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A PARAMETRIX CONSTRUCTION FOR THE WAVE EQUATION

WITH LOW REGULARITY COEFFICIENTS USING A FRAME OF

GAUSSIANS∗

ALDEN WATERS†

Abstract. We construct a frame of complex Gaussians for the space of L2(Rn) functions.
When propagated along bicharacteristics for the wave equation, the frame can be used to build
a parametrix with suitable error terms. When the coefficients of the wave equation have more
regularity, propagated frame functions become Gaussian beams.
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Introduction. In A Parametrix Construction for the Wave Equation with C1,1

Coefficients, Hart Smith constructed a parametrix solution for the wave equation using
a frame that is now called curvelets. We construct, in this paper, a new frame out of
Gaussian functions. When a Gaussian function is propagated along the ray, it becomes
a Gaussian beam, which looks like a Gaussian distribution on planes perpendicular
to a ray in space-time. The existence of such solutions has been known to the pure
mathematics community since the 1960s. Recently, there has been a revival of interest
in Gaussian beams, given their robustness in approximating solutions to PDEs.

Nicolay Tanushev numerically simulated mountain waves with a high degree of
accuracy using superpositions of high frequency Gaussian beams. Gaussian beams
are concentrated along a single ray, and thus it is desirable to use many of them to
represent a solution because a global solution is rarely concentrated along a single
curve. Tanushev’s thesis showed that Gaussian beams have several major advantages
over other techniques used to numerically approximate the solution to a mountain
wave. Motivated by these numerical calculations, we will show that a frame consisting
entirely of complex Gaussians can be used to build an accurate parametrix to the wave
equation.

The idea of using complex Gaussians to build an accurate parametrix is not new.
Daniel Tataru, in his paper, Strichartz Estimates for Operators with Nonsmooth Co-
efficients and the Nonlinear Wave Equation, constructed a parametrix to the wave
equation with low regularity coefficients using a modified FBI transform. While the
solution in his paper is elegant, numerical calculations with such a construction would
be difficult, if not impossible. Representing initial data in terms of a frame of Gaus-
sians may lead to more viable and accurate numerical solutions.

For the rest of this paper we will consider the wave equation,

∂2t u(t,x)−A(t,x,∂x)u(t,x)=∂2t u(t,x)−
∑

1≤i,j≤n

aij(t,x)∂xi
∂xj

u(t,x)=0,

and we let

A(x,t)={aij(x,t)}1≤i,j≤n.
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226 A PARAMETRIX CONSTRUCTION USING A FRAME OF GAUSSIANS

We assume that the matrix A is uniformly positive definite and bounded – that is,
there exists a constant C>0 with

|ξ|2
C

≤
∑

1≤i,j≤n

aij(t,x)ξiξj≤C|ξ|2

for all (t,x,ξ) in [−T,T ]×Rn×Rn. Here, T is fixed and finite. Furthermore, we
assume the entries of the matrix, denoted aij(t,x) with (t,x)∈ [−T,T ]×Rn, are in
C1,1. Coefficients which are C1,1 are of interest because they are minimally regular;
they satisfy a Lipschitz condition in x and t,

|aij(t,x)−aij(t′,x′)|≤C(|t− t′|+ |x−x′|),

and their first derivatives in x satisfy a Lipschitz condition

|∇xaij(t,x)−∇xaij(t,x
′)|≤C|x−x′|.

This paper is divided into three major parts. The focus of Section 1 is the
introduction of a frame of Gaussian functions, which will represent elements of the
Hilbert space L2(Rn). Theorem 1.1 is the main topic of Section 1, which shows
not only that the essential L2(Rn) estimate for a frame holds, but also that we also
have stronger estimates for weighted sequences of frame functions in terms of Sobolev
norms. The proof of Theorem 1.1 consists of two technical lemmas which introduce
notation that will be used in Section 2.

Building on the framework of Section 1, Section 2 details the construction of what
are usually called Gaussian beams (when the higher regularity cases are considered)
and shows how they are propagated in space-time. The main theorem in Section 2 is
Theorem 2.1, which shows that the propagated frame operators are bounded in the
appropriate little-ℓ sequence spaces. These sequence spaces correspond to the natural
Sobolev norms of the functions which are used as initial data. This section contains
the necessary estimates for the construction of a parametrix for the wave equation
with C1,1 coefficients. Finally, Section 3 follows the work of Hart Smith very closely
and contains the actual parametrix construction.

The reader may first wish to examine the introduction of the frame functions and
Theorem 1.1 with the description of the associated lemmas on pages 2-4 below. He
may then skip to pages 12 and 13, in Section 2 stopping at Theorem 2.1. It is the
author’s belief that these pages may be read independently, and from them it will
be clear that the ultimate goal of the paper is the construction of the parametrix as
detailed in Section 3 by Theorem 6. However, the ordering of the sections is important
for the understanding of the various technical lemmas which make this construction
work well.

1. Construction of the frame

Let the set of functions {φγ(x)}γ∈Γ be defined as follows:

φγ(x) :=

( |ξγ |∆xγ
2π

)n
2

exp
(
iξγ ·(x−xγ)−|ξγ ||x−xγ |2

)
,

where γ is the index γ=(i,k,α) with i∈ Ik, and where Ik is a finite subset of integers
which depends on k∈N and α∈Zn. In the first two lemmas we will pick ξγ=2kωi,k
a vector in Rn with 1

2 ≤|ωi,k|<1, and xγ=∆xγα another vector in Rn with ∆xγ a
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scale factor depending on k. We will show that these vectors can be chosen so that
the set of functions {φγ(x)}γ∈Γ form a frame for L2(Rn). Not only will our chosen set
of {φγ(x)}γ∈Γ form a frame in L2(Rn), but we also will show that weighted sequences
of frame functions are comparable to the mth Sobolev norm (provided it exists) of
any f(x). In particular, we have

Theorem 1.1. For any finite m≥0 and f(x)∈Hm(Rn) there exist constants C1 and
C2, independent of γ and with 0<C1≤C2, such that the following holds:

0<C1 ||f(x)||2Ḣm(Rn)≤
∑

γ

|2kmc(γ)|2≤C2 ||f(x)||2Ḣm(Rn) , (1.1)

with

c(γ)=

∫

Rn

φγ(x)f(x)dx.

For this paper we will use the convention that the Fourier Transform for a function
h(u)∈L2(Rn) is defined as

ĥ(η) :=

∫

Rn

e−iη·uh(u)du.

We will also need to introduce the following functions:

ψγ(w) :=

( |ξγ |
2π

)n
2

exp
(
iξγ ·w−|ξγ ||w|2

)
.

The only difference between ψγ(x−u) and φγ(x) is that the discrete variable xγ is
now a continuous one, u, and there is no factor of (∆xγ)

n
2 . Here we note that

|ψ̂γ(ξ)|2=2−n exp

(
−|ξ−ξγ |2

2|ξγ |

)
.

In Lemma 1.1 we construct an approximate partition of unity from the sum of the
squares of the Fourier transforms of the ψγ(w).

Lemma 1.1. One can chose ωi,k, i∈ Ik, k∈N with 1
2 ≤|ωi,k|<1 so that the inequalities

0<C ′
1|ξ|2m≤

∑

(i,k)

22km exp

(
−|ξ−2kωi,k|2

2|2kωi,k|

)
≤C ′

2|ξ|2m (1.2)

hold for all ξ∈Rn, 0≤m<+∞. Here C ′
1 and C ′

2 are constants independent of ξ.

For clarity, we will save the proof of Lemma 1.1 and Lemma 1.2 below until the
end of the proof of Theorem 1.1. For Lemma 1.2, we will pick ∆xγ so that we can
approximate the center term in the inequality (1.1) by an expression which no longer
involves α, effectively turning the summation over α into an integral.
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Lemma 1.2. For fixed k∈N, let ∆xγ equal Cǫ2
− k

2−ǫk with ǫ>0 and Cǫ a small
constant independent of k and dependent on ǫ. Then, for every ǫ>0, there exists a
choice of Cǫ such that the following holds:

∣∣∣∣∣∣
∑

γ

∫

Rn

∫

Rn

22kmf(x)φγ(x−α∆xγ)f(x′)φγ(x′−α∆xγ)dxdx′ −

∑

(i,k)

∫

Rn

∫

Rn

∫

Rn

22kmψγ(x−u)f(x)ψγ(x′−u)f(x′)dudxdx′
∣∣∣∣∣∣
≤ πne−1

2
||f ||2L2(Rn) .

