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ON THE CAUCHY PROBLEM FOR THE NONLOCAL DERIVATIVE

NONLINEAR SCHRÖDINGER EQUATION ∗

ROGER PERES DE MOURA† AND ADEMIR PASTOR‡

Abstract. We consider the Cauchy problem associated with the one-dimensional nonlocal
derivative nonlinear Schrödinger equation, and establish local well-posedness for “small” initial data
in the usual L2-based Sobolev spaces Hs(R), s>1/2. We also prove that our result is “almost sharp”
in the sense that the flow-map data-solution fails to be C3 at the origin from Hs(R) to Hs(R) for any
s<1/2. Finally, thanks to the lack of energy conservation, we prove the nonexistence of solitary-wave
solutions.
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1. Introduction

The derivative nonlinear Schrödinger (DNLS) equation

∂tu− i∂2xu=∂x(|u|2u), x, t∈R, (1.1)

has been derived for several physical models in propagation of nonlinear waves; for
example, in the study of (i) drifting filamentations formed in nonlinear waves in mag-
netized plasmas, (ii) the evolution of light pulses in optical fibers, and (iii) weakly
nonlinear and dispersive Alfvén waves in a plasma (see e.g. [19, 20]). However, in the
last example, if effects of resonant particles on the Alfvén waves modulations are in-
cluded, one obtains the nonlocal derivative nonlinear Schrödinger (nDNLS) equation,
which can be written, in dimensionless variables, as (see e.g. [8, 20])

∂tu− i∂2xu=∂x(|u|2u)+λ∂x(H(|u|2)u), x, t∈R. (1.2)

Here u=u(x,t) is a complex-valued function, λ is a real parameter depending on the
velocity distributions of the particle species, and H is the Hilbert transform defined
by

(Hf)(x)=p.v.
1

π

∫ +∞

−∞

f(y)

x−y dy,

where p.v. denotes the Cauchy principal value.
The nonlocal term λ∂x(H(|u|2)u) in (1.2) represents the effect of resonant particles

on the wave modulations. Moreover, the parameter λ gives rise to a damping effect.
Indeed, let E be the “energy” defined by

E(u)=

∫ +∞

−∞

|u|2dx. (1.3)
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64 ON THE CAUCHY PROBLEM FOR THE NDNLS EQUATION

A straightforward computation shows that if u is a solution of (1.2) then

d

dt
E(u(t))=λ

∫ +∞

−∞

|u|2H∂x(|u|2)dx. (1.4)

Since the integral on the right-hand side of (1.4) is positive, we see that the energy
either increases (λ>0) or decreases (λ<0) monotonically with time due to effect of
resonant particles.

In many important situations, the parameter λ turns out to be negative. For in-
stance, if the waves are propagating in plasmas with isotropic Maxwellian distributed
electrons and ions, the effect of resonant particles is weak when the Alfvén velocity is
much larger than the ion sound velocity; in such a case,

λ≃− 1√
2π

(
me

mi

)1/2
Cs

vA
exp

(
−1

2

v2A
v2e

)
, vA≫Cs,

where me,mi,Cs,vA, and ve denote, respectively, the electron mass, the ion mass, the
ion sound velocity, the Alfvén velocity, and the electron thermal velocity (see [21]).
In general, it can be shown that a sufficient condition for λ to be negative is that the
velocity distributions decrease as functions of the parallel velocity component of the
Alfvén velocity (see [21]).

Note that (1.2) becomes (1.1) in the case λ=0. Hence, for |λ|≪1 the nDNLS
equation can also be viewed as a perturbation of the DNLS equation.

From the mathematical viewpoint, the DNLS equation has been extensively stud-
ied in recent years by several authors (see e.g. [1, 3]–[5, 9]–[14, 24, 28, 29], and refer-
ences therein). On the other hand, a few works are available in the current literature
for the nDNLS equation. As far as we know, the only works concerning well-posedness
for (1.2) are due to Rial [26, 27]. In [26] the author studied the Cauchy problem (with
λ<0); by using Kato’s theory he proved the initial value problem for (1.2) is locally
(in time) well-posed in the usual Sobolev spaces Hs(R), s>3/2, and in the weighted
spaces Hs(R)∩L2

w(R), s>3/2, for a suitable class of weights w. In [27], by intro-
ducing an artificial viscosity and then passing to the limit, the author proved the
existence of weak solutions in L2(R) (also for λ<0).

The first purpose of this work is to improve the local well-posedness theory ob-
tained in [26]. Throughout the paper, except in Section 4, by well-posedness we
mean existence, uniqueness, persistence property, and continuous dependence upon
the data. Moreover, by a solution we mean a solution in the sense of the associated
integral equation. Our main result concerning well-posedness is the following (for the
definitions of the space Xs

T and P0 see notations below).

Theorem 1.1. Let s>1/2. Then there exists a δ>0 such that for any φ∈Hs (R),
with ‖φ‖L2 <δ, there exist a positive time T =T (‖φ‖Hs) with T (‖φ‖Hs)→∞ as
‖φ‖Hs →0, and a unique solution

u∈C([−T,T ];Hs(R))∩{u; eiρ(u)u∈Xs
T }

of (1.2) with initial data φ, where ρ(u)(x,t)=− 1
2λP0

(∫ x
−∞

H
(
|u(y,t)|2

)
dy
)
. Further-

more, for any T ′∈ (0,T ) there exists ǫ>0 such that the flow-map data-solution is Lips-

chitz from {ψ∈Hs(R); ‖φ̃−φ‖Hs <ǫ} into C([−T ′,T ′];Hs(R))∩{u; eiρ(u)u∈Xs
T ′}.

As is well known, the main difficulty when one deals with equations containing
derivatives in the nonlinear term, is to overcome the so-called loss of derivatives. In our
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case, the most difficult term is HP0(|u|2)∂xu, because the Hilbert transform H is not
bounded in L1. Thus, inspired by the results for the DNLS equation, our approach to

prove Theorem 1.1 is based on the Gauge transformation v= e−i
λ
2 P0

∫ x
−∞

H(|u(y,t)|2)dyu,
where P0 is the projection operator into small frequencies.

