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ON THE OSTWALD RIPENING OF THIN LIQUID FILMS∗

SHIBIN DAI†

Abstract. Dewetting instabilities cause a thin liquid film coating a solid substrate to rupture
and finally form complex patterns, which are quasiequilibrium parabolic droplets connected by an
ultra thin residual film. During the Ostwald ripening process, droplets exchange mass through the
residual thin film without touching each other. Bigger ones grow while smaller ones shrink and
disappear. As a result the total number of droplets N(t) decreases while the average size increases.
For the physically realistic case when the underlying substrate is two dimensional, it is predicted
that the average volume of droplets V follows a temporal power-logarithmic law: V4/3 lnV ∼ ct. We
propose a mean field model for the Ostwald ripening of 2D thin films and define a structural time
scale ts, which is heuristically similar to t. In this mean field model we rigorously prove that V can
not grow faster than the power-logarithmic law in ts in the average sense, as long as the droplets are
well separated.
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1. Introduction

Due to the dewetting instabilities, a thin liquid film coating a solid substrate goes
through complicated morphological changes and ultimately forms complex nonlinear
patterns in the late stage. The patterns are essentially quasi-static fluid droplets
connected by an ultra thin residual film. Droplets may exchange mass through a
diffusion field in the ultra thin film. Smaller ones shrink and collapse while bigger
ones grow. This mechanism is called Ostwald ripening, as it is similar to what happens
in phase transitions (see, e.g., [22]). Meanwhile, droplets may move around and collide
to form bigger ones. These two mechanisms cause coarsening phenomena to occur
where we observe the decrease of the total number of droplets and an increase in the
average droplet size and the average distance between droplets.

For the simplified case when the underlying substrate is one-dimensional, the
coarsening dynamics of the thin film was studied by Glasner and Witelski [10, 12]
using asymptotic analysis methods. Heuristic arguments and numerical simulations
suggest that under both mechanisms the number of droplets N(t) decreases following
a temporal power law N(t)∼ ct−2/5. As a consequence, the average distance be-
tween drops grows as a temporal power law t2/5 and the average height and width of
drops grow as t1/5. The size distribution of droplets was studied in [13] by consid-
ering a mean field model when the ripening mechanism dominates. Their numerical
simulations indicate that the power law for N(t) holds in the average sense when
self-similarity of the size distribution is not attained. In [2], we studied the mean field
model in [13] and rigorously proved that in the average sense N(t) can not decrease
faster than the t−2/5 power law.

When the underlying substrate is two dimensional, which is the physically realistic
case, the situation becomes much more complicated. It is shown in [9] and [11] that the
shapes of liquid droplets are paraboloids. The contact angles are fixed, independent
of the size of droplets. The contact angles are the angles between the surface of the
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droplets and the uniform ultra thin residual film. Because of this feature, the droplets
are totally determined by their circular bases.

In [9] Glasner used asymptotic matching methods to study the roles of ripening
and collision and heuristically concluded that the ripening mechanism indicated that
the characteristic volume V of droplets increases as a temporal power law t3/4, with
a logarithmic correction coefficient

V4/3 lnV ∼ ct. (1.1)

We call (1.1) a power-logarithmic law. In [11], Glasner et al. studied the same problem
using energy arguments and heuristically obtained the same result. Other results in
[9, 11] include that the collision mechanism can be as important as the ripening and
can induce similar growth rates of characteristic sizes.

No rigorous result is known so far for the power-logarithmic law (1.1). The
goal of this paper has two parts. First we propose a mean field model for the two
dimensional thin film when the ripening mechanism dominates. In our mean field
model, the power-logarithmic law becomes a built-in feature. The second part of our
goal is to give some rigorous analysis for (1.1) in the mean field setting. We obtain
an estimate on the coarsening rate that is consistent with the power-logarithmic law
(1.1) in a “structural time scale” ts. We call ts a “structural timescale” because it
captures some statistical information of the distribution. It will be discussed in detail
later.

One specific advantage of a mean field model is that it enables us to obtain statis-
tical information about the distribution of droplets such as the number and average
size of droplets. It is generally conjectured that the size distribution of liquid droplets
takes a self-similar form. Numerical simulations also somewhat agree with such a con-
jecture, but rigorous justification is lacking. A major challenge to rigorous analysis
is to find an easy way to retrieve such statistical information from the nonlinear thin
film equation itself. In a mean field model, the size distribution of droplets obeys a
transport equation. We can study the existence (or nonexistence) and properties of
self-similar solutions for such an equation.

We describe our mean field model as follows (a formal derivation will be given in
Section 2). Suppose at time t, there are N(t) droplets on a square substrate Ω=[0,L]2
and let {Ri,i=1, · · · ,N(t)} be the radii of their bases. Since we do not consider the
migration and collision of droplets, the spatial locations of droplets are not essential
as long as the droplets are well-separated (note however that the migration can be
significant in thin films). Our mean field model says that the evolution of radii must
satisfy the following evolution law:

Ṙi=− 1

R2
i

1

lnφ(t)−1

(

1

Ri
−P∗(t)

)

for all i=1, · · · ,N, (1.2)

φ(t)=

∑N
i=1

R2
i

L2
and P∗(t)=

∑N
i=1

R−1

i

N
. (1.3)

Here φ is the rescaled fraction of the substrate that is covered by the bases of the
droplets and P∗ is a mean field determined by the conservation of total volume of
droplets. That is, it is a result of

∑N
i=1

R2
i Ṙi=0. P∗ then determines a critical radius

R∗=P−1
∗ which is the harmonic mean of all radii {Ri}. Note that φ and P∗ are

spatial constants but vary with time. From (1.2), since φ is always smaller than 1,
droplets with radii bigger than R∗ grow and those with radii smaller than R∗ shrink
and finally disappear.
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Singularities occur when some radii approach zero. After the singular moments,
we remove the droplets that disappeared from the system and continue.