Proof. [Proof of Theorem 1.1]. If we let

∫

Rn

∫

Rn

∫

Rn

22kmψγ(x−u)ψγ(x′−u)f(x)f(x′)dudxdx′,

then the kernel of this expression can be rewritten as

∫

Rn

22kmψγ(x−u)ψγ(x′−u)du=(2π)n
∫

Rn

eiξ·(x−x
′)22km|ψ̂γ(ξ)|2dξ,

since the Fourier Transform is an isometry on L2(Rn). As remarked earlier,

|ψ̂γ(ξ)|2=2−n exp

(
−|ξ−ξγ |2

2|ξγ |

)
,

so that, by Lemma 1.1 and Fubini’s Theorem,

πnC ′
1

∣∣∣
∣∣∣|ξ|mf̂(ξ)

∣∣∣
∣∣∣
2

L2(Rn)
≤
∑

(i,k)

∫

Rn

∫

Rn

∫

Rn

22kmψγ(x−u)ψγ(x′−u)f(x)f(x′)dudxdx′

≤πnC ′
2

∣∣∣
∣∣∣|ξ|mf̂(ξ)

∣∣∣
∣∣∣
2

L2(Rn)
,

which is equivalent to

πnC ′
1 ||f(x)||2Ḣm(Rn)≤

∑

(i,k)

∫

Rn

∫

Rn

∫

Rn

22kmψγ(x−u)ψγ(x′−u)f(x)f(x′)dudxdx′

≤πnC ′
2 ||f(x)||2Ḣm(Rn) . (1.3)

From Lemma 1.2, we also have

∣∣∣∣∣∣
∑

γ

∫

Rn

∫

Rn

22kmf(x)φγ(x−α∆xγ)f(x′)φγ(x′−α∆xγ)dxdx′

−
∑

(i,k)

∫

Rn

∫

Rn

∫

Rn

22kmψγ(x−u)f(x)ψγ(x′−u)f(x′)dudxdx′
∣∣∣∣∣∣
≤ πne−1

2
||f ||2L2(Rn) ,

(1.4)
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but, since e−1

2 <C ′
1= e

−1 and C ′
2>C

′
1 ,we can combine inequalities (1.3) and (1.4) to

conclude

C1 ||f ||2Ḣm(Rn)≤

∣∣∣∣∣∣
∑

γ

∫

Rn

∫

Rn

22kmf(x)φγ(x−xγ)f(x′)φγ(x′−xγ)dxdx′
∣∣∣∣∣∣

≤C2 ||f ||2Ḣm(Rn) ,

which is the result (1.1).

Proof. [Proof of Lemma 1.1]. Since ξ∈Rn/{0}, we begin by considering Rn as an
infinite union of dyadic annuli, each of which we will cover with real Gaussians which
are centered at our choice of 2kωi,k. In every annulus 2k−1≤|ξ|<2k, for all k∈N, we

choose the vectors 2kωi,k such that, for all i 6= j, we have |2kωi,k−2kωj,k|>2
k
2 , while

allowing the number of 2kωi,k in each annulus to be as large as possible. The index
set Ik is finite, as the volume of every annulus is finite.

Fixing ξ for the rest of this proof, ξ must lie in an annulus 2k−1≤|ξ|<2k for some
fixed k in N. As a result of our choice of vectors, for all ξ∈Rn there exists at least
one point 2kωi,k for which the inequality |ξ−2kωi,k|<2

k
2 holds. This condition gives

a lower bound:

|ξ|2me−1≤
∑

(i,k)

22km exp

(
−|ξ−2kωi,k|2

2|2kωi,k|

)
.

To show the sum is bounded above, we will consider sets of indices A,B,C,D,
and E, whose union contains all the indices (i,k) in γ and show that the contribution
to the sum from each of these sets is bounded by a constant multiple of |ξ|2m. The
cases k=0,1 are easy, so we consider k≥2.

First let A consist of those indices (i,q) for which |ξ−2qωi,q|<2
k
2 . Clearly, q can

only be equal to k−1,k, or k+1. Fixing q for the moment and setting r=2
q

2 , if we
consider a ball B of radius r

2 centered at each 2qωi,q, then, for all pairs (i,q),(j,q)∈A
with i 6= j, we have B(2qωi,q,

r
2 )∩B(2qωj,q,

r
2 )=∅. But by the triangle inequality, all

balls of radius r
2 with centers that have indices in A are contained in a ball of radius

3r
2 around ξ. Therefore, the total number of balls N is bounded, as

Vol

(
B

(
ξ,
3r

2

))
≥NVol

(
B
(
2qωi,q,

r

2

))
,

which implies N ≤3n. Since there are only three possible values q can take, the total
contribution for the set of indices A to the sum is bounded by 3n+1.

For the second set, let B consist of those indices (i,q) for which the inequality

2
k
2 ≤|ξ−2qωi,q|<2k holds and |k−q|≤1. We can write B as a collection of subsets

Bj such that

B=

2
k
2⋃

j=2

Bj ,

were Bj denotes the set of indices for which (j−1)2
k
2 ≤|ξ−2qωi,q|<j2

k
2 . As before,

we consider balls of radius r
2 =2

q

2−1 centered at each 2qωi,q such that for all pairs
(i,q),(j,q)∈Bj with i 6= j, B(2qωi,q,

r
2 )∩B(2qωj,q,

r
2 )=∅. By the triangle inequality,
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all balls with centers that have indices in Bj are contained in an annulus centered
about ξ with inner radius (j−1)r− r

2 and outer radius jr+ r
2 . The total number of

indices for fixed q in each set Bj is bounded, as

Vol
(
B
(
ξ,jr+

r

2

))
−Vol

(
B
(
ξ,(j−1)r− r

2

))
≥NVol

(
B
(
2qωi,q,

r

2

))
,

which implies

N ≤2n
((

j+
1

2

)n
−
(
j− 3

2

)n)
.

Since q can take only three possible values, multiplying this last bound by 3 gives a
bound on the total number of indices in each set Bj . Because of the restriction on
the size of |ξ−2qωi,q| and the fact that |q−k|≤1, the inequality

(j−1)2

2
≤ |ξ−2qωi,q|2

2|2qωi,q|
≤4j2

holds for each tuple in Bj . Summing over all of the sets Bj ,
∑

j

∑

(i,q)∈Bj

22km exp

(−|ξ−2qωi,q|2
2|2qωi,q|

)

<
2

k
2∑

j=2

22km3(2n)

((
j+

1

2

)n
−
(
j− 3

2

)n)
exp

(
− (j−1)2

2

)

≤
∞∑

j=2

22km3(2n)(j+1)n exp

(
− (j−1)2

2

)
.

The sum

∞∑

j=2

3(2n)(j+1)n exp

(
− (j−1)2

2

)

is finite; furthermore, it is uniformly bounded regardless of the choice of k and hence
of ξ. Therefore since 2k−1≤|ξ|<2k, the total contribution from the set B is bounded
by a constant times |ξ|2m.

Next, let C be the set of indices (i,q) for which |ξ−2qωi,q|>2k holds and also
|k−q|≤1. As before, for each fixed q, we take balls of radius r

2 =2
q

2−1 centered
at each 2qωi,q so that, for all pairs (i,q),(j,q)∈C with i 6= j, we have B(2qωi,q,

r
2 )∩

B(2qωj,q,
r
2 )=∅. All balls with centers that have indices in C are contained in an

annulus centered about the origin with inner radius r2− r
2 and outer radius r2+ r

2 .
Since we have removed a number of the vectors because their indices are in B, the
total number of indices, N , for fixed q is over-estimated as follows:

Vol
(
B
(
0,r2+

r

2

))
−Vol

(
B
(
0,r2− r

2

))
≥NVol

(
B
(
2qωi,q,

r

2

))
,

which implies

N ≤2n
((

r+
1

2

)n
−
(
r− 1

2

)n)
.
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Since |ξ−2qωi,q|>2k for all (i,q)∈C, the inequality

2k−2<
22k

2q+1
≤ |ξ−2qωi,q|2

2|2qωi,q|

holds for each point 2qωi,q with indices in C. Then the contribution from the set C is
bounded in terms of a sum over k as

∑

(i,q)∈C

22km exp

(−|ξ−2qωi,q|2
2|2qωi,q|

)

<

k+1∑

q=k−1

22km2n
((

2
q

2 +
1

2

)n
−
(
2

q

2 − 1

2

)n)
exp

(
−2k−2

)
.

But, since

k+1∑

q=k−1

2n
((

2
q

2 +
1

2

)n
−
(
2

q

2 − 1

2

)n)
exp

(
−2k−2

)

<3(2n)

((
2

k+1
2 +

1

2

)n
−
(
2

k+1
2 − 1

2

)n)
exp

(
−2k−2

)
, (1.5)

and since 2kn exp
(
−2k−2

)
→0 for all finite n in R as k→∞, (1.5) is bounded is inde-

pendently of ξ. So we can conclude that, since 2k−1≤|ξ|<2k, the total contribution
from the set C is bounded by a constant times |ξ|2m as well.

Now, let D be the set of indices (i,q) for which q<k−1. To find the number of
vectors in D for fixed q, we again take balls of radius r

2 =2
q

2−1 centered at each 2qωi,q
so that, for all pairs (i,q),(j,q)∈D with i 6= j, B(2qωi,q,

r
2 )∩B(2qωj,q,

r
2 )=∅. By the

triangle inequality, all balls with centers that have indices in D are contained in an
annulus centered about the origin with inner radius r2− r

2 and outer radius r2+ r
2 .

The total number of indices N is bounded, as

Vol
(
B
(
0,r2+

r

2

))
−Vol

(
B
(
0,r2− r

2

))
≥NVol

(
B
(
2qωi,q,

r

2

))
,

which gives

N ≤2n
((

r+
1

2

)n
−
(
r− 1

2

)n)
.

We can conclude there are at most 2n
((

2
q

2 + 1
2

)n−
(
2

q

2 − 1
2

)n)
vectors for fixed q.

