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ON THE UNIQUENESS OF ENTROPY SOLUTIONS

TO THE RIEMANN PROBLEM FOR 2×2 HYPERBOLIC SYSTEMS

OF CONSERVATION LAWS∗

HIROKI OHWA†

Abstract. In this paper we revisit the Riemann problem for 2×2 hyperbolic systems of con-
servation laws, which satisfy the condition that the product of non-diagonal elements in the Fréchet
derivative (Jacobian) of the flux is positive, the genuine nonlinearity condition, and the Smoller-
Johnson condition in one space variable. The first condition implies that the system is strictly
hyperbolic. By developing the shock curve approach, we give an alternative shock curve approach
and re-prove the uniqueness of self-similar solutions satisfying the Lax entropy condition at discon-
tinuities.
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1. Introduction

In this paper we consider 2×2 hyperbolic systems of conservation laws in one
space variable,

ut+f(u,v)x=0, vt+g(u,v)x=0, t>0, −∞<x<∞. (1.1)

Here u and v are functions of t and x, and f and g are C2 functions of two real
variables u and v.

The Riemann problem for system (1.1) consists in finding a solution of (1.1) with
piecewise constant initial data of the form

(u(x,0),v(x,0))=

{
(ul,vl), x<0,

(ur,vr), x>0.
(1.2)

In general, the significance of the Riemann problem is that it solves the Cauchy
problem (1.1) with general initial data. In fact, the Riemann problem is the building
block for constructing BV solutions to the Cauchy problem by the random choice
method in [8], and by the front tracking algorithm in [4] and [22].

Since both (1.1) and (1.2) are invariant under uniform stretching of the spatial and
temporal coordinates, the Riemann problem possesses self-similar solutions. Indeed,
it is shown in Lax [11] (cf. [6]) that, if the constant vectors Ul=(ul,vl) and Ur=
(ur,vr) are sufficiently close, then there exists a unique self-similar solution to the
Riemann problem. Under the genuine nonlinearity condition, the solutions consist of
centered rarefaction waves and shock waves satisfying the Lax entropy condition at
discontinuities (see [11] and [20]). It is known (cf. [3]) that for arbitrary constant
vectors Ul and Ur, the Riemann problem is not necessarily solved.

The classical method of solution to the Riemann problem is based on the con-
struction of shock and rarefaction curves of system (1.1). Thus shock curves play
an essential role in the study of the existence and uniqueness of self-similar solutions
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to the Riemann problem ([2, 10, 12, 13, 16, 17, 18, 19] and [21]). In particular, the
reciprocity relationship of shock curves is very important to prove the uniqueness of
self-similar solutions. The reciprocity relationship is generally derived from the fact
that the Hugoniot locus consists of only shock curves (cf. [10] and [16]).

In [21], for system (1.1) satisfying fvgu>0, the genuine nonlinearity condition and
the Smoller-Johnson condition, Smoller and Johnson discuss the existence of shock
curves. It is noticed that system (1.1) satisfying fvgu>0 is strictly hyperbolic and
the Smoller-Johnson condition implies a certain convexity of rarefaction curves. By
using the monotonicity of shock curves, the Riemann problem for such system (1.1)
is discussed in [18] and [19] (cf. [7]). However, shock curves are not always monotonic
with respect to u and v (see [15]).

The purpose of this paper is to revisit the Riemann problem for system (1.1)
satisfying fvgu>0, the genuine nonlinearity condition and the Smoller-Johnson con-
dition. By developing the shock curve approach in [2, 10, 16] and [18], we derive the
fact that the Hugoniot locus consists of only shock curves from the reciprocity rela-
tionship of shock curves and re-prove the uniqueness of self-similar solutions satisfying
the Lax entropy condition at discontinuities. The merit of our approach is not to need
ordinary differential equations for the Hugoniot locus as in [2, 10, 16] and [18]. In
general, it is not easy to solve ordinary differential equations for the Hugoniot locus.
Accordingly, our approach is an alternative to the shock curve approachs taken in [2,
10, 16] and [18].

2. Preliminaries

Let F be the mapping from R
2 into R

2 defined by F : (u,v)→ (f(u,v),g(u,v)),
and denote by dF (u,v) the Fréchet derivative (Jacobian) of F . We assume that

fvgu>0 in R
2, (2.1)

and for definiteness we assume that

fv <0 and gu<0 in R
2. (2.2)

Then dF (u,v) has real and distinct eigenvalues λ1(u,v)<λ2(u,v) for all (u,v)∈R
2.

Notice that

λ1(u,v)<min{fu,gv}≤max{fu,gv}<λ2(u,v).

We denote by ri(u,v), i=1,2, the corresponding right eigenvectors which we choose
to write in the form

r1=(1,a1)
t, r2=(−1,−a2)

t, (2.3)

where

ai=
λi−fu
fv

=
gu

λi−gv
, i=1,2. (2.4)

Also, we assume that

dλi(u,v) ·ri(u,v) 6=0, (u,v)∈R
2, i=1,2, (2.5)

where dλi denotes the gradient of λi. Condition (2.5) implies that system (1.1) is
genuinely nonlinear in the sense of Lax [11]. Without loss of generality, we assume
that

dλi(u,v) ·ri(u,v)>0, (u,v)∈R
2, i=1,2. (2.6)
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Let

l1=(−a2,1), l2=(−a1,1) (2.7)

be the left eigenvectors of dF (u,v), normalized by li ·ri>0, i=1,2. It is easy to check
that

li(u,v) ·rj(u,v)=0, (u,v)∈R
2, i,j=1,2, i 6= j. (2.8)

We then impose that system (1.1) satisfies the Smoller-Johnson condition

lj(u,v) ·d
2F (ri(u,v),ri(u,v))>0, (u,v)∈R

2, i,j=1,2, i 6= j, (2.9)

where d2F is the second Fréchet derivative of F . In [21], it is shown that the genuine
nonlinearity condition (2.6) is equivalent to

li(u,v) ·d
2F (ri(u,v),ri(u,v))>0, (u,v)∈R

2, i=1,2. (2.10)

Therefore, we can write (2.6) and (2.9) in the form

lj(u,v) ·d
2F (ri(u,v),ri(u,v))>0, (u,v)∈R

2, i,j=1,2. (2.11)

Under assumptions (2.2) and (2.11), we consider the Riemann problem (1.1)–
(1.2). The Riemann problem (1.1)–(1.2) is to find a self-similar solution of system
(1.1) with initial condition (1.2), where (ul,vl) and (ur,vr) are arbitrary constant
states. Self-similar solutions to the Riemann problem (1.1)–(1.2) consist of centered
rarefaction waves and shock waves satisfying the Lax entropy condition at disconti-
nuities (see [3] and [20]).

