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PRICING AND HEDGING CONTINGENT CLAIMS WITH REGIME
SWITCHING RISK*

ROBERT J. ELLIOTT! AND TAK KUEN SIU*

Abstract. We study the pricing and hedging of contingent claims in a Markov regime-switching
market with a money market account, a zero-coupon bond, and an ordinary share. General contingent
claims with payoffs depending on both the share price and the state of a Markov chain describing
regime switching are considered. A general pricing kernel defined by the product of two density
processes is used to explicitly take into account regime switching risk. Under some differentiability
and boundedness conditions, a martingale representation result is established and the integrands
in the representation are explicitly identified with respect to the general pricing kernel. We then
determine a pricing kernel and a hedging strategy by minimizing the residual risk due to incomplete
hedging. Our analysis is also extended to Asian-style and American-style general contingent claims.
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1. Introduction

Recently, regime-switching models have attracted attention from both academia
and practitioners. The basic structure of the models is that the set of model param-
eters in force at a particular time depends on the state of a driving process, say a
Markov chain. When there is a switch in the state of the driving process, the set of
model parameters changes to another set. The states of the driving process are usually
interpreted as different states of an economy. Consequently, regime switching models
can be used to describe the impact of structural changes in (macro)-economic con-
ditions on the model dynamics. Their practical importance are exemplified by some
discussions about the recent global financial crisis, starting from mortgages and hous-
ing bubbles in the United States, where the importance of incorporating structural
changes in economic conditions in economic and financial models is highlighted. The
history of regime switching models may be traced to the early works of Quandt [26]
and Goldfeld and Quandt [18], where a regime-switching version of a regression model
was used to fit nonlinear economic data. The idea of regime switching also appeared
in works of Tong [28, 29, 30] on nonlinear time series analysis, where the subject was
still in its infancy. He introduced a class of threshold time series models, where regime
switching was governed by a threshold principle. Hamilton [20] pioneered and pop-
ularized econometric applications of an important class of regime switching models,
namely, the class of discrete-time, Markov-switching, autoregressive models. Regime
switching models have some empirical advantages. They describe many important
“stylised” features of economic and financial time series, such as the asymmetry and
heavy-tailedness of distributions for assets’ returns, time-varying conditional volatil-
ity, volatility clustering, and regime switching.

Incorporating the risk attributed to structural changes in (macro)-economic con-
ditions in the pricing and hedging of contingent claims is an important issue. Failure
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to incorporate regime-switching risk may lead to the underestimation of derivatives’
prices and inappropriate methods to hedge and manage risk. This may then lead to
pervasive risk-taking activities which produce factors causing financial crises. The
pricing and hedging of options in a regime-switching environment has been studied
by several authors. Some of them include Naik [24], Guo [19], Buffington and El-
liott [5], Elliott et al. [13], Elliott et al. [14, 15], Boyle and Draviam [4], Siu [27],
Elliott and Siu [16], and others. A market model which includes a regime-switching
component describing changes in economic environments is generally incomplete in
the sense that not all derivative securities can be perfectly hedged. The pricing and
hedging of contingent claims in this market are then complicated issues. Guo [19]
introduced an approach based on the completion of the market by a set of fictitious
securities. Elliott et al. [13] introduced an approach based on the Esscher transform
for option valuation in a market including a regime-switching component. However,
both approaches seem not to provide an appropriate method to price explicitly the
risk due to structural changes.

Besides pricing, the hedging of contingent claims in a regime-switching environ-
ment has also been considered in the literature. Elliott et al. [14] considered the
pricing and hedging of a European-style contingent claim in a regime-switching envi-
ronment. In Elliott et al. [13], they established a martingale representation for the
price of the claim evaluated using a pricing kernel selected by a version of a regime-
switching Esscher transform. The integrands in the martingale representation were
identified using the concept of stochastic flows. The martingale representation result
in Elliott et al. [14] can be considered an extension of that in Elliott and Féllmer
[11] and Colwell et al. [6] in a regime-switching environment. However, the hedging
strategy developed in Elliott et al. [14] was different from those in Elliott and Follmer
[11] and Colwell et al. [6]. In Elliott et al. [14], a zero-coupon bond was introduced
and the hedging strategy was developed by minimizing the residual risk due to in-
complete hedging. Elliott and Siu [16] developed a pricing and hedging method for a
regime-switching model, where the regime switching process causes jumps in the share
price and structural changes in the model parameters at the same time. This model
is a generalization of one considered in Naik [24]. The approach used in Elliott and
Siu [16] is related to that in Colwell and Elliott [7], where the pricing and hedging of
a contingent claim in a jump-diffusion market was considered. The hedging strategy
in Elliott and Siu [16] was developed based on the local-minimization of the hedging
cost adopted in Colwell and Elliott [7]. It was different from the hedging approach
based on the zero-coupon bond in Elliott et al. [14].

In this paper we study the pricing and hedging of contingent claims in a Markov
regime-switching model with a money market account, a zero-coupon bond, and an
ordinary share. In such model, the market interest rate of the money market account,
the appreciation rate and volatility of the share are modulated by a continuous-time,
finite-state, Markov chain. The states of the chain may represent different macro-
economic conditions, market conditions over the business cycle, policy regimes and
credit ratings of firms or countries. There are two sources of risk in the Markov,
regime-switching, market. One source of risk is due to fluctuations of market prices
and is referred to as financial risk. Another source of risk is due to transitions of eco-
nomic conditions and is referred to as economic risk. To price and hedge a contingent
claim in the Markov, regime-switching market, it is important to take into account
the two sources of risk. Here we introduce a general pricing kernel defined by the
product of two density processes: one for a measure change for a diffusion process
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and another one for a measure change for a Markov chain. This general pricing kernel
explicitly takes into account both the financial and economic risks. General contin-
gent claims with payoffs depending on both the share price and the state of a Markov
chain are considered. An example of such contingent claims is an option whose payoff
depends on both the prices of an ordinary share issued by a corporation and its cor-
porate credit ratings issued by a specified rating agency. Under some differentiability
and boundedness conditions, a martingale representation result is established and the
integrands in the representation are explicitly identified with respect to the general
pricing kernel. We then determine a pricing kernel and a hedging strategy by minimiz-
ing the residual risk due to incomplete hedging, where the residual risk is measured
by the variance of hedging error. Our analysis is also extended to Asian-style and
American-style general contingent claims.

