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ASYMPTOTIC STABILITY OF RAREFACTION WAVES IN

RADIATIVE HYDRODYNAMICS∗

CHUNJIN LIN†

Abstract. In this paper, we study the asymptotic stability of rarefaction waves for solutions to
a one-dimensional radiative hydrodynamic system which couples hyperbolic-elliptic equations. We
assume that the initial data tend to constant states at x=±∞, respectively, and that the corre-
sponding Riemann problem for the compressible Euler equations admits a continuous rarefaction
wave solution with small strength. If the initial perturbation is small, the solution is proved to
tend to the rarefaction wave as t→+∞. The proof is based on the L2-energy method and elliptic
estimates.

Key words. Asymptotic stability, rarefaction wave, hyperbolic-elliptic coupled system.

AMS subject classifications. 35M10, 35Q35.

1. Introduction

We consider a system of PDEs describing astrophysical flows, where a gas interacts
with radiation through energy exchanges. The evolution of the gas is governed by the
following system of equations, written in Lagrangian coordinates:











vt−ux=0,

ut+px=0,

(e+u2/2)t+(pu+q)x=0,

(1.1)

where v>0, u, and e>0 represent the specific volume, the velocity and the specific
energy of the gas, respectively, p is the pressure and q denotes the radiative heat
flux. The radiative heat flux q satisfies the following elliptic equation, still written in
Lagrangian coordinates:

−
(qx
v

)

x
+vq+

(

θ4
)

x
=0, (1.2)

where θ>0 is the absolute temperature of the gas. System (1.1)-(1.2) can be formally
derived by asymptotic arguments, starting from a more complete system involving a
kinetic equation for the specific intensity of radiation; see the appendix of [9] and the
references therein. We also refer to [15, 22] for the physical background.

In (1.1) and (1.2), v, u, θ and q are chosen as independent variables. The pressure
p and the specific internal energy e are related to v and θ by

p(v,θ)=
Rθ

v
, e=

R

γ−1
θ := cvθ, (1.3)

where R is the perfect gas constant, γ >1 is the adiabatic constant, and cv =R/(γ−1)
is the specific heat at constant volume.
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In this paper we are interested in the asymptotic stability of the rarefaction waves.
To this end it is convenient to work with the equation for the specific entropy s. The
second law of thermodynamics asserts that

θds=de+pdv. (1.4)

From (1.3) the expression of the specific entropy s can be obtained: we have Aexp s
cv

=
p (v)γ with A a constant. The pressure p , the temperature θ, and the internal energy
e can be viewed as functions of v and s:

p= p̃(v,s), θ= θ̃(v,s), e= ẽ(v,s).

Note that Assumption (1.3) yields many algebraic simplifications, but we believe that
our results still hold for a general pressure law satisfying the usual requirements of
thermodynamics. In variables of v, u, and s, system (1.1) reads















vt−ux=0,

ut+ p̃(v,s)x=0,

st+
qx

θ̃(v,s)
=0,

(1.5)

In what follows we study the coupled system (1.2), (1.5). This system is completed
by imposing the initial data

(v, u, s)(0,x)=(v0,u0,s0)(x)→ (v±, u±, s±), as x→±∞, (1.6)

where v±>0, u±, and s± are constants which can be connected by a rarefaction wave.
Since we focus on the stability of rarefaction waves, throughout this paper we assume
that s+=s−= s̄.

Next we introduce an approximation for our system (1.2), (1.5) by neglecting the
derivatives qx and qxx , i.e.:











vt−ux=0,

ut+ p̃(v,s)x=0,

st=0.

(1.7)

We can still associate to the solution of (1.7) the following quantity:

q=−
(

θ̃4(v,s)
)

x
/v. (1.8)

Note that system (1.7) is the usual compressible Euler system. There are two families
of rarefaction waves for (1.7) which are solutions of the compressible Euler Equation
(1.7) with the Riemann data

(v, u, s)(0,x)=(vR0 , u
R
0 ,s

R
0 )(x)=(v±, u±, s̄), for x≷0. (1.9)

For illustration, we only consider the 1-rarefaction wave. In this case, we assume
that the asymptotic data satisfy v−<v+. The rarefaction wave (V R,UR,SR)(t,x) is
characterized by



























λ1(V
R(t,x), s̄)=−

√

−p̃v(V R(t,x), s̄)=wR(t,x),
SR(t,x)= s̄ ,

UR(t,x)=u±−

∫ V R(t,x)

v±

λ1(z,s)dz,

λ1x(V
R(t,x),SR(t,x))>0,
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where λ1(v,s) is the first characteristic speed of the compressible Euler system (1.7)
and wR(t,x) is the unique solution to the following Riemann equation

{

wR
t +wRwR

x =0,
wR(0,x)=wR

0 (x)=w± :=λ1(v±, s̄), for x≷0.
(1.10)

Since w−<w+, system (1.10) admits a unique continuous solution which will be given
by (2.3) in §2.

Also associated with the rarefaction wave (V R,UR,SR,ΘR)(t,x), the radiative
flux QR is defined by the equality (1.8) with θ̃(v,s) replaced by ΘR= θ̃(V R,SR). The
case for the 3-rarefaction wave can be discussed similarly. For more details about the
rarefaction wave of compressible Euler equations, we refer to [20, 19, 1].

Under the above preparation, our asymptotic stability result on the rarefaction
wave (V R,UR, SR)(t,x) is stated in the following theorem.

Theorem 1.1. Let (V R, UR, SR)(t,x) be the 1-rarefaction wave solution to the

Riemann problem of the compressible Euler system (1.7), (1.9). Assume that the

initial data (v0, u0, s0)(x) of the Cauchy problem (1.2), (1.5), (1.6) satisfy

(v0(x)−v±,u0(x)−u±)∈L
2(R±),

(∂xv0(x),∂xu0(x))∈H
1(R).