It is worth noticing that the methods employed by Ozawa and Tsutsumi [24, 25],
and by Takaoka [29] to study the Cauchy problem for a vast class of DNLS equation
are not applicable in the case of the Cauchy problem associated with (1.2). In their

approach, they basically depend on the Gauge transformation v= eiα
∫ x
−∞

|u(y,t)|2dyu
(α∈R chosen conveniently). In fact, Ozawa [24] used that transformation to remove
the derivative term from the nonlinearity and proved the well-posedness for a class of
DNLS equations in the energy space H1. Ozawa and Tsutsumi [25] proved the local

well-posedness in H
1
2 . On the other hand, Takaoka [29] applied the Fourier restriction

norm method to show local well-posedness in Hs, s≥1/2, improving the results due
to Ozawa and Tsutsumi. But via such a transformation the loss of derivatives still
persists in our case under the form vH(v̄∂xv) and, as observed in [29], the Fourier
restriction norm method seems to be inapplicable to nonlinearities like that due to a
logarithmic divergence involving the key trilinear estimate.

Remark 1.2. It should be pointed out that the smallness condition in Theorem 1.1
is in agreement with the physical meaning of Equation (1.2), where the reductive
perturbation expansion was applied presupposing that the amplitude u is small and
the length scale x is large (see [8]).

Remark 1.3. Note that Theorem 1.1 also includes the case λ>0, which was not
studied in [26, 27].

Once Theorem 1.1 is proved, a natural question presents itself: can we show
well-posedness in Hs(R) for s≤1/2? By using a scaling argument we may have an
insight on this question. To make this point clear, we note that if u solves the Cauchy
problem for (1.2) with initial data u0 then

uσ(x,t)=σ
1/2u(σx,σ2t) (1.5)

also solves the Cauchy problem for (1.2) with initial data uσ(x,0)=σ
1/2u0(σx).

Hence, the highest derivative that leaves invariant the Hs(R)-norm of uσ is s=0.
Actually, a straightforward calculation reveals that

‖uσ(·,0)‖Ḣs =σ
s‖u0‖Ḣs , (1.6)

where Ḣs= Ḣs(R) denotes the homogeneous Sobolev space of order s. This argu-
ment suggests that L2(R) is the critical space where we expect to prove a local
well-posedness result. Meanwhile, contrary to this expectation, we prove that one
cannot obtain local well-posedness in Hs(R), s<1/2, in the sense that the flow-map
data-solution is not C3 at the origin. More precisely, we establish the following.

Theorem 1.4. Let s<1/2. If the Cauchy problem for (1.2) is locally well-posed in
Hs(R), then the flow-map data-solution

S(t) :Hs(R)−→Hs(R), u0 7−→u(t) (1.7)

is not C3 at the origin.

This result is very similar to that obtained by Takaoka in [28], where the same
result was proved for the DNLS Equation (1.1). The idea to prove Theorem 1.4 is to



66 ON THE CAUCHY PROBLEM FOR THE NDNLS EQUATION

use the technique introduced by Bourgain [2], which consists in locating certain plane
waves whose interactions behave badly in low regularity. We point out that results
in the same direction were proved for the Korteweg-de Vries [30] and Benjamin-Ono
[23] equations.

The second purpose of the paper is to investigate the (non)existence of solitary-
wave solutions. It is well known that the DNLS equation possesses a two-parameter
family of solitary waves of the form (see [31])

uω,c(x,t)= e
−iωteiψ(x−ct)ϕ(x−ct), (1.8)

where ω,c are real parameters satisfying −c2−4ω>0, and ψ,ϕ are smooth real-valued
functions given by





ϕ(x)=(d3+d5 cosh(d6x))
−1/2,

ψ′(x)=
c

2
+

3

4
ϕ2(x),

d3=
c

2(−c2−4ω)
, d25=

−ω
(−c2−4ω)2

, d26=−c2−4ω.

(1.9)

Therefore, since the nDNLS equation can be viewed as a perturbation of the DNLS
equation, one could expect, at least for sufficiently small λ, the existence of solitary
waves for (1.2) of the form (1.8). As a matter of fact, this question was addressed
in [32] using both numerical simulations and the soliton perturbation method. But,
as was observed by the authors (in their summary), it is not clear if the methods
could prove the existence of solitary waves for (1.2) because the non-soliton part
should always appear in the eigenvalue problem, and as a result all solitons eventually
disappear.

Here, we look for solitary-wave solutions of the form

uω,c(x,t)= e
−iωtζ(x−ct), (1.10)

where ζ is a complex-valued function, and ω and c are real parameters. By assuming
that ζ has finite energy, we prove that, for any λ 6=0, solitary waves of the form (1.10)
indeed do not exist. More precisely, we prove the following:

Theorem 1.5. Let ζ ∈L2(R) such that

∫ +∞

−∞

|ζ|2H∂x(|ζ|2)dx<∞.

Then, for any λ 6=0, (1.2) does not admit any nontrivial solitary-wave solutions of the
form (1.10), for any ω,c∈R.

The proof of Theorem 1.5 is standard, and it follows essentially from the lack of
energy conservation.

It should be pointed out that the orbital stability of the solitary waves (1.9) was
addressed in [3] and [11]. Moreover, by using such solitary waves Biagioni and Linares
[1] proved the ill-posedness in Hs(R), s<1/2, for the Cauchy problem associated with
the DNLS equation, in the sense that the flow-map data-solution is not uniformly
continuous.
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Besides this introduction, this work is organized as follows. In Section 2 we list the
smoothing effects for the linear Schrödinger equation and the fractional vector-valued
Leibniz rule estimates to be used throughout the paper. In Section 3 we derive our
Gauge transformation and give the proof of Theorem 1.1. In Section 4 we prove the
ill-posedness result. Finally, in Section 5, we prove the nonexistence of solitary-wave
solutions.
Notation. Given any positive constants C, D, by C.D we mean that there exists
a constant c>0 such that C≤ cD. By C∼D we mean C.D and D.C. Given two
operators A and B, we denote by [A,B]=AB−BA the commutator between A and B.
By F{u} or û we denote the Fourier transform of u with respect to the space variable
x, while F−1{u} or ǔ denote its inverse Fourier transform. Lp-norms are written as
‖ · ‖Lp

x
or ‖ · ‖Lp if no confusion is caused. For 1≤p,q<∞ and f :R× [0,T ]→R, we

define

‖f‖Lp
xL

q
T
=



∫ ∞

−∞

(∫ T

0

|f(x,t)|qdt
)p/q

dx




1/p

.

‖f‖Lq
TL

p
x
is similarly defined, and when p=∞ or q=∞, ‖f‖Lp

xL
q
T

is defined in the

natural form. When p= q, we write ‖f‖Lp
x,T

instead of ‖f‖Lp
xL

q
T
.

