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A SINGULAR 1-D HAMILTON-JACOBI EQUATION, WITH
APPLICATION TO LARGE DEVIATION OF DIFFUSIONS∗

XIAOXUE DENG† , JIN FENG‡ , AND YONG LIU§

Abstract. The comparison principle (uniqueness) for the Hamilton-Jacobi equation is usually
established through arguments involving a distance function. In this article we illustrate the subtle
nature of choosing such a distance function, using a special example of one dimensional Hamiltonian
with coefficient singularly (non-Lipschitz) depending upon the state variable. The standard method
of using Euclidean distance as a test function fails in such situation. Once the comparison is estab-
lished, we apply it to obtain a new result on small noise Freidlin-Wentzell type probabilistic large
deviation theorem for certain singular diffusion processes.

This article serves to explain basic ideas behind an abstract approach to comparison developed in
[J. Feng and T.G. Kurtz, American Mathematical Society, Providence, Rhode Island. Mathematical
Surveys and Monographs, 131, 2006], [J. Feng and M. Katsoulakis, Arch. Ration. Mech. Anal.,
192(2), 275-310, 2009] in a simple manner, removing all technicalities due to infinite dimensionality.
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1. Introduction

The comparison principle for the Hamilton-Jacobi equation is usually established
through arguments involving a distance function as a test function. When the state
space is a subset of Euclidean space and the Hamiltonian has Lipschitz dependence
in the state variable, the distance can be chosen to be the usual Euclidean one. This
was amply illustrated in the classical theory of viscosity solutions; see, for instance,
Crandall, Ishii and Lions [1]. When the Hamiltonian becomes singular, it becomes
critical to choose a distance function carefully reflecting intrinsic properties of the
Hamiltonian. Lions [7] first pointed out this connection in search of a geometrically
invariant condition which gives the comparison principle proof.

Exploring additional special structures of equations, Feng and Katsoulakis [2],
Feng and Kurtz [3] introduced an argument utilizing such a distance function idea
on examples of the Hamilton-Jacobi equation in the space of measures over R

d. In
these publications, much technical effort was also devoted to making sense out of a
geometrically motivated calculus for functions on the space of measures using modern
mass transportation techniques. That may have obscured the overall picture for the
Hamilton-Jacobi equation theory. It is therefore of value to expose the key ideas in
[3, 2] again through new examples in the simplest possible way. In this article, we go
to another extreme end by considering the situation of one space dimension.
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290 HAMILTON-JACOBI-BELLMAN EQUATION WITH SINGULAR COEFFICIENT

Let E :=R+ := (0,∞); we define a Hamiltonian function H :R+×R→R by

H(x,p) :=κ(µ−x)p+
1

2
|θ
√
xp|2, (1.1)

where κ,µ,θ>0 and 2κµ>θ2. The Hamiltonian is singular in the sense that the√
x term is a non-Lipschitz coefficient. In a sense, x∈E can be identified as an

unnormalized measure — it is the density of a measure on a fixed point. Analogy
between the simplistic 1-D model here and the technically complicated infinite-D
models in [3, 2] can be drawn based upon this observation.

The main result of this article is a uniqueness type theorem for the nonlinear
PDE:

f(x)−αH(x,∂xf(x))=h(x), x∈E, α>0.

The equation is studied in viscosity sense (to be defined below), which has an implicit
dependence on choices of test functions. Such dependence is more pronounced if we
write the equation in operator notation

(I−αH)f =h, (1.2)

where I is the identity map, and Hf(x) :=H(x,∂xf(x)) for f ∈D(H), the domain of
H, with

D(H)=D :={f :f =g+C,g∈C2
c (E),C ∈R}.

Throughout, C2
c (E) denotes the collection of functions with compact support in E

and with continuous second order derivative, and Cb(E) denotes bounded continuous
functions on E.