Let U0=(u0,v0) and U1=(u1,v1) be points in R
2. The i-rarefaction wave is

defined by the form

U(t,x)=





U0, x<λi(U0)t,

Ũ

(
x

t

)
, λi(U0)t<x<λi(U1)t,

U1, λi(U1)t<x,

where Ũ =(ũ, ṽ) lies on a single i-rarefaction curve, and the corresponding character-
istic speed λi must increase in the direction of increasing x. By i-rarefaction curves
through U0 we mean curves U =(u,v) that satisfy the following differential equation:

dv

du
=ai, v(u0)=v0, i=1,2. (2.12)

We denote i-rarefaction curves by Ri(U0) . From a1>0 and a2<0 it follows that
all rarefaction curves of both families are always monotonic with respect to u. On
i-rarefaction curves, by differentiating equation (2.12), we have the following (cf. [21]):

d2v

du2
= bi, i=1,2, (2.13)

where

b1=
l2 ·d

2F (r1,r1)

λ1−λ2

<0, b2=
l1 ·d

2F (r2,r2)

λ2−λ1

>0.
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From this it follows that all rarefaction curves of both families are convex.
The i-shock wave is a piecewise constant function of the form

U(t,x)=

{
U0, x<σit,

U1, x>σit,

which satisfies the Rankine-Hugoniot condition

σi

(
U1−U0

)
=F (U1)−F (U0), i=1,2, (2.14)

where σi≡σi(U1;U0) is the i-shock speed. Since system (1.1) and the Rankine-
Hugoniot condition alone are not sufficient to distinguish between U0 and U1, for
mathematical well-posedness and physical relevance it is customary to impose the
Lax entropy condition (cf. [11] and [20]) at discontinuities:

λ1(U1)<σ1<min{λ1(U0),λ2(U1)} for 1-shock waves, (2.15)

max{λ1(U0),λ2(U1)}<σ2<λ2(U0) for 2-shock waves. (2.16)

3. Ordinary differential equations for shock curves

Central to our arguments is to prove the existence of shock curves and their funda-
mental properties. In this section, we describe the precise form of ordinary differential
equations for shock curves. Note that the description of ordinary differential equations
for shock curves does not need the Smoller-Johnson condition (2.9) (cf. [16]).

Let U0=(u0,v0) in R
2. By i-shock curves originating at U0 we mean curves

U =(u,v) that satisfy the Rankine-Hugoniot condition

σi

(
U−U0

)
=F (U)−F (U0), i=1,2, (3.1)

where σi≡σi(U ;U0). We eliminate σi in (3.1) to get

(u−u0)
[
g(u,v)−g(u0,v0)

]
=(v−v0)

[
f(u,v)−f(u0,v0)

]
. (3.2)

From (3.2), we see that differential equation of an i-shock curve is

dv

du
=

{
hi, u 6=u0,

ai, u=u0,
(3.3)

where

hi=hi(U ;U0)=
g(u,v)−g(u0,v0)+gu(u−u0)−fu(v−v0)

f(u,v)−f(u0,v0)+fv(v−v0)−gv(u−u0)

=
(σi−fu)(v−v0)+gu(u−u0)

(σi−gv)(u−u0)+fv(v−v0)
.

By applying an argument as in [21], if u−u0 is small then the solution v of (3.3) exists
and is described by

v=v0+ai(u−u0)+
1

2
bi(u−u0)

2+O((u−u0)
3). (3.4)

From this it follows that there exist four curves (shock curves) originating at U0. We
denote by Si(U0), i=1,2, the shock curves which leave U0 in the −ri direction, and
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by S∗
i (U0), i=1,2, the shock curves which leave U0 in the ri direction. In general,

Si(U0) are called i-shock curves and S∗
i (U0) are called i-rarefaction shock curves (see

[20]). The shock speeds of Si(U0) and S∗
i (U0) are respectively denoted by σi and σ∗

i .
Because shock curves are not always monotonic with respect to u (see [15]), it is

convenient to choose arc length s in the U -plane as a parameter. We now describe
the precise form of the ordinary differential equations for shock curves with respect
to arc length s.

We first describe the differential equations at U0. It is noticed that

dσi

dµi

∣∣∣∣
U0

=
dσ∗

i

dµi

∣∣∣∣
U0

=
1

2

dλi

dµi

∣∣∣∣
U0

, i=1,2, (3.5)

where
d

dµi

=
∂

∂u
+hi

∂

∂v
. It follows from (3.3) and (3.5) that

du

ds

∣∣∣∣
U0

=
sgn(u−u0)√

1+a2i
,

dv

ds

∣∣∣∣
U0

=

{
sgn(u−u0)

}
ai√

1+a2i
, (3.6)

and

dσi

ds

∣∣∣∣
U0

=
dσ∗

i

ds

∣∣∣∣
U0

=
1

2

dλi

ds

∣∣∣∣
U0

. (3.7)

We next describe the differential equations at U 6=U0. On a smooth arc U 6=U0

of a shock curve, we differentiate equation (3.2) with respect to s so that

du

ds

{
(σi−fu)(v−v0)+gu(u−u0)

}
=

dv

ds

{
(σi−gv)(u−u0)+fv(v−v0)

}
.

Since

∣∣∣∣
dU

ds

∣∣∣∣=

√(
du

ds

)2

+

(
dv

ds

)2

=1,

we obtain

dU

ds
=




du

ds

dv

ds


=±Ki(U)

(
(σi−gv)(u−u0)+fv(v−v0)

(σi−fu)(v−v0)+gu(u−u0)

)
, (3.8)

where

Ki(U)=
1√{

(σi−fu)(v−v0)+gu(u−u0)
}2

+
{
(σi−gv)(u−u0)+fv(v−v0)

}2 .

Moreover, on a smooth arc U 6=U0 of shock curves, we differentiate each component
in equation (3.1) with respect to s so that

dσi

ds
(u−u0)=(fu−σi)

du

ds
+fv

dv

ds
,

dσi

ds
(v−v0)=gu

du

ds
+(gv−σi)

dv

ds
.
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Therefore, it follows from (3.8) that

dσi

ds
=∓Ki(U)(σi−λ1)(σi−λ2). (3.9)

Note that (3.8) and (3.9) are different signs.

From (3.6), (3.7), (3.8), and (3.9), we have the following differential equations for
shock curves and shock speeds:

(i) For U =(u,v)∈S1(U0),

dU

ds
=





−K1(U)

(
(σ1−gv)(u−u0)+fv(v−v0)

(σ1−fu)(v−v0)+gu(u−u0)

)
, U 6=U0,

−1√
1+a21

(
1

a1

)
, U =U0,

(3.10)

dσ1

ds
=





K1(U)(σ1−λ1)(σ1−λ2), U 6=U0,

−dλ1 ·r1

2
√

1+a21
, U =U0.

(3.11)

(ii) For U =(u,v)∈S2(U0),

dU

ds
=





K2(U)

(
(σ2−gv)(u−u0)+fv(v−v0)

(σ2−fu)(v−v0)+gu(u−u0)

)
, U 6=U0,

1√
1+a22

(
1

a2

)
, U =U0,

(3.12)

dσ2

ds
=





−K2(U)(σ2−λ1)(σ2−λ2), U 6=U0,

−dλ2 ·r2

2
√

1+a22
, U =U0.

(3.13)

(iii) For U =(u,v)∈S∗
1 (U0),

dU

ds
=





−K1(U)

(
(σ∗

1−gv)(u−u0)+fv(v−v0)

(σ∗
1−fu)(v−v0)+gu(u−u0)

)
, U 6=U0,

1√
1+a21

(
1

a1

)
, U =U0,

(3.14)

dσ∗
1

ds
=





K1(U)(σ∗
1−λ1)(σ

∗
1−λ2), U 6=U0,

dλ1 ·r1

2
√

1+a21
, U =U0.

