
COMMUN. MATH. SCI. c© 2011 International Press

Vol. 9, No. 1, pp. 277–287

AN IMPROVEMENT OF THE TYT ALGORITHM FOR GF (2M )
BASED ON REUSING INTERMEDIATE COMPUTATION RESULTS∗

YIN LI† , GONG-LIANG CHEN‡ , YI-YANG CHEN§ , AND JIAN-HUA LI¶

Abstract. Multiplicative inversion plays an important role to Elliptic Curve Cryptosystems.
This paper presents an efficient inversion algorithm in GF (2m) using a normal basis which improves
the Itoh-Tsujii (IT) algorithm and the Takagi et al. (TYT) algorithm . The proposed algorithm
reduces the number of required multiplications by decomposing m−1 into several factors plus a
remainder and by reusing intermediate computation values. It is proved that the decomposition
of m−1 can be made simpler, but requires even fewer multiplications. Furthermore, a practical
algorithm for finding an optimal decomposition of m−1 is investigated.

Key words. Multiplicative inverse, IT algorithm, TYT algorithm, optimal decomposition.

AMS subject classifications. 12E30, 68Q10.

1. Introduction

Arithmetic operations in GF (2m) are usually required in many areas such as
public-key cryptography and error-correcting codes [1, 2]. A significant example is
offered by the Elliptic Curve Cryptosystem (ECC) [3], which is based on the group
of points of an elliptic curve defined over GF (2m). The basic operation in ECC,
i.e., the point addition, is typically expressed in terms of field additions — field
multiplications plus a single inversion. However, inversion is much more expensive
than other operations in GF (2m) and many researchers attempt to develop efficient
algorithms for carrying out such operation.

The inversion computation is usually carried out using approaches based either
on the Extended Euclidean algorithm [4, 5] and its derivatives [6, 7], or Fermat’s
little theorem [8, 9, 10, 11]. Specially, Fermat’s little theorem implies that, for any
nonzero value α∈GF (2m), α−1=α2m−2. If we use α2m−2 instead of α−1, the inversion
computation can be performed by iterative squaring operations and multiplications,
requiring m−1 squaring operations and m−2 multiplications [8].

Normal basis representation is usually applied in hardware implementation of
finite field arithmetic. In normal basis representation, squaring in GF (2m) can be
accomplished in terms of a simple cyclic shift of the coefficients, which can be realized
as a simple rewiring and does not cost any logic gates. Thus, to speed up the inversion
computation, it is necessary to reduce the number of required multiplications.

The Itoh-Tsujii [9] (IT) algorithm reduced the number of required multiplications
to ⌊log2(m−1)⌋+w(m−1)−1 through a clever construction of an addition chain,
where w(m−1) denotes the Hamming weight of the binary representation of m−1.
Takagi et al. [12] (TYT) further improved the IT algorithm by factoring m−1 into
several factors plus a small remainder and then applied a similar approach to each

∗Received: April 7, 2010; accepted (in revised version): July 28, 2010. Communicated by Shi Jin.
†School of Information Security Engineering, Shanghai Jiaotong University, Shanghai, P.R. China

(woajian@sjtu.edu.cn).
‡School of Information Security Engineering, Shanghai Jiaotong University, Shanghai, P.R. China

(chengl@sjtu.edu.cn).
§School of Information Security Engineering, Shanghai Jiaotong University, Shanghai, P.R. China

(channing@sjtu.edu.cn).
¶Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai, P.R. China

(lijh888@sjtu.edu.cn).

277



278 AN IMPROVEMENT OF TYT ALGORITHM FOR GF (2m)

factor. As a result, the proposed algorithm necessitates even fewer multiplications
than the IT algorithm. Chang et al. [13] and Li et al. [14] further extended the
TYT algorithm to the composite fields GF ((2n)m) and GF (2m) using polynomial
representation, respectively.

