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UNIQUE MINIMIZER FOR A RANDOM FUNCTIONAL WITH
DOUBLE-WELL POTENTIAL IN DIMENSION 1 AND 2∗

NICOLAS DIRR† AND ENZA ORLANDI‡

Abstract. We add a random bulk term, modelling the interaction with the impurities of the
medium, to a standard functional in the gradient theory of phase transitions consisting of a gradient
term with a double well potential. We show that in d≤2 there exists, for almost all the realizations
of the random bulk term, a unique random macroscopic minimizer. This result is in sharp contrast
to the case when the random bulk term is absent. In the latter case there are two minimizers which
are (in law) invariant under translations in space.
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1. Introduction

Models where a stochastic contribution is added to the energy of the system
naturally arise in condensed matter physics where the presence of the impurities
causes the microscopic structure to vary from point to point.

We are interested in functionals which — without random perturbation — model
the free energy of a material with two (or several) phases on a so called mesoscopic
scale, i.e a scale which is much larger than the atomistic scale so that the adequate
description of the state of the material is given by a continuous scalar order parameter
m : D⊆R

d→R. The minimizers of these functionals are functions m∗ representing
the states or phases of the materials.

The natural question that we pose is the following: What happens to these mini-
mizers when an external, even very weak, random force is added to the deterministic
functional? Are there still the same number of minimizers, i.e will the material always
have the same number of states (or phases)? Is there some significant difference in
the qualitative properties of the material when the randomness is added? These are
standard questions in a calculus of variations framework. However, standard tech-
niques applicable for deterministic calculus of variation problems might not give a
satisfactory answer when randomness is involved. In the case under consideration
in this paper one needs to deal with a family of nonlinear functionals which are not
convex and not bounded uniformly from below. So one needs to find, depending on
the functionals, a way to answer these questions. It turns out that methods used in
statistical mechanics, suitably modified, might give an answer to these problems in
certain cases. Recently there has been an intensive effort, in both directions, to built
a bridge between techniques and methods used in analysis and calculus of variations
and those used in statistical mechanics; see, for a survey of these issues, [24]. This
paper is in this context.
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The analysis of the asymptotic behavior of random functionals has received con-
siderable attention within a homogenization framework; we mention for example the
work by G. Dal Maso and L. Modica, [12, 13]. The techniques there are based on
Γ-convergence from the analysis side and the sub-additive ergodic theorem from the
probabilistic side.

More recently, A. Braides and A. Piatnitski [6] studied a random optimization
problem, motivated by problems in mechanics, which requires techniques from perco-
lation theory.

Problems from solid mechanics lead naturally to the mathematical analysis of the
asymptotic behavior of random functionals; see e.g. [2, 3, 4].

The limit under consideration here, which requires techniques from statistical
mechanics, is different from the problems mentioned previously due to two averaging
effects taking places simultaneously: the singular limit of a functional with several
ground states (minimizers), and the averaging over a random perturbation. The
functional we will study here consists of three competing parts: an “interaction term”
penalizing spatial changes in m, a double-well potential W (m), i.e. a nonconvex
function which has exactly two minimizers, for simplicity +1 and −1, modelling a
two-phase material, and a term which couples m to a random field θg(·,ω) with mean
zero, variance θ2 and unit correlation length; i.e a term which prefers at each point in
space one of the two minimizers of W (·) and breaks the translational invariance, but
is “neutral” in the mean. A standard choice with the aforementioned properties is

Ĝ(m,ω) :=

∫

D

(
|∇m(y)|2+W (m(y))−θg(y,ω)m(y)

)
dy.

We are, however, interested in a so-called macroscopic scale which is coarser than the
mesoscopic scale. Therefore we rescale space with a small parameter ǫ. If Λ= ǫD and
u(x)=m(ǫ−1x) then we obtain Ĝ(m,ω)= ǫ1−dGǫ(u,ω), where

Gǫ(u,ω,Λ) :=

∫

Λ

(
ǫ|∇u(x)|2+ 1

ǫ
W (m(x))− θ

ǫ
gǫ(x,ω)m(x)

)
dx, (1.1)

and where gǫ has now correlation length ǫ. We are interested in determining the
minimizers of this functional, the asymptotic behavior (as ǫ→0) of them, and their
qualitative properties.

Due to the non-convexity of the double-well potential, the Euler-Lagrange equa-
tion might not have a unique solution.

The g-dependent bulk term can, because of the scaling with ǫ−1, force a sequence
uǫ to “follow” the oscillations of g. This always happens in the form of bounded
oscillations around the two wells of the double well potential. In such a situation
there are still two distinct minimizers. But in principle the g-dependent term could
be strong enough to enforce large oscillations, so that the minimizers will “change
well”.

In the periodic case it is possible to check on a deterministic volume, with a
diameter on the order of the period, whether the minimizer “changes well” (from
one “well” of the double well potential to the other one) and so creates a “bubble”
of the other phase. If it does not, then the symmetry of the double well implies
immediately the existence of two distinct minimizers. If it changes from one well to
the other, the situation is more complex, but can in principle be solved by considering
a minimization problem on a period (i.e. a compact domain) with periodic boundary
conditions. For further discussion of the periodic case we refer to [7, 14, 15].
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The random case is quite different because there is no deterministic subset of Λ
such that the integral of the random field over this subset equals zero for almost all
realizations of the random field — there are always fluctuations around the zero mean.
A set A becomes the support of a bubble of the other phase if the cost of switching
to the other well, which can be estimated by the Modica-Mortola result (see [22] and
[21]) as proportional to the boundary of A, is smaller than the integral of the random
field part over A.

As the correlation length is ǫ, a set A⊆Λ contains roughly |A|ǫ−d independent
random variables, where | · | denotes the d− dimensional Lebesgue measure of a set.
By the central limit theorem, fluctuations of order θ

√
|A|ǫd/2 are highly likely, but

the probability of larger fluctuations vanishes exponentially fast. Therefore, using
the isoperimetric inequality, the probability of A being the support of a bubble is
exponentially small if

cd|A|(d−1)/d≫|A|1/2ǫ(d−2)/2θ, (1.2)

where cd is the isoperimetric constant.
In d≥3 this is asymptotically always the case for sets of diameter of order larger

than ǫ, or for sets of any size, provided θ→0. Dimension d=2 and θ small is a critical
case. In d≥3, although (1.2) holds for one single bubble, to determine the properties
of the minimizers one needs to ask if there exist “bubbles” of the other phase and of
which sizes and how large they are. Notice that “bubbles” of the other phase with
diameter of order ǫ will exist almost surely, if the system is large enough.

These kind of problems were discussed by the physics community in the 1980’s
for the random field Ising model. The problem was to determine the dimension at
which the random field Ising model would show spontaneous magnetization at low
temperature and weak disorder. The problem was solved by Bricmont and Kupiainen
[8], who proved the existence of phase transition in d≥3 for small magnitude of the
random field, and by Aizenman and Wehr [1], who proved that there is no phase
transition in d=2 for all temperatures. Hence the case d=3 is indeed the physically
critical case.

