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CORRECTOR THEORY FOR ELLIPTIC EQUATIONS IN RANDOM

MEDIA WITH SINGULAR GREEN’S FUNCTION. APPLICATION

TO RANDOM BOUNDARIES∗

GUILLAUME BAL† AND WENJIA JING‡

Abstract. We consider the problem of the random fluctuations in the solutions to elliptic
PDEs with highly oscillatory random coefficients. In our setting, as the correlation length of the
fluctuations tends to zero, the heterogeneous solution converges to a deterministic solution obtained
by averaging. When the Green’s function to the unperturbed operator is sufficiently singular (i.e., not
square integrable locally), the leading corrector to the averaged solution may be either deterministic
or random, or both in a sense we shall explain.

Our main application is the solution of an elliptic problem with random Robin boundary condition
that may be used to model diffusion of signaling molecules through a layer of cells into a bulk of
extracellular medium. The problem is then described by an elliptic pseudo-differential operator (a
Dirichlet-to-Neumann operator) on the boundary of the domain with random potential.

In the physical setting of a three dimensional extracellular medium on top of a two-dimensional
surface of cells forming a layer of epithelium, we show that the approximate corrector to averaging
consists of a deterministic correction plus a Gaussian field of amplitude proportional to the correlation
length of the random medium. The result is obtained under some assumptions on the four-point
correlation function in the medium. We provide examples of such random media based on Gaussian
and Poisson statistics.
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1. Introduction

We consider elliptic pseudo-differential equations with random potentials of the
form

P (x,D)uε+ q̃ε

(
x,

x

ε
,ω
)
uε=f(x), (1.1)

for x in an open subset X⊂R
d with appropriate boundary conditions on ∂X if nec-

essary. The equations are parametrized by 0<ε≪1 modeling the correlation length
of the random medium. Here, q̃ε(x,

x
ε ,ω) consists of a low frequency part q0(x) and a

high frequency part q(xε ,ω), which is a re-scaled version of q(x,ω), a stationary mean
zero random field defined on some abstract probability space (Ω,F ,P) with (possibly
multi-dimensional) parameter x∈R

d. We denote by E the mathematical expectation
with respect to the probability measure P. Equations with coefficients varying at a
much smaller scale than the scale at which the phenomenon is observed have many
practical applications in the physical modeling of complex media. In this paper,
we primarily consider the particular application of diffusion of signaling molecules
through a three dimensional extracellular medium on top of a two dimensional layer
of cells while the interaction between the molecules and the cells is modeled as a
random boundary condition.

∗Received: April 28, 2010; accepted (in revised version): September 3, 2010. Communicated by
Jack Xin.

†Department of Applied Physics and Applied Mathematics, Columbia University, New York NY,
10027, USA (gb2030@columbia.edu).

‡Department of Applied Physics and Applied Mathematics, Columbia University, New York NY,
10027, USA (wj2136@columbia.edu).

383



384 CORRECTOR THEORY FOR EQUATIONS WITH SINGULAR GREEN’S FUNCTION

It is both mathematically and practically interesting to develop asymptotic the-
ories for solutions to (1.1), if only because numerical solutions become prohibitively
expensive when ε decreases to zero. Homogenization theory or averaging theory aims
at finding an effective or homogenized equation whose solution u is the limit of uε

as ε goes to zero. Corrector theory aims at further approximating the heterogeneous
solution by capturing the leading terms in the corrector uε−u.

The homogenization/averaging of such a problem, where randomness appears as
a potential, is easier than the case where the randomness interacts with derivatives
as in problems with random diffusion coefficients where P (x,D)=−∇·A(xε ,ω) ·∇.
Unlike the latter case whose homogenized equation involves nontrivial expressions of
A(x,ω) (cf. [13, 16], the homogenized/averaged equation for (1.1) is obtained simply
by averaging q̃ε (cf. [1, 11]). At this step, only mild conditions such as stationarity
and ergodicity of the random fields are required.

Corrector theory for the problems with random diffusion coefficients is much more
difficult in arbitrary dimensions. In one space dimension, the correctors are asymp-
totically Gaussian in some settings [1, 7]. Such results are obtained with an additional
requirement that the random fields are strongly mixing with mixing coefficients de-
caying sufficiently fast; the notion of mixing will be introduced later in this paper.
In higher dimensions, corrector theory for problems with random potential is also
available [1, 11] under similar mixing conditions. In particular, the procedure in [1]
applies to an elliptic PDE that admits a Green’s function whose singularity at the
origin is square integrable, and says that weakly in space the corrector has random
fluctuations of order εd/2. This covers the case of diffusion equation with random
potential in dimension d≤3.

The main objective of this paper is to consider the case where the Green’s func-
tion of (1.1) is more singular in the sense that it fails to be square integrable near the
origin. In this case, a deterministic corrector may be comparable to or larger than
the random corrector.

We consider the case that the random field q(x,ω) is stationary with integrable
correlation function R(x) :=E{q(0)q(x)}, and show that the homogenized/averaged
equation is again obtained by averaging q̃ε. We then consider the corrector uε−u
weakly in space, i.e., consider the random variable 〈uε−u,M〉 for arbitrary smooth
test functions M . The fluctuation of this variable is again of order εd/2 as before.
The main difference with the case of square integrable Green’s function is that the
mean of the corrector is of size larger than or equal to εd/2. Hence a complete approx-
imation of uε should include a characterization of the deterministic term E{uε−u},
or at least its components that are of size larger than the random fluctuation. As
we demonstrate in this paper, the sizes of these components depend on the singular
structure of the Green’s function and the dimension d. Moreover, the limit of these
components can be calculated explicitly using the procedure developed here. These
results are obtained under a further assumption that we can estimate sufficiently high
order moments of the random fields.

Although our approach can be carried out for general equations of the form (1.1),
we state and prove the main theorems for the following specific model to simplify
notation. It is a diffusion equation with a random Robin boundary condition posed
on the half space R

n
+, i.e. {x∈R

n | xn>0}, whose boundary is identified with R
d
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where d=n−1:




(−∆+λ2)uε(x,ω)=0, x=(x′,xn)∈R
n
+,

∂

∂ν
uε+

(
q0+q

(
x′

ε
,ω

))
uε=f(x′), x=(x′,0)∈∂Rn

+.
(1.2)

Here and afterwards, λ and q0 are assumed to be positive constants. The outward
normal direction, i.e., the −xn direction, is denoted by ν. We show below that this
equation is equivalent to the following elliptic pseudo-differential equation of the form
(1.1):

(
√

−∆⊥+λ2+q0+qε(x,ω))uε=f, (1.3)

where ∆⊥ is the Laplacian on R
d, obtained from the Laplacian on R

n with ∂2
xn

eliminated. Here,
√
−∆⊥+λ2 is a pseudo-differential operator defined by (3.1). Also,

we have used qε as a short-hand notation for q(x
′

ε ) in the equation above. In the
sequel and to simplify notation, the dependence on ω is often omitted and we will use
either qε(x) or simply qε to denote the scaled function q(xε ,ω).

This type of boundary problems has applications in chemical physics and biology.
For instance, in the context of cell communication by diffusing signals, the equation
in (1.2) models the diffusion of signaling molecules in a bulk of extracellular medium
which is covered at the bottom by a monolayer of cells forming a layer of epithelium.
The cells on the epithelium layer can secrete and absorb signaling molecules, depend-
ing on levels of gene expression in the cells. The boundary condition in (1.2) models
the action between the cells and the signaling molecules.

In the chemical physics literature, the authors of [4, 5] have investigated a similar
diffusion process of particles through a heterogeneous surface which reflects particles
except on some periodically or randomly located patches that absorb particles. Hence,
in their setting, the boundary condition in (1.2) is −∂νuε=κdiscuε on the patches,
and is −∂νuε=0 otherwise. Here ∂ν denotes the partial derivative in the outer normal
direction ν and κdisc is the absorption rate on the patches. This boundary condition
is similar with ours except for the geometric configuration of the discs. Analyzing the
data obtained from Brownian dynamics simulations, they find that as long as the dif-
fusion away from the boundary is concerned, the heterogeneous boundary conditions
above can be replaced by an effective homogeneous boundary which partially absorbs
particles in a uniform rate over the entire surface, i.e., by −∂νuε=κuε where κ is the
uniform absorption rate. The authors of [4, 5] also proposed an expression of κ from
data analysis. However, this homogenization procedure is intuitive and empirical, and
one of our aims is to justify this homogenization result. We consider here a Robin
boundary condition with random impedance modeling a random coupling of reflecting
and absorption of signaling molecules by the cells on the surface. We derive a rigorous
averaging and corrector theory in this setting. As ε goes to zero, our result implies
that the cells with random impedance can be replaced by cells with a constant and
averaged impedance. The next-order approximation consists of a random fluctuation
which is weakly a Gaussian process with amplitude of size εd/2 and a deterministic
corrector of size ε. These deterministic and random correctors can be expressed in
terms of statistical quantities of the random field q(x,ω).

Let us also mention that boundary settings different from the above ones have
also been investigated in [15]. The authors of that paper considered a reaction-
diffusion equation, where the boundary condition is uε=v on small-scale patches



386 CORRECTOR THEORY FOR EQUATIONS WITH SINGULAR GREEN’S FUNCTION

and −∂νuε= ε−1g, where v and g are known functions. Their homogenization results
are obtained by formally studying a boundary layer and matching the boundary layer
solution with the solution in the interior of the domain. Rigorous mathematical proof
of homogenization in this setting is more challenging and is out of the scope of this
paper.