In this paper, we propose an improved version of the TYT algorithm using a
normal basis. Our approach is also based on the strategy which decomposes m−1
into several factors plus a remainder, but reduces the required multiplications further
by reusing some intermediate computation results. Our approach allows for a more
flexible decomposition ofm−1 to minimize the multiplications required to perform the
inversion. Consequently, for some values of m, our algorithm can utilize the simplest
decomposition of m−1 and requires even fewer multiplications than the original TYT
algorithm. Furthermore, a feasible algorithm for finding optimal decomposition of
m−1 is also discussed.

The rest of this paper is organized as follows: in Section 2, we briefly recall
the IT algorithm and the TYT algorithm. Then, an improved version of the TYT
algorithm is proposed in Section 3. In Section 4, some propositions about finding
optimal decompositions are presented and a related algorithm is discussed. Then,
a comparison of our proposal with some others is made in Section 5. Finally, some
conclusions are drawn.

2. Previous algorithms and related concepts

In this section, we briefly review the IT algorithm and the TYT algorithm. A nor-
mal basis of GF (2m) over F2 is defined as follows: for an nonzero element x∈GF (2m),

if x,x2
1

,x2
2

, · · · ,x2m−1

are linearly independent, then the set {x,x21 ,x22 , · · · ,x2m−1}
is called a normal basis [1, 2]. We can represent any element A∈GF (2m) as

A=
∑m−1

i=0 αix
2i =(α0,α1, · · · ,αm−1) where αi∈F2. From Fermat’s little theorem,

x2
m

=x holds. Then we have

A2 = (α0x+α1x
2+ · · ·+αm−1x

2m−1

)2

= α0x
2+α1x

22 + · · ·+αm−1x
2m

= αm−1x+α0x
2+ · · ·+αm−2x

2m−1

.

Hence, the squaring operation over a normal basis can be easily accomplished through
a right cyclic shift of its coefficients.

Let β∈GF (2m) be an arbitrary nonzero element. Based on Fermat’s little theo-

rem, the inversion can be carried out as β−1=β2m−2=(β1+2+22+···+2m−2

)2. Since we
work with a normal basis, the cost of the squaring operation can be ignored and it suf-
fices to reduce the number of required multiplications. The IT algorithm [9] computed
the exponentiation through repeated squaring of intermediate results (cyclic shift) and
multiplication. Consequently, the IT algorithm only requires ⌊log2m⌋+w(m−1)−1
multiplications. This approach can be generalized by the following lemma:

Lemma 2.1. [12] Let β∈GF (2m)∗ and t=1+2a+(2a)2+ · · ·+(2a)b−1, (a,b∈N).
Then there exists an algorithm for computing βt, which requires ⌊log2(b)⌋+w(b)−1
multiplications. Here, w(b) denotes the Hamming weight of the binary representation
of b.

Proof. First, consider the computation of βsk where

sk=

2k−1
∑

i=0

(2a)i=1+2a+(2a)2+ · · ·+(2a)2
k−1.



Y. LI, G.-L. CHEN, Y.-Y. CHEN, AND J.-H. LI 279

Then, there exists a recursion:

βsk =β1+2a+(2a)2+···+(2a)2
k
−1

=β1+2a+···+(2a)2
k−1

−1 ·β(2a)2
k−1

+···+(2a)2
k
−1

=(βsk−1)(2
a)2

k−1

·βsk−1 . (2.1)

Hence, if βsk is computed then, for any si less than sk, β
si will also be computed.

Note that βs0 =β, so that the computation of βsk ,βsk−1 , · · · ,βs0 only requires k mul-
tiplications.

Let b=
∑n

i=12
ki , with k1>k2> · · ·>kn. Then the exponentiation βt can be

rewritten as follows:

βt=(βskn )

(

· · ·(βsk3 )((βsk2 )(βsk1 )(2
a)2

k2

)(2
a)2

k3

· · ·
)(2a)2

kn

. (2.2)

Since k1>ki for i=2, · · · ,n, if we compute βsk1 as above, then all the βski for i=
2, · · · ,n will also be computed, as above. The computation of βsk1 requires only
k1= ⌊log2(b)⌋ multiplications. Note that it still needs w(b)−1 more multiplications
to go through Equation (2.2). Adding up the two partial complexities, we directly
obtain the conclusion.