This paper is an extension of the results in Elliott et al. [14]. The regime-
switching Esscher transform used in Elliott et al. [14] could not price explicitly both
the financial and economic risks in establishing the pricing and hedging strategy of a
contingent claim. This may be seen from the fact that the rate matrix of the underly-
ing Markov chain remains unchanged under a measure change by the regime-switching
Esscher transform. Here, instead of using the regime-switching Esscher transform, the
pricing kernel based on the product of two density processes is used. Only European-
style contingent claims were considered in the existing literature including Elliott
and Follmer [11], Colwell et al. [6], Colwell and Elliott [7], Elliott et al. [14] and
Elliott and Siu [16]. Here we extend the pricing and hedging results to Asian-style
and American-style contingent claims. We also consider a general form of contingent
claims whose payoffs depend on the state of the regime switching process.

The rest of this paper is organized as follows. Section 2 presents the model
dynamics of the Markov, regime-switching market. In Section 3, we introduce the
general pricing kernel. In Section 4, we derive the martingale representation result
and identify the integrands in the representation. Section 5 discusses the pricing
and hedging of a general contingent claim. Extensions of the results to the Asian-
style and American-style general claims are developed in Section 6. The final section
summarizes the paper.

2. The Markov, regime-switching, market

We consider a simple, continuous-time, financial market with two primitive securi-
ties, namely, a money market account B and an ordinary share S. These securities are
supposed to be traded continuously over time through a finite time horizon 7 :=[0,7],
where T € (0,00). To model uncertainty, we fix a complete probability space (Q2,F,P),
where P is a real-world probability measure. We suppose that the probability space
is rich enough to model both the financial and economic risks.

To model changing macro-economic conditions, we consider a continuous-time,
finite-state, observable Markov chain X :={X(t) | t €T} on (£, F, P) with state space
S:={s1,82...,sy} €RN. Therefore, an N-regime economy is considered. Following
the convention in Elliott et al. [10], we identify, without loss of generality, the state
space of the chain X with a finite set of standard unit vectors £ := {ej,es,...,en } € RV,
where the j** component of e; is the Kronecker delta i, for each i,j=1,2,...,N. The
space £ is called a canonical state space of the Markov chain.

To specify the probability law of the chain X under P, we define a family of rate
matrices A(t) :=[ai;(t)]i j=1,2,.. N, t €T, of the chain X. These rate matrices are also
called generators, transition intensity matrices, or @-matrices. For each t€7 and
each i,j=1,2,---,N with i#j, a;;(t) is the instantaneous transition intensity of the
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chain from state e; to state e; at time ¢. The instantaneous transition intensities
a;;(t), teT and 4,j=1,2,---,N, must satisfy the following properties:
1. Qg (t) Z 0;
N
2. Zj:l aji(t) = 0, SO Qj; (t) S 0.
Here we assume that a;;(t) >0, for i j, so a;;(t) <0. This assumption excludes
some degenerate cases.
Let FX:={FX(t) | t€T}, which represents the P-completed natural filtration
generated by X. With the canonical state space of the chain X, Elliott et al. [10]
gave the following semimartingale dynamics for the chain X under P:

X(t):X(O)—i—/O A(u)X(u—)du+M(t). (2.1)

Here M:={M(t) | t€T} is an RN-valued (FX, P)-martingale. Since
ng(u)X(u—)du, teT, is a predictable process of bounded variation, X is a spe-
cial semimartingale, and the above semimartingale decomposition is unique. The
semimartingale dynamics of the chain X will be used in the specification of a pricing
kernel in Section 3.

We now present the price dynamics of the money market account B and the share
S. For each teT, let r(t) be the instantaneous interest rate of the money market
account B. We suppose that r(t) is determined by the chain X as

r(t):=(r,X(t)), teT.

Here r:=(ry,ra, - ,rn) € RN with r; >0, for each i=1,2,--- N, y’ is the transpose of
a matrix, or a vector y; r; is instantaneous interest rate of the money market account
when the economy is in the i'" state; and the scalar product (-,-) in RV selects the
component of r that is in force at a particular time based on the state of the economy
at that time.

The balance of the money market account B:={B(t) | t € T} with an unit initial
investment evolves over time as

B(t) = exp (/Otr(u)du>, teT, B(O)=1.

Let W:={W(t) | t€ T} be a standard Brownian motion on (2, F, P) with respect
to the P-completion of its own natural filtration, denoted as FW :={FW(¢) | te T}.
Here W represents random shocks in financial prices and is the source of financial
risk, whereas X describes transitions of macro-economic conditions and is the source
of economic risk. In practice, the financial and economic risks may be correlated.
However, to simplify our discussion, we suppose that W and X are stochastically
independent under P.

Let pu(s,+,): TXRTxE—=R and o(-,,-): T xR xE—RT be measurable func-
tions such that for each t€ T and i =1,2,--- | N, u(t,S,e;) and o(t,S,e;) are three times
differentiable in S and which, together with their derivatives, are bounded. Here R+
represents the positive real line. For each i=1,2,--- N, u(t,S,e;) and o(t,S,e;) are
the appreciation rate and the volatility of the share, respectively, when the economy
is in the i*" state. Then,



R.J. ELLIOTT AND T.K. SIU 481

where

p,(t,S) = (,U/(t,S,el),,U/(t,S,GQ),"' 7M(t7S7eN>)I EéRNa
o(t,S):=(o(t,S,e1),0(t,S,e), --,0(t,S,en)) eRN.