The rest of this paper is structured as follows. We state the main results for the
random Robin problem in dimension n=3 (hence d=2) in Section 2 after introducing
preliminary material on the Robin problem and assumptions on the random fields.
In Section 3, we write the Robin problem on R

n as a pseudo-differential equation on
R

d and derive some properties of its solution operator G. In Section 4, we present
examples of random fields that satisfy the imposed assumptions. The proofs of the
main results are shown in Section 5. Generalization to higher dimensions and con-
cluding remarks are presented in Section 6. Some technical lemmas are postponed to
Appendix A.

2. Problem setting and main results

2.1. Diffusion equation with Robin boundary. We first analyze the Robin
problem introduced above. In particular, we consider the homogenized equation of
(1.2), which is obtained by averaging qε(x,ω):





(−∆+λ2)u(x)=0, x∈R
n
+,

∂

∂ν
u(x′)+q0u(x

′)=f(x′), x′∈R
d.

(2.1)

We also require that the solution decays sufficiently fast as |x| tends to infinity. Above,
we identified the boundary ∂Rn

+ with R
d where d=n−1. For simplicity we assume

that the damping coefficient λ2 is a constant with λ>0, and the impedance q0 in
the Robin boundary condition is also a positive constant. Under this condition both
(2.1) and (1.2) are well-posed, and we relate the equation for u above to the equation
satisfied by its trace on the boundary R

d. In the sequel and to simplify notation, we
still use x, instead of x′, to denote a point in R

d.
Let us define the standard Dirichlet-to-Neumann (DtN) operator Λ as follows:

Λg(x) :=
∂

∂ν
g̃(x). (2.2)

Here, the function g(x) is defined on the boundary R
d and g̃ is the solution of the

volume problem (2.1) with a Dirichlet boundary condition g̃|∂Rn
+
=g. Hence, Λ maps

the boundary value to the boundary flux. Either by calculating the symbol of Λ or by
verifying it directly, we observe that Λ=

√
−∆+λ2; see Section 3. Note that ∆ here is

the Laplacian on R
d, i.e., the surface Laplacian ∆⊥ in (1.3). To simplify notation, we

will use ∆ to denote both of the Laplacians on R
n and R

d. The volume problem (2.1)
is then equivalent to the following pseudo-differential equation posed on the whole
space R

d,

(
√

−∆+λ2+q0)u=f. (2.3)

Indeed by definition, the trace of the solution to (2.1) satisfies Equation (2.3), and
the lift ũ of the solution to (2.3) solves Equation (2.1). Thanks to the fact that q0 is

positive, (2.3) admits a unique weak solution in H
1
2 (Rd) provided that f ∈H− 1

2 (Rd);
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see Section 3 for the proof. We assume f ∈L2(Rd) throughout the paper and conse-
quently both the pseudo-differential Equation (2.3) and the diffusion Equation (2.1)
in the volume are well-posed.

Let G be the solution operator of (2.3) and let G(x,y) be the corresponding
Green’s function, i.e., the Schwartz kernel of G. By homogeneity, we observe that G is
of the form G(|x−y|). This Green’s function will be investigated further in Section 3.
The latter function decays exponentially at infinity and behaves like |x|−d+1 near the
origin when d≥2. The exponential decay allows us to easily work in infinite domain.
The singularity at the origin shows that G fails to be locally square integrable and
hence is of the type that this paper aims to analyze. In the presence of a random
impedance, we denote the corresponding Green’s operator by Gε.

Considering the application of (2.1) in biology, the physical domain is n=3 and
hence d=2. Our results are presented in that setting of practical interest.

2.2. Assumptions on the random fields. We recall that the random
impedance qε(x,ω) in (1.2) is of the form q(x/ε,ω). The assumptions on the random
impedance are imposed on q(x,ω). We assume that q(x,ω) is a stationary and strong
mixing process with integrable mixing coefficient. These are standard assumptions on
random fields modeling heterogeneous media in mathematical physics, and are enough
for homogenization theory. To analyze the limiting distribution of the random fluc-
tuation in the setting of non-square-integrable Green’s functions, we need additional
assumptions which take the form of estimates on fourth-order moments of q. Details
are described below.

Stationarity. We assume that q(x,ω) is stationary, i.e., for any n∈N and any
n-tuple (x1, · · · ,xn), the joint distribution of (q(x1,ω), · · · ,q(xn,ω)) is conserved under
(spatial) translation. In particular Eq(x) is a constant independent of x. By putting
this constant into q0, we assume q(x,ω) is mean-zero.

Strong mixing. We assume q(x,ω) is strong mixing or α-mixing in the following
sense. For any Borel sets A,B⊂R

d, the sub-σ-algebras FA and FB generated by the
process restricted on A and B respectively decorrelate so rapidly that there exists
some function α :R+→R+ with α(r) vanishing to zero as r tends to infinity, and such
that for any FA measurable set U and FB measurable set V , we have

|P(U)P(V )−P(U ∩V )|≤α
(
d(A,B)

)
. (2.4)

Here d(A,B) is the distance between the sets A and B. What this means is that
(functionals of) the random fields restricted on disjoint spatial domains A and B be-
come more and more independent as the distance between the sets A and B increases.
The function α quantifies that decay. We further assume that α(r) has the following
asymptotic behavior for some real number δ>0:

α(r)∼ 1

rd+δ
, for r sufficiently large. (2.5)

This implies in particular that α(r)∈L1(R,rd−1dr), i.e., α(|x|) is integrable as a
function of x∈R

d.
There are in fact several different definitions of mixing coefficients; the α(r) de-

fined above is among the least restricted ones. For additional information on the
notion of mixing, we refer the reader to [8].

Fourth order cumulants. A further assumption on q(x,ω) is imposed so that
we have an approximate formula for the fourth order cross-moment of the process.
To formulate this condition, we need to introduce some terminologies.
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Let F ={1,2,3,4} and U be the collections of two pairs of unordered numbers in
F , i.e.,

U =
{
p={

(
p(1),p(2)

)
,
(
p(3),p(4)

)
} | p(i)∈F,p(1) 6=p(2),p(3) 6=p(4)

}
. (2.6)

As members in a set, the pairs (p(1),p(2)) and (p(3),p(4)) are required to be dis-
tinct; however, they can have one common index. There are three elements in U
whose indices p(i) are all different. They are precisely {(1,2),(3,4)}, {(1,3),(2,4)}
and {(1,4),(2,3)}. Let us denote by U∗ the subset formed by these three elements,
and its complement by U∗.

Intuitively, we can visualize U in the following manner. Draw four points with
indices 1 to 4. There are six line segments connecting them. The set U can be
visualized as the collection of all possible ways to choose two line segments among
the six. U∗ corresponds to choices so that the two segments have disjoint ends, and
U∗ corresponds to choices such that the segments share one common end.

We assume that q(x,ω) has controlled fourth order cumulants in the sense that
the following holds: For each p∈U∗, there exists a real valued nonnegative function
φp in L1∩L∞(Rd×R

d), so that for any four point set {xi}4i=1, xi∈R
d, we have the

following condition on the fourth order cross-moment of {q(xi,ω)}:

∣∣∣E
4∏

i=1

q(xi)−
∑

p∈U∗

E{q(xp(1))q(xp(2))}E{q(xp(3))q(xp(4))}
∣∣∣

≤
∑

p∈U∗

φp(xp(1)−xp(2),xp(3)−xp(4)).

(2.7)

Observe that since Eq(x,ω)≡0, the left hand side is the (joint) cumulant of {q(xi,ω)},
and hence the notation for this property. In the sequel, we will denote the cumulant
of {q(xi)}4i=1 by ϑ(q(x1), · · · ,q(x4)).

Remark 2.1. This condition is motivated by Gaussian random fields for which all
but two cumulants vanish, and hence we can set φp to be zero for all p in (2.7).
Although it satisfies the condition above, a Gaussian random field is not bounded
and large negative values of qε in Equation (1.3) may yield non-uniqueness. The
above condition on the cumulants hence provides a “decomposition” of fourth order
moments into pairs just as Gaussian random fields up to an error we wish to control.

Uniform boundedness. Recall that q0 is a positive constant. We assume for
simplicity that q(x,ω) is uniformly bounded in the space Ω×R

d by q0. That is to say,

‖q(x,ω)‖L∞(Ω×Rd)≤ q0. (2.8)

Furthermore, the condition above implies that the impedance q0+qε(x) in (1.3) is
non-negative a.e., and therefore by Corollary 3.2 below (1.3) is well-posed.

Remark 2.2. We observe that by scaling, qε(x,ω) is also stationary, mean zero,
α-mixing, and has controlled cumulants. Nevertheless, we need to scale the spatial
variable appropriately when using (2.4) or (2.7).

2.3. Main results. With those assumptions above, we are ready to state the
main results of this paper. Before doing so, we introduce some notations.
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We define the (auto-)correlation function, also known as the covariance function,
of the random field q(x,ω) as

R(x) :=E{q(0)q(x)}=E{q(y)q(y+x)}. (2.9)

The last equality holds since q is stationary. As a correlation function, R is a function
of positive type in the sense of (4.4) below. By Bochner’s theorem its Fourier trans-
form is a positive finite measure. Hence we can define the strength of the random field
as follows:

σ2 :=

∫

Rd

R(x)dx. (2.10)

Since σ2 is the Fourier transform of R evaluated at zero, it is non-negative. We
consider the nontrivial case and set σ>0. We observe also that the random field
q(x,ω) has short range correlation in the sense that R∈L1(Rd). Indeed, we have

R(x)=Corr
(
q(0),q(x)

)
Var
(
q(0)

)
≤ρ(|x|)‖q‖2L∞ ≤C‖q‖2L∞α(|x|), (2.11)

and the last member is in L1(Rd) thanks to (2.5). Throughout the paper, we use
C to denote various constants that may change from line to line. The function ρ
above is the ρ-mixing coefficient defined as in (2.4) with its left hand side replaced by
Corr(ξ,η), where ξ and η are arbitrary square integrable random variables measurable
with respect to FA and FB respectively. The ρ-mixing coefficient is stronger than the
α-mixing coefficient and hence the last inequality above holds; see [8, p.4].

