
COMMUN. MATH. SCI. c© 2011 International Press

Vol. 9, No. 2, pp. 517–534

GAUSSIAN PROCESSES ASSOCIATED TO INFINITE
BEAD-SPRING NETWORKS∗

MICHAEL TAYLOR†

Abstract. We construct families of Gaussian processes x(t,n) which model a class of infinite
strings of stochastically fluctuating, interacting beads. We examine covariances and draw conclusions
about the subdiffusive nature of the processes x(t,n) and x(t,n1)−x(t,n2). This work was stimulated
by recent work of McKinley, Yao, and Forest.
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1. Introduction
Inspired by recent work of [7] and [6], we construct a family of Gaussian processes

modeling the infinite length limit of a class of bead-spring networks. To start, we work
in the following setting. Let ℓ2(Z) denote the space of functions a :Z→C such that∑ |a(n)|2<∞ (here Z denotes the set of integers and C the set of complex numbers),
and let L be a negative semidefinite, self adjoint operator on ℓ2(Z) of convolution
type:

Ly(n)=

∞∑

m=−∞
λ(n−m)y(m). (1.1)

We assume that finitely supported elements of ℓ2(Z) belong to the domain of L, which
entails

∑ |λ(n)|2<∞. Self adjointness implies λ(−n)=λ(n). We assume

λ(n)∈R, hence λ(n)=λ(−n). (1.2)

Such L generates a contraction semigroup on ℓ2(Z), also of convolution type:

etLy(n)=

∞∑

m=−∞
h(t,n−m)y(m), (1.3)

for t≥0. Under the hypothesis (1.2), we have

h(t,n)∈R, h(t,−n)=h(t,n). (1.4)

The process x(t)=(x(t,n)) we construct solves the system of stochastic differential
equations

dx(t,n)=Lx(t,n)dt+σdWn(t), x(0,n)=0, (1.5)

for n∈Z, t≥0. Here, Wn are independent, identically distributed Wiener processes.
In more detail, let B(t) be the Wiener process (Brownian motion), which is a contin-
uous family B(t)∈L2(Ω,µ), where Ω is path space and µ is Wiener measure. Then
set Ωn=Ω, µn=µ, for n∈Z, and take the product space (with product measure)

(X,ν)=
∏

n∈Z

(Ωn,µn). (1.6)
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The solution to (1.5) will be constructed so that each x(·,n) is a continuous function
of t∈ [0,∞) with values in L2(X,ν), with bounds uniform in n, for each t.

An example of (1.1) is

Ly(n)=y(n−1)−2y(n)+y(n+1), (1.7)

which arises in the Rouse chain model of a polymer as a series of stochastically fluc-
tuating beads with certain nearest neighbor interactions. The resulting Gaussian
process exhibits a phenomenon called anomalous diffusion, with exponent 1/2, which
we will discuss in more detail below. The papers [7] and [6] explored a broader class
of operators, exhibiting anomalous diffusion with different exponents. Background
sources for this work include [3, 4], and [8].

The approach taken in [7] and [6] involved replacing (1.5) by an analogous stochas-
tic system for XN (t)=(x0(t), . . . ,xN−1(t)), periodized so one is working on Z/(N)
rather than Z. The authors use a spectral representation and represent each compo-
nent of XN (t) (denoted for simplicity xN (t) rather than xk,N (t)) as a sum of Ornstein-
Uhlenbeck processes,

xN (t)=

N−1∑

k=0

ck,Nzk,N . (1.8)

It is shown in Theorem 2.1 of [6] that, under appropriate conditions on the processes
zk,N and coefficients ck,N , as N→∞ the sequence of processes xN converges in dis-
tribution to a Gaussian process, whose statistical properties are then investigated.
This theorem is deduced, via general results of Kolmogorov, from convergence of the
covariances E(xN (t)xN (s)) and a tightness estimate. One can consult these papers
for further details. We mention that the setting in these papers was not restricted to
the convolution setting; in §6 we will also pass beyond the convolution setting.

Our approach to constructing a solution to (1.5) is different. Duhamel’s formula
suggests writing the solution x(t)=(x(t,n))n∈Z as

x(t)=σ

∫ t

0

e(t−s)LdW (s), (1.9)

i.e., via (1.3),

x(t,n)=σ

∫ t

0

∞∑

m=−∞
h(t−s,n−m)dWm(s). (1.10)

In §2 we show that the right side of (1.10) converges, for each n, to a continuous
function of t∈ [0,∞) with values in L2(X,ν). Indeed, we will show that

E(x(t,n)2)≤σ2t, (1.11)

and

E(|x(t1,n)−x(t2,n)|2)≤4σ2|t1− t2|. (1.12)