We suppose that, under P, the share price process S:={S(t) | te T} evolves over
time according to the following Markov, regime-switching, geometric Brownian motion
(GBM):

dS(t)=p(t,S(t),X(t)S(t)dt+o(t,S(t),X(t))S(t)dW (t),
S(0)=s>0. (2.2)

Here we allow the flexibility that the appreciation rate and the volatility of the share
depend on both the time ¢ and the share price level S(t) for each economic regime.
We now define the discounted price process of the share S, which will be used
when we discuss the martingale representation result in Section 4.
Let £:={¢&(t) | t € T} be the discounted price process of the share S, where &(t) :=
B71(t)S(t) :exp(—fotr(u)du)S(t). Then under P, the discounted price process &!
evolves over time as

dg(t) = (u(t, B(£)§(t), X (t)) —r(t))&(t)dt +o (¢, B(£)E(t), X (2))E(£)dW (¢),
£(0)=s:=209>0.

Define f(-,,-): T xRTxE—=R and g(-,-,-): T xRTxE—=RT by

FE(0), X (1)) = (p(t, B)E(), X(2)) —r(8)&(D),
9(£,€(t), X(1)) := o (8, B(1)€(t), X (2))&(1)-

Under the measurability, differentiability, and boundedness conditions for the func-
tions p and o as well as their derivatives, f(¢,£,e;) and g(t,£,e;) are measurable
functions that are three times differentiable in &, and which, together with their
derivatives, are bounded for each t€7 and i=1,2,---,N.

Then under P, the discounted price process £ of the share S can be written as:

§(t)=20+/0 f(uyﬁ(U),X(U))dqu/o 9(u,§(u), X (u))dW (u). (2.3)

Since there are two primitive securities B and S as well as two random factors W
and X, the Markov, regime-switching market is incomplete. Consequently, not all
contingent claims can be perfectly hedged.

3. A pricing kernel

In this section we construct a pricing kernel that incorporates both the financial
and economic risks. The pricing kernel is specified by the product of two density
processes: one for a measure change for the standard Brownian motion W and the
other one for a measure change of the Markov chain. The product of two density
processes together with a Girsanov transform for Markov chains were used in Elliott
and Siu [17].

Firstly, we define a density process for a measure change for the standard Brow-
nian motion W. For each t€ T, let G(t):=FX(¢t)vFW(t), the minimal o-field gen-
erated by FX(t) and FW(t). Write G:={G(t) | t€T}. The enlarged filtration G
represents the flow of observable information.
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Suppose 0(-,-,+): T x RT x £ =R is a measurable function defined by

0(1,£(),X(t)) := m

so {0(t,£(t),X(t)) | t €T} is a measurable, G-adapted, process. Note that 0 satisfies
the same measurability and differentiability conditions as f and g. We assume that 6
also satisfies the same boundedness conditions as f and g.

We suppose further that for each i=1,2,--- N and t € T, 0(¢,-,e;) satisfies a linear
growth condition in £ :

10(2,€,€1)| < K(1+[¢])-

Here K is a positive constant, and we suppose that ¢(¢,£,x)>0 for all (¢,£,x)€
TxRTxE.

Define a real-valued, G-adapted, exponential process A :={A%(t) | t € T} associ-
ated with 6 by putting

A%(t) ;=1+/O 0(u, & (), X (u))A? (w)dW (u). (3.1)

Note that A? is a (G, P)-martingale.

In what follows, we discuss a Girsanov transform for the Markov chain X. The
development here follows that of Dufour and Elliott [8]. We only present the key
ideas and the main results. For a full account and the proofs of the results, we refer
to Dufour and Elliott [8].

Let C:={C(t) | t€T} be an F"-predictable, matrix-valued process on (£2,F),
where C(t):=[c;j(t)]ij=1,2,....5 for each t€T. We suppose that for each i,j=
1,2,---,N, the process {c;;(t) | t€T} satisfies the following conditions, which are
also satisfied by the components in an intensity matrix of a Markov chain:

1. ¢;;(¢) >0, for i #j;
2. Z;V:I Cji (t) = 0, SO Cj; (t) S 0.
We wish to find a new probability measure under which C(t):=[c;;(t)]i j=1,2,- N,
te T, is a second family of rate matrices of the chain X.
Write, for each t€ T,

DC(t) :=ci; (1) /aij (t)]ij=1.2....5 =: [d5; (£)].

Note that a;;(t) >0 for each t€ T, so DC(t) is well-defined.
For each t €T, let

d®(t) = (d7; (£),d55(t), -, dF n (1) € RV
Define, for each t€ T,
D§ (t):=DC(t) —diag(d€(t)).

Here diag(y) is a diagonal matrix with diagonal elements given by the vector y.
Similarly, for each t €T, Ag(¢) is defined as

Ao(t) == A(t) - diag(a(t)),
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where a(t):= (a11(t),a22(t), - ,ann(t)) € RN.

Let N:={N(¢) | teT} be a vector-valued counting process defined on (Q,F,P),
where for each t€T, N(t):=(N1(t),Na(t), - ,Nn(t)) €RY and N;(¢) counts the
number of jumps of the chain X to state e; up to time ¢, for each j=1,2,---,N.
Then Dufour and Elliott [8] showed that the process N:={N(t) | te T} defined by

N(t)::N(t)f/o Ag(w)X(u—)du, teT,

is an RV -valued, (FX,P)-martingale.
Consider a real-valued, FX-adapted, exponential process AC:={AC(t) | te T}
on (Q,F,P) associated with C defined by setting

t
Ac(t)=1+/ A€ (u—)[DF (u)X(u—) —1]'dN(u). (3.2)
0

Here 1:=(1,1,...,1) e RV,

Note that A€ is an (FX, P)-(local)-martingale. We suppose that C is such that
A€ is an (FX, P)-martingale. Here we use A€ as the density process for a measure
change for the chain X.