S(R) represents the Schwartz space. Js will be the Bessel potential, Js=(1−
∂2x)

s/2=F−1{(1+ | · |2)s/2}, Ds
x denotes the Riesz potential Ds

x=(−∂2x)s/2= F−1{| ·
|s}, and D̃s

x=HDs
x. The space Hs(R) is the usual Sobolev space with norm ‖·‖Hs :=

‖Js·‖L2 .
Let ψ be an even C∞

0 function such that ψ(ξ)=1 for all |ξ|≤1 and ψ(ξ)=0
for |ξ|≥2. Set ϕ(ξ)=ψ(ξ)−ψ(2ξ). For any dyadic number N =2j , j∈Z≥0, write

ϕN (ξ)=ϕ(ξ/N), and define ϕ0 by ϕ0(ξ)=1−
∑

N=2j≥1

ϕN (ξ). Let PN be the convolu-

tion operators PNf = ϕ̌N ∗f and P0f = ϕ̌0 ∗f .
We denote by P+f =F−1{χ[0,+∞)(·)f̂(·)} and P−f =F−1{χ(−∞,0](·)f̂(·)} the

projection in positive and negative frequencies of f , respectively. We finally define
P+hif =P+((1−P0)f) and P−hif =P−((1−P0)f). It is well known that P−hi and
P+hi are continuous operators on LpxL

q
T for any 1≤p, q≤∞.

We now exhibit the resolution space Xs
T . Given s>1/2 and 0<T ≤1, we define

Xs
T ={u∈C([−T,T ];Hs(R)); ‖u‖Xs

T
<∞}, (1.11)

where

‖u‖Xs
T
:=max

{
‖u‖L∞

T Hs
x
, ‖Ds+ 1

2
x u‖L∞

x L2
T
, ‖u‖L2

xL
∞

T
,‖Ds

xu‖L6
x,T
, ‖D

1
2
x u‖L6

T,x
,

‖Ds+ 1
10

x u‖
L5

xL
10
3

T

, ‖D
9
10
x u‖

L20
x L

20
9

T

}
. (1.12)

2. Linear estimates and auxiliary Lemmas

Solutions of the IVP associated with the linear Schrödinger equation
{
∂tu− i∂2xu=0, x, t∈R,
u(x,0)=φ(x),

(2.1)

are described by the unitary group {eit∂2
x}∞t=−∞, which from now on will be symbolized

by {U(t)}∞t=−∞.
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Definition 2.1. We say that a triplet (α, p, q)∈R× [2,∞]2 is

(i) 1-admissible if

(α, p, q)=( 1
2 ,∞, 2) or p∈ [4,∞), q∈ [2,∞],

2

p
+

1

q
≤ 1

2
, α=

1

p
+

2

q
− 1

2
;

(ii) 2-admissible if 2<p, q<∞,
1

p
+

1

q
≤ 1

2
, α=

1

p
+

3

q
−1. If moreover 4≤

p<∞, we say that (α, p, q) is 2∗-admissible.

We first list the smoothing effects and Strichartz estimates obtained by Molinet
and Ribaud in [22], using previous results of Kenig, Ponce, and Vega [15, 17].

Lemma 2.2. Let (α, p, q)∈R× [2,∞]2 and 0<T <1.

(i) If (α, p, q) is 1-admissible, then

‖Dα
xU(t)φ‖Lp

xL
q
T
.‖φ‖L2 , ∀φ ∈S(R). (2.2)

(ii) If (α, p, q) is 2-admissible, then

‖Jαx U(t)φ‖Lp
xL

q
T
.‖φ‖L2 , ∀φ ∈S(R). (2.3)

(iii) If (α, p, q) is 2∗-admissible, then

‖Dα
xU(t)φ‖Lp

xL
q
T
.T

1
4−

1
2q ‖φ‖L2 , ∀φ ∈S(R). (2.4)

The following maximal function estimate will be essential.

Lemma 2.3. For any s>1/2 and 0<T ≤1, we have

‖U(t)φ‖L2
xL

∞

T
.‖φ‖Hs . (2.5)

Proof. Cf. [16, Theorem 3.1].

Making use of the so-called Christ and Kiselev Lemma [6], Molinet and Ribaud
[22] deduced the following retarded estimates from the above nonretarded ones.

Lemma 2.4. Let (α1,α2)∈R
2, (r1,r2)∈R

2
+ and 1≤p1, q1, p2, q2≤∞ be such that,

given φ∈S(R),

‖Dα1
x U(t)φ‖Lp1

x L
q1
T
.T r1‖φ‖L2 , (2.6)

‖Dα2
x U(t)φ‖Lp2

x L
q2
T
.T r2‖φ‖L2 . (2.7)

Then for all F ∈S(R),
∥∥∥∥D

α2
x

∫ t

0

U(t−τ)F (·,τ)dτ
∥∥∥∥
L∞

T L2
x

.T r2‖F‖
L

p̃2
x L

q̃2
T
, (2.8)

∥∥∥∥D
α1+α2
x

∫ t

0

U(t−τ)F (·,τ)dτ
∥∥∥∥
L

p1
x L

q1
T

.T r1+r2‖F‖
L

p̃2
x L

q̃2
T
, (2.9)

provided

min(p1,q1)>max(p̃2, q̃2) or (q1=∞ and p̃2, q̃2<∞), (2.10)
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where p̃2, q̃2 are defined by
1

p̃2
=1− 1

p2
and

1

q̃2
=1− 1

q2
.

As a consequence of Lemmas 2.2 and 2.3, one has the following result which
guarantees that U(t)φ∈Xs

T .

Lemma 2.5. Let s>1/2 and T ∈ (0,1). Then for all φ∈Hs,

‖U(t)φ‖Xs
T
.‖φ‖Hs and ‖U(t)P0φ‖Xs

T
.‖φ‖L2 . (2.11)

Proof. Actually, (2.11) is an immediate consequence of Lemma 2.2, Lemma
2.3 and Bernstein’s inequality. It is enough to observe that ( 12 ,∞,2), (0,6,6) are 1-
admissible, and ( 1

10 ,5,
10
3 ) and ( 25 ,20,

20
9 ) are 2∗-admissible.

Finally, we recall some vector-valued Leibniz rules for fractional derivatives, which
are fundamental for reaching our goal.

Lemma 2.6. Let α∈ (0,1), α1,α2∈ [0,α] such that α=α1+α2. Then if
p, p1, p2, q, q1, q2∈ (1,∞), with 1

p =
1
p1

+ 1
p2

and 1
q =

1
q1
+ 1
q2
, we have

(i) ‖Dα
x (fg)−fDα

x g−gDα
xf‖Lp

xL
q
T
≤ c‖Dα1

x f‖Lp1
x L

q1
T
‖Dα2

x g‖Lp2
x L

q2
T
.