Such estimates and the associated convergence readily imply that each x(t,n) ∈
L2(X,ν) is Gaussian, with mean 0.
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For each n, t 7→x(t,n) is a process that is equivalent in distribution to that arising
in Theorem 2.1 of [6]. However, having the family of processes {x(t,n) :n∈Z} allows
one to consider their joint distributions, particularly their covariances

E(x(t1,n1)x(t2,n2)). (1.13)

We discuss this in §3.
In §4 we discuss aspects of anomalous diffusion. It turns out that, for many

examples of solutions to (1.5), as t→∞,

E(x(t,n)2)∼Ctβ (1.14)

with β<1, strongly improving (1.11) (for large t). We recall results of [7] and [6]
regarding (1.14) and also provide a rather general condition implying

E(x(t,n)2)=o(t). (1.15)

Processes satisfying (1.14) or (1.15) are called subdiffusive. In addition, we examine
the square-expectation of x(t,n1)−x(t,n2) and exhibit a large class of cases where,
as t→∞,

E(|x(t,n1)−x(t,n2)|2)≤C(n1−n2)
2tγ (1.16)

with γ <β. For example, for the Rouse chain, with L given by (1.7), one has β=1/2
and γ=0.

In §5 we study the following variant of (1.5):

dx̃(t,n)=Lx̃(t,n)dt+σdWn(t), x̃(0,n)=p(n), (1.17)

with p(n) of the form

p(n)= bn+q(n), q∈ ℓ∞(Z), (1.18)

i.e., supn |q(n)|<∞. Under slightly stronger hypotheses on L, we get

x̃(t,n)=x(t,n)+bn+etLq(n). (1.19)

Finally, in §6 we drop the convolution condition and allow L to be a general
negative semidefinite, self adjoint operator on ℓ2(Z), generating a contraction semi-
group etL, subject to the condition that this semigroup preserves the class of real
valued functions. We construct the solution x(t,n) to (1.5) in this setting, and note
differences with the cases constructed in §§1–4. For example, for n1 6=n2, x(t,n1) and
x(t,n2) might not be equivalent Gaussian processes. We finish with a discussion of
processes associated with the graph Laplacian on a connected graph with a countably
infinite set of vertices.

We end this introduction with two comments. First, the stochastic integral (1.9)
can be fitted into the framework of vector stochastic integrals treated in Chapter 4
of [2]. However, the setting in this paper is more elementary than the general setting
considered there, and the direct treatment given in §2, via Wiener’s classical theory,
is readily done, and perhaps more accessible to non experts in infinite-dimensional
stochastic analysis.

Second, regarding the model of a large polymer as a bead-spring network, which
we have taken from [7] and [6], we note some approximations made that could be
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improved. The first such approximation, already noted in these papers, is to neglect
the mass of the beads. In the case of beads (i.e., monomers) of equal mass, taking
account of the mass involves replacing (1.5) by

εx′′
ε (t,n)+x′

ε(t,n)=Lxε(t,n)+σW ′
n(t), (1.20)

with ε>0, with initial data xε(0,n)=0, x′
ε(0,n)=0. It is desirable to give an analysis

of (1.20) valid uniformly in ε (in a bounded interval), and analyze the limiting behavior
as εց0. This singular perturbation problem is treated in the follow-up paper [9]. The
next approximation in the bead-spring model is to use linear spring forces. Allowing
nonlinear spring forces would replace (1.5) and (1.20) by nonlinear systems, suggesting
further work for the future.

2. Convergence and basic properties of (1.10)
Our first order of business is to establish convergence in L2(X,ν) of

K∑

m=−K

ξm(t,n), ξm(t,n)=σ

∫ t

0

h(t−s,n−m)dWm(s), (2.1)

as K→∞. Here the integral is the Wiener-Ito stochastic integral (cf. [5]). Note that

m 6=m′=⇒ ξm(t,n)⊥ ξm′(t,n) in L2(X,ν), (2.2)

so it suffices to bound
∑

mE(ξm(t,n)2). Indeed, we have

E(ξm(t,n)2)=σ2

∫ t

0

∫ t

0

h(t−s1,n−m)h(t−s2,n−m)δ(s1−s2)ds1ds2

=σ2

∫ t

0

h(t−s,n−m)2ds

=σ2

∫ t

0

h(s,n−m)2ds,

(2.3)

so

∞∑

m=−∞
E(ξm(t,n)2)=σ2

∑

m

∫ t

0

h(s,n−m)2ds

=σ2
∑

m

∫ t

0

h(s,m)2ds,

(2.4)

independent of n. We need to show the last sum is finite, and obtain a convenient
formula for it.

