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APPROXIMATE SOLUTIONS TO SEVERAL VISIBILITY
OPTIMIZATION PROBLEMS∗

ROSTISLAV GOROSHIN† , QUYEN HUYNH‡ , AND HAO-MIN ZHOU§

Abstract. The visibility level set function introduced by Tsai et al. allows for gradient based
and variational formulations of many classical visibility optimization problems. In this work we
propose solutions to two such problems. The first asks where to position n-observers such that the
area visible to these observers is maximized. The second problem is to determine the shortest route
an observer should take through a map such that every point in the map is visible from at least
one vantage point on the route. These problems are similar to the ”art gallery” and ”watchman
route” problems, respectively. We propose a greedy iterative algorithm, formulated in the level set
framework as the solution to the art gallery problem. We also propose a variational solution to the
watchman route problem which achieves complete visibility coverage of the domain while attaining
a local minimum of path length.
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1. Introduction

Visibility is the mathematical abstraction that divides a domain (Ω) populated
with occluders into visible and invisible regions as observed from a vantage point
(xo) in the domain. For our purposes, an observer is omnidirectional and views the
scene along rays emanating from xo, which represent lines of sight. In this work we
restrict ourselves to a bounded, two-dimensional, planar domain. We assume that
the map of the domain is known a priori (unexplored domains are discussed in [7]).
Visibility optimization usually refers to maximizing the visible region in a constrained
optimization problem, therefore visibility optimization is a set cover problem [6]. In
this work we will address two such problems:

1. What is the minimum number of observers required to cover the entire do-
main, and where must they be placed?

2. What is the shortest path through the domain such that every point in the
domain is visible from at least one point on the path?

These problems resemble the classical “art gallery” and “watchman route” prob-
lems, respectively [10, 8, 5]. In both of these problems our primary goal will be to
achieve complete visibility coverage of the domain. Due to the non-convex nature of
these problems gradient ascent methods are inadequate in achieving globally maximal
visibility coverage [4]. Therefore our goal is to introduce computationally tractable
solutions which achieve complete visibility coverage of the domain while achieving
only locally optimal performance in other metrics. For example, our solution to the
second problem is guaranteed to attain maximal visibility coverage of the domain, by
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536 VISIBILITY OPTIMIZATION PROBLEMS

construction, while achieving only a local minimum of path length. For many appli-
cations the importance of attaining complete sensor coverage far outweighs secondary
objectives of minimizing the number of sensors in the first problem and minimizing
the route length in the second problem [9].

The curve separating the visible regions from the invisible regions is called the
visibility boundary, or shadow boundary. Classically, visibility boundaries have been
computed using computationally intensive ray tracing techniques [1]. Tsai, Osher,
et al. recast the visibility computation into a boundary value problem and used a
numerical PDE solver called “fast sweeping” to compute a numeric approximation
of visibility boundaries. The fast sweeping computation produces an embedding of
codimension-one of the approximate visibility boundary, called the visibility level set
function [14]. As we will see, this implicit representation of the visibility boundary
has many well known advantages popularized by level set methods [11]. The analytic
expression for the visibility level set function can be written as

Φ(x;x0) = min
z∈L(x,x0)

Ψ(z), (1.1)

where Ψ is a signed distance embedding of the occluders defined over the domain
such that Ψ > 0 outside the occluders, and L(x, x0) is the line segment connecting
the observer stationed at xo to a point x. If the value of Φ is negative at x then
the point x is occluded from the observer at x0. Points where Φ = 0 are at the
edge of visibility, these points constitute the visibility boundary with respect to xo.
The visibility level set function is a real valued function which measures the largest
depth of occlusion (if x is occluded), or the shortest distance from the ray to the
nearest occluder (if x is visible); see Figure 1.1. This property is crucial for enabling
gradient-based and variational visibility optimization as introduced by Cheng et al.
in [4].

x0

Ψ(x) Φ(x;x0)

x0

Fig. 1.1: The visibility level set function (right) and signed distance embedding of the
occluders (left) for fixed x0.