(3.15)
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(iv) For U =(u,v)∈S∗
2 (U0),

dU

ds
=





K2(U)

(
(σ∗

2−gv)(u−u0)+fv(v−v0)

(σ∗
2−fu)(v−v0)+gu(u−u0)

)
, U 6=U0,

−1√
1+a22

(
1

a2

)
, U =U0,

(3.16)

dσ∗
2

ds
=





−K2(U)(σ∗
2−λ1)(σ

∗
2−λ2), U 6=U0,

dλ2 ·r2

2
√

1+a22
, U =U0.

(3.17)

4. The existence of shock curves

In this section, we prove the existence of i-shock curves Si(U0) and i-rarefaction
shock curves S∗

i (U0).

Theorem 4.1. Let the system (1.1) satisfy conditions (2.2) and (2.11). Then, for any
point U0=(u0,v0) in R

2, there exist four globally defined curves Si(U0) and S∗
i (U0),

i=1,2, satisfying the following properties:

(i) For U =(u,v)∈S1(U0)\U0,

u−u0<0, v−v0<0,
v−v0
u−u0

<a1, (4.1)

dU

ds
=α1r1+β1r2 with α1<0, β1<0, (4.2)

dv

ds
<0, (4.3)

d

ds

(
v−v0
u−u0

)
>0, (4.4)

dσ1

ds
<0, (4.5)

λ1(U)<σ1(U ;U0)<λ1(U0), (4.6)

σ1(U ;U0)<λ2(U). (4.7)

(ii) For U =(u,v)∈S2(U0)\U0,

u−u0>0, v−v0<0,
v−v0
u−u0

<a2, (4.8)

dU

ds
=α2r1+β2r2 with α2<0, β2<0, (4.9)

du

ds
>0,

dv

ds
<0, (4.10)

d

ds

(
v−v0
u−u0

)
>0, (4.11)

dσ2

ds
<0, (4.12)

λ2(U)<σ2(U ;U0)<λ2(U0), (4.13)

λ1(U0)<σ2(U ;U0). (4.14)
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(iii) For U =(u,v)∈S∗
1 (U0)\U0,

u−u0>0, v−v0>0,
v−v0
u−u0

>a1, (4.15)

dU

ds
=α∗

1r1+β∗
1r2 with α∗

1>0, β∗
1 >0, (4.16)

du

ds
>0,

dv

ds
>0, (4.17)

d

ds

(
v−v0
u−u0

)
<0, (4.18)

dσ∗
1

ds
>0, (4.19)

λ1(U0)<σ∗
1(U ;U0)<λ1(U), (4.20)

σ∗
1(U ;U0)<λ2(U0). (4.21)

(iv) For U =(u,v)∈S∗
2 (U0)\U0,

u−u0<0, v−v0>0,
v−v0
u−u0

>a2, (4.22)

dU

ds
=α∗

2r1+β∗
2r2 with α∗

2>0, β∗
2 >0, (4.23)

dv

ds
>0, (4.24)

d

ds

(
v−v0
u−u0

)
<0, (4.25)

dσ∗
2

ds
>0, (4.26)

λ2(U0)<σ∗
2(U ;U0)<λ2(U), (4.27)

λ1(U)<σ∗
2(U ;U0). (4.28)

Remark 4.2. It should be noted that it follows from (4.3) and (4.4) that S1(U0) is
defined for all v<v0 and from (4.10) and (4.11) that S2(U0) is defined for all u>u0.
Similarly, S∗

1 (U0) is defined for all u>u0 and S∗
2 (U0) is defined for all v>v0.

Remark 4.3. We note that inequalities (4.6) and (4.13) are the shock condition,
and inequalities (4.7) and (4.14) are the stability condition for shock speeds (see [5]
for the stability condition). From (4.6) and (4.7) it follows that S1(U0) satisfies the
Lax entropy condition (2.15). Moreover, from (4.13) and (4.14) it follows that S2(U0)
satisfies the Lax entropy condition (2.16).

Before proving Theorem 4.1, we state a couple of preliminary results.
The following result gives necessary conditions for the singular points of Si(U0)

and S∗
i (U0), i=1,2:

Proposition 4.4. Let U0=(u0,v0) and assume that condition (2.2) is satisfied. If

for U 6=U0, the denominator of Ki(U), i=1,2, is zero, then σi(U ;U0)=λ1(U) or

σi(U ;U0)=λ2(U).

Proof. Let U =(u,v) 6=U0. If the denominator of Ki(U) is zero, then we have

(σi−gv)(u−u0)+fv(v−v0)=(σi−fu)(v−v0)+gu(u−u0)=0.
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This means that u=u0 if and only if v=v0. Since u 6=u0, we have

v−v0
u−u0

=−
σi−gv
fv

=−
gu

σi−fu
.

From this it follows that

(σi−λ1)(σi−λ2)=0,

and the proof is complete.

By Proposition 4.4, we see that shock curves Si(U0) and S∗
i (U0) are defined and

nonsingular except at points where the shock speeds are equal to an eigenvalue of dF .

The following result on the Hugoniot locus, which is defined by

H(U0)=
{
U | σ

(
U−U0

)
=F (U)−F (U0) for some real number σ

}
,

where σ≡σ(U ;U0) is shock speed, is elementary, but plays an important role in our
arguments.

Lemma 4.5. Let U0=(u0,v0) and assume that condition (2.2) is satisfied. We have

the following:

(i) For any v 6=v0, (u0,v) /∈H(U0).

(ii) For any u 6=u0, (u,v0) /∈H(U0).
Proof. We only prove (i), because (ii) is proved by arguments similar to the

proof of (i).
If (u0,v)∈H(U0) for some v 6=v0, then it follows from the Rankine-Hugoniot

condition that

f(u0,v)−f(u0,v0)=0.

But this contradicts condition (2.2). Thus (i) is proved.

We begin the proof of Theorem 4.1. The proof is given in four steps. In the rest
of this section, we assume that conditions (2.2) and (2.11) are satisfied.

Step 1. Let U0=(u0,v0) be a point in R
2. We provisionally assume the following

conditions:

λ1(U)<σ1(U ;U0)<λ2(U) for U ∈S1(U0)\U0, (4.29)

λ2(U)<σ2(U ;U0) for U ∈S2(U0)\U0, (4.30)

σ∗
1(U ;U0)<λ1(U) for U ∈S∗

1 (U0)\U0, (4.31)

λ1(U)<σ∗
2(U ;U0)<λ2(U) for U ∈S∗

2 (U0)\U0. (4.32)

Then Proposition 4.4 shows that Si(U0) and S∗
i (U0), i=1,2 must either extend as a

simple arc to infinity or return eventually to U0. In this step, we prove that conditions
(4.29)–(4.32) guarantee the global existence of Si(U0) and S∗

i (U0), i=1,2.

Proposition 4.6. Let U0=(u0,v0) in R
2. We have the following:

(i) If (4.29) holds, then there exists a globally defined curve S1(U0) satisfying

(4.1)-(4.7) for U =(u,v)∈S1(U0)\U0.
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(ii) If (4.30) holds, then there exists a globally defined curve S2(U0) satisfying

(4.8)-(4.13) for U =(u,v)∈S2(U0)\U0.