Let (V,U,Θ)(t,x) denote the smooth approximation of the rarefaction wave constructed

by (2.2) in §2, which satisfies the classical Euler system (1.7). We suppose also that

‖(v0(x)−V (0,x),u0(x)−U(0,x),s0(x)− s̄)‖H2(R)

is sufficiently small. Then the Cauchy problem (1.5)-(1.6) admits a unique global

smooth solution (v, u, s, q)(t,x) satisfying

lim
t→+∞

sup
x∈R

{∣

∣

(

v(t,x)−V R(t,x), u(t,x)−UR(t,x), s(t,x)− s̄
)∣

∣

}

=0.

Remark 1.2. Theorem 1.1 states the stability of weak rarefaction waves. In fact,
V (0,x) defined in §2, satisfies

‖V (0,x)−v±‖L2(R±)=O(1)
|v+−v−|

ε
,

where ε>0 is a parameter intended to be small. Thus the assumption about the
initial perturbation suggests |v+−v−|=o(ε). In the same way, |u+−u−|=o(ε).

Concerning the large-time behavior of the solutions to the problem (1.1)-(1.2),
Kawashima, Nikkuni and Nishibata in [5] showed the global in time existence of solu-
tions in the neighborhood of a constant state in Eulerian coordinates. The situation
when the data leads to a shock has been investigated recently in [9], where the ex-
istence of a shock profile is established and in [10], where the stability of the shock
profile is analyzed. In these results, a smallness assumption on the strength of the
shock in needed (by contrast to the scalar case dealt with in [7]). In [10], it is proved
that the solution to the problem (1.1), (1.2) approaches the travelling wave of the
shock profile (existence result were obtained in [9]):

(V,U,Θ,Q)(t,x)=(V,U,Θ,Q)(x−σt),
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which is the exact solution of (1.1), (1.2) satisfying (V,U,Θ,Q)(±∞) = (v±,u±,θ±,0),
where σ is the constant called the speed of shock. In the case of 1-shock, the asymp-
totic data verify v−>v+, while here for a 1-rarefaction wave we study the case v−<v+.

Such a problem of the stability of the rarefaction wave has been well studied for
viscous regularization of hyperbolic systems and the relaxation approximation of con-
servation laws. For example, the stability of the rarefaction wave for the compressible
Navier-Stokes equations has been studied in [11, 4, 16], and in [13, 14] the authors
proved the stability of the rarefaction wave for the isentropic flow. For the relaxation
approximation of conservation laws, we refer to [12, 23, 17]. We also mention that the
vanishing viscosity limit to the rarefaction waves for the Navier-Stokes equations was
studied in [2]. By introducing a scaling argument, the problem reduces to the stability
of a rarefaction wave for the compressible Navier-Stokes equations with non-smooth
initial data.

In [8, 18], the stability of the rarefaction wave for a simplified model of radiating
gas dynamics has been proved. This simple model, which can be seen as a prototype
for discussing the coupled system (1.1), (1.2) is a Burgers-type equation coupled with
a linear elliptic equation for the radiation, so that the equation for the gas is scalar.
Here, inspired by [16, 11], we wish to deal with the full system of hydrodynamic
equations coupled with a nonlinear elliptic equation.

The content of this paper is as follows. In §2, following [11, 4, 16], we define
a smooth approximation of the rarefaction wave solutions and give some properties
of this approximation. Then we reformulate system (1.1), (1.2) by considering the
perturbation from the smooth approximation of the rarefaction wave and state the
stability result for the reformulated system. That stability result is proved in §3 by the
standard energy method combined with elliptic estimates. Notice that these elliptic
estimates are crucial and make the analysis different from the case of compressible
Navier-Stokes, as discussed in [11, 4, 16].

In the rest of this paper, we use C or O(1) to denote a generic positive constant
which is independent of t and x. H l (l>0) denotes the usual Sobolev space with the
norm ‖·‖l. Let ‖·‖ denote the usual L2 norm, and | · |p denote the Lp norm. Note
that ‖·‖0=‖·‖= | · |2.

2. Smooth approximation and the reformulation problem

Following [4, 11, 16], to prove the stability result, we make use of a smooth
approximation of the 1-rarefaction wave (V R, UR, SR)(t,x). Given a small but fixed
constant ε>0, let w(x,t) be the unique global smooth solution to the Cauchy problem:

{

wt+wwx=0,

w(0,x)=w0(x) :=
w−+w+

2 + w+−w−

2 tanh(εx),
(2.1)

where w±=λ1(v±, s̄). Then, V (t,x), U(t,x), S(t,x) and Θ(t,x) are defined by


























λ1(V (t,x), s̄)=−
√

−p̃v(V (t,x), s̄)=w(t,x) ,

U(t,x)=u±−

∫ V (t,x)

v±

λ1(z,s)dz ,

S(t,x)= s̄ ,

Θ(t,x)= θ̃(V (t,x), s̄),

(2.2)

and Q(t,x) is defined by

Q(t,x)=−
(Θ4(t,x))x
V (t,x)

.
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In fact w(t,x) is a good approximation of wR(t,x), the continuous solution of the
Riemann problem (1.10); see [13, 21]. Since w−<w+<0, wR(t,x)=wR(xt ) can be
given by

wR(ξ)=







w−, ξ <w−,
ξ, w−≤ ξ≤w+,
w+, ξ >w+.

(2.3)

We shall see that w(t,x) fulfills some regularity proprieties. Consequently, (V,U,Θ)
is a good approximation of the 1-rarefaction wave (V R,UR,ΘR) (see [13, 21]), and
we will say that (V,U,Θ,S) is the smooth approximation of the rarefaction wave.
The estimates on the smooth rarefaction wave are obtained through the properties of
w(t,x), which is the unique solution to the Cauchy problem (2.1). Since the initial
data w0(x) are strictly increasing, and by the characteristic method, we have the
following properties [4, 16]:

Lemma 2.1. If w−<w+, then the Cauchy problem (2.1) has a unique global solution

w(t,x) satisfying

1. w−<w(t,x)<w+ and wx(t,x)>0, for all (t,x)∈R
+×R.