Now we consider the evolution of the distribution of radii. Let f(t,R) be the
density function of the distribution of radii at time t. Given the evolution law for
radii (1.2), the transport equation for f is immediately written as

∂

∂t
f(t,R)+

∂

∂R

(

− 1

R2

1

lnφ−1

(

1

R
−P∗

)

f(t,R)

)

=0. (1.4)

Here

φ=

∫∞

0
R2f(t,R)dR

L2
, P∗=

∫∞

0
R−1f(t,R)dR
∫∞

0
f(t,R)dR

. (1.5)

The minimum requirement on f(t,R) is
∫∞

0
R2f(t,R)dR<L2 since the droplets can

not occupy all the substrate. In addition, the conservation of total volume of droplets
translates into

∫∞

0
R3f(t,R)dR=const.

The evolution law (1.2) has one spectacular property; it makes it easy to capture
the power-logarithmic law (1.1) for the coarsening rate because of the built-in factor
lnφ−1.

The relation between φ and the characteristic volume V of droplets is pretty
simple. Take V to be the average volume

Vavg =
Vtotal

N
. (1.6)

Since the droplets are paraboloids with the same fixed contact angels, the character-

istic radius of the droplet bases should be R̃=aV1/3
avg where a is a constant determined

by the fixed contact angle. Without loss of generality, after a simple rescaling we can
just take a=1. By the definition (1.3) of φ,

φ=

∑N
i=1

R2
i

L2
∼ NR̃2

L2
∼ VtotalV2/3

avg

VavgL2
∼ Vtotal

L2
V−1/3
avg ∼havgV−1/3

avg . (1.7)

Here havg :=Vtotal/L2 is the average height of the thin film, which is a constant
determined by the initial configuration. So

havgφ
−1∼V1/3

avg . (1.8)

According to (1.1), the relation between φ−1 and time t should be

ct∼V4/3
avg lnVavg ∼h4

avgφ
−4 ln(h3

avgφ
−3)∼h4

avgφ
−4 ln(φ−3) (1.9)

provided that havg is of magnitude O(1), which is always reasonable by an appropriate
nondimensionalization of the system. So

φ
(

lnφ−1
)−1/4∼ c1havgt

−1/4, (1.10)

where c1=(c/3)−1/4.
Our main result about the coarsening rate of the mean field model (1.2)–(1.3) is

a one-sided time averaged estimate that is consistent with (1.10). Namely we prove

that φ(lnφ−1)−1/4 can not decrease faster than the t
−1/4
s power law in the “structural
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time scale” ts, in the average sense. Consequently we prove that the average volume
Vavg of droplets can not increase faster than the power-logarithmic law (1.1), i.e.,

V4/3
avg lnVavg 6 cts (1.11)

in the average sense. The structural time scale ts captures some of the statistical
information of the size distribution of droplets. Its properties need to be explored but
it is always true that ts> t and heuristically ts∼ t.

Our analysis employs a method introduced by Kohn and Otto in [14], where
they consider the coarsening rates for two Cahn-Hilliard equations, one with constant
mobility and the other with degenerate mobility. Their results are universal time-
averaged power law lower bounds for decay of a normalized free energy. These power
law bounds are consistent with the coarsening rates of characteristic length scales.
They are called universal because they apply to every solution, are independent of
any system parameters, and independent of statistical assumptions.

This method consists of three key ingredients:

(i) an interpolation inequality between the normalized energy and an auxiliary
dual quantity;

(ii) a dissipation inequality that connects the rates of change of the free energy
and of the dual quantity;

(iii) an ODE argument based on the two inequalities gives the desired time-
averaged power law lower bound on the energy.

The Kohn-Otto framework has been applied successfully to many different cases
[1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 21]. One common feature of these applications is that
the systems under consideration dissipate a normalized energy in a rate as a temporal
power law and all ultimate estimates are bounds on the normalized energy. The
auxiliary dual quantities are constructed in various ways. Some are constructed by
taking advantage of the gradient flow structure of the dynamics [1, 6, 7, 8, 15, 16, 21],
some by the simple geometric morphologies [2, 3, 5], and some by the combination of
both [4].

We want to point out that the results in [21] are about a nonlinear thin film PDE
with such a mobility that droplet collisions are absent according to [9]. Their results
capture the leading order power law of V ∼ t3/4 but do not capture the logarithmic
factor lnV. Hence in some sense our results are improvements of those in [21].

Indeed it is the logarithmic factor that distinguish our results from those in [21].