(iii) If (4.31) holds, then there exists a globally defined curve S∗
1 (U0) satisfying

(4.15)-(4.20) for U =(u,v)∈S∗
1 (U0)\U0.

(iv) If (4.32) holds, then there exists a globally defined curve S∗
2 (U0) satisfying

(4.22)-(4.28) for U =(u,v)∈S∗
2 (U0)\U0.

Proof. We only prove (i), because (ii), (iii) and (iv) are proved by arguments
similar to those of (i).

Let U =(u,v)∈S1(U0)\U0. We first prove (4.1). It follows from Lemma 4.5 that
u−u0<0 and v−v0<0 hold. Noting that

da1
ds

∣∣∣∣
U0

=
−b1√
1+a21

>0,
d

ds

(
v−v0
u−u0

)∣∣∣∣
U0

=
−b1

2
√

1+a21
>0,

lim
U→U0

v−v0
u−u0

=a1(U0),

it is obvious that the third inequality of (4.1) holds for U close to U0. If this inequality
is not true all along S1(U0), then there exists the first point U1=(u1,v1) such that

v1−v0
u1−u0

=a1(U1) and
d

ds

(
a1−

v−v0
u−u0

)∣∣∣∣
U1

≤0.

By (2.4) and (3.10), we then have

dU

ds

∣∣∣∣
U1

=−K1(u1−u0)

(
a1fv+σ1−gv
a1(σ1−fu)+gu

)
=−K1(σ1−λ2)(u1−u0)

(
1
a1

)
.

From this it follows that

d

ds

(
v−v0
u−u0

)∣∣∣∣
U1

=
K1(λ2−σ1)

u1−u0

{
a1(u1−u0)−(v1−v0)

}
=0

and

da1
ds

∣∣∣∣
U1

=−K1(σ1−λ2)(u1−u0)b1>0,

so that

d

ds

(
a1−

v−v0
u−u0

)∣∣∣∣
U1

>0.

This implies a contradiction and the proof of (4.1) is complete.
Next, we prove (4.2). Since

dU

ds
· l1=−K1(λ2−σ1)

{
a2(u−u0)−(v−v0)

}
<0,

dU

ds
· l2=−K1(λ1−σ1)

{
a1(u−u0)−(v−v0)

}
<0,

we see that

dU

ds
=α1r1+β1r2 with α1<0, β1<0.
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Hence, (4.2) is proved.
Since

(σ1−fu)(v−v0)+gu(u−u0)> (σ1−λ2)(v−v0)>0,

we have

dv

ds
=−K1

{
(σ1−fu)(v−v0)+gu(u−u0)

}
<0.

Thus (4.3) is proved.
We now prove (4.4). Noting that

d

ds

(
v−v0
u−u0

)∣∣∣∣
U0

=
−b1

2
√

1+a21
>0,

it is obvious that (4.4) holds for U close to U0. If (4.4) is not true all along S1(U0),
then there exists the first point U1=(u1,v1) such that

d

ds

(
v−v0
u−u0

)∣∣∣∣
U1

=0.

We then have

v1−v0
u1−u0

=a1 or a2.

This contradicts inequality (4.1) and (4.4) is proved.
It follows from (4.29) that inequalities (4.5), (4.6) and (4.7) hold for U ∈

S1(U0)\U0. Since inequality (4.4) shows that S1(U0) cannot return to U0, it turns out
that S1(U0) is a simple arc extending from U0 to infinity.

Step 2. In this step we prove the left side of inequality (4.29), inequality (4.30),
inequality (4.31), and the right side of inequality (4.32). We only prove the left side
of inequality (4.29), because inequality (4.30), inequality (4.31) and the right side
of inequality (4.32) are proved by arguments similar to the proof of the left side of
inequality (4.29).

Let U =(u,v)∈S1(U0)\U0. Noting that

dσ1

ds

∣∣∣∣
U0

=
1

2

dλ1

ds

∣∣∣∣
U0

<0,

it is obvious that the left side of inequality (4.29) holds for U close to U0. If this in-
equality is not true all along S1(U0), then there exists the first point U1=(u1,v1) 6=U0

such that σ1(U1;U0)=λ1(U1) and
d

ds

{
σ1−λ1

}∣∣∣∣
U1

≤0. It is easily seen that K1(U1)<

∞, and hence

dσ1

ds

∣∣∣∣
U1

=0.

Moreover, since

dU

ds

∣∣∣∣
U1

=K1

{
fv(v1−v0)+(λ1−gv)(u1−u0)

}( 1
a1

)
,
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we have

dλ1

ds

∣∣∣∣
U1

=−K1

{
fv(v1−v0)+(λ1−gv)(u1−u0)

}
dλ1 ·r1

∣∣∣∣
U1

<0.

Therefore, it follows that

d

ds

{
σ1−λ1

}∣∣∣∣
U1

>0.

This implies a contradiction and the left side of inequality (4.29) is proved.

Step 3. In Step 1 and Step 2, it is shown that there exist globally defined curves
S2(U0) and S∗

1 (U0) satisfying (4.8)–(4.13) and (4.15)–(4.20), respectively. Note that
S2(U0) and S∗

1 (U0) are monotonic with respect to u. In this step, by using the
monotonicity of S2(U0) and S∗

1 (U0), we prove the stability conditions (4.14) and
(4.21). We only prove (4.14), because (4.21) is proved by arguments similar to the
proof of (4.14).

Let U =(u,v)∈S2(U0)\U0. Since

λ1(U0)<λ2(U0)=σ2(U0;U0),

it is obvious that (4.14) holds for U close to U0. If (4.14) is not true all along S2(U0),
then there exists the first point U1=(u1,v1) 6=U0 such that σ2(U1;U0)=λ1(U0). Since

σ∗
1(U0;U0)=λ1(U0),

dσ2

ds
<0, and

dσ∗
1

ds
>0, we see that there exist Û1=(û, v̂1)∈S∗

1 (U0)

and Û2=(û, v̂2)∈S2(U0) such that σ∗
1(Û1;U0)=σ2(Û2;U0) for u0<û<u1 and v̂2<v̂1,

as in Figure 4.1.

uu

v

σ

u0 û u1

σ∗1(U;U0)

σ2(U;U0)

λ2(U0)

λ1(U0)

U
^
1

U
^
2

U1

U0

S2(U0)

S*1(U0)

Fig. 4.1. The situation for σ∗
1(Û1;U0)=σ2(Û2;U0).

By the Rankine-Hugoniot condition, we have

σ∗
1(Û1;U0)

(
Û1−U0

)
=F (Û1)−F (U0),

σ2(Û2;U0)
(
Û2−U0

)
=F (Û2)−F (U0).

Therefore, it follows from σ∗
1(Û1;U0)=σ2(Û2;U0) that

σ∗
1(Û1;U0)

(
Û1− Û2

)
=F (Û1)−F (Û2).

This means that Û1∈H(Û2). However, by Lemma 4.5, we have Û1 /∈H(Û2). This
implies a contradiction. Thus (4.14) is proved.



H. OHWA 173

Step 4. In this step, we prove the right side of inequality (4.29) and the left side
of inequality (4.32). The keys to proving these inequalities are the monotonicity of
S2(U0) and S∗

1 (U0) and the stability conditions (4.14) and (4.21). We only prove the
right side of inequality (4.29), because the left side of inequality (4.32) is proved by
arguments similar to the proof of the right side of inequality (4.29).