Theorem 1.1. Let h∈Cb(E) be uniformly continuous and D(H)=D. Then for
every bounded upper-semicontinuous viscosity sub-solution f and every bounded lower
semi-continuous viscosity super-solution f of (1.2), both in the sense of Definition 2.2,

we have f ≤f .

In particular, the above conclusion implies that there exists at most one bounded
continuous viscosity solution to (1.2). Equipped with the above conclusion, we study
1-D diffusion processes with a singular diffusion coefficient:

{
dXn(t)=κ(µ−Xn(t))dt+n− 1

2 θ
√
Xn(t)dW (t),

Xn(0)>0.
(1.3)

This is known as Cox-Ingersoll-Ross model in mathematical finance. The condition
2κµ>θ2 ensures that there exists a unique Xn(t)∈E (the existence and uniqueness
for Xn(t)≥0 follows from a result due to Yamada-Watanabe; see Proposition 5.2.13
and Corollary 5.3.23 in Karatzas and Shreve [5]. The strict positivity of Xn(t) follows
because 0 is a natural boundary; see Chapter 15.6 of Karlin and Taylor [6]).

Next we show that a large deviation principle holds for {Xn(·) :n=1,2, . . .}. This
type of result is along the spirit of Freidlin-Wentzell theory [4] for processes converging
to a deterministic trajectory. The novelty here lies in that the diffusion coefficient

√
x

is both non-Lipschitz and degenerate. Therefore, even though the diffusion process
Xn is simply one dimensional, the theory in [4] and its various generalizations still do
not apply.
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Recalling the definition of H in (1.1), we define a Lagrangian L through the
Fenchel-Legendre transform

L(x,q) :=sup
p∈R

{p ·q−H(x,p)}= |q−κ(µ−x)|2
2θ2x

. (1.4)

By convex duality in Euclidean space, it also follows that

H(x,p)=sup
q∈R

{p ·q−L(x,q)}. (1.5)

For a set A in a metric space, we denote Ā and A◦ respectively the closure and
interior of the set. We also denote AC((0,T );E) the class of E-valued absolutely
continuous curves on (0,T ).

Corollary 1.2. Assume that {Xn(0) :n=1,2, . . .} satisfies a large deviation prin-
ciple with a good rate function I0. Then the following holds for all Borel sets
A⊂C([0,T ];E):

− inf
x(·)∈A◦

I(x(·))≤ liminf
n→∞

1

n
logP (Xn∈A◦)≤ limsup

n→∞

1

n
logP (Xn∈ Ā)≤− inf

x(·)∈Ā
I(x(·))

where

I(x)=

{
I0(x0)+

∫ T

0
L(x(s),ẋ(s))ds, x(·)∈AC((0,T );E),

∞, otherwise.
(1.6)

Such I has compact level sets and is lower semicontinuous on C([0,T ];E).

2. Viscosity solutions and comparison principle

2.1. Definitions of viscosity solution. First, we define viscosity solution
(and strong viscosity solution) for (1.2) with a general operator H in mind (not
necessarily that given by (1.1)). We assume that the domain D(H)⊂M(E) and the
range R(H)⊂M(E), where M(E) is space of measurable functions on E.

Definition 2.1. f is a viscosity sub-solution to (1.2), if it is bounded upper semicon-
tinuous and if for every f0∈D(H), there exists x0∈E satisfying both (f−f0)(x0)=
supx∈E(f−f0)(x), and α−1(f−h)(x0)≤Hf0(x0).

f is a viscosity super-solution to (1.2), if it is bounded lower semicontinuous, and
if for every f1∈D(H), there exists x1∈E satisfying (f1−f)(x1)=supx∈E(f1−f)(x)

and α−1(f−h)(x1)≥Hf1(x1).
If a continuous function f is both a sub-solution and a super-solution, we call it

a viscosity solution.

f is called a strong viscosity sub-solution if the following modification is made
in the above definition: replace the sentence “there exists x0∈E satisfying ...and
...” by “for every x0∈E satisfying (f−f0)(x0)=supx∈E(f−f0)(x), we have α

−1(f−
h)(x0)≤Hf0(x0)”. Similarly, we can define strong viscosity super-solution and strong
viscosity solution.

