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UNCONDITIONALLY STABLE SCHEMES FOR HIGHER ORDER
INPAINTING∗

CAROLA-BIBIANE SCHÖNLIEB† AND ANDREA BERTOZZI‡

Abstract. Higher order equations, when applied to image inpainting, have certain advantages
over second order equations, such as continuation of both edge and intensity information over larger
distances. Discretizing a fourth order evolution equation with a brute force method may restrict the
time steps to a size up to order ∆x4 where ∆x denotes the step size of the spatial grid. In this
work we present efficient semi-implicit schemes that are guaranteed to be unconditionally stable. We
explain the main idea of these schemes and present applications in image processing for inpainting
with the Cahn-Hilliard equation, TV-H−1 inpainting, and inpainting with LCIS (low curvature image
simplifiers).
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1. Introduction
An important task in image processing is the process of filling in missing parts

of damaged images based on the information gleaned from the surrounding areas.
It is essentially a type of interpolation and is called inpainting. Thereby one could
restore images with damaged parts due to, for instance, intentional scratching, aging,
or weather. Or one can recover objects which are occluded by other objects, where
within this context the process is called disocclusion. In fact the applications of image
inpainting are countless. From the restoration of ancient frescoes [3], to the medical
needs of reducing artifacts in MRI-, CT- or PET imaging reconstructions [47], digital
image inpainting is ubiquitous in our modern computerized society. Since the first
works on image inpainting by Mumford, Nitzberg and Shiota [57], Masnou and Morel
[52], Caselles, Morel, Sbert and Gillette [21], and Bertalmio et al [10], much effort has
gone into developing digital algorithms. These methods include the texture synthesis
and exemplar-based approach (see, e.g., [20, 29, 32, 72]) and a number of variational-
and PDE-based approaches. This paper focuses on the latter.

In mathematical terms, image inpainting can be described in the following way:
let f be the given image defined on an image domain Ω. The problem is to reconstruct
the original image u in the damaged domain D⊂Ω, called the inpainting domain.
More precisely, let Ω⊂R2 be an open and bounded domain with Lipschitz boundary,
B1,B2 two Banach spaces and f ∈B1 be the given image. A general variational
approach in inpainting can be written as

min
u∈B2

{

E(u)= R(u)+‖λ(f−u)‖
2
B1

}

, (1.1)

where R :B2→R and

λ(x)=

{

λ0 Ω\D

0 D,
(1.2)
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is the characteristic function of Ω\D multiplied by a constant λ0≫1. R(u) denotes
the regularizing term and ‖λ(f−u)‖B1

the so called fidelity term of the inpainting
approach. B2⊆B1 in general, signifying the smoothing effect of the regularizing term
on the minimizer u∈B2. Depending on the choice of the regularizing term R and the
Banach spaces B1, B2, various inpainting approaches have been developed. The most
famous model is the total variation (TV) model, where R(u)=

∫

Ω
|∇u| dx denotes the

total variation of u, B1=L
2(Ω) and B2=BV (Ω) the space of functions of bounded

variation; cf. [23, 25, 61, 60]. A variational model with a regularizing term containing
higher order derivatives is the Eulers elastica model [26, 27, 52] where R(u)=

∫

Ω
(a+

bκ2)|∇u|dx with positive weights a and b, and curvature κ=∇·(∇u/|∇u|). Other
examples to be mentioned for (1.1) are the active contour model based on Mumford
and Shahs segmentation [68], the inpainting scheme based on the Mumford-Shah-Euler
image model [35], inpainting with the Navier-Stokes equation [11], and wavelet-based
inpainting [28, 30], only to give a rough overview. For a more complete introduction
to image inpainting using PDEs we refer to [26, 18, 63].

1.1. Second- versus higher-order inpainting approaches. Second order
variational inpainting methods (where the order of the method is determined by the
derivatives of highest order in the corresponding Euler-Lagrange equation), like TV
inpainting, have drawbacks as in the connection of edges over large distances (Con-
nectivity Principle, cf. Figure 1.1) and the smooth propagation of level lines (sets of
image points with constant grayvalue) into the damaged domain (Curvature Preser-
vation, cf. Figure 1.2). This is due to the penalization of the length of the level lines
within the minimizing process with a second order regularizer, connecting level lines
from the boundary of the inpainting domain via the shortest distance (linear interpo-
lation). The regularizing term R(u)=

∫

Ω
|∇u| dx in the TV inpainting approach, for

example, can be interpreted via the coarea formula, which gives

min
u

∫

Ω

|∇u|dx⇐⇒ min
Γλ

∫ ∞

−∞

length(Γλ)dλ,

where Γλ={x∈Ω:u(x)=λ} is the level line for the grayvalue λ. If we consider on
the other hand the regularizing term in the Eulers elastica inpainting approach the
coarea formula reads

min
u

∫

Ω

(a+bκ2)|∇u|dx⇐⇒ min
Γλ

∫ ∞

−∞

a length(Γλ)+b curvature
2(Γλ)dλ. (1.3)

Thus not only the length of the level lines but also their curvature is penalized (where
the penalization of each depends on the ratio b/a). This results in a smooth con-
tinuation of level lines over the inpainting domain also over large distances; compare
Figures 1.1 and 1.2. The performance of higher order inpainting methods can also
be interpreted via the second boundary condition, which is necessary for the well-
posedness of the corresponding Euler-Lagrange equation of fourth order. Not only
are the grayvalues of the image specified on the boundary of the inpainting domain,
but also the gradient of the image function, namely the direction of the level lines, is
given.

In an attempt to solve both the connectivity principle and the staircasing effect
resulting from second order image diffusions, a number of third and fourth order
diffusions have been suggested for image inpainting. The first work connecting image
inpainting to a third order PDE (partial differential equation) is the transport process
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Fig. 1.1. Two examples of curvature based inpainting compared with TV inpainting from [26].
In the case of large aspect ratios the TV inpainting fails to comply to the Connectivity Principle.

Fig. 1.2. An example of elastica inpainting compared with TV inpainting from [27]. Despite the
presence of high curvature, TV inpainting truncates the circle inside the inpainting domain (linear
interpolation of level lines, i.e., Curvature Preservation). Depending on the weights a and b Eulers
elastica inpainting returns a smoothly restored object, taking the curvature of the circle into account.

of Bertalmio et al [10]. The image information, modeled by ∆u, is transported into
the inpainting domain along the level lines of the image. The resulting scheme is a
discrete model based on the nonlinear PDE

ut=∇⊥u ·∇∆u,

and is solved inside the inpainting domain D using the image information from a
small stripe around the boundary of D. The operator ∇⊥ denotes the perpendicular
gradient (−∂y,∂x). Due to the lack of communication among the level lines, the
transportation may result in kinks or contradictions inside the inpainting domain.
Thus in [10] the equation above is implemented with intermediate steps of anisotropic
diffusion. In [11] the authors develop a theory for the proper boundary conditions in
[10] by making a connection to the Navier-Stokes equations. The two conditions on the
“boundary” of the inpainting domain correspond to the no slip condition for Navier-
Stokes. A variational third order approach to image inpainting is CDD (Curvature
Driven Diffusion) [24]. To solve the problem of connecting level lines also over large
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distances (connectivity principle), the level lines are still interpolated linearly. The
drawbacks of the third-order inpainting models [10] and [24] have driven Chan, Kang
and Shen [27] to a reinvestigation of the earlier proposal of Masnou and Morel [52] on
image interpolation based on Eulers elastica energy (1.3). The fourth order elastica
inpainting PDE combines CDD [24] and the transport process of Bertalmio et al [10],
and is able to solve both the connectivity principle and the staircasing effect. Other
recently proposed higher order inpainting algorithms are inpainting with the Cahn-
Hilliard equation [13, 14], TV-H−1 inpainting [19, 64] and combinations of second and
higher order methods, e.g. [51].

In this paper we are especially interested in three, rather new, fourth-order in-
painting schemes. Namely, we shall discuss Cahn-Hilliard inpainting, TV-H−1 inpaint-
ing, and inpainting with LCIS (low curvature image simplifiers). We start the discus-
sion with the inpainting of binary images using the Cahn-Hilliard equation [13, 14].
The inpainted version u of f ∈L2(Ω) is constructed by following the evolution of

ut=∆

(

−ǫ∆u+
1

ǫ
F ′(u)

)

+λ(f−u), (1.4)

where F (u) is a so called double-well potential, e.g., F (u)=u2(u−1)2. The applica-
bility of the Cahn-Hilliard equation for the inpainting of binary images is due to the
double well potential F (u) in the equation. The two wells correspond to values of u
that are taken by most of the grayscale values. Choosing a potential with wells at
the values 0 (black) and 1 (white), Equation (1.4) therefore provides a simple model
for the inpainting of binary images. The parameter ǫ determines the steepness of the
transition between 0 and 1. Further, the fourth order regularizing term in the equa-
tion provides the advantages of higher order inpainting approaches which have been
discussed before, such as the ability to connect level lines also over large distances (cf.
(1.3)).

The second method of interest in this paper is a generalization of the Cahn-
Hilliard inpainting approach to grayvalue images which has been recently proposed in
[19, 64] and is called TV-H−1 inpainting. Therein the inpainted image u of f ∈L2(Ω)
shall evolve via

ut=∆p+λ(f−u), p∈∂TV (u), (1.5)

with

TV (u)=

{

∫

Ω
|∇u| dx, if |u(x)|≤1 a.e. in Ω,

+∞, otherwise,

where ∂TV (u) denotes the subdifferential of the functional TV (u). To build the
connection to Cahn-Hilliard inpainting the authors in [19] show that solutions of an
appropriate time-discrete Cahn-Hilliard inpainting approach Γ-converge, as ǫ→0, to
solutions of an optimization problem regularized with the TV norm. A similar form
of this approach appears in the context of decomposition and restoration of grayvalue
images; see for example [49, 58, 70]. Further, in Bertalmio et al [12], an application
of the model from [70] to image inpainting is proposed. In contrast to the inpainting
approach (1.5) the authors in [12] use a more general form of the TV-H−1 approach
for a decomposition of the image into cartoon and texture prior to the inpainting
process. The latter is accomplished with the method presented in [10]. Moreover, we
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would like to mention that in [45] the authors consider a complex Ginzburg-Landau
energy for inpainting of grayscale- and color images.

The third inpainting model we are going to discuss is inpainting with LCIS (Low
Curvature Image Simplifier). This higher order inpainting model is motivated by
two famous second order nonlinear PDEs in image processing — the works of Rudin,
Osher and Fatemi [60] and Perona Malik [59]. These methods are based on a nonlinear
version of the heat equation

ut=∇·(g(|∇u|)∇u),

in which g is small in regions of sharp gradients. LCIS represent a fourth order relative
of these nonlinear second order approaches. They are proposed in [69] and later used
by Bertozzi and Greer in [15] for the denoising of piecewise linear signals. In this
paper we consider LCIS for image inpainting. With f ∈L2(Ω) our inpainted image u
evolves in time as

ut=−∇·(g(∆u)∇∆u)+λ(f−u),

with thresholding function g(s)= 1
1+s2 . Note that with g(∆u)∇∆u=∇(arctan(∆u))

the above equation can be rewritten as

ut=−∆(arctan(∆u))+λ(f−u). (1.6)

1.2. Numerical solution of higher-order inpainting equations.
One main challenge in inpainting with higher order flows is their effective numeri-

cal implementation. Discretizing a fourth order evolution equation with a brute-force
method may restrict the time steps to a size up to order ∆x4 where ∆x denotes the
step size of the spatial grid. Such a brute-force method is computationally prohibitive
and hence it is essentially never done; see, e.g., [65].

The numerical solution of higher-order equations, like thin films, phase field mod-
els, surface diffusion equations, and many more, occupied a big part of research in
numerical analysis in the last decades. In [31] the authors propose a semi implicit fi-
nite difference scheme for the solution of second order parabolic equations. A diffusion
term is added implicitly and subtracted explicitly in time to the numerical scheme in
order to suppress unstable modes. Smereka uses this idea to solve the fourth-order
surface diffusion equation; cf. [65]. The same idea is applied by Glasner to a phase
field approach for the Hele-Shaw interface model; cf. [40]. Besides the finite differ-
ence approximations, there also exist many finite element algorithms for fourth-order
equations. Barrett, Blowey, and Garcke published a series of papers on the solution
of various Cahn-Hilliard equations; cf. [5, 6, 7]. For the sharp interface limit of Cahn-
Hilliard, i.e., the Hele-Shaw model, Feng and Prohl analyze finite element methods in
[37, 38]. Finite element methods for thin film equations are studied, for instance, in
[8, 46].

For image inpainting, efficient numerical schemes for higher-order methods is an
active area of research. As discussed in [26] one of the most interesting open problems
in digital inpainting is, in fact, the fast and exact digital realization. In the case of
Cahn-Hilliard inpainting, in [13] the authors propose a semi-implicit scheme which
constitutes the common numerical method discussed in this paper. They verify its
computational superiority compared with currently used numerical methods for three
curvature driven approaches. It turns out that Cahn-Hilliard inpainting performs at
least one order of magnitude faster than the curvature methods. In [33, 34] Elliott
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and Smitheman propose a finite element method for TV-H−1 minimization in the
context of image denoising and cartoon/texture decomposition. They also prove rig-
orous results about the approximation and convergence properties of their scheme.
An extension of their approach to TV-H−1 inpainting would be interesting. Note
that, however, the difference of the inpainting approach from denoising and decom-
position is that the former does not follow a variational principle and the fidelity
term is locally dependent on the spatial position. Another algorithm for TV-H−1

inpainting is proposed by one of the authors in [62]. This work generalizes the dual
approach of Chambolle [22] and Bect et al. [9] from an L2 fidelity term to an H−1

fidelity and extends its application from TV-H−1 denoising [1, 2] to image inpainting.
The main motivation for the work in [62] is that with the proposed algorithm the
domain decomposition approach developed in [39] can be applied to the higher-order
total variation case. Being able to apply domain decomposition methods to TV-H−1

inpainting can result in a tremendous acceleration of computational speed due to the
ability to parallelize the computation. Another very recent approach in this direction
is [18], where the authors propose a multigrid approach for inpainting with CDD.