2. For any p (1≤p≤∞), there exists a constant Cp, such that

|wx(t)|p≤Cpmin{w̃ε1−
1
p ,w̃

1
p t−1+ 1

p },

|∂lxw(t)|p≤Cpmin{w̃εl−
1
p ,w̃l−1− 1

p t−1}, l≥2,

where w̃= |w−−w+|.

3. lim
t→+∞

sup
x∈R

∣

∣

∣
w(t,x)−wR

(x

t

)∣

∣

∣
=0.

According to (2.2), the functions (V,U,S,Θ)(t,x) defined by w(t,x) are globally
well-posed and smooth. Furthermore, we check that (V,U,S,Θ)(t,x) verify















Vt−Ux=0,
Ut+p(V,Θ)x=0,
St=0,
cvΘt+p(V,Θ)Ux=0.

Due to Lemma 2.1, (V,U,Θ,S)(t,x) also have the following properties:

Lemma 2.2. Let us denote δ= |v−−v+|+ |u−−u+|. The smooth functions

(V,U,Θ,S)(t,x) constructed above have the following properties:

1. Vt=Ux>0, for all (t,x)∈R
+×R.

2. For any p (1≤p≤∞), there exists a constants Cp, such that

|Vx,Ux,Θx|p≤Cpmin{δε1−
1
p ,δ

1
p t−1+ 1

p },

|∂lx(V,U,Θ)|p≤Cpmin{δεl−
1
p ,εl−1− 1

p t−1}, l≥2.

3. |(V,U,Θ)t(t,x)|≤C|(V,U,Θ)x(t,x)|.

4. lim
t→+∞

sup
x∈R

|(V,U,S,Θ)(t,x)−(V R,UR,SR,ΘR)(t,x)|=0.
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Under the above preparations, let us state the reformation problem. To this end
we set

(ϕ,ψ,φ,ξ,z)(t,x)=(v−V,u−U,θ−Θ,s− s̄,q−Q)(t,x),

and recall that Q(t,x)=−(Θ4(t,x))x/V (t,x). Here (ϕ,ψ,φ,z)(t,x) represents the per-
turbation of the rarefaction wave, and solves































ϕt−ψx=0,
ψt+[p(v,θ)−p(V,Θ)]x=0,

cvφt+[p(v,θ)−p(V,Θ)]Ux+p(v,θ)ψx+zx=

(

(Θ4)x
V

)

x

,

vz−
(zx
v

)

x
+(θ4−Θ4)x=

(Θ4)x
V

ϕ−

{(

(Θ4)x
V

)

x

1

v

}

x

,

(2.4)

with the initial data

(ϕ,ψ,φ)(0,x)=(ϕ0,ψ0,φ0)(x) :=(v0(x)−V (0,x),u0−U(0,x),θ0(x)−Θ(0,x)). (2.5)

In what follows we choose ϕ, ψ,φ and z as independent variables. For any T >0,
we define the functional space:

X(0,T )=







(ϕ, ψ, φ, z)(t,x)

∣

∣

∣

∣

∣

∣

(ϕ, ψ, φ)∈L∞(0,T ;H2(R)),
(ϕx, ψx, φx)∈L

2(0,T ;H1(R)),
z∈L∞(0,T ;H3(R))

⋂

L2(0,T ;H3(R))







.

Thus we are going to prove the following result:

Theorem 2.3. Under the hypotheses stated in Theorem 1.1, the Cauchy problem (2.4)
admits a unique global solution (ϕ, ψ, φ, z)∈X(0,+∞). Furthermore the solution

satisfies the following uniform estimate:

‖(ϕ, ψ, φ)(t)‖22+‖z(t)‖23+

∫ t

0

‖V
1/2
t (τ)(ϕ,φ)(τ)‖2dτ

+

∫ t

0

(

‖(ϕx, ψx, φx)(τ)‖
2
1+‖z(τ)‖23

)

dτ ≤ C(‖(ϕ0, ψ0, φ0)(t)‖
2
2+ε

1
4 ),

(2.6)
for any t>0.

The global existence follows by combining a local result and the a priori estimate
(2.6). The local existence of solutions of such a hyperbolic-elliptic system is proved
by the standard iteration method; we omit the details and refer to [5, 6]. Hence, to
complete the proof of Theorem 2.3, the crucial step is to show the a priori estimate
(2.6). To this end, we set

N(t)2= sup
τ∈[0,t]

(

‖(ϕ, ψ, φ)(τ)‖22+‖z(τ)‖23
)

.
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Proposition 2.4. Let T >0 and let (ϕ, ψ, φ, z)∈X(0,T ) be the unique solution

to system (2.4), (2.5). Then there exists a constant ε̂ independent of T such that if

N(T )≤ ε̂, and ε≤ ε̂, then the estimate

‖(ϕ, ψ, φ)(t)‖22+‖z(t)‖23+

∫ t

0

‖V
1/2
t (τ)(ϕ,φ)(τ)‖2dτ

+

∫ t

0

(

‖(ϕx, ψx, φx)(τ)‖
2
1+‖z(τ)‖23

)

dτ ≤ C(‖(ϕ0, ψ0, φ0)(t)‖
2
2+ε

1
4 )

holds for any t∈ [0,T ], where the constant C does not depend on T.

It follows from Proposition 2.4 and the standard continuation argument (c.f [3])
that we get the proof of Theorem 2.3. The proof of Proposition 2.4 is given in the
next section, and is based on the energy method combined with the elliptic estimates.