Since, for these indices, q<k−1, the inequality

2q−1≤ (2k−1−2q)2

2q+1
≤ |ξ−2qωi,q|2

2|2qωi,q|

holds for each (i,q) in D. The total contribution from the set D is also bounded by a
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constant times |ξ|2m:

∑

(i,q)∈D

22km exp

(−|ξ−2qωi,q|2
2|2qωi,q|

)

<

k−2∑

q=1

22km2n
((

2
q

2 +
1

2

)n
−
(
2

q

2 − 1

2

)n)
exp

(
−2q−1

)

<

∞∑

q=1

22km2n(2
q

2 +1)n exp
(
−2q−1

)
,

since the sum

∞∑

q=1

2n(2
q

2 +1)n exp
(
−2q−1

)

is uniformly bounded with respect to k.
The final set E contributing to the sum consists of the indices (i,q) for which

q>k+1. Again, as above, the total number of vectors N for fixed q is at most

2n
((

2
q

2 +
1

2

)n
−
(
2

q

2 − 1

2

)n)
.

To find the exponential contribution for each q>k+1, note that, for each (i,q)∈E ,

2q−5≤ (2q−1−2q−2)2

2q+1
≤ |ξ−2qωi,q|2

2|2qωi,q|
,

and hence

∑

(i,q)∈E

22km exp

(−|ξ−2qωi,q|2
2|2qωi,q|

)
<

∞∑

q=k+2

22km2n
(
2

q

2 +1
)n

exp
(
−2q−5

)
.

The sum

∞∑

q=k+2

2n
(
2

q

2 +1
)n

exp
(
−2q−5

)

is convergent and bounded independently of k and q. Therefore the total contribution
from the set E is bounded by a constant times |ξ|2m as well. This completes the proof
of the Lemma. The construction of the approximate partition of unity is similar in
idea to the construction of almost orthogonal frames in Meyer’s book Wavelets. The
ξγ which are further away from the variable ξ contribute less to the the partition than
those which are close.

Proof. [Proof of Lemma 1.2]. For convenience we let:

gγ(u,x,x
′)(∆γx)

n=22kmφγ(x−u)φγ(x′−u),

which implies that the operator

∑

γ

(
22kmφγ(x−α∆xγ)φγ(x′−α∆xγ)

)
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is equal to
∑

(i,k)

∑

α∈Zn

(gγ(α∆xγ ,x,x
′))(∆xγ)

n.

We will rewrite the sum over α above using the Poisson summation formula. Recall:

Theorem 1.2. (Poisson Summation Formula) Let a be constant, h(u)∈S(Rn), and
α,β∈Zn. The following holds:

an
∑

α∈Zn

h(aα)=
∑

β∈Zn

ĥ

(
2πβ

a

)
.

Since, by definition,

ĝγ(η,x,x
′)=

∫

Rn

e−iη·ugγ(u,x,x
′)du,

we start by computing

gγ(u,x,x
′)=22km

( |ξγ |
2π

)n
exp

(
i(u−x) ·ξγ−|ξγ |(u−x)2− i(u−x′) ·ξγ−|ξγ |(u−x′)2

)

=22km
( |ξγ |

2π

)n
exp(i(x′−x) ·ξγ)exp

(
|ξγ |

(
−2u2+2u(x+x′)−x2−x′2

))

=22km
( |ξγ |

2π

)n
exp(i(x−x′) ·ξγ)

exp

(
−2|ξγ |

(
u−
(
x+x′

2

))2
)
exp

(
|ξγ |

(−x2
2

−−x′2
2

+xx′
))

=22km
( |ξγ |

2π

)n
exp(i(x−x′) ·ξγ)

exp

(
−2|ξγ |

(
u−
(
x+x′

2

))2
)
exp

(
−|ξγ |(x−x′)2

2

)
,

which, by a standard result on the Fourier transform of a Gaussian (see Appendix A),
gives

ĝγ(η,x,x
′)=22km

(
π

2|ξγ |

)n
2
( |ξγ |

2π

)n
exp

(
i(x−x′) ·ξγ+ iη ·

(
x+x′

2

))

exp

(
− η2

8|ξγ |
− |ξγ |(x−x′)2

2

)
. (1.6)

Now we notice that

ĝγ(0,x,x
′)=

∫

Rn

gγ(u,x,x
′)du,

so, by applying the Poisson summation formula, we obtain

∑

α∈Zn

(gγ(α∆xγ ,x,x
′))(∆xγ)

n=

∫

Rn

gγ(u,x,x
′)du+

∑

β∈Znβ 6=0

ĝγ

(
2πβ

∆xγ
,x,x′

)
,
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where ĝγ(η,x,x
′) is given explicitly by (1.6). From this we can conclude the left hand

side of (1.4) is
∣∣∣∣∣∣

∫

Rn

∫

Rn

∑

(k,i)

∑

β∈Zn,β 6=0

ĝγ

(
2πβ

∆xγ
,x,x′

)
f(x)f(x′)dxdx′

∣∣∣∣∣∣
.

By symmetry of the integrands in x and x′, if we use Schur’s lemma, the inequality
in (1.4) follows from the estimate

sup
x∈Rn

∫

Rn

∣∣∣∣∣∣
∑

(i,k)

∑

β∈Zn,β 6=0

ĝγ

(
2πβ

∆xγ
,x,x′

)∣∣∣∣∣∣
dx′<

√
πne−1

2
. (1.7)

If we examine the integrand in the left-hand side of (1.7) we find, from equality (1.6),
that

∣∣∣∣∣∣
∑

β∈Zn,β 6=0

ĝγ

(
2πβ

∆xγ
,x,x′

)∣∣∣∣∣∣

≤
∑

β∈Zn,β 6=0

∣∣∣∣ĝγ
(
2πβ

∆xγ
,x,x′

)∣∣∣∣

=
∑

β∈Zn,β 6=0

22kα
( |ξγ |

8π

)n
2

exp

(
− (2πβ)2

8|ξγ |(∆xγ)2
− |ξγ |(x−x′)2

2

)
.

Integrating both sides of the above inequality with respect to x′ gives

sup
x∈Rn

∫

Rn

∣∣∣∣∣∣
∑

β∈Zn,β 6=0

ĝγ

(
2πβ

∆xγ
,x,x′

)∣∣∣∣∣∣
dx′≤

∑

β∈Zn,β 6=0

22km2−n exp

(
− (2πβ)2

8|ξγ |(∆xγ)2
)
.

Let β=(β1,β2, ...,βn). Then since, with this notation, βi∈Z is indexed independently
of βj ∈Z for all i 6= j, we have

∑

β∈Zn

(
n∏

i=1

exp

(
− (2πβi)

2

8|ξγ |(∆xγ)2
))

=
n∏

i=1


∑

βi∈Z

exp

(
− (2πβi)

2

8|ξγ |(∆xγ)2
)
 .

As β 6=0, at least one of the β′
is must also be nonzero. Without loss of generality,

take βn 6=0, and then

∑

β∈Zn,β 6=0

exp

(
− (2πβ)2

8|ξγ |(∆xγ)2
)

≤n



n−1∏

i=1


∑

βi∈Z

exp

(
− (2πβi)

2

8|ξγ |(∆xγ)2
)




 ∑

βn∈Z,βn 6=0

exp

(
− (2πβn)

2

8|ξγ |(∆xγ)2
)
 . (1.8)

To put a bound on this last expression, we now need to pick ∆xγ . Let

a(k)=
(2π)2

8|ξγ |(∆xγ)2
.
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Then, since ∆xγ is of the form Cǫ2
− k

2−ǫk, we have that

a(k)=
π22ǫk

2Cǫ
.

Now if we pick Cǫ<4, then, for all k, a(k)>1 provided ǫ≥0. Therefore, for any such
choice of Cǫ, we have

∑

βi∈Z

exp

(
− (βi)

2

8|ξγ |(∆xγ)2
)
<2

∑

βi∈N

exp(−a(k)βi)=
2

1−e−a(k) <
2

1−e−1
,

which ensures the first product in (1.8) is uniformly bounded independently of k:



n−1∏

i=1


∑

βi∈Z

exp

(
− (2πβi)

2

8|ξγ |(∆xγ)2
)


<

(
2

1−e−a(k)
)n−1

<

(
2e

e−1

)n−1

.

From Lemma 1.1, the number of the 2kωi,k can be over-estimated by by 2n(2
k
2 +1)n

for any fixed k, so, combining estimates,

∑

(i,k)

∑

β∈Zn,β 6=0

22km2−n exp

(
− (2πβ)2

8|ξγ |(∆xγ)2
)

<
∞∑

k=1

22kmn(2
k
2 +1)n

(
2e

e−1

)n−1

exp(−a(k)) .

Since ǫ>0, exp(−a(k)) dominates any power of 2k. Thus as long as Cǫ is chosen

sufficiently small we can make this sum less than
√

πne−1

2 , which concludes the proof

of inequality (1.7).

2. Operator norm estimates

From Theorem 1.1 in Section 1, the operator Pm1 (f(y))={c(γ)}γ∈Γ, where

c(γ)=

∫

Rn

2kmφγ(x)f(x)dx,

is a one-to-one bounded mapping of Hm(Rn) into the space of sequences which are
convergent in l2(Γ) when weighted with 2km. Let Pm2 =Pm∗

1 be defined as follows:

Pm2 : l2(Γ)→L2(Rn), P2({c(γ)})=
∑

γ

2kmc(γ)φγ(y).