In our model, the system dissipates the surface energy, which is proportional to
φ. However, what we want to prove is a power-logarithmic law (1.10), not a power
law for φ vs. t. If we define Φ :=φ(lnφ−1)−1/4, then we have a power law relation
between Φ and t. It is not clear if Φ can be interpreted as energy in some sense. To
apply the Kohn-Otto framework, we need to find a quantity dual to Φ.

First we define a quantity that is dual to φ. Because of the parabolic shapes of
droplets, we apply the ideas in [5] and define an auxiliary quantity

σ(t) :=
L2
∑N

i=1
R4

i

V2

total

(1.12)

where Vtotal=
∑N

i=1
R3

i is the conserved total volume of droplets. σ(t) is “dual” to
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φ(t) in the sense that the interpolation inequality holds

φ(t)σ(t)=

(

∑N
i=1

R2
i

)(

∑N
i=1

R4
i

)

(

∑N
i=1

R3
i

)2
>1. (1.13)

Note that the definition of σ is purely out of mathematical necessity, even though it
can be interpreted as the normalized 4th moment of the distribution of droplet radii.

To construct a quantity that is dual to Φ, we define S :=σ(lnσ)1/4. It is immediate
that the interpolation inequality holds

Φ(t)S(t)>1.

As for the dissipation relation, due to technical reasons we need the “structural” time
scale

ts :=

∫ t

0

(

lnσ(s)

lnφ(s)−1

)1/2

ds. (1.14)

We call ts a “structural” time scale because it captures some statistical information
of the distribution of droplets – for example, if all radii are identical, then ts= t. In
general since σ>φ−1>1, ts is an increasing function of t and ts> t.

Rewriting Φ and S in the structural time scale ts, we can have a dissipation
inequality (details will be given in Section 3). Finally, by applying an ODE argument
we have the following estimate.

Theorem 1.1. Assume that the initial droplet configuration of the thin liquid film
satisfies φ<e−1. Then for any 2<p<4 there exist positive constants C1 and C2

depending on p and independent of any system parameter such that for any solutions
{Ri} of the mean field model (1.2)–(1.3), if we rewrite φ(t) in ts, i.e., if φ̃(ts)=φ(t),
then

∫ Ts

0

(

φ̃(ts)(lnφ̃
−1(ts))

−1/4
)p

dts>C2

∫ Ts

0

(

havgt
−1/4
s

)p

dts (1.15)

provided Ts>C1h
4
avgσ(0)

4 lnσ(0).
An estimate on the growth rate of the average volume of droplets can be obtained

as a consequence of Theorem 1.1.

Theorem 1.2. In addition to the assumption in Theorem 1.1, assume further that
the initial configuration satisfies Vavg >h3

avg. For any 2<p<4, let C1, C2 be the
same constants as in Theorem 1.1. Then for any solutions {Ri} of the mean field
model (1.2)–(1.3), if we rewrite the average volume of droplets Vavg in ts, i.e., if

Ṽ(ts)=Vavg(t), then

∫ Ts

0

{

Ṽ(ts)4/3 ln
(

Ṽ(ts)
h3
avg

)}−p/4

dts>3−p/4C2

∫ Ts

0

t−p/4
s dts (1.16)

provided Ts>C1h
4
avgσ(0)

4 lnσ(0).

Remark 1.3. Theorem 1.2 says that if the system is nondimensionalized in a way
such that havg is of order O(1), then in the average sense Ṽ(ts)4/3 lnṼ(ts)6 cts, which
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is an upper bound of the coarsening rate that is consistent with the power-logarithmic
law (1.1). Specifically the constant c is independent of any system parameter.

Remark 1.4. The bounds in Theorems 1.1 and 1.2 are not only one-sided, but also
in the time average sense. These limitations can not be removed without considering
detailed statistical information of the dynamics. We can not obtain universal two
sided bounds because of the existence of systems that coarsen slower than the power-
logarithmic law. For example, there are unstable equilibrium states.

As for pointwise bounds, it is shown in [13] that there exist “staircasing” transient
dynamics, which are very different from self similar dynamics, in the Ostwald ripening
of thin films for some initial droplet distributions. This annihilates the possibility of a
one-sided pointwise power law bound. Nevertheless, numerical simulations show that,
even in these “staircasing” transient dynamics, the time-averaged coarsening rates
always obey the same power law as in self similar dynamics. This in part justifies
that a time averaged bound is the best we can expect without considering statistical
information of the dynamics.

Remark 1.5. We discuss the assumptions in Theorems 1.1 and 1.2. The assumption
φ<e−1 is obviously reasonable since droplets will cover only a small part of the
substrate. Nevertheless we can get a little more information when combined with the
assumption Vavg >h3

avg in Theorem 1.2. Since

Vtotal=havgL2, Vavg =
Vtotal

N
, and

Vavg

h3
avg

=
L2

Nh2
avg

, (1.17)

if we define

γ :=
Vavg

h3
avg

=
L2

Nh2
avg

, (1.18)

then

N =
1

γ

L2

h2
avg

. (1.19)

The assumption Vavg >h3
avg in Theorem 1.2 requires γ>1. In addition, as will be

proved in Section 3,

φ=

∑N
i=1

R2
i

L2
6havgV−1/3

avg =

(

Nh2
avg

L2

)1/3

=
1

γ1/3
. (1.20)

The assumption in Theorem 1.1 can be achieved by choosing γ= e3. Combined with
(1.19), the regime we study is when the initial configuration satisfies

N ≈ 1

e3
L2

h2
avg

. (1.21)

Since the starting point of our mean field model is when the system aspect ratio is
large, i.e., when L is several orders of magnitude bigger than havg, systems under our
consideration can be very complex with a big number of droplets.