3. A priori estimate

In this section we will use the energy method to the perturbation system. Firstly
we show the L∞(H2) estimate of the fluid perturbation variables (ϕ,ψ,φ). Notice that
linearizing the equations around the smooth approximation of the rarefaction wave is
no longer a valid approach. As pointed in [10], this is because the dissipation intro-
duced by the elliptic equation is not strong enough to control the linearization errors.
However, the standard symmetrization of the quasi-linear form of the perturbation
system (2.4) works, as we shall see below. Following [3], we then give the L2(H1)
estimate of the derivatives of the fluid perturbation variables (ϕ,ψ). Eventually the
elliptic inequalities will be given by using the elliptic equation.

3.1. L∞(H2) estimate. In this paragraph we wish to prove the following
proposition.

Proposition 3.1. Under the assumptions stated in Proposition 2.4, there holds

‖(ϕ,ψ,φ)(t)‖22+

∫ t

0

{

‖z(τ)‖23+‖
√

Vt(τ)(ϕ,φ)(τ)‖
2
}

dτ

≤C

(

N(0)2+ε1/4+(N(t)+ε)

∫ t

0

‖(ϕx,ψx,φx)(τ)‖
2
1dτ

)

.

(3.1)

We split the proof of Proposition 3.1 into two lemmata. Firstly we prove the
following

Lemma 3.2. Under the assumptions stated in Proposition 2.4, there holds

‖(ϕ,ψ,φ)(t)‖2+

∫ t

0

{

‖
√

Vt(τ)(ϕ,φ)(τ)‖
2+‖z(τ)‖21

}

dτ

≤C

(

‖(ϕ0,ψ0,φ0)‖
2+N(t)

∫ t

0

‖(ϕx,φx)(τ)‖dτ+ε
1/4

)

.

(3.2)

Proof. Following [16, 11], we introduce the normalized entropy η(ϕ, ψ, φ, z)
around the smooth rarefaction (V,U,Θ) as

η(ϕ, ψ, φ,z)= e(V +ϕ,Θ+φ)+ 1
2 (U+ψ)2−

[

e(V,Θ)+ 1
2U

2
]

−

[

−p(V,Θ)ϕ+Uψ+Θ(s−S)

]

,
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and notice that ẽv(v,s)=−p(v,θ), ẽs(v,s)=θ. It is easy to show that η satisfies the
following equality:

ηt(ϕ, ψ, φ,z)+
vz2+zx/v

4θΘ3
+{···}x

+

[

p(v,θ)−p(V,Θ)+
p(V,Θ)

V
ϕ−

p(V,Θ

cv
φ

]

Ux=
3
∑

i=1

Hi,
(3.3)

where the functions Hi are defined as

H1=−
φz

θ2
Θx+

ϕz

4θΘ3
(Θ4)x−

φz

4θΘ3
(4Θ3)x−

zzx
v

(

1

4Θ3

)

x

,

H2=

(
(

Θ4
)

x

V

)

x

[

φ

θ
+

1

v

( z

4θΘ3

)

x

]

,

H3=−
zφφx
θ2

−
(

6Θ2φ2+4Θφ3+φ4
)

x

z

4θΘ3
.

Here and after, {···}x denotes the terms that will vanish after integrating with re-
spect to x. Observe that p̃v(v,s)=−p/v, p̃s(v,s̄)=p/cv. Thus, integrating (3.3) with
respect to t and x over [0,t]×R yields

‖(ϕ,ψ,φ)(t)‖2+

∫ t

0

{

‖
√

Vt(τ)(ϕ,φ)(τ)‖
2+‖z(τ)‖21

}

dτ

≤C

(

‖(ϕ0,ψ0,φ0)‖
2+

∫ t

0

∫

R

3
∑

i=1

|Hi(τ,x)d|dxdτ

)

, (3.4)

where we have used the properties of the smooth approximation of the rarefaction
wave, Lemma 2.2. Then we estimate all the terms in the right-hand side of (3.4). We
start with

∫ t

0

∫

R

|H1(τ,x)|dxdτ ≤C

∫ t

0

∫

R

|Θx||z||(ϕ,φ)|dτ+

∫ t

0

∫

R

|Θxzzx|dxdτ. (3.5)

Using the Sobolev, Young and Hölder inequalities, the first term in the right-hand
side of (3.5) can be estimated by

∫ t

0

∫

R

|Θx||z||(ϕ,φ)|dτ ≤C

∫ t

0

‖(ϕ,φ)(τ)‖1/2‖(ϕx,φx)(τ)‖
1/2‖z(τ)‖‖Θx(τ)‖dτ

≤C

(

N(t)6
∫ t

0

‖(ϕx,φx)(τ)‖
2dτ+

∫ t

0

‖Θx(τ)‖
4/3dτ

)

≤C

(

N(t)6
∫ t

0

‖(ϕx,φx)(τ)‖
2dτ+ε1/4

)

.

Note that in the last inequality we have used Lemma 2.2 and the following inequality
∫ t

0

|∂lxΘ(τ)|a+b
p dτ ≤ sup

τ∈[0,t]

|∂lxΘ(τ)|ap

∫ t

0

|∂lxΘ(τ)|bpdτ

≤ sup
τ∈[0,t]

|∂lxΘ(τ)|ap

∫ t

0

|∂lxΘ(τ)|bpdτ

≤ sup
τ∈[0,t]

|∂lxΘ(τ)|ap

(∫ ε

0

|∂lxΘ(τ)|bpdτ+

∫ +∞

ε

|∂lxΘ(τ)|bpdτ

)

.
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Similarly by the Hölder and Cauchy-Schwarz’ inequalities and Lemma 2.2, the second
term in the right-hand side of (3.5) can be estimated as follows

∫ t

0

∫

R

|Θxzzx|dxdτ ≤

∫ t

0

|Θx(τ)|∞|zzx(τ)|1dτ ≤Cε

∫ t

0

‖z(τ)‖21dτ .