Let U =(u,v)∈S1(U0)\U0. Since

σ1(U0;U0)=λ1(U0)<λ2(U0),

it is obvious that the right side of inequality (4.29) holds for U close to U0. If this in-
equality is not true all along S1(U0), then there exists the first point U1=(u1,v1) 6=U0

such that σ1(U1;U0)=λ2(U1). Note that u1−u0<0 and v1−v0<0. By the mono-
tonicity of S∗

1 (U1), we see that there exists ua≤u0 such that Ua=(ua,v0)∈S∗
1 (U1) or

vb≤v0 such that Ub=(u0,vb)∈S∗
1 (U1).

When S∗
1 (U1) intersects the line v=v0 at Ua=(ua,v0), we have the following

Rankine-Hugoniot condition:

σ∗
1(Ua;U1)

(
Ua−U1

)
=F (Ua)−F (U1).

In this case, noting that

λ2(U1)
(
U1−U0

)
=F (U1)−F (U0),

we obtain

σ∗
1(Ua;U1)

(
Ua−U1

)
+λ2(U1)

(
U1−U0

)
=F (Ua)−F (U0). (4.33)

From this, we have the equality for the second component
(
λ2(U1)−σ∗

1(Ua;U1)
)
(v1−v0)=g(ua,v0)−g(u0,v0).

Since g(ua,v0)−g(u0,v0)≥0 and v1−v0<0, it follows that

λ2(U1)≤σ∗
1(Ua;U1).

However, from (4.21) it follows that

σ∗
1(Ua;U1)<λ2(U1),

which implies a contradiction.
When S∗

1 (U1) intersects the line u=u0 at Ub=(u0,vb), we have the following
relation:

σ∗
1(Ub;U1)

(
Ub−U1

)
+λ2(U1)

(
U1−U0

)
=F (Ub)−F (U0). (4.34)

From this, we have the equality for the first component
(
λ2(U1)−σ∗

1(Ub;U1)
)
(u1−u0)=f(u0,vb)−f(u0,v0).

Since f(u0,vb)−f(u0,v0)≥0 and u1−u0<0, it follows that

λ2(U1)≤σ∗
1(Ub;U1).

However, from (4.21) it follows that

σ∗
1(Ub;U1)<λ2(U1),

which implies a contradiction. Thus the right side of inequality (4.29) is proved.

By Step 1–4, Theorem 4.1 is fully proved.
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5. Further properties of the shock curves

Now that we have constructed four shock curves Si(U0) and S∗
i (U0), it is natural

to ask whether the Hugoniot locus H(U0) always consists of just these four curves, or
whether it could contain additional points and detached curves (see [1] for detached
curves). In this section, we prove that the Hugoniot locus H(U0) always consists of
just four shock curves Si(U0) and S∗

i (U0), i=1,2.

Theorem 5.1. Let U0=(u0,v0) in R
2 and assume that conditions (2.2) and (2.11)

are satisfied. Then we have

H(U0)=S1(U0)∪S2(U0)∪S∗
1 (U0)∪S∗

2 (U0). (5.1)

The key to prove Theorem 5.1 is the following result which represents “the reci-
procity relationship” between Si(U0) and S∗

i (U0), i=1,2 (cf. [10]). The result will
also be used in the uniqueness portion of our main result (Theorem 6.1).

Theorem 5.2. Let U0=(u0,v0) in R
2 and assume that conditions (2.2) and (2.11)

are satisfied. Then we have the following:

Ū ∈Si(U0) if and only if U0∈S∗
i (Ū). (5.2)

Proof. We only prove the case of i=1, because the case of i=2 is proved by
arguments similar to the proof of the case of i=1.

We first prove the necessity part. Let Ū ∈S1(U0). Then we show that S∗
1 (Ū)

does not intersect S1(U0). On the contrary, suppose that S∗
1 (Ū) intersects S1(U0) at

U1 6=U0 (see Figure 5.1).

U0
U1

U
-

S*1(U
-
)

S2(U0)

S1(U0)

u

v

Fig. 5.1. The situation where S∗
1 (Ū) intersects S1(U0) at U1.

By the Rankine-Hugoniot condition, we have

σ1(U1;U0)
(
U1−U0

)
=F (U1)−F (U0),

σ1(Ū ;U0)
(
Ū−U0

)
=F (Ū)−F (U0),

σ∗
1(U1;Ū)

(
U1− Ū

)
=F (U1)−F (Ū).

Therefore, we obtain

(
σ1(Ū ;U0)−σ∗

1(U1;Ū)
)
(Ū−U0)+

(
σ∗
1(U1;Ū)−σ1(U1;U0)

)
(U1−U0)=0.
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By (4.4), the vectors Ū−U0 and U1−U0 are linearly independent. Therefore, we have

σ1(U1;U0)=σ1(Ū ;U0)=σ∗
1(U1;Ū).

However, it follows from (4.5) that σ1(Ū ;U0)<σ1(U1;U0). This implies a contradic-
tion. Thus it is proved that S∗

1 (Ū) does not intersect S1(U0).

Now, suppose that U0 /∈S∗
1 (Ū). Since it is known (cf. [10] and [11]) that S∗

1 (Ū)
passes through U0 for Ū close to U0, we then see that there exists a point U∗∈S1(U0)
such that S∗

1 (U
∗) does not pass through U0 and S∗

1 (U
∗) intersects S2(U0) at some

point U2 6=U0, as in Figure 5.2. Here we used the continuous dependence of shock
curves on initial points.

U0

U2

U*
S*1(U

*)
S2(U0)

S1(U0)

u

v

Fig. 5.2. The situation where S∗
1 (U

∗) intersects S2(U0) at U2.

By the Rankine-Hugoniot condition, we have

σ1(U
∗;U0)

(
U∗−U0

)
=F (U∗)−F (U0),

σ∗
1(U2;U

∗)
(
U2−U∗

)
=F (U2)−F (U∗),

σ2(U2;U0)
(
U2−U0

)
=F (U2)−F (U0).

Therefore, we obtain

(
σ1(U

∗;U0)−σ∗
1(U2;U

∗)
)
(U∗−U0)+

(
σ∗
1(U2;U

∗)−σ2(U2;U0)
)
(U2−U0)=0.

By (4.1) and (4.8), the vectors U∗−U0 and U2−U0 are linearly independent. This
means that

σ1(U
∗;U0)=σ∗

1(U2;U
∗)=σ2(U2;U0).

But this contradicts the fact that σ1(U
∗;U0)<λ1(U0)<σ2(U2;U0). Thus it is proved

that U0∈S∗
1 (Ū).

We next prove sufficiency. Let Ū ∈S∗
1 (U0); then we show that S1(Ū) does not

intersect S∗
1 (U0). On the contrary, suppose that S1(Ū) intersects S∗

1 (U0) at U1 6=U0

(see Figure 5.3).
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U0

U1

U
-

S1(U
-
)

u

v S*1(U0)

S*2(U0)

Fig. 5.3. The situation where S1(Ū) intersects S∗
1 (U0) at U1.

By the Rankine-Hugoniot condition, we have

σ1(U1;Ū)
(
U1− Ū

)
=F (U1)−F (Ū),

σ∗
1(U1;U0)

(
U1−U0

)
=F (U1)−F (U0),

σ∗
1(Ū ;U0)

(
Ū−U0

)
=F (Ū)−F (U0).