Moreover, if α1=0, (i) still holds with q1=∞.

(ii) ‖Dβ
x([D

α
x ,f ]g)‖Lp

xL
q
T
.‖g‖Lp1

x L
q1
T
‖Dα+β

x f‖Lp2
x L

q2
T
,

where 0≤β<1−α. Moreover, for β>0 the value q1=∞ is allowed.

(iii) ‖Dα
x (fg)−fDα

x g−gDα
xf‖L1

xL
2
T
≤ c‖Dα1

x f‖Lp1
x L

q1
T
‖Dα2

x g‖Lp2
x L

q2
T
,

where 1= 1
p1

+ 1
p2
, 1

2 =
1
q1
+ 1
q2

and p1,p2,q1,q2∈ (1,∞).

(iv) ‖Dα
xP±(fP∓D

β
xg)‖Lp

xL
q
T
≤ c‖Dγ1

x f‖Lp1
x L

q1
T
‖Dγ2

x g‖Lp2
x L

q2
T
,

with γ1≥α and γ1+γ2=α+β.

(v) ‖Dα
x (fg)−fDα

x g−gDα
xf‖Lp

x
.‖g‖L∞

x
‖Dα

xf‖Lp
x
.

The lemma is still valid with D̃α
x in place of Dα

x .

Proof. Parts (i), (iii), and (v) were proved by Kenig, Ponce, and Vega[18]
(Theorems A.8, A13, and A12, respectively). Parts (ii) and (iv) (this last one for the
case P+(fP−g)) were established by Molinet and Ribaud [22] (Lemmas 3.4 and 3.5,
respectively).

3. Proof of Theorem 1.1

3.1. Gauge transformation. Let u be a solution to (1.2) with sufficient
regularity in space-time and integrability in space. Inspired by [25], we perform the
following change of dependent variable,

v(x,t)= eiρ(u)u(x,t), with ρ=ρ(u(x,t))=βλP0

(∫ x

−∞

H
(
|u(y,t)|2

)
dy

)
, (3.1)

where β is a real number to be chosen later. Then a direct calculation shows that v
satisfies

∂tv− i∂2xv= ieiρu{∂tρ− i∂2xρ+(∂xρ)
2}+eiρ(∂tu− i∂2xu)+2∂xρe

iρ∂xu. (3.2)

By (1.2) and (3.1), we see that

∂tρ=βλHP0

(∫ x

−∞

(∂tuū+u∂tū)dy

)
=βλHP0 (I) , (3.3)
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where

I=

∫ x

−∞

(i∂2yuū− iu∂2y ū)dy+
∫ x

−∞

∂y(|u|2u)ūdy+
∫ x

−∞

∂y(|u|2ū)udy

+λ

∫ x

−∞

∂y(H(|u|2)u)ūdy+λ
∫ x

−∞

∂y(H(|u|2)ū)udy

= i(∂xuū−u∂xū)+
3

2
|u|4+2λ

∫ x

−∞

H∂y(|u|2)|u|2dy+λ
∫ x

−∞

H(|u|2)∂y(|u|2)dy

= i(∂xuū−u∂xū)+
3

2
|u|4+λH(|u|2)|u|2+λ

∫ x

−∞

H∂y(|u|2)|u|2dy. (3.4)

Since |u|= |v| and eiρ∂xu=∂xv− iβλvHP0(|v|2), we have

HP0(u∂xū)=HP0(v∂xv̄)+ iβλHP0(|v|2HP0(|v|2)). (3.5)

Then, from (3.1) and (3.3)–(3.5), we deduce that

∂tρ− i∂2xρ+(∂xρ)
2=−2iβλHP0(v∂xv̄)+2β2λ2HP0(|v|2HP0(|v|2)+

3βλ

2
HP0(|v|4)

+βλ2HP0(|v|2H(|v|2))+βλ2HP0

(∫ x

−∞

H∂y(|v|2)|v|2dy
)

+β2λ2(HP0(|v|2))2.

Thus v satisfies the equation

∂tv− i∂2xv=2βλvHP0(v∂xv̄)+2iβ2λ2vHP0(|v|2HP0(|v|2))+
3i

2
βλvHP0(|v|4)

+iβλ2vHP0(|v|2H(|v|2))+ iβλ2vHP0

(∫ x

−∞

H∂y(|v|2)|v|2dy
)
+∂x(|v|2v)

−iβλv|v|2HP0(|v|2)+λvH∂x(|v|2)+λHPhi(|v|2)∂xv
−iβλ2vHP0(|v|2)H(|v|2)+(2β+1)λHP0(|v|2)∂xv
−2iβ2λ2v(HP0(|v|2))2. (3.6)

As we have already said in the introduction, the main difficulty is to handle the
term HP0(|v|2)∂xv. To overcome this difficulty we choose β=−1/2. Taking that
value for β in (3.6), we obtain the following equation:

∂tv− i∂2xv=∂x(|v|2v)+λHPhi(|v|2)∂xv+λvH∂x(|v|2)−λvHP0(v∂xv̄)

−iλ
2

2
vHP0

(∫ x

−∞

H∂y(|v|2)|v|2dy
)
+ i

λ

2
v|v|2HP0(|v|2)− i

3λ

4
vHP0(|v|4)

+i
λ2

2
vHP0(|v|2HP0(|v|2))− i

λ2

2
vHP0(H(|v|2)|v|2)

+i
λ2

2
vHP0(|v|2)H(|v|2)− iλ

2

2
v(HP0(|v|2))2=:

11∑

j=1

cjFj(v), (3.7)

where Fj=Fj(v) are numbered according to their position in (3.7).
Conversely, a similar calculation reveals that if v satisfies (3.7), then u(x,t)=

e−iρ(v)v(x,t) satisfies (1.2), where ρ is defined in (3.1) with β=−1/2.
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3.2. Local well-posedness for the Gauge transformed equation. The
main goal here is to establish local well-posedness for the Cauchy problem associated
with (3.7). Hence we consider the IVP




∂tv− i∂2xv=

11∑

j=1

cjFj , x, t∈R,

v(x,0)=ψ(x).

(3.8)

The idea to prove the solvability of (3.8) is to use the Banach contraction principle.
More precisely, we prove the following.