Thus we have

∫ t

0

∫

R

|H1(τ,x)|dxdτ ≤C

{∫ t

0

(

N(t)2‖(ϕx,φx)(τ)‖
2+ε‖z(τ)‖21

)

dτ+ε1/4
}

,

where we have used the fact that N(T ) is sufficiently small. Next, the term H2 in the
right-hand side of (3.4) can be estimated as follows

∫ t

0

∫

R

|H2(τ,x)|dxdτ

≤C



N(t)2
∫ t

0

‖φx(τ)‖
2dτ+

∫ t

0

∣

∣

∣

∣

∣

(
(

Θ4
)

x

V

)

x

∣

∣

∣

∣

∣

4
3

1

dτ





+
1

4

∫ t

0

‖z(τ)‖21dτ+C

∫ t

0

∫

R

∣

∣

∣

∣

∣

1

v

(
(

Θ4
)

x

V

)

x

∣

∣

∣

∣

∣

2(
∣

∣

∣

∣

1

4θΘ3

∣

∣

∣

∣

2

+

∣

∣

∣

∣

(

1

4θΘ3

)

x

∣

∣

∣

∣

2
)

dxdτ

≤
1

4

∫ t

0

‖z(τ)‖21dτ+C

{

N(t)2
∫ t

0

‖φx(τ)‖
2dτ+ε1/4

}

,

and the term of H3 in the right-hand side of (3.4) can be estimated as follows

∫ t

0

∫

R

|H3(τ,x)|dxdτ ≤C

∫ t

0

∫

R

(

|φφxz|+ |Θxzφ
2|+ |Θx||zφφx|

)

dxdτ

≤CN(t)

∫ t

0

(

‖z(τ)‖2+‖φx‖
2+‖

√

Vt(τ)φ(τ)‖
)

dτ.

Substituting the above estimates of Hi, i=1,2,3, into (3.4), and using the fact that
N(t) and ε are sufficiently small, gives the desired estimate (3.2).

To prove Proposition 3.1, it remains to show the L∞(L2) estimates of the deriva-
tives of (ϕ,ψ,φ).We need to use the standard symmetrization of the quasi-linear form
of the perturbation system (2.4) to prove the following lemma:

Lemma 3.3. Under the assumptions stated in Proposition 2.4, there holds

‖(ϕx,ψx,φx)(t)‖
2
1+

∫ t

0

‖zx(τ)‖
2
2dτ−C(N(t)+ε)

∫ t

0

‖
√

Vt(τ)(ϕ,φ)(τ)‖
2dτ

−C(N(t)+ε)

∫ t

0

‖(ϕx,ψx,φx)(τ)‖
2
1dτ ≤C

(

‖(ϕ0,ψ0,φ0)x‖
2
1+ε

1/4
)

.

(3.6)
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Proof. Following [3, 10], we recast the system (2.4) as






















































ϕt−ψx=0,

ψt+
Rφx
v

−R
θ

(v)2
ϕx=f1 :=R

ϕΘx

V v
+R

φVx
v2

−R
ϕ2+2V ϕ

V 2v2
ΘVx,

cvφt+R
θ

v
ψx+zx−

(

(Θ4)x
V

)

x

=f2 := [p(v,θ)−p(V,Θ)]Ux,

vz−
(zx
v

)

x
+4Θ3φx+

((

(Θ4)x
V

)

x

1

v

)

x

=f3 :=
ϕ(Θ4)x
V

−(4Θ3)xφ−
(

6Θ2φ2+4Θφ3+φ4
)

x
.

(3.7)

Then we apply ∂x to the above system, and multiply the resulting equations by

ϕx,
v2

Rθψx,
v2

Rθ2φx and v2

Rθ2

zx
4Θ3 , respectively. We get

E1(ϕ,ψ,φ)t+{···}x+E2(zx,zxx)=
6
∑

i=4

Hj , (3.8)

with

E1(ϕ,ψ,φ)=
1

2

(

ϕ2
x+

v2

Rθ
ψ2
x+

1

cv

v2

Rθ2
φ2x

)

,

E2(zx,zxx)=
v3

4Θ3θ2
z2x+

vxxx
4Θ3θ2

,

H4=
(v

θ

)

x
φxψx+

(

v2

θ2

)

x

φxzx−
zxzxx
v

(

v2

4RΘ3θ2

)

x

+
( v

Rθ

)

t
ψ2
x+

cv
2

(

v2

Rθ2

)

t

φ2x,

H5=
v2

Rθ2

(
(

Θ4
)

x

V

)

xx

φx+

{(
(

Θ4
)

x

V

)

x

1

v

}

x

(

v2

Rθ2
zx
4Θ3

)

x

,

H6=
v2

Rθ
ϕx∂xf1+

v2

Rθ2
ψx∂xf2+

zx
4Θ3

v2

Rθ2
∂xf3.

We shall estimate the functions E1,E2 and Hj , j=4,5,6, by using the properties
of the smooth rarefaction wave (V,U,Θ). Firstly, we have

c(ϕ2
x(t,x)+ψ

2
x(t,x)+φ

2
x(t,x))≤E1(ϕ,ψ,φ)≤C(ϕ

2
x(t,x)+ψ

2
x(t,x)+φ

2
x(t,x)),

E2(zx,zxx)≥ c(z
2
x(t,x)+z

2
xx(t,x)),

with some positive constants c and C. Next the functions Hj , j=4,5,6, are estimated
as follows:

H4≤C(N(t)+ε)|(ψx,φx,zx,zxx)(t,x)|
2,

H5≤ C



ε|φ2x(t,x)|+
1

ε

∣

∣

∣

∣

∣

(
(

Θ4
)

x

V

)

xx

∣

∣

∣

∣

∣

2


+
1

4
|(zx,zxx)(t,x)|

2

+C

∣

∣

∣

∣

∣

{(
(

Θ4
)

x

V

)

x

1

v

}

x

∣

∣

∣

∣

∣

2(

1+

∣

∣

∣

∣

(

v2

4Rθ2Θ3

)

x

∣

∣

∣

∣

2
)