Now recall that T is an operator of order m if T maps Hr(Rn)→Hr−m(Rn). In
Section 1, we showed that Πm=Pm2 ◦Pm1 is an operator of order 2m. Let I denote
the identity operator. As there exist constants C ′

1 and C ′
2 such that C ′

1I≤Π0≤C ′
2I,

in L2(Rn) norm sense, P 0
1 is bounded and invertible on its range. The construction

of P 0
1 and P 0

2 allows us to translate the characterization of functions and operators
in Hm(Rn) to the framework of weighted sequences in l2(Γ). Armed with the frame
operators, we will show that, when the frame functions are propagated along bichar-
acteristics for the wave equation, their Sobolev norm is preserved. This will help us
also show that the the action of the operator T (x,t,∂x,∂t)=∂

2
t −A(x,t,∂x) on the
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parametrix is order 1. The estimates established in this section will ultimately be
useful in building the parametrix in Section 3.

First we recall that T (x,t,∂x,∂t)=∂
2
t −A(x,t,∂x) has principal symbol

p(x,t,ξ,τ)= τ2−∑
i,j

ai,j(x,t)ξiξj . The bicharacteristics associated to p are

dt

ds
=pτ ,

dxj
ds

=pξj ,
dξj
ds

=−pxj
,

dτ

ds
=−pt. (2.1)

Setting q=

(
∑
i,j

ai,jξiξj

) 1
2

, we find that p=(τ−q)(τ+q). There are two choices for

null bicharacteristics. Here we assume that τ = q, so the bicharacteristic Equation
(2.1) become

dt

ds
=pτ =2τ =2q,

dx

dt
=
pξ
2q

=−qξ, (2.2)

dξ

dt
=

−px
2q

= qx,
dτ

dt
=1.

Define

(xγ(t,t
′,xγ ,ξγ),ξγ(t,t

′,xγ ,ξγ))

as the solution to the system (2.2) at time t with initial conditions

(xγ(t
′,t′,xγ ,ξγ),ξγ(t

′,t′,xγ ,ξγ))=(xγ ,ξγ),

where (xγ ,ξγ) are given in Lemmas 1.1 and 1.2 of Section 1. We let U(t,t′) denote the
the evolution operator associated to this transformation. Often we will abbreviate

U(t,0)(xγ ,ξγ)=(xγ(t,0,xγ ,ξγ),ξγ(t,0,xγ ,ξγ))

as

(xγ(t),ξγ(t)),

and

U(0,t)(xγ ,ξγ)=(xγ(0,t,xγ ,ξγ),ξγ(0,t,xγ ,ξγ))

as

(xγ(−t),ξγ(−t)).
Let

φγ(t,x)=

( |ξγ(t)|∆xγ
2π

)n
2

exp
(
iξ(t) ·(x−xγ(t))−|ξγ(t)||x−xγ(t)|2

)
.

Then define E(t) to be the propagation operator acting on f(x)∈L2(Rn) as follows:

Π0E(t)Π0f =P 0
2BE(t)P

0
1 f

=
∑

γ,γ′

bE(γ,γ
′,t)c(γ′)φγ(x),
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where

bE(γ,γ
′,t)=

∫

Rn

φγ(x)φγ′(t,x)dx

denotes the entries of the matrix BE(t). As a result, TE(t) is defined by the following
equation:

Π0TE(t)Π0f =P 0
2BT (t)P

0
1 f

=
∑

γ,γ′

bT (γ,γ
′,t)c(γ′)φγ(x),

where

bT (γ,γ
′,t)=

∫

Rn

φγ(x)Tφγ′(t,x)dx

denotes the entries of the matrix BT (t). The central theorem of this section is then:

Theorem 2.1. E(t) is a bounded operator of order 0, and TE(t) is a bounded operator
of order 1.

From Section 1, Π0 is bounded and invertible, and also, by Theorem 1.1, we
know the relationship of the frame to the Sobolev norm of f(x). Therefore, to prove
Theorem 2.1 by Schur’s lemma, it suffices to show

∑

γ

|bE(γ,γ′,t)|≤C,
∑

γ′

|bE(γ,γ′,t)|≤C, (2.3)

and
∑

γ

|bT (γ,γ′,t)|≤C2k
′

,
∑

γ′

|bT (γ,γ′,t)|≤C2k, (2.4)

where C denotes a constant independent of γ and γ′. We will also show that this
constant is uniform for all t∈ [−T,T ].

We start by examining Tφγ(t,x):

Lemma 2.1.

Tφγ(t,x)=

( |ξγ(t)|∆xγ
2π

)n
2

×
(
p(x,t,ψx,ψt)e

iψ+O(|ξγ(t)|)eiψ
)
,

where

ψ(t,x,xγ(t),ξγ(t))= ξ(t) ·(x−xγ(t))+ i|ξγ(t)||x−xγ(t)|2

and

p(t,x,ψx,ψt)=O(|ξγ(t)|2|x−xγ(t)|2).

Proof. As p(t,x,ψx,ψt) is positive and homogeneous of degree two in |ξγ(t)|, the
desired conclusion will follow if, on null-bicharacteristics (t,xγ(t),ξγ(t)), we can show
that

∇xp(t,x,ψx(t,xγ(t),ξγ(t)),ψt(t,xγ(t),ξγ(t)))=0.



238 A PARAMETRIX CONSTRUCTION USING A FRAME OF GAUSSIANS

Computing ∇xp(t,x,ψx,ψt),

∂

∂xj
p(t,x,ψx,ψt)=pxj

+pξlψxlxj
+pτψτxj

. (2.5)

Dividing (2.5) by 2q and substituting the equations in (2.2) into the right hand side
of (2.5), we obtain

−dξj
dt

+
dxl
dt
ψxl

ψxj
+ψtj =0 (2.6)

As ψxj
(t,xγ(t),ξγ(t))= ξj(t), differentiating ξj(t) with respect to t we have

dξj
dt

=
dxl
dt
ψxl

ψxj
+ψtj . (2.7)

Substituting (2.7) into (2.6) implies (2.6) is 0, which happens if and only if (2.5)
vanishes on null-bicharacteristics.

With Lemma 2.1 in mind, we consider the entries of the matrices BE(t) and
BT (t). First we set

β0
γ,γ′ =

( |ξγ ||ξγ′(t)|∆xγ∆xγ′

(2π)2

)n
2

,

and then

bE(γ,γ
′
,t)

=β
0
γ,γ′

∫

Rn

exp
(

i(x−xγ′(t)) ·ξγ′(t)− i(x−xγ) ·ξγ −|ξγ′(t)||x−xγ′(t)|2−|ξγ |||x−xγ |
2
)

dx

and, to leading order,

bT (γ,γ
′,t)

=β0
γ,γ′

∫

Rn

exp
(
i(x−xγ′(t)) ·ξγ′(t)− i(x−xγ) ·ξγ−|ξγ′(t)||x−xγ′(t)|2−|ξγ ||x−xγ |2

)

×|x−xγ′(t)|2|ξγ′(t)|2dx. (2.8)

The first inner product, bE(γ,γ
′,t), is evaluated via

bE(γ,γ
′
,t)

=β
0
γ,γ′

∫

Rn

exp
(

i(x−xγ′(t)) ·ξγ′(t)− i(x−xγ) ·ξγ −|ξγ′(t)||x−xγ′(t)|2−|ξγ |||x−xγ |
2
)

dx

=β
0
γ,γ′ exp(ixγ ·ξγ − ixγ′(t) ·ξγ′(t))

=

∫

Rn

exp(ix ·(ξγ′(t)−ξγ))exp

(

−(|ξγ |+ |ξγ′(t)|)

∣

∣

∣

∣

x−
|ξγ |xγ + |ξγ′(t)|xγ′(t)

|ξγ |+ |ξγ′ |

∣

∣

∣

∣

2
)

×exp

(

−
|ξγ′(t)||ξγ |

|ξγ |+ |ξγ′(t)|
|xγ′(t)−xγ |

2

)

dx.

Making the change of variable

y=x− |ξγ |xγ+ |ξγ′(t)|xγ′(t)

|ξγ |+ |ξγ′(t)| , (2.9)
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we see that bE(γ,γ
′,t) takes the form of the Fourier transform of a Gaussian integral

which we can evaluate (see Appendix 1), obtaining

bE(γ,γ
′,t)

=βγ,γ′ exp

(
i

(
xγ ·ξγ−xγ′(t) ·ξγ′(t)+

|ξγ |xγ+ |ξγ′(t)|xγ′(t)

|ξγ |+ |ξγ′(t)| ·(ξγ′(t)−ξγ)
))

×exp

(
− |ξγ′(t)−ξγ |2
4(|ξγ |+ |ξγ′(t)|)

)
exp

(
− |ξγ′(t)||ξγ |
|ξγ |+ |ξγ′(t)| |xγ′(t)−xγ |2

)
.