In this paper we discuss an efficient semi implicit approach based on a numerical
method presented in Eyre [36] (also cf. [71]) called convexity splitting. Convexity
splitting was originally proposed to solve energy minimizing equations. We consider
the following problem: Let E∈C2(RN ,R) be a smooth functional from RN into R,
where N is the dimension of the data space. Let Ω be the spatial domain of the data
space. Find u∈RN such that

{

ut=−∇E(u), in Ω,

u(.,t=0)=u0, in Ω,
(1.7)

with initial condition u0∈RN . The basic idea of convexity splitting is to split the
functional E into a convex and a concave part. In the semi implicit scheme, the con-
vex part is treated implicitly and the concave one explicitly in time. Under additional
assumptions on (1.7), this discretization approach is unconditionally stable, consis-
tent, and relatively easy to apply to a large range of variational problems. Moreover
we shall see that the idea of convexity splitting can be applied to more general evo-
lution equations, and in particular to those that do not follow a variational principle,
especially to the inpainting Equations (1.4) and (1.5).

Convexity splitting methods, although possibly not under the same name, already
have a long tradition in several parts of numerical analysis. In finite element approx-
imations for PDEs, examples for such numerical schemes can be found in the works
of Barrett, Blowley, and Garcke; cf. [4] Equation (3.42) for an application to a model
for phase separation. In [35] a finite difference scheme for second-order parabolic
equations is presented which also uses the convexity splitting idea; cf. Equation (5.4)
in [35]. Further convexity splitting is also discussed in a more general optimization
context; cf. [73] Chapter two for an overview on this topic.

The main part of the paper illustrates the application of the convexity splitting
idea to the three fourth-order inpainting approaches (1.4), (1.5), and (1.6). Moti-
vated by the analysis in [17], we show that with this numerical approach we are
able to (approximately) compute strong solutions of the continuous problem with an
unconditionally stable finite difference scheme. The numerical scheme is said to be
unconditionally stable if all solutions of the difference equation are bounded indepen-
dently from the time step size; cf. Definition 2.2. Moreover, we prove consistency
of these schemes and convergence to the exact solution. Further, we present nu-
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merical results demonstrating the effect of the higher order regularizing term in the
approaches. In the case of TV-H−1 inpainting and inpainting with LCIS we directly
compare the visual results with the second order TV inpainting method.

Organization of the paper. In Section 2 the idea of convexity splitting is pre-
sented. After an introduction to gradient systems we state and prove Eyre’s theorem
about the unconditional stability of the convexity splitting scheme. Sections 3-5 are
dedicated to the application of convexity splitting to Cahn-Hilliard inpainting (1.4),
TV-H−1 inpainting (1.5), and inpainting with LCIS (1.6). In the case of Cahn-Hilliard
and TV-H−1 inpainting the corresponding Equations (1.4) and (1.5) are not strictly
gradient flows, but their evolution is the sum of the gradients of two different ener-
gies. Here, convexity splitting is applied to each of these energies and results in a
semi-implicit scheme for the whole evolution. Rigorous proofs for the consistency of
the numerical scheme, the boundedness of numerical solutions and their convergence
to the exact solution are given. For each of these inpainting algorithms numerical
results are presented. In the conclusion of the paper open problems are discussed.

Notation. In this paper we discuss the numerical solution of evolutionary dif-
ferential equations. Therefore we have to distinguish between the exact solution u of
the continuous equation and the approximative solution U of the corresponding time
discrete numerical scheme. We write capital Uk for the kth solution of the discrete
equation and small uk=u(k∆t) for a solution of the continuous inpainting equation
at time k∆t with time step size ∆t. Let ek denote the temporal discretization error
given by ek=uk−Uk. In subsection two, u and U are vectors in RN , where N denotes
the dimension of the data. In all other parts of this paper u and U are assumed to
be elements in L2(Ω). Let E∈C2(H,R) denote a functional from a suitable Hilbert
space H to R, and ∇E(u) its first variation with respect to u. In the discrete set-
ting H=RN . Throughout this paper ‖·‖ denotes the norm in L2(Ω) (or the Euclidean
norm in the discrete setting), and 〈·, ·〉 the inner product in L2(Ω) (or in RN in the dis-
crete setting). Finally, since we pose all three inpainting approaches (1.4)-(1.6) with
Neumann boundary conditions, we have to define the non-standard space H−1(Ω) as

H−1(Ω)=
{

F ∈H1(Ω)∗ | 〈F,1〉(H1)∗,H1 =0
}

,

with norm ‖·‖−1 :=
∥

∥∇∆−1·
∥

∥

L2(Ω)
. Thereby the operator ∆−1 denotes the in-

verse of ∆ with Neumann boundary conditions. In more detail, let
◦

H1(Ω) :=
{

ψ∈H1(Ω) :
∫

Ω
ψdx=0

}

. Then u=∆−1F ∈
◦

H1(Ω) is the unique weak solution of
the following problem:

{

∆u−F =0, in Ω,
∇u ·ν=0, on ∂Ω.

For a more elaborate derivation of the above space we refer to [19], Appendix A.

2. The convexity splitting idea
As already discussed in the Introduction, convexity splitting methods are used in

a wide range of optimization problems; cf. Section 1.2 for relevant references. Orig-
inally designed to solve gradient systems, we shall see in this paper that convexity
splitting schemes are relevant for more general problems, i.e., for evolution equations
which do not follow a variational principle. See Sections 3-5 for our three inpainting
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approaches (1.4)-(1.6).
First we introduce the notion of gradient flows and the application of convexity split-
ting methods in this context. To do so we follow the explanations and notations in
Eyre’s work [36].

We consider Equation (1.7). If E fulfills the following conditions;

(i) E(u)≥0, ∀u∈RN ,

(ii) E(u)→∞ as ‖u‖→∞,

(iii) 〈J(∇E)(u)u,u〉≥λ∀u∈RN ,

(2.1)

then Equation (1.7) is called a gradient system and its solutions are called gradient
flows. Thereby J(∇E)(u) is the Jacobian of ∇E in u, λ∈R and 〈., .〉 denotes the inner

product on RN with corresponding norm ‖u‖
2
= 〈u,u〉. All gradient systems satisfy

the dissipation property, i.e.,

dE(u)

dt
=−‖∇E(u)‖

2
,

and therefore E(u(t))≤E(u0) for all t≥0.
If E(u) is strictly convex, i.e., λ in condition (2.1)(iii) is positive, then only a

single equilibrium for the gradient system exists. Unconditionally stable and uniquely
solvable numerical schemes exist for these equations (cf. [66]). If E(u) is not strictly
convex, i.e., λ<0, multiple minimizers may exist and the gradient flow can possibly
expand in u(t). The stability of an explicit gradient descent algorithm, i.e., Uk+1=
Uk−∆t∇E(Uk), in this case may require extremely small time steps, depending of
course on the functional E. For fourth order inpainting approaches, for instance,
E(Uk) contains second order derivatives resulting in a restriction of ∆t up to order
(∆x)4 (where ∆x denotes the step size of the spatial discretization). Therefore the
development of stable and efficient discretizations for non-convex functionals E is
highly desirable.

The basic idea of convexity splitting is to write the functional E as

E(u)=Ec(u)−Ee(u), (2.2)

where

Eo∈C
2(RN ,R) and Eo(u) is strictly convex for all u∈R

N , o∈{c,e}. (2.3)

The semi-implicit discretization of (1.7) is then given by

Uk+1−Uk=−∆t(∇Ec(Uk+1)−∇Ee(Uk)) , (2.4)

where U0=u0.

Remark 2.1. We want to anticipate that the setting of Eyre, and hence the
subsequent presentation of convexity splitting, is a purely discrete one. Nevertheless
it actually holds in a more general framework, i.e., for more general gradient flows. In
the case of an L2 gradient flow for example, the Jacobian J of the discrete functional
E just has to be replaced by the second variation of the continuous functional E in
L2(Ω).

In the following we show that convexity splitting can be applied to the inpainting
approaches (1.4), (1.5), and (1.6), and produces unconditionally gradient stable or
unconditionally stable numerical schemes.
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Definition 2.1. [36] A one-step numerical integration scheme is unconditionally
gradient stable if there exists a function E(.) :RN →R such that, for all ∆t>0 and
for all initial data:

(i) E(U)≥0 for all U ∈RN ,

(ii) E(U)→∞ as ‖U‖→∞,

(iii) E(Uk+1)≤E(Uk) for all Uk ∈RN ,

(iv) If E(Uk)=E(U0) for all k≥0 then U0 is a zero of ∇E for (1.7) and (2.1).

Note that Cahn-Hilliard inpainting (1.4) and TV-H−1 inpainting (1.5) are not
given by gradient flows. Hence, in the context of these inpainting models the meaning
of unconditional stability has to be redefined. Namely, in the case of an evolution
equation which does not follow a gradient flow, a corresponding discrete time stepping
scheme is said to be unconditionally stable if solutions of the difference equation are
bounded within a finite time interval, independently of the step size ∆t.

Definition 2.2. Let u be an element of a suitable function space H defined on
Ω× [0,T ], with Ω⊂R2 open and bounded, and T >0. Let further G be a real valued
function and ut=G(u,D

αu) be a partial differential equation with space derivatives
Dαu, α=1, . . . ,4. A corresponding discrete time stepping method

Uk+1=Uk+∆tGk(Uk,Uk+1,D
αUk,D

αUk+1), (2.5)

where Gk is a suitable approximation of G in Uk and Uk+1 is

• unconditionally stable, if all solutions of (2.5) are bounded for all ∆t>0
and all k such that k∆t≤T .

• consistent if

lim
∆t→0

τk(∆t)=0,

where τk(∆t) is the local truncation error of the scheme and defined as

τk(∆t)=
uk+1−uk

∆t
−Gk(uk,uk+1,D

αuk,D
αuk+1), (2.6)

and uk=u(k∆t) is the exact solution at time t=k∆t. In what follows we
abbreviate τk for τk(∆t). Moreover, we define the global truncation error to
be

τ(∆t)=max
k

‖τk(∆t)‖H.

A numerical scheme is said to be of order p in time if

τ(∆t)=O(∆tp) for ∆t→0.

We start with a theorem of Eyre [36]. The proof presented below follows the same
arguments as in [36] with additional details.

Theorem 2.3 ([36] Theorem 1). Let E satisfy (2.1), and Ec and Ee satisfy
(2.2)-(2.3). If Ee(u) additionally satisfies

〈J(∇Ee)(u)u,u〉≥−λ (2.7)
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when λ<0 in (2.1)(iii), then for any initial condition the numerical scheme (2.4) is
consistent with (1.7), gradient stable for all ∆t>0, and possesses a unique solution
for each time step. The local truncation error for each step is

τk=
∆t

2
(J(∇Ec(û))+J(∇Ee(û)))∇E(u(ξ)),

for some ξ∈ (k∆t,(k+1)∆t) and for some û in the parallelopiped with opposite vertices
at Uk and Uk+1.

Remark 2.2. Condition (2.7) in Theorem 2.3 is equivalent to the requirement that
all the eigenvalues of J(∇Ee) dominate the largest eigenvalue −λ of −J(∇E), i.e.,

〈J(∇Ee)(u)u,u〉
(2.7)

≥ −λ
(2.1)

≥ 〈−J(∇E)(u)u,u〉

for all u∈RN , or

λ̂≥|λ| , for all eigenvalues λ̂>0 of Ee. (2.8)

Proof. (Eyre [36]). The unconditional gradient stability of (2.4) in the sense of
Definition 2.1 is established first. By our assumptions in (2.1) properties (i) and (ii)
in Definition 2.1 immediately follow. Property (iv) follows from the general behavior
of gradient systems, i.e., if E(Uk)=E(U0) for all k≥0 then U0 is an ω- limit point of
(1.7) and (2.1) and hence U0 is a zero of ∇E (cf. [48]). The main part of the proof
consists of the verification of property (iii). Namely we have to show that

E(Uk+1)≤E(Uk), ∀Uk ∈R
N .

To do so we consider the difference E(Uk+1)−E(Uk). The proof is by repeated
application of Taylor’s theorem. We start with an exact expansion of E about Uk+1

up to second order and obtain

E(Uk)=E(Uk+1)−〈∇E(Uk+1),Uk+1−Uk〉

+
1

2
〈J(∇E(Uk+1−α(Uk+1−Uk)))Uk+1−Uk,Uk+1−Uk〉

for some α∈ (0,1). Then by assumption (iii) in (2.1) we get

E(Uk+1)−E(Uk)≤〈∇E(Uk+1),Uk+1−Uk〉+ |λ|‖Uk+1−Uk‖
2
.

By (2.2) and (2.4) this is the same as

E(Uk+1)−E(Uk)≤〈∇Ec(Uk+1)−∇Ee(Uk+1),Uk+1−Uk〉+ |λ|‖Uk+1−Uk‖
2

−

〈

1

∆t
(Uk+1−Uk)+∇Ec(Uk+1)−∇Ee(Uk),Uk+1−Uk

〉

=−〈∇Ee(Uk+1)−∇Ee(Uk),Uk+1−Uk〉+

(

|λ|−
1

∆t

)

‖Uk+1−Uk‖
2
.

