u0(x), x∈R2.

The function H̄ satisfies H̄(λp)=λH̄(p) for all λ>0 and p∈R2. Moreover, H̄(p)=0
if and only if p=0. If the law of V (x,ω) is equal to the law of V (Φx,ω) for any
orthogonal transformation Φ, then H̄(p)≥|p| for all p∈R2.

The starting point of our analysis is the control representation for the solution
uǫ:

uǫ(x,t,ω)= sup
α∈At

u0(X
ǫ,α
x (t)). (1.5)
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Here the set At is the set of controls

At={α∈L∞([0,t];Rd) : ‖α‖∞≤1},

and for each x∈Rd and control α∈At, the function Xǫ,α
x (s) is defined by

d

ds
Xǫ,α

x (s)=−V (ǫ−1Xǫ,α
x (s))+α(s), s∈ [0,t], Xǫ,α

x (0)=x. (1.6)

To keep the notation simple here, we have suppressed the dependence of V and X on
ω∈Ω. See [3] for proof of this representation.

To understand the behavior of uǫ as ǫ→0, we will consider the random variables

τ(x,y,ω)= inf{t≥0 |Xα
x (t)=y, for someα∈At}. (1.7)

Here ǫ=1. We refer to τ(x,y,ω) as the travel time from x∈Rd to y∈Rd, since it is
the first time that a path starting from x may be controlled to the point y. From the
stationarity of V it follows that τ(x,y,ω)= τ(0,y−x,πxω). Ultimately we will apply
the subadditive ergodic theorem to this family of random variables to show that
r−1τ(0,rz,ω) approaches a deterministic limit as r→∞. Then, through the control
representation (1.5) this leads to the convergence of uǫ described in (1.3). However,
because we allow |V | to be larger than sL=1, it is not clear a priori whether the travel
time τ(x,y,ω) is finite for every pair (x,y). Indeed, it is easy to construct vector fields
for which τ cannot be finite. For example, if V =∇Q(x) for some function Q(x)
satisfying Q(x)= |x|2 for |x|<1, then τ(0,y) cannot be finite for any y with |y|>1/2.
Because of the constraint |α|≤1, the control cannot overcome the strong flow −V
directed toward x=0. On the other hand, in Theorem 1.1 we are assuming that V
has zero divergence, so it is hopeful that this trapping phenomenon does not occur
with such a velocity field; from each point x, there should always be a way of escape.

In the case that V varies periodically with respect to x (and possibly time t), ho-
mogenization results analogous to (1.3) were proved recently by Cardaliaguet, Nolen,
and Souganidis [7], and by Xin and Yu [27]. As shown in [7], a sufficient condition
for homogenization in all dimensions d≥2 is for ‖∇·V ‖Ld(Q1) to be sufficiently small,
where Q1 is the period cell. Homogenization may not hold, even in the periodic set-
ting, for vector fields which do not satisfy the bound on ∇·V . An important part of
these analyses is demonstrating the existence of “approximate correctors”– a family
of periodic functions ηλ,p(x) (with parameters p∈Rd, λ>0) which satisfy

ληλ,p(x)= |p+Dηλ,p(x)|−V (x) ·(p+Dηλ,p(x)), x∈Rd.

If one can obtain suitable bounds on the oscillation of ληλ,p, then ληλ,p→ H̄(p) as
λ→0, and homogenization follows by standard arguments which extend the perturbed
test-function method developed in [11]. For the G-equation, however, it is difficult to
obtain such control because the Hamiltonian H(p,x)= |p|+V (x) ·p is not everywhere
coercive in the gradient variable p when we allow |V |>1. Homogenization with non-
coercive Hamiltonians has been studied in other contexts [1, 2, 4, 5, 6, 12], yet those
results do not apply here, even in the periodic setting.

Beside the difficulties that arise from the noncoercivity of the Hamiltonian, the
randomness of the medium presents challenges that are not present in periodic or
almost periodic media. In particular, constructing and analyzing correctors or ap-
proximate correctors may be impossible. We do not pursue a precise discussion of
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this point here; the reference [17] explores this issue in more detail. Also, in the ran-
dom setting, the extreme behavior of the medium can lead to nonhomogenization [9].
Instead of using correctors or approximate correctors, our approach to proving Theo-
rem 1.3 relies on the control representation (1.5)-(1.6). This is similar to the strategy
used previously by Souganidis [25], Rezakhanlou, and Tarver [23], who proved ho-
mogenization of Hamilton-Jacobi equations in random media when the Hamiltonian
is convex and coercive. In those works, it is the action functional that is analogous to
our τ(x,y,ω). Those results do not apply directly to the present setting, however, due
to the noncoercivity of H. For the G equation in the periodic setting, Xin and Yu [27]
used the control representation to obtain the necessary control of the approximate
corrector ηλ,p.

The novelty of the present analysis is the method of controlling the travel times
τ(x,y,ω) so that the control representation (1.5)-(1.6) can be used to prove homoge-
nization. As we have mentioned, we expect that some control on the divergence of V
is necessary. Even if we assume ∇·V =0, however, other features of the medium may
be obstacles to homogenization, and these obstacles may occur on arbitrarily large
scales, since the medium is random. For example, there may be large vortices or shear
layers which may require a large amount of time to traverse. In two dimensions, the
geometry of V can be controled through the stream function Ψ. Roughly speaking,
the condition (1.2) precludes the frequent appearance of very large scale features that
make τ(x,y,ω) large. We do not know whether a condition like (1.2) is necessary for
homogenization, or whether ∇·V =0 alone is sufficient, as in the periodic case. If we
make the additional assumption that the stream function Ψ(x,ω) is stationary, then
condition (1.2) may be simplified:

Proposition 1.2. Let d=2. If Ψ(x,ω) is stationary, then condition (1.2) in
Theorem 1.1 may be replaced by

E
[

|Ψ(0)|3
]

<∞.

Our proof of Theorem 1.1 is based on the following theorem which gives sufficient
conditions for homogenization in any dimension d≥2. For R>0 we define the random
variable

γ(R,ω)= sup
x,y∈BR(0)

τ(x,y,ω).

Theorem 1.3. Let d≥2, and let u0(x) be bounded and uniformly continuous in
x∈Rd. In addition to the aforementioned hypotheses on the random field V , assume
that for all R>0,

E[γ(R,ω)]<∞, (1.8)

and that

limsup
R→∞

1

R
γ(R,ω)<∞ (1.9)

holds with probability one. Then there is a convex function H̄ :Rd→ [0,∞) such that
the following holds with probability one: for any T >0 and R>0,

lim
ǫ→0

sup
t∈[0,T ]

sup
|x|≤R

|uǫ(t,x,ω)− ū(t,x)|=0, (1.10)



J. NOLEN AND A. NOVIKOV 565

where ū is the unique viscosity solution of the initial value problem

ūt= H̄(Dū) x∈Rd, t>0, (1.11)

ū(0,x)=u0(x), x∈Rd.

The function H̄ satisfies H̄(λp)=λH̄(p) for all λ>0 and p∈Rd. If V is divergence-
free, then H̄(p)=0 if and only if p=0. If the law of V (x,ω) is equal to the law of
V (Φx,ω) for any orthogonal transformation Φ, then H̄(p)≥|p| for all p∈Rd.