Therefore

βγ,γ′ =

( |ξγ ||ξγ′(t)|∆xγ∆xγ′

4π(|ξγ′(t)|+ |ξγ |)

)n
2

, (2.10)

so that

|bE(γ,γ′,t)|

≤βγ,γ′ exp

(
− |ξγ′(t)−ξγ |2
4(|ξγ |+ |ξγ′(t)|)

)
exp

(
− |ξγ′(t)||ξγ |
|ξγ |+ |ξγ′(t)| |xγ′(t)−xγ |2

)
. (2.11)

For the integral bT (γ,γ
′,t) we make the same substitution of (2.9) into (2.8). Then

we set

η= ξγ′(t)−ξγ , c= |ξγ |+ |ξγ′(t)|,

and

b=
|ξγ |(xγ−xγ′(t))

|ξγ |+ |ξγ′(t)| ,

so that we can apply the estimates in Appendix 1. These give that |bT (γ,γ′,t)| is
equal to

βγ,γ′ |ξγ′ |2 exp
(
−η

2

4c

)∣∣∣∣−
η2

4c2
+
ibη

c
+b2+

1

2c

∣∣∣∣ .

Applying Cauchy-Schwartz and back substituting values for η,c, and b, we have that,
for C a constant independent of γ,γ′,

|bT (γ,γ′,t)|≤Cβγ,γ′

( |ξγ′(t)|2|ξγ−ξγ′(t)|2
(|ξγ′(t)|+ |ξγ |)2

+
|ξγ′(t)|2|ξγ |2|xγ−xγ′(t)|2

(|ξγ |+ |ξγ′(t)|)2
)

×exp

(
− |ξγ′(t)−ξγ |2
4(|ξγ |+ |ξγ′(t)|)

)
exp

(
− |ξγ′(t)||ξγ |
|ξγ |+ |ξγ′(t)| |xγ′(t)−xγ |2

)

≤Cβγ,γ′

(
|ξγ−ξγ′(t)|2+ |ξγ′(t)||ξγ ||xγ−xγ′(t)|2

)

×exp

(
− |ξγ′(t)−ξγ |2
4(|ξγ |+ |ξγ′(t)|)

)
exp

(
− |ξγ′(t)||ξγ |
|ξγ |+ |ξγ′(t)| |xγ′(t)−xγ |2

)
.

The next two Lemmas characterize properties of the evolution operator U(t,t′)
acting on the lattice, and they will assist us in obtaining the bounds (2.3) and (2.4).
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Lemma 2.2. We let

A(x,t)={aij(x,t)}1≤i,j≤n

be a real symmetric n×n matrix with entries aij(x,t) in C
1,1, as in the introduction.

For the rest of this lemma, C>0 denotes a constant which is independent of the
essential variables. Furthermore, as before, A(t,x) is bounded and positive definite
and, we let

q(x,t,ξ)=


∑

i,j

aij(x,t)ξiξj




1
2

.

If we consider the system

dx

dt
=−qξ,

dξ

dt
= qx, (2.12)

with initial conditions |x(0)|<R and 1
a
< |ξ(0)|<a for some finite a,R>0, then solu-

tions to the system (2.12) satisfy the following two conditions:

1. |x(t)−x(0)|<C√n|T |, and
2. For all finite T >0, there exists a constant C(T,a) such that

1

C(T,a)
< |ω(t)|<C(T,a)

whenever |t|<T.

Proof. We prove condition (1) first and then condition (2).

1. Computing qξi ,

∂

∂ξi


∑

ij

aij(x,t)ξiξj




1
2

=

∑
j

aij(x,t)ξj

(
∑
i,j

aij(x,t)ξiξj

) 1
2

<C, (2.13)

since the expression in the middle of (2.13) is homogeneous of degree 0 and
the numerator and denominator are both bounded above and below on |ξ|=1.
From (2.12) we then have

∣∣∣∣
dxi
dt

∣∣∣∣<C,

which implies

∣∣∣∣
dx

dt

∣∣∣∣<C
√
n.

Integrating this inequality gives (1).
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2. Differentiating q with respect to x, we have

∣∣∣∣
dξ

dt

∣∣∣∣=

∣∣∣∣∣∣∣∣∣∣∣

∑
ij

(aij)x(x,t)ξiξj

2

(
∑
i,j

ai,j(x,t)ξiξj

) 1
2

∣∣∣∣∣∣∣∣∣∣∣

<C|ξ| (2.14)

for some C independent of ξ, x, and t, since the expression in the middle of
(2.14) is homogeneous of degree 1 and the numerator and denominator are
both bounded above and below on |ξ|=1. Using Gronwall’s inequality gives

1

C(T,a)
< |ξ(0)|exp(−Ct)< |ξ(t)|< |ξ(0)|exp(Ct)<C(T,a) (2.15)

This results in the desired conclusion for finite T , that is, if 1
a
< |ξ(0)|<a

then, for any t∈ [−T,T ], there exists C(T,a) such that condition (2.15) holds.

Recall that U(t,t′) is the evolution operator associated to (2.12), and

U(t,t′)(xγ ,ξγ)=(xγ(t,t
′,xγ ,ξγ),ξγ(t,t

′,xγ ,ξγ)).

By homogeneity, if c is a constant, then the above equation scales as follows:

(xγ(t,t
′,xγ ,ξγ),cξγ(t,t

′,xγ ,ξγ))=(xγ(t,t
′,xγ ,cξγ),ξγ(t,t

′,xγ ,cξγ)). (2.16)

Since ξγ=2kωi,k with 1
2 ≤|ωi,k|<1, the relationship (2.16) with c=2−k gives that

the pair (xγ ,ωγ) lies in a compact subset of Rn×(Rn/{0}) whenever |xγ |<R for R a
constant independent of γ. We note that Lemma 2.2 then applies to (xγ ,ωγ), and so
we have a bound on the size of xγ(t) and ξγ=2kωi,k(t) in terms of the initial data.

Because our frame is similar to an almost orthogonal frame in type, it makes sense
that the pairs of initial data which are close together in frequency contribute the most
to the absolute value of the inner products in the sums in (2.3) and (2.4). However,
we have an extra variable α since we have a non-compactly supported set of frame
functions. Therefore we will use the term ‘close in frequency’ to mean that the pairs
(xγ ,ξγ) and (xγ′ ,ξγ′) from Section 1 satisfy not only the condition |xγ |, |xγ′ |<R but
also that |k−k′|≤k0, where k0 is a finite constant independent of γ,γ′. In Lemma
2.3, we will show that close pairs of lattice variables have an extra property beyond
that of Lemma 2.2, which makes it possible to compute the bounds on (2.3) and (2.4).

First we see, by Equation (2.16), that for all such close pairs with c=2−k
′

(where
here without loss of generality we have taken k′≤k) the corresponding scaled pairs
(xγ ,2

k−k′ωγ) and (xγ′ ,ωγ′) lie in the same compact subset [−R,R]n× [ 12 ,2
k0 ]n of Rn×

(Rn/{0}). Thus we can conclude from Lemma 2.2 that the transformation U(t,0) is
invertible and Lipschitz with uniform Lipschitz constant when acting on (xγ ,2

k−k′ωγ)
and (xγ′ ,ωγ′). In other words, for all close pairs and for all t∈ [−T,T ] with T fixed
and finite, there exist nonzero constants D1 and D2, independent of γ,γ

′, with

D1d
2((xγ(t),2

k−k′ωγ(t));(xγ′(t),ωγ′(t)))≤d2((xγ ,2k−k
′

ωγ);(xγ′ ,ωγ′))

≤D2d
2((xγ(t),2

k−k′ωγ(t));(xγ′(t),ωγ′(t))), (2.17)
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where d denotes the usual Euclidean distance. We will abbreviate this type of equiva-
lence relationship, where the left hand side is bounded above and below by multiples
of the right hand side, by ∼, so that inequality (2.17) can be rewritten as

d2((xγ ,2
k−k′ωγ);(xγ′ ,ωγ′))∼d2((xγ(t),2k−k

′

ωγ(t));(xγ′(t),ωγ′(t))).

The inequality (2.17) allows us to obtain another similar relationship which is
crucial in the computations to obtain bounds on the action of the matrices BE(t) and
BT (t).

Lemma 2.3. For pairs (xγ ,ξγ) and (xγ′ ,ξγ′) such that |xγ |, |xγ′ |<R where 0<R<∞
and |k−k′|≤k0, with R and k0 independent of γ and γ′, the following holds:

d2(U(t,0)(xγ′ ,ωγ′);(xγ ,2
k−k′ωγ))∼d2(U(0,t)(xγ ,2k−k

′

ωγ);(xγ′ ,ωγ′)).

Proof. Since U(t,0)◦U(0,t)= I, the right hand side of the relationship,

d2(U(0,t)(xγ ,2k−k
′

ωγ);(xγ′ ,ωγ′)),

can be expressed as

d2(U(0,t)(xγ ,2k−k
′

ωγ);U(0,t)U(t,0)(xγ′ ,ωγ′))

and from estimate (2.17) we obtain the desired conclusion.

With these Lemmas, we can now calculate a bound on

∑

γ′

|bE(γ,γ′,t)| (2.18)

for fixed γ. We break this sum into three pieces: in region 1, γ′ :k′<k−k0, in region
2, γ′ : |k′−k|≤k0, and in region 3, γ′ :k′>k+k0 where, for all t∈ [−T,T ] with T <∞,
k0=max{2log2C(T,a),1}. For the rest of this argument, let D>0 denote a constant
which is independent of k′ and k and which is uniform for all t∈ [−T,T ].