These kinds of problems are closely related to the question of whether there are
at least two distinct minimizers, one predominantly + and one predominantly −, for
functional (1.1).

This program for functional (1.1) has been successfully carried out in a previous
paper by Dirr and Orlandi [16] for d≥3 and θ≃ 1

| logǫ| . They show that, P- a.s with

respect to the random field, for any ǫ>0 there were still two minimizers which, un-
like in the case θ=0, were not constant functions u(x)≡1 and u(x)≡−1 but rather
functions varying in x and ω, and the minimal energy was strictly negative. Further
using the Γ−convergence technique they determined the cost of forming a bubble of
one phase in the other one. These results were obtained under the strong assumption
that θ≃ 1

| logǫ| . We expect, by analogy with the Ising models with random field, that,

for θ small but fixed, in d≥3 there are still two minimizers but they do not stay in
one single well, i.e one minimizer will be predominantly + and one predominantly
−. In d≥3 for θ small the cost of creating a bubble of one phase located at a given
point is larger than the possible gain of the fluctuations of the random field inside
that bubble. So far there are no results for (1.1) in this case.

Here we address the case when d≤2 and the strength of the random field θ is
fixed. We show that when d=1,2 there exists, for almost all the realizations of the
random field, an unique macroscopic minimizer u∗(·,ω) so that, denoting by Q(0) the
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unit cube centered at the origin and by Q(z)= z+Q(0) the unit cube centered in
z∈Z

d,

E

[∫

Q(z)

u∗(x, ·)dx
]
=0, ∀z∈Z

d, d≤2,

where E[·] denotes the mean with respect to the random field. Note that for θ=0 and
for sufficiently small periodic forcing there exist two minimizers (see e.g.[15]), so the
uniqueness of the minimizer is due to the random nature of the perturbation.

An explicit construction in 1-d is not easy, because if one observes an interval
centered at the origin, it is not possible to give information about the local behavior
of the minimizers of the functional on that interval without knowledge of the random
field in a much larger random interval. But there is a related model — an Ising
model with long-range (Kac type)interactions and a random field — where scaling
limits of the 1-d minimizer have been characterized in a very specific way: In this
case it is possible to show, via a suitable coarse graining, that when θ=0 the size of
intervals with positive or negative magnetization grows exponentially in 1

Tγ , where

γ−1 is the range of the interaction and the temperature T is less than the critical
mean field temperature Tc; see [11]. When the random field is added, i.e θ 6=0, the
size of intervals with positive or negative magnetization goes algebraically as 1

γ2 ; see

[9, 10] and [23].
The strategy of our proof is based on the following steps. We prove first that there

exist two macroscopic extremal minimizers v±(·,ω) so that any other macroscopic
minimizer satisfies v−(·,ω)≤u∗(·,ω)≤v+(·,ω). By a standard argument we then show
that for any Λ⊂R

d and for a positive constant C,

∣∣G1(v
+,ω,Λ)−G1(v

−,ω,Λ)
∣∣≤C|Λ| d−1

d , ∀ω∈Ω. (1.3)

The minimizer v±(·,ω) depends in a highly non trivial way on the random fields g(x,ω)
for x in all Zd. Therefore the difference G1(v

+,ω,Λ)−G1(v
−,ω,Λ) depends on the

random fields in all of Zd. We take a sequence Λn⊂Λn+1 and show that, conditioning
on the random fields in Λn (i.e taking the expectation over only the random fields
outside Λn),

Fn(ω) :=E
[
G1(v

+,ω,Λn)−G1(v
−,ω,Λn)|BΛn

]

has significant fluctuations with variance of the order of the volume. The BΛn
is the

σ-algebra generated by the random field in Λn. Namely we show that

E [Fn(·)]=0,

and

liminf
n→∞

E

[
e
t Fn
√

Λn

]
≥ e

t2D2

2 , (1.4)

where D2 is given in (4.51). This holds in all dimensions. But in d≤2 this generates
a contradiction with the bound (1.3), unless D2=0. When D2=0 we show that
M =E[

∫
Q(0)

v+]−E[
∫
Q(0)

v−]=0. Further, we show that E[
∫
Q(0)

v+]≥E[
∫
Q(0)

v−], and

therefore E[
∫
Q(0)

v+]=E[
∫
Q(0)

v−]=0. The probabilistic argument has been already

applied by Aizenman and Wehr [1] in the context of Ising spin systems with random
external field; see also the book by Bovier [5] for a survey on this subject.
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2. Notations and results

2.1. The functional. The “macroscopic” space is given by Λ := [− 1
2 ,

1
2 ]

d, the
d− dimensional unit cube centered at the origin. The ratio between the macroscopic
and the “mesoscopic” scale is given by the small parameter ǫ.

The disorder or random field is constructed with the help of a family of inde-
pendent, identically distributed random variables with mean zero and variance equal
to 1. We assume that each random variable has distribution absolutely continuous
with respect to the Lebesgue measure and that the Lebesgue density is a symmetric,
compactly supported function on R. The corresponding infinite product measure on

R
Zd

will be denoted by P and by E[·] the mean with respect to P. In the following we
will denote this family of random variables by {g(z,ω)}z∈Zd , ω∈Ω, where we identify

Ω with R
Zd

. These assumptions imply that there exists a finite A>0 so that

E[g(z)]=0, E[g2(z)]=1, ∀z∈Z
d and ‖g‖∞=sup

z
|g(z,ω)|=A, P - a.s.

(2.1)
The boundedness assumption is not essential. Different choices of g could be handled
by minor modifications provided g is still a random field with finite correlation length,
invariant under (integer) translations and such that g(z, ·) has a symmetric distribu-
tion, absolutely continuous with respect to the Lebesgue measure and E[g(z)2+η]<∞,
z∈Z

d for η>0. The method does not apply when g has atoms. In Ising spin systems,
the uniqueness of the minimizer may fail if the distribution of g has atoms; see [1].
The symmetry of the measure P is essential for obtaining the result, and not only
for technical reasons: if P does not have a symmetric distribution, it would be no
longer natural to compare the qualitative properties of the functional (1.1) with θ 6=0
with the functional (1.1) with θ=0. (Note that in the case θ=0 the functional is
symmetric under the transformation m 7→−m.)

For example, if the mean of g is no longer zero, one should compare the functional
(1.1) with θ 6=0 with the functional (1.1) to which a term h

∫
Λ
m(x)dx is added, with

the constant h equal to the mean of g(z). In the following we always assume that P
is symmetric.