In the first part of Theorem 1.3 we do not assume that ∇·V =0. However, by
the simple example described already, we know that conditions (1.8) and (1.9) may
not hold without some restrictions on the divergence. Since Equation (1.1) is first
order, information propagates at finite speed. We may think of R/γ(R,ω) as a lower
bound on the speed at which information propagates between any two points in BR(0).
Condition (1.8) precludes this speed from being too small, on average. Condition (1.9)
controls extreme behavior of the random environment as one observes larger and larger
regions of space. These two conditions may be difficult to verify, in general. However,
in two dimensions and with the hypotheses of Theorem 1.1, we can use the stream
function Ψ to prove that these conditions do hold.

Before proceeding to the proofs of these results, we mention that further analysis
and numerical computation related to this equation with periodic drift may be found
in [8, 10, 19, 20] and references therein. In particular, the predictions of the G-
equation model for flame propagation may differ significantly from the predictions
of a reaction-diffusion-advection model [10, 19]. Some related results for reaction-
diffusion-advection equations with random drift may be found in [16, 18].

The rest of this article is organized as follows: In Section 2, we will apply the
subadditive ergodic theorem to show that the averaged travel times τ(x,y,ω)/|x−y|
become deterministic as |x−y|→∞. Eventually, we convert this into a statement
about uǫ, via the representation formula for uǫ. However, that step requires some
uniform control of τ(x,y,ω), which we obtain in Lemma 2.2. In Section 3 we prove
Theorem 1.3 using the control representation for uǫ and the travel time estimates.
The main step (Lemma 3.1) in this proof is to show that the domain of dependence
for uǫ coincides approximately with that of ū. In Section 4 we prove a lower bound
on the volume of the set of points that are reachable via the controlled trajectories
(1.6). That estimate plays an important role in Section 5 where we prove Theorem 1.1
by verifying the conditions (1.5)-(1.6). Another key technical estimate in the proof
of Theorem 1.1 is Lemma 5.1 which relates growth of the stream function Ψ to an
estimate on the travel times. Proposition 1.2 is proved at the end of Section 5.

2. Asymptotic behavior of the travel times

In this section we describe the almost-sure asymptotic behavior of τ(x,y,ω) as
|x−y|→∞. Except where stated otherwise, we assume thoughout this section that
conditions (1.8) and (1.9) hold. The first result of this section is analogous to a “shape
theorem” for the first-passage time in percolation theory:

Lemma 2.1. There is a function q̄(p) :Rd→ [0,∞) and a measurable set Ω̄⊂Ω such
that P(Ω̄)=1 and

lim
r→∞

1

r
τ(0,rp,ω)= q̄(p)

holds for all p∈Rd and ω∈ Ω̄. This function q̄ is continuous, convex, positively ho-
mogeneous of degree one, and q̄(p)≥|p|/(1+V∞) for all p∈Rd.
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Due to the stationarity of V , this lemma implies that for any x and p, τ(rx,r(x+
p),ω)/r→ q̄(p) in probability as r→∞. However, to apply this result in the control
representation for uǫ, we will require some uniform control over τ(x,y,ω), as described
by the next Lemma:

Lemma 2.2. Let q̄ and Ω̄ be as in Lemma 2.1. There is a measurable set Ω̃⊂ Ω̄ with
P(Ω̃)=1 such that for each R>0, M>0,

lim
r→∞

sup
|x|≤R

sup
p∈Rd

|p|≤M

∣

∣

∣

∣

τ(rx,r(x+p),ω)

r
− q̄(p)

∣

∣

∣

∣

=0. (2.1)

holds for every ω∈ Ω̃.

In proving Lemma 2.1 and Lemma 2.2, we will make use of the following con-
sequence of condition (1.9). We give a proof of this proposition at the end of this
section. The proof does not require the condition (1.8) to hold.

Proposition 2.3. Suppose that condition (1.9) holds. Then

lim
ǫ→0

limsup
r→∞

(

sup
|x|≤r

1

r
γ(rǫ,πxω)

)

=0 (2.2)

holds with probability one.

Proof of Lemma 2.1.

Proof. First, we fix a vector p∈Rd, p 6=0 and define a non-negative family of
random variables

qj,k(p,ω)= τ(jp,kp,ω), 0≤ j≤k, j,k∈R.

From the definition of τ , it is easy to see that for any three points x,y,z∈Rd, the
triangle inequality holds for τ :

τ(x,z,ω)≤ τ(x,y,ω)+τ(y,z,ω).

Consequently, qj,k is a subadditive family:

qj,l≤ qj,k+qk,l

for all 0≤ j≤k≤ l. Moreover from the stationarity of V it follows that

qj+m,k+m(ω)= qj,k(πmpω)

holds for all indices j≤k, and all m≥0, so this is a stationary process. Finally,
condition (1.8) and the subadditivity imply that

0≤E[q0,k]≤kC

holds for all k≥0 for a constant C that depends on |p|. Therefore, by the subadditive
ergodic theorem (for example, [15]) there is a random variable q̃(p,ω) such that the
limit along integer values k

lim
k→∞

1

k
q0,k(p,ω)= q̃(p,ω) (2.3)
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holds with with probability one.
In fact, there is a constant q̄(p) such that q̃(p,ω)= q̄(p) holds with probability

one. This follows from the fact that the limit q̃ is invariant under πx, as we now show.
Suppose x∈Rd with |x|≤R.

q̃(p,πxω)= lim
k→∞

1

k
τ(0,kp,πxω)

= lim
k→∞

1

k
(τ(0,kp,ω)+τ(0,kp,πxω)−τ(0,kp,ω))

= lim
k→∞

1

k
(τ(0,kp,ω)+τ(x,x+kp,ω)−τ(0,kp,ω)) . (2.4)

From the definition of γ(R,ω), we see that

|τ(x,x+kp,ω)−τ(0,kp,ω)|≤γ(R,ω)+γ(R,πkpω).

By the ergodic theorem, the limit

lim
k→∞

1

k

k
∑

n=1

γ(R,πnpω)

exists with probability one (the subset of Ω on which the limit exists may depend on
p and R, but not on x), and it is finite since E[γ(R,ω)]<∞. Consequently,

lim
k→∞

1

k
γ(R,πkpω)= lim

k→∞

(

1

k

k
∑

n=1

γ(R,πnpω)−
1

k

k−1
∑

n=1

γ(R,πnpω)

)

=0 (2.5)

holds with probability one. Therefore, with probability one,

lim
k→∞

1

k
(τ(x,x+kp,ω)−τ(0,kp,ω))=0

holds for all x∈Rd with |x|≤R. Since R is arbitrary, we conclude from (2.4) that
with probability one,

q̃(p,πxω)= lim
k→∞

1

k
τ(0,kp,πxω)= lim

k→∞

1

k
τ(0,kp,ω)= q̃(p,ω)

holds for all x∈Rd. Now the assumption that πx is an ergodic transformation implies
that q̃(p,ω)= q̄(p) with probability one.