We will apply Lemma 2.2 in each region to subsets of the initial data (xγ′ ,ωγ′)
as outlined earlier. Here we must cut off the xγ′ ’s so that |xγ′ |<R, for some large
positive R. This corresponds to having the initial data with support living in a ball
of radius R.

Again, because of the similarity of the frame to an almost orthogonal frame, in
regions 1 and 3 from Lemma 2.2 the exponential term from the bound on each inner
product will dominate the sum, but in region 2 the argument is more subtle. In each
case, formula (2.16) and Lemma 2.2 imply that:

βγ,γ′ =

( |ξγ ||ξγ′(t)|∆xγ∆xγ′

4π(|ξγ |+ |ξγ′ |)

)n
2

=

(
C2
ǫ 2

k
2−ǫk2

k′

2 −ǫk′ |ωγ ||ωγ′(t)|
4π(2k|ωγ |+2k′ |ωγ′(t)|)

)n
2

≤


C

2
ǫ 2

k
2−ǫk2

k′

2 −ǫk′C(T,a)

4π(2k−1+ 2k′

C(T,a) )




n
2

. (2.19)
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The right hand side of (2.11) contains a product of two exponentials, with arguments

− |2kωγ−2k
′

ωγ′(t)|2
4(2k|ωγ |+2k′ |ωγ′(t)|) (2.20)

and

− |ξγ ||ξγ′(t)|
|ξγ |+ |ξγ′(t)| |xγ−xγ′(t)|2. (2.21)

In region 1, Lemma 2.2 implies a lower bound on (2.20)

|2kωγ−2k
′

ωγ′(t)|2
4(2k|ωγ |+2k′ |ωγ′(t)|) >

(
2k−1−2k

′

C(T,a)
)2

4(2k+2k′C(T,a))

>
2k−5

(
1−2k

′−k+1C(T,a)
)2

(1+2k′−kC(T,a))

>
2k−5

(
1− 2

C(T,a)

)2
(
1+ 1

C(T,a)

)

=2kD.

For (2.21), we only know that

|xγ−xγ′(t)|2≥0,

which gives

exp
(
−|xγ−xγ′(t)|2

)
≤1.

Since, by assumption, |xγ′ |<R and xγ′ =∆xγ′α′=Cǫ2
− k′

2 −ǫkα′ for fixed k′, by scaling

we have |α′|<RC−1
ǫ 2

k′

2 +ǫk′ . Bounding the number of points in both Zn and this ball

by D(2
k′

2 +ǫk′)n, we obtain a bound on the number of xγ′ for fixed (i,k′). While the
position of the xγ′ may change, their total number does not change when they are

propagated. From Lemma 1.1, there are O(2
k′n
2 ) vectors ωi,k′ in each annulus indexed

by k′. Applying (2.19) in region 1, we find, since k′<k−k0,

βγ,γ′ ≤


C

2
ǫ 2

k
2−ǫk2

k′

2 −ǫk′C(T,a)

4π(2k−1+ 2k′

C(T,a) )




n
2

≤D
(
2−

k
2−ǫk2

k′

2 −ǫk′
)n

2

.

Combining estimates gives

∑

γ′:k′<k−k0

|bE(γ,γ′,t)|=O




∑

(i,k′)
k′<k−k0

2−
nk
4 − ǫnk

2 2
3nk′

4 + ǫnk′

2 exp
(
−D2k

)



=O
( ∑

k′<k−k0

2nk
′

exp
(
−D2k

)
)

(2.22)

=O
(
2nk exp

(
−D2k

))
.
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But since 2nk exp
(
−D2k

)
→0 as k→∞, the contribution from (2.22) is bounded

independently of γ,γ′.
Similarly, in region 3, an application of Lemma 2.2 to the first part of the expo-

nential contribution (2.20) gives

|2kωγ(0)−2k
′

ωγ′(t)|2
4(2k|ωγ(0)|+2k′ |ωγ′(t)|) >

(
2k

′

C(T,a) −2k
)2

4(2k+2k′C(T,a))

>
2k

′−3

C(T,a)3
− 2k−2

C(T,a)2

>D2k
′

.

Again, the same estimates as in region 1 for the number of the xγ′(t) and their
exponential contribution hold, and the number of vectors ωi,k′ in each annulus for

fixed k′ is still O(2
nk′

2 ). For the size of βγ,γ′ , from (2.19) and the fact k′>k+k0 we
have

βγ,γ′ ≤


C

2
ǫ 2

k
2−ǫk2

k′

2 −ǫk′C(T,a)

4π
(
2k−1+ 2k′

C(T,a)

)




n
2

<D
(
2

k
2−ǫk2−

k′

2 −ǫk′
)n

2

.

Thus

∑

γ′:k′>k+k0

|bE(γ,γ′,t)|=O




∑

(i,k′)
k′>k+k0

2
nk
4 − ǫnk

2 2
nk′

4 + ǫnk′

2 exp
(
−D2k

′

)



=O
( ∑

k′>k+k0

2
3nk′

4 + kn
4 +

ǫn(k′
−k)

2 exp
(
−D2k

′

))
. (2.23)

By hypothesis, k′>k+k0, so the exponential term dominates the sum here as well,
and so the contribution from (2.23) is bounded independently of γ,γ′.

If we try to simply apply Lemma 2.2 in region 2, as we did in regions 1 and 3,
we get a constant bound on the exponential contributions (2.20) and (2.21) which is
not enough to dominate the contributions to the sum from the number of xγ and ξγ .
Therefore the application of Lemma 2.3 to the exponential term is essential in region 2
since the treatment of the exponential contribution to the summation is more delicate
there. The key is that the additional Lemma 2.3 allows us to sum over unpropagated
variables which, from the construction, are fixed in space.

In region 2, by homogeneity and the fact |k−k′|≤k0, the entire exponential term
can be re-written as follows:

|ξγ′(t)−ξγ |2
4(|ξγ |+ |ξγ′(t)|) +

|ξγ′(t)||ξγ |
|ξγ |+ |ξγ′(t)| |xγ′(t)−xγ |2

∼2k
′

d2(U(t,0)(xγ ,2k−k
′

ωγ);(xγ′ ,ωγ′)). (2.24)

Applying Lemma (2.3) to (2.24), we obtain

|ξγ′(t)−ξγ |2
4(|ξγ |+ |ξγ′(t)|) +

|ξγ′(t)||ξγ |
|ξγ |+ |ξγ′(t)| |xγ′(t)−xγ |2

∼2k
′

d2((xγ ,2
k−k′ωγ);U(0,t)(xγ′ ,ωγ′)), (2.25)
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where the constants in this equivalence relation may depend on k0 but are uniform in
T .

Since xγ′ =∆xγ′α′, we can factor out the scaling ∆xγ′ =Cǫ2
− k′

2 −ǫk′ from part of
the right hand side of (2.25), giving

2k
′ |xγ′ −xγ(−t)|2=C2

ǫ 2
−2ǫk′ |α′−ǫ0|2 ,

where we have set ǫ0=(∆xγ′)−1xγ(−t). Substituting λ=C−2
ǫ 22ǫk

′

, an application of
the integral estimates in the appendix gives

∑

α′∈Zn,|α′|<R

exp
(
−2k

′ |xγ′ −xγ(−t)|2
)
<
∑

α′∈Zn

exp
(
−C2

ǫ 2
−2ǫk′ |α′−ǫ0|2

)

=O
(
2ǫk

′n
)
. (2.26)

But, looking at inequality (2.19), the k′ dependence in this last bound is exactly
canceled by the size of βγ,γ′ in region 2. Since |k−k′|≤k0, the other part of the
exponential contribution may be tackled with an argument similar to that of Lemma
1.1 applied to ξ=2kωγ(−t). This implies that the sum

∑

(i,k′)
|k′−k|≤k0

exp

(
2−k

′

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2
)

(2.27)

is bounded independently of γ,γ′. From these bounds and from the equivalence rela-
tion (2.25), we can conclude that

∑

γ′:|k′−k|≤k0

|bE(γ,γ′,t)|=O(1) , (2.28)

and thus
∑

γ′

|bE(γ,γ′,t)|=O(1) .

If we reverse the roles of γ and γ′, we can run a similar argument to the one above
to bound

∑

γ

|bE(γ,γ′,t)|.

The bounds in each of the regions |k−k′|≤k0, k>k′+k0 and k<k′−k0 will follow
almost identically. The main difference in the argument will be that, in the region
where |k−k′|≤k0, we do not need to apply Lemma 2.3 since the γ variables are not
propagated. In this way, we obtain the desired bound (2.3).