Therefore, we obtain

(
σ∗
1(Ū ;U0)−σ1(U1;Ū)

)
(Ū−U0)+

(
σ1(U1;Ū)−σ∗

1(U1;U0)
)
(U1−U0)=0.

By (4.18), the vectors Ū−U0 and U1−U0 are linearly independent. Therefore, we
have

σ1(U1;Ū)=σ∗
1(U1;U0)=σ∗

1(Ū ;U0).

However, it follows from (4.19) that σ∗
1(U1;U0)<σ∗

1(Ū ;U0). This implies a contradic-
tion. Thus it is proved that S1(Ū) does not intersect S∗

1 (U0).
Now, suppose that U0 /∈S1(Ū). Then we see that S1(Ū) intersects S∗

2 (U0) at some
point U2 6=U0 (see Figure 5.4).

U0

U2

U
-S1(U

-
)

u

v S*1(U0)

S*2(U0)

Fig. 5.4. The situation where S1(Ū) intersects S∗
2 (U0) at U2.

By the Rankine-Hugoniot condition, we have

σ1(U2;Ū)
(
U2− Ū

)
=F (U2)−F (Ū),

σ∗
1(Ū ;U0)

(
Ū−U0

)
=F (Ū)−F (U0),

σ∗
2(U2;U0)

(
U2−U0

)
=F (U2)−F (U0).
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Therefore, we obtain

(
σ∗
1(Ū ;U0)−σ1(U2;Ū)

)
(Ū−U0)+

(
σ1(U2;Ū)−σ∗

2(U2;U0)
)
(U2−U0)=0.

By (4.15) and (4.22), the vectors Ū−U0 and U2−U0 are linearly independent. There-
fore, we have

σ1(U2;Ū)=σ∗
1(Ū ;U0)=σ∗

2(U2;U0).

But this contradicts the fact that σ∗
1(Ū ;U0)<λ2(U0)<σ∗

2(U2;U0). Thus it is proved
that U0∈S1(Ū) and the proof of Theorem 5.2 is complete.

Now we begin the proof of Theorem 5.1.
Let Ū =(ū, v̄) be a point of H(U0) not on S1(U0)∪S2(U0)∪S∗

1 (U0)∪S∗
2 (U0). The

shock curves Si(U0) and S∗
i (U0), i=1,2 divide the U -plane into four regions (marked

I, II, III, IV in Figure 5.5) meeting at U0.

U0

S1(U0)

u

v

S*1(U0)
S*2(U0)

S2(U0)

I

II

III

IV

Fig. 5.5. The situation where Si(U0) and S∗
i
(U0) divide the U-plane.

We first prove that Ū does not lie in region I. On the contrary, suppose that Ū is
in region I.

If v̄≥v0, then we see that S∗
2 (Ū) intersects S∗

1 (U0) at some point U1 6=U0 as in
Figure 5.6

U0

u

v

S*1(U0)

S2(U0)

U
-

U1

S*2(U
-
)

Fig. 5.6. The situation where S∗
2 (Ū) intersects S∗

1 (U0) at U1.

By the Rankine-Hugoniot condition, we have

σ∗
1(U1;U0)

(
U1−U0

)
=F (U1)−F (U0),

σ∗
2(U1;Ū)

(
U1− Ū

)
=F (U1)−F (Ū).
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Noting that

σ(Ū ;U0)
(
Ū−U0

)
=F (Ū)−F (U0),

we obtain

(
σ∗
2(U1;Ū)−σ(Ū ;U0)

)
(Ū−U1)+

(
σ(Ū ;U0)−σ∗

1(U1;U0)
)
(U0−U1)=0.

Since the vectors Ū−U1 and U0−U1 are linearly independent, this means that

σ∗
1(U1;U0)=σ∗

2(U1;Ū)=σ(Ū ;U0).

But this contradicts the fact that σ∗
1(U1;U0)<λ1(U1)<σ∗

2(U1;Ū).
If v̄≤v0, then we see that S1(Ū) intersects S2(U0) at some point U2 6=U0 as in

Figure 5.7.

U0 S1(U
-
)

u

v

S*1(U0)

S2(U0)

U
-

U2

Fig. 5.7. The situation where S1(Ū) intersects S2(U0) at U2.

By the Rankine-Hugoniot condition, we have

σ1(U2;Ū)
(
U2− Ū

)
=F (U2)−F (Ū),

σ2(U2;U0)
(
U2−U0

)
=F (U2)−F (U0).

Noting that

σ(Ū ;U0)
(
Ū−U0

)
=F (Ū)−F (U0),

we obtain

(
σ1(U2;Ū)−σ(Ū ;U0)

)
(Ū−U2)+

(
σ(Ū ;U0)−σ2(U2;U0)

)
(U0−U2)=0.

Since the vectors Ū−U2 and U0−U2 are linearly independent, this means that

σ1(U2;Ū)=σ2(U2;U0)=σ(Ū ;U0).

But this contradicts the fact that σ1(U2;Ū)<λ2(U2)<σ2(U2;U0). Thus it is proved
that Ū does not lie in region I.

We next prove that Ū does not lie in region II. If Ū is in region II, then S1(Ū)
intersects either S∗

1 (U0) or S
∗
2 (U0).

When S1(Ū) intersects S∗
1 (U0) at some point U1 6=U0, it follows from Theorem

5.2 that Ū ∈S∗
1 (U1) for U1∈S∗

1 (U0). By (4.16), we then see that S∗
1 (U1) intersects

S∗
1 (U0) at some point U∗ 6=U1 as in Figure 5.8.
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U0

u

v S*1(U0)
S*2(U0)

U1

S*1(U1)

U
-

U*

Fig. 5.8. The situation where S∗
1 (U1) intersects S∗

1 (U0) at U∗.

By the Rankine-Hugoniot condition, we have

σ∗
1(U1;U0)

(
U1−U0

)
=F (U1)−F (U0),

σ∗
1(U

∗;U0)
(
U∗−U0

)
=F (U∗)−F (U0),

σ∗
1(U

∗;U1)
(
U∗−U1

)
=F (U∗)−F (U1).

Therefore, we obtain

(
σ∗
1(U

∗;U0)−σ∗
1(U

∗;U1)
)
(U∗−U0)+

(
σ∗
1(U

∗;U1)−σ∗
1(U1;U0)

)
(U1−U0)=0.

By (4.18), the vectors U∗−U0 and U1−U0 are linearly independent. Therefore, we
have

σ∗
1(U1;U0)=σ∗

1(U
∗;U0)=σ∗

1(U
∗;U1).

However, it follows from (4.19) that σ∗
1(U1;U0)<σ∗

1(U
∗;U0). This implies a contra-

diction. Thus it is proved that S1(Ū) does not intersect S∗
1 (U0).

When S1(Ū) intersects S∗
2 (U0) at some point U2 6=U0, we have the following

Rankine-Hugoniot conditions

σ1(U2;Ū)
(
U2− Ū

)
=F (U2)−F (Ū),

σ∗
2(U2;U0)

(
U2−U0

)
=F (U2)−F (U0).