Takagi et al.[12] reduced the number of required multiplications using a factoriza-
tion approach. They first decomposedm−1 into several factors plus a small remainder
and then applied Lemma 2.1 to each factor. Assume that m−1=

∏k

i=1ri+h and we
have the following equation:

2m−2 = 2m−1+2m−2+ · · ·+2m−h+2m−h−2

=
∑m−1

m−h2
i+2(2

∏
k

i=1
ri−1)

=
∑m−1

m−h2
i+2(2

∏
k−1

i=1
ri−1) ·

(

(2
∏

k−1

i=1
ri)rk−1+

+ (2
∏

k−1

i=1
ri)rk−2+ · · ·+(2

∏
k−1

i=1
ri)+1

)

· · ·
=

∑m−1
m−h2

i+2(2r1−1) ·
(

(2r1)r2−1+ · · ·+(2r1)+1
)

· · ·
(

(2
∏

k

i=1
ri)rt−1+(2

∏
k

i=1
ri)rt−2+ · · ·+(2

∏
k

i=1
ri)+1

)

.

Then the inversion can be computed as

β−1=β2m−2=(
∏h

i=1β
2m−i

)×(β2m−h−1−1)2=(
∏h

i=1β
2m−i

)×
β2(2r1−1)((2r1 )r2−1+···+(2r1 )+1)···((2

∏k−1

i=1
ri )rk−1+···+(2

∏k−1

i=1
ri )+1).

(2.3)

Note that 2i-th power in the normal basis can be carried out by a simple cyclic
shift, so that one can compute the inversion efficiently through the Equation (2.3)
and iterative application of Lemma 2.1. In consequence, we only need

k
∑

i=1

(⌊log2(ri)⌋+w(ri)−1)+h

multiplications to compute the inversion. If the first factor r1 is decomposed further,
one can just follow the same lines as above to compute β2r1−1.



280 AN IMPROVEMENT OF TYT ALGORITHM FOR GF (2m)

Moreover, since there exist several decompositions of m−1, Takagi et al. have
defined a notion about optimal decomposition which minimizes the number of required
multiplications and consists of the fewest computation components. For some values
of m, the TYT algorithm even requires fewer multiplications than the IT algorithm.

3. New algorithm

In this section, we will show that more multiplications can be saved during the
computation process with a slight modification of Equation (2.3). Then, an improved
version of the TYT inversion algorithm based on this inspiration is proposed.

3.1. Main strategy and the algorithm.

Since

2m−2 = 2m−1+2m−2+ · · ·+2m−h+2m−h−2
= (2m−h(2h−1))+2(2m−h−1−1),

we have

β−1 = β2m−2

= (β2h−1)2
m−h×(β2m−h−1−1)2.

Using techniques similar to those presented in the proof of Lemma 2.1, we can save

more field multiplications in the computation of β2h−1. Assume that m−h−1=
∏k

i=1ri; then

β2m−2=(β2h−1)2
m−h×(β2m−h−1−1)2=(β2h−1)2

m−h×
(

β(2r1−1)((2r1 )r2−1+···+(2r1 )+1)···((2
∏k−1

i=1
ri )rk−1+···+(2

∏k−1

i=1
ri )+1)

)2

.
(3.1)

Consider two following cases:

Case 1: If r1 is not decomposed further.
Assume that r1=

∑n

i=12
ui with u1>u2> · · ·>un and h=

∑ℓ

i=12
ti with t1>t2>

· · ·>tℓ. Based on the relevant techniques of Lemma 2.1, we calculate s intermediate
values:

{β22
0

−1,β22
1

−1, · · · ,β22
s

−1},

where s=max{u1,t1}. Similar to Equation (2.2), we obtain two equations as follows:

β2r1−1=(βsun )
(

· · ·(βsu3 )((βsu2 )(βsu1 )2
2
u2

)2
2
u3

· · ·
)22

un

(3.2)

and

β2h−1=(βstℓ )
(

· · ·(βst3 )((βst2 )(βst1 )2
2
t2

)2
2
t3

· · ·
)22

tℓ

. (3.3)

If r1>h, we have u1> t1 and s=u1= ⌊log2(r1)⌋ 1. Then it requires w(r1)−1 and
w(h)−1 multiplications to go through Equation (3.2) and Equation (3.3), respectively.
Therefore, besides the computation of β2r1−1, we only need w(h)−1 multiplications

to compute (β2h−1)2
m−h

while the original approach needs h−1.

1Such a case can be ensured by selecting suitable r1 and h.



Y. LI, G.-L. CHEN, Y.-Y. CHEN, AND J.-H. LI 281

Furthermore, note that the number of required multiplications corresponding to
other factors ri, (i=2, · · · ,s) is ⌊log2(ri)⌋+w(ri)−1. Then we still need one more

multiplication, of (β2h−1)2
m−h

by β2m−h−2, to obtain the final result. Therefore the
number of multiplications required for the inversion computation is

k
∑

i=1

(⌊log2(ri)⌋+w(ri)−1)+w(h). (3.4)

Case 2: If r1 is decomposed further.
Assume that r1 is decomposed as

∏l

i=1 ti+h
′. Then if h′ is less than one of the

factors in {t1, · · · ,tl}, the main computation strategy with respect to β2h
′

−1 will follow
the same line as that presented in Case 1. It also costs w(h)−1 multiplications. The
number of multiplications required by inversion in this case can be obtained by using
Equation (3.4) iteratively.

Based on the previous consideration, we can propose a new version of TYT algo-

rithm. Assume that m−1 is decomposed into
∑k

i=0ri+h. Let
[

r
(i)
qi r

(i)
qi−1 · · ·r

(i)
1 r

(i)
0

]

2
denote the binary representation of ri (i=1,2, · · · ,k) and [hℓhℓ−1 · · ·h1h0]2 denote the
binary representation of h. We first present the pseudo-code of the computation of
β2m−1−1 as follows:

Procedure: Main computation block of new TYT algorithm

Inputs: β and m−1
Auxiliary: (z0,z1,z2, · · · ,zq) where q=max{q1,q2, · · · ,qk}.
Outputs: β2m−1−1

Step 1: z0 :=β;
Step 2: if r1 is decomposed further;

Step 3: call this procedure recursively to compute β2r1−1 and β2h−1;
Step 4: else for i=1 to q1;
Step 5: zi← (zi−1)

2i−1

, zi←zi ·zi−1;
Step 6: θ←zq1 , η←zℓ;
Step 7: for i= q1−1 to 0;

Step 8: if r1i =1 then θ←θ2
2
i

·zi; // β2r1−1;

Step 9: if hi=1 then η←η2
2
i

·zi; // β2h−1;
Step 10: n← r1, z0←θ;
Step 11: for j=2 to k;
Step 12: for i=1 to qj ;

Step 13: zi← (zi−1)
(2n)i−1

, zi←zi ·zi−1;
Step 14: for i= qj−1 to 0;

Step 15: if rji =1 then θ←θ(2
n)2

i

·zi;
Step 16: z0←θ, n←n ·rj ;
Step 17: return θ ·(η)2m−h−1

;

In the end, we only need to calculate the square of β2m−1−1 and then obtain the
inversion of α.