For the estimate (2.4), we examine

∑

γ′

|bT (γ,γ′,t)|. (2.29)

The only difference between the bound on |bE(γ,γ′,t)| and the bound on |bT (γ,γ′,t)| is
the factor of |ξγ−ξγ′(t)|2+ |ξγ′(t)||ξγ ||xγ−xγ′(t)|2. In region 1, application of Lemma



246 A PARAMETRIX CONSTRUCTION USING A FRAME OF GAUSSIANS

2.2 gives

|ξγ−ξγ′(t)|2+ |ξγ′(t)||ξγ ||xγ−xγ′(t)|2

≤ (|ξγ |+ |ξγ′(t)|)2+ |ξγ′(t)||ξγ |(|xγ−xγ′ |+ |xγ′(t)−xγ′ |)2

≤
∣∣∣2k+2k

′

C(T,a)
∣∣∣
2

+2k2k
′

C(T,a)(R+T )2≤D22k.

The rest of the estimates on βγ,γ′ and the exponential contribution stay the same.
Therefore, by (2.22),

∑

γ′:k′<k−k0

|bT (γ,γ′,t)|=O




∑

(i,k′)
k′<k−k0

22k2−
nk
4 − ǫnk

2 2
3nk′

4 + ǫnk′

2 exp
(
−D2k

)



=O
( ∑

k′<k−k0

22k2nk
′

exp
(
−D2k

)
)

=O
(
2(n+2)k exp

(
−D2k

))

and, as k→∞, we see that 2(n+2)k exp(−D2k)→0, so the sum in question is also
uniformly bounded independently of γ,γ′.

Similarly, in region 3, by Lemma 2.2, the extra factor is bounded by

|ξγ−ξγ′(t)|2+ |ξγ′(t)||ξγ ||xγ−xγ′(t)|2

≤ (|ξγ |+ |ξγ′(t)|)2+ |ξγ′(t)||ξγ |(|xγ−xγ′ |+ |xγ′(t)−xγ′ |)2

≤
∣∣∣2k+2k

′

C(T,a)
∣∣∣
2

+2k2k
′

C(T,a)(R+T )2

≤D22k
′

.

Again, the rest of the estimates stay the same so that, analogously to (2.23),

∑

γ′:k′>k+k0

|bT (γ,γ′,t)|=O




∑

(i,k′)
k′>k+k0

22k
′

2
nk
4 − ǫnk

2 2
nk′

4 + ǫnk′

2 exp
(
−D2k

′

)



=O
( ∑

k′>k+k0

22k
′

2
3nk′

4 + kn
4 +

ǫn(k′
−k)

2 exp
(
−D2k

′

))
, (2.30)

and, as before, this sum also converges independently of γ,γ′ since k′>k+k0.

The only region where the extra factor in question makes a difference is in region
2. As in the treatment of the sum of |bE(γ,γ′)| over γ′, Lemma 2.3 is again crucial.
By homogeneity and Lemma 2.3, the extra factor in the bounds for |bT (γ,γ′,t)| can
be rewritten as

|ξγ−ξγ′(t)|2+ |ξγ′(t)||ξγ ||xγ−xγ′(t)|2∼22k
′

d2(U ′(0,t)(xγ ,2
k−k′ωγ);(xγ′ ,ωγ′)),

and the exponential factor in the bounds still follows the equivalence relation (2.25).
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With these relationships in mind, we split the sum

∑

γ′:|k−k′|≤k0

βγ,γ′(|ξγ−ξγ′(t)|2+ |ξγ′(t)||ξγ ||xγ−xγ′(t)|2)

×exp

(
− |2kωγ−2k

′

ωγ′(t)|2
4(2k|ωγ |+2k′ |ωγ′(t)|)−

|ξγ ||ξγ′(t)|
|ξγ |+ |ξγ′(t)| |xγ−xγ′(t)|2

)
(2.31)

into two pieces which together are equivalent under the ∼ relationship to (2.31). These
sums are

∑

γ′:|k−k′|≤k0

βγ,γ′22k
′ |xγ′ −xγ(−t)|2 exp

(
−2k

′ |xγ′ −xγ(−t)|2
)

×exp

(
2−k

′

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2
)

(2.32)

and

∑

γ′:|k−k′|≤k0

βγ,γ′

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2

exp
(
−2k

′ |xγ′ −xγ(−t)|2
)

×exp

(
2−k

′

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2
)
. (2.33)

To handle the sum (2.32), since again xγ′ =∆xγ′α′, we can factor out the scaling

∆xγ′ =Cǫ2
− k′

2 −ǫk′ from part of the right hand side of (2.25) and obtain

2k
′ |xγ′ −xγ(−t)|2=C2

ǫ 2
−2ǫk′ |α′−ǫ0|2 .

We can also factor the scaling from the new multiplication factor in (2.32), which
gives

22k
′ |xγ′ −xγ(−t)|2=C2

ǫ 2
−2ǫk′+k′ |α′−ǫ0|2 .

In both cases we have set ǫ0=(∆xγ′)−1xγ(−t). Substituting λ=C−2
ǫ 22ǫk

′

, an appli-
cation of the second integral estimate in Appendix 2 gives

∑

α′∈Zn,|α′|<R

(
22k

′ |xγ′ −xγ(−t)|2
)
exp

(
−2k

′ |xγ′ −xγ(−t)|2
)

<
∑

α′∈Zn

(
C2
ǫ 2

−2ǫk′+k′ |α′−ǫ0|2
)
exp

(
−C2

ǫ 2
−2ǫk′ |α′−ǫ0|2

)

=O
(
2k

′

(22ǫk
′

)
n
2

)
. (2.34)

Using the previous estimates (2.19) and (2.27), and the fact |k−k′|≤k0, the sum
(2.32) is O(2k).

For the second sum (2.33), estimate (2.26) still applies for the sum over α′, so we
are reduced to examining

∑

(i,k′)
|k′−k|≤k0

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2

exp

(
2−k

′

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2
)
. (2.35)
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Now if we consider the sets defined in Lemma 1.1, with ξ=2kωγ(−t), for the first set
A we get

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2

≤2k.

This implies, from previous bounds on the number of ωγ′ in A, that

∑

A

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2

exp

(
2−k

′

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2
)
≤3n+12k

≤2
k
2 j+C(T,a)2k

≤D2k.

In each of the sets Bj ,
∣∣∣2k′ωγ′ −2kωγ(−t)

∣∣∣
2

≤ j22k,

and similarly, from an argument in Lemma 1.1, we can deduce that

∑

B

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2

exp

(
2−k

′

∣∣∣2k′ωγ′ −2kωγ(−t)
∣∣∣
2
)

≤
∞∑

j=1

2n2k(j+1)n+2 exp

(
− (j−1)2

2

)
≤D2k.

Now it is easy to see that there is only a small (or 0) contribution coming from
the sets C, D, and E since |k−k′|≤k0, and this contribution is uniformly bounded
independently of γ,γ′. From here it follows that the second sum (2.33) is O(2k).
Combining the estimates above gives

∑

γ′:|k′−k|≤k0

|bT (γ,γ′,t)|≤D2k.

Since the contribution from regions 1 and 3 was uniformly bounded independently of
γ,γ′, we find

∑

γ′

|bT (γ,γ′,t)|≤D2k.

By symmetry, we can use similar estimates to obtain the second bound in 2.4.
Again, the main difference will be that there is no need to apply Lemma 2.3 in region
2. The combination of these estimates concludes the theorem.

3. Construction of the parametrix

With the frame of functions established, we turn our attention to constructing an
appropriate parametrix for the Cauchy problem




Tu(t,x)=(∂2t −A(t,x,∂x))u(t,x)=0,
u(t,x)|t=0=f(x),
∂tu(t,x)|t=0=h(x),

where f(x) and h(x) are functions in L2(Rn). We will construct operators C(t,t′)
and S(t,t′) out of families of functions which are related to the frame functions. This
section will follow the work of Hart Smith in [5] very closely.
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As earlier U(t,t′) denotes the evolution operator associated to H−= τ−q. Addi-
tionally we denote the evolution operator associated to the Hamiltonian H+= τ+q
as V(t,t′). We set

U(t,t′)(xγ(0),ξγ(0))=(x+γ (t,t
′),ξ+γ (t,t

′))

and

V(t,t′)(xγ(0),ξγ(0))=(x−γ (t,t
′),ξ−γ (t,t

′)).

Accordingly,

φ±γ (t,t
′,x)=

( |ξγ(t)|∆xγ
2π

)n
2

exp
(
iξ±γ (t,t

′) ·(x−x±γ (t,t′))−|ξ±γ (t,t′)||x−x±γ (t,t′)|2
)
,

and we let

Ω±
γ (t,t

′,x)=
φ±γ (t,t

′,x)

q(t′,xγ ,ξγ)
.

From these definitions, we construct the operators C(t,t′) such that

Π0C(t,t′)Π0f =P 0
2BC(t,t

′)P 0
1 f

=
∑

γ,γ′

bC(γ,γ
′,t)c(γ′)φγ(x),

and S(t,t′) such that

Π0S(t,t′)Π0f =P 0
2BS(t,t

′)P 0
1 f

=
∑

γ,γ′

bS(γ,γ
′,t)c(γ′)φγ(x).

Here

bC(γ,γ
′,t)=

1

2

∫

Rn

φγ(x)
(
φ+γ′(t,t

′,x)+φ−γ′(t,t
′,x)

)
dx

and

bS(γ,γ
′,t)=

1

2

∫

Rn

φγ(x)
(
Ω+
γ′(t,t

′,x)−Ω−
γ′(t,t

′,x)
)
dx

denote the entries of the matrices BC(t,t
′) and BS(t,t

′) respectively.