(2.9)

Similarly, we Taylor expand Ee about Uk+1 and Uk, respectively, as

Ee(Uk)= Ee(Uk+1)−〈∇Ee(Uk+1),Uk+1−Uk〉
+ 1

2 〈J(∇Ee(Uk+1−α1(Uk+1−Uk)))Uk+1−Uk,Uk+1−Uk〉 ,
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and

Ee(Uk+1)=Ee(Uk)+〈∇Ee(Uk),Uk+1−Uk〉

+
1

2
〈J(∇Ee(Uk−α2(Uk+1−Uk)))Uk+1−Uk,Uk+1−Uk〉 ,

for some α1 and α2 in (0,1). Since Ee is convex, then J(∇Ee) is positive definite

and its eigenvalues are positive. By bounding the eigenvalues of J(∇Ee) by λ̂>0 and
adding the above expressions we get

〈∇Ee(Uk+1)−∇Ee(Uk),Uk+1−Uk〉≥ λ̂‖Uk+1−Uk‖
2
.

Substituting this in (2.9), we obtain

E(Uk+1)−E(Uk)≤−

(

λ̂−|λ|+
1

∆t

)

‖Uk+1−Uk‖
2
.

By applying condition (2.7) (i.e., (2.8)) the result follows for all ∆t≥0. Hence the
method is unconditionally gradient stable.

To prove the unique solvability of (2.4) we consider the nonlinear equations

Uk+1+∆t∇Ec(Uk+1)=Rk,

which must be solved at each step for a given Rk. Since Ec is strictly convex,

1

2
‖Uk+1‖

2
+∆tEc(Uk+1)−〈Uk+1,Rk〉

has a unique minimum in Uk+1 for all ∆t, and (2.4) has a unique solution for all
∆t≥0. The consistency and the local truncation error of (2.4) can be established
by similar Taylor expansions as the ones we did above to prove the unconditional
stability of the scheme. More precisely it consists of expanding Uk+1 and Uk around
(k+1/2)∆t, and ∇Ec(Uk+1) and ∇Ee(Uk) around Uk+1/2. This finishes the proof
of Theorem 2.3.

In the following we apply the idea of convexity splitting to our three inpainting
models (1.4), (1.5), and (1.6). For this we change from the discrete setting to the
continuous setting, i.e., considering functions u in a suitable Hilbert space instead of
vectors u in RN . Although the first two of these inpainting approaches, i.e., Cahn-
Hilliard inpainting and TV-H−1 inpainting, are not given by gradient flows, we show
that the resulting numerical schemes are still unconditionally stable (in the sense of
Definition 2.2) and therefore suitable to solve them accurately and reasonably fast.
For inpainting with LCIS (1.6) the results of Eyre can be directly applied, even in the
continuous setting; cf. Remark 2.1. Nevertheless, also for this case, we additionally
present a rigorous analysis, similar to the one done for Cahn-Hilliard and TV-H−1

inpainting.

3. Cahn-Hilliard inpainting
In this section we show the application of convexity splitting to Cahn-Hilliard

inpainting (1.4). Recall that the inpainted version u(x) of f(x) is constructed by
following the evolution equation

ut=∆

(

−ǫ∆u+
1

ǫ
F ′(u)

)

+λ(f−u)
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to steady state. This modified Cahn-Hilliard equation is introduced in [13] for the
inpainting of binary images. The latter, mainly numerical paper, was followed by
a very careful analysis of (1.4) in [14]. To start with, the authors prove global ex-
istence of a unique weak solution of the evolution Equation (1.4). More precisely
the solution u is proven to be an element in C([0,T ];L2(Ω))∩L2(0,T ;V ), where
V =

{

φ∈H2(Ω) |∂φ/∂ν=0 on ∂Ω
}

, and ν is the outward pointing normal on ∂Ω.
Under additional conditions on the given image f , they also derive some very in-
teresting results concerning the continuation of the gradient of the image into the
inpainting domain. In fact, in [14] the authors prove that in the limit λ0→∞ a
stationary solution of (1.4) solves

∆

(

ǫ∆u−
1

ǫ
F ′(u)

)

=0, in D,

u=f, on ∂D,

∇u=∇f, on ∂D,

(3.1)

for f regular enough (f ∈C2). The existence of a stationary solution of (1.4) is
assured in [19]. Additionally, in [14] the authors present numerical examples which
show that the connectivity principle is fulfilled, and compute a bifurcation diagram
for stationary solutions of (1.4). This supports the claim that fourth-order methods
are superior to second-order methods with respect to a smooth continuation of the
image contents into the missing domain.

The idea to apply convexity splitting in order to solve (1.4) numerically was born
in [13]. The numerical results presented there illustrate the usefulness of this scheme.
Although the authors do not analyze the scheme rigorously, based on their numerical
results they conjecture unconditional stability. In the following we shall present this
numerical scheme and derive some additional properties based on a rigorous analysis
of the latter.

The original Cahn-Hilliard equation is a gradient flow in H−1 for the energy

E1(u)=

∫

Ω

ǫ

2
|∇u|

2
+

1

ǫ
F (u)dx,

while the fitting term in (1.4) can be derived from a gradient flow in L2 for the energy

E2(u)=
1

2

∫

Ω

λ(f−u)2 dx.

However, note that Equation (1.4) as a whole is no longer a gradient system. Hence,
for the discretization in time, we apply the convexity splitting discussed in Section
2 to both functionals E1 and E2 separately. Namely, we split E1 as E1=E1c−E1e,
with

E1c(u)=

∫

Ω

ǫ

2
|∇u|

2
+
C1

2
|u|

2
dx, E1e(u)=

∫

Ω

−
1

ǫ
F (u)+

C1

2
|u|

2
dx.

A possible splitting for E2 is E2=E2c−E2e with

E2c(u)=
1

2

∫

Ω

C2 |u|
2
dx, E2e(u)=

1

2

∫

Ω

−λ(f−u)2+C2 |u|
2
dx.

To make sure that E1c, E1e and E2c, E2e are strictly convex, the constants C1 and
C2 have to be chosen such that C1>

1
ǫ , C2>λ0; see [14].



C.B. SCHÖNLIEB AND A. BERTOZZI 425

Then the resulting discrete time-stepping scheme for an initial condition U0=u0
is given by

Uk+1−Uk

∆t
=−∇H−1(E1c(Uk+1)−E1e(Uk))−∇L2(E2c(Uk+1)−E2e(Uk)),

where ∇H−1 and ∇L2 represent gradient descent with respect to the H−1 inner prod-
uct and the L2 inner product respectively. This translates to a numerical scheme of
the form

Uk+1−Uk

∆t
+ǫ∆∆Uk+1−C1∆Uk+1+C2Uk+1

=
1

ǫ
∆F ′(Uk)−C1∆Uk+λ(f−Uk)+C2Uk, in Ω. (3.2)

We enforce Neumann boundary conditions on ∂Ω, i.e.,

∇Uk+1 ·~n=∇∆Uk+1 ·~n=0, on ∂Ω, (3.3)

where ~n is the outward pointing normal on ∂Ω, and compute Uk+1 in (3.2) in the
spectral domain using the discrete cosine transform (DCT). The idea to use spectral
methods for equations involving Laplacian operators is classical and is based on the
fact that the Laplace matrix is diagonalized in the spectral domain. Hence, solving
these equations in the spectral domain can be done much faster since matrix mul-
tiplication is replaced by scalar multiplication (multiplying with the elements in the
main diagonal). Since additionally there also exist fast numerical methods to com-
pute the discrete Fourier/Cosine transform (such as the fast Fourier transform (FFT))
this method has an overall computational advantage. Let Û be the DCT of U with
eigenvalues λi. Then Equation (3.2) in Û reads

Ûk+1(i,j)

=
(1−C1∆t(

1
∆x2λi+

1
∆y2λj)+C2∆t)Ûk(i,j)+

∆t
ǫ

̂∆F ′(Uk)(i,j)+∆t ̂λ(f−Uk)

1+C2∆t+ǫ∆t(
1

∆x2λi+
1

∆y2λj)2−C1∆t(
1

∆x2λi+
1

∆y2λj)
.

3.1. Rigorous Estimates for the Scheme. From Theorem 2.3 we know
that (at least in the spatially discrete framework) the convexity splitting scheme (2.2)-
(2.4) is unconditionally stable, i.e., separate numerical schemes for the gradient flows
of the energies E1(u) and E2(u) are non–increasing for all ∆t>0. But this does not
guarantee that the numerical scheme (3.2) is unconditionally stable, since it combines
the flows of two energies. In this section we shall analyze the scheme in more detail
and derive some rigorous estimates for its solutions. In particular we show that the
scheme (3.2) is unconditionally stable in the sense of Definition 2.2. Our results are
summarized in the following theorem.

Theorem 3.1. Let u be the exact solution of (1.4) and uk=u(k∆t) the exact solution
at time k∆t, for a time step ∆t>0 and k∈N. Let Uk be the kth iterate of (3.2) with
constants C1>1/ǫ, C2>λ0. Then the following statements are true:

(i) Under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, the numerical
scheme (3.2) is consistent with the continuous Equation (1.4) and of order
one in time.
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Under the additional assumption that

F ′′(Uk−1)≤K (3.4)

for a nonnegative constant K, we further have

(ii) The solution sequence Uk is bounded on a finite time interval [0,T ], for all
∆t>0. In particular for k∆t≤T , T >0 fixed, we have for every ∆t>0

‖∇Uk‖
2
2+∆tK1‖∆Uk‖

2
2

≤eK2T
(

‖∇U0‖
2
2+∆tK1‖∆U0‖

2
2+∆tT C(Ω,D,λ0,f)

)

, (3.5)

for suitable constants K1 and K2, and constant C depending on Ω,D,λ0,f
only.

(iii) The discretization error ek, given by ek=uk−Uk, converges to zero as ∆t→0.
In particular, we have for k∆t≤T , T >0 fixed, that

‖∇ek‖
2
2+∆t

C1

C̃
‖∆ek‖

2
2≤

T

C̃
eK1T ·C ·(∆t)2, (3.6)

for suitable constants C,C̃,K1.

Remark 3.1. Note that our assumptions for the consistency of the numerical
scheme only hold if the time derivative of the solution of the continuous Equation
(1.4) is uniformly bounded. This is true for smooth and bounded solutions of the
equation.

Further, since we are interested in bounded solutions Uk of the discrete Equation
(3.2), it is natural to assume (3.4), i.e., that the nonlinearity F ′′ in the previous time
step (k−1)∆t is bounded. Also note that the constant K in (3.4) can be chosen
arbitrarily large.

The proof of Theorem 3.1 is organized in Propositions 3.2-3.4.

Proposition 3.2 (Consistency (i)). Under the same assumptions as in
Theorem 3.1, and in particular under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are
bounded, the numerical scheme (3.2) is consistent with the continuous Equation (1.4)
with ‖τk‖−1=O(∆t) as ∆t→0, where τk is the local truncation error as defined in
Equation (2.6) above.

Proof. Let τk be the local truncation error defined as in (2.6). Then

τk= τ
1
k +τ

2
k ,

with

τ1k =
uk+1−uk

∆t
−ut(k∆t)

τ2k = ǫ∆∆(uk+1−uk)−C1∆(uk+1−uk)+C2(uk+1−uk)

= ǫ∆t∆2uk+1−uk
∆t

−C1∆t∆
uk+1−uk

∆t
+C2∆t

uk+1−uk
∆t

,

i.e.,

τk=
uk+1−uk

∆t
+ǫ∆2uk+1−

1

ǫ
∆F ′(uk)−λ(f−uk)−C1∆(uk+1−uk)+C2(uk+1−uk).

(3.7)
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Using standard Taylor series arguments and assuming that ‖utt‖−1 and ‖∇∆ut‖2 are
bounded we deduce that the global truncation error τ is given by

τ =max
k

‖τk‖−1=O(∆t) as ∆t→0. (3.8)

Proposition 3.3 (Unconditional stability (ii)). Under the same assumptions
as in Theorem 3.1 and in particular assuming that (3.4) holds, the solution sequence
Uk fulfills (3.5). This gives boundedness of the solution sequence on [0,T ].

Proof. We consider our discrete model

Uk+1−Uk

∆t
+ǫ∆∆Uk+1−C1∆Uk+1+C2Uk+1

=
1

ǫ
∆F ′(Uk)−C1∆Uk+λ(f−Uk)+C2Uk,

multiply the equation with −∆Uk+1 and integrate over Ω. We obtain

1

∆t

(

‖∇Uk+1‖
2
2−〈∇Uk,∇Uk+1〉2

)

+ǫ‖∇∆Uk+1‖
2
2+C1‖∆Uk+1‖

2
2+C2‖∇Uk+1‖

2
2

=
1

ǫ
〈F ′′(Uk)∇Uk,∇∆Uk+1〉2+C1 〈∆Uk,∆Uk+1〉2

+〈∇λ(f−Uk),∇Uk+1〉2+C2 〈∇Uk,∇Uk+1〉2 .

Using Young’s inequality we obtain

1

2∆t

(

‖∇Uk+1‖
2
2−‖∇Uk‖

2
2

)

+ǫ‖∇∆Uk+1‖
2
2+C1‖∆Uk+1‖

2
2+C2‖∇Uk+1‖

2
2

≤
1

2ǫδ
‖F ′′(Uk)∇Uk‖

2
2+

δ

2ǫ
‖∇∆Uk+1‖

2
2+

C1

2
‖∆Uk‖

2
2+

C1

2
‖∆Uk+1‖

2
2

+
C2

2
‖∇Uk‖

2
2+

C2

2
‖∇Uk+1‖

2
2+

1

2
‖∇λ(f−Uk)‖

2
2+

1

2
‖∇Uk+1‖

2
2 .

Using the estimate

‖∇λ(f−Uk)‖
2
2≤2λ20‖∇Uk‖

2
2+C(Ω,D,λ0,f)

and reordering the terms, we obtain

(

1

2∆t
+
C2

2
−

1

2

)

‖∇Uk+1‖
2
2+

C1

2
‖∆Uk+1‖

2
2+

(

ǫ−
δ

2ǫ

)

‖∇∆Uk+1‖
2
2

≤

(

1

2∆t
+
C2

2
+λ20

)

‖∇Uk‖
2
2+

1

2ǫδ
‖F ′′(Uk)∇Uk‖

2
2+

C1

2
‖∆Uk‖

2
2+C(Ω,D,λ0,f).