R. GOROSHIN, Q. HUYNH, AND H.M. ZHOU 537

2. Finite-dimensional visibility optimization problems
In the level set framework the observed visible volume for a single observer is

defined as

V (x0) =

∫
Ω

H(Φ(y;xo)) dy, (2.1)

where H(·) is the one-dimensional Heaviside step function, with H(0) = 0. Visibility
optimization problems generally seek to maximize this volume.

We can extend this definition to multiple observers and define the joint visible
volume of n observers as

V (x1, x2, . . . , xn) =

∫
Ω

H

(
n∑
i=1

H(Φ(y, xi))

)
dy. (2.2)

Finally, we may define the visible volume seen by a continuum of observers located
on a parameterized closed 1 curve C(s) as

V (C(s)) =

∫
Ω

H

(∫
C

H(Φ (y;C(s)) ds

)
dy. (2.3)

The above expression may also be interpreted as the cumulative visible volume covered
by an observer traversing the curve C(s). Similar notions were defined by Cheng et
al. [4].

The visible volume of observers is optimized over their vantage points x ∈ Ω.
Discrete optimization problems defined by (2.1) and (2.2) will be discussed in this
section. Equation (2.3) is a functional and is optimized using variational techniques
over the curve C(s), usually while imposing other constraints on the curve. The
variational problem relating to (2.3) will be discussed in the next section.

In [4] Cheng et al. propose a gradient ascent algorithm for maximizing the visible
volume of an observer by allowing the observer to move in the direction specified by
a numerical implementation of the partial differential equation

∂tx0 = ∇x0
V (x0). (2.4)

The above equation may be regarded as the gradient ascent on the surface V (x0).
This surface may be constructed by evaluating Equation (2.1) at all possible observer
locations. That is, for each point in the domain (Ω) we assign the value of the integral
in (2.1). The visible volume function for a single observer is a mapping which takes
the form

V : Ω ⊂ R2 7→ V (x0) ∈ R+.

The surface is shown in Figure 2.1 with its level curves. The brightness at each point
is proportional to the area visible to an observer stationed at that location. The
single observer placement problem reduces to finding the global maximum on this
surface. The trajectory of an observer moving according to (2.4) is normal to the
level lines of the visible volume surface; see [4]. However, due to the non-convexity

1The curve may be open; however for ease of implementation in the level set framework we
restrict ourselves to closed curves in this work.
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Fig. 2.1: The visible volume function with its level-curves.

of the visible volume function there is no guarantee that the observer will arrive at a
globally optimal observer location (red point on far right).

Global optimization methods should be used to find an optimal observer position.
The computational complexity of the fast sweeping algorithm for each xo scales lin-
early with the number of grid points (N) [14], so that it is computationally feasible to
perform exhaustive search in order to determine the globally optimal solution for the
single observer placement problem. The overall exhaustive search computation over
the observer grid scales as O(N3). Coarse to fine searches can be used to accelerate
the process in large domains.

Multiple observer visibility optimization seeks to maximize the visible volume
seen jointly by n observers. In general, the visible volume in a bounded domain is
bounded between

0 ≤ V ≤
∫

Ω

H(Ψ(y))dy. (2.5)

The art gallery problem seeks to cover the entire domain, excluding the area oc-
cupied by the occluders, with a minimum number of observers. To cover the entire
domain with n observers is to achieve equality in the upper bound of (2.5) by maxi-
mizing (2.2) over the observer locations. The solution to the art gallery problem must
satisfy

∫
Ω

H

(
n∑
i=1

H(Φ(y, xi))

)
dy =

∫
Ω

H(Ψ(y))dy.

In fact, for the art gallery problem the above condition is equivalent to

H

(
n∑
i=1

H(Φ(y, xi))

)
= H(Ψ(y)).