Now we state the main theorems in the setting d=2, which is the physical di-
mension of the Robin problem concerning the biological application.

Theorem 2.1. Let uε and u solve (1.3) and (2.3) respectively and d=2. Suppose
λ,q0 in those equations are positive constants and f is in L2(Rd). Assume that the
random field q(x,ω) is stationary and mean-zero with correlation function R(x)∈
L1(Rd). Assume also that q(x,ω) is uniformly bounded as in (2.8). Then we have

E‖uε−u‖2L2(R2)≤Cε2| logε|‖f‖2L2 , (2.12)

where the constant C only depends on the parameter λ, q0, dimension d and ‖R‖L1 ,
but not on ε.

We will prove this theorem in Section 5. The proof works for d≥3 as well, and
in that case the ε2| logε| above should be replaced by ε2. The above theorem says uε

and u are close in the energy norm L2(Ω,L2(Rd)). Let us denote the corrector by ξε.
We can decompose it into two parts as follows:

ξε=(E{uε}−u)+(uε−E{uε}). (2.13)

We call them the deterministic corrector and the stochastic corrector, respectively.
For the deterministic corrector, we can calculate its limit explicitly. Let us define

R̃ :=

∫

R2

R(y)

2π|y|dy. (2.14)

Since R is integrable and bounded, this integral is finite. With this notation, and by
recalling that G denotes the solution operator of (2.3), we have the following theorem
on the limit of the deterministic corrector.
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Theorem 2.2. Let uε and u solve (1.3) and (2.3) respectively and d=2. Let q(x,ω)
satisfy the same conditions as in the previous theorem. Then we have,

lim
ε→0

E{uε}−u

ε
= R̃Gu. (2.15)

Here the limit is taken in the weak sense. That is, for an arbitrary test function
M ∈C∞

c (R2), the real number ε−1〈M,E{ξε}〉 converges to 〈GM,R̃u〉.

Note that G is self-adjoint. In general, the solution operator of (1.1) is not self-
adjoint, and the term GM above should be replaced by G∗M where G∗ denotes the
adjoint operator.

For the stochastic corrector, we have the following central limit theorem.

Theorem 2.3. Let uε and u solve (1.3) and (2.3) respectively and d=2. Let q(x,ω)
be stationary and mean-zero with strong mixing coefficient α(r) satisfying (2.5), and
be uniformly bounded as in (2.8). Assume further that the joint fourth order cumulant
of q satisfies (2.7). Then

uε−E{uε}
ε

distribution−−−−−−−→−σ

∫

R2

G(x−y)u(y)dWy, (2.16)

where σ is defined in (2.10) and Wy is the standard multi-parameter Wiener process
in R

2. The convergence here is weakly in R
2 and in probability distribution.

Remark 2.3. We refer the reader to [12] for the theory of multi-parameter processes.
Also, from Theorem 2.2 it is clear that we can replace E{uε} in the theorem above
by u+εR̃Gu since the rest is of order smaller than ε.

3. Properties of the Green’s function

In this section, we first show that the Robin problem (2.1) is equivalent to
the pseudo-differential Equation (2.3) by calculating the symbol of the Dirichlet-to-
Neumann map Λ. Using this symbol we show that (2.3) admits a well defined solution
operator G and derive an expression for the corresponding Green’s function G.

3.1. Symbol of the Dirichlet-to-Neumann map. We now verify the claim
that the DtN map Λ equals the pseudo-differential operator

√
−∆+λ2 defined as

√
−∆+λ2f =

1

(2π)d/2

∫

Rd

eix·ξ
√

|ξ|2+λ2f̂(ξ)dξ, (3.1)

where f̂ is the Fourier transform of f defined as

f̂(ξ) :=
1

(2π)d/2

∫

Rd

e−ix·ξf(x)dx. (3.2)

We will also denote by F the Fourier transform operator, and by F−1 its inverse.

By Definition (2.2), Λg(x) is the normal derivative of g̃(x,xn), the function satis-
fying:

{
−∆g̃(x,xn)+λ2g̃(x,xn)=0, (x,xn)∈R

n
+,

g̃(x,0)=g(x), x∈R
d≡∂Rn

+.
(3.3)
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Taking Fourier transform in the variable x, we obtain a second order ordinary differ-
ential equation in xn, i.e.,

{
−∂2

xn
ˆ̃g(ξ,xn)+(|ξ|2+λ2)ˆ̃g=0,

ˆ̃g(ξ,0)= ĝ(ξ).
(3.4)

Solve this ODE with the assumption that ˆ̃g decays for large frequency to get

ˆ̃g(ξ,xn)= ĝ(ξ)exp(−xn

√
|ξ|2+λ2).

Take derivative in the −xn direction, i.e. the outward normal direction and send xn

to zero to obtain Fourier transform of the function Λg. It has the form

Λ̂g(ξ)=
√

|ξ|2+λ2ĝ(ξ). (3.5)

This verifies that the symbol of Λ is
√

|ξ|2+λ2. Compare this symbol with (3.1)

and we see Λ=
√
−∆+λ2. Therefore, (2.1) and (2.3) are equivalent by the argument

below (2.3).

3.2. Solution of the pseudo-differential equation. As an immediate
result, we show that (2.3) admits a solution operator G :H− 1

2 (Rd)→H
1
2 (Rd) given by

Gf(x) :=F
−1 f̂√

|ξ|2+λ2+q0
≡ 1

(2π)d/2

∫

Rd

eiξ·x
f̂√

|ξ|2+λ2+q0
dξ. (3.6)

In particular, the map G :f→Gf is continuous from L2(Rd) to itself, and the operator
norm is bounded by a constant that only depends on λ provided that the impedance
is non-negative.

We recall some definitions. The Sobolev space Hs for s∈R is defined as

Hs(Rd) :=
{
v∈S ′ | v̂〈ξ〉s∈L2(Rd)

}
, (3.7)

where S ′ is the space of tempered distributions, i.e., linear functionals of the Schwartz
space S, and 〈ξ〉=(1+ |ξ|2)1/2. To simplify notation, we will denote H

1
2 by H, and

the corresponding norm is

‖f‖H :=

(∫

Rd

|f̂(ξ)|2〈ξ〉dξ
) 1

2

. (3.8)

To prove that (2.3) is well-posed, we first write a variational formulation of it. To
do so, multiply (2.3) by a smooth test function v, and integrate. We have

B[u,v]= 〈f,v〉, (3.9)

where B[u,v] is a bilinear form defined as

B[u,v] := 〈Λu,v〉+〈q(x)u,v〉. (3.10)

From its symbol we see that Λ maps H1/2 to H−1/2. As a result, the bilinear form
B[·, ·] above is well defined on H×H. We say u is a weak solution of (2.3) if (3.9)
holds for arbitrary v∈H.

The following proposition states that the bilinear form B satisfies the conditions
of the Lax-Milgram theorem and its corollary, so that (2.3) admits a unique solution
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in H. For the moment, we allow the impedance in (2.3) to be a non-negative function
denoted by q(x).

Proposition 3.1. Let λ in (2.3) be a positive constant. Let q(x) in (3.10) be a
non-negative function and assume ‖q‖L∞ is finite. Set α=‖q‖L∞ +max(1,λ), γ=
min(1,λ). Then the bilinear form B[u,v] in (3.10) satisfies the following:

(i) |B[u,v]|≤α‖u‖H‖v‖H , for all u,v∈H, and

(ii) γ‖u‖2H ≤B[u,u], for all u∈H.

Proof. The following inequalities hold for all ξ:

γ≤
√

|ξ|2+λ2

|ξ|2+1
≤max(1,λ). (3.11)

Using the second inequality, formula (3.5), and Cauchy-Schwarz, we get

|〈Λu,v〉|=
∣∣∣
∫

Rd

√
λ2+ |ξ|2ûv̂dξ

∣∣∣≤max(1,λ)

(∫

Rd

|û|2〈ξ〉dξ
)1/2(∫

Rd

|v̂|2〈ξ〉dξ
)1/2

.

Since ‖u‖L2 ≤‖u‖H for all u∈H, we have

|B[u,v]|≤max(1,λ)‖u‖H‖v‖H +‖q‖L∞‖u‖L2‖v‖L2 ≤α‖u‖H‖v‖H ,

which verifies (i). For the second inequality, since q(x) is non-negative, we have

B[u,u]≥〈Λu,u〉=
∫

Rd

|û|2
√
λ2+ |ξ|2dξ≥γ

∫

Rd

|û|2〈ξ〉dξ.

In the last inequality we applied (3.11). This verifies (ii) and completes the proof.

Corollary 3.2. Let λ,q(x) and γ be the same as in the preceding proposition.
Assume also that f is in H−1/2. Then (2.3) admits a weak solution u∈H satisfying
(3.9). In particular, if f ∈L2, then we have that

‖u‖L2 ≤γ−1‖f‖L2 . (3.12)

Proof. The first claim follows immediately from the preceding proposition and
the Lax-Milgram theorem. The second one is due to the following estimate which is
clear from (ii) of Proposition 3.1 and Cauchy-Schwarz inequality.