We denote by B the product σ-algebra and by BΛ, Λ⊂Z
d, the σ− algebra

generated by {g(z,ω) :z∈Λ}. In the following we often identify the random field
{g(z, ·) :z∈Z

d} with the coordinate maps {g(z,ω)=ω(z) :z∈Z
d}. To use ergodicity

properties of the random field it is convenient to equip the probability space (Ω,B,P)
with some extra structure. First, we define the action T of the translation group Z

d

on Ω. We will assume that P is invariant under this action and that the dynamical
system (Ω,B,P,T ) is stationary and ergodic. In our model the action of T is, for
y∈Z

d,

(g(z1, [Tyω]), ...,g(zn, [Tyω]))=(g(z1+y,ω), ...,g(zn+y,ω)). (2.2)

The disorder or random field in the functional will be obtained by a rescaling of g
such that the correlation length is order ǫ and the amplitude grows as ǫ→0. To this
end define for x∈Λ a function gǫ(·,ω)∈L∞(Λ) by

gǫ(x,ω) :=
∑

z∈Zd

g(z,ω)1Iǫ(z+[− 1

2
, 1
2
]d)∩Λ(x), (2.3)

where for any Borel-measurable set A

1IA(x) :=

{
1, if x∈A,
0, if x 6∈A.
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The potential W is a so-called “double-well potential”:

Assumption (H1). W ∈C2(R), W ≥0, W (s)=0 iff s∈{−1,1}, W (s)=W (−s),
and W (s) is strictly decreasing in [0,1]. Moreover, there exists δ0 and C0>0 so that

W (s)=
1

2C0
(s−1)2, ∀s∈ (1−δ0,∞). (2.4)

Note thatW is slightly different from the standard choiceW (u)=(1−u2)2. Our choice
simplifies some proofs because it makes the Euler-Lagrange equation linear provided
solutions stay in one “well”. These assumptions could be relaxed. For u∈H1(Λ) and
any open set A⊆Λ consider the following random functional:

Gǫ(u,ω,A) :=

∫

A

(
ǫ|∇u(x)|2+ 1

ǫ
W (u(x))

)
dx− 1

ǫ
θ

∫

A

gǫ(x,ω)u(x)dx, (2.5)

where θ>0. Set ǫ= 1
n , n∈N, so that for any n≥1 the mesoscopic space is defined as

Λn := [−n
2 ,

n
2 ]

d. Consider v∈H1(Λn) and denote in mesoscopic coordinates

G1(v,ω,Λn) :=

∫

Λn

(
|∇v(x)|2+W (v(x))

)
dx−θ

∫

Λn

g1(x,ω)v(x)dx. (2.6)

The relation between (2.5) and (2.6) is

Gn(u,ω,Λ)=n−(d−1)G1(v,ω,Λn), (2.7)

where v(x)=u( 1nx) for x∈Λn.
For n>1 fixed and ω∈Ω it follows in the same way as in the case without random

perturbation that the functional G1(·,ω) is coercive and weakly lower semicontinuous
in H1(Λn), so there exists at least one minimizer (see [17]) which is a random function
in H1(Λn); i.e. different realizations of ω will give different minimizers.

Definition 2.1. Translational covariant states. We say that the function v :
R

d×Ω→R is translational covariant if

v(x+y,ω)=v(x, [T−yω]) ∀y∈Z
d, x∈R

d. (2.8)

2.2. Minimizers. Our main result is the following.

Theorem 2.2.

Take d≤2, θ strictly positive and u∗
n(·,ω)∈argminw∈H1(Λn)G1(w,ω,Λn). Then,

P a.s. there exists an unique u∗(·,ω) defined as

lim
n→∞

u∗
n(x,ω)=u∗(·,ω) (uniformly on compacts in x),

so that

• u∗(·,ω) is translation covariant (see (2.8)),

• u∗(·,ω) is Lipschitz continuous in R
d,

• |u∗(·,ω)|≤1+C0θ‖g1‖∞ where C0 is the constant in (2.4),
•

limn−dG1(u
∗
n(·,ω),ω,Λn)= limn−d

(
inf

H1(Λn)
G1(·,ω,Λn)

)
= e, (2.9)

where e is a deterministic value given in (4.13), and
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•

E

[∫

z+[− 1

2
, 1
2
]d
u∗(x,ω)dx

]
=0, ∀z∈Z

d.

Remark 2.3. When θ=0 in (2.6), i.e the random field is absent, the minimum
value is zero and there are two minimizers: the constant functions identical equal to
1 or to −1.

Remark 2.4. In the case analyzed in [16], d≥3, θ≃ θ̃
logn , θ̃∈ (0,1), there exist two

minimizers

u±(·,ω)=±1+v∗(·,ω), E[v∗(x, ·)]=0, sup
x

|v∗(x,ω)|≤C0θ̃‖g‖∞.

3. Finite volume minimizers
In this section we state properties for minimizers of the following problem

min
w∈H1(Λn)

G1(w,ω,Λn).

These properties hold in all dimensions d and for almost every ω∈Ω. The volume Λn

is kept fixed throughout the section. Thus to shorten notation we denote Λ :=Λn and
state the results for any d while ω plays the role of a parameter. We first show that
to determine the minimizers of the functional G1 it is sufficient to consider functions
in H1(Λ) which satisfy a uniform L∞-bound:

Lemma 3.1. Assume (H1). For all ω∈Ω, for all v∈H1(Λ), and all t>1+C0θ‖g‖∞,

G1(v,ω,Λ)−G1(t∧(v∨(−t)),ω,Λ)≥
∫

Λt

(
C−1

0 (t−1)−θ‖g‖∞
)
(|v(y)|− t), (3.1)

where C0 is the constant in (2.4) and Λt={y∈Λ: |v(y)|>t}. In particular G1(t∧v∨
(−t),ω,Λ)<G1(v,ω,Λ) unless Λt=∅.

Proof.

G1(v,ω,Λ)−G1(t∧v∨(−t),ω,Λ)

≥
∫

Λt

(W (v(y))−W (t))dy−θ

∫

Λt

g1(y,ω)[v(y)−sign(v(y))t]dy,

and from (H1) and the L∞-bound on g we derive (3.1).

This L∞ bound on the global minimizer implies Lipschitz-regularity. Namely, a
minimizer of G1(·,ω) in H1(Λ) is a weak solution of the Euler-Lagrange equation

{
∆v = 1

2 [W
′(v)+θg1] in Λ, ω∈Ω,

∂v
∂n = 0 on ∂Λ.

(3.2)

We have the following regularity result.

Proposition 3.2. Let v(·,ω) be a solution of the Euler-Lagrange equation (3.2)
and set

L0=C(d)

[
sup

{s:s=v(r),r∈Λ}

|W ′(s)|+θ‖g‖∞
]
, (3.3)
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where C(d) is a positive constant which depends on the dimension d. We have

|v(r,ω)−v(r′,ω)|<L0|r−r′|, r,r′∈Λ, ∀ω∈Ω.

Proof. By Lemma 3.1, a global minimizer v satisfies the bound |v(r,ω)|≤
1+C0θ‖g‖∞ for r∈Λ and ω∈Ω. Since |g1(·,ω)|≤A for all ω∈Ω (see (2.1)), any
minimizer will be a bounded solution of Poisson’s equation with a bounded right
hand side.

By the regularity theory for the Laplacian (see [18]) the solution v is Lipschitz in
Λ with a Lipschitz constant bounded by the quantity L0 defined in (3.3).

The following lemma proves that minimizers of G1(·,ω,Λ) corresponding to or-
dered boundary conditions on Λ are ordered as well; i.e they do not intersect. In
particular if there exists more than one minimizer corresponding to the same bound-
ary condition then they do not intersect.