For this, Fourier series is useful. Given y :Z→C, we set

ŷ(θ)=
∑

n

y(n)einθ. (2.5)

Then, with etL as in (1.3), we have

(etLy)̂ (θ)= e−tΛ(θ)ŷ(θ), (2.6)

with

Λ :S1−→ [0,∞), measurable. (2.7)
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Here θ∈S1=R/(2πZ). We note that (1.2) and (1.4) imply

Λ(θ)=Λ(−θ). (2.8)

We also have

(etLy)̂ (θ)=
∑

m,n

h(t,n−m)y(m)einθ

=
∑

m,n

h(t,n−m)ei(n−m)θy(m)eimθ

= ĥ(t,θ)ŷ(θ), (2.9)

so

e−tΛ(θ)=
∑

n

h(t,n)einθ. (2.10)

In particular, by the Parseval identity,

∑

n

|h(t,n)|2= 1

2π

∫

S1

e−2tΛ(θ)dθ≤1. (2.11)

This implies that (2.4) is ≤σ2t, so

x(t,n)=

∞∑

m=−∞
ξm(t,n) (2.12)

converges in L2(X,ν), and we have

E(x(t,n)2)=
σ2

2π

∫ t

0

∫

S1

e−2sΛ(θ)dθds, (2.13)

which is ≤σ2t whenever Λ satisfies (2.7). Anomalous diffusion involves cases where,
for large t, (2.13) is bounded by Ctβ for some β<1. We discuss this further in §4.

We proceed to a covariance calculation.

E(x(t1,n)x(t2,n))

=σ2
∑

k1,k2

∫ t1

0

∫ t2

0

h(t1−s1,n−k1)h(t2−s2,n−k2)δk1,k2
δ(s1−s2)ds1ds2

=σ2
∑

k

∫ t1∧t2

0

h(t1−s,n−k)h(t2−s,n−k)ds

=σ2
∑

k

∫ t1∧t2

0

h(t1−s,k)h(t2−s,k)ds. (2.14)

An application of (2.10) and Parseval’s identity gives

E(x(t1,n)x(t2,n))=
σ2

2π

∫ t1∧t2

0

∫

S1

e−(t1+t2−2s)Λ(θ)dθds. (2.15)
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From here, we get

E(|x(t1,n)−x(t2,n)|2)
=E(x(t1,n)

2)+E(x(t2,n)
2)−2E(x(t1,n)x(t2,n))

=
σ2

2π

∫

S1

{∫ t1

0

e−(2t1−2s)Λ(θ)ds+

∫ t2

0

e−(2t2−2s)Λ(θ)ds−2

∫ t1∧t2

0

e−(t1+t2−2s)Λ(θ)ds
}
dθ.

(2.16)

Evaluation of the inner integrals and some rearrangements give

σ2

2π

∫

S1

1

2Λ(θ)

{
2
(
1−e−|t1−t2|Λ(θ)

)
+
(
e−(t1+t2)Λ(θ)−e−2t1Λ(θ)

)

+
(
e−(t1+t2)Λ(θ)−e−2t2Λ(θ)

)}
dθ.

(2.17)

Making use of

∣∣∣e−t1Λ(θ)−e−t2Λ(θ)
∣∣∣≤|t1− t2|Λ(θ), (2.18)

we arrive at the estimate

E(|x(t1,n)−x(t2,n)|2)≤2σ2|t1− t2|. (2.19)

The estimates (2.4), (2.11), and (2.19) establish the following.

Proposition 2.1. The formula (1.10) produces a solution x(t,n) to the stochastic
system (1.5), which for each n∈Z is a continuous function of t∈ [0,∞) with values
in L2(X,ν). Each such x(t,n) is a Gaussian random variable, with mean 0.

3. Further covariance formulas, relating x(·,n1) and x(·,n2)

Generalizing (2.14)–(2.15), we have

E(x(t1,n1)x(t2,n2))

=σ2
∑

k1,k2

∫ t1

0

∫ t2

0

h(t1−s1,n1−k1)h(t2−s2,n2−k2)δk1,k2
δ(s1−s2)ds1ds2

=σ2
∑

k

∫ t1∧t2

0

h(t1−s,n1−k)h(t2−s,n2−k)ds. (3.1)

Note that

∑

k

h(t1−s,n1−k)h(t2−s,n2−k)=
∑

ℓ

h(t1−s,n1−n2+ℓ)h(t2−s,ℓ), (3.2)

and

∑

ℓ

f(n+ℓ)g(ℓ)=
1

2π

∫

S1

f̂(θ)ĝ(θ)einθdθ. (3.3)
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Hence, via (2.10), we have

E(x(t1,n1)x(t2,n2))

=
σ2

2π

∫ t1∧t2

0

∫

S1

e−(t1+t2−2s)Λ(θ)ei(n1−n2)θdθds

=
σ2

2π

∫ t1∧t2

0

∫

S1

e−(t1+t2−2s)Λ(θ)cos(n1−n2)θdθds, (3.4)

where the last identity follows from (2.8). At equal times, t1= t2= t, we have

E(x(t,n1)x(t,n2))

=
σ2

2π

∫ t

0

∫

S1

e−2(t−s)Λ(θ)ei(n1−n2)θdθds

=
σ2t

2π

∫

S1

G(2tΛ(θ))ei(n1−n2)θdθ, (3.5)

where

G(λ)=

∫ 1

0

e−sλds=

{
1−e−λ

λ for λ>0
1 for λ=0.