γ‖u‖2L2 ≤γ‖u‖2H ≤B[u,u]= 〈f,u〉≤‖f‖L2‖u‖L2 .

This completes the proof.

Now it is a simple matter to check that G defined in (3.6) gives the solution
operator. Therefore, the corollary above shows that the operator norm of G as a
transformation on L2(Rd) is bounded by the constant γ−1.

Remark 3.1. The explicit bound γ−1 in estimate (3.12) is crucial for us when the
random equation (1.3) is considered. It shows that Gε is well defined as long as q0+qε
is non-negative (which is true thanks to (2.8)) and the operator norm ‖Gε‖L(L2) is
bounded uniformly for almost every realization.
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3.3. Decomposition of Green’s function. Let G(x,y) be the Green’s
function associated to the solution operator G of (2.3). By homogeneity G(x,y)=
G(x−y) and G(x) solves

(√
−∆+λ2+q0

)
G(x)= δ0(x).

Take the Fourier transform of both sides. Our choice of the definition of the Fourier
transform (3.2) implies that F δ0(x)≡ (2π)−d/2. Hence, G(x) is recovered by the
inversion formula as follows:

G(x)=
1

(2π)d

∫

Rd

eiξ·x(
√
|ξ|2+λ2+q0)

−1dξ. (3.13)

In dimension two, we have the following explicit characterization.

Lemma 3.3. Let d=2. Let λ,q0 in (2.3) be positive constants and d=2. The Green’s
function G(x) defined above can be decomposed into three terms as follows:

G(x)=
1

2π

(
exp(−λ|x|)

|x| −q0K0(λ|x|)+Gr(|x|)
)
. (3.14)

Here K0 is the modified Bessel function with index zero and the function Gr(|x|) is
smaller than Cb exp(−b|x|) for any positive real number b<λ′≡λ/

√
2.

Remark 3.2. In the sequel, we will call the first term on the right Gs and the second
one Gb. Clearly, Gs has singularity of order |x|−1 near the origin and has exponential
decay at infinity; Gr is smooth near the origin and has exponential decay at infinity.
Asymptotic analysis of Bessel functions shows that Gb has a logarithmic singularity
near the origin and exponential decay at infinity, cf. [19]. In summary, we have

|G(x)|≤Cλ
exp(−λ′|x|)

|x| , (3.15)

where Cλ is a constant depending on λ and q0.

Proof. We first decompose the Fourier transform of G into three parts as follows:

2πĜ(ξ)=
1√

|ξ|2+λ2
− q0

|ξ|2+λ2
+

q20

(|ξ|2+λ2)[q0+
√
|ξ|2+λ2]

. (3.16)

Now the first two terms can be inverted explicitly. For instance, the second one is
a standard example in textbooks on Fourier analysis or PDEs; cf. Taylor [18, Chap.
3], Evans [9, Chaper 4]. In our case the dimension equals two, and its inversion is the
following.

− 1

2π

∫

R2

q0 eix·ξ

|ξ|2+λ2
=−q0

2

∫ ∞

0

e−
|x|2

4t −t

t
dt=−q0K0(λ|x|). (3.17)

Here K0 is the modified Bessel function of the second kind with index 0. It has
logarithmic singularity near the origin and decays exponentially at infinity.

In dimension two, the first term admits an explicit expression as well. Indeed,
thanks to (3.5), (

√
|ξ|2+λ2)−1 can be viewed as the symbol of Λ−1, i.e., the Neumann-

to-Dirichlet operator which maps the Neumann boundary condition of a diffusion
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equation of the form (3.3) to its solution evaluated at the boundary. Therefore,
Gs can be obtained by taking the trace of GD, by which we denote the Green’s
function associated to (3.3) with Neumann boundary. Since d=2 and n=3, GD can
be calculated explicitly using the method of images as we show now. The fundamental
solution of (3.3) posed on whole R3 is given by exp(−λ|x|)/4π|x|; cf. Reed and Simon
[17, Chap. IX.7]. By the method of images, the Green’s function for the Neumann
problem on the upper half space is given by

GD(x,y)=
1

4π

exp(−λ|y−x|)
|y−x| +

1

4π

exp(−λ|y− x̃|)
|y− x̃| ,

for x in the upper space and x̃ denotes its image in the lower half space. Evaluating
GD for x on the boundary, we obtain that

Gs(x,y)=
1

2π

exp(−λ|y−x|)
|y−x| .

Clearly, it has singularity of order |x−y|−1 near the origin and decays exponentially
at infinity.

Now we are left with the third term of (3.16). We won’t give an explicit formula for
its Fourier inversion. Nevertheless, we can show that its inversion decays exponentially
at infinity and has no singularity near the origin. The proof is a little more involved
and hence postponed to the Appendix as Lemma A.2. It essentially uses the Paley-
Wiener theorem. Now the proof is complete.

4. Two examples of random fields

In this section, we present two examples of random fields that satisfy the con-
ditions in Section 2.2, verifying that such random fields can indeed be constructed
rather naturally.

4.1. Random field based on spatial Poisson point process. The first
example is a random field based on the spatial Poisson point process. This model is
analyzed in [3], to which we refer the reader for more details.

Consider a spatial Poisson process defined on (Ω,F ,P) with intensity ν. We can
construct q(x,ω) as the mean zero part of q̃(x,ω), which is defined as

q̃(x,ω)=
∞∑

j=1

ϕ(x−yj), (4.1)

where {yj}∞j=1 are the points in the spatial Poisson process. Here ϕ is some non-
negative smooth function compactly supported in the unit ball. Intuitively, (4.1)
models a superposition of bumps with profile function ϕ and centers {yj} randomly
located on R

d with a spatial Poisson distribution. Clearly, q̃ and hence q are stationary.
Formulas for the cross-moments (of arbitrary order) of the random process q(x,ω)

defined above are derived in [3]. In particular, the joint cumulant of {q(xi,ω)}4i=1 has
the following expression:

ϑ(q(x1), · · · ,q(x4))=ν

∫
ϕ(z)ϕ(x2−x1+z)ϕ(x3−x1+z)ϕ(x4−x1+z)dz

≤ν‖ϕ‖L∞

∫
ϕ(z)ϕ(x2−x1+z)ϕ(x3−x1+z)dz.

(4.2)
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We verify that the last integral above is bounded uniformly in the variables x2−x1

and x3−x1 since ϕ is bounded; it is also integrable for these variables. In other words,
the cumulant function ϑ satisfies (2.7), for we can set φp to be the last integral in (4.2)
for p={(1,2),(1,3)} and φp≡0 for all other p. This verifies that q(x,ω) defined above
has controlled cumulants. One can check also that q is strong mixing with mixing
coefficient satisfying (2.5); see [3, 8].

Unfortunately, q(x,ω) defined as such is not uniformly bounded due to possible
clustering of the Poisson points; thus (2.8), which is required in the main theorems,
is violated. Nevertheless, for this model, as in [3], a careful control of E‖q‖Ln for n
large allows us to remedy this issue. This procedure can be carried out as in [3] and
so we do not dwell on the details here.

4.2. Composition of a function with a Gaussian random field. Our
second example is constructed as function of a Gaussian random field. This model
satisfies all the assumptions needed in the main theorems. A one-dimensional model
of this type has been considered in [2].

We start with a stationary mean-zero and unit-variance Gaussian random field
g(x,ω) defined on (Ω,F ,P). As in (2.9) we define its correlation function as follows,
which encodes essentially all information of g.

Rg(x) :=E{g(0)g(x)}. (4.3)

As the correlation function of a stationary process Rg is symmetric, i.e. Rg(x)=
Rg(−x), and is of positive type in the sense that for any xj ∈R

d, ξj ∈R, and j=
1, · · · ,N , we have

N∑

i=1

N∑

j=1

ξiRg(xi−xj)ξj ≥0; (4.4)

see [12, Chapter 5]. As a consequence, |Rg(x)|≤Rg(0)=1 and hence is uniformly
bounded. As in (2.10) we define the strength of g as

σg := R̂(0)≡
∫

Rd

Rg(x)dx, (4.5)

which is assumed again to be positive. Since the mixing property of a Gaussian
random field is related to its correlation function, we assume that Rg has a sufficiently

smooth Fourier transform R̂g so that g(x,ω) is strong mixing with mixing coefficient
α(r) satisfying (2.5). In particular, Rg ∈L1(Rd) as seen in (2.11).

Our example random field q(x,ω) is then defined as

q(x,ω) :=Φ◦g(x,ω), (4.6)

for some real valued deterministic function Φ defined on the real line. The following
proposition provides a recipe of choosing Φ so that q(x,ω) constructed above satisfies
all the desired properties listed in Section 2.2.

Proposition 4.1. Let g(x,ω) be the stationary mean-zero unit-variance Gaussian
random field defined above with strong mixing coefficient α(r) satisfying (2.5). Let Φ
be a real valued function on the real line satisfying

1. Φ is uniformly bounded by q0, i.e.,

|Φ(s)|≤ q0. (4.7)
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2. Φ integrates to zero with respect to the standard Gaussian measure, i.e.,
∫

R

Φ(t)e−
t2

2 dt=0. (4.8)

3. The Fourier transform of Φ satisfies that
∫

R

|Φ̂(ξ)|
(
1+ |ξ|3

)
<∞; (4.9)

Denote by κc the value of this integral which is a finite positive real number.
Then q(x,ω) defined in (4.6) is a stationary mean-zero random field with the

same strong mixing coefficient α(r) satisfying (2.5) and correlation function R in
L∞∩L1(Rd); furthermore, it is uniformly bounded as in (2.8) and has controlled
fourth order cumulants as in (2.7).