It is useful to define the fraction of the domain visible to (covered by) the n
observers as

Vnorm :=

∫
Ω

(
∑n
i=1H(Φ(y, xi))) dy∫
Ω
H(Ψ(y))dy

. (2.6)
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We call Vnorm the normalized visible volume; it is a useful quantity for measuring
the convergence of visibility optimization algorithms. Analogous measures can be
defined for Equations (2.1) and (2.3). Note that 0 ≤ Vnorm ≤ 1.

The problem of multiple observer optimization is much larger than single observer
optimization [10]. The function defined by (2.2) is a mapping of the form

V : Ωn ⊂ R2n 7→ V (x1, x2, . . . , xn) ∈ R+.

As before, we discretize the domain into N regularly spaced grid points. The
computational complexity of exhaustive search for n-observer placement is of order
O(Nn). Even if the visibility level set function is computed a priori at each grid
point, exhaustive search through all possible placements for more than a few observers
becomes computationally prohibitive. On the other hand, gradient ascent approaches,
such as those found in [4], are prone to local maxima and will require at least as many
observers as exhaustive search to cover an area. A good compromise is to avoid
gradient based optimization altogether and perform iterative exhaustive searches in a
reduced space.

We propose an alternating maximization scheme for multiple observer optimiza-
tion. For each observer, indexed by j, the globally optimal solution to

arg max
xj∈Ω

∫
Ω

H

H(Φ(y;xj))−H

 n∑
i=1
i6=j

H(Φ(y;xi))


 dy (2.7)

is obtained by computing (2.7) at every grid point outside of the occluders. The first
term in the above expression represents the visible region seen by the jth observer
stationed at xj . The second term is the joint visible region of all other observers.
The scheme exhaustively searches for the optimal location of one observer at a time,
discounting the region visible to already placed observers. The process is repeated
for each observer. The optimal observer positions may not be unique, therefore an
optimal position is chosen at random in order to avoid repeating the iteration. Once
all observers have been positioned in this way, we proceed to the second iteration by
removing an observer and repositioning it by solving (2.7) again. Again, observers
are updated in random order in order to avoid repeating the iteration. This process
is repeated for all observers until the normalized visible volume seen by the observers
(2.6) converges to some value. This algorithm is similar to the heuristic algorithm for
finding a set cover from finite subsets proposed in [6]. The pseudocode for multiple
observer optimization is given in Algorithm 1.

The algorithm is illustrated in Figure 2.2. In this example we initialize the ob-
server positions by solving (2.7), although the observer positions can be initialized ar-
bitrarily without greatly increasing the number of iterations required for convergence.
The first observer is positioned by solving (2.7) with only one observer, making the
second term in (2.7) zero. This is how the visible region A (in light gray) is obtained
in Figure 2.2(a). Next, the second observer is positioned to maximize the visible vol-
ume not contained within A, again by solving (2.7); this time the second term will
correspond to the visible region seen by the first observer (A). The third observer is
positioned to maximize the visible region not contained within A∪B . This process is
repeated in the second iteration. One way to ensure that the entire domain is covered
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Algorithm 1 Multiple observer optimization

1: Arbitrarily initialize observer positions x1, x2, . . . , xn
2: Initialize V knorm using Equation (2.6)
3: Initialize V k−1

norm = 0
4: while V knorm > V k−1

norm do
5: for all n observers do
6: choose an observer j at random without replacement
7: find a globally optimal solution to Equation (2.7) for observer j
8: end for
9: V k−1

norm = V knorm
10: recompute V knorm using the new observer positions
11: end while

(i.e. to solve the art gallery problem) is to increment the number of observers and
repeat the placement algorithm if Vnorm < 1 after convergence.

By precomputing the visibility level set function at all grid locations it is possible
to reduce the computational complexity of evaluating (2.7) at every grid location in
order to find the optimal observer position. This eliminates the need to compute
Φ within the loop of the above algorithm. The resulting process requires at most
n
(
N2 +N(n− 1)

)
addition/subtraction operations per iteration.