(3.6)

An application of Parseval’s identity to (3.5) yields the following.

Proposition 3.1. For each t≥0, n1∈Z,

∞∑

n2=−∞
E(x(t,n1)x(t,n2))

2=
σ4t2

2π

∫

S1

G(2tΛ(θ))2dθ. (3.7)

This result implies decay of E(x(t,n1)x(t,n2)) as |n1−n2|→∞, with t fixed. In-
spection of (3.5) shows this decay is rapid if Λ(θ) is smooth, though not so rapid if
Λ(θ) is not so smooth.

Another consequence of (3.5) is the following calculation.

E(|x(t,n1)−x(t,n2)|2)
=E(x(t,n1)

2)+E(x(t,n2)
2)−2E(x(t,n1)x(t,n2))

=
σ2t

2π

∫

S1

G(2tΛ(θ))
(
2−2ei(n1−n2)θ

)
dθ

=
4σ2t

2π

∫

S1

G(2tΛ(θ))sin2
(
(n1−n2)θ

2

)
dθ. (3.8)

We will discuss implications of this in §4.
4. Anomalous diffusion
For each Wiener process Wn involved in (1.5), we have the classical result

E(Wn(t)
2)= t. (4.1)
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By contrast, for the solution x(t,n) to (1.5) we have, by (2.13),

E(x(t,n)2)=
σ2

2π

∫ t

0

∫

S1

e−2sΛ(θ)dθds

=
σ2t

2π

∫

S1

G(2tΛ(θ))dθ, (4.2)

where, as in (3.6),

G(λ)=

∫ 1

0

e−sλds=

{
1−e−λ

λ , for λ>0,
1 for λ=0.

(4.3)

The Lebesgue dominated convergence theorem implies

lim
t→0

1

2π

∫

S1

G(2tΛ(θ))dθ=1, (4.4)

so we see that

E(x(t,n)2)∼σ2t as tց0. (4.5)

Thus such Gaussian processes have the same small t diffusive property as in (4.1).
These processes typically do not have such behavior as t→∞.

For example, as noted in [7] and [6], when L is given by (1.7), for the resulting
process, E(x(t,n)2) behaves like Ct1/2 as t→∞. To see this, note that, generally for
L of the form (1.1), calculations similar to (2.6)–(2.8) give

Λ(θ)=−λ̂(θ). (4.6)

For L as in (1.7), this gives

Λ(θ)=−e−iθ+2−eiθ=4sin2
(
θ

2

)
. (4.7)

As shown in [6], if Λ(θ) is smooth and >0 on S1 \{0}, and

Λ(θ)∼|θ|ρ
∑

k≥0

ak|θ|k, θ→0, (4.8)

with a0 6=0, one has

t

2π

∫

S1

G(2tΛ(θ))dθ∼





Ct1−1/ρ, ρ>1,
C logt, ρ=1,
C, ρ∈ (0,1),

(4.9)

as t→∞ (cf. [6], (2.16)). Coupled with (4.2), this gives the phenomenon called
anomalous diffusion (more particularly, subdiffusion), namely

E(x(t,n)2)∼σ2× right side of (4.9), as t→∞, (4.10)

when Λ(θ) is as in (4.8). This applies to (4.7) with ρ=2.
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We complement this with the following observation.

Proposition 4.1. Assume in addition to (2.7)–(2.8) that

Λ(θ)>0 for a.e. θ∈S1. (4.11)

Then, for each n∈Z,

E(x(t,n)2)=o(t) as t→∞. (4.12)

Proof. From (4.3) we have

Λ(θ)>0=⇒ lim
t→∞

G(2tΛ(θ))=0. (4.13)

Since G≤1, the Lebesgue dominated convergence theorem implies

lim
t→∞

∫

S1

G(2tΛ(θ))dθ=0, (4.14)

which, by (4.2), gives (4.11). 2

We now consider the rate of diffusion of

x(t,n1)−x(t,n2), (4.15)

as t→∞, given n1 6=n2. If Λ≡0, so x(t,n)=Wn(t), we have independent processes
and

E(|Wn1
(t)−Wn2

(t)|2)=2t. (4.16)

We now show that in many cases the square-expectation of (4.15) is much smaller for
large t than E(x(t,n)2).