Proof.
1. From the definition of q and the bound (4.7) on |Φ| it is obvious that q(x,ω)

is uniformly bounded and satisfies (2.8).
Also from the definition of q, we see that the σ-algebra FA generated by vari-

ables q(x,ω),x∈A is in fact generated by the underlying Gaussian random variables
g(x,ω),x∈A. Hence q shares the same stationarity and strong mixing coefficient α(r)
with g.

It is also easy to see that q(0,ω), hence q(x,ω) for all x, is mean-zero. In-
deed, observe that g(0) has normal distribution N (0,1), then (4.8) says exactly that
E{q(0)}=0.

2. From the definition of R(x) and the bound (4.7), it is obvious that |R| is
uniformly bounded by q20 . Thanks to strong mixing, R(x) is integrable as seen in
(2.11). Nevertheless, we show this fact by another method which provides a formula
for R. In the Fourier domain, R(x) has the following expression:

R(x)=

∫

R2

Φ̂(ξ1)Φ̂(ξ2)exp

{
−1

2
(ξ21+2Rg(x)ξ1ξ2+ξ22)

}
d2ξ; (4.10)

Here we denote by ξ the vector (ξ1, · · · ,ξN ), and by dNξ the Lebesgue measure in R
N .

Recall that for any s∈R, there exists c(s)∈ [0,1] so that

es−1=s+
1

2
s2ec(s). (4.11)

Using this expansion, we rewrite (4.10) as

R(x)=

∫

R2

Φ̂(ξ1)Φ̂(ξ2)exp

{
−1

2
ξtξ

}(
1−Rg(x)ξ1ξ2+

1

2
e−c(Rg(x))ξ1ξ2R2

g(x)ξ
2
1ξ

2
2

)
d2ξ.

In the above equation, ξt is the transpose of ξ. The real number c above depends on
ξ and x but is always in the interval [0,1]. Now (4.8) says that the constant one in
the parenthesis above does not contribute to the integral. Hence we can write

R(x)=κRg(x)+R2
g(x)κr(x),

where κ is a finite positive constant given by

κ :=−
∫

R2

Φ̂(ξ1)Φ̂(ξ2)ξ1ξ2e
− 1

2
ξtξd2ξ=

(∫

R

sΦ(s)e−
s2

2 ds

)2

.
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and κr is a function given by

κr(x) :=
1

2

∫

R2

Φ̂(ξ1)Φ̂(ξ2)ξ
2
1ξ

2
2e

− 1
2
ξt(I+cD0)ξd2ξ,

where D0 above is a symmetric two by two matrix whose off diagonal is Rg(x) and
whose diagonal entries are zeros. Since c(x) is in [0,1] and the matrix I+D0 is
non-negative definite due to (4.4), so is the matrix I+cD0. Therefore we can ig-
nore the exponential term in the expression of κr(x) above and bound ‖κr‖L∞ by
‖Φ̂(ξ)ξ2‖2L1/2. Consequently, we obtain

|R|≤
(
κ+

‖Φ̂(ξ)ξ2‖2L1

2

)
|Rg|.

Thus R∈L1(Rd) because Rg(x) is integrable.
Moreover, the analysis above shows that as |x|→∞, R is roughly κRg.

3. It remains to show that q has controlled fourth order cumulants. Fix any four
points {xi}4i=1 and let ϑ be the joint cumulant of {q(xi)}; in the Fourier domain it
can be expressed as

ϑ=

∫

R4

4∏

j=1

Φ̂(ξj)e
− ξtξ

2

( 3∏

i=1

e−
1
2
ξtDiξ−

3∑

i=1

e−
1
2
ξtDiξ

)
d4ξ. (4.12)

Here the matrices Di,i=1,2,3 are defined as follows:

D1=




0 ρ12 0 0
ρ12 0 0 0
0 0 0 ρ34
0 0 ρ34 0


 , D2=




0 0 ρ13 0
0 0 0 ρ24
ρ13 0 0 0
0 ρ24 0 0


 , D3=




0 0 0 ρ14
0 0 ρ23 0
0 ρ23 0 0
ρ14 0 0 0


 ,

where ρij :=Rg(xi−xj) is the covariance of g(xi) and g(xj). We apply the following
identity to the product and the sum inside the parenthesis in (4.12).

abc−a−b−c=(a−1)(b−1)(c−1)+(a−1)(b−1)+(a−1)(c−1)+(b−1)(c−1)−2,

We then use (4.8) to argue that the constant two above does not contribute to (4.12).
Hence we have

ϑ=

∫

R4

4∏

j=1

Φ̂(ξj)e
− ξtξ

2

(
3∏

i=1

[e−
1
2
ξtDiξ−1]+

∑

i<k

[e−
1
2
ξtDiξ−1][e−

1
2
ξtDkξ−1]

)
.

For each fixed ξ, we use the Taylor expansion for exponential function as in (4.11)
and write

e−
1
2
ξtDiξ−1=−1

2
ξtDiξe

− 1
2
ξt(ciDi)ξ,

where the real number ci depends on ξ and Di but is always an element in [0,1].
Therefore, we have

ϑ=

∫

R4

4∏

j=1

Φ̂(ξj)

(
−e−

1
2
ξt(I+

∑
3
i=1

ciDi)ξ
3∏

i=1

1

2
ξtDiξ+

+
∑

i<k

e−
1
2
ξt(I+ciDi+ckDk)ξ

[
1

2
ξtDiξ

][
1

2
ξtDkξ

])
d4ξ.
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Observe that I+Di, I+Di+Dj with (i<j) for i,j=1,2,3, and I+
∑3

i=1Di are
non-negative definite matrices. Since ci∈ [0,1], we deduce that I+ciDi+ckDk for any

i<k, and I+
∑3

i=1 ciDi are all non-negative definite. Indeed, we can rewrite them as
a sum of non-negative definite matrices. For instance, without loss of generality we
assume ci is increasing in i, and then

I+

3∑

i=1

ciDi= c1

(
I+

3∑

i=1

Di

)
+(c2−c1)

(
I+

3∑

i=2

Di

)
+(c3−c2)(I+D3)+(1−c3)I.

Each of the matrices on the right hand side above is non-negative definite.
Therefore, we can bound the exponential terms in the integral by one, and con-

clude that

|ϑ|≤
∫

R4

4∏

j=1

∣∣Φ̂(ξj)
∣∣
(

3∏

i=1

∣∣1
2
ξtDiξ

∣∣+
∑

i<k

∣∣1
2
ξtDiξ

∣∣ ·
∣∣1
2
ξtDkξ

∣∣
)
d4ξ.

Now the products in the parenthesis above are just polynomials in the |ξj | variables,
and for each ξj , the highest possible power on it is three. The coefficients in those
polynomials are products of two or three ρij functions. Since |ρij |≤1 by definition,
we can bound the ξtD1ξ of the first member in the parenthesis above by |ξ1ξ2|+ |ξ3ξ4|.
Then, after evaluating the product, the coefficients in the polynomial of |ξj | variables
are products of two ρij functions. With this in mind, it is easy to verify that

∣∣ϑ(q(x1), · · · ,q(x4))
∣∣

≤
(
|ρ12ρ13|+ |ρ12ρ24|+ |ρ34ρ13|+ |ρ34ρ24|+ |ρ12ρ14|+ |ρ12ρ23|+ |ρ34ρ14|+ |ρ34ρ23|

+ |ρ13ρ14|+ |ρ13ρ23|+ |ρ24ρ14|+ |ρ24ρ23|
)∫

R4

4∏

j=1

Φ̂(ξj)
(
|ξj |3+ |ξj |2+ |ξj |+1

)
d4ξ.

Thanks to (4.9), the last integral is finite and can be bounded by 34κ4
c . Compare the

above inequality with the cumulant condition (2.7); we see that all pairs of indices
in the products of ρ functions above lie in U∗ where U is defined in (2.6). Then for
each p∈U∗, we set φp :=81κ4

c |Rg⊗Rg|, which is in L1∩L∞(Rd×R
d). We see (2.7)

is indeed satisfied. This completes the proof.

5. Proof of the main results

In this section, we prove the main theorems in dimension d=2. Let us denote by
ξε=uε−u the corrector. Now subtract (2.3) from (1.3) to get

(
√

−∆+λ2+q0+qε)ξε=−qεu. (5.1)

Recall that G is the solution operator (
√
−∆+λ2+q0)

−1, and Gε is the solution
operator with random impedance. Therefore, the above equation says ξε=−Gεqεu.
Unfortunately, Gε is not as explicit as G. Nevertheless, we will show shortly that
−Gqεu is the leading term of −Gεqεu and hence it suffices to estimate the former. Let
us assign it the following notation;

χε :=−Gqεu. (5.2)

We have the following estimate:
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Lemma 5.1. Let u solve (2.3) and χε be defined as above and d=2. Assume that
the coefficients λ, q0, and the random field q(x,ω) satisfy the same conditions as in
Theorem 2.1. Then we have

E‖χε‖2L2 ≤Cε2| logε| ‖u‖2L2 , (5.3)

where the constant C depends on λ,q0 and ‖R‖L1 but not on u or ε.