Proposition 3.1. Let s>1/2. Then there exists a δ>0 such that for any ψ∈
Hs (R), with ‖ψ‖Hs <δ, there exist a positive time T =T (‖ψ‖Hs) with T (‖ψ‖Hs)→∞
as ‖ψ‖Hs →0, a space Xs

T such that XT
s →֒C([−T,T ];Hs(R)), and a unique solution u

to the Cauchy problem (3.8) in Xs
T . Furthermore, for any T ′∈ (0,T ) there exists ǫ>0

such that the flow-map data-solution is Lipschitz from {ψ̃∈Hs(R); ‖ψ̃−ψ‖Hs <ǫ}
into Xs

T ′ .

Proof. Let s>1/2 and ψ∈Hs such that ‖ψ‖L2 <δ, where δ will be chosen later.
We look for a solution of the integral equation corresponding to (3.8), namely,

v(t)=U(t)ψ+

11∑

j=1

cj

∫ t

0

U(t−τ)Fj(τ)dτ. (3.9)

Consider the map

Φ(v)(t)=U(t)ψ+
11∑

j=1

cj

∫ t

0

U(t−τ)Fj(τ)dτ. (3.10)

We shall prove that there exist a=a(‖ψ‖Hs)>0 and T (0<T ≤1) such that, if
v∈Xs

T (a) :={u∈Xs
T ; ‖u‖Xs

T
≤a}, then Φ(v)∈Xs

T (a) and Φ :Xs
T (a)→Xs

T (a) is a con-
traction. Without loss of generality, we restrict ourselves to the most interesting case
1/2<s<9/10. The case s≥9/10 can be handled in a similar fashion.

First we note that by Lemmas 2.3 and 2.5 we have, for 0<T ≤1, that

‖U(t)ψ‖Xs
T
.‖ψ‖Hs . (3.11)

To make the approach as easy as possible, we shall consider each term of (3.10)
separately. At this stage we may take λ=1 in (3.7) without loss of generality. Our
first strategy is to split the nonlinearities containing derivatives in the following way:

F1= ∂x(|v|2v)=2[D
1
2
x , |v|2]D̃

1
2
x v+[D

1
2
x ,v

2]D̃
1
2
x v̄−2D

1
2
x (|v|2D̃

1
2
x v)−D

1
2
x (v

2D̃
1
2
x v̄)

=
4∑

l=1

F1,l,

F2=[D
1
2
x ,HPhi(|v|2)]D̃

1
2
x v−D

1
2
x (HPhi(|v|2)D̃

1
2
x v)=

2∑

l=1

F2,l,

F3=vH∂x(|v|2)=P0(vDx(|v|2))+ iP+hi(vP−∂x(|v|2))− iP+hi(vP+∂x(|v|2))
+iP−hi(vP−∂x(|v|2))− iP−hi(vP+∂x(|v|2))
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=P0(vDx(|v|2))+2iP+hi(vP−∂x(|v|2))−2iP−hi(vP+∂x(|v|2))
+iP+hiD

1
2
x (|v|2D̃

1
2
x v)− iP+hi([D

1
2
x , |v|2]D̃

1
2
x v)+ iP+hiD

1
2
x (v

2D̃
1
2
x v̄)

−iP+hi([D
1
2
x ,v

2]D̃
1
2
x v̄)+ iP−hi([D

1
2
x , |v|2]D̃

1
2
x v)− iP−hiD

1
2
x (|v|2D̃

1
2
x v)

+iP−hi([D
1
2
x ,v

2]D̃
1
2
x v̄)− iP−hiD

1
2
x (v

2D̃
1
2
x v̄)=

11∑

l=1

F3,l, (3.12)

and

F4=vHP0(v∂xv̄)=vHP0([D
1
2
x ,v]D̃

1
2
x v̄)−vP0D̃

1
2
x (vD̃

1
2
x v̄)=

2∑

l=1

F4,l. (3.13)

Note that, unlike the other terms, vH∂x(|v|2) was first divided in low and high
frequencies parts. The reason for this is that to obtain the required estimates, we
shall need to work in L1

xL
2
T and, as we know, P± are not bounded in such a space.

The estimate for the term F5=vHP0

(∫ x
−∞

H∂y(|u|2)|u|2dy
)
, being slightly dif-

ferent, will be treated last.
Let

Ej=

∥∥∥∥
∫ t

0

U(t−τ)Fj(τ)dτ
∥∥∥∥
Xs

T

and Ej,l=

∥∥∥∥
∫ t

0

U(t−τ)Fj,l(τ)dτ
∥∥∥∥
Xs

T

.

Let w denote either v2, |v|2 or HPhi(|v|2), and let ν represent either v or v̄. Since
( 25 , 20,

20
9 ) is 2∗-admissible, ‖Phi(·)‖Hs ∼‖Phi(·)‖Ḣs and Phi, P±hi,HPhi are bounded

in LpxL
q
T , 1≤p,q≤∞, and by Lemma 2.5, Lemma 2.5(i)-(ii), Minkowski and Hölder’s

inequalities, we obtain

E1,1+E1,2+E2,1+E3,5+E3,7+E3,8+E3,10

.T
1
2 ‖[D

1
2
x ,w]D̃

1
2
x ν‖L2

x,T
+T

1
40 ‖Ds− 2

5
x [D

1
2
x ,w]D̃

1
2
x ν‖

L
20
19
x L

20
11
T

.T
1
2 ‖D

1
2
xw‖L3

x,T
‖D

1
2
x ν‖L6

x,T
+T

1
40 ‖D

1
2
x v‖L4

x,T
‖Ds+ 1

10
x w‖

L
10
7

x L
10
3

T

.T
1
2 ‖D

1
2
x v‖3L6

x,T
+T

3
20 ‖v‖

1
4

L∞

T H
1
2
‖D

1
2
x v‖

3
4

L6
x,T

‖v‖L2
xL

∞

T
‖Ds+ 1

10
x v‖

L5
xL

10
3

T

. (3.14)

Because Phi, P±hi,HPhi are bounded in LpxL
q
T , 1≤p,q≤∞, by Lemma 2.4 we have

E1,3+E1,4+E2,2+E3,4+E3,6+E3,9+E3,11

.T
1
2 ‖P0D

1
2
x (wD̃

1
2
x ν)‖L2

x,T
+‖PhiD̃s

x(wD̃
1
2
x ν)‖L1

xL
2
T

.T
1
2 ‖wD̃

1
2
x ν‖L2

x,T
+‖Ds

xw‖
L

4
3
x L

4
T

‖D
1
2
x v‖L4

x,T
+‖wDs+ 1

2
x ν‖L1

xL
2
T

.T‖v‖3L∞

T Hs +T
1
4 ‖v‖L2

xL
∞

T
‖Ds

xv‖
3
4

L6
x,T

‖v‖
1
2

L∞

T Hs‖D
1
2
x v‖

3
4

L6
x,T

+‖v‖2L2
xL

∞

T
‖Ds+ 1

2
x v‖L∞

x L2
T
,

(3.15)

where to get the second and third estimates, we have used Lemma 2.6(i),(iii), Bern-
stein, Hölder, and Sobolev’s inequalities.