Proposition 4.2. Take ρ>0. Identifying S1 with [−π,π], assume there exists C>0
such that

Λ(θ)≥C|θ|ρ. (4.17)

Then, for large t,

E(|x(t,n1)−x(t,n2)|2)≤





C(n1−n2)
2t1−3/ρ, ρ>3,

C(n1−n2)
2 logt, ρ=3,

C(n1−n2)
2, ρ∈ (0,3).

(4.18)

Proof. Here C denotes different constants from line to line. By (3.8), the left side
of (4.18) is

≤C(n1−n2)
2t

∫ π

0

G(2tΛ(θ))θ2dθ. (4.19)

Now, given (4.17),
∫ π

0

G(2tΛ(θ))θ2dθ≤C

∫ π

0

θ2

1+2tθρ
dθ

≤C

∫ t−1/ρ

0

θ2dθ+C

∫ π

t−1/ρ

θ2

2tθρ
dθ. (4.20)
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The first integral on the last line is Ct−3/ρ, and, for t≥2,

∫ π

t−1/ρ

θ2−ρdθ≤





C, ρ<3,
C logt, ρ=3,
Ct1−3/ρ, ρ>3.

(4.21)

These estimates yield (4.18). 2

5. More general initial data
It is natural to extend the study of (1.5) to nonzero initial data. Thus we look at

the system

dx̃(t,n)=Lx̃(t,n)dt+σdWn(t), x̃(0,n)=p(n). (5.1)

Formally, we get

x̃(t,n)= etLp(n)+x(t,n), (5.2)

with x(t,n) as in (1.5), i.e., given by (1.10), as analyzed in §2. However, some care is
needed in justifying this, particularly since it is not natural to require p to belong to
ℓ2(Z). In fact, a natural class of initial data has the form

p(n)=pb(n)+q(n), pb(n)= bn, q∈ ℓ∞(Z), (5.3)

where the last condition means supn |q(n)|<∞. Our task is to define and analyze
etLp(n) for such data.

To do this, we make stronger hypotheses on λ(n) than done in §1. We assume

λ∈ ℓ1(Z), i.e.,
∑

n

|λ(n)|<∞. (5.4)

We also assume

∑

n

λ(n)=0. (5.5)

By (4.6), these hypotheses imply

Λ∈C(S1), Λ(0)=0. (5.6)

We retain the hypothesis (1.2), i.e.,

λ(n)∈R, λ(n)=λ(−n). (5.7)

Note that Ly in (1.1) is given by the convolution product:

λ∗y(n)=
∑

m

λ(n−m)y(m). (5.8)

For such a product we have, for 1≤p≤∞,

‖λ∗y‖ℓp(Z)≤‖λ‖ℓ1(Z)‖y‖ℓp(Z). (5.9)
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Hence L is a bounded operator on ℓp(Z) for all such p, and so is etL. Furthermore,
we have the expansion

etL=

∞∑

k=0

tk

k!
Lk, (5.10)

convergent in operator norm, and etL is given by (1.3), i.e.,

etLy(n)=
∑

m

h(t,n−m)y(m), (5.11)

with

h(t,n)=
∞∑

k=0

tk

k!
λ(k)(n), (5.12)

where λ(0)(n)= δn0 and, for k≥1, λ(k) is the k-fold convolution product:

λ(k)(n)=λ∗···∗λ(n) (k factors). (5.13)

Hence, for t≥0,

‖h(t, ·)‖ℓ1(Z)≤ et‖λ‖ℓ1 . (5.14)

Note that (5.5) is equivalent to λ∗1(n)≡0, which implies λ(k) ∗1(n)≡0 for k≥1.
Consequently

∑

n

h(t,n)=1, ∀t≥0, (5.15)

or equivalently

etL1(n)≡1. (5.16)

Having (5.14), we also have

etL : ℓ∞(Z)−→ ℓ∞(Z), (5.17)

so etLq(n) is well defined for q as in (5.3).
It remains to define etLpb(n) for pb as in (5.3). For this, we will temporarily make

the following drastically stronger assumption than (5.4):

|λ(n)|≤CK(1+ |n|)−K , ∀K ∈Z
+. (5.18)

We retain the hypotheses (5.5) and (5.7). The hypothesis (5.18) implies Λ∈C∞(S1),
hence e−tΛ∈C∞(S1) for each t≥0, which in turn gives

|h(t,n)|≤CK,t(1+ |n|)−K . (5.19)