Since w(h)≤h, under the same decomposition of m−1, our approach would cost
fewer multiplications. In practical application, Takagi et al. usually select the re-
mainder h as 1 to minimize the cost of

∏h

i=1β
2m−i

in Equation (2.3). However, this
restricts the choice of the decomposition corresponding to m−1. Conversely, our ap-



282 AN IMPROVEMENT OF TYT ALGORITHM FOR GF (2m)

proach only costs w(h) multiplications to calculate
∏h

i=1β
2m−i

. Hence, the choice of
h can be more flexible and lead to even more efficient computation.

3.2. An example. As a small example, consider an inversion inGF (2123). Let
A∈GF (2123) be an arbitrary nonzero element. According to Fermat’s little theorem,

A−1=(A2122−1)2. The original TYT algorithm decomposes 122 into 2×(3×20+1)
and computes the inversion as follows:

A2123−2=(A2122−1)2

=
(

(A261−1)(2
61+1)

)2

=

(

(

A260 ·(A220−1)((2
20)2+220+1)

)(261+1)
)2

. (3.5)

It requires 9 multiplications, which saves 1 multiplication compared with the IT al-
gorithm. Conversely, we decompose 122 into 3×40+2 and compute:

A2123−2=(A2122−1)2

=
(

(A2122 ·A2121) ·(A240−1)((2
40)2+240+1)

)2

=
(

(A2 ·A)2121 ·(A240−1)((2
40)2+240+1)

)2

. (3.6)

Note that 2<40 and w(2)=1, we can reuse the intermediate values in computation

of A240−1 to calculate A2 ·A. Consequently, our approach also requires 9 multipli-
cations. Note that Equation (3.6) has fewer computation components than Equa-
tion (3.5), which would be more attractive in hardware implementation. More details
are presented in Table 3.1.

Power Rule Result

s0=22
0−1 - A

s1=22
1−1 (As0)2

2
0

·As0 A1+2

s2=22
2−1 (As1)2

2
1

·As1 A1+2+22+23

s3=22
3−1 (As2)2

2
2

·As2 A1+2+···+27

s4=22
4−1 (As3)2

2
3

·As3 A1+2+···+215

s5=22
4−1 (As4)2

2
4

·As4 A1+2+···+231

s′0=240−1 (As5)2
2
3

·As3 A1+2+···+239

s′1=(240)2−1 (As′
0)(2

40) ·As′
0 A1+2+···+279

(240)3−1 (As′
1)(2

40) ·As′
0 r1=A

1+2+···+2119

2122−1 (As1)2
121 ·r1 r2=A

1+2+···+2120+2121

2123−2 (r2)
2 A−1

Table 3.1. The inversion computation of A

4. Optimal decomposition

Since the number of multiplications with respect to the TYT algorithm depend on
the decomposition of m−1, Takagi et al. have proposed the notion of optimal decom-
position as that which minimizes the number of required multiplications and consists



Y. LI, G.-L. CHEN, Y.-Y. CHEN, AND J.-H. LI 283

of the fewest computational components. However, they have only summarized some
related propositions. In this section, we will try to propose an applicable algorithm
about finding optimal decomposition corresponding to our algorithm. Firstly, some
lemmas and propositions are proposed.

Lemma 4.1. Let a= bc, a,b,c∈N; then ⌊log2a⌋≤⌊log2 b⌋+⌊log2 c⌋+1.

Proof. Assume that 2n6 b<2n+1 and 2m6 c<2m+1, then 2n+m6ab<2n+m+2

which concludes the lemma.

Lemma 4.2. [12] If an integer t is decomposed as 2n ·s, the computation of β2t−1, such
that β∈GF (2m)∗, using the TYT algorithm costs the same number of multiplications
as using the IT algorithm.

Proof. See Section 3 in [12].

Proposition 4.3. In the optimal decomposition of m−1=
∏k

i=1ri+h, the remain-
der h should satisfy w(h)<w(m−1)−2.

Proof. Let m−1 be 2n+c such that c<2n. The decomposition of m−1 as
2n+c requires n+w(c) multiplications, which is identical to that required by the IT
algorithm, i.e., ⌊log2(m−1)⌋+w(m−1)−1=n+w(c). Thus in the optimal decom-
position of m−1, the remainder h should be smaller than c.