We claim that limit (2.3) holds along continuous time k∈R. To see this, suppose
that r∈ [n,n+1) where n≥0 is an integer. We have

τ(0,rp,ω)≤ τ(0,np,ω)+τ(np,rp,ω)≤ τ(0,np,ω)+γ(|p|,πnpω).

Now using (2.5) with R= |p|, we conclude that, with probability one,

lim
n→∞

sup
r∈[n,n+1)

1

r
τ(0,rp,ω)≤ lim

n→∞

1

n
τ(0,np,ω)+

1

n
γ(|p|,πnpω)= q̄(p) (2.6)

This, and a similar lower bound establishes the claim.
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We have shown that for each p∈Rd, there is a set Ωp with P(Ωp)=1 on which (2.3)
holds along continuous time k∈R. Now take Ω̄=∩p∈QdΩp to obtain a measurable set
Ω̄⊂Ω such that P(Ω̄=1) and for all ω∈ Ω̄, the limit

lim
r→∞

1

r
q0,r(ω)= q̄(p) (2.7)

holds along continuous time r∈R, for all rational vectors p∈Qd.
From the definition of τ and the fact that |V | is bounded by V∞, it is clear that

q̄(p)≥|p|/(1+V∞) for all p. Using the subadditivity property, it is not hard to show
that q̄(p) is continuous and convex in p and homogeneous of degree one: q̄(λp)=λq̄(p)
for all λ>0. Thus we may extend the definition of q̄(p) to all p∈Rd. Let us now show
that (2.7) holds for all p∈Rd, not just for vectors p∈Qd. Suppose that p1∈Rd. Let
p2∈Qd with |p1−p2|≤ ǫ. Then

τ(0,rp1,ω)≤ τ(0,rp2,ω)+τ(rp2,rp1,ω)≤ τ(0,rp2,ω)+γ(rǫ,πrp2
ω) (2.8)

holds for all ω∈ Ω̄. Similarly, τ(0,rp2,ω)≤ τ(0,rp1,ω)+τ(rp1,rp2,ω) so that

τ(0,rp1,ω)≥ τ(0,rp2,ω)−γ(rǫ,πrp2
ω). (2.9)

Assumption (1.9) and Proposition 2.3 imply that for any M>0,

lim
ǫ→0

limsup
r→∞

(

sup
|p|≤M

1

r
γ(rǫ,πrpω)

)

=0 (2.10)

holds with probability one. By removing from Ω̄ a set of measure zero, if necessary,
we may apply this to (2.8) and (2.9) and conclude that for some function ν(ǫ)≥0
which is o(1) as ǫ→0,

q̄(p2)−ν(ǫ)≤ liminf
r→∞

1

r
τ(0,rp1,ω)≤ limsup

r→∞

1

r
τ(0,rp1,ω)≤ q̄(p2)+ν(ǫ) (2.11)

holds for all ω∈ Ω̄. Since q̄ is continuous and since ǫ may be made arbitrarily small
by choosing p2∈Qd arbitrarily close to p1, this completes the proof of Lemma 2.1.

In order to prove Lemma 2.2, we will employ some ideas that have been used in
[13, 14, 24].

Lemma 2.4. Let Ω̄ be as in Lemma 2.1. Fix α>0. For each η>0 there is a measur-
able set Nη ⊂ Ω̄ such that P(Nη)≥1−η and

lim
r→∞

sup
ω∈Nη

sup
p∈Rd

|p|≤α

∣

∣

∣

∣

τ(0,rp,ω)

r
− q̄(p)

∣

∣

∣

∣

=0. (2.12)

Proof of Lemma 2.4.

Proof. Egorov’s theorem implies that for each p∈Rd and η>0, there is a
measurable set Np

η ⊂ Ω̄ such that P(Np
η )≥1−η and

lim
r→∞

sup
ω∈Np

η

∣

∣

∣

∣

τ(0,rp,ω)

r
− q̄(p)

∣

∣

∣

∣

=0
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holds (i.e. uniformly over Np
η ). For Q

d={pn}
∞
n=1, let

Nη =

∞
⋂

n=1

Npn

η2−n .

Then P(Nη)≥1−η, and

lim
r→∞

sup
ω∈Nη

∣

∣

∣

∣

τ(0,rp,ω)

r
− q̄(p)

∣

∣

∣

∣

=0 (2.13)

holds for all rational vectors p∈Qd. The locally uniform convergence described by
(2.12) now follows from (2.13) and condition (1.9) and Proposition 2.3, as in the
derivation of (2.11).

Lemma 2.5. Let Ω̄ be as in Lemma 2.1. There is a measurable set Ω̃⊂ Ω̄ with
P(Ω̃)=1 such that the following holds: For every R>0, every ω∈ Ω̃, and every integer
n sufficiently large (depending only on d), there exists a constant r0= r0(R,n,ω) such
that for all r≥ r0 and x∈Rd satisfying |x|≤R, there exists at least one point x′∈Rd

(depending on r and ω) satisfying

|x−x′|≤R

(

3

2n

)1/d

,

and

πrx′ω∈N2−n ,

where N2−n is defined in Lemma 2.4 with η=2−n.

Proof of Lemma 2.5.

Proof. This may be proved as in [13]; see the proof of Theorem 2.1 therein.
Also, see Lemma 5.7 of [24]. We provide here a proof for the reader’s convenience.

Let R>0 and η=2−n. By the ergodic theorem, there is a set of full measure
ΩR⊂ Ω̄ such that

lim
r→∞

|{y∈Rd |πyω∈Nη, |y|≤Rr}|

|{y∈Rd | |y|≤Rr}|
=P(Nη)≥1−η

holds for all ω∈ΩR. Consequently, there is r0= r0(R,n,ω) such that for all r>r0 and
h≥0,

|{z∈Rd |πzω /∈Nη, |z|≤R(r+h)}|≤2η|{z∈Rd | |z|≤R(r+h)}|

=2η

(

1+
h

r

)d

|{z∈Rd | |z|≤Rr}|. (2.14)

Let h=(3η)1/dr. For any y∈BrR(0), Bδ(y)⊂B(r+h)R(0) if δ=hR. Also

|Bδ(y)|=
δd

(Rr)d
|BrR(0)|=

δd

(Rr)d
|{z | |z|≤Rr}|=3η|{z | |z|≤Rr}|. (2.15)

If η< ((5/4)1/d−1)d/3, we have for all r>0, 2η
(

1+ h
r

)d
=2η

(

1+(3η)1/d
)d

<5η/2.
Consequently, from (2.14) and (2.15) we see that if r>r0(R,n,ω) there cannot be
y∈BrR(0) such that

Bδ(y)⊂{z |πzω /∈Nη, |z|≤R(r+h)}.
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So, for every y∈BrR(0) and ω∈ΩR there must be a point y′ such that |y−y′|≤ δ and
πy′ω∈Nη.

We finally set Ω̃=∩∞
k=1Ωk, and the result follows with x=y/r and x′=y′/r.

Proof of Lemma 2.2.

Proof. Let Ω̃ be as in Lemma 2.5. Let ω∈ Ω̃. For any pair of points x,x′∈Rd.