Noting that

σ(Ū ;U0)
(
Ū−U0

)
=F (Ū)−F (U0),

we obtain

(
σ(Ū ;U0)−σ∗

2(U2;U0)
)
(U0−U2)+

(
σ1(U2;Ū)−σ(Ū ;U0)

)
(Ū−U2)=0.

Since the vectors U0−U2 and Ū−U2 are linearly independent, this means that

σ1(U2;Ū)=σ∗
2(U2;U0)=σ(Ū ;U0).

Now, let Ū =(ū, v̄)∈H(U0) and U2=(u2,v2)∈S∗
2 (U0). By Lemma 4.5, it is obvious

that ū 6=u0. Without loss of generality, we may suppose that ū>u0. Since Ū ∈S∗
1 (U2),

U0∈S2(U2),
dσ∗

1

ds
>0, and

dσ2

ds
<0, we then see that there exist Û1=(û, v̂1)∈S∗

1 (U2)

and Û2=(û, v̂2)∈S2(U2) such that σ∗
1(Û1;U2)=σ2(Û2;U2) for u0<û<ū and v̂2<v̂1,

as in Figure 5.9.
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Fig. 5.9. The situation for σ∗
1(Û1;U2)=σ2(Û2;U2).

By the Rankine-Hugoniot condition, we have

σ∗
1(Û1;U2)

(
Û1−U2

)
=F (Û1)−F (U2),

σ2(Û2;U2)
(
Û2−U2

)
=F (Û2)−F (U2).

Therefore, it follows from σ∗
1(Û1;U2)=σ2(Û2;U2) that

σ∗
1(Û1;U2)

(
Û1− Û2

)
=F (Û1)−F (Û2).

This means that Û1∈H(Û2). However, by Lemma 4.5, we have Û1 /∈H(Û2). This
implies a contradiction. Thus it is proved that Ū does not lie in region II.

By arguments similar to the proof of region I, we see that Ū does not lie in region
III. Moreover, by arguments similar to the proof of region II, we see that Ū does not
lie in region IV. Thus the proof of Theorem 5.1 is complete.

6. The uniqueness of self-similar solutions

In this section, we prove the main result on the uniqueness of self-similar solutions
to the Riemann problem (1.1)–(1.2):

Theorem 6.1. Let the system (1.1) satisfy conditions (2.2) and (2.11). Then there

exists at most one self-similar solution to the Riemann problem (1.1)–(1.2) consisting
of centered rarefaction and shock waves satisfying the Lax entropy condition.

Theorem 6.1 means that if the Riemann problem possesses a self-similar solution,
then the solution is always unique. It should be noted that the Riemann problem
does not always possess a solution (cf. [19]), that is, the Riemann problem may have
a vacuum state (see [14]).

The self-similar solutions to the Riemann problem (1.1)–(1.2) contain at most
three constant states (Ul=(ul,vl), Ur=(ur,vr), and an intermediate state Um=
(um,vm)) separated by two waves. Here the wave is a centered rarefaction wave
or a shock wave. The 1-wave connects Ul to Um and the 2-wave connects Um to Ur.
See [11] and [20] for the construction of self-similar solutions.

Through Ul we draw two shock curves Si(Ul), i=1,2, and curves R+

i (Ul) of two
rarefaction curves Ri(Ul) which start out from Ul in the direction of +ri, i=1,2, as
in Figure 6.1. These four curves divide the U -plane into four regions (marked I, II,
III, IV in Figure 6.1).
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Fig. 6.1. The situation where Si(Ul) and R∗
i
(Ul) divide the U-plane.

To prove the uniqueness of self-similar solutions in region I and IV, we first prove
the following result:

Lemma 6.2. Assume that conditions (2.2) and (2.11) are satisfied. Then we have the

following:

(i) For Ū ∈R+

1 (Ul)\Ul, the shock curve S2(Ū) lies entirely in region I of the

U -plane bounded by R+

1 (Ul) and S2(Ul).

(ii) For Ū ∈S1(Ul)\Ul, the shock curve S2(Ū) lies entirely in region IV of the

U -plane bounded by S1(Ul) and S2(Ul).

Proof. We first prove (i). It is clear that S2(Ū) enters region I initially. By
(4.22), we have Ul /∈S2(Ū). Suppose S2(Ū) leaves region I; then there exists a point
U ∈S2(Ū)\Ū which lies on either R+

1 (Ul) or S2(Ul).
If U ∈R+

1 (Ul), then it follows from Theorem 5.2 that S∗
2 (U) passes through both

U and Ū . This contradicts (4.23).
If U ∈S2(Ul), then it follows from Theorem 5.2 that S∗

2 (U) passes through both
Ul and Ū . This also contradicts (4.23). Therefore, S2(Ū) cannot leave region I, and
(i) is proved.

We next proceed to prove (ii). It is clear that S2(Ū) enters region IV initially. By
(4.8), we have Ul /∈S2(Ū). Suppose S2(Ū) leaves region IV; then there exists a point
U ∈S2(Ū)\Ū which lies on either S1(Ul) or S2(Ul).

If U ∈S1(Ul), then it follows from the Rankine-Hugoniot condition that

σ1(Ū ;Ul)
(
Ū−Ul

)
=F (Ū)−F (Ul),

σ1(U ;Ul)
(
U−Ul

)
=F (U)−F (Ul),

σ2(U ;Ū)
(
U− Ū

)
=F (U)−F (Ū).

Therefore, we have

(
σ1(Ū ;Ul)−σ2(U ;Ū)

)
(Ū−Ul)+

(
σ2(U ;Ū)−σ1(U ;Ul)

)
(U−Ul)=0.

Since the vectors Ū−Ul and U−Ul are linearly independent, by (4.1) and (4.8), we
obtain

σ1(Ū ;Ul)=σ1(U ;Ul)=σ2(U ;Ū).

This contradicts (4.5).
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If U ∈S2(Ul), then it follows from the Rankine-Hugoniot condition that

σ1(Ū ;Ul)
(
Ū−Ul

)
=F (Ū)−F (Ul),

σ2(U ;Ul)
(
U−Ul

)
=F (U)−F (Ul),

σ2(U ;Ū)
(
U− Ū

)
=F (U)−F (Ū).

Therefore, we have

(
σ1(Ū ;Ul)−σ2(U ;Ul)

)
(Ul−U)+

(
σ2(U ;Ū)−σ1(Ū ;Ul)

)
(Ū−U)=0.

Since the vectors Ul−U and Ū−U are linearly independent, by (4.1) and (4.8), we
obtain

σ1(Ū ;Ul)=σ2(U ;Ul)=σ2(U ;Ū).

However, because of (4.6) and (4.14), we have

σ1(Ū ;Ul)<λ1(Ul)<σ2(U ;Ul).

This is a contradiction and (ii) is proved.

The following result guarantees that self-similar solutions are well-defined in re-
gion IV:

Lemma 6.3. Assume that conditions (2.2) and (2.11) are satisfied. For Ū ∈S1(Ul)\Ul

and U ∈S2(Ū)\Ū , we have

σ1(Ū ;Ul)<σ2(U ;Ū). (6.1)

Proof. Since σ1(Ū ;Ul)<λ2(Ū)=σ2(Ū ;Ū), it is obvious that σ1(Ū ;Ul)<σ2(U ;Ū)
for U close to Ū . If σ2(U ;Ū)≤σ1(Ū ;Ul), then there exists U1∈S2(Ū)\Ū such that
σ1(Ū ;Ul)=σ2(U1;Ū). It follows from the Rankine-Hugoniot condition that

σ1(Ū ;Ul)
(
Ū−Ul

)
=F (Ū)−F (Ul),

σ2(U1;Ū)
(
U1− Ū

)
=F (U1)−F (Ū).