Applied to Equation (1.2) with D(H)=D, Definition 2.1 may be vacuous. Since
E is not compact, there is no a priori guarantee that there exists those maximiz-
ing/minimizing points. To make sense of that definition, one either needs to have
growth estimates on f and f or, equivalently, to alter the class of test functions
allowing growth to infinity.
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The following generalized notion of viscosity solution was introduced in [3] for
making sense of (1.2) when D(H)=D.

Definition 2.2. f is a viscosity sub-solution to (1.2), if it is bounded upper semi-
continuous and if for every f0∈D(H), there exists a sequence xn∈E satisfying both
limn→∞(f−f0)(xn)=supx∈E(f−f0)(x), and

limsup
n→∞

α−1(f−h)(xn)−Hf0(xn)≤0.

f is a viscosity super-solution to (1.2) if it is bounded lower semicontinuous, and
if for every f1∈D(H) there exists a sequence xn∈E satisfying limn→∞(f1−f)(xn)=
supx∈E(f1−f)(x) and

liminf
n→∞

α−1(f−h)(xn)−Hf1(xn)≥0.

2.2. Failure of traditional proof of the comparison principle and the
choice of test functions. Formally speaking, the comparison principle follows
as a consequence of the maximum principle satisfied by operator H. Since the H
can only operate on smooth functions and since we have no a priori differentiability
estimate on sub- and super- solutions f and f , an approximate argument is needed;
see Chapter 9.1 of [3]. The traditional proof (e.g. Crandall, Ishii and Lions [1]) uses
supx,y(f(x)−f(y)− m

2 |x−y|2) (as m→∞) to approximate supx(f(x)−f(x)). Going
through the proof, this requires estimate of the following kind:

H
(
x,∂x

m

2
|x−y|2

)
−H

(
y,−∂y

m

2
|x−y|2

)
≤ω

(
m|x−y|2+ |x−y|2

)
, (2.1)

where ω(·) is a modulus. With the square root singularity in the 1
2 |θ

√
xp|2 term of

H(x,p), this can never be satisfied.
Lions [7], however, formulates a more general condition with geometric implica-

tions of certain first order Hamiltonians in mind. To explain the ideas in a nutshell,
we adapt everything to our specific situation. We single out the nonlinear part of H
to define H̃(y,p) := 1

2 |θ
√
yp|2. H̃ induces a variational distance through its Legendre

transform L̃(y,q) :=supp{qp−H̃(y,p)}= 1
2θ2

q2

y
. For every x0,x1∈E,

d2(x0,x1) := inf
{∫ 1

0

L̃(y(s), ẏ(s))ds : y(·)∈AC((0,1);E), y(0)=x0, y(1)=x1

}

=
2

θ2
|√x0−

√
x1|2.

From the explicit calculation ∂xd
2(x,y)= 2

θ2 (1−
√
y√
x
) and ∂yd

2(x,y)= 2
θ2 (1−

√
x√
y
), we

can directly verify the geometric identity

|θ
√
x∂x

1

2
d2(x,y)|2= |θ√y∂y

1

2
d2(x,y)|2= 1

2
d2(x,y). (2.2)

Hence a generalized version of (2.1) holds trivially with |x−y| replaced by d:

H̃
(
x,∂x

m

2
d2(x,y)

)
−H̃

(
y,−∂y

m

2
d2(x,y)

)
=0.
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Note that the Cauchy problem ∂tu= H̃(x,∂xu) has an explicit solution given by the
Lax formula

u(t,x) := sup
y∈E

{
u(0,y)− d2(x,y)

t

}
.