Consider a real-valued, G-adapted process A%C:={A%C(t) | teT} on (Q,F,P)
defined by the product of the two density processes A? and A€:

APC():=A(t)-AC(t), teT.

Our assumptions then ensure that A% is a (G, P)-martingale.
We now define a probability measure P%€, absolutely continuous with respect to
P on G(T), as

dp-C
P

=AC(T).
G(T)

Then by an extended Girsanov’s theorem for the Markov-modulated Brownian
motion, the process defined by

W(’(t)::W(t)—/ O(u,&(u), X (u))du, teT,
0

is a (G, P%C)-standard Brownian motion.
Consequently under P%€ the discounted share price process ¢ follows:

E(t)=z0+ / (1, E(u1), X () )W (1), (3.3)

so & is a (G, P?%©)-(local)-martingale. We suppose that ¢ is a (G, P%C)-martingale.
Further, using a Girsanov transform for the Markov chain, Dufour and Elliott [8]
showed that under P%C, the chain X has a family of rate matrices C, and hence, the
following semimartingale dynamics:

X(t):X(O)+/tC(u)X(u—)du+MC(t). (3.4)
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Here M€ :={MC(t) | t T} is an RV-valued, (G, P?%C)-martingale.

To specify a pricing kernel P%€, we must determine both  and C. We have
already determined the process 6 so that the discounted price process ¢ is a (G, P?C)-
(local)-martingale. However, this (local)-martingale condition cannot determine the
matrix-valued process C. We shall discuss how to determine C by minimizing the
residual risk of incomplete hedging in Section 5.

4. A martingale representation

We establish a martingale representation result for a general contingent claim. A
price of the claim is represented as a sum of two stochastic integrals, one with respect
to the standard Brownian motion and another one with respect to the martingale
associated with the Markov chain under the measure P%C defined in the last section.
Note that the integrators of the two stochastic integrals are orthogonal to each other
under P%C. Then we identify the integrands of the two stochastic integrals explicitly
using the concept of stochastic flows.

Firstly, we discuss the concept of stochastic flows. For each t,s €T with ¢ > s and
z€RT, let & +(2) be the unique, strong solution of the stochastic differential equation
(2.3) governing the discounted share price under P with initial condition &, s(z) =z.
Then, under P,

bonlz) =2t / F(0,E (), X () du+ / 01,0 u(2), X () ATV (u).

Using similar arguments to those in Kunita [22, 23], Bismut [3] and Elliott and Kopp
[13], there is a flow of diffeomorphisms z — & ;(z) associated with the solution & ;(z).
Write

Dy ¢(2):= 73&82(2) )

so under P, D, ,(z) satisfies the following linearized equation:

t t
Ds,t(z) = 1+/ fg(u,g&u(Z),X(U))D&u(z)du*F/ gf(uags,u(z)ax(u))Ds,u(z)dW(u)
Here fe and ge¢ are the first derivatives of f and g with respect to &, respectively.

It can be shown that under P, the inverse Ds_t1 (2) of Dy (2) exists and satisfies
the following equation:

Dii(2)=1~ fg(u,fs,u(Z)aX(U))D;i(Z)du—/ 9e(u,€s,0(2), X (u)) D7, (2)dW (u)

+/ (g (u,&s.u(2), X (w)))?du.

With a slight abuse of notation, let z:=§y(20), for each t€7. Then by the
semi-group property of the solution of the stochastic differential equation (2.3),

§o,7(20) =&, 7(€0,t(20)) =&, 7(2).

Differentiating with respect to zg then gives

DO’T(Z()) = Dt,T(Z)DO,t (Zo)
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Applying It6’s differentiation rule to A€ and using (3.1) and (3.2) as well as the
orthogonality between W and X under P give:

Ae’c(t)=1+/o AQ’C(u)@(u,§(u),X(u))dW(u)

+ / A?C(y—)[DE (u)X (u—) — 1) dN (u). (4.1)
0

For each t,s € T with t > s and z € RT, let K% (s,t,2) be the unique, strong solution of
the stochastic differential equation (4.1) with initial condition KX%€(s,s,z)=1. Then

Kg’c(s,t,z) = 1+/tICO’C(s,u,z)H(u,fsyu(z),X(u))dW(u)
+f P s 2) D () X () — 1) dN(u).
Consequently, K€ (s,t,2) is a stochastic exponential given by
KOC(0,1,2) =s( [ 60 0) X)W )+ [ DS @) - 11'dN<u>) 0)
so it satisfies:

K%C(0,T,20) = K*€(0,t,20) K" (1, T, 2).

Here again z:=&¢+(20).
Then we have the following lemma.

LEMMA 4.1. Let 0¢ be the derivative of 6 with respect to . Write, for each teT,
z:=E&+(20), and

T
LOC(T, ) = /t e (1, €10 (), X (1)) Dy ()W ().

Then
OKC(t, T
M:lcevc(t,T,z)ﬁvC(t,T,z).
0z
Proof. First, using the differentiability of solutions of stochastic differential
equations,

6,C . T aKc0-C(t,u,z
W:/t ORTE2) gy (2) X () AW (u)

0z 0z

T
+/t ICG’C(t,u, 2)0e(u,&4.0(2), X () Dy o (2)dW (u)

T 9k0.Clfu—. 2 N
+/t W[Dg(u)X(u—) —1]"dN(u).
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Applying Itd’s differentiation rule on K€ (t,T,2)L%C(t,T, z) gives
KOC(t,T,2)L%C(t,T, 2)
T
:/ ’CG,C(th»Z)aé (uaft,u(z)vx(u))Dt,u(Z) (dW(U) - g(uvgt,u (z),X(u))du)

t

T
+ / LV (T, 2)K"C (4T, 2)0(u, &1, (2), X (u)) AW ()

T ~
+ / LV T, 2)K"C(t,T,2)[DF ()X (u—) —1]'dN (u)

T
—i—/t /Ce’c(t,T7 2)0(u,&.0(2), X (w))0e (w,&1.0(2), X (1)) Dy o (2)du

T
- / KO (T, 2)0e (1,1 (2), X (0)) Dy (2)dVV ()

t

T
+/ EQ’C(t’T7Z)’C9’C (t,T7Z)H(U,gt,u(z)7x(u))dw(u)

T ~
+ / LOC(HT,2)K7 (1,T,2)[DF ()X (u=) —1)'dN (u).