By choosing δ=2ǫ2, the third term on the left side of the inequality is zero. Because
of Assumption (3.4) we obtain the following bound on the right side of the inequality

‖F ′′(Uk)∇Uk‖
2
2≤K

2‖∇Uk‖
2
2 ,

and we have
(

1

2∆t
+
C2

2
−

1

2

)

‖∇Uk+1‖
2
2+

C1

2
‖∆Uk+1‖

2
2

≤

(

1

2∆t
+
C2

2
+λ20+

K2

4ǫ3

)

‖∇Uk‖
2
2+

C1

2
‖∆Uk‖

2
2+C(Ω,D,λ0,f).
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Now we multiply the above inequality by 2∆t and define

C̃=1+∆t(C2−1),

˜̃C=1+∆t

(

C2+2λ20+
K2

2ǫ3

)

.

Since C2 is chosen greater than λ0>1, the first coefficient C̃ is positive and we can
divide the inequality by it. We obtain

‖∇Uk+1‖
2
2+∆t

C1

C̃
‖∆Uk+1‖

2
2≤

˜̃C

C̃
‖∇Uk‖

2
2+∆t

C1

C̃
‖∆Uk‖

2
2+∆tC(Ω,D,λ0,f),

where we updated the constant C(Ω,D,λ0,f) by C(Ω,D,λ0,f)/C̃.

Since
˜̃C
C̃
≥1, we can multiply the second term on the right side of the inequality

by this quotient to obtain

‖∇Uk+1‖
2
2+∆t

C1

C̃
‖∆Uk+1‖

2
2≤

˜̃C

C̃

(

‖∇Uk‖
2
2+∆t

C1

C̃
‖∆Uk‖

2
2

)

+∆tC(Ω,D,λ0,f).

We deduce by induction that

‖∇Uk‖
2
2+∆t

C1

C̃
‖∆Uk‖

2
2≤

(

˜̃C

C̃

)k
(

‖∇U0‖
2
2+∆t

C1

C̃
‖∆U0‖

2
2

)

+∆t

k−1
∑

i=0

(

˜̃C

C̃

)i

C(Ω,D,λ0,f)

=
(1+K2∆t)

k

(1+K1∆t)k

(

‖∇U0‖
2
2+∆t

C1

C̃
‖∆U0‖

2
2

)

+∆t

k−1
∑

i=0

(1+K2∆t)
i

(1+K1∆t)i
C(Ω,D,λ0,f).

For k∆t≤T we have

‖∇Uk‖
2
2+∆t

C1

C̃
‖∆Uk‖

2
2≤ e

(K2−K1)T

(

‖∇U0‖
2
2+∆t

C1

C̃
‖∆U0‖

2
2

)

+∆tT e(K2−K1)TC(Ω,D,λ0,f)

= e(K2−K1)T

(

‖∇U0‖
2
2+∆t

C1

C̃
‖∆U0‖

2
2

+∆tT C(Ω,D,λ0,f)
)

,

which gives boundedness of the solution sequence on [0,T ] for any T >0, assuming
that (3.4) holds.

The convergence of the discrete solution to the continuous one as the time step
∆t→0 is verified in the following proposition.

Proposition 3.4 (Convergence (iii)). Under the same assumptions as in
Theorem 3.1 and in particular under Assumption (3.4) the discretization error ek
fulfills (3.6).
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In order to prove Proposition 3.4 we need the following auxiliary lemma.

Lemma 3.2. The error ek between the exact and approximate solution defined as in
Theorem 3.1 fulfills

∫

Ω

ek dx=O((∆t)2).

Proof. [Proof of Lemma 3.2] Because of the fidelity term in (1.4) and (3.2),
solutions of these equations are not mass preserving, i.e.,

∫

Ω
ek does not in general

vanish. In fact we have, for a solution uk of (1.4),

d

dt

∫

Ω

uk=−ǫ

∫

Ω

∆2uk+
1

ǫ

∫

Ω

∆F ′(uk)+

∫

Ω

λ(f−uk)

=−ǫ

∫

∂Ω

∇∆uk ·~n+
1

ǫ

∫

∂Ω

∇F ′(uk) ·~n+

∫

Ω

λ(f−uk),

where we have used Gauss divergence theorem to obtain the boundary integrals.
Assuming zero Neumann boundary conditions as in (3.3) the two boundary integrals
vanish, and hence

d

dt

∫

Ω

uk=

∫

Ω

λ(f−uk).

In particular

d

dt

∫

D

uk=0. (3.9)

A similar computation for the discrete solution of (3.2) shows that

(

1

∆t
+C2

)∫

Ω

(Uk+1−Uk)=

∫

Ω

λ(f−Uk),

and in particular
(

1

∆t
+C2

)∫

D

(Uk+1−Uk)=0. (3.10)

Next, let us follow the lines of the consistency proof in (3.7). Then the discretization
error ek satisfies

ek+1−ek
∆t

+ǫ∆2ek+1−C1∆ek+1+C2ek+1

=
1

∆t
(uk+1−uk)−

1

∆t
(Uk+1−Uk)+ǫ∆

2uk+1−ǫ∆
2Uk+1

−C1∆uk+1+C1∆Uk+1+C2uk+1−C2Uk+1

=−

(

1

ǫ
∆F ′(Uk)−C1∆Uk+λ(f−Uk)+C2Uk

)

+

(

1

ǫ
∆F ′(uk)+λ(f−uk)−C1∆uk+C2uk

)

+τk

=−

(

1

ǫ
∆(F ′(Uk)−F

′(uk))−C1∆(Uk−uk)+C2(Uk−uk)−λ(Uk−uk)

)

+τk.
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As before, integrating over Ω, applying Gauss divergence theorem and the zero Neu-
mann boundary conditions for uk and Uk, we get

(

1

∆t
+C2

)∫

Ω

(ek+1−ek)+

∫

Ω

λek=

∫

τk, (3.11)

where

∫

Ω

τk=

(

1

∆t
+C2

)∫

Ω

(uk+1−uk)−

∫

Ω

(uk)t

=

(

1

∆t
+C2

)∫

Ω

(uk+∆t(uk)t+O((∆t)2)−uk)−

∫

Ω

(uk)t

=O(∆t).

Now, to prove our claim we apply induction on k. First, assuming that u0=U0 in Ω,
we have that

∫

Ω

e0=0,

and hence
(

1

∆t
+C2

)∫

Ω

e1=O(∆t). (3.12)

Assuming that assertion (3.12) holds for all indices ≤k and using (3.9) and (3.10) we
have, for (3.11),

(

1

∆t
+C2

)∫

Ω

(ek+1−ek)+

∫

Ω

λek=

∫

τk

(

1

∆t
+C2

)∫

Ω

ek+1−O(∆t)+λ0

(

1

∆t
+C2

)−1

O(∆t)=O(∆t)

(

1

∆t
+C2

)∫

Ω

ek+1=O(∆t),

and hence

(1+C2∆t)

∫

Ω

ek=O((∆t)2)

for all k≥0.

We continue with the proof of Proposition 3.4.

Proof. [Proof of Proposition 3.4] In the proof of Lemma 3.2 we have used the
consistency result (3.7) to show that the discretization error ek satisfies

ek+1−ek
∆t

+ǫ∆2ek+1−C1∆ek+1+C2ek+1

=−

(

1

ǫ
∆(F ′(Uk)−F

′(uk))−C1∆(Uk−uk)+C2(Uk−uk)−λ(Uk−uk)

)

+τk.
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Multiplication with −∆ek+1 leads to

1

∆t
〈∇(ek+1−ek),∇ek+1〉2+ǫ‖∇∆ek+1‖

2
2+C1‖∆ek+1‖

2
2+C2‖∇ek+1‖

2
2

=
1

ǫ
〈∆(F ′(Uk)−F

′(uk)),∆ek+1〉2−C1 〈∆(Uk−uk),∆ek+1〉2

+〈∇λ(Uk−uk),∇ek+1〉2−C2 〈∇(Uk−uk),∇ek+1〉2+
〈

∇∆−1τk,∇∆ek+1

〉

2
.

Further, because

1

∆t

(

‖∇ek+1‖
2
2−〈∇ek,∇ek+1〉2

)

≥
1

2∆t
(‖∇ek+1‖

2
2−‖∇ek‖

2
2),

we obtain

1

2∆t
(‖∇ek+1‖

2
2−‖∇ek‖

2
2)+ǫ‖∇∆ek+1‖

2
2+C1‖∆ek+1‖

2
2+C2‖∇ek+1‖

2
2

≤
1

ǫ
〈∆(F ′(Uk)−F

′(uk)),∆ek+1〉2+C1 〈∆ek,∆ek+1〉2−〈∇λek,∇ek+1〉2

+C2 〈∇ek,∇ek+1〉2+
〈

∇∆−1τk,∇∆ek+1

〉

2
.

Applying Young’s inequality leads to

1

2∆t
(‖∇ek+1‖

2
2−‖∇ek‖

2
2)+ǫ‖∇∆ek+1‖

2
2+C1‖∆ek+1‖

2
2+C2‖∇ek+1‖

2
2

≤−
1

ǫ
〈(F ′′(Uk)∇Uk−F

′′(uk)∇uk),∇∆ek+1〉2+
C1

2δ1
‖∆ek‖

2
2+

C1δ1
2

‖∆ek+1‖
2
2

+
λ20
2δ3

‖∇ek‖
2
2+

δ3
2
‖∇ek+1‖

2
2+

C2

2δ2
‖∇ek‖

2
2+

C2δ2
2

‖∇ek+1‖
2
2

+
1

2δ4
‖τk‖

2
−1+

δ4
2
‖∇∆ek+1‖

2
2 .

Let us consider the remaining inner product in the last inequality:

−
1

ǫ
〈(F ′′(Uk)∇Uk−F

′′(uk)∇uk),∇∆ek+1〉2

=
1

ǫ
〈F ′′(Uk)∇ek,∇∆ek+1〉2+

1

ǫ
〈(F ′′(uk)−F

′′(Uk))∇uk,∇∆ek+1〉2

≤
1

2δ5ǫ
‖F ′′(Uk)|∇ek|‖

2
2+

1

2δ6ǫ
‖(F ′′(uk)−F

′′(Uk))|∇uk|‖
2
2+

(

δ5
2ǫ

+
δ6
2ǫ

)

‖∇∆ek+1‖
2
2 .

Next we assume that (3.4) holds and that ∇uk is uniformly bounded on [0,T ] — in
particular, that

∃ ˜̃K>0 such that ‖∇uk‖2≤
˜̃K for all k∆t<T. (3.13)

The latter assumption will be proven in Lemma 3.3 just after the end of this proof.
Moreover, since F ′′ is locally Lipschitz continuous we obtain

−
1

ǫ
〈(F ′′(Uk)∇Uk−F

′′(uk)∇uk),∇∆ek+1〉2

≤
C

2δ5ǫ
‖∇ek‖

2
2+

C

2δ6ǫ
‖ek‖

2
2+

(

δ5
2ǫ

+
δ6
2ǫ

)

‖∇∆ek+1‖
2
2 ,
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where we have set C to be a universal constant for all bounds. Further, using Lemma
3.2 and

‖ek‖
2
2=‖ek−O(∆t)2+O(∆t)2‖22

≤2‖ek−O(∆t)2‖22+2‖O(∆t)2‖22,

we can apply the Poincaré inequality to the L2 norm of ek. In sum we get

(

1

2∆t
+C2

(

1−
δ2
2

)

−
δ3
2

)

‖∇ek+1‖
2
2+C1

(

1−
δ1
2

)

‖∆ek+1‖
2
2

+

(

ǫ−
δ4
2
−
δ5+δ6
2ǫ

)

‖∇∆ek+1‖
2
2

≤

(

1

2∆t
+
λ20
2δ3

+
C2

2δ2
+

C

2δ5ǫ
+
C

δ6ǫ

)

‖∇ek‖
2
2+

C1

2δ1
‖∆ek‖

2
2

+
1

2δ4
‖τk‖

2
−1+

C

ǫδ6
‖O(∆t)2‖22.

Next we choose δ1=1 and multiply the inequality with 2∆t:

(1+∆t(C2(2−δ2)−δ3))‖∇ek+1‖
2
2+∆tC1‖∆ek+1‖

2
2

+∆t

(

2ǫ−δ4−
δ5+δ6
ǫ

)

‖∇∆ek+1‖
2
2

≤

(

1+∆t

(

λ20
δ3

+
C2

δ2
+
C

δ5ǫ
+

2C

δ6ǫ

))

‖∇ek‖
2
2+∆tC1‖∆ek‖

2
2

+
∆t

δ4
‖τk‖

2
−1+∆t

2C

ǫδ6
‖O(∆t)2‖22.

Let

C̃=1+∆t(C2(2−δ2)−δ3),
˜̃C=1+∆t

(

λ20
δ3

+
C2

δ2
+
C

δ5ǫ
+

2C

δ6ǫ

)

.