Proof.
1. We first express ‖χε‖2L2 as a triple integral of the form

∫

R3d

G(x−y)qε(y)u(y)G(x−z)qε(z)u(z)d[yzx].

Here and in the sequel, the short-hand notation d[x1 · · ·xn] is the same as dx1 · · ·dxn.
Take expectation and use the definition of R(x) to obtain

E‖χε‖2L2 =

∫

R3d

G(x−y)G(x−z)R

(
y−z

ε

)
u(y)u(z)d[yzx].

2. We integrate in x first. Use the estimate (3.15) to replace the Green’s functions
by potentials of the form e−λ′|x−y|/|x−y|; then apply Lemma A.1 to bound the
integration in x of these potentials. We obtain

E‖χε‖2L2 ≤C

∫

R2d

e−λ′|y−z|
(∣∣ log |y−z|

∣∣+1
)∣∣∣R

(
y−z

ε

)
u(y)u(z)

∣∣∣d[yz]. (5.4)

Now change variable (y−z)/ε→y. This change of variable yields a Jacobian εd and
the integral on the right hand side becomes

εd
∫

R2d

e−ελ′|y|
(
|log |y|+logε|+1

)∣∣∣R(y)u(z+εy)u(z)
∣∣∣d[yz].

3. Now, bound the exponential term by 1, and integrate in z. Use Cauchy-Schwarz
to get

∫

Rd

∣∣u(z+εy)u(z)
∣∣dz≤‖u‖L2‖u(·+εy)‖L2 =‖u‖2L2 . (5.5)

Therefore, we have

E‖χε‖2L2 ≤Cεd‖u‖2L2

∫

Rd

(
|log |y||+1+ | logε|

)∣∣R(y)
∣∣dy.

Recall that R(y) behaves like |y|−d−δ for some positive δ; see (2.5) and (2.11). Hence
the function (|log |y||+1)|R| is integrable. Since d=2 the integral above is

Cε2| logε| ·‖u‖2L2‖R‖L1 +O(ε2).

This completes the proof. We also see that the constant C only depends on λ, q0 and
‖R‖L1 .

Theorem 2.1 now follows if we can control ‖ξε−χε‖L2 . From (5.2) we see

(
√
−∆+λ2+q0+qε)χε=−qεu+qεχε.
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Subtract this equation from (5.1); we get an equation for ξε−χε. Apply Gε on this
equation to get

ξε=χε−Gεqεχε. (5.6)

The following proof relies on this expression and the fact that the operator Gε is
bounded uniformly in ε and ω as we have emphasized in Remark 3.1.

Proof. [Proof of of Theorem 2.1.] From the expression (5.6) we have,

‖uε−u‖L2 ≤‖χε‖L2 + sup
ω∈Ω

‖Gε‖L‖q‖L∞(Ω×Rd)‖χε‖L2 .

Due to (2.8) and Corollary 3.2, we have ‖q‖L∞ ≤ q0 and ‖Gε‖L∞(Ω,L(L2))≤
min{1,λ}−1. We will denote the products of the two constants by C. Then we
have

‖uε−u‖L2 ≤ (1+C)‖χε‖L2 .

Square both sides and take expectation; then apply Lemma 5.1 to get

E{‖uε−u‖2L2}≤CE{‖χε‖2L2}≤Cε2| logε| ·‖u‖2L2 .

Now use Corollary 3.2 to replace the L2 norm of u by that of f . Again, all constants
involved do not depend on ε. This completes the proof.

To prove Theorem 2.2 and 2.3, i.e., to characterize the limits of the deterministic
and stochastic correctors, we first express ξε as a sum of three terms with increasing
order in qε. To this end, move the term qεξε in (5.1) to the right hand side, and then
apply G on it. We get

ξε=−Gqεu−Gqεξε.

Iterate this formula one more time to get

ξε=−Gqεu+GqεGqεu+GqεGqεξε. (5.7)

Note that the limits in both theorems are taken weakly in space, so we consider an
arbitrary test function M , e.g. in C∞

c , and integrate the above formula with M . We
get

〈ξε,M〉=−〈Gqεu,M〉+〈GqεGqεu,M〉+〈GqεGqεξε,M〉. (5.8)

Defining m :=GM , the last term can be written as 〈qεξε,Gqεm〉 since G is self-adjoint.
Using this notation we now prove the second main theorem.

Proof. [Proof of Theorem 2.2.] Take expectation on the weak formulation (5.8).
The first term vanishes since qε is mean zero. To estimate the third term, we observe
that

∣∣〈GqεGqεξε,M〉
∣∣=
∣∣〈qεξε,Gqεm〉

∣∣≤‖qε‖L∞‖ξε‖L2‖Gqεm‖L2 .

Thanks to the uniform bound (2.8) for q(x,ω), the term ‖qε‖L∞ is bounded by q0.
After taking expectations on both sides and using Cauchy-Schwarz on the right hand
side, we obtain

E
∣∣〈GqεGqεξε,M〉

∣∣≤C
(
E{‖ξε‖2} E{‖Gqεm‖2}

)1/2≤Cε2| logε| ·‖u‖L2‖m‖L2 , (5.9)
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where the last inequality follows from Theorem 2.1 and Lemma 5.1. In the limit, this
term is much smaller than ε.

Now we calculate the expectation of the second term in (5.8), which can be written
as:

E〈qεu,Gqεm〉=
∫

R2d

G(x−y)R

(
x−y

ε

)
u(x)m(y)d[xy]. (5.10)

As in the proof of Lemma 5.1, we change variable (x−y)/ε to x. The integral above
now becomes

εd
∫

R2d

G(εx)R(x)u(y+εx)m(y)d[xy]≤‖u‖L2‖m‖L2

∫

Rd

εdG(ε|x|)|R(x)|dx. (5.11)

The last equality is obtained by integrating in y and applying the same technique as
in (5.5). Recalling Lemma 3.3 and d=2, G can be decomposed into three terms. We
have

ε2G(ε|x|)= ε2

2π

(
exp(−λε|x|)

ε|x| −q0K0(λε|x|)+Gr(ε|x|)
)
.

Since K0 only has logarithmic singularity at the origin and Gr is uniformly bounded
as we have seen in Lemma 3.3, the last two terms above are of order ε2| logε| and ε2

respectively. Their contributions to (5.11) are negligible.
Hence the leading term in (5.11) is

ε

∫

R2

e−ελ|x|

2π|x| R(x)u(y)m(y+εx)dydx. (5.12)

Taking the limit and recalling the definition of R̃ in (2.14), we see that this term is

εR̃〈u,m〉+o(ε)= εR̃〈Gu,M〉+o(ε).

This completes the proof.

Our proof of the third theorem also relies on the formula (5.8). The plan is as
follows. First, we show that the leading term in the stochastic corrector ξε−E{ξε} is
the first term in (5.8); this is done by showing that the variances of the other terms
are small. Then we verify that the first term has a limiting distribution that can be
written as the right hand side of (2.16); this step is rather standard and follows from
a generalized central limit theorem in [1]; see below. For the moment, let us assume
the following lemma and prove Theorem 2.3.

Lemma 5.2. Let u solve (2.3) with d=2 and M be a test function in C∞
c (Rd).

Assume that the random field q(x,ω) satisfies the same conditions as in Theorem 2.3.
Then we have the following estimate:

Var 〈GqεGqεu,M〉≤Cεd+1, (5.13)

where C depends on λ, q0, ‖u‖L2 , ‖G‖L1 , ‖M‖L1 , ‖M‖L∞ , dimension d, ‖φp‖L1 and
‖φp‖L∞ in (2.7), but not on ε.

Proof. [Proof of Theorem 2.3.]
1. We rewrite formula (5.8) as

〈uε−u+Gqεu,M〉= 〈GεqεGεqεu,M〉+〈GqεGqεξε,M〉.
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Take expectation on both sides and note that E(Gqεu)=0; then we have

〈E{uε}−u,M〉=E〈GεqεGεqεu,M〉+E〈GqεGqεξε,M〉.

Subtract this equation from the preceding one and divide both sides by ε; take ex-
pectation on the absolute value of both sides, and use basic inequalities to get

E

∣∣∣〈uε−E{uε}
ε

+
Gqεu
ε

,M〉
∣∣∣≤ 1

ε

(
Var 〈GqεGqεu,M〉

) 1
2 +

2

ε
E{|〈GqεGqεξε,M〉|}.

The last term is of order ε| logε| thanks to the estimate (5.9), and the next-to-last is
of order

√
ε due to (5.13). Therefore the right hand side above vanishes in the limit.

This shows convergence of ε−1〈uε−E{uε},M〉 to −ε−1〈Gqεu,M〉 in L1(Ω) which in
turn implies convergence in distribution. Hence, we only need to characterize the
asymptotic distribution of the latter term.

2. The random variable ε−1〈Gqεu,M〉, which is the same as ε−1〈qεu,m〉 where
m=GM , is of the form of an oscillatory integral. Let v(y) denote u(y)m(y); it is an
L2 function. We want

∫

R2

1

ε
q
(y
ε

)
v(y)dy

distribution−−−−−−−→σ

∫

R2

v(y)dWy, (5.14)

where Wy is the standard two-parameter Wiener process as in Theorem 2.3. This
convergence result, with R

2 replaced by a bounded domain and v continuous, was
stated as (3.31) in [1] and was the main step in the proof of Theorem 3.7 there.
The proof goes as follows. Break the integral on the left of (5.14) into integrals on
small pieces, and on each piece write the integral as a properly scaled sum of weakly
dependent random variables. Apply a central limit theorem for such variables, e.g. [6],
and show that each piece converges to a centered normal random variable with certain
variance. At this stage, we need the strong mixing coefficient α(r) of q to satisfy
(2.5). Then show that different pieces are independent in the limit. Consequently,
the left side of (5.14) converges in distribution to a sum of independent normal random
variables and hence is itself normal in the limit. The variance of this limiting normal
random variable is then verified to be

σ2

∫
v2(y)dy,

the same as the variance of the right hand side of (5.14), closing the proof. For details,
we refer the reader to [1].