In order to deal with F3,1, we rewrite it as

F3,1=P0(vDx(|v|2))=P0D
1
2
x (vD

1
2
x (|v|2))−P0([D

1
2
x ,v]D

1
2
x (|v|2)). (3.16)
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Now from Bernstein, Hölder, and Sobolev’s inequalities, we deduce
∥∥∥∥
∫ t

0

U(t−τ)P0D
1
2
x (vD

1
2
x (|v|2))(τ)dτ

∥∥∥∥
Xs

T

.T‖vD
1
2
x (|v|2)‖L∞

T L2
x

.T‖v‖L∞

T Hs‖D
1
2
x (|v|2)‖L∞

T L2
x

.T‖v‖3L∞

T Hs . (3.17)

Using similar arguments as above together with Lemma 2.6(v), we also obtain
∥∥∥∥
∫ t

0

U(t−τ)P0([D
1
2
x ,v]D

1
2
x (|v|2))(τ)dτ

∥∥∥∥
Xs

T

.T
1
2 ‖[D

1
2
x ,v]D

1
2
x (|v|2)‖L2

x,T

.T
1
2 ‖D

1
2
x v‖L6

x,T
‖D

1
2
x (|v|2)‖L3

x,T

.T
2
3 ‖D

1
2
x v‖2L6

x,T
‖v‖L∞

T Hs . (3.18)

Gathering together (3.17) and (3.18), we get

E3,1.T‖v‖3L∞

T Hs +T
2
3 ‖D

1
2
x v‖2L6

x,T
‖v‖L∞

T Hs . (3.19)

An application of Lemmas 2.4, 2.5 and 2.6(iv),(i) yields
∥∥∥∥
∫ t

0

U(t−τ)P±hi(vP∓∂x(|v|2))(τ)dτ
∥∥∥∥
Xs

T

.T
1
10 ‖Ds− 1

10
x P±(vP∓∂x(|v|2))‖

L
5
4
x L

10
7

T

.T
1
10 ‖D

9
10
x v‖

L20
x L

20/9
T

‖Ds
x(|v|2)‖

L
4
3
x L

4
T

.T
1
10 ‖D

9
10
x v‖

L20
x L

20/9
T

‖v‖L2
xL

∞

T
‖Ds

xv‖L4
x,T

.T
9
40 ‖D

9
10
x v‖

L20
x L

20/9
T

‖v‖L2
xL

∞

T
‖Ds

xv‖
3
4

L6
x,T

‖v‖
1
4

L∞

T Hs .

Thus,

E3,2+E3,3.T
9
40 ‖D

9
10
x v‖

L20
x L

20/9
T

‖v‖L2
xL

∞

T
‖Ds

xv‖
3
4

L6
x,T

‖v‖
1
4

L∞

T Hs . (3.20)

In order to estimate E4, we apply Bernstein and Sobolev’s inequalities, and Lem-
mas 2.5 and 2.6 to arrive at

E4,1.T
1
2 ‖P0(vHP0([D

1
2
x ,v]D̃

1
2
x v̄))‖L2

x,T
+T

1
2 ‖Ds

x(vHP0([D
1
2
x ,v]D̃

1
2
x v̄))‖L2

x,T

.T
1
2 {‖Ds

xv‖L6
x,T

‖[D
1
2
x ,v]D̃

1
2
x v̄‖L3

x,T
+‖v‖L6

x,T
‖[D

1
2
x ,v]D̃

1
2
x v̄‖L3

x,T
}

.T
1
2 ‖Ds

xv‖L6
x,T

‖D
1
2
x v‖2L6

x,T
+T

2
3 ‖v‖L∞

T Hs‖D
1
2
x v‖2L6

x,T
, (3.21)

E4,2.T
1
2 {‖P0{vP0D̃

1
2
x (vD̃

1
2
x v̄)}‖L2

x,T
+‖Ds

xPhi{vP0D̃
1
2
x (vD̃

1
2
x v̄)}‖L2

x,T

.T
1
2 {‖Ds

xv‖L6
x,T

‖P0D̃
1
2
x (vD̃

1
2
x v̄)‖L3

x,T
+‖v‖L6

x,T
(‖P0D

1
2
x (vD̃

1
2
x v̄)‖L3

x,T

+‖P0D
s+ 1

2
x (vD̃

1
2
x v̄)‖L3

x,T
)}

.T
1
2 ‖Ds

xv‖L6
x,T

‖vD̃
1
2
x v̄‖L3

x,T
+T

2
3 ‖v‖L∞

T Hs‖vD̃
1
2
x v̄‖L3

x,T

.T
2
3 ‖v‖L∞

T Hs‖Ds
xv‖L6

x,T
‖D

1
2
x v‖L6

x,T
+T

5
6 ‖v‖2L∞

T Hs‖D
1
2
x v‖L6

x,T
. (3.22)
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Therefore, from (3.21) and (3.22), we see that

E4.T
1
2 ‖Ds

xv‖L6
x,T

‖D
1
2
x v‖2L6

x,T
+T

2
3 ‖v‖L∞

T Hs‖D
1
2
x v‖L6

x,T
‖Ds

xv‖L6
x,T

+T
2
3 ‖v‖L∞

T Hs‖D
1
2
x v‖2L6

x,T
+T

5
6 ‖v‖2L∞

T Hs‖D
1
2
x v‖L6

x,T
. (3.23)

Next, to estimate the nonlinear terms without derivatives, it is enough to apply
Lemmas 2.5, 2.3, and Hölder and Bernstein’s inequalities to immediately obtain

11∑

j=6

Ej=
11∑

j=6

∥∥∥∥
∫ t

0

U(t−τ)Fj(τ)dτ
∥∥∥∥
Xs

T

.T‖v‖5L∞

T Hs . (3.24)

Finally, we consider E5. In view of Minkowski, Hölder, Bernstein, and Sobolev’s
inequalities, we deduce

E5.

∫ t

0

∥∥∥∥vHP0

(∫ x

−∞

H∂y(|v|2)|v|2dy
)∥∥∥∥

Hs

(τ)dτ

.

∫ t

0

‖v‖Hs

∥∥∥∥HP0

(∫ x

−∞

H∂y(|v|2)|v|2dy
)∥∥∥∥

Hs

(τ)dτ

.