τ(rx,r(x+p),ω)= τ(rx′,r(x′+p),ω)+τ(rx,r(x+p),ω)−τ(rx′,r(x′+p),ω)

= τ(0,rp,πrx′ω)+τ(rx,r(x+p),ω)−τ(rx′,r(x′+p),ω), (2.16)

so that
∣

∣

∣

∣

τ(rx,r(x+p),ω)

r
− q̄(p)

∣

∣

∣

∣

≤

∣

∣

∣

∣

τ(0,rp,πrx′ω)

r
− q̄(p)

∣

∣

∣

∣

+
1

r
|τ(rx,r(x+p),ω)−τ(rx′,r(x′+p),ω)|

≤

∣

∣

∣

∣

τ(0,rp,πrx′ω)

r
− q̄(p)

∣

∣

∣

∣

+
1

r
γ(r|x′−x|,πrxω)+

1

r
γ(r|x′−x|,πr(x+p)ω). (2.17)

Fix n∈N and |x|≤R, and let r0= r0(R,n,ω) be as in Lemma 2.5. Then for r>r0 and
|x|≤R, we may choose x′=x′(x,r,n,ω) according to Lemma 2.5. Since πrx′ω∈N2−n ,
we have

sup
p∈Rd

|p|≤α

∣

∣

∣

∣

τ(0,rp,πrx′ω)

r
− q̄(p)

∣

∣

∣

∣

≤ sup
ω′∈N2−n

sup
p∈Rd

|p|≤α

∣

∣

∣

∣

τ(0,rp,ω′)

r
− q̄(p)

∣

∣

∣

∣

, (2.18)

where the right hand side is independent of x, for all |x|≤R. To control the other
terms in (2.17) we may apply (1.9) and (2.2), since |x−x′|≤R( 3

2n )
1/d may be made

arbitrarily small by taking r and n large, with R fixed. Consequently, (1.9) and (2.2)
imply that

lim
n→∞

limsup
r→∞

sup
|x|≤R

1

r
γ(r|x′−x|,πrxω)=0 (2.19)

and

lim
n→∞

limsup
r→∞

sup
|x|≤R

sup
|p|≤α

1

r
γ(r|x′−x|,πr(x+p)ω)=0. (2.20)

Because n∈Zmay be chosen arbitrarily large as r→∞, we combine (2.17), (2.18),
(2.19), (2.20), and Lemma 2.4 to conclude that for all ω∈ Ω̃, R>0, and α>0,

limsup
r→∞

sup
|x|≤R

sup
p∈Rd

|p|≤α

∣

∣

∣

∣

τ(rx,r(x+p),ω)

r
− q̄(p)

∣

∣

∣

∣

=0. (2.21)

This proves Lemma 2.2. Proof of Proposition 2.3.

Proof. Assume that condition condition (1.9) holds (but we need not assume
condition (1.8)). For h>0 and M0>0, let GM0,h⊂Ω denote the set

GM0,h=

{

ω∈Ω |
1

M
γ(M,ω)≤h, ∀M ≥M0

}

.
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By condition (1.9) we know that for any ǫ>0 we may choose h sufficiently large
and M0 sufficiently large so that P(GM0,h)≥1−ǫ. Observe that for all y∈R2,
P(πyGM0,h)=P(GM0,h). Therefore, the ergodic theorem implies that

lim
R→∞

|{x∈BR(0) |πxω∈GM0,h}|

|BR(0)|
=P(GM0,h) (2.22)

holds with probability one. So, for almost every ω∈Ω, there is an R0=R0(M0,h,ω)
such that

|{x∈BR(0) |πxω /∈GM0,h}|≤2|BR(0)|(1−P(GM0,h))

holds for all R≥R0. Thus, if R≥R0 and x∈BR(0), there must be a point x′∈BR(0)
such that |x−x′|≤CR(1−P(GM0,h))

1/d and πx′ω∈GM0,h, where C is a universal
constant.

Now, for any ǫ>0, we may choose h and M0 sufficiently large so that C(1−
P(GM0,h))

1/d≤ ǫ. Thus, for R≥R0(M0,h,ω), every point x∈BR(0) is contained in a
ball of the of form BRǫ(x

′) where πx′ω∈GM0,h. Since the point x′∈GM0,h we know
that

γ(M,πx′ω)≤hM, ∀M ≥M0. (2.23)

In particular, γ(2Rǫ,πx′ω)≤2hRǫ, for R≥M0ǫ
−1/2. On the other hand, B2Rǫ(x

′)⊃
BRǫ(x) since |x−x′|≤Rǫ, so the definition of γ now implies that

γ(Rǫ,πxω)≤γ(2Rǫ,πx′ω)≤2hRǫ

holds for all x∈BR(0) and R≥max(R0,M0ǫ
−1/2). Taking R→∞ we conclude that

limsup
R→∞

1

R
sup
|x|≤R

γ(Rǫ,πxω)≤2hǫ

holds with probability one.

3. Homogenization

In this section we prove Theorem 1.3 using the estimates on the travel times
(Lemma 2.2) and the control representation for uǫ(t,x,ω). Throughout this section
we assume that conditions (1.8) and (1.9) hold. First, we identify the effective Hamil-
tonian for which Theorem 1.3 holds. Let

H̄(p)=sup
{

p ·z | z∈Rd, q̄(z)=1
}

.

Since H̄(p) is the supremum of a family of linear functions of p, it is immediate that
H̄ is convex in p, and positively homogeneous of degree one. Since q̄(p)≥|p|/(1+V∞)
it follows that H̄(p)≤|p|(1+V ∞).

Fix ω∈ Ω̃ where Ω̃ is as in Lemma 2.2. For any x∈Rd and t>0 we define Γx,t(ω)⊂
Rd to be the set of points y for which Xα

x (t)=y for some control α∈At:

Γx,t(ω)={y∈Rd |Xα
x (t)=y, for someα∈At}, (3.1)

and Xα
x (t) solves (1.6) with ε=1. We refer to this set as the reachable set at time t,

starting from x. With ǫ=1, the control representation for u is

u1(x,t,ω)= sup
α∈At

u0(X
α
x (t))= sup

y∈Γx,t(ω)

u0(y). (3.2)
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Thus, the set Γx,t may be regarded as the domain of dependence of the solution
u1(x,t). We will compare this set with the bounded, convex set {x+Wt}={x+y |y∈
Wt}, where

Wt={tv | v∈Rd, q̄(v)≤1}={z | z∈Rd, q̄(z)≤ t}.

The set {x+Wt} is the domain of dependence of the function ū(x,t) satisfying the
effective equation. The following lemma shows that for t large, the reachable set Γx,t

approximately coincides with {x+Wt}:

Lemma 3.1. Let δ>0, R>0. For all ω∈ Ω̃, there is a time t0= t0(δ,R,ω)>1 such
that if t≥ t0, then the following hold:

(i) For all |x|≤Rt, Γx,t(ω)⊂{x+Wt(1+δ)}.

(ii) For all |x|≤Rt and all z∈{x+Wt} there is a point y∈Γx,t(ω) such that
|y−z|≤ δt.

Proof of Lemma 3.1.

Proof. First we prove (i). Observe that

Γx,t(ω)⊂{x̂∈Rd | τ(x,x̂,ω)≤ t}.