Here, since we assumed that M is compactly supported, v decays fast and is in
L2(Rd), and we obtain (5.14) by using the known result on the ball with radius B
and sending B to infinity. This completes the proof of the theorem.

It remains to prove the preceding lemma.

Proof. [Proof of Lemma 5.2.] We express random variable 〈GqεGqεu,M〉, which
equals 〈qεu,Gqεm〉 where m=GM , as the following integral:

I :=

∫

R2d

u(x)m(y)G(x−y)qε(x)qε(y)d[xy].
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Take the variance of this variable. Denote by ϑ the joint cumulant. We have the
following expression for Var{I}, i.e., E{I2}−(E{I})2:

Var{I}=
∫

R4d

u(x)m(y)u(x′)m(y′)G(x−y)G(x′−y′)
[
ϑ{qε(x),qε(y),qε(x′),qε(y

′)}

+R

(
x−x′

ε

)
R

(
y−y′

ε

)
+R

(
x−y′

ε

)
R

(
y−x′

ε

)]
d[xyx′y′].

Then we identify x,y,x′,y′ with x1,x2,x3,x4. Let U and U∗ be the sets defined in (2.6)
and the paragraph below it. Recall that the joint cumulant ϑ{qε(xi)}4i=1 satisfies (2.7)
with φp∈L1∩L∞(Rd×R

d); we have the following bound for Var{I}:
∫

R4d

|u(x)m(y)u(x′)m(y′)|G(x−y)G(x′−y′)
( ∑

p∈U∗

φp

(
xp(1)−xp(2)

ε
,
xp(3)−xp(4)

ε

)

+
∣∣∣R
(
x−x′

ε

)
R

(
y−y′

ε

)∣∣∣+
∣∣∣R
(
x−y′

ε

)
R

(
y−x′

ε

)∣∣∣
)
d[xyx′y′].

(5.15)
Let us denote the contributions of the last two terms in the parenthesis above

by J2 and J3 respectively, and denote the contribution of the other term by J1. We
observe that the variables in the R⊗R functions are independent with the variables in
the Green’s functions, while this is not the case for the variables in the φp functions.

We first estimate J2. It has the following expression:

J2 :=

∫

R4d

∣∣u(x)m(y)u(x′)m(y′)G(x−y)G(x′−y′)R

(
x−x′

ε

)
R

(
y−y′

ε

)∣∣d[xyx′y′].

Perform a change of variables as follows:

x→x,
x−x′

ε
→x′,

y−y′

ε
→y′, x−y→y.

This change of variables yields a Jacobian ε2d and the integral above becomes

ε2d
∫

R4d

∣∣u(x)m(x−y)u(x−εx′)m(y−εy′)G(y)G(y−ε(x′−y′))R(x′)R(y′)
∣∣d[xyx′y′].

(5.16)
Now we observe that the function m=GM is uniformly bounded as follows:

‖m‖L∞ ≤C(‖M‖L∞ +‖M‖L1). (5.17)

Indeed, we use the estimate (3.15) for the Green’s function and have

m(x)=

∫

Rd

G(x−y)M(y)dy≤C

∫

Rd

M(y)

|x−y|d−1
dy

≤C

(
‖M‖L∞

∫

B1(x)

1

|x−y|d−1
dy+

∫

Bc
1(x)

M(y)dy

)
.

Here we denote by B1(x) the unit ball centered at x, and by Bc
1(x) its complement.

The integral inside B1(x) is bounded by π⌊ d
2
⌋, and the integral on Bc

1(x) is bounded
by ‖M‖L1 . Hence we obtain (5.17). Use this bound to control the m functions in
(5.16). Integrate in x and use (5.5) to control the u functions. Integrate in y for the
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two Green’s function and view the integration as a convolution. Use (3.15) to bound
them by potentials of the form e−λ′|x|/|x|, and use the second inequality in (A.1) of
Lemma A.1 to get

∫

Rd

G(y)G(y−ε(x′−y′))dy≤Ce−λ′ε|x′−y′|
(
| log(ε|x′−y′|)| ·1{ε|x′−y′|≤1}+1

)
,

where 1 is the indicator function of a set. Therefore, after controlling u, m, and G,
we get

J2≤Cε2d‖u‖2L2‖m‖2L∞

∫

R2d

(∣∣ log(ε|x′−y′|)
∣∣1{ε|x′−y′|≤1}+1

)

×|R(x′)| · |R(y′)|d[x′y′].

(5.18)

The constant one in the parenthesis hence has a contribution of order ε2d since ‖R‖L1

is finite. For the logarithmic term, we observe that

sup
0<r≤1

rd−1| logr|≤ e−1

d−1
, for d≥2. (5.19)

Therefore, we have

∣∣ log(ε|x′−y′|)
∣∣1{ε|x′−y′|≤1}≤

e−1

(d−1)εd−1|x′−y′|d−1
1{ε|x′−y′|≤1}.

The contribution of the logarithm term in (5.18) is bounded by

Cεd+1‖u‖2L2‖m‖2L∞

∫

R2d

|R(x′)| · |R(y′)|
|x′−y′|d−1

d[x′y′].

Now apply the Hardy-Littlewood-Sobolev inequality, as in [14, §4.3], to get

∣∣∣∣
∫

R2d

|R(x′)| · |R(y′)|
|x′−y′|d−1

∣∣∣∣≤C

(
2d

d+1
,d−1

)
‖R‖2

L
2d

d+1

. (5.20)

Since R∈L1∩L∞, it is certainly in L
2d

d+1 . We have proved that

J2≤Cεd+1‖u‖2L2‖m‖2L∞‖R‖
3
2

L∞‖R‖
1
2

L1 +O(ε2d), (5.21)

where d=2. Similarly, J3 can be shown to be of size smaller than εd+1 as well in
dimension two.

Now we consider J1. There are C2
6 −3=12 terms that appear in the sum over

p∈U∗ in (5.15), and they can be divided into two groups. In the first group, the
function φp shares a variable with one of the Green’s functions; in the second group,
the variable of one of the Green’s functions is a linear combination of the two variables
of the φp function.

We first consider a typical term from the first group and still call it J1; it has the
following expression:

J1 :=

∫

R4d

∣∣G(x−y)G(x′−y′)φp(
x−y

ε
,
x−x′

ε
)u(x)m(y)u(x′)m(y′)

∣∣d[xyx′y′].
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Note that the x−y variable is shared by the first Green’s function and φp. We perform
the following change of variables:

x→x,
x−x′

ε
→x′,

x−y

ε
→y, x′−y′→y′.

The Jacobian is again ε2d, and then the integral becomes

ε2d
∫

R4d

∣∣u(x)m(x−εy)u(x−εx′)m(x′−y′)G(y′)G(εy)
∣∣φp(y,x

′)d[xyx′y′].

Use (5.17) to control the m functions; integrate in x and use (5.5) to control the u
functions; integrate in y′ to control the first Green’s function. We obtain the following
bound for J2.

J2≤Cε2d‖u‖2L2‖m‖2L∞‖G‖L1

∫

R2d

1

(ε|y|)d−1
φp(y,x

′)d[yx′], (5.22)

where we have used (3.15) for the Green’s function. The scaling ε−d+1 resulting from
the Green’s function combined with the Jacobian ε2d indicates that J2 is of size εd+1

once we control the following integral:

∫

R2d

φp(y,x
′)

|y|d−1
d[yx′].

Indeed, this integral is finite since |y|d−1 is integrable near the origin and φp is inte-
grable at infinity. To summarize we have

J2≤Cεd+1‖u‖2L2‖m‖2L∞‖G‖L1

∥∥∥∥
φp(y,x

′)

|y|d−1

∥∥∥∥
L1

. (5.23)

For a typical term from the second group in the sum over p∈U∗ in (5.15), we
can apply the same procedure exactly and in (5.22) we will have |x′−y|d−1 on the
denominator in the integral, and we can control the integral as in (5.20). Therefore,
the contributions of such terms are also of size εd+1 with d=2. This completes the
proof.

6. General setting with singular Green’s function

In this section we explain how to apply the procedure of this paper to elliptic
pseudo-differential equations of the form (1.3) in general dimensions. We consider the
following pseudo-differential equation with random coefficient:

P (x,D)uε(x,ω)+(q0(x)+qε(x,ω))uε=f(x), (6.1)

posed on a subset X of Rd with appropriate boundary condition. As before, qε(x,ω)=
q(x/ε,ω) and q(x,ω) is a stationary, mean zero, finite variance, strong mixing random
field defined on (Ω,F ,P), with parameters x∈R

d. Assume that the deterministic and
random potentials, i.e., q0(x) and qε, satisfy proper conditions so that the solution
operators

G :=
(
P (x,D)+q0(x)

)−1
, Gε :=

(
P (x,D)+q0(x)+qε

)−1
,

are well defined almost everywhere in Ω. Assume also that G and Gε, as transforma-
tions on L2(X), are bounded for all realizations, and the upper bound of the operator
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norm is independent of realizations. Assume further that the Green’s function corre-
sponding to G is singular, i.e., not square integrable near the origin, and is therefore
of interest in this paper.