∫ t

0

‖v‖Hs

∥∥∥∥P0

(∫ x

−∞

D
1
2
y (|v|2D

1
2
y (|v|2))dy

)∥∥∥∥
Hs

+

∫ t

0

‖v‖Hs

∥∥∥∥P0

(∫ x

−∞

[D
1
2
y , |v|2]D

1
2
y (|v|2)dy

)∥∥∥∥
Hs

.

∫ t

0

‖v‖Hs

{
‖P0D

1
2
x (|v|2D

1
2
x (|v|2))‖L2

x
+

∥∥∥∥P0

(∫ x

−∞

[D
1
2
y , |v|2]D

1
2
y (|v|2)dy

)∥∥∥∥
Hs

}

.T ‖v‖L∞

T Hs ‖|v|2D
1
2
x (|v|2)‖L∞

T L2
x
+

∫ t

0

‖v‖Hs ‖[D
1
2
x , |v|2]D

1
2
x (|v|2)‖L2

x

.T ‖v‖5L∞

T Hs +T
1
2 ‖v‖L∞

T Hs ‖[D
1
2
x , |v|2]D

1
2
x (|v|2)‖L2

x,T
. (3.25)

Now, applying Lemma 2.6 (ii),(i) and Holder’s inequality to the last term in
(3.25), we obtain

‖[D
1
2
x , |v|2]D

1
2
x (|v|2)‖L2

x,T
. ‖D

1
2
x (|v|2)‖2L4

x,T
.‖v‖2L12

x,T
‖D

1
2
x v‖2L6

x,T

. T
1
6 ‖v‖2L∞

T Hs‖D
1
2
x v‖2L6

x,T
.

(3.26)

Therefore, (3.25) and (3.26) lead to

E5.T ‖v‖5L∞

T Hs +T
2
3 ‖v‖3L∞

T Hs‖D
1
2
x v‖2L6

x,T
. (3.27)

Thus, from (3.11), (3.14), (3.15), (3.19), (3.20), (3.23), (3.24) and (3.27), we see
that

‖Φ(v)‖Xs
T
.‖ψ‖Hs +(1+T

3
20 +T

9
40 +T

1
4 +T

1
2 +T

2
3 +T

5
6 +T )‖v‖3Xs

T

+(T
2
3 +T )‖v‖5Xs

T

≤ c‖ψ‖Hs +c(1+T
3
20 )‖v‖3Xs

T
+cT

2
3 ‖v‖5Xs

T
. (3.28)
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Fix δ=1/(8c
√
c) and take a=a(‖ψ‖Hs)>0 such that a∈ (2c‖ψ‖Hs , 4c‖ψ‖Hs ). It

follows that, if we choose T >0 such that cT
3
20 (4c‖ψ‖Hs)2+cT

2
3 (4c‖ψ‖Hs)4≤ 1

4 , then
we get Φ(v)∈Xs

T (a). Similar arguments show that Φ is a contraction. Since the
remainder of the proof follows standard arguments, we ommit the details (see, for
example, [16, Theorem 4.1] or [7, Theorem 2.1]).

3.3. Proof of Theorem 1.1. With Proposition 3.1 in hand, we are in a
position to prove Theorem 1.1. Let 1/2<s<9/10 and fix φ∈Hs with ‖φ‖Hs ≪1.
Define ψ as the following:

ψ(x)= eiρ(φ)φ(x), where ρ(φ)=−1

2
λHP0

(∫ x

−∞

|φ(y)|2dy
)
.

By using Lemma 2.6(v), Bernstein’s inequality, and Sobolev’s embedding, we see
that

‖Ds
xψ‖L2 =‖Ds

x(e
iρ(φ)φ)‖L2

.‖eiρ(φ)‖L∞‖Ds
xφ‖L2 +‖φ‖L∞‖Ds

x(e
iρ(φ))‖L2

.‖Ds
xφ‖L2 +‖φ‖Hs +‖φ‖Hs‖Phi∂x(eiρ(φ))‖L2

. (1+‖φ‖2Hs)‖φ‖Hs .

(3.29)

Moreover, since ‖φ‖L2 =‖ψ‖L2 , we obtain that ψ∈Hs and ‖ψ‖Hs ≪1. According
to Proposition 3.1, there exists a unique solution v∈C([−T,T ]);Hs(R)) for the IVP
(3.8). Let φ(n) be a sequence in H∞ such that φ(n)→φ in Hs, and let v(n) be the
solution of (3.8) with initial data

ψ(n)(x)= eiρ(φ
(n))φ(n)(x).

Similarly to (3.29), we see that

‖ψ(n)−ψ‖Hs . (1+‖φ‖2Hs +‖φ(n)‖2Hs)‖φ(n)−φ‖Hs . (3.30)

Hence ψ(n)→ψ in Hs. From the continuity of the flow map given in Proposition 3.1,
we obtain that v(n)→v in C([−T,T ]);Hs(R)).

Next, define

u(n)(x,t)= e−iρ(v
(n))v(n)(x,t),

u(x,t)= e−iρ(v)v(x,t).

As in (3.30), we have

‖u(n)−u‖L∞

T Hs . (1+‖v‖2L∞

T Hs +‖v(n)‖2L∞

T Hs)‖v(n)−v‖L∞

T Hs , (3.31)

which implies that u(n)→u in C([−T,T ];Hs(R)). We claim that u solves the IVP
associated with (1.2) with initial data φ. Indeed, obviously for t∈ [−T,T ], u(n)(t)
solves the integral equation

u(n)(t)=U(t)φ(n)+

∫ t

0

U(t−τ)
(
∂x(|u(n)|2u(n))+λ∂x(H(|u(n)|2)u(n))

)
(τ)dτ. (3.32)
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But, from the Sobolev embedding, we deduce

∥∥∥∥
∫ t

0

U(t−τ)∂x(|u(n)|2u(n)−|u|2u)(τ)dτ
∥∥∥∥
H−1

.(‖u‖2L∞

T Hs +‖u(n)‖2L∞

T Hs)‖u(n)−u‖L1
TL

2 .

Furthermore, using that iH=P+−P−, 1=P++P−, and the fact that P+ is bounded
on L2, we have

∥∥∥∥
∫ t

0

U(t−τ)∂x
(
H(|u(n)|2)u(n)−H(|u|2)u

)
(τ)dτ

∥∥∥∥
H−1

.(‖u‖2L∞

T Hs +‖u(n)‖2L∞

T Hs)‖u(n)−u‖L1
TH

s .