By the uniqueness of the solution of the stochastic differential equation, we must have

8IC9’C(t,T,z)
0z
Hence the result follows. 0

We now consider a function 9(-,-) : R+ x £ = R+ such that for each i=1,2,--- | N,
¥(€,e;) is twice differentiable with respect to &, and ¥(§,e;) and ¢ (&, e;) are of at
most linear growth in &, where v is the first derivative of 1 with respect to . We
wish to determine a price, at time ¢, for a general contingent claim whose payoff at
expiration T is ¢(S(T),X(T)), where T >t. For example, if X(7T) is interpreted as
the credit rating of a corporation at time 7', the payoff of the claim is contingent on
both the terminal share price S(T") and corporate credit rating X(T). It is convenient

=K%C(t,T,2)L%C(t,T,2).

to work with the discounted claim ¥ (£(7")) as a function of the discounted share price
&(T), where

Y(E(T)) =B~ (T (B(T)E(T)).

It is obvious that 12 has a linear growth.
Consider the square-integrable, (G, P?%€)-martingale V:={V (t) | t€T} defined
by

V(1) :=E"C[(E(T), X(T))IG(1)]-

Here E?€ is expectation with respect to P%*€ and V (¢) is interpreted as the discounted
price of the claim to time O.

Note that (£,X) is jointly Markov with respect to the enlarged filtration G. So if
§(t)=¢ and X(t) =x,

V() :=E"C(E(T), X(T))[G(t)]

= B C[p(E(T), X(T))[€(H) =&, X (1) =x]
=V(t,£,x).
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Write, for each i=1,2,--- /N,
Vi=V(t,£(t).e),
and
V(L&) = (V(L.E(1).e1),V (1,E(F),e2), - V(LE(t),en)) € RY. (4.2)

The following theorem gives a martingale representation result for the discounted
price process of the claim V.

THEOREM 4.2. Let v:={y(t) | teT} and a:={a(t) | t€T} be two G-predictable
processes defined by

T ~
(1) = B0 [ | Betus0.(20). X(0) Do o) () 60 70

+2¢(€0.7(20)) Do, (20)

g(t)} Dat(20)60. (20)0 (160 (20). X (1)),
and

a(t):=V(t,£(1)),
where V (t,£(t)) is given by (4.2) such that

T
| Bl <
0

and
T
/0 Ellja(t)[[2)dt < oo,

where ||-|| is the norm in RZ.
Then V' has the following martingale representation:

V(t):V(OH/O W(U)dWG(tH/O (ae(u),dM(u)).

Here fot'y(u)dWG(t) and f()t(a(u),dl\/[(u» are orthogonal to each other under P%C.
Proof.  First, note that
§o,7(20) =&,7(2),
and that
K%C(0,T,20) =K% (0,t,20)K"C(t,T,2).
Then by the Bayes’ rule, the Markov property, the G(t)-measurability of K% €(0,t,2),
and the fact that E[K%€(t,T,2)|G(t)] =1, P-as.,
V(t) = E*C[(So,r(20), X(T)[G(1)]
_ BIK”C(0,T,20)9 (€0, (20), X(T))|G(1)]
E[Kg’c(ovT?zoﬂg(t)]
= E[K"C(t,T,2)9 (&7 (2), X(T))|X(t) = x,0,+(20) = 2]
=:V(t,2,x), P-a.s. (4.3)
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Recall that under P%C,

§o.t(20) Zzo+/Otfo,u(ZO)U(UaB(U)fo,u(Zo)»X(U))dWQ(U)
To simplify the notation, we write
o(t):=o(t,&0.¢(20),X(1)).
Applying Ité’s differentiation rule to V(¢,2,x) =V (¢,£0,(20),x) gives

V(t)
= V(t,§07t(20),x)

= V(t20,X(0)) + / {3V(u’fo,gfo>7X<u>>

2
+;02(U)£S’u(20)aaz‘g(u,go,u('zO)vX(u))} du

t(?V(u,ﬁ 7u(Z )7X(u))
Jr/0 : 82’0

o.u(20)0(w)dWO (u) + /0 (V(u,&0.u(20)), C(u) X (u))du

—l—/o (V(u,&0.4(20)),dMC (u)). (4.4)

Since V is martingale, it must be a special semimartingale. By the unique decompo-
sition of a special semimartingale, (i.e. a special semimartingale can be represented
uniquely as the sum of a (local)-martingale and a predictable process of (locally)
integrable variation), the sum of the finite variation terms in (4.4) must be indistin-
guishable from the zero process, i.e.

V0D X) 12 5210k (20) G (1o (20),3) + V1,0 (20)), CLx) =0,

with V(T,z,x) =1(z,x). Further, we must have

ov

y(t)= 2 (t,60,t(20), %) (t)&0,¢(20),

a(t)=V(t,£0,:(20))-
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From the differentiability and linear growth conditions of 6,

"OKOC(tT. ) ~ -
o =5 2T G () + KOS, )l () Dur (2] 000

T ~
—E / B (11 €10 (2), X () Do (2)AW (1) - 5 (E0.2(2))

KOO (4T, 2)de (6 (2)) Do (2) (t)}

- T N
=E ’CG’C(t,T,Z)/t 05(uvfo,u(z())aX(u))DO,u(ZO)dWG(u)'w(ft,T(z))

+K97C(t7T,Z>QZ£<§O,T(ZO))DO,T(ZO)

g(t)]Do,i(zo)
:EQ’C[/t B (11,60 0 (20), X (1)) Do (20) AW (0)- (60,1 (2))

+4be (€0,7(20)) Do 7 (20)

g(t)] Dq ¢ (20).