The rest of the paper is structured as follows. In Section 2 we give a heuristic
derivation of our mean field model (1.2)–(1.3). In Section 3 we will prove Theorems
1.1 and 1.2. In Section 4 we will discuss the relation between the structural time scale
ts and the self-similarity of the distribution of droplet radii. Finally in Section 5 we
discuss possible generalizations to our mean field model and results.
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2. Formal derivation of the mean field model
In this section, we derive the mean field model for physically realistic thin liquid

films with 2D underlying substrate. We only consider the case when the ripening
mechanism dominates the dynamics and the migration and collisions of droplets can
be ignored.

Mathematically, the thin film dynamics are described by the lubrication theory
[20]. Denote by h=h(x,t) the height of the thin film. The evolution of h satisfies the
following equation

∂th+∇·(hq∇(∆h−U ′(h)))=0, (2.1)

where U(h) is an intermolecular potential that includes both attractive and repulsive
effects and the balance produces a single minimum hmin for h, which corresponds to
the globally stable ultra thin film. The only mathematically necessary properties of
the potential U are:

U(h) has a unique minimum hmin,

U ′(h) has a unique maximum, pmax, at the maximum droplet height hmax,

U ′(h)=o(h−1) and U(h)→0, as h→∞,

lim
h→0

U(h)=∞.

The mobility hq depends on boundary conditions when deriving the thin film equation
from the Stokes equation. For example, the standard nonslip boundary condition gives
a mobility corresponding to q=3.

When the underlying substrate is 2D, the shapes of liquid droplets are paraboloids
with fixed contact angles that are determined solely by the intermolecular potential
U(h). Because of this feature, the droplets are totally determined by their circular
bases.

In [9] and [11], it is pointed out that the motion of the droplet bases is determined
by the mobility in the nonlinear thin film Equation (2.1). When the power 0<q<3,
the influence of the mobility of the droplets are minor compared to the ripening
process. Hence we can ignore the collision of droplets and just concentrate on the
ripening process.

In this case, our mean field model to the coarsening is a transport equation for
the distribution of the radii of bases. When the distribution is discrete, it becomes
a system of ODEs. This system has singularities when some droplets shrink and
disappear.

Suppose that at time t there are N(t) droplets. Let {Ri, i=1, · · · ,N} be the radii
of their bases and {Xi, i=1, · · · ,N} be the centers of the bases. Denote by Γi :=
{x∈R

2 : |x−Xi|=Ri} the boundary of the ith base. The evolution of the droplets is
determined by the variation of the hydradynamic pressures. Since the liquid droplets
are quasistationary, it is pointed out in [9] that after a trivial rescaling, the variation
of pressure P in the thin residual film satisfies

−∆P (x)=0 if |x−Xi|>Ri for all i, (2.2)

P =
1

Ri
on Γi, (2.3)

Ṙi=
1

R2
i

∫

Γi

[∇P ·n]ds on Γi. (2.4)
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Here [∇P ·n] is the jump of the normal gradient of P across the boundary. Boundary
condition (2.4) guarantees that the total volume of droplets is preserved during the
ripening process. Note that because of the parabolic shapes, volumes of droplets are
proportional to the cube of their radii of the bases.

We will derive a mean field model from Equations (2.2)–(2.4). We consider the
case when the distance between droplets are much bigger than the size of droplets.
Then, at a given time, near the droplets the pressure P should be similar to the
fundamental solution to the 2D Laplacian operator. Away from droplets, P will
approach a mean field P∗. This indicates that we require a “cutoff” of the fundamental
solution. Assume d is the cutoff distance, that is, d is a number bigger than droplet
sizes but much smaller than the distance between droplets so that P becomes the mean
field P∗ at points x when |x−Xi|>d for all i. Then P should have the following form
near the ith droplet,

P (x)= ci ln
|x−Xi|

d
+P∗ for |x−Xi|6d. (2.5)

Remark 2.1. The mean field P∗ is the average effect of neighbor droplets and it
varies in a length scale Ls called the screening length, which measures the distance
droplets’ influence can reach (about screening length see, e.g., [17, 18]). In a thin film,
according to [17], if l is the average distance between droplets and R is the typical
radius of droplets, then

L2

s≈ l2 ln
l

R
.

Taking δ :=L/Ls to be the relative size of the system compared to the screening length
and ǫ := l/L as a dimensionless parameter for the average distance between droplets,
we have

δ−2≈ ǫ2 ln
l

R
, R≈ lexp(−δ−2ǫ−2).

The fraction φ then satisfies

φ≈ R2

l2
≈ exp(−2δ−2ǫ−2). (2.6)

When Ls≫L, P∗ is a spatial constant that varies with time. In this paper, we will
only consider this case. Our mean field model corresponds to the dilute limit when
φ→0 in a rate given above and both δ→0 and ǫ→0.