Lemma 3.3. Let w1 and w2 be functions in H1(Λ) such that (in the sense of traces)
w1≤w2 on ∂Λ, and

u∈argminw−w1∈H1
0
(Λ)G1(w,ω,Λ) and v∈argminw−w2∈H1

0
(Λ)G1(w,ω,Λ).

Then u=v or |u(x)−v(x)|>0 for all x∈ int(Λ). If w1<w2 in an open set in ∂Λ, then
u<v everywhere in int(Λ).

Proof. The argument works for general functionals of the type

E(w) :=

∫

Λ

(
|gradw(x)|2+f(w,x)

)
dx,

where ∂wwf(w,x) is continuous on R×Λ (here we treat ω as parameter, i.e. it holds
for any realization of the random field).

Note that for any H1-functions u and v,

E(u∨v)+E(u∧v)=E(u)+E(v).

If u∈argminw−w1∈H1
0
(Λ)E(w) and v∈argminw−w2∈H1

0
(Λ)E(w) we have u∨v=v,u∧

v=u on ∂Λ. By the minimization properties of u and v we get E(u∨v)≥E(v), E(u∧
v)≥E(u). This implies that actually E(u∨v)=E(v), E(u∧v)=E(u), so u∨v∈
argminw−w2∈H1

0

E(u), u∧v∈argminw−w1∈H1
0

E(u). Obviously the function m :=u−
u∧v≥0 in Λ and in particular m=0 on ∂Λ. We have that m in our context solves

∆m=
1

2
[f ′(u)−f ′(u∧v)]=V (x)m in Λ,

m=0 on ∂Λ
(3.4)

with potential

V (x)=
1

2

f ′(u)−f ′(u∧v)

u−u∧v
,

which is continuous because f is twice continuously differentiable in its first argument.
Suppose there exists x0∈Λ with m(x0)=0. By Harnack’s inequality (see [18],

Theorem 8.20) for nonnegative solutions to elliptic linear equations, supBR(x0)m≤
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C infBR(x0)m for any ball such that B4R⊂Λ. The constant C>0 depends on the
radius R and the coefficients in (3.4). Hence 0≤m≤ supBR(x0)m=0, so m≡0 on
such a ball. It immediately follows that m≡0 on int(Λ). Therefore in the interior
of Λ either u=u∧v (in which case u≤v) or u>u∧v; i.e. v<u. As minimizers are
uniformly Lipschitz continuous, the latter case is only possible if u=v on ∂Λ.

Consider the first case: m̂ :=v−u≥0. We get, reasoning as before, ∆m̂= V̂ (x)m̂

with a uniformly continuous potential V̂ . Then arguing as above m̂=0 everywhere
or m̂>0 everywhere.

4. Infinite volume covariant states

Theorem 4.1. [infinite-volume states] For almost all ω∈Ω there exist two functions
v+(x,ω), v−(x,ω), x∈R

d, having the following properties:

• v±(·,ω) is Lipschitz continuous in R
d,

•

|v±(·,ω)|≤1+C0θ‖g1‖∞, (4.1)

where C0 is the constant in (2.4),
•

v+(x,ω)=−v−(x,−ω) x∈R
d, (4.2)

• v±(·,ω) are translation covariant,
•

limn−d

∫

Λn

v±(x,ω)dx=m±, (4.3)

where m±=E

[∫
[− 1

2
, 1
2
]d
v±(x, ·)dx

]
, and m+=−m−≥0,

•

limn−dG1(v
+,ω,Λn)= limn−dG1(v

−,ω,Λn)= limn−d inf
H1(Λn)

G1(·,ω,Λn)= e

(4.4)
where e is deterministic value given in (4.13), and

• If w̄n(·,ω)∈argminH1(Λn)G1(v,ω,Λn) then

v−(x,ω)≤ liminf
n→∞

w̄n(x,ω)≤ limsup
n→∞

w̄n(x,ω)≤v+(x,ω), x∈R
d. (4.5)

Proof. We start proving the existence. Consider the following boundary prob-
lems. For z∈Z

d, C=C0‖g‖∞ where C0 defined in (2.4),

inf
(v−(1+Cθ))∈H1

0
(Λn+z)

G1(v,ω,z+Λn), (4.6)

inf
(v+1+Cθ)∈H1

0
(Λn+z)

G1(v,ω,z+Λn). (4.7)

Denote by vz,+n :=vz,+n (·,ω) the maximal minimizer of (4.6) and by vz,−n :=vz,−n (·,ω)
the minimal minimizer of (4.7). If z=0 we write v±n . For each n>0 and for each ω∈Ω
there exists at least one minimizer of problems (4.6) and (4.7) by lower semicontinuity
and coerciveness. By Lemma 3.1, v+m≤1+Cθ on ∂Λn for m>n. Lemma 3.3 implies
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that for any x and ω (and n>n0(x)) the sequence {v+n (x)}n is decreasing. Moreover
it is bounded from below by −1−Cθ. Hence, reasoning in a similar manner for v−n ,

v±(x,ω) := lim
n

v±n (x,ω)

exists and is measurable as a function of ω. As the v±n are bounded and minimizers,
they are uniformly bounded and uniformly Lipschitz on each fixed cube A which
does not depend on n; see Proposition 3.2. This implies that subsequences converge
locally uniformly to a Lipschitz function. As the entire sequence converges pointwise,
the limit of any subsequence must coincide with v±, which is therefore Lipschitz. The
same argument for general z yields monotone limits vz,±.

To show (4.2) we note that

inf
(v−(1+Cθ))∈H1(Λn)

G1(v,ω,Λn)= inf
(v−(1+Cθ))∈H1(Λn)

G1(−v,−ω,Λn)

= inf
(w+(1+Cθ))∈H1(Λn)

G1(w,−ω,Λn). (4.8)

If v̄(·,ω)∈argmin(v−(1+Cθ))∈H1
0

G1(v,ω,Λn) the function

−v̄(·,ω)= w̄(·,−ω)∈argmin(w+(1+Cθ))∈H1
0
)G1(w,−ω,Λn),

so that v̄(·,ω)=−w̄(·,−ω). Therefore if v̄(·,ω) is the maximal minimizer
of inf(v−(1+Cθ))∈H1

0
G1(v,ω,Λn), then w̄(·,−ω) is the minimal minimizer of

inf(w+(1+Cθ))∈H1
0
G1(w,−ω,Λn).

To show the translation covariance, i.e. v0,+(0,ω)=vz,+(z,T−zω), we notice that,
by (2.2),

v0,+n (0,ω)=vz,+n (z,T−zω).

As the limit does not depend on the subsequence, we know that v+=limv+2n . As
for n large Λn+z⊆Λ2n , we get vz,+n (0)≤v0,+2n (0) and vz,+(0)≤v0,+(0). The opposite
inequality follows in the same way.