Figure 2.3(b) shows the result of the final iteration of the placement of six ob-
servers using the proposed procedure. The entire map could not be covered with
only six observers. Figure 2.3(d) depicts the resulting placement found in the final
iteration of the algorithm for eight observers on the same map. Figure 2.3(c) depicts
the surface defined by (2.7) for the positioning of the 7th observer. Figure 2.3(a)
depicts the percent visibility as a function of the observer repositioned. The first ob-
server placed covers approximately 55% of the map, the first two cover approximately
77%, at the end of the first iteration (first red point) the observers cover over 99% of
the map. It is clear that the visible volume must be increasing as the observers are
repositioned to more optimal locations. We have also noted that the visible volume
function is bounded, as given by (2.5). The visible volume function can therefore
be regarded as a bounded increasing sequence, which must converge. Therefore the
multiple observer placement algorithm must converge. However, for a fixed number
of observers the algorithm does not necessarily converge to a globally optimal nor a
unique solution.

3. Variational visibility optimization

Until now we have only considered finite dimensional visibility problems. Many
practical visibility based problems require variational formulations; the watchman
route problem discussed in the introduction is only one example. We will approach
the watchman route problem by representing the various objectives involved using
energy functionals. The inspection route itself will be represented by an implicit
curve using the level set representation [12, 11]. We will consider only closed curves
mainly due to their simple representation in the level set framework. We note that
many practical applications, for example computing optimal patrol routes, require
closed paths. Implementation issues will be discussed in in the next section.

The authors in [4] evolved parameterized curves according to gradient ascent on
the Euler-Lagrange equation of a visibility based functional. In this section we define
a new visibility functional and introduce a variational solution to the watchman route
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(a) A (b) B

(c) A ∪B (d) C

(e) A ∪B ∪ C first iteration (f) A ∪B ∪ C fourth and final iteration

Fig. 2.2: Multiple Observer Placement Algorithm.

problem. Unlike the work in [4] which disregards global optimality, our goal will be to
formulate a solution to the watchman route problem which achieves complete visibility
coverage of the domain. We will discuss how to initialize and evolve the route in
order to avoid local visibility extrema and achieve complete visibility coverage. Before
proceeding we note that in the computational geometry literature the watchman route
problem is defined for domains with polygonal boundaries [10, 13]; here we do not
make any assumptions about the geometry or topology of the domain. Nevertheless
we refer to this problem as the watchman route problem.



542 VISIBILITY OPTIMIZATION PROBLEMS

000 001 002 003 004 005
006

007

008

009

010

011

012

013

014

015

016

018

0
1
7

(a) (b)

(c) (d)

Fig. 2.3: Multiple observer placement in a complex environment.

In the previous section we defined the cumulative visible volume covered by an
observer traversing the curve C(s) by Equation (2.3). We may rewrite (2.3) in a
more compact form using the concept of exposure introduced in [4]. Exposure is a
useful quantity in visibility problems for observers with memory. Consistent with the
notation of [4], the exposure is defined as

X (x;C) =

∫
C

H(Φ (x;C(s)))ds, (3.1)

where s is the arc length parameter. The exposure may be interpreted as the length
of time spent observing the point x while traversing the curve C at unit speed[4].
Using (3.1) we rewrite the functional defined by (2.3) in a more compact form:

V (C) =

∫
Ω

H (X (y;C)) dy. (3.2)

Our motivation for defining (3.2) is to measure the visible area seen from the curve
C(s). In contrast, [4] defined a visibility based functional which measures the de-
viation of the exposure from some constant value (A), for all points in the domain
outside of the obstacles (D). We restate their functional for comparison:∫

Ω\D
(X (y;C)−A)

2
dy.

Because the exposure is a positive semidefinite function, (3.2) exactly corresponds to
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the zero-norm of the exposure. On the other hand, the above functional is the square
of the two-norm of the exposure.

We call the variational derivative of Equation (3.2) with respect to the curve
C(s) the velocity field due to visibility coverage (~vvis), or the visibility velocity field
for short. The visibility coverage attained by the curve may be locally maximized
by performing gradient ascent on the curve using the visibility velocity field. The
following lemma will be used to compute ~vvis.