The boundary condition (2.3) requires that

1

Ri
= ci ln

Ri

d
+P∗, (2.7)

and hence

ci=

(

1

Ri

−P∗

)

ln Ri

d

. (2.8)

From the boundary condition (2.4) we obtain an evolution law for Ri:

Ṙi=
2π

R2
i

ci.=
2π

R2
i

1

ln Ri

d

(

1

Ri
−P∗

)

. (2.9)
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Note that the cutoff distance d is artificial and the coefficient (ln Ri

d )−1 is still
hard to work with. Heuristically we may choose d to be the average distance between
the droplets. Since the thin film covers a 2 dimensional L×L square domain, we take
Nd2=L2, or d=L/

√
N .

In the coefficient (ln Ri

d )−1, without changing the leading order behavior of the
model, we may replace Ri by the characteristic radius R of all droplets. R is char-
acteristic in the sense that NR2 equals the total area covered by all the bases of
droplets. That is,

NR2=

N
∑

i=1

R2

i , or R=

(

∑N
i=1

R2
i

N

)1/2

.

We define R in such a way because we only consider the two dimensional feature of
the underlying substrate, hence the two dimensional feature of the pressure field P .

Now the coefficient (ln Ri

d )−1 is replaced by

(

ln
R
d

)−1

=

(

ln

√
NR√
Nd

)−1

=

(

1

2
ln

∑N
i=1

R2
i

L2

)−1

. (2.10)

The coefficient (2.10) is changing with time and it has some profound connection with
the coarsening dynamics.

As is in Section 1, define

φ(t) :=

∑N
i=1

R2
i

L2
. (2.11)

Then (2.10) is related to φ,

(

ln
R
d

)−1

=

(

1

2
lnφ

)−1

=−
(

1

2
lnφ−1

)−1

. (2.12)

Replacing the coefficient (ln Ri

d )−1 in (2.9) by (2.12) and rescaling time, we obtain
our evolution law for radii, which is a coupled ODE system.

(a.) Evolution law for radii. For all i=1, · · · ,N , we have

Ṙi=− 1

R2
i

1

lnφ−1

(

1

Ri
−P∗

)

. (2.13)

The mean field P∗ is determined by the conservation of the total volume of
droplets. That is,

∑N
i=1

R2
i Ṙi=0 implies that

P∗=

∑N
i=1

R−1

i

N
. (2.14)

(b.) The transport equation for the distribution of radii
Now we consider an arbitrary distribution f(t,R) of radii at time t. Given the

evolution law for radii (2.13), the transport equation for f is

∂

∂t
f(t,R)+

∂

∂R

(

− 1

R2

1

lnφ−1

(

1

R
−P∗

)

f(t,R)

)

=0. (2.15)
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Here

φ=

∫∞

0
R2f(t,R)dR

L2
, P∗=

∫∞

0
R−1f(t,R)dR
∫∞

0
f(t,R)dR

. (2.16)

Remark 2.2. Equations (2.2)–(2.4) are similar to the 2D Mullins-Sekerka model for
phase transitions when one phase consists of circular particles. Equation (2.3) is the
Gibbs-Thomson condition on the boundary. The difference lies in Equation (2.4); in
the 2D Mullins-Sekerka model for phase transitions, it is the total area enclosed by
the boundaries {Γi} that is preserved. Hence the 2D Mullins-Sekerka model has a
boundary condition

Ṙi=
1

Ri

∫

Γi

[∇P ·n]ds on Γi.

Remark 2.3. The formal derivation of our mean field model is similar to that in
[17], where Niethammer and Otto formally derived and rigorously justified a mean
field model for domain coarsening of 2D phase transitions. Note that in 2D phase
transitions, since

∑N
i=1

R2
i is conserved, the above coefficient (2.10) is a constant.

3. Estimates on the coarsening rate
In this section we prove the lower bound on the dissipation rate of φ(t) (1.15) and

the upper bound on the growth rate of the average volume Vavg (1.16).
First we discuss the relation between φ(t) and the free energy of the system. Since

the morphology of the thin film is parabolic droplets connected by a uniform ultra
thin residual film, the free energy is just the surface energy of droplets. The surface
energy is proportional to the surface area of all droplets and hence proportional to
∑N

i=1
R2

i . So φ(t)=
∑N

i=1
R2

i /L2 is the rescaled free energy of the system and it should
be decreasing.

In fact since

Ṙi=− 1

R2
i

1

ln(φ(t)−1)

(

1

Ri
−P∗

)

, (3.1)

the dissipation rate of φ(t) is

φ̇(t)=
2

L2

N
∑

i=1

RiṘi=− 2

L2

N
∑

i=1

1

Ri

1

lnφ−1

(

1

Ri
−P∗

)

by (3.1). (3.2)

Since the total volume Vtotal=
∑N

i=1
R3

i is conserved, we have

0=
N
∑

i=1

R2

i Ṙi=−
N
∑

i=1

1

ln(φ(t)−1)

(

1

Ri
−P∗

)

. (3.3)

By (3.2), (3.3), and the fact that P∗ is a spatial constant, we obtain

φ̇(t)=− 2

L2

(

N
∑

i=1

1

Ri

1

lnφ−1

(

1

Ri
−P∗

)

−P∗

N
∑

i=1

1

lnφ−1

(

1

Ri
−P∗

)

)

=− 2

L2

N
∑

i=1

1

lnφ−1

(

1

Ri
−P∗

)2

60 (since φ<1). (3.4)
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Next we define an auxiliary quantity

σ(t) :=
L2
∑N

i=1
R4

i

V2

total

. (3.5)

σ(t) is “dual” to φ(t) in the sense that the following interpolation inequality holds.