Hence the result follows. 0

COROLLARY 4.3. The time-t discounted prices V (t,€0.4(20),€:), 1=1,2,---,N, satisfy
the following system of coupled partial differential equations:

8V(t’§oétt(zo)’el) +% 2(15 €o,¢(20),€i)&5 t(ZO)g ‘2/(t So.¢(20)€i)
+H(V(,80,t(20)),C(t)e;) =

with V(T,z,e;) =1(z,e;).

Proof. This follows directly from the regime-switching partial differential equa-
tion for V' (¢,£0,.(%0),x) in the proof of Theorem 4.2. O

Note that the system of coupled partial differential equations in Corollary 4.3
depends on the family of intensity matrices C:={C(t) | t€T}. We shall determine
C by minimizing the risk of incomplete hedging in the next section, and so fix a price
of the claim for each economic state.

5. Pricing and hedging a general claim

In this section we apply the martingale representation result in the last section to
determine the rate matrix C (hence fixing a pricing kernel), and a hedging strategy
using the money market account, the share, and a zero-coupon bond. The rate matrix
C and the hedging strategy are determined so as to minimize the risk of incomplete
hedging measured by the variance of the hedging error. This extends the results in
Elliott et al. [15].

Firstly, we introduce a zero-coupon bond P with face value one and maturity at
time 7. Then given FX(t), a conditional price of the bond at time ¢, denoted as
P(t,T|FX(t)), is evaluated as

PC(t,T|FX(t))=E*C [exp ( /tTr(u)du> ‘]-"X(t)} :
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By the Markov property, given FX(t)=x, the conditional price of the bond at time
t is then given by

PO, T|FX (1)) = BC [exp (- /t Tr(u)du) ‘X(t) :x}
= PC(t,T,x).

Note that the price of the bond depends on the family of intensity matrices C:=
{C(¢t) | teT}. Again to fix a price of the bond, we must determine C.

For each teT and i=1,2,--- N, let ¢C(t):=PC(t,T,e;). Write ¢C(t):=
(€ (1), 0S (1), ,6S (1)) € RN.  Define, for each teT, IC(t):=diag(r)—C'(t) €
RNEN where diag(r) is the (N x N)-diagonal matrix with diagonal elements given
by the vector of interest rates r. Using the same method in Elliott and Kopp [13], it
can be shown that the RV -valued process ¢ :={¢(t) | t € T} satisfies the following
matrix-valued, first-order, differential equation:

de®(t)

= (diag(r) - C' ()¢S (), (5.1)

with terminal condition
¢C(T):=1=(1,1,---,1) e RV,

The following theorem was due to Elliott and Kopp [13] and gives a formula for
the price of the bond.

THEOREM 5.1. For each teT,
P(t,T,X(t)) = (¢°(t),X (1)),

where @€ (t) satisfies the differential equation (5.1) associated with the terminal con-
dition.

For each t € T, let PC(t,T,X(t)) be the discounted bond price at time ¢. Then
T
PC(t,T,X(t))=E%C {exp (/ r(u)du>
0
= (B~ ()9 (1), X(t))-

This is an (FX, P%C)-martingale.
Applying Itd’s differentiation rule on P€(t,T,X(t)) gives

70

PC(t,T,X(t))

:PC(O,T,X(O)H—/tB_l(u) <<d¢c(“)
0

du

X (u)) + (@ (u),C(u) X (u))

t
(062 () X)) dut [ (B w6 ). M)
Note that {PC(t,T,X2(t))} is an (FX, PC)-martingale, so the finite variation terms,

which are not martingales, in the above stochastic integral representation must sum
to zero. Consequently,

PC(.T,X(1)) = PC(0,7,X(0)) + /0 (B~ (u)$C (u),dME (). (5.2)
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We now construct a partially hedged portfolio of the claim consisting of the money
market account, the share and the zero-coupon bond, which minimizes the residual
risk of incomplete hedging.

Let n:={n(t) | te T} be a G-predictable, real-valued process such that

T
/O B[ (1)]dt < o.

Here, for each t €T, n(t) is the number of units of the discounted zero-coupon bond
in the hedged portfolio at time t.
Define, for each t€ T,

o V(1)
T = o () X (D)o (20

Then by Theorem 4.2 and (5.2),

t

V(£) =E*C [ (€0 r(20), X(T))] + / 5 ()i (20) + / () AP (1 .20, X (1)
0 0
+ / (ex(u) — () B~ ()b (), M ().
0

For each te T, let

R(t.7.C) = / (e(u) — () B~ ()€ (), dMC (1),

where R(t,n,C) describes the accumulated hedging error to the claim associated with
the hedging policy (7,n):={(F(t),n(t)) | t €T} up to and including time ¢.

Then, by definition, R(n,C):={R(t,n,C) | t€ T} is an (FX, P%C)-martingale. Con-
sequently,

E97C[R(T7777C)] = 0’
and hence the unconditional variance of R(T,n,C) is given by
Var[R(T,n,C)|=E*C[R*(T»,C)].

This describes the residual risk attributed to incomplete hedging associated with the
hedged portfolio (7,7).

Our goal is then to select a trading process 1 so as to minimize the residual risk of
incomplete hedging. That is to say, we are going to solve the following minimization
problem:

minE*C[R*(T,n,C)].

n,C

The following theorem gives a closed-form expression for E?©[R?(T,n,C)].