Now, by choosing all δs such that the coefficients of all terms in the inequality are

nonnegative and the quotient ˜̃C/C̃≥1, and by estimating the last term on the left
side from below by zero, we get

‖∇ek+1‖
2
2+∆t

C1

C̃
‖∆ek+1‖

2
2

≤
˜̃C

C̃
‖∇ek‖

2
2+∆t

C1

C̃
‖∆ek‖

2
2+

∆t

C̃

(

1

δ4
‖τk‖

2
−1+

2C

δ6ǫ
‖O(∆t)2‖22

)

,

and because ˜̃C/C̃≥1 we further have

‖∇ek+1‖
2
2+∆t

C1

C̃
‖∆ek+1‖

2
2≤

˜̃C

C̃

(

‖∇ek‖
2
2+∆t

C1

C̃
‖∆ek‖

2
2

)

+
∆t

C̃

(

1

δ4
‖τk‖

2
−1+

2C

δ6ǫ
‖O(∆t)2‖22

)

.
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By induction on k we obtain

‖∇ek+1‖
2
2+∆t

C1

C̃
‖∆ek+1‖

2
2

≤

(

˜̃C

C̃

)k+1
(

‖∇e0‖
2
2+∆t

C1

C̃
‖∆e0‖

2
2

)

+
∆t

C̃

k
∑

i=0

(

˜̃C

C̃

)i

·

(

1

δ4
max
i≤k

{‖τi‖
2
−1}+

2C

δ6ǫ
‖O(∆t)‖22

)

=
∆t

C̃

k
∑

i=0

(1+K1∆t)
i
·

(

1

δ4
max
i≤k

{‖τi‖
2
−1}+

2C

δ6ǫ
‖O(∆t)2‖22

)

≤
∆t

C̃
·k ·eK1k∆t ·

(

1

δ4
max
i≤k

{‖τi‖
2
−1}+

2C

δ6ǫ
‖O(∆t)2‖22

)

,

where we have used the fact that e0=0 and 1≤
˜̃C
C̃
=1+K1∆t. Hence, by using the

consistency result (3.8) we conclude, for k∆t≤T , that

‖∇ek‖
2
2+∆t

C1

C̃
‖∆ek‖

2
2≤

T

C̃
eK1T ·C ·(∆t)2.

From [13, 14] we know that the solution uk to the continuous equation globally
exists and is uniformly bounded in L2(Ω). Next we show that assumption (3.13)
holds.

Lemma 3.3. Let uk be the exact solution of (1.4) at time t=k∆t and let T >0. Then
there exists a constant C>0 such that ‖∇uk‖2≤C for all k∆t<T .

Proof. Let K(u)=−ǫ∆u+ 1
ǫF

′(u). We multiply the continuous evolution Equa-
tion (1.4) with K(u) and obtain

〈ut,K(u)〉2= 〈∆K(u),K(u)〉2+〈λ(f−u),K(u)〉2 .

Let us further define

E(u) :=
ǫ

2

∫

Ω

|∇u|2 dx+
1

ǫ

∫

Ω

F (u)dx.

Then we have

〈ut,K(u)〉2=

〈

ut,−ǫ∆u+
1

ǫ
F ′(u)

〉

2

= 〈∇ut,ǫ∇u〉2+

〈

ut,
1

ǫ
F ′(u)

〉

2

=
d

dt
E(u),

since u satisfies Neumann boundary conditions. Therefore we get

d

dt
E(u)=−

∫

Ω

|∇K(u)|2 dx+〈λ(f−u),−ǫ∆u〉2+

〈

λ(f−u),
1

ǫ
F ′(u)

〉

2

. (3.14)
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Since F (u) is bounded from below, we only have to show that E(u) is uniformly
bounded on [0,T ], and we automatically have that |∇u| is uniformly bounded on
[0,T ]. We start with the last term, and recall the following bounds on F ′(u) (cf. [67]):
There exist positive constants C1,C2 such that

F ′(s)s≥C1s
2−C2, ∀s∈R

and, for every δ>0, there exists a constant C3 such that

|F ′(s)|≤ δC1s
2+C3(δ), ∀s∈R.

Using the last two estimates we obtain the following:
〈

λ(f−u),
1

ǫ
F

′(u)

〉

2

=
λ0

ǫ

∫

Ω\D

F
′(u)f dx−

λ0

ǫ

∫

Ω\D

F
′(u)udx

≤
λ0

ǫ

∫

Ω\D

|F ′(u)|dx ·‖f‖L∞(Ω)−
λ0C1

ǫ

∫

Ω\D

u
2
dx+

λ0C2 |Ω\D|

ǫ

≤ λ0C(f,Ω)

(

δ
C1

ǫ

∫

Ω\D

u
2
dx+

C3(δ) |Ω\D|

ǫ

)

−
λ0C1

ǫ

∫

Ω\D

u
2
dx

+
λ0C2 |Ω\D|

ǫ

≤ −
λ0C1

ǫ
(1−δC(f,Ω))

∫

Ω\D

u
2
dx+C(λ0,ǫ,δ,Ω,D,f),

where we choose δ<1/C(f,Ω). Therefore integrating (3.14) over the time interval
[0,T ] results in

∫ T

0

d

dt
E(u(t))dt≤

∫ T

0

−

∫

Ω

|∇K(u)|2 dxdt+

∫ T

0

〈λ(f−u),−ǫ∆u〉2 dt

−
λ0C1

ǫ
(1−δC(f,Ω))

∫ T

0

∫

Ω\D

u2 dxdt+T ·C(λ0,ǫ,δ,Ω,D,f).

Next we consider the second term on the right side of the last inequality. From
Theorem 4.1 in [13] we know that a solution u of (1.4) is an element in L2(0,T ;H2(Ω))
for all T >0. Hence ∆u∈L2(0,T ;L2(Ω)) and the second term is bounded by a constant
depending on T . Consequently, for each 0≤ t≤T , we get

E(u(t))≤E(u(0))+C(T )+T ·C(λ0,ǫ,δ,Ω,D,f)

−

∫ T

0

[

∫

Ω

|∇K(u)|2 dx+
λ0C1

ǫ
(1−δC(f,Ω))

∫

Ω\D

u2 dx

]

dt,

and with this, for a fixed T >0, that |∇u| is uniformly bounded in [0,T ].

3.2. Numerical results. In our computations the optimal ∆t turned out
to be ∆t=1 or 10 (depending also on the size of ǫ and λ0). Numerical results of
the above scheme are presented in Figures 3.1, 3.2 and 3.3. In all of the examples
we follow the procedure of [13], i.e., the inpainted image is computed in a two step
process. In the first step Cahn-Hilliard inpainting is solved with a rather large value
of ǫ, e.g., ǫ=0.1, until the numerical scheme is close to steady state. In this step the
level lines are continued into the missing domain. In a second step, the result of the
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Fig. 3.1. Binary image with unknown center and the solution of Cahn-Hilliard inpainting with
λ0=105 and switching ǫ value: u(600) with ǫ=0.1, u(1000) with ǫ=0.01

Fig. 3.2. Text removal from a binary image: the solution of Cahn-Hilliard inpainting with
λ0=109 and switching ǫ value: u(200) with ǫ=0.8, u(500) with ǫ=0.01

first step is put as an initial condition into the scheme for a small ǫ, e.g., ǫ=0.01, in
order to sharpen the contours of the image contents. The reason for this two step
procedure is twofold. First of all in [14] the authors give numerical evidence that
the steady state of the modified Cahn-Hilliard Equation (1.4) is not unique, i.e., it is
dependent on the initial condition inside of the inpainting domain. As a consequence,
computing the inpainted image by the application of Cahn-Hilliard inpainting with
a small ǫ only, might not extend the level lines into the missing domain as desired.
See also [14] for a bifurcation diagram based on the numerical computations of the
authors. The second reason for solving Cahn-Hilliard inpainting in two steps is that it
is computationally less expensive. Solving the above time-marching scheme for, e.g.,
ǫ=0.1 is faster than solving it for ǫ=0.01. This is because of the damping introduced
by C1, i.e., ǫ, into the scheme; cf. (3.2). All numerical examples presented here have
been computed in orders of 10 seconds on a 1.86 GHz processor with 1 GB RAM.
For a further discussion on computational times for the convexity splitting method
applied to Cahn-Hilliard inpainting we refer to [13].

One possible generalization of Cahn-Hilliard inpainting for grayscale images is to
split the grayscale image bit-wise into channels

u(x);

K
∑

k=1

uk(x)2
−(k−1),

where K>0. The Cahn-Hilliard inpainting approach is then applied to each binary
channel uk separately, compare Figure 3.5. At the end of the inpainting process
the channels are assembled again and the result is the inpainted grayvalue image
in lower grayvalue resolution, compare Figure 3.4. In Figure 3.6 the application of
bitwise Cahn-Hilliard inpainting for the restoration of satellite images of roads is
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Fig. 3.3. Vandalized binary image and the solution of Cahn-Hilliard inpainting with λ0=109

and switching ǫ value: u(800) with ǫ=0.8, u(1600) with ǫ=0.01

demonstrated. One can imagine that the black dots in the first picture represent
trees that cover parts of the road. The idea of bitwise binary inpainting is proposed
in [30] for the inpainting with wavelets based on the Allen-Cahn energy.
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Fig. 3.4. Cahn-Hilliard bitwise inpainting with K=8 binary channels (λ0=108, with ǫ=0.1
until t=800 and ǫ=0.01 until t=1200)

4. TV-H−1 inpainting

In this section we discuss convexity splitting for TV-H−1 inpainting (1.5). To
avoid numerical and theoretical difficulties we approximate an element p in the
subdifferential of the total variation functional TV (u) by a smoothed version of
∇·(∇u/|∇u|), the square root regularization for instance. With the latter regu-
larization the smoothed version of (1.5) reads as

ut=−∆∇·

(

∇u
√

|∇u|2+δ2

)

+λ(f−u), (4.1)

with 0<δ≪1. In contrast to its second-order analogue, the well-posedness of (1.5)
strongly depends on the smoothing used for∇·(∇u/|∇u|). In fact there are smoothing
functions for which (1.5) produces singularities in finite time. This is caused by
the lack of maximum principles which in the second-order case guarantee the well-
posedness for all smooth monotone regularizations. In [16] the authors consider (1.5)
with λ=λ0 in all of Ω, i.e., the fourth-order analogue to TV-L2 denoising, which
was originally introduced in [58]. They prove global well-posedness, in one space
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Fig. 3.5. The given image (first row) and the Cahn-Hilliard inpainting result (second row) for
the channels 2,3 and 5.

Fig. 3.6. Bitwise Cahn-Hilliard inpainting with K=8 binary channels applied to road restoration

dimension and for smooth initial data, for the arctan regularization

(

2

π
arctan(ux/δ)

)

x

, (4.2)

where 0<δ≪1. For the square root smoothing

(

ux
√

|ux|2+δ2

)

x

(4.3)

they conjecture, supported by empirical evidence, that singularities occur in infinite
time, not finite time. The behavior of the fourth-order PDE in one dimension is also
relevant for two-dimensional images since a lot of structure involves edges which are
one-dimensional objects. In two dimensions similar results are much more difficult to
obtain, since energy estimates and the Sobolev lemma involved in its proof might not
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hold in higher dimensions anymore. We also note that in [19] the authors prove the
existence of a weak stationary solution for (1.5) in two space dimensions.

In the following we present the convexity splitting method applied to (1.5) for both
the square root and the arctan regularization. Similarly to the convexity splitting for
Cahn-Hilliard inpainting, we propose the following splitting for the TV-H−1 inpainting
equation. The regularizing term in (1.5) can be modeled by a gradient flow in H−1

of the energy

E1(u)=

∫

Ω

|∇u|dx,

where |∇u| is replaced by its regularized version, e.g.,

√

|∇u|
2
+δ2, δ>0. We split

E1 as E1c−E1e, with

E1c(u)=

∫

Ω

C1

2
|∇u|2 dx, and E1e(u)=

∫

Ω

−|∇u|+
C1

2
|∇u|2 dx.

The fitting term is split into E2=E2c−E2e, analogous to Cahn-Hilliard inpainting.
The resulting time-stepping scheme is given by

Uk+1−Uk

∆t
+C1∆∆Uk+1+C2Uk+1=C1∆∆Uk−∆

(

∇·

(

∇Uk

|∇Uk|

))

+C2Uk+λ(f−Uk). (4.4)

We assume that Uk+1 satisfies zero Neumann boundary conditions and use the DCT
to solve (4.4).

The constants C1 and C2 have to be chosen such that E1c,E1e,E2c,E2e are all
strictly convex. In the following we demonstrate how to compute the appropriate
constants. Let us consider C1 first. The functional E1c is strictly convex for all
C1>0. The choice of C1 for the convexity of E1e depends on the regularization of
the total variation we are using. We use the square regularization (4.3), i.e., instead
of |∇u| we have

∫

G(|∇u|)dx, with G(s)=
√

s2+δ2.

Setting y= |∇u| we have to choose C1 such that C1

2 y
2−G(y) is convex. The convexity

condition for the second derivative gives us that

C1>G
′′(y) ⇐⇒ C1>

δ2

(δ2+y2)3/2
⇐⇒ C1>

1

δ

is sufficient as δ2

(δ2+y2)3/2
has its maximum value at y=0. In the one dimensional case,

we would like to compare this with the arctan regularization (4.2), i.e., replacing ux

|ux|

by 2
π arctan(

ux

δ ) as proposed in [16]. Here the convexity condition for the second
derivative reads

C1±
d

ds

(

2

π
arctan

(s

δ

)

)

>0.

The ± sign results from the absent absolute value in the regularization definition. We
obtain

C1±
2

π

1

δ(1+s2/δ2)
>0.
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The inequality with a plus sign instead of ± is true for all constants C1>0. In the
other case we obtain

C1>
2

π

δ

δ2+s2
,

which is fulfilled for all s∈R if C1>
2
δπ . Note that this condition is almost the same

as in the case of the square regularization.

Now we consider E2=E2c−E2e. The functional E2c is strictly convex if C2>0.
For the convexity of E2e we rewrite

E2e(u)=
1

2

∫

Ω

−λ(f−u)2+C2|u|
2 dx

=

∫

D

C2

2
|u|2 dx+

∫

Ω\D

−
λ0
2
(f−u)2+

C2

2
|u|2 dx

=

∫

D

C2

2
|u|2 dx+

∫

Ω\D

(

C2

2
−
λ0
2

)

|u|
2
+λ0fu−

λ0
2
|f |

2
.