Lemma 3.1. (Interpolation inequality)

φ(t)σ(t)>1. (3.6)

Proof. This is an immediate consequence of the Cauchy-Schwarz inequality.

φ(t)σ(t)=

(

∑N
i=1

R2
i

)(

∑N
i=1

R4
i

)

(

∑N
i=1

R3
i

)2
>1. (3.7)

In addition, the following inequality holds between the dissipation rates of φ(t)
and σ(t).

Lemma 3.2. (Dissipation inequality)

(σ̇)268h−4

avg

1

lnφ−1
φ(−φ̇), (3.8)

where havg =Vtotal/L2.

Proof. By (3.1) and (3.4), φ̇ can be rewritten as

φ̇=− 2

L2
lnφ−1

N
∑

i=1

R4

i Ṙi
2

. (3.9)

Direct calculation and the Cauchy-Schwarz inequality show that

|σ̇|= 4L2

V2

total

∣

∣

∣

∣

∣

N
∑

i=1

R3

i Ṙi

∣

∣

∣

∣

∣

6
4L2

V2

total

(

N
∑

i=1

R2

i

)1/2( N
∑

i=1

R4

i (Ṙi)
2

)1/2

=
4L2

V2

total

(

L2φ
)1/2

(

− L2

2lnφ−1
φ̇

)1/2

. (3.10)

So

(σ̇)26
8L8

V4

total

1

lnφ−1
φ(−φ̇)=8h−4

avg

1

lnφ−1
φ(−φ̇). (3.11)

Inequalities (3.6) and (3.8) are the starting points of our proof for Theorem 1.1.
However since Theorem 1.1 is about φ(lnφ−1)−1/4, we define

Φ :=φ(lnφ−1)−1/4, (3.12)
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and correspondingly

S :=σ(lnσ)1/4. (3.13)

We will apply Lemmas 3.1 and 3.2 to obtain the following interpolation and dissipation
inequalities involving Φ,S,Φ̇, and Ṡ.

Lemma 3.3. (Interpolation inequality for S and Φ)

S(t)Φ(t)>1. (3.14)

Proof. By (3.6), σ>φ−1>1. So

S(t)Φ(t)=σ(t)φ(t)

(

lnσ

lnφ−1

)1/4

>1. (3.15)

Lemma 3.4. (Dissipation inequality for Ṡ and Φ̇) Assume that φ(0)<e−1. Then

(Ṡ)2616h−4

avg

(

lnσ

lnφ−1

)1/2

Φ(−Φ̇). (3.16)

Proof. Since φ(t) is a decreasing function of t, φ(0)<e−1 implies that φ(t)<e−1

and lnφ(t)−1>1 for all t>0. Direct calculation shows that

Φ̇= φ̇(lnφ−1)−1/4

(

1+
1

4
(lnφ−1)−1

)

, (3.17)

Φ(−Φ̇)=φ(−φ̇)(lnφ−1)−1/2

(

1+
1

4
(lnφ−1)−1

)

, (3.18)

Ṡ= σ̇(lnσ)1/4
(

1+
1

4
(lnσ)−1

)

. (3.19)

Consequently

(Ṡ)2=(σ̇)2(lnσ)1/2
(

1+
1

4
(lnσ)−1

)2

68h−4

avg

(lnσ)1/2

ln(φ−1)
φ(−φ̇)

(

1+
1

4
(lnσ)−1

)2

by (3.8).

Since σφ>1, we have lnσ> lnφ−1>1, and (1+ 1

4
(lnσ)−1)2<2(1+ 1

4
(lnφ−1)−1). So

(Ṡ)2616h−4

avg

(lnσ)1/2

ln(φ−1)
φ(−φ̇)

(

1+
1

4
(lnφ−1)−1

)

=16h−4

avg

(

lnσ

lnφ−1

)1/2

Φ(−Φ̇) by (3.18). (3.20)

Now we are ready to prove Theorem 1.1. Define a structural time scale

ts :=

∫ t

0

(

lnσ(s)

lnφ−1(s)

)1/2

ds. (3.21)
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Then

dts
dt

=

(

lnσ(t)

lnφ−1(t)

)1/2

>1, (3.22)

and hence ts is a strictly increasing function of t and ts> t. Then S(t) and Φ(t) can
be transformed into functions of ts as

S̃(ts) :=S(t) and Φ̃(ts) :=Φ(t), (3.23)

and the dissipation inequality (3.16) becomes

(

d

dts
S̃

)2

616h−4

avgΦ̃

(

− d

dts
Φ̃

)

. (3.24)

Furthermore, if we define τ =16h−4
avgts and rewrite S̃(ts), Φ̃(ts) in τ as

Ŝ(τ) := S̃(ts), Φ̂(τ) := Φ̃(ts), (3.25)

then the dissipation inequality (3.24) becomes

(

d

dτ
Ŝ

)2

6 Φ̂

(

− d

dτ
Φ̂

)

. (3.26)

Apparently the interpolation inequality (3.14) can be directly translated into

Ŝ(τ)Φ̂(τ)>1. (3.27)

Now we can apply the following ODE argument.