Theorem 3.1. TC(t,t′) and TS(t,t′) are bounded operators of order one and zero
respectively, with operator norms which are uniformly bounded on intervals where t− t′
is finite. Furthermore,

C(t′,t′)∼ I, ∂tC(t′,t′)=0,

and

S(t′,t′)=0, ∂tS(t′,t′)∼ I,

to leading order.
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Proof. The first statement is an immediate extension of Theorem 2.1 in Section
2. The first set of operator estimates follow directly from the definition of Π0 and
the calculations in Section 2. For the second set of estimates, the result (where
q= q(t′,xγ ,ξγ))

(∂tΩ
+(t′,t′,y)−∂tΩ−(t′,t′,y))=

((
1− qt

q2

)
−
(
−1+

qt
q2

))
φγ(y)

is easy, as on null bicharacteristics τ =±q, so by homogeneity

qt
q2

=O
(

1

2k′

)
.

From the proceeding arguments, if we define u(t,x) as

u(t,x)=S(t,t′)f(x)+C(t,t′)h(x),

then u(t,x) is the desired parametrix solution to the Cauchy problem.

Theorem 3.2. If −1≤m≤2, if f ∈Hm+1(Rn), if h∈Hm(Rn), and if F ∈
L1([−T,T ];Hm(Rn)), then there exists a G∈L1([−T,T ];Hm(Rn)) such that

u(t,x)=C(t,0)f(x)+S(t,0)h(x)+
t∫

0

S(t,s)G(s,x)ds

and

||G||L1([−T,T ],;Hm(Rn))≤C(T )
(
||f ||Hm+1(Rn)+ ||h||Hm(Rn)+ ||F ||L1([−T,T ];Hm(Rn))

)

solves the Cauchy problem



Tu(t,x)=(∂2t −A(t,x,∂x))u(t,x)=F (t,x)
u(t,x)|t=0=f(x)
∂tu(t,x)|t=0=h(x)

in the weak sense. If f and h are both identically zero and F is also zero for all
t∈ [−T,T ], then G and u will vanish as well.

Proof. As per Smith, we will show the existence of such a G using Volterra
iteration. Assuming G∈L1([−T,T ];Hm(Rn)), we let

v(t,x)=

t∫

0

S(t,s)G(s,x)ds.

Because S(t,t′) and ∂tS(t,t′) are both strongly continuous operators and S(t,t)=0,
we have v(t,x) is in C([−T,T ];Hm+1(Rn))∩C1([−T,T ];Hm(Rn)), and also

∂tv(t,x)=

t∫

0

∂tS(t,s)G(s,x)ds,

so it follows that

v(0,x)=0 and ∂tv(t,x)|t=0=0.
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Furthermore, differentiating in the sense of distributions, we obtain

∂2t v(t,x)=G(t,x)+

t∫

0

∂2t S(t,s)G(s,x)ds.

We can conclude that u(t,x) of the form in Theorem 3.2 is a weak solution to the
Cauchy problem if the following Volterra equation

G(t,x)+

t∫

0

TS(t,s)G(s,x)ds=F (t,x)−T (S(t,0)f(x)+S(t,0)h(x)) (3.1)

holds. Equation (3.1) can be solved by iteration since the operator norm of S(t,s) is
uniformly bounded on finite intervals of time by Theorem 2.1. Setting

G(t,x)=F (t,x)+

∞∑

n=1

Gn(t,x) (3.2)

with

Gn(t,x)=

t∫

0

s1∫

0

. . .

sn−1∫

0

S(t,s1)S(s1,s2) . . .S(sn−1,sn)F (sn,x)dsn...ds1,

we see that G(t,x) is a solution to the equation

G(t,x)+

t∫

0

S(t,s)G(s,x)ds=F (t,x).

As the series in (3.2) converges in L1([−T,T ];Hm(Rn)) with norm bounded by
exp(TC(T ) ||F ||), this finishes the Theorem.

Appendix A. It is well known that

∫

Rn

exp(iy ·η)exp
(
−cy2

)
dy=

(π
c

)n
2

exp

(
−η

2

4c

)
. (A.1)

We will use this fact to help us evaluate integrals of the form
∫

Rn

(y+b)exp(iy ·η)exp
(
−cy2

)
dy (A.2)

and
∫

Rn

|y+b|2 exp(iy ·η)exp
(
−cy2

)
dy. (A.3)

Recall that, for c a constant, η,y∈Rn, and α a multi-index with n components,

i|α|ηα
∫

Rn

exp
(
−cy2

)
exp(iη ·y) dy=(−1)|α|

∫

Rn

∂αy (exp
(
−cy2

)
)exp(iη ·y) dy, (A.4)
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and also

∂

∂y
exp

(
−cy2

)
=−2cyexp

(
−cy2

)
,

∂2

∂y2
exp

(
−cy2

)
=
(
−2c+4c2y2

)
exp

(
−cy2

)
.

With these equalities in mind, (A.2) is equal to

1

2c

∫

Rn

∂y(exp
(
−cy2

)
)exp(iη ·y) dy+b

∫

Rn

(exp
(
−cy2

)
)exp(iη ·y) dy

=
(π
c

)n
2

exp

(
−η

2

4c

)(
iη

2c
+b

)
.

We can also expand and re-write the integral in (A.3) so it is equal to

1

4c2

∫

Rn

∂2y(exp
(
−cy2

)
)exp(iη ·y) dy− b

c

∫

Rn

∂y(exp
(
−cy2

)
)exp(iη ·y) dy

+

(
b2+

1

2c

)∫

Rn

(exp
(
−cy2

)
)exp(iη ·y) dy.

Using the integration by parts formula, (A.4) is just

(π
c

)n
2

exp

(
−η

2

4c

)(
− η2

4c2
+
ibη

c
+b2+

1

2c

)
. (A.5)

Appendix B. An integer valued function h(α) may be estimated by the Euler
summation formula

∑

a≤α≤b

h(α)=

b∫

a

h(x)dx+

m∑

j=1

Bj
j!
h(j−1)(x)|x=bx=a+Rm, (B.1)

where Bj is the jth Bernoulli number and h(j)(x) denotes the jth derivative of h(x).
The remainder Rm is defined as

Rm=(−1)m+1

∫

R

Bm({x})
m!

hm(x)dx.

The notation {x} denotes the fractional part of x, and Bm({x}) denotes the mth

Bernoulli polynomial. Formula (B.1) is derived in Concrete Mathematics, cf Ref[1].
Fix ǫ0∈Rn and λ∈R, with λ≥1. We wish to use the Euler summation formula

to estimate the sums

∑

α∈Zn

exp

(
−|α−ǫ0|2

λ

)
(B.2)

and

∑

α∈Zn

|α−ǫ0|2
λ

exp

(
−|α−ǫ0|2

λ

)
(B.3)
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in terms of the parameter λ. Since the variables α1,α2, . . . ,αn are indexed indepen-
dently of each other, we may re-write (B.2) as

∑

αi∈Z

(
n∏

i=1

exp

(
−|αi−ǫ0i |2

λ

))
=

n∏

i=1

(∑

αi∈Z

exp

(
−|αi−ǫ0i |2

λ

))
. (B.4)

We apply the Euler summation formula with m=2 to the sum in parentheses on the

right hand side of (B.4), so that h(x)=exp
(
− |x−ǫ0i |

2

λ

)
. Letting g(x)=exp

(
−x2

)
, via

the change of variables x=
√
λ(u+ǫ0i),

R2=
−1

2

∫

R

B2({x})h′′(x)dx=
−1

2
√
λ

∫

R

B2({
√
λ(u+ǫ0i)})g′′(u)du.

By properties of the Bernoulli numbers (again, cf Ref[1]),

|B2({
√
λ(u+ǫ0i)})|≤B2=

1

6
.

Integrating by parts gives
∣∣∣∣∣∣

∫

R

g′′(u)du

∣∣∣∣∣∣
≤
∫

R

(4u2+2)e−u
2

du=4
√
π

and

|R2|<
√
π

λ
.

The second term on the right hand side in the Euler summation formula vanishes:

m∑

j=1

Bj
j!
hj−1(x)|x=∞

x=−∞=0.

As a result,

∑

α∈Zn

exp

(
−|α−ǫ0|2

λ

)
≤ (2πλ)

n
2 .

The second sum (B.3) can be re-written as

n∑

i=1

(∑

αi∈Z

|αi−ǫ0i |2
λ

exp

(
−|αi−ǫ0i |2

λ

)) ∑

α′∈Zn−1

exp

(
−|α′−ǫ′0|2

λ

)
.

Here, α′=(α1,α2, ...α̂i, ...αn) and ǫ′0=(ǫ01 ,ǫ02 , ...ǫ̂0i , ...ǫ0n). Applying the Euler sum-
mation formula to

∑

αi∈Z

|αi−ǫ0i |2
λ

exp

(
−|αi−ǫ0i |2

λ

)
(B.5)

gives that (B.5) is also O(
√
λ). This follows since

∞∫

−∞

x2

λ
exp

(
−x

2

λ

)
dx=

√
πλ

2
. (B.6)
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The details are left to the reader. Therefore (B.3) is O((λ)
n
2 ) as well.
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