Assume therefore that m−1=
∏k

i=1ri+h and r1 is not decomposed further. The
number of required multiplications under this decomposition is

k
∑

i=1

(⌊log2(ri)⌋+w(ri)−1)+w(h). (4.1)

Based on Lemma 4.2, it is obvious that w(ri)≥2 for i=1, · · · ,k. Hence, ⌊log2(ri)⌋+
w(ri)−1≥⌊log2ri⌋+1. Note that h<c, so that ⌊log2(m−1)⌋= ⌊log2(m−1−h)⌋=
⌊log2

∏k

i=1ri⌋. Applying Lemma 4.1 iteratively, we have

⌊log2(m−1)⌋ = ⌊log2
∏k

i=1ri⌋
≤ ⌊log2

∏k

i=2ri⌋+⌊log2r1⌋+1

≤ ⌊log2
∏k

i=3ri⌋+⌊log2r2⌋+1+⌊log2r1⌋+1
· · ·

≤∑k

i=1(⌊log2ri⌋+1)−1.

(4.2)

Consequently, ⌊log2(m−1)⌋≤
∑k

i=1(⌊log2(ri)⌋+w(ri)−1)−1. Since the number of
required multiplications here should be less than that of the IT algorithm, we have

⌊log2(m−1)⌋+w(m−1)−1>
k

∑

i=1

(⌊log2(ri)⌋+w(ri)−1)+w(h).

Hence w(h)<w(m−1)−2. Moreover, in this case it is obvious that the optimal de-
composition corresponding to m−1 requires at least ⌊log2m−1⌋+1 multiplications.

If r1 is decomposed further, based on analysis similar to that above, the optimal
decomposition corresponding to r1 costs at least ⌊log2r1⌋+1 multiplications. We plug
this inequality to Equation (4.2) to conclude the proposition.



284 AN IMPROVEMENT OF TYT ALGORITHM FOR GF (2m)

Lemma 4.4. [12] When w(m−1)=2, the optimal decomposition is m−1 itself and
the number of required multiplications is ⌊log2(m−1)⌋+1.

Proof. See Section 3 in [12].

Based on previous propositions and lemmas, we could present an applicable algo-
rithm for finding the optimal decomposition of m−1. To facilitate description, we use
the symbol ψ(n) to denote the number of required multiplications in the computation
of β2n−1, for n∈N. The algorithm is stated as follows:

Algorithm Opdecompose(n)
(produce an optimal decomposition of n)

if w(n)62 then return n
else

for i=0 to ⌈n4 ⌉ while w(i)<w(n)−2 do

compute Factor(n− i) and save the relative decomposition
end for

end if

choose the n− i,i such that the ψ(n− i)+w(i) is minimal and return the decom-
position
end Opdecompse.

where

Algorithm Factor(t)
(produce the factorization of t that minimize ψ(t))

if w(t)≤2 or t is a prime number then return t
end if

factorize t as r1,r2, · · · ,rℓ which ensures that ψ(t) is minimal and that r1 is the
maximal number
if w(r1)≥3 then return Opdecompose(r1),r2, · · · ,rℓ
else return r1,r2, · · · ,rℓ
end if

end Factor.

Remark 4.5. In the procedure ofOpdecompose(n), we only search for the remainder
i from 0 to ⌈n4 ⌉. Clearly, in the previous section we assumed that the remainder i
should be less than one factor of n− i. Note that the optimal decomposition of n− i
does not include a power of 2 as an independent factor. Thus we have i≤ n−i

3 and
then i≤⌈n4 ⌉.

We can use a greedy algorithm to factorize the operand in Factor(t). The main
strategy is to find the two locally optimal factors in each iteration with the hope of
finding the global optimum. After several iterations, we could find a factorization
which decreases ψ(t).