In this setting,

etLpb(n)= b
∑

m

h(t,n−m)m (5.20)
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is absolutely convergent, and we have, thanks to (5.15),

etLpb(n)= bn+b
∑

m

h(t,n−m)(m−n)

= bn,

(5.21)

where the last identity follows from (1.4). In other words, under the additional hy-
pothesis (5.18),

etLpb(n)=pb(n), ∀t≥0. (5.22)

Reverting to the hypotheses (5.4)–(5.7), we can approximate such λ in ℓ1(Z) by
a sequence satisfying also (5.18). Hence, in a “principal value” sense, we still have
(5.22). Thus, (5.2) becomes

x̃(t,n)=x(t,n)+bn+etLq(n). (5.23)

The estimate (5.14) does not bode well for a large t analysis of etLq. It is useful
to know that in many cases one can do much better.

Proposition 5.1. Assume in addition to (5.4)–(5.7) that

n 6=0=⇒λ(n)≥0. (5.24)

Then

h(t,n)≥0, ∀t≥0, n∈Z, (5.25)

and hence, by (5.15),

‖h(t, ·)‖ℓ1(Z)=1, ∀t≥0, (5.26)

so

‖etLq‖ℓp(Z)≤‖q‖ℓp(Z), ∀t≥0, p∈ [1,∞]. (5.27)

Proof. Set

µ(n)=λ(n)−λ(0)δ0n, (5.28)

so µ(0)=0, µ(n)=λ(n) for n 6=0, and (5.24) implies µ≥0. Then (5.12) gives

h(t,n)= etλ(0)
∞∑

k=0

tk

k!
µ(k)(n), (5.29)

and each term in the sum is ≥0. 2

Note. By (5.24) and (5.5), λ(0)≤0 in (5.29).

Note that the hypotheses in Proposition 5.1 imply self adjointness of L. The
conclusion implies etL is a contraction semigroup on ℓ2(Z), so L is automatically
negative semidefinite.
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We mention that the converse to Proposition 5.1 also holds; (5.25) ⇒ (5.24). In
fact, with δ0(n)= δ0n, we have

λ(n)=Lδ0(n)=
d

dt
etLδ0(n)

∣∣
t=0

=
d

dt
h(t,n)

∣∣
t=0

, (5.30)

yielding the implication since h(0,n)= δ0(n).
It is also useful to recognize classes of sequences λ(n) for which Proposition 5.1

holds from the behavior of Λ(θ)=−λ̂(θ). The following result is relevant for this task.

Proposition 5.2. If (5.25) holds for etL, it also holds for etLα , with

Lα=−(−L)α, 0<α<1. (5.31)

Proof. This follows from the classical subordination identity

etLα =

∫ ∞

0

ft,α(s)e
sLds, (5.32)

where

ft,α(s)≥0, ∀s,t≥0, α∈ (0,1). (5.33)

See [10], Chapter 9, §11. 2

From (4.7) we deduce that Proposition 5.1 holds when

−λ̂(θ)=A
∣∣∣sin

(
θ

2

)∣∣∣
2α

, A>0, α∈ (0,1]. (5.34)

6. Beyond the convolution case
In this section we assume L is a negative semidefinite, self adjoint operator on

ℓ2(Z), generating a contraction semigroup etL on ℓ2(Z), for t≥0. We have

etLλ(n)=
∑

m

h(t,n,m)λ(m), (6.1)

with

h(t,n,m)= etLδm(n), (6.2)

where δm(n)= δmn. Self adjointness implies h(t,n,m)=h(t,m,n). We assume

h(t,n,m)∈R, hence h(t,n,m)=h(t,m,n). (6.3)

Generalizing arguments in §2, we construct the solution to (1.5) as

x(t,n)= lim
K→∞

K∑

m=−K

ξm(t,n), (6.4)

the limit holding in L2(X,ν), where

ξm(t,n)=σ

∫ t

0

h(t−s,n,m)dWm(s). (6.5)
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We continue to have orthogonality, as in (2.2). In place of (2.3), we have

E(ξm(t,n)2)=σ2

∫ t

0

h(t−s,n,m)2ds. (6.6)

Making use of (6.2) and (6.3), we have the following replacement for (2.4):

∑

m

E(ξm(t,n)2)=σ2
∑

m

∫ t

0

h(s,m,n)2ds

=σ2

∫ t

0

‖esLδn‖2ℓ2 ds.
(6.7)

Hence each x(t,n) exists as a Gaussian process with mean 0, and

E(x(t,n)2)=σ2

∫ t

0

‖esLδn‖2ℓ2 ds. (6.8)

We can rewrite (6.8) as

E(x(t,n)2)=σ2

∫ t

0

(e2(t−s)Lδn,δn)ℓ2 ds. (6.9)