To get a generalized version of (2.1) for H (instead of H̃), it is sufficient to have

(µ−x)∂xd
2(x,y)−(µ−y)∂y(−d2(x,y))≤0,

or, in other words, the ODE ẋ=µ−x defines a contraction under d. This can be
verified directly through computation:

2

θ2
(µ−x)

(
1−

√
y√
x

)
−
(
− 2

θ2
(µ−y)

(
1−

√
x√
y

))

=µ
2

θ2

(
1−

√
y√
x
+1−

√
x√
y

)
− 2

θ2
(
x−√

xy+y−√
xy

)

=−µ
d2(x,y)√

xy
−κd2(x,y)≤0. (2.3)

There is another problem: to ensure that Definition 2.1 makes sense, we need a
certain growth estimate on test functions so that the maximizing/minimizing points
can be attained. Specifically, for sub-solutions, we need test functions growing to
infinity, and for super-solutions we need test functions growing to negative infinity.
This motivates the use of a function V playing a role for the stochastic process X
(or a deterministic control problem induced by H) similar to that played by the
Lyapunov function for uncontrolled-ODEs. We would like V to have compact level
sets and supxH(x,∂V (x))<∞. Noting that 0 and +∞ are the boundary of E and
the dynamics of the stochastic process X behaves differently at these two points, we
construct V in three steps. First, let

V∞(x)= ε log(1+U(x)), U(x)=
|µ−x|2

2
, ε>0.

This function has the property that, when ε is small enough,

sup
x

H
(
x,∂xV∞(x)

)
=sup

x

{
−ε

(
1− ε

2

θ2x

1+U(x)

) |∂U(x)|2
1+U(x)

}
≤0.

Now consider V0(x)=− logx; then

sup
x

H
(
x,∂xV0(x)

)
=sup

x

{
− 1

x

(
κµ− 1

2
θ2
)
+κ

}
≤κ<∞,

where we used critically the condition 2κµ>θ2. Finally, we smoothly paste V0 and
V∞ by

V (x) :=ϕ(x)V0(x)+(1−ϕ(x))V∞(x),

where ϕ∈C∞ satisfies ϕ′≤0 and

ϕ(y)=

{
1, y∈ (0,1),
0, y∈ (2,∞).
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It follows then V (x) has compact level sets in E and supxH(x,∂xV (x))<∞.
Using the above inequality, by convexity of H(x,p) in p, we now introduce two

new classes of test functions: for 0<ǫ≤1 and m>0, define

D0 :={f0 : f0(·) :=(1−ǫ)md2(·,y)+ǫV (·)+ϕ(·), ϕ∈D,y∈E},
D1 :={f1 : f1(·) :=−(1+ǫ)md2(x, ·)−ǫV (·)+ϕ(·), ϕ∈D,x∈E},

and two more operators

H0f0(x) :=H(x,∂xf0(x)), f0∈D0, (2.4)

H1f1(x) :=H(x,∂xf1(x)), f1∈D1. (2.5)

More discussion on such test functions can be found in detail in Section 1.2.2 on page
285 of [2].

It follows that H0f0,H1f1∈C(E) are well defined for all x∈E. We will prove the
comparison between the sub-solution given by H0 and the super-solution given by H1

in Lemmas 2.4 and 2.5. Then, by linking respective sub- and super-solutions of H0

and H1 with those of H in Lemma 2.6, we arrive at the conclusion of Theorem 1.1.
H0 and H1 can be viewed as sub- and super- extensions from the H in (1.2), which
is defined only on D (Lemma 2.6).

2.3. Comparison principle for some related equations. The domain D
of H only contains smooth functions with compact supports. This class is easier to
work with when one is performing convergence type analysis, using for instance the
Barles-Perthame half-relaxed limit approach. However, for the proof of uniqueness
(comparison principle), we need test functions in D0 and D1. First, we prove an
important property which generalizes (2.1):

Lemma 2.3.