Procedure Factorization

Inputs: an integer t
Auxiliary: Q0,Q1 and Q2

Outputs: factorization of t to decrease ψ(t)
Step 1: if w(t)≤2 or t is a prime number then return t;
Step 2: Q0←⌊log2(t)⌋+w(t)−1;
Step 3: for i=3 to

√
t while i|t

Step 4: if ⌊log2(i)⌋+w(i)+⌊log2
(

t
i

)

⌋+w
(

t
i

)

−2≤Q0 then



Y. LI, G.-L. CHEN, Y.-Y. CHEN, AND J.-H. LI 285

Step 5: Q0←⌊log2(i)⌋+w(i)+⌊log2
(

t
i

)

⌋+w
(

t
i

)

−2;
Step 6: Q1← i, Q2← t

i
;

Step 7: recursively call this procedure to factorize Q1 and Q2;
Step 8: return the factors;

Clearly, the algorithm Opdecompose(n) is based on exhaustive approach using
previous propositions. Indeed, we have used the MAPLE software to implement the
algorithm. It is shown that the optimal decomposition with respect to the number
less than 1000 can be found after at most two recursions.

5. Comparison

In this section, we illustrates the improvement obtained with our algorithm com-
pared with original TYT algorithm and the IT algorithm, by collecting some numerical
results for m with cryptographic size. These results are summarized in Table 5.1. It
is shown that our algorithm uses relative simpler decompositions of m−1 but obtains
the same improvement as the original TYT algorithm. Moreover, for some values of
m, our algorithm even requires fewer multiplications.

m m−1
TYT New #Mul. #Mul. #Mul.

decomposition decomposition [IT] [TYT] [New]
123 122 2×(20×3+1) 3×40+2 10 9 9
187 186 6×(10×3+1) 5×34+16 11 10 10
238 237 3×(26×3+1) 3×68+33 12 11 11
328 327 3×(9×12+1) 5×65+2 12 11 11
489 488 8×(3×20+1) 3×160+8 12 11 11
672 671 11×(20×3+1) 131×5+1 15 13 13
189 188 4×47 5×36+8 11 11 10
396 395 5×(6×13+1) 3×129+8 12 12 11
384 383 2×(38×5+1)+1 3×5×25+8 15 13 12
471 470 47×10 9×52+2 13 13 12
428 427 7×(3×20+1) 17×25+2 13 12 11
429 428 4×107 3×132+32 12 12 11
500 499 6×83+1 3×161+16 13 12 11

Table 5.1. Comparison of different approaches for multiplicative inversion

In [15, 16], Cruz-Cortés et al. generalized the IT algorithm using the concept of
an addition chain. They argued that obtaining the smallest number of multiplications
required to perform inversion is equivalent to the problem of finding the shortest ad-
dition chain (SAC) starting with 1 and ending with m−1. They utilized the Artificial
Immune System (AIS) paradigm to obtain their result.

In fact, finding the shortest addition chain for an integer is an open problem.
Now one can get the lengths of the shortest addition chains for all of the integers
2 up to 231. Considering the cryptographic applications, we have computed all the
optimal decomposition of the number between [160,1000]. It is shown that there exist
only 105 numbers where the optimal decompositions corresponding to these numbers
are greater than the length of SAC (equal to the length of SAC plus one). On the
other hand, the optimal decomposition corresponding to other numbers are equal to

2http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html



286 AN IMPROVEMENT OF TYT ALGORITHM FOR GF (2m)

the length of SAC. However, our approach would be more attractive in hardware
implementation, since the structure of our algorithm is similar to the IT algorithm
and it can utilize the former architecture with a slight modification.

Fig. 5.1. The distribution of the optimal decomposition

6. Conclusion

We have proposed an improvement of TYT algorithm for multiplicative inver-
sion in GF (2m). Analogously to the original algorithm, the parameter m−1 is also
decomposed into several factors and a remainder. But the decomposition used in
our approach takes into account of reuse of intermediate values in the computation.
Consequently, our algorithm even requires fewer multiplications than the TYT algo-
rithm and the IT algorithm for some values of m. The new decomposition principle
proposed is a good supplement for optimal decomposition mentioned in [12].