Let m=2(‖V ‖∞+1). From the definition of Xα(t) it follows that if |v|≥m, then
τ(x,x+ tv)≥2t for all x∈Rd and t>0. Therefore,

Γx,t(ω)⊂{x̂ | τ(x,x̂,ω)≤ t}⊂{x+ tv | |v|≤m, τ(x,x+ tv,ω)≤ t}

holds for all t>0. Now we apply Lemma 2.2 to conclude that for t sufficiently large
(depending on δ, R, and ω, but not on x),

Γx,t(ω)⊂
{

x+ tv∈Rd | q̄(v)≤1+δ
}

(3.3)

holds for all |x|≤Rt. This last set is precisely
{

x+ tv∈Rd | q̄(v)≤1+δ
}

={x+
Wt(1+δ)}. This proves that there is t0= t0(δ,R,ω) such that (i) holds for all t≥ t0.

Now we prove (ii). We first prove that (ii) holds for z in the boundary of the set
{x+Wt}. Then we will prove it for z in the interior of this set. Let

H=∂W1={z | z∈Rd, q̄(z)=1},

and let M>1+V∞ so that |v|≤M for all v∈H. From Lemma 2.2, we know there is
a function r(t)≥0 (depending on ω, M and R) such that limt→∞r(t)=0 and

sup
|x|≤Rt

sup
|v|≤M

∣

∣

∣

∣

τ(x,x+ tv,ω)

t
− q̄(v)

∣

∣

∣

∣

≤ r(t) (3.4)

holds for all t>1. This tells us that the travel time from any x to x+ tv is approx-
imately t. Specifically, for any |x|≤Rt and v∈H we may choose a control α such
that

Xα
x (s)=x+ tv

for some time s= τ(x,x+ tv,ω) satisfying |s− t|≤ r(t)t. If s≤ t, then the bound on V
implies

|Xα
x (t)−(x+ tv)|= |Xα

x (t)−Xα
x (s)|≤ (1+‖V ‖∞)|t−s|.
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Similarly, if s≥ t, then we may extend the control α by setting α(r)=0 for r∈
[s,t]. Using this modified control we obtain the same bound: |Xα

x (t)−(x+ tv)|≤
(1+‖V ‖∞)|t−s|. In either case, this shows that for all |x|≤Rt and v∈H, we may
choose a control α∈At such that

|Xα
x (t)−(x+ tv)|≤ (1+‖V ‖∞)r(t)t.

Consequently, for all |x|≤Rt and z∈∂{x+Wt}=x+ tH there must be a point y∈
Γx,t(ω) such that |y−z|≤ (1+‖V ‖∞)r(t)t. Since r(t)→0 as t→∞, this proves (ii)
for z∈∂{x+Wt}.

Finally, suppose that z=x+ tv is in the interior of {x+Wt}={x+ tW1}, with
dist(v,H)≥ ǫ1 and ǫ1∈ (0,1). The set Wt is convex. So, we may choose s∈ [0,1]
and v1,v2∈H such that v=sv1+(1−s)v2. Since dist(v,H)≥ ǫ1 there must be ǫ2∈
(ǫ1/(2M),1−ǫ1/(2M)) such that s∈ (ǫ2,1−ǫ2). Since v1∈H there must be a point
y1∈Γx,ts(ω) such that |y1−(x+ tsv1)|≤ δst if t≥ (ǫ2)

−1t0(δ,R,ω). Since v2∈H, there
also must be a point y2∈Γy1,t(1−s)(ω) such that |y2−(y1+ t(1−s)v2)|≤ δ(1−s)t if
t≥ (ǫ2)

−1t0(δ,R,ω). Consequently, for all |x|≤Rt and t≥ (ǫ2)
−1t0(δ,R,ω), there is

y2∈Γx,t(ω) such that

|y2−(x+ tv)|= |y2−(y1+ t(1−s)v2)+y1−(x+ tsv1))|≤ δt (3.5)

holds. This completes the proof of (ii).

Corollary 3.2. Let δ>0, R>0, h>0. For all ω∈ Ω̃, there exists ǫ0= ǫ0(δ,R,h,ω)>
0 such that if ǫ∈ (0,ǫ0), the following hold:

(i) For all |x|≤R and t≥h, ǫΓxǫ−1,tǫ−1(ω)⊂{x+Wt(1+δ)}.

(ii) For all |x|≤R, t≥h, and all z∈{x+Wt} there is a point y∈ ǫΓxǫ−1,tǫ−1(ω)
such that |y−z|≤ δt.

Proof of Corollary 3.2.

Proof. Since ǫWtǫ−1 =Wt, this is an immediate consequence of Lemma 3.1, with
ǫ0=h−1t0(δ,R,ω).

Proof of Theorem 1.3.

Proof. The solution ū of (1.11) is given by the control representation

ū(t,x)= sup
y∈{x+Wt}

u0(y),

while for each ǫ>0,

uǫ(t,x)= sup
y∈ǫΓ

xǫ−1,tǫ−1

u0(y).

Let δ>0, h>0, and R>0. Applying Corollary 3.2 (i), we see that for |x|≤R, t≥h,
and ǫ≥ ǫ0(δ,h,R,ω),

uǫ(t,x)≤ sup
y∈{x+Wt(1+δ)}

u0(y)= ū(t(1+δ),x).

Therefore, because of the uniform continuity of ū and the arbitrariness of δ>0, we
conclude that

limsup
ǫ→0

sup
t≥h

sup
|x|≤R

(uǫ(t,x,ω)− ū(t,x))≤0. (3.6)
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Now we use Corollary 3.2 (ii) to obtain a lower bound, as follows. For all |x|≤
R, t∈ [h,T ], z∈{x+Wt}, and ǫ≥ ǫ0(δ,h,R,ω), there is a point y∗∈ ǫΓxǫ−1,tǫ−1(ω)
satisfying |y∗−z|≤ δT . If z∈{x+Wt} is chosen so that

ū(t,x)= sup
y∈{x+Wt}

u0(y)=u0(z),

then from (ii),

uǫ(t,x)= sup
y∈ǫΓ

xǫ−1,tǫ−1

u0(y)≥u0(y
∗)≥u0(z)−|u0(z)−u0(y

∗)|

≥ ū(t,x)−φ(δT ),

where φ is the modulus of continuity for u0(x). Therefore, since δ>0 was arbitrary,
we conclude that

liminf
ǫ→0

inf
t≥h

inf
|x|≤R

(uǫ(t,x,ω)− ū(t,x))≥0. (3.7)

This proves that uǫ→ ū uniformly on compact sets in (0,∞)×Rd. To obtain the
locally uniform convergence down to time t=0, we observe that for x∈Rd, uǫ(t,x)
satisfies

sup
t∈[0,h]

|uǫ(t,x)− ū(t,x)|≤ sup
t∈[0,h]

|uǫ(t,x)−u0(x)|+ sup
t∈[0,h]

|ū(t,x)−u0(x)|. (3.8)

Since |Xǫ,α
x (t)−x|≤ t(1+V∞), the first term on the right is bounded by

sup
t∈[0,h]

|uǫ(t,x)−u0(x)|≤ sup
y∈Rd

|y−x|≤h(1+V∞)

|u0(y)−u0(x)|≤φ(h(1+V∞)) (3.9)

This and a similar bound on |ū(t,x,ω)−u0(x)| implies that

lim
h→0






limsup

ǫ→0
sup
x∈Rd

t∈[0,h]

|uǫ(t,x,ω)− ū(t,x,ω)|






=0. (3.10)

Finally, by combining (3.6), (3.7), and (3.10), we conclude that (1.10) holds with
probability one. The stated properties of H follow immediately from the properties
of q̄ and the Corollary 4.2 at the end of the next section.