Lemma 3.1. It has been shown in [3] that a functional which takes the form

E(C) =

∫
C

Wds

has the first variation

dE

dt
=

∫
C

(
(∇W · ~N) ~N −Wκ ~N

)
Ct ds

where κ and ~N are the curvature and inward unit normal, respectively, of the curve
C. Gradient ascent may be performed on the curve using the corresponding Euler-
Lagrange equation

dC

dt
= (∇W · ~N) ~N −Wκ ~N. (3.3)

Applying (3.3) to the functional (3.2) we obtain

dC

dt
=

[∫
Ω

δ{X (y;C)}δ {Φ(y;C(s))}∇x0Φ(y;C(s)) · ~Ndy
]
~N

−
[∫

Ω

H {X (y;C)dy}
]
κ ~N. (3.4)

Because the Heaviside function is positive semi-definite and ~N is the inward normal,
the curvature term in the above expression will be in the direction of convexity when it
is not null, making it numerically unstable [11]. Therefore, we disregard the curvature
term in Equation (3.4). Thus the resulting expression will be denoted as ~vvis:

~vvis =

[∫
Ω

δ{X (y;C)}δ {Φ(y;C(s))}∇x0
Φ(y;C(s)) · ~Ndy

]
~N. (3.5)

The resulting equation expresses how the curve C should be deformed in order to
optimally increase visibility coverage (via advection), measured by the functional in
(3.2). The term δ{X (y;C)} is a line integral along the entire curve which represents
areas of the domain that are not visible from anywhere on the curve. The term
δ{Φ(y;C(s))} determines if the point y is at the edge of visibility from the vantage
point C(s) on the curve. Finally, the term ∇x0

Φ(y;C(s)) denotes the gradient of the
visibility level set function with respect to the observer position. This is the direction
in which the observer at C(s) should move in order to increase visibility of the point
y. We will use the following lemma about ~vvis later in our discussion.
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Lemma 3.2. ~vvis = 0 inside the occluders.
To see this, consider a point C(s0) on the curve which is inside an occluder, i.e.

Ψ(C(s0)) < 0 or H(−Ψ(C(s0))) = 1. Now consider the term δ{Φ(y;C(s))} in the
definition of ~vvis at the point C(s0) and recall the definition of Φ from Equation (1.1).

Φ(y;C(s0)) = min
z∈L(y,C(s0))

Ψ(z) ≤ Ψ(C(s0)) < 0.

Therefore δ{Φ(y;C(s0))} = 0 for all y, and thus ~vvis = 0.

(a) Initial (b) 30 Iterations

Fig. 3.1: Action of Visibility Velocity Field on a Curve.

Figure 3.1 shows the result of allowing a curve (blue circle) to evolve under ~vvis
for several iterations. Note that the curve deforms only at those locations which
will optimally increase visibility coverage. As in many gradient based optimization
applications initialization is crucial. Complete visibility coverage cannot be attained
by evolving an arbitrarily initialized curve under ~vvis in all but the most basic, convex
cases.

Recall that in addition to achieving total visibility coverage we require that the
route not pass through any occluders, which also act as obstacles, and be as short as
possible. Since (3.2) does not take path length or intersections with occluders into
account, ~vvis will not minimize these other objectives. These constraints are treated
as separate penalty energy functionals and have their own corresponding gradient
descent velocity field. After discussing obstacle avoidance and route shortening we
will introduce a way to combine these constraints with the visibility coverage objective.

If the obstacles are embedded in a signed distance function Ψ such that Ψ > 0
outside the occluders, then the following energy functional imposes a penalty on those
portions of the curve which intersect with the occluders:

Eo(C) =

∫
C

H(−Ψ)(Ψ)ds. (3.6)

The corresponding gradient ascent on the curve is obtained by applying (3.3) to (3.6):

dC

dt
= ([−δ(−Ψ)Ψ∇Ψ +H(−Ψ)∇Ψ] · ~N) ~N −H(−Ψ)Ψκ ~N

= (H(−Ψ)∇Ψ · ~N) ~N −H(−Ψ)Ψκ ~N. (3.7)
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The above expression was simplified using the fact that δ(−Ψ)Ψ = 0.