,
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H6≤C(N(t)+ε)
(

|
√

Vt(ϕ,φ)(t,x)|
2+ |(ϕx,φx)(t,x)|

2+ |zxx(t,x)|
2
)

,

where we have used the Cauchy-Schwarz inequality. Note that
∫ t

0
‖((Θ4)x/V )xx‖

2dτ ≤
Cε3. By integrating (3.8) over [0,t]×R with respect to variables t and x respectively,
and using the above inequalities, we have

‖(ϕx,ψx,φx)(t)‖
2+

∫ t

0

‖zx(τ)‖
2
1dτ−C(N(t)+ε)

∫ t

0

‖(ϕx,ψx,φx)(τ)‖
2dτ

−C(N(t)+ε)

∫ t

0

‖
√

Vt(τ)(ϕ,φ)(τ)‖
2dτ ≤C(‖(ϕ0,ψ0,ψ0)x‖

2+ε1/4).

(3.9)

Similarly we apply ∂2xx to the system (3.7), multiply the resulting four equa-

tions by ϕxx,
v2

Rθψxx,
v2

Rθ2φxx and zxx

4Θ3
v2

Rθ2 respectively. Calculating their sums and
integrating the resulting equality over [0,t]×R, we can get the following estimate:

‖(ϕxx,ψxx,φxx)(t)‖
2+

∫ t

0

‖zxx(τ)‖
2
1dτ−C(N(t)+ε)

∫ t

0

‖(ϕx,ψx,φx)(τ)‖
2
1dτ

−C(N(t)+ε)

∫ t

0

‖
√

Vt(τ)(ϕ,φ)(τ)‖
2dτ ≤C(‖(ϕ0,ψ0,ψ0)xx‖

2+ε1/4).

(3.10)

We omit the details here. Using the estimates (3.9) and (3.10), we get the desired
estimate (3.6).

With the estimates (3.2) and (3.6), we can easily get the inequality (3.1) and the
proof of Proposition 3.1 is complete. To finish the proof of Proposition 2.4 we need
now to estimate the last integral in (3.1). We shall start by estimating the derivatives
of ϕ and ψ in the H1 norm in Section 3.2 and then we will discuss φ in Section 3.3.

3.2. L2(L2) estimates. In this paragraph, we show the L2(L2) estimates of
the derivatives of the perturbation variables ϕ and ψ. We have the following

Proposition 3.4. Under the assumptions stated in Proposition 2.4, there holds

∫ t

0

‖(ϕx,ψx)(τ)‖
2
1dτ−C

∫ t

0

(

‖
√

Vt(τ)(ϕ,φ)(τ)‖
2+‖(φx,zx)(τ)‖

2
1

)

dτ

≤C
(

‖(ϕ0,ψ0,φ0x)‖
2+‖(ϕ,φ,ψx)(t)‖

2
1

)

. (3.11)

Proof. We rewrite the second and the third equations of the perturbation system
(2.4) around the smooth rarefaction wave (V,U,Θ):















ψt+
Rφx
V

−R
Θ

V 2
ϕx= f̃1 :=f1+R

ϕφx
V v

+R
φϕx

v2
−R

ϕ2+2V ϕ

V 2v2
Θϕx,

cvφt+R
Θ

V
ψx+zx= f̃2 :=f2+

(

(Θ4)x
V

)

x

−
RΘϕ

V v
+
Rϕ

v
.

(3.12)

Multiply the above equations by −V ϕx and 2V 2

RΘ ψx respectively, then calculate their
sum. We get

RΘ

V
ϕ2
x+V ψ

2
x+{···}x+

(

V ψxϕ−cv
2V

RΘ
φψx

)

t

=Rφxϕx−

[

ϕVx+cv

(

2V

RΘ
φ

)

x

]

ψt

+ψxVtϕ+
2V 2

RΘ
ψxzx−cv

(

2V 2

RΘ

)

t

φψx− f̃1V ϕx+ f̃2
2V 2

RΘ
ψx.
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Integrating the above equality over [0,t]×R yields
∫ t

0

‖(ϕx,ψx)(τ)‖
2dτ

≤C



‖(ϕ0,ψ0,φ0x)‖
2+‖(ϕ,φ,ψx)(t)‖

2+

∫ t

0

∫

R

8
∑

j=7

|Hj(τ,x)|dxdτ



 ,
(3.13)

with

H7 = Rφxψx+
2V 2

RΘ
ψxzx+ψxVtϕ−cvψxφ

(

2V 2

RΘ

)

t

+
R

V
ϕVx

(

φx−
Θ

V
ϕx

)

+cv

(

2V 2

RΘ
φ

)

x

R

V

(

φx−
Θ

V
ϕx

)

,

H8 = −f̃1

[

(V ϕ)x+cv

(

2V 2ϕ

RΘ
φ

)

x

]

+ f̃2
2V 2

RΘ
ψx.

Then, by using the Cauchy-Schwarz inequality and Lemma 2.2, the function H7 can
be estimated as follows

∫ t

0

∫

R

|H7(τ,x)|dxdτ ≤
1

4

∫ t

0

‖(ϕx,ψx)(τ)‖
2dτ

+C

∫ t

0

‖(φx,zx)(τ)‖
2+‖

√

Vt(τ)(ϕ,φ)(τ)‖
2dτ.

It follows from (3.12) that for |(ϕ,ψ,φ)|→0,

|f̃1|=O(|ϕΘx|+ |φVx|+ |ϕφx|+ |φϕx|+ |ϕϕx|) ,

|f̃2|=C (|Θxx|+ |Θx|(|Vx|+ |Θx|))+O(|Uxϕ|+ |Uxφ|+ |φψx|+ |ϕψx|) .

Then, by using the Cauchy-Schwarz inequality and Lemma 2.2, we have
∫ t

0

∫

R

|H8(τ,x)|dxdτ ≤

(

1

4
+CN(t)

)∫ t

0

‖(ϕx,ψx)(τ)‖
2dτ

+C

(∫ t

0

(

‖φx(τ)‖
2+‖

√

Vt(τ)(ϕ,φ)(τ)‖
2
)

dτ+ε1/4
)

.