Using the same techniques developed in previous sections, we can show that uε

converges to the solution of a homogenized equation denoted by u in the L2(X×Ω)
norm. We can then show that the random corrector uε−E{uε} converges weakly and
in probability distribution to a Gaussian process with variance of size εd. The large
components, with size no less than εd/2, of the deterministic corrector E{uε}−u can
also be captured. As in the main body of this paper, we need additional assumptions
on some higher-order moments of the random field q(x,ω) to obtain the last two
results.

To be precise, suppose the Green’s function G(x,y) has the following decomposi-
tion with decreasing singularities,

G(x,y)∼
N∑

j=1

cj(x,y)

|x−y|γj
+Gr(x,y). (6.2)

Here, N is a finite integer and

d>γ1>γ2> · · ·>γN ≥ d

2
.

Let us denote the terms in the sum above as Gj . The functions {cj(x,y)} are uni-
formly bounded and decay fast enough so that {Gj} are integrable if the domain X is
unbounded. Further, Gr(x,y) is a term that is both integrable and square integrable
(with respect to one of the variables and uniformly in the other variable).

Then, the homogenized equation for (6.1) will be of the same form with qε aver-
aged (or removed). In fact, we have the following as an analogy of Theorem 2.1.

E‖uε−u‖2L2 ≤
{
Cε2(d−γ1)‖u‖2L2 , if 2γ1>d,

Cεd| logε|‖u‖2L2 , if 2γ1=d.
(6.3)

These estimates show that uε converges to the homogenized solution u in energy
norm. At this stage, we do not need the mixing property or control of higher order
moments of q(x,ω).

Under certain conditions on some moments of the random field, we know that the
fluctuations in the corrector are approximately weakly Gaussian and of size εd/2. To
further approximate uε, we would like to capture all the terms in the corrector whose
means are larger. To do this, we expand uε as iterations of G on random potentials
as follows.:

uε(x)−u=−GqεGf+GqεGqεGf−GqεGqεGqεGf+ · · ·+(−Gqε)kξε. (6.4)

The order k at which we terminate the iteration is chosen so that we can show
E{‖(Gqε)k−2GM‖2L2}≤ εγ with γ >2γ1−d for some test function M . Then weakly,

the remainder term (−Gqε)kξε is of order less than εd/2. Hence, the finite terms in
(6.4) before the remainder include all the components in the corrector whose means
are weakly larger than the random fluctuations. Then it is a tedious routine as shown
in the paper to calculate the large deterministic means of these terms and to check
that their variances are less than εd. As a result, the limiting law of uε−E{uε} is
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given by the limiting law of 1
εd/2

Gqεu, which is Gaussian and admits a convenient
stochastic integral representation.

As an example, we summarize and compare results for the diffusion equation (2.1)
as the dimension n and hence d change.

When n=2 and hence d=1, the Green’s function G has logarithmic singularity
only and hence Gj ≡0 in (6.2). As a result, G is square integrable and the problem
reduces to a case that is investigated in [1]. In particular, the deterministic corrector
E{uε−u} is of size ε and does not show up in Theorem 2.3; in other words, the
deterministic corrector is dominated by the random fluctuations, which are of size√
ε.
When n≥4 and hence d>2, then the leading term of the Green’s function is given

by a modified Bessel potential and has singularity of order γ1=d−1 at the origin, and
2γ1>d. Then the leading term in the deterministic corrector will be of order εd−γ1 ,
which is larger that εd/2. In other words, the deterministic corrector dominates the
fluctuations, which are of size εd/2.

The physical dimension n=3 considered in the main section turns out to be
the critical case when the deterministic corrector is in fact of the same size as the
fluctuations, which are of size ε.

Appendix A. Two technical lemmas.

A.1. Convolution of potentials in the whole space.

Lemma A.1. Let us fix two distinct points x,y∈R
d. Let α,β be positive numbers in

(0,d), and λ another positive number. We have the following convolution results.

∫

Rd

e−λ|z−x|

|z−x|α
e−λ|z−y|

|z−y|β dz≤





Ce−λ|x−y|(|x−y|d−(α+β)+1), if α+β>d,

Ce−λ|x−y|(| log |x−y||1{|x−y|≤1}+1), if α+β=d,

Ce−λ|x−y| if α+β<d.

(A.1)
Here 1 is the indicator function of a set. Similarly, we also have that

∫

Rd

e−λ|z−x|

|z−x|α e−λ|z−y|
∣∣ log |z−y|

∣∣dz≤Ce−λ|x−y|. (A.2)

The above constants depend only on α,β, λ, and dimension d but not on |x−y|.
Proof. We use the partition of the integration domain as shown in Figure A.1.

On I and similarly on I ′, we use |z−x|+ |z−y|≥ |x−y|, and define ρ= |x−y|. Then
we have

∫

I

e−λ|z−x|

|z−x|α
e−λ|z−y|

|z−y|β dz≤ πde
−λ|x−y|

ρβ

∫ ρ

0

rd−1

rα
dr,

where πd is the volume of the unit sphere Sd−1. The last integral can be calculated
explicitly and yields ρd−α/(d−α). Hence the integration over I∪I ′ can be bounded
by

(2d−α−β)πde
−λ|x−y|

(d−α)(d−β)|x−y|α+β−d
. (A.3)

Now on the unbounded domain II, we observe that |z−y|>ρ and |z−y|> |z−x|,
and obtain similar relations on II ′. Therefore the integration on II∪II ′ is bounded
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Fig. A.1. Integration region of the convolution of two potentials.

from above by

2e−λ|x−y|

∫

II

e−λ|z−x|

|z−x|α+β
dz≤2πde

−λ|x−y|

∫ ∞

ρ

e−λr

rα+β−d+1
dr.

Now, we estimate the last integral, which we call A(ρ).
We first consider the case when α+β<d. The integrand is integrable over R+,

the nonnegative real line. Therefore A(ρ) is bounded by some constant, actually a
multiple of Γ(d−α−β). This together with the bound (A.3) proves the third case in
(A.1).

Now we consider the case when α+β=d. If ρ= |x−y|>1, then A(ρ) is bounded
from above by e−λ/λ. If ρ= |x−y|≤1, then an integration by parts yields

A(ρ)=

∫ ∞

ρ

e−λr

r
=−e−λρ logρ+λ

∫ ∞

ρ

e−λr logrdr. (A.4)

The last integral is finite over R+ and hence |A(ρ)|≤Ce−λρ(1+ | logρ|). This together
with the bound (A.3) proves the second case in (A.1).

When α+β>d, let us denote −α−β+d−1=s. Several integrations by parts
yield

A(ρ)=

∫ ∞

ρ

e−λrrsdr=
λγ

∏γ
j=1(s+j)

∫ ∞

ρ

e−λrrs+γdr

−e−λρ
(ρs+1

s+1
+

λρs+2

(s+1)(s+2)
+ · · ·+ λγ−1ρs+γ

(s+1) · · ·(s+γ)

)
.

(A.5)

Here, γ is the largest integer that is smaller than or equal to α+β−d. When they
are equal, the right hand side above needs some slight modifications and the first
integral involves a logarithmic function. In both cases, the first integral is finite and
the second term is bounded by Ce−λρ(1+ρd−α−β). This together with the bound
(A.3) proves the second case in (A.1).

The claim (A.2) follows from a similar and easier analysis which we omit.
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√
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√
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Fig. A.2. Holomorphic region of the function h(z).

A.2. Fourier transform and exponential decay.

Lemma A.2. Let λ and q0 be positive real numbers and let ξ∈R
2. Set λ′≡λ/

√
2.

Then, for any positive real number b<λ′, there exists a finite constant Cb such that
∣∣∣∣∣F

−1 q20

(|ξ|2+λ2)(q0+
√
|ξ|2+λ2)

∣∣∣∣∣≤Cbe
−b|x|. (A.6)

Proof. 1. Let us denote by h(ξ) the function whose inverse Fourier transform is
considered in (A.6). Let us also define h(z) to be the same function with ξ replaced
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by z=(z1,z2)∈C
2, a complex valued function of two complex variables. Set

Γ :={z∈C| |Im(z)|≤λ′}. (A.7)

We claim that h is holomorphic on the region Γ2, i.e. Γ×Γ.
Indeed, let w(z1,z2) be the function z21+z22 . It is clearly entire on C

2. Define
g(w) :=

√
w+λ2 as a function of one complex variable. It is holomorphic on the

branched region B :=C\(−∞,−λ2] as shown in Figure A.2. Now when (z1,z2)∈Γ2, we
verify that w∈B and hence g(w(z)) is holomorphic on Γ2. This is because composition
of holomorphic functions is again holomorphic; see [10]. Since λ>q0, we verify that
g(w(z))+q0 does not vanish. Thus, h(z) is holomorphic on Γ2.

The above arguments show that for any η∈R
2 so that |ηj |<λ′, i=1,2, the

function h(ξ+ iη) is analytic. Furthermore, it is easy to check that ‖h(ξ+ iη)‖L1

is bounded uniformly in η. Hence we apply Theorem IX.14 of [17], which says that
under such conditions, for each 0<b<λ′, there exists Cb so that |F−1h|≤Cbe

−b|x|.
This completes the proof.

Appendix B. We would like to thank the anonymous referees for comments that
helped us improve the presentation of our results. This work was supported in part
by NSF Grants DMS-0554097 and DMS-0804696.
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