THEOREM 5.2. For each t €T, let

¢C(t) =a(t)—n(t)B~ (t)p(t) e R".
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Then
E"C[R*(T,n,C)]

=E"C [/0 (C7)'()(diag(C(1)X(t)) — diag(X(t))C' () — C(t)diag(X ()¢ (t)dt |

Proof.  The proof resembles that in Elliott et al. [14], so we only give the key
steps. First, note that

X(t) @ X(t) = diag(X(t)),

where ® is the Kronecker tensor product.
Applying Itd’s differentiation rule on X (t) @ X (t) gives

X(t)®X(t):diag(X(0))+/0 diag(X(u))C'(u)du+/O C(u)diag(X(u))du

+/ tX(u—>d<MC<u>>’+ / thC<u>X’(u—>+[MC,MC](t—)
0 0
—<MC MC > (t)+ <M MC > (t) e RN @RV (5.3)

Here [MC MC](t) =3« (AMC(u))(AMC(u)) e RN @RY and <MC MC >:=
{<MC® MC>() | teT} is the unique predictable process such that
{IM€ ,MC](t)- <M, M€ > (t) | t€ T} is a martingale.

It is not difficult to see that

¢
diag(X(t)) =diag(X(0)) —|—/ diag(C(u)X(u))du+diag(MC(t)) e RN @RV,
0
Note that
X (1) X (1) = diag (X (1)),
and that {X(¢)®@X(t) | t€T} is a special semimartingale. Consequently, using the

uniqueness of the decomposition of a special semimartingale into a sum of a predictable
process and a martingale and comparing (5.3) and (5.4), we get

<MC€ M€ > (t)
:/ diag(C(u)X(u))du—/ diag(X(u))C’(u)du—/ C(u)diag(X(u))du.
0 0 0
Then by the isometry,

E%C[R*(T,n)]

([ T<c°‘<t>,dMC<t>>ﬂ

T
o [/ (¢C()'d<M® M > <t>CC(t)}
0

Hence the result follows. 0
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The following theorem gives the optimal pricing and hedging strategies CT and
n' so as to minimize the residual risk of incomplete hedging.

THEOREM 5.3. A solution of the minimization problem
mlnE"’ [R*(T,n,C)]

n,C

is given by {(n(t),CY(t)) | t€T} such that
() = —— (€ () (diag(CT ()X (1) ~diag(X(1)CT'(1)-C' (Niag(X () x(t)
B-1(1)($7") () (diag(CT (1) X () ~diag(X(1))C1’ (1)~ C' (1) diag(X (1)) ' (1)
and CT(t) is a solution of the following problem:
min { (a(t)—n'(t) B~ (1)$C () (diag(C(t) X (1)) — diag(X(t)) C'(¢)

C()

—C(t)diag(X (1)) (e (1) —n*<t>B—1<t>¢C<t>>},
where a(t) =V (t,£(t)) and ¢C(t) satisfies

de®(t)

= (diag(r) - C'(1)9° (1)

with terminal condition

¢°(T):=1=(1,1,---,1)' e RN,

Proof. The result follows from direct differentiation of the objective function in
Theorem 5.2. 0

6. Extensions to exotic options

In this section we apply the martingale representation result in Section 4 and
its associate pricing and hedging method in Section 5 to price an Asian option and
an American-style option. The techniques used here are similar to those used in
Bensoussan and Elliott [2]. However, instead of studying the attainability of the
Asian option and the American-style option, we develop here an incomplete hedging
strategy based on the money market account, the share and the zero-coupon bond so
as to minimize the residual risk of incomplete hedging as in Section 5.

6.1. An Asian option. We consider a general-type of Asian option here
with payoff given by the time average for a suitable function H (&g .(20),X(t)) of the
discounted share price & 4(20) and the state of the chain X(t).

For each t €T, let

_%/0 H(€o,u(20), X (u))du .

Then as in Section 4, given G(t), a conditional discounted price of the Asian option
at time t can be evaluated using an equivalent martingale measure P?%€ as follows:

oy ngo,t(zo»X<t>>dt\g<t>}

f/ H(€o,t(20), (u))du—i—%Ea’C [/t H(&o.u(20), X (u))du|€ot(20) = 2,X(t) =

h +VA51an(t P X)
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where

T
yAsian (4, )= EC {;/{ H(Eeu(2), X (w))du| 8o, (20) = 2, X(t) =

Using the same arguments as in Section 4 and Section 5 gives

wely [ TH<f<t>,X<t>>dt]g<t>]

T t Asian
5| 1 [ #eateor xionat] + [ 2 s X w)doo)
+ [ 0P otz X))+ [ ) ~nw) B ()¢S (.M (W),
0 0

To price and hedgmg the Asian option, we must determine the quantities
n(t), C(t) and ava:an (t,2,X(t)). The quantities 6‘/ Z(t,z,X(t)) and n(t)
are the numbers of units invested in the (discounted) share and the (dis-
counted) zero-coupon bond, respectively. The matrix C determines a pricing ker-
nel. Note that both 7(t) and C(t) are determined by nf(t) and CT(¢), respec-
tively, in Theorem 5.3, with «(t) being replaced by a5 (t):=VAsian(t »)=
(VAsian(t 2 e1),VASan (t 2 e5),--- VA5 (¢ 2 en)) €RN. It remains to determine
avgzmn (t,2,X(t)); the following theorem gives the result.

THEOREM 6.1.  Suppose, for eachi=1,2,--- N, H(,e;) is differentiable with respect
to & and its derivative He(€,e;) is integrable. Then for each t€T,

8vAsian
0z

=;E97°‘[ [ 0600, o0) X @) D) aW ) [ 94(60,u20). X )

(t,2,X(t))

+ [ Hel€ou(a0). X(0) Do) g(t)]Do,i(zo).

Proof.  Using similar arguments as in the proof of Theorem 4.2,
vAsian (¢ 2 X(t))
1 /7
_poc [ / H (& (2), X (u))du g(t)}

_ BIKC(0,T,20) % J," H(E,u(2), X (w))dulG(1)
B[ C(O’T,Zo)lg( )]

T
;E[Ke’c(t,T,z) / H(&u(2), X (u))du

X(t) = X,£07t(20) =z

Then the result follows from direct differentiation and Lemma 4.1. 0

6.2. An American option. We now consider the pricing and hedging
of a general American-style contingent claim which gives a discounted reward of
H1(€0.4(20),X(t)) : =B~ 1 (t)H1(£0.4(20),X(t)) at time ¢t when the claim is exercised
at time ¢.
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Let T (t1,t2) be the set of G-stopping times taking values in [t1,¢2]. Then given
G(t), a conditional price of the American-style claim at time ¢ is given by

ess sup EG’C[B(t)ﬁl (&0,r(20),X(7))|G(1)]
TET(,T)

= ess sup EQ’C[B(t)?Ah(ft,r(2)7X(7))|X(t) =x,80,t(20) =2]
€T (¢,T)

—. VAmerican (t,Z,X).