Next we want to show (4.3). We have

∫

Λn

v±(x,ω)dx=
∑

z∈Λn∩Zd

∫

{z+[− 1

2
, 1
2
]d}

v±(x,ω)dx

=
∑

z∈Λn∩Zd

∫

[− 1

2
, 1
2
]d
v±(Tzx,ω)dx=

∑

z∈Λn∩Zd

∫

[− 1

2
, 1
2
]d
v±(x,T−zω)dx.

(4.9)

Since |v±(x,ω)|≤C, by Birkhoff’s ergodic theorem (see for example [20]) we have P−
a.s

lim
1

nd

∫

Λn

v±(x,ω)dx=lim
1

nd

∑

z∈Λn∩Zd

∫

[− 1

2
, 1
2
]d
v±(x,T−zω)dx

=E

[∫

[− 1

2
, 1
2
]d
v±(x, ·)dx

]
=m±.

(4.10)

Next we show (4.4). By the covariance property of v±(·, ·) and the choice of the double
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well potential W (W does not depend on x) we have

G1(v
+(ω),ω,Λn)=

∑

z∈Λn∩Zd

G1(v
+(ω),ω,z+[−1

2
,
1

2
]d)

=
∑

z∈Λn∩Zd

G1(v
+(T−zω),T−zω, [−

1

2
,
1

2
]d). (4.11)

Therefore, by Birkhoff’s ergodic theorem, P− a.s

lim
1

nd
G1(v

+(ω),ω,Λn)=E

[
G1

(
v+(·), ·,

[
−1

2
,
1

2

]d)]
. (4.12)

Since

G1(v
+(ω),ω,Λn)=G1(−v+(ω),−ω,Λn)=G1(v

−(−ω),−ω,Λn)

we have

E

[
G1

(
v+(·), ·,

[
−1

2
,
1

2

]d)]
=E

[
G1

(
v−(·), ·,

[
−1

2
,
1

2

]d)]
= e. (4.13)

To show the last equality of (4.4) note that if w̄n(·,ω)∈argminH1(Λn)G1(·,ω,Λn) then

G1(w̄n,ω,Λn)≤G1(v
+
n ,ω,Λn). (4.14)

Moreover, let the cut-off function Ψ :R→R be nondecreasing, 1-Lipschitz and such
that Ψ(x)=0 for x<0, Ψ(x)=1 for x>2. Then

ŵn :=Ψ
(
dist(x,Rd \Λn)

)
w̄n+

(
1−Ψ

(
dist(x,Rd \Λn)

))
v+n

satisfies the boundary conditions of v+n , hence

G1(ŵn,ω,Λn)≥G1(v
+
n ,ω,Λn). (4.15)

Moreover an explicit calculation using the Lipschitz bounds of the minimizers, Ψ, and
the double well potential together with the bounds on the random field shows that

G1(ŵn,ω,Λn)≤G1(w̄n,ω,Λn)+Cnd−1, ∀ω∈Ω, (4.16)

where C>0 depends only on the double well potential and on the bound on the
random field. (For details see proof of Lemma 4.2.)

Taking (4.14)-(4.16) together, we obtain that lim 1
ndG1(w̄n,ω,Λn)=

lim 1
ndG1(v

+
n ,ω,Λn). It remains to show (4.5). Let x, wn be as in the statement, and

n large enough so that x∈Λn. Note that by Lemma 3.1, v−n (y,ω)≤wn(y,ω)≤v+n (y,ω)
for all y∈∂Λn. So by Lemma 3.3 we get that v−n (x,ω)≤wn(x,ω)≤v+n (x,ω). (4.5)
follows by taking liminf and limsup.

Next we bound uniformly in ω the difference between the energy of the maximal
+ minimizer and the minimal − minimizer.

Lemma 4.2. Let ω∈Ω, u+∈argminv−(1+C0Aθ)∈H0(Λ)G1(v,ω,Λ), u−∈
argminv+(1+C0Aθ)∈H0(Λ)G1(v,ω,Λ), where C0, and A are the constants respec-
tively in (2.4) and (2.1). There exists a positive constant C depending on θ, C0, and
A so that

∣∣G1(u
+,ω,Λ)−G1(u

−,ω,Λ)
∣∣≤C|Λ| d−1

d . (4.17)
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Proof. Set

ũ(x,ω)=

{
u+(x,ω) for x∈Λ\{x∈Λ:d(x,∂Λ)≤1}
u(x), u(x)+(1+C0Aθ)∈H1

0 (Λ), x∈Λ:d(x,∂Λ)≤1,

where u is an arbitrary Lipschitz function, with |∇u(x)|≤2(1+C0Aθ), chosen to
match the boundary conditions, i.e ũ(x,ω)+(1+C0Aθ)∈H1

0 (Λ). We have

G1(ũ,ω,Λ)=

∫

{x∈Λ:d(x,∂Λ)≤1}

[(
|∇ũ(x)|2+W (ũ(x))

)
−
(
|∇u+(x)|2+W (u+(x))

)]
dx

+G1(u
+,ω,Λ)+θ

∫

{x∈Λ:d(x,∂Λ)≤1}

g1(x,ω)
[
ũ(x)−u+(x)

]
dx

≤G1(u
+,ω)+ |Λ| d−1

d [C+4θ‖g1‖∞] , (4.18)

(4.19)

where C=C(C0,θ,A) is a positive constant which might change from one occurrence
to the other. Obviously

G1(u
−,ω,Λ)≤G1(ũ,ω,Λ).

Therefore

G1(u
−,ω,Λ)−G1(u

+,ω,Λ)≤|Λ| d−1

d [C+4θ‖g1‖∞] .

Similarly one can show that

G1(u
+,ω,Λ)−G1(u

−,ω,Λ)≤|Λ| d−1

d [C+4θ‖g1‖∞] .

Therefore (4.17).

The quantity next defined plays a fundamental role.

Definition 4.3. Let v±(ω) be the infinite volume states constructed in Theorem
4.1. Denote

Fn(ω) :=E
[
G1(v

+(ω),ω,Λn)−G1(v
−(ω),ω,Λn)|BΛn

]
. (4.20)

Remark 4.4. By definition Fn(·) is BΛn
measurable and by the symmetry assumption

on the random field {g(z, ·),z∈Z
d},

E [Fn(·)]=0. (4.21)

Namely v+(x,ω)=−v−(x,−ω) for x∈R
d. This implies that

G1(v
+(ω),ω,Λn)=G1(v

−(−ω),−ω,Λn) (4.22)

and by the symmetry of the random field we get (4.21).

Next we want to quantify how much v±(ω) changes when the random field is
modified only in one site, for example at the site i. We introduce the following
notation:

ω(i) :ω(i)(z)=ω(z) z 6= i, ω=(ω(i),ω(i)) i,z∈Z
d.
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Then v+(·,(ω(0),ω(0))) is the state v+ when the random field at the origin is ω(0),
and v+(·,(ω(0)−h,ω(0))) the state v+ when the random field at the origin is ω(0)−h.
Same definition for the infinite volume state v−(·,(·,ω(0))) and for the finite volume
minimizers v±n (·,(·,ω(0))).