The last objective in the watchman route problem is to make the path as short
as possible outside the obstacles. This is given by the arc length functional whose
corresponding gradient descent is the well known curvature flow:

EL(C) =

∫
C

ds,

dC

dt
= κ ~N. (3.8)

We combine (3.7) and (3.8) into a single velocity field, called the path planning velocity
field:

~vp = H(−Ψ)([∇Ψ · ~N ] ~N −Ψκ ~N) +H(Ψ)κ ~N. (3.9)

Note that (3.8) is applied only to portions of the curve outside the obstacles.

The action of the path planning gradient descent velocity field acting on a curve
is shown in Figure 3.2. The curve initially intersects the obstacles. Due to the first
term in Equation (3.9) the curve moves out of each obstacle in the direction specified
by the gradient of the signed distance function. Only curvature flow has any effect
on the curve outside the obstacles; it contracts the curve as much as possible without
increasing intersections with the obstacles.

(a) Initial (b) 100 Iterations

(c) 400 Iterations (d) 2000 Iterations

Fig. 3.2: Action of Path Planning Velocity Field on a Curve.
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The initial curve in Figure 3.2 (a) is a simple, closed polygon which was con-
structed by using the observer positions shown Figure 2.2 (b) as its vertices. Complete
visibility coverage of the domain was attained by the initialized curve. In fact, any
curve containing these observer positions is guaranteed to attain complete visibility
coverage by virtue of its construction. The recent work of Andrews and Sethian [2]
on the continuous traveling salesman problem can be used to initialize the curve as
the shortest, obstacle avoiding path connecting the observers. However, because of
the non-convex nature of this problem the shortest initial path will not necessarily
guarantee the shortest final path. As the path planning flow is applied to the curve
visibility coverage is lost, as illustrated in Figure 3.2 (b)-(d).

Until now our discussion on the watchman route problem has been somewhat
disconnected. We have discussed the visibility requirement and introduced ~vvis, the
velocity field which corresponds to the gradient of visibility coverage. We have also
discussed the path planning objectives and their corresponding gradient descent ve-
locity field ~vp. Finally, we have just mentioned how to initialize a curve which attains
complete visibility coverage. Together, these three ingredients suggest the following
solution to the watchman route problem:

Initialize a curve that attains complete visibility coverage of the domain and evolve
it in the direction which minimizes its length and intersections with obstacles, as long
as this evolution does not reduce visibility coverage.

More precisely, the curve will be forced to evolved in the positive direction of the
visibility velocity field ~vvis. If the initialized curve attains complete visibility coverage
then this is equivalent to evolving the curve in the null direction of ~vvis. However,
if the initialized curve does not achieve complete visibility coverage then evolving in
the positive direction of ~vvis will insure that visibility coverage may increase but will
never decrease. The resulting projected velocity field that will act on the curve can
be expressed as

~vproj = ~vp −H(−~vvis · ~vp)~vp. (3.10)

Notice that ~vproj = 0 if ~vvis has a component in the negative direction of ~vp. This
means that those portions of the curve which are necessary for maintaining visibility
coverage on some subset of the domain will remain fixed.

Evolving a curve under (3.10) will ensure that visibility coverage is preserved
throughout the evolution while minimizing the curve’s length and its intersections
with the obstacles. This evolution is depicted in Figure 3.3. The initial curve attains
complete visibility coverage and is identical to the initial curve in Figure 3.2 (a).
However, unlike the evolution depicted in Figure 3.2 the curve in Figure 3.3 maintains
complete visibility coverage throughout its evolution.