Extending (2.14), we have

E(x(t1,n)x(t2,n))=σ2
∑

k

∫ t1∧t2

0

h(t1−s,n,k)h(t2−s,n,k)ds. (6.10)

We have, by (6.1)–(6.3),

∑

k

h(t1−s,n,k)h(t2−s,n,k)=h(t1+ t2−2s,n,n), (6.11)

so

E(x(t1,n)x(t2,n))=σ2

∫ t1∧t2

0

h(t1+ t2−2s,n,n)ds

=σ2

∫ t1∧t2

0

(e(t1+t2−2s)Lδn,δn)ℓ2 ds. (6.12)

Using (6.9) and (6.12), we have the following replacement for (2.16)–(2.17):

E(|x(t1,n)−x(t2,n)|2)=
σ2

2

{
2
(
−L−1(I−e|t1−t2|L)δn,δn

)
ℓ2

+
(
−L−1(e(t1+t2)L−e2t1L)δn,δn

)
ℓ2

+
(
−L−1(e(t1+t2)L−e2t2L)δn,δn

)
ℓ2

}
. (6.13)

The spectral theorem yields the following analogue of (2.18): the ℓ2-operator norm
estimate

‖L−1(et1L−et2L)‖≤ |t1− t2|, (6.14)
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valid for each negative semidefinite, self adjoint operator L. Hence we have the fol-
lowing extension of (2.19):

E(|x(t1,n)−x(t2,n)|2)≤2σ2|t1− t2|. (6.15)

Next, parallel to (3.1), we have

E(x(t,n1)x(t,n2))

=σ2
∑

k1,k2

∫ t

0

∫ t

0

h(t−s1,n1,k1)h(t−s2,n2,k2)δk1,k2
δ(s1−s2)ds1ds2

=σ2
∑

k

∫ t

0

h(t−s,n1,k)h(t−s,n2,k)ds

=σ2

∫ t

0

h(2t−2s,n1,n2)ds

=σ2

∫ t

0

(
e2(t−s)Lδn1

,δn2

)
ℓ2
ds. (6.16)

We can also write this as

E(x(t,n1)x(t,n2))=σ2t
(
G(−2tL)δn1

,δn2

)
ℓ2
, (6.17)

where G(λ) is as in (3.6) and G(−2tL) is defined by the spectral theorem.
We have mentioned the spectral theorem. Now we make more explicit use of this

result, which implies that there exist a measure space (S,γ), a unitary map

F : ℓ2(Z)−→L2(S,γ), (6.18)

and a measurable function

Λ :S−→ [0,∞) (6.19)

such that, for each λ∈ ℓ2(Z), t≥0,

FetLλ(θ)= e−tΛ(θ)Fλ(θ), θ∈S. (6.20)

If we set

en(θ)=Fδn(θ), (6.21)

the formula (6.17) is equivalent to

E(x(t,n1)x(t,n2))=σ2t

∫

S

G(2tΛ(θ))en1
(θ)en2

(θ)dγ(θ). (6.22)

Compare (3.8), where S=S1, dγ(θ)=dθ/2π, and en(θ)= einθ. Specializing to n1=
n2=n, we have

E(x(t,n)2)=σ2t

∫

S

G(2tΛ(θ))|en(θ)|2dγ(θ), (6.23)
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and we have the following variant of (3.8):

E(|x(t,n1)−x(t,n2)|2)

=σ2t

∫

S

G(2tΛ(θ))
(
|en1

(θ)|2−2en1
(θ)en2

(θ)+ |en2
(θ)|2

)
dγ(θ). (6.24)

There are many possibilities for large t asymptotics for (6.23) and (6.24), depend-
ing on the specific nature of γ, en, and Λ. We mention the following extension of
Proposition 4.1, giving a general condition implying that x(t,n) is subdiffusive.

Proposition 6.1. In the setting of (6.18)–(6.21), if

Λ(θ)>0 for γ-a.e. θ∈S, (6.25)

i.e., if 0 is not in the ℓ2 point spectrum of L, then

E(x(t,n)2)=o(t), as t→∞. (6.26)

The proof involves the same use of the Lebesgue dominated convergence theorem
as in Proposition 4.1.

It is clear from (6.8), (6.9), or (6.23) that in many cases, E(x(t,n)2) can vary
with n, for given t. This did not happen in the cases treated in §2. There are other
cases where the processes x(t,n) can be seen to be equivalent for all n. Suppose a
group G of permutations of Z acts transitively on Z and the associated action of G
on ℓ2(Z) commutes with etL. For example, Z could have the structure of a countable,
non-abelian group and etL could commute with left translations. Then x(t,n1) is
equivalent to x(t,n2) for each n1 and n2.