Lemma 3.5. ([14]) For any 2<p<4, there exist positive constants Ĉ1, Ĉ2 depending
solely on p such that if two continuous quantities E(t) and L(t) satisfy

E(t)L(t)>1, and

(

dL

dt

)2

6E

(

−dE

dt

)

, (3.28)

then we have
∫ T

0

E(t)p dt> Ĉ2

∫ T

0

(t−1/4)p dt provided T > Ĉ1L(0)
4. (3.29)

Taking L(t) as Ŝ(τ) and E(t) as Φ̂(τ), we obtain the following theorem.

Theorem 3.6. Assume that φ(0)<e−1. For any 2<p<4, there exist positive con-
stants Ĉ1,Ĉ2 depending on p but not on any system parameter such that for any
solutions {Ri} of the mean field model (3.1), we have

∫ τ̂

0

Φ̂(τ)p dτ > Ĉ2

∫ τ̂

0

(τ−1/4)p dτ provided τ̂ > Ĉ1Ŝ(0)
4. (3.30)

Changing the variable back into ts, (3.30) becomes

∫ Ts

0

Φ̃(ts)
p dts>C2

∫ Ts

0

(

havgt
−1/4
s

)p

dts provided Ts>C1h
4

avgS̃(0)
4, (3.31)
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where C1=16−1Ĉ1 and C2=2−pĈ2. Inequality (3.31) is exactly Theorem 1.1.
Before proving Theorem 1.2, we consider the relations between φ, Vavg, Ravg, and

R∗. Recall that the average volume Vavg, the average radius Ravg and the critical
radius R∗ are defined as

Vavg =
Vtotal

N
=

∑N
i=1

R3
i

N
, Ravg =

∑N
i=1

Ri

N
, and R∗=

N
∑N

i=1
R−1

i

. (3.32)

Lemma 3.7. For any solution {Ri : i=1, · · · ,N} of the mean field model (3.1),
havgφ

−1(t) is an upper bound for the average radius Ravg, the critical radius R∗,
and the cube root of the average volume of of droplets. In fact, these quantities are
ordered as follows.

R∗6Ravg 6V1/3
avg 6havgφ

−1. (3.33)

Proof. Inequalities in (3.33) are consequences of Hölder’s inequality (or

the Cauchy-Schwarz inequality in some cases). Note that Vtotal=
∑N

i=1
R3

i and
L2=h−1

avgVtotal.

(1.) The Cauchy-Schwarz inequality shows that

N2
6

(

N
∑

i=1

Ri

)(

N
∑

i=1

R−1

i

)

.

Hence

R∗=
N

∑N
i=1

R−1

i

6

∑N
i=1

Ri

N
=Ravg. (3.34)

(2.) By Hölder’s inequality,

N
∑

i=1

Ri6N2/3

(

N
∑

i=1

R3

i

)1/3

.

So

Ravg =

∑N
i=1

Ri

N
6

(

∑N
i=1

R3
i

N

)1/3

=V1/3
avg . (3.35)

(3.) Again by Hölder’s inequality

N
∑

i=1

R2

i 6N1/3

(

N
∑

i=1

R3

i

)2/3

=

(

N

Vtotal

)1/3

havgL2.

So

φ=

∑N
i=1

R2
i

L2
6havg

(

N

Vtotal

)1/3

=havgV−1/3
avg ,
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or equivalently

V1/3
avg 6havgφ

−1. (3.36)

Proof of Theorem 1.2. In Theorem 1.1, the estimate (1.15) is a lower bound for
Φ̃(ts)= φ̃(ts)(lnφ̃(ts)

−1)−1/4. What we need to do is to translate it into an estimate
for Vavg using (3.33). Define

w(x)=x(lnx−1)−1/4. (3.37)

Then Φ=w(φ). Since

w′(x)=(lnx−1)−1/4

(

1+
1

4
(lnx−1)−1

)

>0 for all 0<x<1, (3.38)

w(x) is an increasing function on (0,1). By (3.33), if havgV−1/3
avg <1, then

φ6havgV−1/3
avg <1

and we have w(φ)6w(havgV−1/3
avg ), i.e.,

Φ6havgV−1/3
avg

(

ln(h−1

avgV1/3
avg)

)−1/4

=havg3
1/4

{

V4/3
avg ln

(Vavg

h3
avg

)}−1/4

. (3.39)

Rewrite Vavg(t) in terms of the structural time scale ts,

Ṽ(ts) :=Vavg(t). (3.40)

Equation (3.39) is

h−1

avg3
−1/4Φ̃(ts)6

{

Ṽ(ts)4/3 ln
(

Ṽ(ts)
h3
avg

)}−1/4

. (3.41)

Integrating from 0 to Ts, we have

∫ Ts

0

{

Ṽ(ts)4/3 ln
(

Ṽ(ts)
h3
avg

)}−p/4

dts>3−p/4h−p
avg

∫ Ts

0

Φ̃(ts)
p dts

>3−p/4C2

∫ Ts

0

t−p/4
s dts (3.42)

provided Ts>C1h
4
avgS̃(0)

4. The last inequality in (3.42) follows from (3.31). �

Remark 3.8. For the average radius Ravg, we expect an upper bound in the form
of a power-logarithmic law

Ravg (lnRavg)
1/4

6 ct1/4, (3.43)

which is consistent with (1.1). However, this is not trivial even if we have the in-

equalities (3.33). The difference between Ravg and V1/3
avg is that the latter is always
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increasing while the former need not necessarily be monotone. The monotonicity is

crucial since in the proof of Theorem 1.2 we used the assumption that V1/3
avg >havg,

which is guaranteed to be true as long as it is satisfied in the initial configuration.
It is not clear to us how to obtain a similar relation Ravg >havg for all time, even
though heuristically it should be true.