Since the action of projecting ~vp in the positive direction of ~vvis can cause the
curve to remain fixed at some locations, it is natural to ask whether this will prevent
the minimization of the obstacle avoidance and path length objectives. Intuitively, it
is clear that complete visibility coverage cannot be attained by an arbitrarily short
curve, therefore we expect that ~vproj will prevent the curve from contracting at those
locations which are necessary for maintaining visibility coverage. We also reason that
since the visibility coverage attained by an observer passing through an occluder is
zero, visibility coverage cannot be reduced if any part of the curve is moved outside
an occluder. Therefore, we expect that the action of projecting ~vp in the positive
direction of ~vvis will not hinder the minimization of the obstacle avoidance objective.
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(a) Initial (b) 50 Iterations

(c) 100 Iterations (d) 2000 Iterations

Fig. 3.3: Action of Projected Velocity Field on a Curve.

We will now analyze the behavior of ~vproj more closely in order to analytically derive
these properties.

Theorem 3.3. The action of projecting ~vp into the positive direction of ~vvis will not
prevent minimizing intersections with occluders.

Proof. We begin by evaluating the term ~vvis · ~vp in (3.10) which leads to

~vvis · ~vp = ~vvis ·H(−Ψ)([∇Ψ · ~N ] ~N −Ψκ ~N) + ~vvis ·H(Ψ)κ ~N

= ~vvis ·H(Ψ)κ ~N. (3.11)

We have simplified the above expression using the fact that ~vvis = 0 inside the oc-
cluders (Lemma 2).

Using (3.11) and the orthogonality property H(−Ψ)H(Ψ) = 0, we can simplify
(3.10) as follows:

~vproj = ~vp −H(−~vvis ·H(Ψ)κ ~N)~vp

= ~vp −H(Ψ)H(−~vvis · κ ~N)~vp

= H(−Ψ)
(

[∇Ψ · ~N ] ~N −Ψκ ~N
)

+H(Ψ)
(
κ ~N [1−H(−~vvis · κ ~N)]

)
.

From the above expression it is clear that ~vproj consists of two orthogonal compo-
nents: the first component is the velocity field inside the occluders (H(−Ψ) term) and
the second component is the velocity field outside the occluders (H(Ψ) term). The
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velocity field inside the occluders is independent of ~vvis and can be recognized as the
gradient descent on occluder intersection (Equation 3.7). This shows that occluder
intersections can always be reduced without interfering with visibility coverage. On
the other hand, we see that the second term will be equal to zero (the curve will re-

main fixed) if ~vvis has a component in the negative direction of κ ~N . The second term
shows that the curve cannot be made arbitrarily short outside the occluders without
losing visibility coverage.

4. Numerical implementation
We now describe methods for the numerical computation of equations (3.5), (3.9),

and (3.10). The level set evolution equation used to evolve the inspection route and
the appropriate finite difference approximation schemes will also be discussed. The
proceeding implementation is not the most computationally efficient, however for the
purposes of this work we use the simplest implementation to illustrate our solution.

There are three level set functions involved in the implementation, specifically:
Ψ, the signed-distance embedding of the occluders, Φ, the visibility level set function
obtained via the fast sweeping approximation of Equation 1.1, and P , the signed
distance embedding of the inspection route curve C. Assuming that the domain
containing the occluders is discretized into an n×m Cartesian grid, Φ, obtained via
fast sweeping, is also n ×m [14]. For simplicity, the inspection route embedding P
will be the same size. Note that Ψ and Φ are static level set functions and only P is
evolved. For reasons of numerical implementability similar to those cited in [11] we
use the arctangent function and its derivative to approximate all Heaviside and delta
functions.

H(x) =

 0 x < −ε,
1
2 + 2

π arctan(xε ) −ε ≤ x ≤ ε,
1 x > ε,

δ(x) =


0 x < −ε,

1

1+( xε )
2 −ε ≤ x ≤ ε,

0 x > ε.