1

1−ǫ

(
H0

(
(1−ǫ)md2(·,y)+ǫV (·)

)
(x)

)
− 1

1+ǫ

(
H1

(
−(1+ǫ)md2(x, ·)−ǫV (·)

)
(y)

)

≤
(

ǫ

1−ǫ
+

ǫ

1+ǫ

)
sup
x

H(x,∂xV (x)).

Proof. By convexity of H(x,p) in p,

H0

(
(1−ǫ)md2(·,y)+ǫV (·)

)
(x)

≤ (1−ǫ)H(x,∂xmd2(x,y))+ǫH
(
x,∂xV (x)

)

≤ (1−ǫ)
[
κm

2

θ2
(µ−x)

(
1−

√
y√
x

)
+m2 2

θ2
(√

y−
√
x
)2]

+ǫH(x,∂xV (x)).

Similarly,

H1

(
−(1+ǫ)md2(x, ·)−ǫV (·)

)
(y)

≥ (1+ǫ)
[
−κm

2

θ2
(µ−y)

(
1−

√
x√
y

)
+m2 2

θ2
(√

y−
√
x
)2]−ǫH(y,∂yV (y)).

By (2.3), the conclusion follows.
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With the above estimate, the next lemma follows by modifying the standard
arguments in [1].

Lemma 2.4. Let h0,h1∈Cb(E). Let bounded upper semicontinuous f be a strong
sub-solution of

(I−αH0)f =h0, (2.6)

and bounded lower semicontinuous f be a strong super-solution of

(I−αH1)f =h1, (2.7)

both in the sense of Definition 2.1. Then

sup
x∈E

{
f(x)−f(x)

}
≤ sup

x∈E

{h0(x)−h1(x)} . (2.8)

Proof. Let

Φǫ,m(x,y)=
1

1−ǫ
f(x)− 1

1+ǫ
f(y)−md2(x,y)− ǫ

1−ǫ
V (x)− ǫ

1+ǫ
V (y),

where 0<ǫ<1 and m>1. Since V has compact level sets, there exists (xǫ,m,yǫ,m)∈
E×E satisfying

Φǫ,m(xǫ,m,yǫ,m)= sup
(x,y)∈E×E

Φǫ,m(x,y).

Let f0(x)=(1−ǫ)md2(x,yǫ,m)+ǫV (x); then

f(xǫ,m)−f0(xǫ,m)= sup
x∈E

{
f(x)−f0(x)

}
.

By the strong sub-solution property of f , α−1(f−h0)(xǫ,m)≤ (H0f0)(xǫ,m). Sim-
ilarly, let f1(y)=(1+ǫ)md2(xǫ,m,y)−ǫV (y); then α−1(f−h1)(yǫ,m)≥ (H1f1)(yǫ,m).
Thus,

sup
x∈E

{
1

1−ǫ
f(x)− 1

1+ǫ
f(x)− 2ǫ

1−ǫ2
V (x)

}

= sup
x∈E

Φǫ,m(x,x)

≤Φǫ,m(xǫ,m,yǫ,m)

≤ 1

1−ǫ
f(xǫ,m)− 1

1+ǫ
f(yǫ,m)−

(
ǫ

1−ǫ
+

ǫ

1+ǫ

)
inf
x
V (x)

≤α
[ 1

1−ǫ

(
H0f0(xǫ,m)

)
− 1

1+ǫ

(
H1f1(yǫ,m)

)]

+
(
h0(xǫ,m)−h1(yǫ,m)

)
+α

(
ǫ

1−ǫ
‖h0‖∞+

ǫ

1+ǫ
‖h1‖∞

)

−
(

ǫ

1−ǫ
+

ǫ

1+ǫ

)
inf
x
V (x).

By a standard argument (e.g. Lemma 9.2 in [3] or Proposition 3.7 of [1]),

lim
m→∞

md2(xǫ,m,yǫ,m)=0.