The proposed algorithm can be easily modified for multiplicative inversion in
GF (pm), where p is an odd prime. Related results are also attractive for multiplicative
inversion using a polynomial basis or a dual basis.

Acknowledgement. The authors would like to thank the anonymous reviewers
for their useful and valuable comments. This work is supported by the Natural Science
Foundation of China (No.60672068).

REFERENCES

[1] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, New York, NY, USA,
1983.

[2] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge
University Press, New York, NY, USA, 1994.

[3] I. Blake, G.Seroussy and N.P. Smart, Elliptic Curves in Cryptography, Cambridge University
Press, Cambridge, 1999.

[4] J. Guo and C. Wang, Systolic array implementation of Euclid’s algorithm for inversion and

division in GF (2m), IEEE Trans. Comput., 47(10), 1161–1167, 1998.
[5] D. Hankerson, J.L. Hernandez and A. Menezes, Software implementation of elliptic curve

cryptography over binary fields, In CHES ’00, Proceedings of the Second International
Workshop on Cryptographic Hardware and Embedded Systems, London, UK, Springer,
1–24, 2000.

[6] Z. Yan and D.V. Sarwate, New systolic architectures for inversion and division in GF (2m),
IEEE Trans. Comput., 52(11), 1514–1519, 2003.



Y. LI, G.-L. CHEN, Y.-Y. CHEN, AND J.-H. LI 287

[7] A.P. Fournaris and O. Koufopavlou, Applying systolic multiplication-inversion architectures

based on modified extended Euclidean algorithm for GF (2k) in elliptic curve cryptography,
Comput. Electr. Eng., 33(5–6), 333–348, 2007.

[8] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura and I.S. Reed, VLSI architec-

tures for computing multiplications and inverses in GF (2m), IEEE Trans. Comput., 34(8),
709–717, 1985.

[9] T. Itoh and S. Tsujii, A fast algorithm for computing multiplicative inverses in GF (2m) using

normal bases, Inf. Comput., 78(3), 171–177, 1988.
[10] J. Guajardo and C. Paar, Itoh-Tsujii inversion in standard basis and its application in cryp-

tography, Codes. Des. Codes Cryptography, 25(2), 207–216, 2002.
[11] F. Rodŕıguez-Henŕıquez, G. Morales-Luna, N. Saqib and N. Cruz-Cortés, Parallel Itoh-Tsujii

multiplicative inversion algorithm for a special class of trinomials, Des. Codes Cryptogra-
phy, 45(1), 19–37, 2007.

[12] N. Takagi, J.I. Yoshiki and K. Takagi, A fast algorithm for multiplicative inversion in GF (2m)
using normal bases, IEEE Trans. Comput., 50(5), 394–398, 2001.

[13] K.Y. Chang, H. Kim, J.S. Kang and H.S. Cho, An extension of TYT algorithm for GF ((2n)m)
using precomputation, Inf. Process. Lett., 92(5), 231–234, 2004.

[14] Y. Li, G.L. Chen, Y.Y. Chen and J.H. Li, An extension of TYT inversion algorithm in poly-

nomial basis, Inf. Process. Lett., 110(8–9), 300–303, 2010.
[15] N. Cruz-Cortés, F. Rodŕıguez-Henŕıquez and C.A. Coello, On the optimal computation of fi-

nite field exponentiation, Advances in Artificial Intelligence - IBERAMIA 2004, 9th Ibero-
American Conference on AI, LNCS, 3315, 747–756, 2004.

[16] N. Cruz-Cortés, F. Rodŕıguez-Henŕıquez and C.A. Coello, An artificial immune system heuris-

tic for generating short addition chains, IEEE Trans. Evol. Comput., 12(1), 1–24, 2008.