Under certain conditions (see Bensoussan and Lions [1] or Krylov [21]), the so-
lution to the above optimal stopping problem VA™erican (¢ » x) is such that for each
i=1,2,---,N, VAmerican(¢ - e.) is in the Sobolev space W2, Consequently, a gener-
alized Itd’s differentiation rule can be applied to VA™erican (¢ » x).

Suppose 71 (t) is the smallest optimal stopping time in 7(¢,7). Then

vAmerican(y z x) =B CIB(t)Ha (Er (1 (2), X (7)) X (£) =, 0.4 (20) = 2]
Consequently, the Snell envelope is given by
J(t):= ess sup EC [T, (&0 (2),X(1))|G(t)]
TET(¢,T)
— B—l(t)VAmem‘can(t,Z,X)
= EPCIHL (&1 (2). X (7)) X () =x.Eo.4(20) = 2].
That is, {J(t) | t€T} is the smallest (G, P%C)-supermartingale which majorizes the

discounted reward. For some suitable function H, {J(t) | t €T} is of class D, so it
has a Doob-Meyer decomposition

Here {M(t) | teT} is a (G,P?C)-martingale and {A(t) | t€T} is a unique, pre-
dictable, non-decreasing process with A(0)=0.
In what follows, we derive a pricing and hedging strategy for the American-style

claim in the common continuation region, say C:=C;UCyU---UCp, where, for each
i=1,2,---,N,

Ci:={(t,2) €T xR | vAmerican(t - e.)>H1(z,e;)}.
In the common continuation region C, dA(t) =0 and 7f(¢) >¢. Consequently,

J() =EOCIH1 (& vy (2), X (7)) X (8) =%, 0,6 (20) = 2]
= Bl (t)yAmericany » x)=M(t), teT,

which is a (G, P?°C)-martingale.
Again, as in Section 4 and Section 5, {J(¢) | t €7} has the following martingale
representation:

t avAmerican

J(t) :Ee’cml(fo,rf(t) (20),X(71))] +/ (u,0,u(20), X(u))d&o,(20)

0 0z
+ / () AP (u,0 o (20), X () + / () — () B () $C (), dMC (1),
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Consequently, with B(t) :cxp(fotr(u)du)7

VAmerican (t, Z,X)

=B 8 (o) X)) VA7 ). X0

t American
[ B0 P ) X))o )

+ / () B(u)dPC (1, o 0 (20). X (u))
+ / (B(u)ax(u) - n(u)d (u),dME (u))

=E*C[H1 (0,10 (20), X ()] + / r(u) (VA’"”““"<u7£o,u<zo>»X<U>>

avAmerican

g (w&ou(20), X () S(w) — n(u) P (u{o,u(Zo)aX(U))) du

t American t
_|_/0 8‘/82(u,goyu(zo),X(u))dS(U)'F/o n(u)dpc(ua50u(20)vx(u))

+/o (B(u)or(u) —n(u)¢® (u),dM (u)).

Consequently, to hedge the American-style claim, we invest

vAmeriean(y g, 4 (2), X(t) — O (1, 60.4(20), X (1) S (1) —n(8) PO (1, 0,0 (20), X (1)),

OVAm'eM'Can

5% (t,€0,4(20),X(t)) and n(t) in the money market account, the share, and the
zero-coupon bond at time ¢, respectively. The initial price of the American-style claim
is given by E?C[H1 (& 11 (1) (20),X(77))] and its early exercise strategy is determined
as

() :=inf{r € T(t,T) | VAmerican(t 2 x) <Hi(z,x)}.

So to determine the price, the early exercise strategy, and the hedging strategy of the

American-style claim so as to minimize the residual risk of incomplete hedging, we
avAmerica,n

must determine “————(t,£0,+(20),X(t)), n(t) and C(t). As in Section 4, n(t), and
C(t) are determined by n'(t) and Cf(¢) in Theorem 5.3, respectively. The following

8VAmerican

57— (6:€0,t(20),X(2))-

THEOREM 6.2. Suppose, for each i=1,2,--- N, Hi(&,e;) is differentiable with

respect to & and its derivative %ﬁe) is integrable. Then for each t€T,

theorem then determines

avAmerican
0z

()
=EC [/t O (1,60,u(20), X (1)) Do u (20)dW* (u) - H1 (0,1 (1) (20), X (77 (1))

i
+3H1(§0,H(t)((9'20)’x(T ®)) Dy 1 (1)(20)

(t,2,X(t))

g(t)} Dy { (20).

The proof of Theorem 6.2 resembles that of Theorem 6.1. So we only state the
result without giving the proof.
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7. Conclusion

We discussed the pricing and hedging of general contingent claims in a Markov
regime-switching market, where a money market account, a share and a zero-coupon
were traded. The payoffs of the general claims depend on both the prices of the
share and the states of a Markov chain describing the states of an economy. We
introduced a general pricing kernel based on the product of two density processes
for measure changes so as to price both the financial and economic risks explicitly.
A general martingale representation result was established and its integrands were
identified with respect to the general pricing kernel using the concept of stochastic
flows. A price and a hedging strategy, which take into account both the financial
and economic risks, were then determined by minimizing the variance of the hedging
error of a trading portfolio consisting of the money market account, the share and the
zero-coupon bond. We also extended the results to price and hedge Asian-style and
American-style general contingent claims.
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