We end with the following family of examples. Let G be a connected graph
(without loops), with a countably infinite set of vertices. We place the set of vertices
in 1–1 correspondence with Z, hence label the vertices by integers. We consider

Ly(m)=
∑

m

λ(n,m)y(m), (6.27)

with

λ(n,m)=





−1 if m=n,
1√

dmdn
if m and n are adjacent,

0 otherwise.

(6.28)

Adjacent vertices are those joined by an edge, and dn denotes the number of vertices
adjacent to the vertex n. We assume each dn<∞. Connectivity implies each dn≥1.
The operator L is called the graph Laplacian. Compare [1], from which we differ by
a sign. Note that if G is formed by declaring consecutive integers adjacent, this L
agrees with the operator defined by (1.7), up to a factor of 2.

Note that L is symmetric. If y∈ ℓ2(Z) has finite support, we have the following
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computation. Set f(n)=d
−1/2
n y(n). Then, with m∼n meaning m is adjacent to n,

(Ly,y)ℓ2 =−
∑

n

|y(n)|2+
∑

n

∑

m∼n

1√
dmdn

y(m)y(n)

=−
∑

n

dn|f(n)|2+
∑

n

∑

m∼n

f(m)f(n)

=
∑

n

∑

m∼n

(
−|f(n)|2+f(m)f(n)

)

=
1

2

∑

n

∑

m∼n

(
−|f(n)|2−|f(m)|2+f(m)f(n)+f(m)f(n)

)

=−1

2

∑

n

∑

m∼n

|f(m)−f(n)|2

≤0. (6.29)

By comparison,

‖y‖2ℓ2 =
∑

n

dn|f(n)|2

=
∑

n

∑

m∼n

|f(n)|2

=
1

2

∑

n

∑

m∼n

(
|f(m)|2+ |f(n)|2

)
, (6.30)

and since |f(m)−f(n)|2≤2(|f(m)|2+ |f(n)|2), we have

|(Ly,y)ℓ2 |≤2‖y‖2ℓ2 . (6.31)

It follows that L has a unique extension to a bounded, negative semidefinite, self
adjoint operator on ℓ2(Z), with operator norm ‖L‖≤2. Hence etL is bounded on
ℓ2(Z) for all t∈R, and for t≥0 gives a contraction semigroup.

Note that L=−I+A, where all the matrix entries of A are ≥0. Now

etL= e−tetA= e−t
∑

k≥0

tk

k!
Ak, (6.32)

and clearly all the matrix entries ak(n,m) of Ak are ≥0. Furthermore, by connectivity,
for each (n,m) there exists k such that ak(n,m)>0. From this we see that h(t,n,m),
introduced in (6.1)–(6.2), satisfies

h(t,n,m)>0, ∀t>0, m,n∈Z, (6.33)

parallel to results of Proposition 5.1; cf. also [1], Lemma 10.4.
The graph G is said to be homogeneous if there is a group of automorphisms of

G (taking vertices to vertices and edges to edges) that acts transitively on the set of
vertices (i.e., on Z). If G is homogeneous, then all the Gaussian processes x(t,n) are
equivalent. Also, in such a case, there is a constant K ∈Z

+ such that dn=K for all
n, and we have

∑

m

|λ(m,n)|≤1+
√

dn=1+
√
K, (6.34)
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which in concert with symmetry λ(m,n)=λ(n,m) implies

L : ℓp(Z)−→ ℓp(Z), ∀p∈ [1,∞], (6.35)

with operator norm ≤1+
√
K. Thus

etL : ℓp(Z)−→ ℓp(Z), ∀p∈ [1,∞], (6.36)

for t∈R. Also, homogeneity implies

L1(n)=
∑

m

λ(n,m)=−1−
∑

{m:m∼n}

1

dn
=0, (6.37)

and hence

etL1(n)≡1, i.e.,
∑

m

h(t,n,m)≡1. (6.38)

This, in concert with (6.33), gives that etL in (6.36) is a contraction on ℓp(Z), for
t≥0.

The results (6.33) and (6.38) imply the following subdiffusivity result.

Proposition 6.2. The graph Laplacian L of a connected, homogeneous, infinite
graph does not have 0 in its ℓ2 point spectrum. Hence (6.26) holds.

Proof. Assume y∈ ℓ2(Z) and Ly=0. Hence etLy=y for all t>0, i.e.,

∑

m

h(t,n,m)y(m)=y(n), ∀n∈Z, t>0. (6.39)

Pick n0∈Z such that |y(n0)| is maximal. It then follows from (6.33) and (6.38) that
y(n)=y(n0) for all n∈Z, and since y(n)→0 as |n|→∞, we have y=0. 2

The results of this section suggest a host of further questions, some of which we
take up in the follow-up paper [9].
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