We have the following:

Lemma 4.5. For Λ⊂R
d, 0∈Λ, h>0 we have

θh

∫

Q(0)

v+(ω(0),ω(0))dx

≥G1(v
+(ω(0)−h,ω(0)),(ω(0)−h,ω(0)),Λ)−G1(v

+(ω(0),ω(0)),(ω(0),ω(0)),Λ)

≥θh

∫

Q(0)

v+(ω(0)−h,ω(0))dx, (4.23)

where Q(0) := [−1/2,1/2]d. The same inequalities hold for v−.

Proof. Let Λn be a cube centered at the origin so that Λ⊂Λn. Let v+n be the
maximal minimizer of

inf
(v−(1+Cθ))∈H1

0
(Λn)

G1(v,ω,Λn). (4.24)

Note that v+n is measurable with respect to the random field g(z,ω), z∈Λn∩Z
d. We

have

G1(v
+
n (ω(0),ω

(0)),(ω(0),ω(0)),Λ)−G1(v
+
n (ω(0)−h,ω(0)),(ω(0)−h,ω(0)),Λ)

=G1(v
+
n (ω(0),ω

(0)),(ω(0),ω(0)),Λ)−G1(v
+
n (ω(0),ω

(0)),(ω(0)−h,ω(0)),Λ)

+G1(v
+
n (ω(0),ω

(0)),(ω(0)−h,ω(0)),Λ)−G1(v
+
n (ω(0)−h,ω(0)),(ω(0)−h,ω(0)),Λ).

(4.25)

By explicit computation (see (2.6)), we have that

G1(v
+
n (ω(0),ω

(0)),(ω(0),ω(0)),Λ)−G1(v
+
n (ω(0),ω

(0)),(ω(0)−h,ω(0)),Λ)

=−hθ

∫

Q(0)

v+n (ω(0),ω
(0))dx.

The last line in (4.25) is nonnegative, because v+n (g(0)−h,ω(0)) is a minimizer of
(4.24) when the random field is (g(0)−h,ω(0)). Therefore

G1(v
+
n (ω(0)−h,ω(0)),(ω(0)−h,ω(0)),Λ)−G1(v

+
n (ω(0),ω

(0)),(ω(0),ω(0)),Λ)

≤hθ

∫

Q(0)

v+n (ω(0),ω
(0))dx.

By splitting

G1(v
+
n (ω(0),ω

(0)),(ω(0),ω(0)),Λ)−G1(v
+
n (ω(0)−h,ω(0)),(ω(0)−h,ω(0)),Λ)

=G1(v
+
n (ω(0),ω

(0)),(ω(0),ω(0)),Λ)−G1(v
+
n (ω(0)−h,ω(0)),(ω(0),ω(0)),Λ)

+G1(v
+
n (ω(0)−h,ω(0)),(ω(0),ω(0)),Λ)−G1(v

+
n (ω(0)−h,ω(0)),(ω(0)−h,ω(0)),Λ),
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we obtain in a similar way

G1(v
+
n (ω(0)−h,ω(0)),(ω(0)−h,ω(0)),Λ)−G1(v

+
n (ω(0),ω

(0)),(ω(0),ω(0)),Λ)

≥hθ

∫

Q(0)

v+n (ω(0)−h,ω(0))dx.

To pass to the limit note that the cube Q(0) remains fixed. Denote by M the smallest
integer such that Λ⊆BM (0), where BM (0) is a ball centered at the origin of radius
M . Let ξ(r) for r≥0 be a smooth cut-off function such that ξ(r)=1 for r<M, ξ=0
for r>2M. Note that for n>2diam(Λ) the function

v̂+n :=v+n ξ(|x|2)

satisfies

∆v̂+n =fn(x)

with supn‖fn‖∞<C, C depending on diam(Λ), θ, the double well potential, the cut-
off function and the bound ‖g‖∞ on the random field. The first derivatives of v̂+n are,
away from the boundary, Hölder continuous with any exponent α<1 (take α=1/2 for
definiteness) and the Hölder norm bounded uniformly in n with a bound depending
only on C. (See [18], Theorem 3.9. Note that this interior estimate is applicable be-
cause our domain is a ball containing 2Λ, so the square Λ is contained in the interior.)
So an application of the Arzela-Ascoli Theorem gives that for a subsequence v+n and
gradv−n converge uniformly. By Lebesgue’s Theorem on dominated convergence, we
may pass to the limit under the integral and the claim is shown.

The corresponding statements for v− are proved in the same way.

Remark 4.6. From Lemma 4.5 we have that

ω(0) 7→
∫

Q(0)

v+(ω(0),ω(0))dx

is nondecreasing.

Corollary 4.7. Let ω(i) be the random field in the site i which has probability
distribution absolutely continuous with respect to the Lebesgue measure. We have that
G1(v

+(ω),ω,Λ) is P-a.e. differentiable with respect to ω(i) and

∂G1(v
±(ω),ω,Λ)

∂ω(i)
=−θ

∫

Q(i)

v±(x,ω)dx.

Proof. It is sufficient to consider the case i=0. By applying Lemma 4.5 for
ω(0) and ω̃(0) :=ω(0)+h we see that left and right derivatives exist and are equal
if s 7→

∫
Q(0)

v+(s,ω(0))dx is continuous at s=ω(0). By Remark 4.6 this happens for

Lebesgue almost all s, and hence by the assumptions on the random field P-a.e.

Theorem 4.8. We have that

lim
n→∞

1√
|Λn|

[Fn(·)]D=Z, (4.26)

where Z stands for a Gaussian random variable with mean 0 and variance b2 with

4θ2(1+C0θ‖g‖∞)2≥ b2≥E

[
(E [Fn|B(0)])2

]
, (4.27)
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where B(0) is the σ-algebra generated by g(0,ω) and C0 is given in (2.4).

Proof. We prove the theorem invoking the general result presented in the ap-
pendix. In order to do so, we need to establish the relevant conditions. We decompose
Fn as a martingale difference sequence. We order the points in Λn∩Z

d according to
the lexicographic ordering. In the following i≤ j refers to the lexicographic ordering.
Any other ordering will be fine but it is convenient to fix one. We introduce the family
of increasing σ-algebras Bn,i, i∈Λn∩Z

d where Bn,i is the σ-algebra generated by the
random variables {g(z),z∈Λn∩Z

d,z≤ i}. We denote by

Bn,0=(∅,Ω), Bn,i⊂Bn,j i≤ j, i∈Λn∩Z
d, j∈Λn∩Z

d.

We split

Fn=
∑

i∈Zd∩Λn

(E[Fn|Bn,i]−E[Fn|Bn,i−1]) :=
∑

i∈Zd∩Λn

Yn,i. (4.28)

By construction E [Yn,i]=0 for i∈Z
d∩Λn, and E [Yn,i|Bn,k]=0 for all 0≤k≤ i−1.