One of the leading reasons for utilizing the level set formulation in this problem is
for accurate numerical computation of the exposure line integral X (y;C) in Equation
(3.5). The line integral is computed by obtaining an explicit (control point) represen-
tation of the curve from the level set representation. Converting from the level set
representation to the control point representation ensures that the curve remains well
represented throughout its evolution. That is, as the curve stretches and contracts,
the control points obtained from the implicit representation remain equally spaced. In
this way, we have combined the convenience of the level set representation with the ac-
curacy of an explicit representation. In order to reduce the computational complexity
of computing the exposure line integral, the visibility level set functions at all observer
locations are computed prior to the route evolution and stored in an (n×m)×(n×m)
matrix. The visibility level set functions at the vantage points located on the route are
interpolated from the precomputed visibility level set functions stored in the matrix.
This is the same matrix that was used to reduce the computational complexity of the
exhaustive search discussed in Section 2. As described in [4] central differences are
used to compute the ∇x0

Φ(y;C(s)) term. The level set evolution equation is used to
implement the curve evolution described by Equation 3.5 (Figure 3.1).
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If the inspection route is embedded in a level set function P , then the evolution
of the inspection route by the visibility velocity field ~vvis is given by the level set
evolution equation [11]:

Pt + ~vvis · ∇P = 0. (4.1)

Because Equation 3.5 is an advective flow, upwind differences of ∇P must be
computed with respect to ~vvis [12, 11]. For example, if Px is the spatial derivative of
P in the x-direction, vvisx is the x-component of the visibility velocity field, and ∆x
is the grid size, then Px is approximated as

Px(x, t) =


P (x+∆x,t)−P (x,t)

∆x vvisx(x, t) < 0,

P (x,t)−P (x−∆x,t)
∆x vvisx(x, t) > 0.

An analogous formula is used to compute Py.
The level set evolution equation, Pt+~vp ·∇P = 0, corresponding to ~vp (Equation

3.9 and Figure 3.2) can be simplified [11, 12] to

Pt +H(−Ψ)∇Ψ · ∇P +∇ · ∇P
|∇P |

|∇P | (H(Ψ)−H(−Ψ)Ψ) = 0. (4.2)

In the above expression central differences are used to compute∇Ψ. As prescribed
in [12, 11], upwind differences of ∇P must be computed with respect to H(−Ψ)∇Ψ
and central differences can be used to compute the remaining (curvature) term.

Finally, Equations 4.1 and 4.2 can be combined to implement the level set evolu-
tion equation corresponding to 3.10 (Figure 3.3):

Pt + (~vp −H ((−~vvis · ∇P )(~vp · ∇P ))~vp)∇P = 0. (4.3)

If the level set evolution equations corresponding to ~vp and ~vvis have already
been implemented, then the projection of ~vp in the positive direction of ~vvis can be
computed by reusing the terms in Equations 4.1 and 4.2. However, this approach is
not the most computationally efficient because it requires the computation of upwind
differences of P with respect ~vvis and ~vp.

5. Conclusion
In this work, we have presented solutions to two visibility-based optimization

problems. An iterative greedy algorithm was discussed as the solution to the art
gallery problem. This solution is less prone to local maxima when compared to gra-
dient based approaches. It was shown how this solution can be used to initialize a
curve which attains complete visibility coverage of the domain. A gradient projection
strategy was proposed for evolving the curve in a way which minimizes the cost as-
sociated with other constraints while preserving visibility coverage. In this way, our
solution to the watchman route problem is guaranteed to attain complete visibility
coverage of the domain. Our solutions make use of the continuous visibility level-set
function developed in [14], and were inspired by the variational approaches introduced
in [4]. The novel contribution of our work is the introduction of a framework which
generates solutions that attain complete visibility coverage of the domain. In future
works more detailed convexity analysis of the functionals involved will be presented in
order to identify local minima specific to this problem. We will also make use of global
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optimization search strategies, and propose more efficient strategies for numerically
computing the quantities involved.

The algorithms presented in this work can be directly extended into the three-
dimensional setting. The three-dimensional visibility level set function and the fast
sweeping algorithm used to compute it have already been developed in [14]. However,
the computational cost of performing exhaustive searches in higher dimensions may
be infeasible or must be mitigated by implementing multi-scale techniques. Other
generalizations of interest include observers with limited range and field of view.
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