4. A lower bound on the reachable set

In this section we prove an estimate on the growth of the reachable set Γx,t(ω)
defined at (3.1), under the assumption that V is divergence-free. This estimate holds
in all dimensions d≥2 and does not rely on conditions (1.8) and (1.9). Since this
estimate makes no use of the statistical structure of the vector field V , we will suppress
the dependence of Γx,t, V (x), and τ(x,y) on ω∈Ω.

Lemma 4.1. Let d≥2. Assume that V ∈C1(Rd;Rd) is divergence free. For x∈Rd

and t≥0, let Γx,t⊂Rd be the set of points that are reachable at time t:

Γx,t={y∈Rd |Xα
x (t)=y, for someα∈At},
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and Xα
x (t) solves (1.6) with ε=1. For all x∈Rd and t≥0,

|Γx,t|≥ωdt
d, (4.1)

where ωd is the volume of the unit ball in dimension d.

Proof of Lemma 4.1.

Proof. Consider the map X(t,x,κ) : [0,∞)×Rd×B1(0)→Rd defined by

∂

∂t
X(t,x,κ)=−V (X(t,x,κ))+κ, t≥0, (4.2)

with X(0,x,κ)=x. For all κ∈B1(0) and x∈Rd, the matrix M(t,x,κ)=DκX(t,x,κ)
satisfies

∂

∂t
Mi,j =−

∑

ℓ

∂V i

∂Xℓ
(X(t,x,κ))Mℓ,j+δij , 1≤ i,j≤d,

with M(0,x,κ)=0. Consequently, for A(t)=−DV (X(t,x,κ)), we have

M(t,x,κ)=

∫ t

0

e
∫

t
s
A(r)drI ds= tI+

∞
∑

n=1

∫ t

0

(

∫ t

s
A(r)dr

)n

n!
ds.

Therefore, by our assumptions on V , there is a constant C1 such that ‖M(t,x,κ)−
tI‖≤C1t

2 for all t∈ (0,1), x∈Rd and κ∈B1(0), where I :Rd→Rd is the identity.
Then using the contraction mapping theorem, one can show that for any small ǫ>0
there is a t0= t0(ǫ)>0, small such for all t∈ (0,t0] the image of the map X(t,x, ·) :
B1(0)→Rd contains a ball Bδ(X(t,x,0)) with radius δ bounded below by δ> (1−ǫ)t.
Since Γx,t is obtained from the control problem with a larger set of controls (not
just the constant controls), this ball must be contained in Γx,t, which shows that
|Γx,t|≥ωd((1−ǫ)t)d for all t∈ (0,t0] and x∈Rd.

Now, let t1∈ (0,t0) and define tk=kt1 for positive integers k. The analysis above
shows that

Γx,tk+1
⊃

⋃

y∈Γx,tk

Bδ(X(t1,y,0)) (4.3)

must hold for δ=(1−ǫ)t1. Since V has zero divergence, the flow defined by (4.2) with
κ=0 is volume-preserving. Hence, |Γx,t|≥ |Γx,s| holds for all t≥s and

∣

∣

∣

∣

∣

∣

⋃

y∈Γx,tk

X(t1,y,0)

∣

∣

∣

∣

∣

∣

= |Γx,tk | . (4.4)

Now by applying the Brunn-Minkowski inequality to (4.3) and using (4.4), we obtain
the bound

|Γx,tk+1
|1/d≥ δ|ωd|

1/d+ |Γx,tk |
1/d

.

Iterating this inequality yields

|Γx,tk+1
|1/d≥ (k−1)δ|ωd|

1/d+ |Γx,t1 |
1/d≥kδ|ωd|

1/d.
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So, |Γx,tk+1
|≥ωd(1−ǫ)d(kt1)

d holds for all k∈N. Because |Γx,t|≥ |Γx,s| holds for all
t≥s and because t1 and ǫ may be made arbitrarily small, this implies (4.1).

An immediate consequence of Lemma 4.1 and Lemma 2.2 is the following simple
estimate on the functions q̄ and H̄:

Corollary 4.2. Suppose that V is divergence-free and that conditions (1.8) and
(1.9) hold. Then the function q̄ defined by Lemma 2.1 satisfies

|{z | q̄(z)≤1}|≥ωd (4.5)

where ωd is the volume of the unit ball in dimension d≥2. Moreover, if the law of
V (x,ω) is equal to the law of V (Φx,ω) for any orthogonal transformation Φ, then
{z | q̄(z)≤1}⊃B1(0) and therefore H̄(p)≥|p| for all p∈Rd.

5. An upper bound on the travel times in dimension d=2
In this section we prove Theorem 1.1 by showing that the conditions (1.8) and

(1.9) hold for a large class of vector fields in dimension d=2. If V ∈C1(R2;R2) is
divergence-free, then there is a stream function Ψ :R2→R such that

V (x)=∇⊥Ψ(x)=(−∂2Ψ,∂1Ψ).

Some of the analysis of this section does not use the statistical structure of V and Ψ
so we suppress the dependence of V , Ψ, and τ on ω∈Ω. Our main estimate is the
following lemma which relates the travel times τ(x,y) to the growth of the stream
function:

Lemma 5.1. There are constants C1 and C2 such that if M>0, K>1, z∈Rd, and

|Ψ(x)−Ψ(z)|≤K (5.1)

holds for all x satisfying |x−z|≤3M+5K, then τ(x,y)≤C1K+C2|x−y| holds for
all x,y∈BM (z).

To prove this bound, we introduce a modified control problem associated with a
modified stream function Ψ̂.

Lemma 5.2. Suppose Ψ, M>0, K>1, and z∈Rd are such that (5.1) holds for
all |x−z|≤3M+5K. Then we can modify Ψ by adding a non-negative function φ so
that the modified function

Ψ̂=Ψ+φ

satisfies:

• Ψ̂(x)=Ψ(x) if |x−z|≤M ,

• K+1/3≤ Ψ̂(x)−Ψ̂(z)≤3K+1/3+M , for M+1+4K≤|x−z|≤3M+1+
4K,

• |∇φ|≤1/2.

Proof of Lemma 5.2.

Proof. Let ρ(s)∈C∞(R+) be a non-decreasing function that satisfies

ρ(s)=

{

0, s≤M,

s/2−M/2−1/6, s≥M+1,
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and 0≤ρ(s)≤1/3 when M ≤s≤M+1. We can choose ρ so that 0≤dρ(s)/ds≤1/2.
Then we define φ(x)=ρ(|x−z|).