This is convex for C2>λ0, e.g., with C2=λ0+1 we can write

E2e(u)=

∫

D

C2

2
|u|2 dx+

∫

Ω\D

(

1

2
u+λ0f

)2

−

(

λ20+
λ0
2

)

|f |
2
dx.

4.1. Rigorous estimates for the scheme. As in Section 3.1 for Cahn-
Hilliard inpainting, we proceed with a more detailed analysis of (4.4). Throughout
this section we consider the square-root regularization of the total variation both in
our numerical scheme and in the continuous evolution Equation (1.5). Note that
similar results are true for other monotone regularizers such as the arctan smoothing.
Our results are summarized in the following theorem.

Theorem 4.1. Let u be the exact solution of (4.1) and uk=u(k∆t) be the exact
solution at time k∆t for a time step ∆t>0 and k∈N. Let Uk be the kth iterate of
(4.4) with constants C1>1/δ, C2>λ0. Then the following statements are true:

(i) Under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, the numerical
scheme (4.4) is consistent with the continuous Equation (1.5) and of order
one in time.

(ii) The solution sequence Uk is bounded on a finite time interval [0,T ], for all
∆t>0. In particular, for k∆t≤T , T >0 fixed, we have for every ∆t>0,

‖∇Uk‖
2
2+∆tK1‖∇∆Uk‖

2
2≤e

K2T
(

‖∇U0‖
2
2+∆tK1‖∇∆U0‖

2
2+∆tTC(Ω,D,λ0,f)

)

(4.5)

for suitable constants K1, K2, and a constant C, which depends on Ω,D,λ0,f
only.

(iii) Let ek=uk−Uk. For smooth solutions uk and Uk, the error ek converges to
zero as ∆t→0. In particular, for k∆t≤T , T >0 fixed, we have

‖∇ek‖
2
2+∆tM1‖∇∆ek‖

2
2≤

T

M2
eM3T (∆t)2 (4.6)

for suitable positive constants M1,M2 and M3.
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Remark 4.1. For the convergence result in Theorem 4.1 (iii) we assume that
smooth solutions to both the continuous in time problem and the discrete in time
approximation exist. The validity of this assumption is not known in general. Note
however that the global regularity results are known in 1D for the arctan smooth-
ing [16]. Moreover, our numerical results show no indication of singularities in 2D.
Therefore, it is not unreasonable to analyze the convergence under these assumptions.

The proof of Theorem 4.1 is split into the three separate Propositions 4.2-4.4.

Proposition 4.2 (Consistency (i)). Under the same assumptions as in The-
orem 4.1 and in particular under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are
bounded, the numerical scheme (4.4) is consistent with the continuous Equation (4.1)
with ‖τk‖−1=O(∆t) as ∆t→0, where τk is the local truncation error.

Proof. The local truncation error is defined over a time step as satisfying

τk= τ
1
k +τ

2
k ,

where

τ1k =
uk+1−uk

∆t
−ut(k∆t), τ2k =C1∆

2(uk+1−uk)+C2(uk+1−uk),

i.e.,

τk=
uk+1−uk

∆t
+∆

(

∇·

(

∇uk
√

|∇uk|2+δ2

))

−λ(f−uk)

+C1∆
2(uk+1−uk)+C2(uk+1−uk). (4.7)

Using standard Taylor series arguments and assuming that ‖utt‖−1, ‖∇∆ut‖2 and
‖ut‖2 are bounded we deduce that

‖τk‖−1=O(∆t) for ∆t→0. (4.8)

Proposition 4.3 (Unconditional stability (ii)). Under the same assump-
tions as in Theorem 4.1 the solution sequence Uk fulfills (4.5). This gives boundedness
of the solution sequence on [0,T ].

Proof. If we multiply (4.4) with −∆Uk+1 and integrate over Ω we obtain

1

∆t

(

‖∇Uk+1‖
2
2−〈∇Uk,∇Uk+1〉2

)

+C2‖∇Uk+1‖
2
2+C1‖∇∆Uk+1‖

2
2

=

〈

∆∇·





∇Uk
√

|∇Uk|
2
+δ2



 ,∆Uk+1

〉

2

+C1 〈∇∆Uk,∇∆Uk+1〉2

+〈∇(λ(f−Uk)) ,∇Uk+1〉2+C2 〈∇Uk,∇Uk+1〉2 .

Applying Young’s inequality to the inner products on the right and estimating

‖∇λ(f−Uk)‖
2
2≤2λ20‖∇Uk‖

2
2+C(Ω,D,λ0,f)
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results in

1

2∆t

(

‖∇Uk+1‖
2
2−‖∇Uk‖

2
2

)

+C2‖∇Uk+1‖
2
2+C1‖∇∆Uk+1‖

2
2

≤

〈

∆∇·





∇Uk
√

|∇Uk|
2
+δ2



 ,∆Uk+1

〉

2

+
C1

δ1
‖∇∆Uk‖

2
2+C1δ1‖∇∆Uk+1‖

2
2

+
2λ20
δ2

‖∇Uk‖
2
2+δ2‖∇Uk+1‖

2
2+

C2

δ3
‖∇Uk‖

2
2+C2δ3‖∇Uk+1‖

2
2+C(Ω,D,λ0,f).

Now, the first term on the right side of the inequality can be estimated as follows

〈

∆∇·





∇Uk
√

|∇Uk|
2
+δ2



 ,∆Uk+1

〉

2

=−

〈

∇∇·





∇Uk
√

|∇Uk|
2
+δ2



 ,∇∆Uk+1

〉

2

≤
1

δ4

∥

∥

∥

∥

∥

∥

∇∇·





∇Uk
√

|∇Uk|
2
+δ2





∥

∥

∥

∥

∥

∥

2

2

+δ4‖∇∆Uk+1‖
2
2 .

Applying Poincaré’s and Cauchy’s inequality to the first term leads to

∥

∥

∥

∥

∥

∥

∇∇·





∇Uk
√

|∇Uk|
2
+δ2





∥

∥

∥

∥

∥

∥

2

2

≤
C

δ
(‖∇Uk‖

2
2+‖∆Uk‖

2
2+‖∇∆Uk‖

2
2).

Interpolating the L2 norm of ∆u by the L2 norms of ∇u and ∇∆u, we obtain

(

1

2∆t
+C2(1−δ3)−δ2

)

‖∇Uk+1‖
2
2+(C1(1−δ1)−δ4)‖∇∆Uk+1‖

2
2

≤

(

1

2∆t
+

2λ20
δ2

+
C2

δ3
+
C(1/δ,Ω)

δ4

)

‖∇Uk‖
2
2+

(

C1

δ1
+
C(1/δ,Ω)

δ4

)

‖∇∆Uk‖
2
2

+C(Ω,D,λ0,f).

For δi=1/2, i=1, . . . ,4 we obtain

(

1

2∆t
+
C2−1

2

)

‖∇Uk+1‖
2
2+

C1−1

2
‖∇∆Uk+1‖

2
2

≤

(

1

2∆t
+4λ20+2(C2+C)

)

‖∇Uk‖
2
2+2(C1+C)‖∇∆Uk‖

2
2+C(Ω,D,λ0,f).

Since C1 and C2 are chosen such that C1>1/δ>1 and C2>λ0>1, the coefficients
in the inequality above are positive. The rest of the proof is similar to the proof of
Proposition 3.3. We multiply the inequality by 2∆t and set

Ca=1+∆t(C2−1), Cb=C1−1, Cc=1+2∆t(4λ20+2(C2+C)), Cd=4(C1+C).

We obtain

Ca‖∇Uk+1‖
2
2+∆tCb‖∇∆Uk+1‖

2
2≤Cc‖∇Uk‖

2
2+∆tCd‖∇∆Uk‖

2
2+2∆tC(Ω,D,λ0,f).
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Dividing by Ca (which is >0) we have

‖∇Uk+1‖
2
2+∆t

Cb

Ca
‖∇∆Uk+1‖

2
2≤

Cc

Ca
‖∇Uk‖

2
2+∆t

Cd

Ca
‖∇∆Uk‖

2
2+

2

Ca
∆tC(Ω,D,λ0,f).

We rewrite the right hand side of the inequality such that

‖∇Uk+1‖
2
2+∆t

Cb

Ca
‖∇∆Uk+1‖

2
2

≤
CcCd

Ca

(

1

Cd
‖∇Uk‖

2
2+∆t

1

Cc
‖∇∆Uk‖

2
2

)

+
2

Ca
∆tC(Ω,D,λ0,f).

Since Cd>1 we can multiply the first term within the brackets on the right hand side
of the inequality with Cd and will only get something which is larger or equal. For
the same reason we can multiply the second term within the brackets with

1<
CcCb

Ca
=

(1+2∆t(4λ20+2(C2+C)))(C1−1)

1+∆t(C2−1)

and get

‖∇Uk+1‖
2
2+∆t

Cb

Ca
‖∇∆Uk+1‖

2
2

≤
CcCd

Ca

(

‖∇Uk‖
2
2+∆t

Cb

Ca
‖∇∆Uk‖

2
2

)

+
2

Ca
∆tC(Ω,D,λ0,f).

By induction it follows that

‖∇Uk+1‖
2
2+∆t

Cb

Ca
‖∇∆Uk+1‖

2
2≤

(

CcCd

Ca

)k(

‖∇U0‖
2
2+∆t

Cb

Ca
‖∇∆U0‖

2
2

)

+∆t

k−1
∑

i=0

(

CcCd

Ca

)i
2

Ca
C(Ω,D,λ0,f).

Therefore we obtain for k∆t≤T

‖∇Uk‖
2
2+∆t

Cb

Ca
‖∇∆Uk‖

2
2≤e

KT

(

‖∇U0‖
2
2+∆t

Cb

Ca
‖∇∆U0‖

2
2+∆tT

2

Ca
C(Ω,D,λ0,f)

)

.

Finally we show that the discrete solution converges to the continuous one as ∆t
tends to zero.

Proposition 4.4 (Convergence (iii)). Under the same assumptions as in
Theorem 4.1 (iii) the error ek fulfills (4.6).

Proof. By our discrete Approximation (4.4) and the consistency computation



C.B. SCHÖNLIEB AND A. BERTOZZI 443

(4.7), we have for ek=uk−Uk

ek+1−ek
∆t

+C1∆
2ek+1+C2ek+1

=
1

∆t
(uk+1−uk)−

1

∆t
(Uk+1−Uk)+C1∆

2uk+1−C1∆
2Uk+1+C2uk+1−C2Uk+1

=−



C1∆
2Uk−∆



∇·





∇Uk
√

|∇Uk|
2
+δ2







+λ(f−Uk)+C2Uk





−



∆



∇·





∇uk
√

|∇uk|
2
+δ2







−λ(f−uk)−C1∆
2uk−C2uk



+τk

=−

[

−∆



∇·





∇Uk
√

|∇Uk|
2
+δ2



−∇·





∇uk
√

|∇uk|
2
+δ2









+C1∆
2(Uk−uk)+C2(Uk−uk)−λ(Uk−uk)

]

+τk.

Taking the inner product with −∆ek+1, we have

1

∆t
〈∇(ek+1−ek),∇ek+1〉2+C1‖∇∆ek+1‖

2
2+C2‖∇ek+1‖

2
2

=

〈

−∆



∇·





∇Uk
√

|∇Uk|
2
+δ2



−∇·





∇uk
√

|∇uk|
2
+δ2







,∆ek+1

〉

2

+C1

〈

∆2(Uk−uk),∆ek+1

〉

2
+〈∇λ(Uk−uk),∇ek+1〉2

−C2 〈∇(Uk−uk),∇ek+1〉2−
〈

∇∆−1τk,∇∆ek+1

〉

2
.

Using the same arguments as in the proof of Proposition 3.4 we obtain

1

2∆t
(‖∇ek+1‖

2
2−‖∇ek‖

2
2)+C1‖∇∆ek+1‖

2
2+C2‖∇ek+1‖

2
2

≤

〈

−∆



∇·





∇Uk
√

|∇Uk|
2
+δ2



−∇·





∇uk
√

|∇uk|
2
+δ2







,∆ek+1

〉

2

+
C1

δ1
‖∇∆ek‖

2
2+C1δ1‖∇∆ek+1‖

2
2+

λ20
δ3

‖∇ek‖
2
2+δ3‖∇ek+1‖

2
2

+
C2

δ2
‖∇ek‖

2
2+C2δ2‖∇ek+1‖

2
2+

1

δ4
‖τk‖

2
−1+δ4‖∇∆ek+1‖

2
2 . (4.9)

We consider the first term on the right side of the above inequality in detail,

〈

−∆



∇·





∇Uk
√

|∇Uk|
2
+δ2



−∇·





∇uk
√

|∇uk|
2
+δ2







,∆ek+1

〉

2

=

〈

∇



∇·





∇Uk
√

|∇Uk|
2
+δ2



−∇·





∇uk
√

|∇uk|
2
+δ2







,∇∆ek+1

〉

2

. (4.10)
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We get

∇·





∇u
√

|∇u|
2
+δ2



=
∆u

√

|∇u|
2
+δ2

−
u2xuxx+2uxuyuxy+u

2
yuyy

(|∇u|
2
+δ2)3/2

.

Next, we apply the gradient to this expression and obtain

∇



∇·





∇u
√

|∇u|
2
+δ2









=
∇∆u

√

|∇u|
2
+δ2

−
∆u

2(|∇u|
2
+δ2)3/2

·∇
(

|∇u|2
)

−
∇(u2xuxx+2uxuyuxy+u

2
yuyy)

(|∇u|
2
+δ2)3/2

+
3(u2xuxx+2uxuyuxy+u

2
yuyy)

2(|∇u|
2
+δ2)5/2

·∇
(

|∇u|2
)

,

where

∇
(

|∇u|2
)

=









2∇u ·

(

uxx
uyx

)

2∇u ·

(

uxy
uyy

)









=2

(

uxuxx+uyuyx
uxuxy+uyuyy

)

,

and

∇(u2xuxx+2uxuyuxy+u
2
yuyy)=2(uxuxx+uyuxy)∇ux+2(uxuxy+uyuyy)∇uy

+u2x∇uxx+2uxuy∇uxy+u
2
y∇uyy.