Denote

Vn :=
1

|Λn∩Zd|
∑

i∈Λn∩Zd

E
[
Y 2
n,i|Bn,i−1

]
. (4.29)

In Lemma 4.9 stated and proven below we show that Vn→ b2 in probability and b2

satisfies (4.27). In Lemma 4.10 stated and proven below we show that for any a>0,

Un(a) :=
1

|Λn∩Zd|
∑

i∈Λn∩Zd

E[Y 2
n,i1{|Yn,i|≥a

√
|Λn∩Zd|}

|Bn,i−1] (4.30)

converges to 0 in probability. We can then invoke Theorem 5.1, stated in the appendix.
The correspondence to the notation used in the appendix is the following. Identify
|Λn∩Z

d| with n, Fn√
|Λn∩Zd|

↔Sn,
Yn,i√
|Λn∩Zd|

↔Xn,i and Bn,i↔Fn,i. Then (4.26) is

obtained.

Lemma 4.9. Let Vn be the quantity defined in (4.29). For all δ>0,

lim
n→∞

P
[
|Vn−b2|≥ δ

]
=0, (4.31)

where for W0 is defined in (4.34), and

b2=E
[
W 2

0

]
. (4.32)

Furthermore

4θ2(1+C0θ‖g‖∞)2≥ b2≥E

[
(E [Fn|B(0)])2

]
, (4.33)

where C0 is given in (2.4).

Proof. The proof of (4.31) is done by applying conveniently the ergodic theorem.

We introduce new σ-algebra B≤
i generated by the random fields {g(z,ω),z∈Z

d,z≤ i},
where ≤ refers to the lexicographic ordering. Define for i∈Λn

Wi[ω]=E

[
G1(v

+(ω),ω,Λn)−G1(v
−(ω),ω,Λn)|B≤

i

]

−E

[
G1(v

+(ω),ω,Λn)−G1(v
−(ω),ω,Λn)|B≤

i−1

]
.

(4.34)
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Note thatWi is a random variable depending on random fields on sites smaller or equal
than i under the lexicographic order. In particular it does not depend on the choice
of the cube Λn provided i∈Λn. To verify this statement notice that v±(ω) does not
depend on Λn. Further, denote for i∈Λn, ω=(ω<

i ,ω(i),ω
>
i ) where ω<

i =(ω(j),j < i)
and ω>

i =(ω(j),j > i), ω̃=(ω<
i ,ω̃(i),ω

>
i ) and ω(s)=(ω<

i ,s,ω
>
i ), s∈ [−1,1]. We can

write Wi[ω] as

Wi[ω]=

∫
P(dω>

i )P(dω̃(i))
[
G1(v

+(ω),ω,Λn)−G1(v
+(ω̃),ω̃,Λn)

]

−
∫

P(dω>
i )P(dω̃(i))

[
G1(v

−(ω),ω,Λn)−G1(v
−(ω̃),ω̃,Λn)

]
.

(4.35)

By Corollary 4.7, G1(v
+(ω),ω,Λn) is a.e. differentiable with respect to ω(i) with

derivative depending only on the random field on Q(i). Therefore one has

G1(v
+(ω),ω,Λn)−G1(v

+(ω̃),ω̃,Λn)=

∫ ω(i)

ω̃(i)

∂

∂s
G1(v

+(ω(s)),ω(s),Λn)ds

=−θ

∫

Q(i)

dx

∫ ω(i)

ω̃(i)

v+(x,ω<,s,ω>)ds.

(4.36)

Similar considerations hold for the last term of (4.35). Hence Wi does not depend on
the choice of Λn, provided Q(i)⊂Λn,

1 .
Note that from the translation covariant properties of v± we have

Wi[ω]=W0[T−iω].

By construction (see (4.28)), for any i provided n large enough so that i∈Λn, we have

Yn,i=E [Wi|BΛn
] . (4.37)

Furthermore, by Corollary 4.7

|W0(ω)|≤2θ(1+C0θ‖g‖∞), ω∈Ω, (4.38)

where C0 is given in (2.4). Applying the ergodic theorem we have that in probability

lim
n→∞

1

|Λn∩Zd|
∑

i∈Λn∩Zd

E

[
W 2

i |B≤
i−1

]
=E

[
W 2

0

]
. (4.39)

Set E
[
W 2

0

]
= b2. Recalling the definition of Vn given in (4.29), the proof of (4.31) is

completed if we show the following: For any δ>0,

lim
n→∞

P

[
|E
[
Y 2
n,i|Bn,i−1

]
−E

[
W 2

i ||B≤
i−1

]
|≥ δ

]
=0. (4.40)

We show (4.40) applying Chebyshev’s inequality. We split
{
E
[
Y 2
n,i|Bn,i−1

]
−E

[
W 2

i |B≤
i−1

]}

=E
[
Y 2
n,i−W 2

i |Bn,i−1

]
+E

[
W 2

i |Bn,i−1

]
−E

[
W 2

i ||B≤
i−1

]
.

(4.41)

1When the distribution of the random field is not absolutely continuous with respect to the
Lebesgue measure we are able to prove that the difference in (4.36) has lower and upper bounds
which do not depend on Λn. This does not imply that the difference itself does not depend on Λn.
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Denote fi=E

[
W 2

i |B≤
i−1

]
, Rn=Rn(i)=dist(i,∂Λn) and Bi+[−Rn,Rn]d the σ− algebra

generated by the random fields in the box [−Rn,Rn]
d centered in i. We have

E

[(
E
[
W 2

i |Bn,i−1

]
−E

[
W 2

i ||B≤
i−1

])2]
≤E

[(
f0−E[f0|B[−Rn,Rn]d ]

)2]
=: b1(Rn).

(4.42)
When limn→∞Rn=∞, we have for any square integrable function

lim
n→∞

b1(Rn)=0.

Furthermore, by (4.37) we have

E
[∣∣E
[
Y 2
n,i−W 2

i |Bn,i−1

]∣∣]≤E
[∣∣Y 2

n,0−W 2
0

∣∣]≤
(
E[W 2

0 ]
) 1

2
(
E[(Yn,0−W0)

2]
) 1

2 . (4.43)

Arguing as before (see (4.42)) we get

lim
n→∞

E[(Yn,0−W0)
2]=0,

proving (4.40). To get (4.33) we denote B(0) the σ-algebra generated by g(0,ω) and
apply Jensen’s inequality to obtain

E
[
W 2

0

]
=E

[
E[W 2

0 |B(0)]
]
≥E

[
(E [W0|B(0)])2

]
.

By simple computation, taking in account that

E

[
E

[
G1(v

+,ω,Λn)−G1(v
−,ω,Λn)|B≤

−1

]
|B(0)

]
=0,

we have
E[W0|B(0)]

=E

[

E

[

G1(v
+(·),·,Λn)−G1(v

−(·),ω,Λn)|B
≤
0

]

−E

[

G1(v
+,ω,Λn)−G1(v

−,ω,Λn)|B
≤
−1

]

|B(0)
]

=E

[

E

[

G1(v
+(ω),ω,Λn)−G1(v

−(ω),ω,Λn)||B
≤
0

]

|B(0)
]

=E[Fn|B(0)] .

(4.44)

The lower bound (4.33) is proven.

Lemma 4.10. Let Un(a) be as in (4.30). For any a>0 and any δ>0,

lim
n→∞

P[Un(a)≥ δ]=0.