The modified stream function Ψ̂ depends on z. For z fixed and Ψ̂ defined in this
way, let V̂ (x)=∇⊥Ψ̂ be the vector field associated with the modified stream function,
and define an auxiliary control problem

d

dt
Y α̂
x (t)=−V̂ (Y α̂

x (t))+ α̂(t), Y α̂
x (0)=x∈R2, (5.2)

where the control α̂ satisfies the constraint |α̂|≤1/2:

α̂∈Ât={α̂∈L∞([0,t];Rd) : ‖α̂‖∞≤1/2}⊂At.

Travel times for the unmodified control problem are bounded by travel times for the
modified problem:

Lemma 5.3. For any solution Y α̂
x (t) with control α̂∈Ât of the system (5.2), there

is a solution Xα
x (t) with control α∈Ât of the system (1.6) such that Xα

x (s)=Y α̂
x (s)

for all s∈ [0,t]. Thus,

τ(x,y)≤ τ̂(x,y), (5.3)

where

τ̂(x,y)= inf{t≥0 |Y α̂
x (t)=y, for some α̂∈Ât}.

Proof of Lemma 5.3.

Proof. Given a control α̂∈Ât, we set α(s)=∇⊥φ(Y α̂
x (s))+ α̂(s) for s∈ [0,t] and

solve (1.6) with this control. By definition of φ, α∈At. Also, Xα
x (s)=Y α̂

x (s) for all
s∈ [0,t]. If τ̂(x,y) is infinite, the bound (5.3) holds trivially. If τ̂(x,y)<∞, there is
a time t and a control α̂∈Ât such that Y α̂

x (t)=y, so by choosing α as we have just
described, we obtain (5.3).

Proof of Lemma 5.1.

Proof. Suppose that M>0, K>1, and z∈Rd satisfy the hypotheses of the
Lemma. Let us choose φ(x)=ρ(|x−z|) as in Lemma 5.2, and Ψ̂=Ψ+φ. First we
will show that if x0,y0∈BM (z), then

τ(x0,y0)≤C1K+C2M (5.4)

must hold for some constants C1 and C2 that are independent of x0,y0,K,M,z.
Lemma 5.2 implies that for all h bounded by K+1/3≤h≤3K+1/3+M there ex-
ists a connected component S0

h of the set Sh={x∈Rd | Ψ̂(x)−Ψ̂(z)≤h} satisfying

BM (z)⊂S0
h⊂BR(z), where R=3M+1+4K≤3M+5K.

We will obtain (5.4) from a similar estimate on τ̂(x0,y0). To estimate τ̂(x0,y0)
we will estimate the time required to move from x0 to any point in the set ∂S0

h, then
the time to reach y0 from some point in ∂S0

h.
We first estimate the time to reach the boundary of BR(z), starting from x0. For

each t≥0 we define the (modified) reachable set

Γ̂x0,t={y∈R2 |Y α̂
x0
(t)=y, for some α̂∈Ât},
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and Y α̂
x (t) solves (5.2). From Lemma 4.1 it follows that in dimension d=2,

|Γ̂x0,t|≥
πt2

4
, ∀ t≥0. (5.5)

holds for all t>0. The factor 1/4 here comes from the fact that the controls in Ât

defining Y α̂ must satisfy |α̂|≤1/2, rather than |α|≤1. If Γ̂+
t =∪s∈[0,t]Γ̂xo,s, the lower

bound (5.5) implies that Γ̂+
t ∩∂BR(z) 6=∅ for times t>2R. Thus the curve γ=∂S0

h

also intersects Γ̂+
t at times t>2R, and for all h∈ [K+1/3,3K+1/3+M ].

The curve γ is an integral curve of a solution of (5.2) with α̂≡0, thus γ⊂∂Sh

for some h. Let us estimate the time

T =

∫

γ

1

|V̂ |
ds

required to traverse this curve. Since Ψ∈C2 and φ∈C∞ we have Ψ̂∈C2. Applying
the Sard’s lemma we conclude that the set R of regular values of Ψ̂ has full measure.
The implicit function theorem guarantees ∂Sh is a finite union of C2 compact man-
ifolds without boundary for each h∈R. R is also open because Ψ̂∈C2(S). For any
δ>0 by the co-area formula

∫ h2

h1

(

∫

∂Sh

1

|∇Ψ̂|+δ
ds

)

dh=

∫

Sh2
\Sh1

|∇Ψ̂|

|∇Ψ̂|+δ
dxdy≤|Sh2

|−|Sh1
|,

where h1≤h2, and |Sh| denotes the area of Sh. Noting that |V̂ |= |∇Ψ̂| and using the
monotone convergence theorem we obtain

∫ h2

h1

(

∫

∂Sh

1

|V̂ |
ds

)

dh= |Sh2
|−|Sh1

|.

Since |SK+1/3|≥πM2 and |S3K+1/3+M |≤πR2 the last identity implies

∫ 3K+1/3+M

K+1/3

(

∫

∂Sh

1

|V̂ |
ds

)

dh≤π
(

R2−M2
)

.

Thus there exists h∈R∩ [K+1/3,3K+1/3+M ] so that

T =

∫

∂S0
h

1

|V̂ |
ds≤

∫

∂Sh

1

|V̂ |
ds≤π

(

R2−M2
)

/(2K+M)≤4πR≤13R. (5.6)

Thus at all times t> (13+2)R, Γ̂+
t contains the C2 curve γ=∂S0

h⊂Sh, where h is
chosen, so that (5.6) holds.

We complete the proof of (5.4) by estimating the time needed for Γ̂+
t to contain

the entire set S0
h. If we replace V̂ with −V̂ , then starting from any point y1∈S0

h

at time t=0, we may apply Lemma 4.1, as above, to show that there is a control
β∈Ât for which the controlled path reaches ∂S0

h at some time t∗≤2R. Therefore

by reversing time with this control, we conclude that for any point y1∈BM (z)⊂S0
h

there is a control α(s)=−β(t∗−s)∈Ât∗ and a point y2∈∂S0
h for which Y α

y2
(t∗)=y1.

Thus y1∈ Γ̂+
t for all t> (13+2+2)R=17R. Using our definition of R we obtain the
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bound τ̂(x0,y0)≤C1K+C2M for all x0,y0∈BM (z). Now (5.4) follows immediately
from this and Lemma 5.3.

Now, using (5.4), we show that

τ(x0,y0)≤C ′
1K+C ′

2|x0−y0| (5.7)

holds for all x0,y0∈BM (z), with constants C ′
1 and C ′

2 that are independent of
M,K,z,x0,y0. If |x0−y0|≥M/4, then it is immediate from (5.4) that τ(x0,y0)≤
C1K+C2M ≤C1K+4C2|x0−y0|. In this case the estimate (5.7) holds with C ′

1=C1

and C ′
2=4C2. So, let us suppose that x0,y0∈BM (z), but |x0−y0|≤M/4. If

M<5K, then τ(x0,y0)≤C1K+C2M ≤ (C1+5C2)K. So, (5.7) certainly holds with
C ′

1=(C1+5C2) and C ′
2=0. Therefore, it suffices to assume that |x0−y0|≤M/4

and M ≥5K. In this case, let us define z′=(x0+y0)/2, M
′= |x0−y0|≤M/4, and

K ′=2K. Then it is easy to see that

B3M ′+5K′(z′)⊂B3M+5K(z)

since 3M ′+5K ′<2M+5K and z′∈BM (z). Therefore, |Ψ(x)−Ψ(z′)|≤K ′ holds for
all |x−z′|≤3M ′+5K ′. Thus, we may apply the bound (5.4) with M ′, K ′ and z′, to
conclude that τ(x0,y0)≤C1K

′+C2M
′=2C1K+C2|x0−y0|. In this case (5.7) holds

with C ′
1=2C1 and C ′

2=C2. Finally, by combining each of these cases, we see that
(5.7) holds for all x0,y0∈BM (z) with C ′

1=2C1+5C2 and C ′
2=4C2.