Together with Lemma 2.3, taking limǫ→0+ limm→∞, we arrive at the conclusion.
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2.4. Comparison principle for Equation (1.2). H0, H1, H are local
operators. Similar to the proof of Lemma 9.9 of [3], we have the following.

Lemma 2.5. Any sub-solution of (2.6) is also a strong sub-solution of (2.6), and
any super-solution of (2.7) is also a strong super-solution of (2.7); all in the sense of
Definition 2.1.

In view of 2.4 and 2.5, we are only one step away from concluding Theorem 1.1.
This step is provided in the following lemma.

Lemma 2.6. Any sub-solution to (1.2), in the sense of Definition 2.2, is also a sub-
solution to f−αH0f =h in the sense of Definition 2.1. Similarly, any super-solution
to (1.2) is also a super-solution to f−αH1f =h.

Proof. We only prove the sub-solution case. The case of super-solution is similar.
Let f be a sub-solution to (1.2) and f0∈D0. By the definition of D0, and the

facts that limx→0+f0(x)=∞ and limx→+∞f0(x)=∞, there exists 0<a<b<∞ such
that f0(a)=f0(b)=C and

sup
x∈[a,b]

{f(x)−f0(x)}= sup
x∈E

{f(x)−f0(x)}.

Moreover, for ∀x /∈ [a,b], f(x)>C and

sup
x∈E

f(x)−C< sup
x∈E

{f(x)−f0(x)}.

After taking {an}∞n=1 such that 0<an<a, an ↓0, and {bn}∞n=1 such that bn>b, bn ↑∞,
we construct fn∈D satisfying





fn(x)=f0(x), x∈ [an,bn],
f0(an)<fn(x)<f0(an)+1, x∈ (an+1,an),
f0(bn)<fn(x)<f0(bn)+1, x∈ (bn,bn+1),
fn(x)=f0(an)+1, x∈ (0,an+1],
fn(x)=f0(bn)+1, x∈ [bn+1,∞).

Hence, by the definition of sub-solution to (1.2), there exists a sequence {xn}∞n=1⊂
[a,b] satisfying

f(xn)−fn(xn)≥ sup
x∈E

{f(x)−fn(x)}−
1

2n
, (2.9)

which implies

limsup
n→∞

(
α−1(f−h)(xn)−Hfn(xn)

)
≤0.

Therefore there is a convergent subsequence xnk
→x0 as k→∞. Then

limsup
k→∞

(
(f−h)(xnk

)
)
≤ limsup

k→∞
αHfnk

(xnk
)=αH0f0(x0). (2.10)

By (2.9), we have

limsup
k→∞

f(xnk
)− liminf

k→∞
fnk

(xnk
)≥ liminf

k→∞

(
f(xnk

)−fnk
(xnk

)
)
≥f(x0)−f0(x0),

which implies that limsupk→∞f(xnk
)≥f0(x0). By upper semicontinuity of f ,

limsupk→∞f(xnk
)=f(x0). Therefore, the conclusion follows.
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3. Large deviation for singular diffusions
We consider a sequence of processes {Xn(·) :n=1,2, . . .} given by stochastic dif-

ferential Equation (1.3). By Ito’s formula, the generator of Xn is given by

Anf(x)=κ(µ−x)∂xf(x)+
1

2n
θ2x∂xxf(x), f+c∈C2

c (E), c∈R.

Following [3] (e.g. Theorem 2.10 or 7.18, and Corollary 8.28), large deviation proper-
ties of {Xn(·) :n=1,2, . . .} can be established by studying

Hnf(x) :=
1

n
e−nfAne

nf (x)=κ(µ−x)∂xf(x)+
1

2
|θ
√
x∂xf |2+

1

2n
θ2x∂xxf, f ∈D.

The following convergence result follows by direct verification.

Lemma 3.1. For every f ∈D,

lim
n→+∞

‖Hnf−Hf‖∞=0.

In order to apply Theorem 2.10 in [3], we also need to verify an exponential
compact containment type condition (Condition 2.8 of [3]) for the processes. This is
verified in the following.