Reordering the involved terms we have

∇



∇·





∇u
√

|∇u|
2
+δ2









=H1(∇u) ·∇∆u+H2(ux,uy,uxx,uxy,uyy) ·∇ux+H3(ux,uy,uxx,uxy,uyy) ·∇uy

+H4(ux,uy) ·∇uxx+H5(ux,uy) ·∇uxy+H6(ux,uy) ·∇uyy,
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where

H1(∇u)=
1

√

|∇u|
2
+δ2

,

H2(ux,uy,uxx,uxy,uyy)=−

(

∆uux+2(uxuxx+uyuxy)

(|∇u|
2
+δ2)3/2

−
3(u2xuxx+2uxuyuxy+u

2
yuyy)ux

(|∇u|
2
+δ2)5/2

)

,

H3(ux,uy,uxx,uxy,uyy)=−

(

∆uuy+2(uxuxy+uyuyy)

(|∇u|
2
+δ2)3/2

−
3(u2xuxx+2uxuyuxy+u

2
yuyy)uy

(|∇u|
2
+δ2)5/2

)

,

H4(ux,uy)=−
u2x

(|∇u|
2
+δ2)3/2

,

H5(ux,uy)=−
2uxuy

(|∇u|
2
+δ2)3/2

,

H6(ux,uy)=−
u2y

(|∇u|
2
+δ2)3/2

.

Now we are going to insert this into (4.10). For ease of notation we suppress the time
index k for now, i.e., we define U :=Uk, u :=uk and e := ek. We obtain

〈

∇



∇·





∇Uk
√

|∇Uk|
2
+δ2



−∇·





∇uk
√

|∇uk|
2
+δ2







 ,∇∆ek+1

〉

2

= 〈H1(∇U) ·∇∆U−H1(∇u) ·∇∆u,∇∆ek+1〉2
+〈H2(Ux,Uy,Uxx,Uxy,Uyy) ·∇Ux−H2(ux,uy,uxx,uxy,uyy) ·∇ux,∇∆ek+1〉2
+〈H3(Ux,Uy,Uxx,Uxy,Uyy) ·∇Uy−H3(ux,uy,uxx,uxy,uyy) ·∇uy,∇∆ek+1〉2
+〈H4(Ux,Uy) ·∇Uxx−H4(ux,uy) ·∇uxx,∇∆ek+1〉2
+〈H5(Ux,Uy) ·∇Uxy−H5(ux,uy) ·∇uxy,∇∆ek+1〉2
+〈H6(Ux,Uy) ·∇Uyy−H6(ux,uy) ·∇uyy,∇∆ek+1〉2
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≤
1

2δ̄
‖H1(∇U) ·(∇∆U−∇∆u)‖22+

1

2δ̄
‖∇∆u ·(H1(∇u)−H1(∇U))‖22

+
1

2δ̄
‖H2(Ux,Uy,Uxx,Uxy,Uyy) ·(∇Ux−∇ux)‖

2
2

+
1

2δ̄
‖∇ux ·(H2(ux,uy,uxx,uxy,uyy)−H2(Ux,Uy,Uxx,Uxy,Uyy))‖

2
2

+
1

2δ̄
‖H3(Ux,Uy,Uxx,Uxy,Uyy) ·(∇Uy−∇uy)‖

2
2

+
1

2δ̄
‖∇uy ·(H3(ux,uy,uxx,uxy,uyy)−H3(Ux,Uy,Uxx,Uxy,Uyy))‖

2
2

+
1

2δ̄
‖H4(Ux,Uy) ·(∇Uxx−∇uxx)‖

2
2+

1

2δ̄
‖∇uxx ·(H4(ux,uy)−H4(Ux,Uy))‖

2
2

+
1

2δ̄
‖H5(Ux,Uy) ·(∇Uxy−∇uxy)‖

2
2+

1

2δ̄
‖∇uxy ·(H5(ux,uy)−H5(Ux,Uy))‖

2
2

+
1

2δ̄
‖H6(Ux,Uy) ·(∇Uyy−∇uyy)‖

2
2+

1

2δ̄
‖∇uyy ·(H6(ux,uy)−H6(Ux,Uy))‖

2
2

+6δ̄‖∇∆ek+1‖
2
2,

for a suitable constant δ̄ >0. Next we want to use that the Hi’s are Lipschitz contin-
uous in Ω, with Lipschitz constants L(1/δ)<∞, for δ>0, which grow as δ decreases.
For simplicity, we only present the proof for the first part of H2, i.e., for

H1
2 (ux,uy,uxx,uxy,uyy)=−

∆uux+2(uxuxx+uyuxy)

(|∇u|
2
+δ2)3/2

=
ux(3uxx+uyy)+2uyuxy

(|∇u|
2
+δ2)3/2

.

The others follow similarily. We have

‖H1
2 (ux,uy,uxx,uxy,uyy)−H

1
2 (Ux,Uy,Uxx,Uxy,Uyy)‖2

=

∥

∥

∥

∥

ux(3uxx+uyy)+2uyuxy

(|∇u|2+δ2)3/2
−

Ux(3Uxx+Uyy)+2UyUxy

(|∇U |2+δ2)3/2

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

ux(3uxx+uyy)

(|∇u|2+δ2)3/2
−

Ux(3Uxx+Uyy)

(|∇U |2+δ2)3/2

∥

∥

∥

∥

2

+2

∥

∥

∥

∥

uyuxy

(|∇u|2+δ2)3/2
−

UyUxy

(|∇U |2+δ2)3/2

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

(3uxx+uyy)

(

ux

(|∇u|2+δ2)3/2
−

Ux

(|∇U |2+δ2)3/2

)
∥

∥

∥

∥

2

+

∥

∥

∥

∥

Ux

(|∇U |2+δ2)3/2
(3exx−eyy)

∥

∥

∥

∥

2

+2

∥

∥

∥

∥

uxy

(

uy

(|∇u|2+δ2)3/2
−

Uy

(|∇U |2+δ2)3/2

)
∥

∥

∥

∥

2

+2

∥

∥

∥

∥

Uy

(|∇U |2+δ2)3/2
exy

∥

∥

∥

∥

2

.

From our assumption in Theorem 4.1 (iii) we have a continuous in time smooth
solution u on a finite time interval. In particular this gives us a uniform bound for
the second derivatives of the exact solution u, i.e., there exists a C>0 such that
‖uxx‖∞+‖uxy‖∞+‖uyy‖∞<C on a finite time interval [0,T ]. Further, with the fact
that the function x

(x2+y2+δ2)3/2
is uniformly bounded for δ>0 and for all x,y∈R we

have

‖H1
2 (ux,uy,uxx,uxy,uyy)−H

1
2 (Ux,Uy,Uxx,Uxy,Uyy)‖2

≤C

∥

∥

∥

∥

∥

ux

(|∇u|
2
+δ2)3/2

−
Ux

(|∇U |
2
+δ2)3/2

∥

∥

∥

∥

∥

2

+C ‖3exx−eyy‖2

+2C

∥

∥

∥

∥

∥

uy

(|∇u|
2
+δ2)3/2

−
Uy

(|∇U |
2
+δ2)3/2

∥

∥

∥

∥

∥

2

+2C ‖exy‖2 ,
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where we used a universal constant C>0 for the uniform bounds. Moreover, for
a fixed y and δ>0 the function x

(x2+y2+δ2)3/2
is Lipschitz continuous with constant

L(1/δ), which is increasing as δ decreases. By additionally applying the triangular
inequality once more we eventually have

‖H1
2 (ux,uy,uxx,uxy,uyy)−H

1
2 (Ux,Uy,Uxx,Uxy,Uyy)‖2

≤CL(1/δ)(‖ex‖2+‖ey‖2+‖∇e‖2)+C(‖exx‖2+‖exy‖2+‖eyy‖2),

and hence that H1
2 is Lipschitz continuous. Similarly one can show that the other

Hi’s are Lipschitz continuous. Let us further observe thatH1,H4,H5,H6 are uniformly
bounded for δ>0. Moreover, the uniform boundedness of H2 and H3 for the discrete
in time solution U on a finite time interval is given by the smoothness assumption
in Theorem 4.1 (iii) for U . Then, with the Lipschitz continuity and the uniform
boundedness of the Hi’s on a finite time interval, and the uniform boundedness on
a finite time interval of ∇uk, ∆uk, and ∇∆uk for the exact solution uk given in
Theorem 4.1 (iii), we eventually obtain an estimate for (4.10):

〈

∇



∇·





∇Uk
√

|∇Uk|
2
+δ2



−∇·





∇uk
√

|∇uk|
2
+δ2







 ,∇∆ek+1

〉

2

≤
C

2δ̄
‖∇∆e‖22+CL

3

δ̄
‖∇e‖22+

C

2δ̄
‖∇ex‖

2
2+

C

2δ̄
‖∇ey‖

2
2+

CL

δ̄
(‖exx‖

2
2+‖exy‖

2
2+‖eyy‖

2
2)

+
C

2δ̄
‖∇exx‖

2
2+

C

2δ̄
‖∇exy‖

2
2+

C

2δ̄
‖∇eyy‖

2
2+6δ̄‖∇∆ek+1‖

2
2, (4.11)

where L=L(1/δ) denotes a universal Lipschitz constant for the Hi’s and C is a
universal constant for the involved uniform bounds.
Further, having assumed zero Neumann boundary conditions for (1.5) and (4.4), i.e.,

∇u ·~n=∇∇·

(

∇u
√

|∇u|2+δ2

)

·~n=0, on ∂Ω,

where ~n is the outward pointing normal on ∂Ω, the second and third derivatives in
(4.11) can be bounded by

‖exx‖
2
2+‖exy‖

2
2+‖eyy‖

2
2+‖∇exx‖

2
2+‖∇exy‖

2
2+‖∇eyy‖

2
2≤B(‖∆e‖22+‖∇∆e‖22),

(4.12)
for a suitable constant B>0. Because of the Neumann boundary conditions we also
get that

∫

Ω
∆e=0. Hence, we can apply Poincaré’s inequality to ‖∆e‖2 and obtain,

for (4.9),

(

1

2∆t
+C2(1−δ2)−δ3

)

‖∇ek+1‖
2
2+
(

C1(1−δ1)−δ4−6δ̄
)

‖∇∆ek+1‖
2
2

≤

(

1

2∆t
+

C2

δ2
+

λ2
0

δ3

3CL

δ̄

)

‖∇ek‖
2
2+

(

C1

δ1
+

C

2δ̄
+BC

[

5

2δ̄
+L

1

δ̄

])

‖∇∆ek‖
2
2+

1

δ4
‖τk‖

2
−1,

where we reintroduced the index notation ek for e. Therefore by following the lines
of the proof of Proposition 3.4 we finally have, for k∆t≤T ,

‖∇ek‖
2
2+∆tM1‖∇∆ek‖

2
2≤

T

M2
eM3T (∆t)2,



448 UNCONDITIONALLY STABLE SCHEMES FOR HIGHER ORDER INPAINTING

for suitable positive constants M1,M2 and M3.

Remark 4.5. Note that the Lipschitz continuity of the Hi’s – necessary for the
estimates in the convergence proof – breaks down if δ→0, where δ is the smoothing
parameter in the square-root regularization (4.3) of the total variation.

4.2. Numerical results. Numerical results for the TV-H−1 inpainting ap-
proach are presented in Figures 4.1 and 4.2. For a comparison of the higher order
TV-H−1 inpainting approach with its second order cousin, the standard TV-L2 in-
painting method, in Figure 4.2 we consider the performance of both algorithms in a
small part of the image in Figure 4.1. In fact the result shown in Figures 4.1 and
4.2 strongly indicates the continuation of the gradient of the image function into the
inpainting domain. A rigorous proof of this observation, as the one for Cahn-Hilliard
inpainting (cf. Section 3), is a matter of future research. In both examples the total

variation |∇u| is approximated by

√

|∇u|
2
+δ and the time step size ∆t is chosen to

be equal to one. The computational time for the example in Figure 4.1 is of the order
of 100 seconds on a 1.86 GHz processor with 1 GB RAM.

Fig. 4.1. TV-H−1 inpainting: u(1000) with λ0=103

Fig. 4.2. (l.) u(1000) with TV-H−1 inpainting, (r.) u(5000) with TV-L2 inpainting

5. LCIS inpainting
Our last example for the applicability of the convexity splitting method to higher-

order inpainting approaches is inpainting with LCIS (1.6). With f ∈L2(Ω) our in-
painted image u evolves in time as

ut=−∆(arctan(∆u))+λ(f−u).

In contrast to the other two inpainting methods that we discussed, this inpainting
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equation is a gradient flow in L2 for the energy

E(u)=

∫

Ω

G(∆u)dx+
1

2

∫

Ω

λ(f−u)2,

withG′(y)=arctan(y). Therefore Eyre’s result in Theorem 2.3 can be applied directly.
The functional E(u) is split into Ec−Ee with

Ec(u)=

∫

Ω

C1

2
(∆u)2 dx+

1

2

∫

Ω

C2

2
|u|

2
dx,

Ee(u)=

∫

Ω

−G(∆u)+
C1

2
(∆u)2 dx+

1

2

∫

Ω

−λ(f−u)2+
C2

2
|u|

2
dx.

The resulting time-stepping scheme is

Uk+1−Uk

∆t
+C1∆

2Uk+1+C2Uk+1=−∆(arctan(∆Uk))+C1∆
2Uk+λ(f−Uk)+C2Uk.