In proving Theorem 1.1, we will make use of the following lemma which shows
that the stream function grows no more than sublinearly, if E[V ]=0:

Lemma 5.4. Let V :R2×Ω→R2 be a stationary random vector field, uni-
formly bounded and divergence-free. Let Ψ(x,ω) :R2×Ω→R be a stream function:
V =∇⊥Ψ=(−∂x2

Ψ,∂x1
Ψ). If E[Vi(0,ω)]=0, for i=1,2, then Ψ must satisfy

lim
r→∞

1

r
sup
|x|≤r

|Ψ(x,ω)|=0 (5.8)

with probability one.

Proof of Lemma 5.4.

Proof. Since V is uniformly bounded, Ψ(x,ω) must be uniformly Lipschitz
continuous. Therefore, it suffices to prove that with probability one,

lim
r→∞

1

r
|Ψ(rz,ω)|=0 (5.9)

holds for any fixed vector z∈R2 with rational coordinates (i.e. z∈Q2).
Without loss of generality, we may assume that Ψ(0,ω)=0 almost surely. So, for

any curve p : [0,r]→R2 we have

Ψ(p(r),ω)=

∫ r

0

p′ ·∇Ψdt=

∫ r

0

p′1(t)V2(p(t),ω)−p′2(t)V1(p(t),ω)dt.

For a given z∈Q2, let p(s)= zs. Therefore,

lim
r→∞

1

r
Ψ(rz,ω)= lim

r→∞

1

r

∫ r

0

θ(t,ω)dt,
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where θ(t,ω)= z1V2(zt,ω)−z2V1(zt,ω). Observe that θ(t+h,ω)=θ(t,πzhω), so that
θ(t,ω) is statistically stationary in t. Therefore, the ergodic theorem implies that
there is a random variable η∈L1(Ω) such that the limit

lim
r→∞

1

r

∫ r

0

θ(t,ω)dt=η(ω) (5.10)

holds with probability one. We claim that η≡0. This follows from the fact that η
must be invariant under the action of πy for all y∈R2. So see this, observe that the
stationarity of V implies that

∫ r

0
θ(t,πyω)dt=Ψ(zr+y,ω)−Ψ(y,ω). Because |(Ψ(zr+

y,ω)−Ψ(y,ω))−Ψ(zr,ω)|≤2Ky we then have

η(πyω)= lim
r→∞

1

r
(Ψ(zr+y,ω)−Ψ(y,ω))

= lim
r→∞

1

r
Ψ(zr,ω)+ lim

r→∞

1

r
((Ψ(zr+y,ω)−Ψ(y,ω))−Ψ(zr,ω))

=η(ω).

Thus, η is invariant under πy for all y∈R2, so η must be a constant, and therefore,
η=E[η]=E[z⊥ ·V (0,ω)]=0. This establishes (5.9).

Proof of Theorem 1.1.

Proof. Our proof consists of verifying conditions (1.8) and (1.9) in Theorem
1.3. First, let us verify condition (1.9), using the assumption that E[V ]=0. By
Lemma 5.1, with K=M0=M and z=0, we know there is a constant C3 such that
if |Ψ(x,ω)−Ψ(0,ω)|≤M0 holds for all |x|≤8M0, for some M0>1, then γ(M0,ω)≤
C3M0. From Lemma 5.4, we know that with probability one there is a random
variable M0(ω)<∞ such that if M ≥M0(ω) then |Ψ(x,ω)−Ψ(0,ω)|≤M holds for all
|x|≤8M . Consequently,

γ(M,ω)≤C3M, ∀M ≥M0(ω) (5.11)

holds with probability one. This implies condition (1.9).
Now we verify condition (1.8), using assumption (1.2). Fix M ≥2. For any

K>3M/5, Lemma 5.1 implies that

P

(

sup
x,y∈BM (0)

τ(x,y)>C1K+C2M

)

≤P

(

sup
|x|≤3M+5K

|Ψ(x)−Ψ(0)|≥K

)

=P

(

sup
|x|≤R

|Ψ(x)−Ψ(0)|≥
R

5
−

3M

5

)

(5.12)

where R=3M+5K. If R>900M/5, then R/5−3M/5>R/6, so in this case we have

P

(

sup
x,y∈BM (0)

τ(x,y)>C1K+C2M

)

≤P

(

sup
|x|≤R

|Ψ(x)−Ψ(0)|≥
R

6

)

. (5.13)

By assumption (1.2), this last quantity is integrable in R, so

E

[

sup
x,y∈BM (0)

τ(x,y)

]

=

∫ ∞

0

P

(

sup
x,y∈BM (0)

τ(x,y)>r

)

dr

≤C4M+C5

∫ ∞

0

P

(

sup
|x|≤R

|Ψ(x)−Ψ(0)|≥
R

6

)

dR

≤C4M+C6. (5.14)
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This establishes condition (1.8).

Proof of Proposition 1.2.

Proof. For any R>1, we may cover the set BR(0) by O(R2) balls of radius 1.
That is, there is a constant C, independent of R, such that for each R>1 there is a
set of points {xi}

N
i=1 with N ≤CR2 such that BR(0)⊂

⋃N
i=1B1(xi). Therefore, since

Ψ is stationary,

P

(

sup
|x|≤R

|Ψ(x)−Ψ(0)|≥R/6

)

≤P

(

sup
|x|≤R

|Ψ(x)|≥R/12

)

≤
N
∑

i=1

P

(

sup
x∈B1(xi)

|Ψ(x)|≥R/12

)

≤CR2P

(

sup
|x|≤1

|Ψ(x)|≥R/12

)

(5.15)

holds for all R>1. Consequently

∫ ∞

1

P

(

sup
|x|≤R

|Ψ(x)−Ψ(0)|≥
R

6

)

dR≤

∫ ∞

1

CR2P

(

sup
|x|≤1

|Ψ(x)|≥R/12

)

dR

≤C ′E





∣

∣

∣

∣

∣

sup
|x|≤1

|Ψ(x)|

∣

∣

∣

∣

∣

3


 . (5.16)

Since V is uniformly bounded by V∞, then |∇Ψ|≤V∞. Therefore, the last expectation
is bounded by

E





∣

∣

∣

∣

∣

sup
|x|≤1

|Ψ(x)|

∣

∣

∣

∣

∣

3


≤E

[

(|Ψ(0)|+V∞)
3
]

,

which is finite, by assumption (1.2). Thus condition (1.2) holds.
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