Substituting the estimates of Hj , j=7,8 into (3.13), and using the fact that N(t)
and ε are small enough, we have

∫ t

0

‖(ϕx,ψx)(τ)‖
2dτ−C

∫ t

0

(

‖
√

Vt(τ)(ϕ,φ)(τ)‖
2+‖(φx,zx)(τ)‖

2
)

dτ

≤C
(

‖(ϕ0,φ0,ψ0x)‖
2+‖(ϕ,φ,ψx)(t)‖

2+ε1/4
)

. (3.14)

Similarly, apply ∂x to system (3.12), then multiply the second equation and the

third equation by −V ϕxx and 2V 2

RΘ ψxx, respectively. Calculating their sum and inte-
grating over [0,t]×R, we easily get the following estimate:

∫ t

0

‖(ϕxx,ψxx)(τ)‖
2dτ−C

∫ t

0

(

‖
√

Vt(τ)(ϕ,φ)(τ)‖
2+‖(φx,zx)(τ)‖

2
1

)

dτ

−C

∫ t

0

‖(ϕx,ψx)(τ)‖
2dτ ≤C

(

‖(ϕ,φ,ψx)(0)‖
2
1+‖(ϕ,φ,ψx)(t)‖

2
1+ε

1/4
)

.

(3.15)

Then using the estimates (3.14), (3.15), we get the desired estimate (3.11) and thus
finish the proof of Proposition 3.4.
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3.3. Elliptic estimates. Eventually, we show the elliptic estimates with
which we get the L2(L2) estimates of the derivatives of φ, and the L∞(L2) estimates
of z and its derivatives; thus the proof of Proposition 2.4 will be complete. We begin
with the L2(L2) estimates of the derivatives of φ, i.e.

Lemma 3.5. Under the assumptions stated in Proposition 2.4, there holds

∫ t

0

‖φx(τ)‖
2
1dτ

≤C

(∫ t

0

(

‖z(τ)‖22+‖
√

Vt(τ)(ϕ,φ)(τ)‖
2
)

dτ+ε

∫ t

0

‖ϕx(τ)‖
2
1dτ+ε

1/4

)

.

Proof. Multiply the fourth equation in (2.4) by φx, and then integrate the
equality over [0,t]×R. We get

∫ t

0

∫

R

4Θ3φ2xdxdτ =

∫ t

0

∫

R

φx

(

(zx
v

)

x
−vz−(4Θ3)xφ+

(Θ4)x
V

ϕ

)

dxdτ

+

∫ t

0

∫

R

−φx

{(

(Θ4)x
V

)

x

1

v

}

x

dxdτ

+

∫ t

0

∫

R

−φx
{

6Θ2φ2+4Θφ3+φ4
}

x
dxdτ. (3.16)

By the Cauchy-Schwarz inequality, the first term in the right-hand side can be esti-
mated as

ν

∫ t

0

‖φx(τ)‖
2dτ+

C

ν

∫ t

0

(

‖z(τ)‖22+‖
√

Vt(τ)(ϕ,φ)(τ)‖
2
)

dτ,

where ν is a small constant to be chosen later. Then to the second term in the
right-hand side of (3.16), we have

∫ t

0

∫

R

−φx

{(

(Θ4)x
V

)

x

1

v

}

x

dxdτ =F1+F2,

with

F1 :=

∫ t

0

∫

R

−φx

{(

(Θ4)x
V

)

xx

1

v
−

(

(Θ4)x
V

)

x

Vx
v2

}

dxdτ

≤ ε

∫ t

0

‖φx(τ)‖
2dτ+

C

ε

∫ t

0

∥

∥

∥

∥

{(

(Θ4)x
V

)

xx

1

v
−

(

(Θ4)x
V

)

x

Vx
v2

}∥

∥

∥

∥

2

dτ

≤ ε

∫ t

0

‖φx(τ)‖
2dτ+Cε1/4,

F2 :=

∫ t

0

∫

R

ϕxφx
v2

(

(Θ4)x
V

)

x

dxdτ ≤Cε

∫ t

0

‖(ϕx,φx)(τ)‖
2dτ.

In the estimate of F1, we used the inequality
∫ t

0
‖{((Θ4)x/V )xx‖

2+
‖((Θ4)x/V )xVx‖

2}dτ ≤Cε3. Hence we get the estimate of the second term in
the right-hand side of (3.16):

C

{

ε

∫ t

0

‖(ϕx,φx)(τ)‖
2dτ+ε1/4

}

,
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with the numerical constant C independent of ε. Finally the third integral can be
estimated as

C

∫ t

0

∫

R

|φx|
[

|φx|
(

|φ|+ |φ2|+ |φ3|
)

+ |Θx|
(

|φ2|+ |φ3|
)]

dxdτ

≤CN(t)

∫ t

0

(

‖φx(τ)‖
2+‖

√

Vt(τ)(ϕ,φ)(τ)‖
2
)

dτ.

Insert the above estimates into the equality (3.16), choosing ν≤2infΘ3; by using
the fact N(t) and ε are sufficiently small, we have

∫ t

0

‖φx(τ)‖
2dτ

≤C

(∫ t

0

(

‖z(τ)‖22+‖
√

Vt(τ)(ϕ,φ)(τ)‖
2
)

dτ+ε

∫ t

0

‖ϕx(τ)‖
2dτ+ε1/4

)

.