(5.1)
Again we impose homogeneous Neumann boundary conditions, use DCT to solve
(5.1), and choose the constants C1 and C2 such that Ec and Ee are all strictly convex
and condition (2.7) is satisfied. The functional Ec is convex for all C1,C2>0. The
first term in Ee is convex if C1>1. This follows from its second variation, namely

∇2E1e(u)(v,w)=

(

d

ds

∫

(C1∆(u+sw)−arctan(∆(u+sw)))∆v dx

)

s=0

=

∫ (

C1−
1

1+(∆u)2

)

∆v∆wdx.

For E1e to be convex, ∇2E1e(u)(v,w) must be >0 for all v,w∈C∞, and therefore

C1−
1

1+(∆u)2
>0.

Substituting s=∆u we obtain

C1>
1

1+s2
∀s∈R.

This inequality is fulfilled for all s∈R if C1>1. We obtain the same condition
on C1 for G′(s)=arctan( sδ ). For the convexity of the second term of Ee, the second
constant has to fulfill C2>λ0; cf. the computation for the fitting term in Section 4.
With these choices of C1 and C2 also condition (2.7) of Theorem 2.3 is automatically
satisfied.

5.1. Rigorous estimates for the scheme. Finally we present rigorous
results for (5.1). In contrast to the inpainting Equations (1.4) and (1.5), inpainting
with LCIS follows a variational principle. Hence, by choosing the constants C1 and
C2 appropriately, i.e., C1>1, C2>λ0 (cf. the computations above), Theorem 2.3
ensures that the iterative scheme (5.1) is unconditionally gradient stable. In addition
to this property, we present similar results as before for Cahn-Hilliard and TV-H−1

inpainting.

Theorem 5.1. Let u be the exact solution of (1.6) and uk=u(k∆t) the exact solution
at time k∆t, for a time step ∆t>0 and k∈N. Let Uk be the kth iterate of (5.1) with
constants C1>1, C2>λ0. Then the following statements hold:
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(i) Under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, the numerical
scheme (5.1) is consistent with the continuous Equation (1.6) and of order
one in time.

(ii) The solution sequence Uk is bounded on a finite time interval [0,T ] for all
∆t>0. In particular, for k∆t<T , T >0 fixed, we have

‖∇Uk‖
2
2+∆tK1‖∇∆Uk‖

2
2≤e

K2T
(

‖∇U0‖
2
2+∆tK1‖∇∆U0‖

2
2+∆tTC(Ω,D,λ0,f)

)

(5.2)

for suitable constants K1, K2, and a constant C depending on Ω,D,λ0,f
only.

(iii) Let ek=uk−Uk. If

‖∇∆uk‖
2
2≤K, for a constant K>0, and for all k∆t<T (5.3)

then the error ek converges to zero as ∆t→0. In particular, for k∆t≤T ,
T >0 fixed, we have

‖∇ek‖
2
2+∆tM1‖∇∆ek‖

2
2≤

T

M2
eM3T (∆t)2, (5.4)

for suitable nonnegative constants M1,M2 and M3.

Remark 5.1. As in Theorem 4.1 (cf. also Remark 4.1) the convergence of the
iterates Uk to the exact solution is proven under an assumption on the exact solution,
i.e., assumption (5.3), whose validity is unknown in general. However, previous results
in [15] for the denoising case, i.e., for λ(x)=λ0 in all of Ω, and for smooth initial data
and smooth f , suggest the assumption is also reasonable for the inpainting case.

The proof of Theorem 5.1 is organized in the following three Propositions 5.2-5.4.
Since the proof of consistency follows the lines of Proposition 3.2 and Proposition 4.2,
we just state the result.

Proposition 5.2 (Consistency (i)). Under the same assumptions as in Theo-
rem 5.1 and in particular assuming that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, we have

‖τk‖−1=O(∆t) for ∆t→0.

Next we would like to show the boundedness of a solution of (5.1) in the following
proposition.

Proposition 5.3. (Unconditional stability (ii)) Under the same assumptions as
in Theorem 5.1 the solution sequence Uk fulfills (5.2). This gives boundedness of the
solution sequence on [0,T ].

Proof. If we multiply (5.1) with −∆Uk+1 and integrate over Ω, we obtain

1

∆t

(

‖∇Uk+1‖
2
2−〈∇Uk,∇Uk+1〉2

)

+C2‖∇Uk+1‖
2
2+C1‖∇∆Uk+1‖

2
2

= 〈∆arctan(∆Uk),∆Uk+1〉2+C1 〈∇∆Uk,∇∆Uk+1〉2
+〈∇(λ(f−Uk)) ,∇Uk+1〉2+C2 〈∇Uk,∇Uk+1〉2 .
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Using the same arguments as in the proofs of Proposition 3.3 and 4.3 we obtain

1

2∆t

(

‖∇Uk+1‖
2
2−‖∇Uk‖

2
2

)

+C2‖∇Uk+1‖
2
2+C1‖∇∆Uk+1‖

2
2

≤〈∆arctan(∆Uk),∆Uk+1〉2+
C1

δ1
‖∇∆Uk‖

2
2+C1δ1‖∇∆Uk+1‖

2
2+

λ20
2δ2

‖∇Uk‖
2
2

+δ2‖∇Uk+1‖
2
2+

C2

δ3
‖∇Uk‖

2
2+C2δ3‖∇Uk+1‖

2
2+C(Ω,D,λ0,f).

Now, the first term on the right side of the inequality can be estimated as follows

〈∆arctan(∆Uk),∆Uk+1〉2=−〈∇arctan(∆Uk),∇∆Uk+1〉2

=−

〈

1

1+(∆Uk)2
∇∆Uk,∇∆Uk+1

〉

2

≤
1

δ4

∥

∥

∥

∥

1

1+(∆Uk)2
∇∆Uk

∥

∥

∥

∥

2

2

+δ4‖∇∆Uk+1‖
2
2

≤
1

δ4
‖∇∆Uk‖

2
2+δ4‖∇∆Uk+1‖

2
2 . (5.5)

From this we get
(

1

2∆t
+C2(1−δ3)−δ2

)

‖∇Uk+1‖
2
2+(C1(1−δ1)−δ4)‖∇∆Uk+1‖

2
2

≤

(

1

2∆t
+
λ20
2δ2

+
C2

δ3

)

‖∇Uk‖
2
2+

(

C1

δ1
+

1

δ4

)

‖∇∆Uk‖
2
2+C(Ω,D,λ0,f).

Analogously to Section 4.1, with

Ca=1+∆t(C2−1), Cb=C1−1, Cc=1+2∆t(λ20+2C2), Cd=4(C1+1),

we obtain

‖∇Uk‖
2
2+∆t

Cb

Ca
‖∇∆Uk‖

2
2≤e

KT

(

‖∇U0‖
2
2+∆t

Cb

Ca
‖∇∆U0‖

2
2+∆tT

2

Ca
C(Ω,D,λ0,f)

)

,

which gives boundedness of the solution sequence on [0,T ] for any T >0 and any
∆t>0.

The convergence of the discrete solution to the continuous one as ∆t→0 is verified
in the following proposition.

Proposition 5.4 (Convergence (iii)). Under the same assumptions as in
Theorem 5.1 and in particular under assumption (5.3), the error ek fulfills (5.4).

Proof. Since all the computations in the convergence proof for (5.1) are the same
as in Section 4.1 for (4.4) except of the estimate for the regularizer ∆(arctan(∆u)),
we only give the details for the latter and leave the rest to the reader. Thus, for
the inner product involving the regularizer of (5.1) within the convergence proof, we
obtain

〈−∆(arctan(∆Uk)−arctan(∆uk)) ,∆ek+1〉2
= 〈∇(arctan(∆Uk)−arctan(∆uk)) ,∇∆ek+1〉2
= 〈w(∆Uk)∇∆Uk−w(∆uk)∇∆uk,∇∆ek+1〉2
=−〈w(∆Uk)∇∆ek,∇∆ek+1〉2−〈(w(∆Uk)−w(∆uk))∇∆uk,∇∆ek+1〉2

≤
1

2δ
‖w(∆Uk)|∇∆ek|‖

2
2+

1

2δ1
‖(w(∆uk)−w(∆Uk))|∇∆uk|‖

2
2+

δ+δ1
2

‖∇∆ek+1‖
2
2,
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where we have used that

∇(arctan(∆u))=
1

1+ |∆u|2
∇∆u=w(∆u)∇∆u.

Using the uniform boundedness of w(s) for all s∈R, the uniform bound on ∇∆uk
from Assumption (5.3), and the Lipschitz continuity of w, we get

〈−∆(arctan(∆Uk)−arctan(∆uk)) ,∆ek+1〉2

≤
C

2δ
‖∇∆ek‖

2
2+

CL

2δ1
‖∆ek‖

2
2+

δ+δ1
2

‖∇∆ek+1‖
2
2.

Moreover, because of the zero Neumann boundary conditions fulfilled by solutions of
(1.6) and (5.1), i.e.,

∇u ·~n=∇(arctan(∆u)) ·~n=0, on ∂Ω,

where ~n is the outward pointing normal on ∂Ω, ∆ek has zero mean and we can apply
Poincaré’s inequality to obtain

〈−∆(arctan(∆Uk)−arctan(∆uk)) ,∆ek+1〉2

≤

(

C

2δ
+

CL

2δ1

)

‖∇∆ek‖
2
2+

δ+δ1

2
‖∇∆ek+1‖

2
2.

Following the same steps as in the proof of Proposition 4.4 we finally have, for
k∆t≤T ,

‖∇ek‖
2
2+∆tM1‖∇∆ek‖

2
2≤

T

M2
eM3T (∆t)2

for suitable positive constants M1,M2 and M3.

5.2. Numerical results. For the comparison with TV-H−1 inpainting we
apply (5.1) to the same image as in Section 4.2. This example is presented in Figure
5.1. In Figure 5.2 the LCIS inpainting result is compared with TV-H−1 - and TV-L2

inpainting, for a small part in the given image. Again the result of this comparison
indicates the continuation of the gradient of the image function into the inpainting
domain for the two higher-order methods. A rigorous proof of this observation is a
matter of future research. For the numerical computation of (5.1) the arctan(s) was
regularized by arctan(s/δ), δ>0 and ∆t chosen to be equal to 0.01. The inpainted
image in Figure 5.1 has been computed in about 90 seconds on a 1.86 GHz processor
with 1 GB RAM.

6. Conclusion

In this paper we present several higher order PDE-based methods for image in-
painting, along with unconditionally stable time-stepping schemes for the solution of
these equations. Specific examples discussed include Cahn-Hilliard inpainting, TV-
H−1 inpainting, and inpainting with LCIS. The construction of these schemes is based
on the idea of convexity splitting, also introduced in this paper. We study the nu-
merical analysis of the schemes including consistency, unconditional stability, and
convergence. Below we consider some open problems for this class of methods.
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Fig. 5.1. LCIS inpainting u(500) with δ=0.1 and λ0=102.

Fig. 5.2. (l.) u(1000) with LCIS inpainting, (m.) u(1000) with TV-H−1 inpainting, (r.)
u(5000) with TV-L2 inpainting

• The advantage of fourth order inpainting models, over models of second dif-
ferential order, is the smooth continuation of image contents, including direc-
tion of edges, across gaps in the image. Fourth order PDEs require an extra
boundary condition compared with second order equations and this is the mo-
tivation for additional geometric content provided by such methods. However,
in general, the additional boundary condition could involve any of the higher
derivatives, and for inpainting is it desirable to continue the first derivative
accross the inpainting region. The methods proposed here are global meth-
ods based on an L2 fidelity term associated with the known information. For
the special case of the Cahn-Hilliard equation [14], in the limit as λ0→∞
a stationary solution is proved to satisfy precisely the desired two boundary
conditions — matching of grey value and matching direction of edges. We
conjecture that analogous results are true for the other methods presented
here although a rigorous proof is beyond the scope of this manuscript.

• For the proofs of convergence of the discrete solution to the exact solution,
i.e., for the proofs of Theorem 4.4 and Theorem 5.4, we had to assume that the
exact solution is bounded on a finite time interval in a certain Sobolev norm.
As we already argued in the remarks after the statement of the theorems,
these assumptions seem to be heuristically reasonable considering earlier re-
sults in [15, 16]. Nevertheless a rigorous derivation of such bounds is still
missing.

• Besides the fact that rigorous results for fourth-order partial differential equa-
tions are rare in general, an asymptotic analysis of our three inpainting models
would be of high (even practical) interest. More precisely the convergence of
a solution of the evolution Equations (1.4), (1.5), and (1.6), to a station-
ary state is still open. Since the inpainted image is the stationary solution
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of those evolution equations, the asymptotic behavior is of course an issue.
Also, in practice the numerical schemes are solved to steady state (up to an
approximational error). Note that in addition to the fourth differential order,
a difficulty in the convergence analysis of (1.4) and (1.5) is that the equations
do not follow a variational principle.

• The discrete schemes proposed in this paper are unconditionally stable and
their numerical performance is a matter of 10 to 100 seconds for small to
medium-sized images, i.e., 128×128 to 256×256 pixels, and gaps that con-
stitute about one to ten percent of the image domain. Fast numerical solvers
for higher order inpainting models is still a mostly open field of research.
Among such fast solvers we found the recent contribution of Brito-Loeza and
Chen [18] very interesting and forward-looking, who use a multigrid method
to solve inpainting with CDD (Curvature Driven Diffusion). Another ap-
proach is the Split Bregman method of Goldstein and Osher [41, 42], which
suggests a splitting of a higher-order variational problem in two consecutively
minimized first-order problems. Although not directly applicable to the non-
variational inpainting techniques (1.4) and (1.5), their method promises an
efficient solution of, e.g., (1.6) LCIS inpainting.
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