With a slight abuse of notation, we make obvious extension of Hnf(x) even when
f ∈C2(E) but f 6∈D. First, under the condition 2κµ>θ2, when N is large enough

sup
n≥N

sup
x∈E

HnV0(x)= sup
n≥N

sup
x∈E

{
− 1

2x

(
2κµ−θ2

(
1+

1

n

))}
+κ≤κ<∞.

Similar to the verification of supx∈EH(x,∂xV (x))<∞, we have

γ := sup
n≥N

sup
x∈E

HnV (x)<∞.

Lemma 3.2. For each compact set K0⊂⊂E, and each α>0, there exists another
compact set Kα⊂⊂E such that

limsup
n→∞

1

n
log sup

x∈K0

P (∃t≤T, Xn(t) /∈Kα|Xn(0)=x)≤−α. (3.1)

Proof. Apply Ito’s formula, it follows that

Mn(t) := en[V (Xn(t))−V (Xn(0))−
∫

t

0
HnV (Xn(s))ds]

is a super-martingale. Choose a compact set K1⊂⊂E, K1⊃K0, and define

τn := inf{t>0,Xn(t) /∈K1}

and

β := inf
y∈Kc

1

V (y)− sup
y∈K0

V (y).

By the optional stopping theorem, for n≥N ,

P
(
∃t≤T,Xn(t) /∈K1

∣∣∣Xn(0)=x
)
en[β−Tγ]≤E[Mn(T ∧τn)|Xn(0)=x]=1.
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That is,

sup
x∈K0

P
(
∃t≤T,Xn(t) /∈K1

∣∣∣Xn(0)=x
)
≤ e−n[β−Tγ].

For the given α>0, since limM→∞ inf |x|≥M V (x)=+∞, we have the conclusion by
choosing β sufficiently large.

With Lemmas 3.1 and 3.2, combined with the comparison principle for H in
Theorem 1.1, by Theorem 2.10 (or 7.18 of [3]) we have that {Xn :n=1,2, . . .} satisfies
the large deviation principle. Next, we explicitly identify its rate function I and show
that it is given as in (1.6).

Recalling the definitions of H(x,p) and L(x,q) in (1.5) and (1.4), we have the
following variational representation of H:

Hf(x)= sup
u∈R

{u ·∂xf(x)−L(x,u)}, f ∈D.

For readers familiar with optimal control theory, the above implies that the operator
H is a generator of a Nisio semigroup corresponding to the simple controlled ODE

ẋ(t)=u(t) with running cost IT [x(·)]=
∫ T

0
L(x(s),u(s))ds.

In order to apply Corollary 8.28 of [3], first we verify Condition 8.9 in that book.
Conditions 8.9.1-8.9.3 hold trivially. Condition 8.9.4 requires that, for each compact
set K⊂⊂E and 0≤M<∞, there exists a compact set K̂⊂⊂E such that for any

trajectory x(·), x(0)∈K and
∫ T

0
L(x,ẋ)ds≤M imply that x(t)∈ K̂, 0≤ t≤T . To see

that this holds, we note that such x(·) is absolutely continuous and that x(s)>0 for

each s>0. Let u(t)= ẋ(t)−κ(µ−x(t))

θ
√

x(t)
— that is, ẋ(t)=κ(µ−x(t))+θ

√
x(t)u(t); then

d

dt
V0(x(t))=− ẋ(t)

x(t)

=− 1

x(t)
(κµ−θ

√
x(t)u(t))+κ

=− 1

x(t)

(
κµ− θ2

2

)
+

(
θ2

2
−θ

√
x(t)u(t)

)(
− 1

x(t)

)
+κ

≤−θ2

2

1

x(t)
+

θ

x(t)
u(t)+κ

≤ u2(t)

2
+κ.