Therefore, we have

σ1(Ū ;Ul)
(
U1−Ul

)
=F (U1)−F (Ul),

so that, by Theorem 5.1, U1∈H(Ul)=S1(Ul)∪S2(Ul)∪S∗
1 (Ul)∪S∗

2 (Ul). This contra-
dicts Lemma 6.2 (ii) and the proof of Lemma 6.3 is complete.

In general, it is difficult to prove the uniqueness of self-similar solutions in region
IV. To prove the uniqueness, we need the following result:

Lemma 6.4. Assume that conditions (2.2) and (2.11) are satisfied. For Ū1, Ū2∈
S1(Ul)\Ul with Ū1 6= Ū2, the shock curves S2(Ū1) and S2(Ū2) do not intersect.

Proof. Suppose that S2(Ū1) and S2(Ū2) intersect at a point U3=(u3,v3). Then,
for Ū =(ū, v̄) between Ū1=(ū1, v̄1) and Ū2=(ū2, v̄2) on S1(Ul), the shock curve S2(Ū)
cannot escape to infinity without first crossing one of the curves S2(Ūn), n=1,2, as
in Figure 6.2.
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Fig. 6.2. The situation where S2(Ū) intersects either S2(Ū1) or S2(Ū2).

Thus a point of intersection U3 must continue to exist as Ū1 and Ū2 are allowed to
approach each other along S1(Ul). Then compactness assures that, for some such
sequence of Ū1 and Ū2 with Ū1− Ū2→0, the point U3 must approach a finite limit
U4=(u4,v4). Observing that U3 is on both S2(Ū1) and S2(Ū2) so that S∗

2 (U3) contains
both Ū1 and Ū2, we deduce upon passage to the limit that S∗

2 (U4) has double contact
with S1(Ul) at the common limit point Ū 6=Ul of Ū1 and Ū2. In other words, S∗

2 (U4)

is tangent to S1(Ul) at Ū . Note that Ū 6=U4. Denoting by
dU

ds

∣∣∣∣
Ū

the differential

coefficient of S1(Ul) at Ū and by
dU∗

ds∗

∣∣∣∣
Ū

the differential coefficient of S∗
2 (U4) at Ū ,

we observe that these differential coefficients are the unit tangent vector so that, by
(4.2) and (4.26),

dU

ds

∣∣∣∣
Ū

=−
dU∗

ds∗

∣∣∣∣
Ū

. (6.2)

By differentiating the corresponding conditions (3.1), we obtain

dσ1

ds

∣∣∣∣
Ū

(
Ū−Ul

)
=
(
dF (Ū)−σ1(Ū ;Ul)

)dU
ds

∣∣∣∣
Ū

,

dσ∗
2

ds∗

∣∣∣∣
Ū

(
Ū−U4

)
=
(
dF (Ū)−σ∗

2(Ū ;U4)
)dU∗

ds∗

∣∣∣∣
Ū

,

where
dσ1

ds

∣∣∣∣
Ū

denotes the differential coefficient of σ1(U ;Ul) at Ū and
dσ∗

2

ds∗

∣∣∣∣
Ū

denotes

the differential coefficient of σ∗
2(U ;U4) at Ū . Therefore, it follows from (6.2) that

dσ1

ds

∣∣∣∣
Ū

(
Ū−Ul

)
+

dσ∗
2

ds∗

∣∣∣∣
Ū

(
Ū−U4

)
=
(
σ∗
2(Ū ;U4)−σ1(Ū ;Ul)

)dU
ds

∣∣∣∣
Ū

.

From this, we have the equality for the second component

dσ1

ds

∣∣∣∣
Ū

(
v̄−vl

)
+

dσ∗
2

ds∗

∣∣∣∣
Ū

(
v̄−v4

)
=
(
σ∗
2(Ū ;U4)−σ1(Ū ;Ul)

)dv
ds

∣∣∣∣
Ū

. (6.3)

It follows from (4.1), (4.5), (4.22), and (4.26) that the left side of (6.3) is positive.
However, by Lemma 6.3, we have σ1(Ū ;Ul)<σ2(U4;Ū)=σ∗

2(Ū ;U4) so that, because
of (4.3), the right side of (6.3) is negative. This implies a contradiction. Thus the
proof of Lemma 6.4 is complete.
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We now begin the proof of Theorem 6.1.

If Ur is on one of four curves in Figure 6.1, then the Riemann problem can be
solved by a single wave connecting Ul to Ur. It is obvious that the solution is unique.

In region I, we consider S2(Ū) originating at points Ū ∈R+

1 (Ul)\Ul. If two such
curves S2(Ū1) and S2(Ū2) were to intersect, say at U3, then Theorem 5.2 would imply
that S∗

2 (U3) passes through both Ū1 and Ū2, and therefore intersects R1(Ul) twice.
This contradicts (4.23). Moreover, by Lemma 6.2 (i), S2(Ū) cannot leave region
I. Thus these curves S2(Ū) smoothly fill region I. If Ur is in region I, then we see
that S∗

2 (Ur) intersects R
+

1 (Ul), so that the Riemann problem has necessarily just one
solution containing a 1-rarefaction wave from Ul to Um and a 2-shock wave from Um

to Ur. By (4.14), the shock wave is properly separated from the rarefaction wave in
the x,t-plane.

Region II is smoothly filled by R+

2 curves. If Ur is in region II and R2(Ur)
intersects R1(Ul), then the Riemann problem has just one solution containing two
rarefaction waves and an intermediate state Um=R+

1 (Ul)∩R−
2 (Ur), where R−

2 (Ur) is
the 2-rarefaction curve R2(Ur) which starts out from Ur in the direction of −r2. If
R2(Ur) fails to intersect R1(Ul), then the Riemann problem has no solution.

Region III is also filled smoothly with R+

2 curves. If Ur is in region III, then
R2(Ur) intersects S1(Ul) so that, because by (4.2) S1 crosses each rarefaction curves
R2 at most once, the point of intersection Um=S1(Ul)∩R2(Ur) is unique and the
Riemann problem has necessarily just one solution containing a 1-shock wave from Ul

to Um and a 2-rarefaction wave from Um to Ur; the shock wave is properly separated
from the rarefaction wave in the x,t-plane because of (4.7).

Finally, we look at region IV. In region IV we consider S2(Ū) originating at points
Ū ∈S1(Ul)\Ul. By Lemma 6.4, two such curves S2(Ū1) and S2(Ū2) do not intersect.
Moreover, by Lemma 6.2 (ii), S2(Ū) cannot leave region IV. Thus these curves S2(Ū)
smoothly fill region IV. If Ur is in region IV, then S∗

2 (Ur) intersects S1(Ul) so that the
Riemann problem has necessarily just one solution containing two shock waves and an
intermediate state Um=S1(Ul)∩S∗

2 (Ur). By Lemma 6.3, the solution is well-defined.
The main result of this paper, Theorem 6.1, is now fully proved.
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