Therefore, by letting n→∞ in (3.32), we deduce that (3.32) holds with u(n) and φ(n)

replaced by u and φ, respectively.
The uniqueness of u follows from that for v. In addition, the continuous depen-

dence follows from similar arguments as above.
Finally, in order to show that it is enough to take ‖φ‖L2 ≪1 instead of ‖φ‖Hs ≪1,

we use the scaling in (1.5). Indeed, u(x,t) is the solution of the IVP for (1.2) on [0,T ]

with initial data φ∈Hs(R) if and only if uσ(x,t)=σ
1
2u(σx,σ2t) is the solution on

[0,σ−2T ] with data φσ=σ
1
2φ(σx) in Hs(R). From (1.6), we have that

‖φσ‖Hs ≤‖φ‖L2 +σs‖Ds
xφ‖L2 (3.33)

and so, taking ‖φ‖L2 ≪1 and σ=o(‖φ‖−2
Hs) we obtain ‖φσ‖Hs ≪1. This completes

the proof of Theorem 1.1.

4. Proof of Theorem 1.4

The aim of this section is to prove Theorem 1.4. The proof is close to that of
Theorem 7.1 in [28]. We begin with the following proposition.

Proposition 4.1. Let s<1/2 and T >0. Then there does not exist any space Xs
T

such that Xs
T is continuously embedded in C([−T,T ];Hs(R)), i.e.

‖u‖C([−T,T ];Hs).‖u‖Xs
T
, ∀ u∈Xs

T , (4.1)

and such that

‖U(t)φ‖Xs
T
.‖φ‖Hs , ∀ φ∈Hs(R), (4.2)

and
∥∥∥∥
∫ t

0

U(t−τ)
[
∂x(u(τ)v(τ)w(τ))+λ∂x(u(τ)H(v(τ)w(τ)))

]
dτ

∥∥∥∥
Xs

T

.‖u‖Xs
T
‖v‖Xs

T
‖w‖Xs

T
,

(4.3)

for all u, v, w∈Xs
T .

Proof. Let s<1/2. From now on, we shall use the notation

∂x(|U(τ)φ|2U(τ)φ)+∂x(H(|U(τ)φ|2)U(τ)φ≡F (U(t)φ).
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Suppose that there exists a space Xs
T satisfying (4.1)–(4.3) for all u, v, w∈Xs

T , and
fix 0<t<T . Taking φ∈Hs(R) and using (4.1)–(4.3), with u(t)=v(t)=w(t)=U(t)φ,
we see that

∥∥∥∥
∫ t

0

U(t−τ)F (U(t)φ)dτ

∥∥∥∥
Hs

.‖φ‖3Hs . (4.4)

Next, we show that (4.4) fails for an appropriate choice of φ. This would lead us to
a contradiction.

Choose the following φ, defined by its Fourier transform,

φ̂(ξ)=N−sχI(ξ), (4.5)

where χI is the characteristic function of the interval I=[N−η,N+η], with N≫1
and 0<η≪1. Note that ‖φ‖Hs ∼1.

Now, by using the definitions of U(t) and φ, we can write

F
{∫ t

0

U(t−τ)F (U(t)φ)dτ

}
(ξ)

=
ξe−itξ

2

N3s

∫

Ω(ξ)

e2it(ξ−ξ1)(ξ1+ξ2)−1

2t(ξ−ξ1)(ξ1+ξ2)
(1− isgn(ξ−ξ1))dξ1dξ2, (4.6)

where

Ω(ξ)={(ξ1,ξ2)∈R
2 / ξ1, −ξ2, ξ−ξ1−ξ2∈ I }.

Observe that when (ξ1,ξ2)∈Ω(ξ) we have

ξ∼N and |(ξ−ξ1)(ξ1+ξ2)|.η2.

For any ξ∈ (N−η,N+η) we have that |Ω(ξ)|&η2. Moreover, a simple analysis shows
that

suppF
{∫ t

0

U(t−τ)F (U(t)φ)dτ

}
⊆ [N−3η,N+3η]. (4.7)

Finally, choosing η small enough, we deduce that

e2it(ξ1+ξ3)(ξ2+ξ3)−1

(ξ1+ξ3)(ξ2+ξ3)
=2it+o(η),

which in turns implies that

∥∥∥∥
∫ t

0

U(t−τ)F (U(t)φ)dτ

∥∥∥∥
Hs

&N1−2s. (4.8)

Therefore, gathering together (4.4) and (4.8), we conclude that

N1−2s.1, ∀ N≫1,

which is a contradiction since s<1/2.

Remark 4.2. As is well known, a consequence of Proposition 4.1 is that it is not
possible to solve the IVP (1.2) in Hs(R) using a Fixed Point Theorem if s<1/2.
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Proof of Theorem 1.4.
Proof. Consider the Cauchy problem for (1.2) with initial data u(x,0)=µφ(x).

Suppose that u=u(x,t;µ) is the local solution of that IVP and that its flow-map
solution

S :Hs(R)−→C([0,T ];Hs(R))

is C3-differentiable at the origin. The associated integral equation is

u(t)=U(t)µφ+

∫ t

0

U(t−τ)F (U(τ)φ)dτ. (4.9)

Differentiating (4.9) with respect to µ and evaluating at µ=0, we have

∂u

∂µ

∣∣∣∣
µ=0

=U(t)φ,
∂2u

∂µ2

∣∣∣∣
µ=0

=0, and
∂3u

∂µ3

∣∣∣∣
µ=0

=6

∫ t

0

U(t−τ)F (U(τ)φ)dτ.

By the hypothesis of C3-differentiability, we then obtain

∥∥∥∥
∫ t

0

U(t−τ)F (U(τ)φ)dτ

∥∥∥∥
Hs

.‖φ‖3Hs ,

which is estimate (4.4). But, from Proposition 4.1, it is false for s<1/2.

5. Proof of Theorem 1.5

In this section we prove Theorem 1.5. The proof follows from standard techniques
because the nDNLS equation does not conserve energy.

We first observe that to formally obtain (1.4), we multiply (1.2) by u and integrate
over R. Taking the real part of the obtained equation and integrating by parts gives
(1.4).

Assume next that (1.2) admits a traveling-wave solution of the form (1.10) satis-
fying the hypotheses of Theorem 1.5. Then

E(uω,c(t))=

∫ ∞

−∞

|ζ(x)|2dx. (5.1)

Since the right-hand side of (5.1) does not depend on t, it follows that

d

dt
E(uω,c(t))=0.

This last equality contradicts (1.4) for any λ 6=0. This completes the proof of the
theorem.
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