Therefore,

V0(x(t))−V0(x(0))≤
1

2

∫ T

0

|u(t)|2dt+κT.

On the other hand, there exists a constant C such that

d

dt
V∞(x(t))= ǫ

∂xU(x(t))

1+U(x(t))
ẋ(t)

= ǫ
−[κ(µ−x(t))]2

1+ κ(µ−x(t))2

2

+ǫ
−κ(µ−x(t))

1+ κ(µ−x(t))2

2

θ
√

x(t)u(t)

≤ ǫ
−κ(µ−x(t))

1+ κ(µ−x(t))2

2

θ
√
x(t)u(t)≤C|u(t)|.
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That is,

V∞(x(t))−V∞(x(0))≤CT

∫ T

0

|u(t)|2dt.

Together, these estimates imply that

V (x(t))−V (x(0))≤CT

∫ T

0

|u(t)|2dt+κT.

By properties of V , Condition 8.9.4 in [3] is satisfied as well.
For each f ∈C2

c (E) and compact set K⊂⊂E, there is a constant CK,f such that

|u ·∂xf(x)|≤CK,f (L(x,u))
1

2
+ǫ, ∀(x,u)∈K×U. (3.2)

Thus Condition 8.9.5 holds.
Next, we verify Condition 8.10 in [3] by selecting a trajectory x(·) satisfying

x(0)=x0>0, and for every t>0, x(t)>0 and

∫ T

0

L(x,ẋ)ds=

∫ T

0

|ẋ(s)−κ(µ−x(s))|2
2θ2x(s)

ds=0.

The solution to the ODE

ẋ(t)=κ(µ−x(t)), x(0)=x0 (3.3)

satisfies the requirement.
Finally, Condition 8.11 in [3] requires us, for each f ∈D, to find an x(·)∈

C([0,T ];E) such that

∫ t2

t1

Hf(x(s))ds=

∫ t2

t1

(
ẋ(s) ·∂xf(x(s))−L(x(s),ẋ(s))

)
ds. (3.4)

Since

H(x,p)=∂pH(x,p)p−L(x,∂pH(x,p)),

where ∂pH(x,p)=κ(µ−x)+θ2xp, the above condition is satisfied for any solution to
the ODE

ẋ(t)=κ(µ−x(t))+θ2x(t)∂xf(x(t)).

Existence of a solution xf (t)>0, t∈ [0,T ] to the above equation follows from standard
theory. Therefore Condition 8.11 in [3] holds as well.

By Theorem 8.14 and Corollary 8.28 of [3], the rate function of {Xn(·) :n=1,2, . . .}
admits the form given by Corollary 1.2.

REFERENCES

[1] M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order

partial differential equations, Bulletin of the A.M.S., 27(1), 1–67, 1992.
[2] J. Feng and M. Katsoulakis, A comparison principle for Hamilton-Jacobi equations related

to controlled gradient flows in infinite dimensions, Arch. Ration. Mech. Anal., 192(2),
275–310, 2009.



300 HAMILTON-JACOBI-BELLMAN EQUATION WITH SINGULAR COEFFICIENT

[3] J. Feng and T.G. Kurtz, Large Deviations for Stochastic Processes, American Mathematical
Society, Providence, Rhode Island. Mathematical Surveys and Monographs, 131, 2006.

[4] M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, Translated
from the 1979 Russian original by Joseph Szcs,Second edition, Fundamental Principles of
Mathematical Sciences, Springer-Verlag, New York, 260, 1998.

[5] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition,
Springer, New York, 1991.

[6] S. Karlin and H.M. Taylor, A Second Course in Stochastic Processes, Academic Press, New
York, 1981.

[7] P.-L. Lions, Some properties of the viscosity semigroups for Hamilton-Jacobi equations, Nonlin-
ear differential equations (Granada, 1984), Res. Notes in Math., J.K. Hale and P. Martinez-
Amores, Eds., Pitman, Boston, MA, 132, 43–63, 1985.