Remark 3.9. For the critical radius R∗, we do not expect any power-logarithmic
law. In fact since R∗ is the harmonic mean of {Ri}, it always approaches 0 as some
droplets shrink and disappear. This singularity generates many more difficulties than
the failure of the logarithm.

4. Self similarity and the structural time scale
Experiments and numerical simulations indicate that the distribution of the sizes

of droplets exhibits some self similarity (see, e.g., [13] and references therein). Math-
ematically, we do not know if the distribution always approaches a self similar solu-
tion. For the Ostwald ripening for phase transitions, it is known that distributions of
droplets may not always approach a self similar solution [19].

Our mean field model provides a convenient way to study the self similarity of
distributions of droplets, since the distribution f(t,R) must satisfy the transport
equation

∂

∂t
f(t,R)+

∂

∂R

(

− 1

R2

1

lnφ−1

(

1

R
−P∗

)

f(t,R)

)

=0, (4.1)

φ=

∫∞

0
R2f(t,R)dR

L2
, P∗=

∫∞

0
R−1f(t,R)dR
∫∞

0
f(t,R)dR

, (4.2)

with the requirements that
∫∞

0
R2f(t,R)dR6 e−1L2 (since we require φ6 e−1 in

Theorem 1.1) and that Vtotal=
∫∞

0
R3f(t,R)dR is conserved.

The properties of the transport Equation (4.1)–(4.2) are beyond the scope of this
paper. The rest of this section is about some properties of the structural time scale
ts.

As is discussed in Section 3, we already know that the structural time scale ts is
not less than t, i.e., ts> t. In addition, ts has some connection with the distribution
of radii of droplets. In fact we have the following

Proposition 4.1. If the distribution of radii is self similar, then in the dilute limit
when the fraction φ→0, we have

dts
dt

=1+o(1).

Hence

ts=(1+o(1))t as φ→0. (4.3)

Proof. If f(t,R) is a self-similar solution of the mean field model, since the total
volume, which is the third moment, is conserved, there must be some function F (·)
and some positive constant a and some positive function b(t) such that

f(t,R)=ab(t)−4F (R/b(t)). (4.4)
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By the definitions of φ(t) and σ(t) (Equations (1.3) and (1.12)), we have

φ(t)σ(t)=

(∫∞

0
R2f(t,R)dR

)(∫∞

0
R4f(t,R)dR

)

(∫∞

0
R3f(t,R)dR

)2
(4.5)

=

(∫∞

0
R2F (R/b(t))dR

)(∫∞

0
R4F (R/b(t))dR

)

(∫∞

0
R3F (R/b(t))dR

)2
(4.6)

=

(∫∞

0
u2F (u)du

)(∫∞

0
u4F (u)du

)

(∫∞

0
u3F (u)du

)2
(4.7)

=:β. (4.8)

Here β>1 is a positive constant depending only on F . Hence σ(t)=βφ(t)−1 and by
the definition of ts (Equation (1.14)),

dts
dt

=

(

lnσ(t)

lnφ(t)−1

)1/2

=

(

lnφ(t)−1+lnβ

lnφ(t)−1

)1/2

=

(

1+
lnβ

lnφ(t)−1

)1/2

=1+o(1) when φ=o(1). (4.9)

Consequently ts=(1+o(1))t as φ→0.

Remark 4.2. If the distribution is not self similar,

φ(t)σ(t)=

(∫∞

0
R2f(t,R)dR

)(∫∞

0
R4f(t,R)dR

)

(∫∞

0
R3f(t,R)dR

)2
=β(t) (4.10)

and we still have

dts
dt

=

(

1+
lnβ(t)

lnφ(t)−1

)1/2

=1+o(1) when φ=o(1) (4.11)

as long as β(t) is not very big. We do not know if β(t) can blow up in some special
situations but heuristically it does not seem to happen, as experiments and numerical
simulations of thin film coarsening both indicate that the distributions approach some
self similar solutions.

5. Conclusions and discussions
We proposed a mean field model for the Ostwald ripening of thin films and studied

its coarsening rate. We defined a structural time scale which is heuristically similar
to t and captured the logarithmic factor in the spatio-temporal relation.

In our model the migration and collision of droplets are ignored. We expect
to generalize our model to incorporate the migration and collisions, which can be
significant for the coarsening in thin films.

On the other hand, mean field models simplify the PDE models for thin films. The
PDEs naturally deal with topological changes in thin films without differentiating the
ripening and collision mechanisms. It is considerably much more complicated since it
is a challenge to retrieve statistical information in a PDE setting. Nevertheless, we
are studying the possibility of a PDE version of the results in this paper.
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