Proof. By Chebyshev’s inequality we have that

P[Un(a)≥ δ]≤ 1

δ
E[Un(a)].

Next we show E[Un(a)]→0 for all a>0.

E[Un(a)]=
1

|Λn∩Zd|

|Λn∩Z
d|∑

i=1

E

[
Y 2
n,i1{|Yn,i|≥a

√
|Λn∩Zd|}

]

≤ 1

|Λn∩Zd|

|Λn∩Z
d|∑

i=1

(
E[Y 2q

n,i]
) 1

q

(
P

[
|Yn.i|>a

√
|Λn∩Zd|

]) 1

p

. (4.45)
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By Jensen inequality and definition (4.37) we have

E[Y 2q
n,i]≤E[W 2q

0 ],

which is a bounded quantity for all q≥1 since (4.38). Applying Chebyshev inequality
and arguing as before we have

P

[
|Yn,i|>a

√
|Λn∩Zd|

]
≤ E[W 2

0 ]

a2|Λn∩Zd| ,

which for all a>0 tends to 0 when n→∞.

Lemma 4.11. For Λ⊂R
d, 0∈Λ, we have

∂

∂g(0)
E [Fn|B(0)]=−θE

[∫

Q(0)

v+(x,ω)dx|B(0)
]
+θE

[∫

Q(0)

v−(x,ω)dx|B(0)
]
,

where Q(0) := [−1/2,1/2]d. Furthermore,

E

[
∂

∂g(0)
E [Fn|B(0)]

]
=−2θm+.

Proof. We first give the idea by a formal computation.

∂

∂g(0)
E [Fn|B(0)]=

∂

∂g(0)
E
[
G1(v

+,ω,Λ)|B(0)
]
− ∂

∂g(0)
E
[
G1(v

−,ω,Λ)|B(0)
]

=E



∂G1(v,ω,Λ)

∂g(0)
|(v+(ω),ω)+ ∂G1(v,ω,Λ)

∂v(0)
|(v+(ω),ω)

︸ ︷︷ ︸
=0

∂v+(0, ·)
∂g(0)

|B(0)




−E



∂G1(v,ω,Λ)

∂g(0)
|(v−(ω),ω)+ ∂G1(v,ω,Λ)

∂v(0)
|(v−(0),ω)

︸ ︷︷ ︸
=0

∂v−(0, ·)
∂g(0)

|B(0)




=−θE

[∫

Q(0)

v+(x,ω)dx|B(0)
]
+θE

[∫

Q(0)

v−(x,ω)dx|B(0)
]

(4.46)

where the terms are zero as v± are minimizers. The last equality is obtained since

∂G1(v,ω)

∂g(0)
|(v±(ω),ω)=−θv±(x,ω).

Unfortunately, v± is not differentiable in the random field everywhere. Lipschitz-
continuity in the field would be sufficient, but this is difficult to derive from the
Euler-Lagrange equation because of the lack of convexity of the associated functional.
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A rigorous proof follows from 4.7 after taking conditional expectations. Furthermore,
by Theorem 4.1, we have

E

[
∂

∂g(0)
E [Fn|B(0)]

]
=−θE

[
E

[∫

Q(0)

v+(x,ω)dx|B(0)
]]

+θE

[
E

[∫

Q(0)

v−(x,ω)dx|B(0)
]]

=θ[−m++m−]

=−2θm+. (4.47)

Lemma 4.12. If

E

[
(E [Fn|B(0)])2

]
=0 (4.48)

then m+=m−=0.

Proof. Denote f(ω(0)) :=E [−Fn|B(0)]. Set s=ω(0), Then (4.48) can be written
as
∫
f2(s)P(ds)=0. By Lemma 4.11 and by bound (4.1) in Theorem 4.1 we have that

(1+C0Aθ)θ≥f ′(s)≥0 almost everywhere. This implies that f(s)=0 for P almost
all points of continuity of the distribution g(0). If f(s)=0 for P almost all points of
continuity of the distribution g, then f ′(s)=0 for P almost all points of continuity of
the distribution g(0). But if f ′(s)=0 then from Lemma 4.11 we get m+=m−=0.

Proof of Theorem 2.2. By Lemma 4.2 there exists C=C(C0,Aθ)>0 so that

∣∣G1(v
+,ω,Λ)−G1(v

−,ω,Λ)
∣∣≤C|Λ| d−1

d . (4.49)

Applying Theorem 4.8 we get the following lower bound on the Laplace transform of
Fn(ω) defined in Definition 4.3:

liminf
n→∞

E

[
e
t Fn
√

Λn

]
≥ e

t2D2

2 , (4.50)

where we denote D2 (see (4.27)) by

D2=E

[
(E [Fn|B(0)])2

]
. (4.51)

It is immediate to realize that (4.49) and (4.50) contradict each other in d≤2 unless
D2=0. On the other hand when D2=0, Lemma 4.12 implies

m+=−m−=E

[∫

[− 1

2
, 1
2
]d
v±(x, ·)dx

]
=0. (4.52)

Now (4.5) implies that P -a.s. v+(x,ω)≥v−(x,ω) for all x∈R2. This and (4.52) imply
that v+(x,ω)=v−(x,ω) a.s.

For each n and for each ω∈Ω, by lower semicontinuity and coerciveness of the
functionalG1, there exists at least one minimizer wn(·,ω) in minw∈H1(Λn)G1(w,ω,Λn).
By (4.5) and the fact that v+=v−, the functions wn converge pointwise to a limit
u∗(x,ω), and for the limit we have u∗(x,ω)=v+(x,ω)=v−(x,ω). The properties of
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the minimizer stated in 2.2 therefore follow from the corresponding properties of v±;
see Theorem 4.1.

Appendix A.
The main tool to prove Lemma 4.8 is the following general result which we re-

ported from [19]; see Theorem 3.2 and Corollary 3.1 of [19]. The correspondence to

the previous notation is Fn√
|Λn∩Zd|

↔Sn,
Yn,i√
|Λn∩Zd|

↔Xn,i and Bn,i↔Fn,i; see (4.20),

(4.28).

Theorem A.1. Let Sn,i, i=1, . . .kn be a double array of zero mean martingales
with respect to the filtration Fn,i, Fn,i⊂Fn+1,i i=1, . . .kn with Sn,kn

=Sn, so that
Sn,i=E[Sn|Fn,i]. It is assumed that kn ↑∞ as n↑∞. Denote

Xn,i :=Sn,i−Sn,i−1,

Vn=

kn∑

i=1

E[X2
n,i|Fn,i−1],

Un,a=

kn∑

i=1

E[X2
n,i1I{|[X2

n,i
|>a}|Fn,i−1].

Suppose that
• for some constant b2 and for all δ>0, limn→∞P[|Vn−b2|≥ δ]=0,

• for any a>0 and for any δ>0,

lim
n→∞

P[Un(a)≥ δ]=0,

(Lindeberg condition)
then in distribution

lim
n→∞

Sn
D
=Z,

where Z is a gaussian random variable with mean zero and variance b2.
Acknowledgments. We would like to thank the anonymous referees for their careful
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