(3.17)

Next, we apply ∂x to the fourth equation in (2.4), multiply the result by φxx, and
then integrate the resulting equation over [0,t]×R to obtain

∫ t

0

∫

R

4Θ3φ2xxdxdτ =

∫ t

0

∫

R

φxx(4Θ
3)xφxdxdτ

+

∫ t

0

∫

R

φxx

(

(zx
v

)

x
−vz−(4Θ3)xφ+

(Θ4)x
V

ϕ

)

x

dxdτ

+

∫ t

0

∫

R

−φxx

{(

(Θ4)x
V

)

x

1

v

}

xx

dxdτ

+

∫ t

0

∫

R

−φxx
{

6Θ2φ2+4Θφ3+φ4
}

xx
dxdτ.

Now we are going to estimate each term in the right-hand side of the above equality.
Firstly apply the Cauchy-Schwarz inequality to obtain

∫ t

0

∫

R

φxx(4Θ
3)xφxdxdτ ≤Cε

∫ t

0

‖φx(τ)‖
2
1dτ

and
∫ t

0

∫

R

φxx

((zx
v

)

x
−vz

)

x
dxdτ ≤ν

∫ t

0

‖φxx‖
2dτ+

C

ν

∫ t

0

‖z(τ)‖23dτ,

where ν denotes a small constant to be determined later. Then
∫ t

0

∫

R

φxx

(

−(4Θ3)xφ+
(Θ4)x
V

ϕ

)

x

dxdτ

≤C

∫ t

0

∫

R

|φxx|
(

|Θxx|+ |Θx|
2
)

(|φ|+ |ϕ|)dxdτ+C

∫ t

0

∫

R

|φxx||Θx|(|φx|+ |ϕx|)dxdτ

≤CN(t)

(∫ t

0

‖φxx(τ)‖
2dτ+ε1/4

)

+ε

∫ t

0

(‖φx(τ)‖
2
1+‖ϕx‖

2)dτ.

As in our estimate of φx, we have

∫ t

0

∫

R

−φxx

{(

(Θ4)x
V

)

x

1

v

}

xx

dxdτ ≤C

{

ε

∫ t

0

(

‖φxx(τ)‖
2+‖ϕx(τ)‖

2
1

)

dτ+ε1/4
}

,
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and
∫ t

0

∫

R

−φxx
{

6Θ2φ2+4Θφ3+φ4
}

xx
dxdτ ≤CN(t)

∫ t

0

‖φx(τ)‖
2
1dτ+Cε

1/4.

Applying the above estimates to the equality, choosing ν≤2infΘ3, and using the
fact N(t) and ε are sufficiently small, we have

∫ t

0

‖φxx(τ)‖
2dτ

≤C

(∫ t

0

‖z(τ)‖23dτ+ε
1/4+ε

∫ t

0

‖ϕx(τ)‖
2
1dτ+(N(t)+ε)

∫ t

0

‖φx(τ)‖
2dτ

)

.

Thus, together with estimate (3.17), we get the desired estimate and complete the
proof.

It remains to show the L∞(L2) estimates of the radiative variable z and its deriva-
tives. We have the following Lemma.

Lemma 3.6. Under the assumptions stated in Proposition 2.4, there holds

‖z(t)‖23≤C
(

‖(ϕ,φ)(t)‖22+ε
1/4
)

. (3.18)

Proof. We multiply the equation satisfied by z,

vz2+
z2x
v
+{···}x=

(Θ4)x
V

ϕz+

(

(Θ4)x
V

)

x

zx
v
+
(

θ4−Θ4
)

zx.

Then, we integrate the above equality with respect to x and recal that {···}x denotes
the terms that disappear after integration. Using the Cauchy-Schwarz inequality, we
have

‖z(t)‖21≤C
(

‖(ϕ,φ)(t)‖2+ε1/4
)

. (3.19)

Next we apply ∂x to the elliptic equation and have

vzx−
(zxx
v

)

x
+
zx
v2
vx+vxz=

(

ϕ
4Θ3Θx

V

)

x

−

{(

(Θ4)x
V

)

x

1

v
+
(

θ4−Θ4
)

}

xx

. (3.20)

On the one hand, we multiply the last equation by zx, then integrate the resulting
equation with respect to x to obtain

‖zx(t)‖
2
1≤C

∫

R

|vx|
(

|zx|
2+ |zxzxx|

)

dx+

∫

R

|zxx|

∣

∣

∣

∣

ϕ
4Θ3Θx

V

∣

∣

∣

∣

dx

+

∫

R

|zxx|

∣

∣

∣

∣

{(

(Θ4)x
V

)

x

1

v
+
(

θ4−Θ4
)

}

x

∣

∣

∣

∣

dx.

Note that |vx|≤C(N(t)+ε) by the Sobolev inequality and the properties satisfied by
the smooth approximation of the rarefaction wave; see Lemma 2.2. Then apply the
Cauchy-Schwarz inequality to obtain

‖zx(t)‖
2
1≤C

(

‖z(t)‖2+‖φ(t)‖21+‖ϕ(t)‖2+ε1/4
)

. (3.21)
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The details are omitted. On the other hand, we multiply (3.20) by zxxx. Integrating
the resulting equality with respect to x, we have

‖zxx(t)‖
2≤C

∫

R

|zxxx|(|vzx|+ |vxz|+ |zxxvx|+ |zxvxx|)dx

+

∫

R

|zxxx|

∣

∣

∣

∣

{(

(Θ4)x
V

)

x

1

v
+
(

θ4−Θ4
)

}

xx

∣

∣

∣

∣

dx

+

∫

R

|zxxx|

∣

∣

∣

∣

(

ϕ
4Θ3Θx

V

)

x

∣

∣

∣

∣

dx.

Thus, by applying the Cauchy-Schwarz inequality, we have

‖zxxx(t)‖
2≤C

(

‖z(t)‖22+‖(ϕ,φ)(t)‖22+ε
1/4
)

. (3.22)

By multiplying (3.19) by a sufficiently large constant and adding the result to
(3.21), we get the L2(H2) estimate of z. Then we multiply the resulting estimate by
a sufficiently large constant and add it to (3.22), obtaining the desired estimate (3.18)
and completing the proof.
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