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ON THE UNIQUENESS FOR SUB-CRITICAL

QUASI-GEOSTROPHIC EQUATIONS∗

LUCAS C. F. FERREIRA†

Abstract. We prove uniqueness of mild solutions in the class C([0,T );L
n

2γ−1 ), 0<T ≤∞,
for sub-critical quasi-geostrophic equations without assuming any smallness condition. As a conse-

quence, any mild solution in C([0,∞);L
2

2γ−1 ) satisfies the regularity and decay properties given in
the previous paper [4]. The proof is performed in the framework of Lorentz spaces.
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1. Introduction

In this work we are concerned with the initial value problem (IVP) for the quasi-
geostrophic equation:





∂θ
∂t

+u∇xθ+(−∆)γθ=0, x∈Rn, t>0,

θ(x,0)=θ0(x), x∈Rn,
(1.1)

where n≥1 and 1
2 <γ<

n+2
4 . The velocity field u is determined from the normalized

temperature θ through a linear operator R[θ]=u, such that ∇·u=0 and

uj =

n∑

i=1

aijRi(θ), for 1≤ j≤n, (1.2)

where Ri=∂i(−∆)−
1
2 is the i-th Riesz transform and the aij ’s are constants. By

means of the Duhamel principle, the IVP (1.1) is converted to the integral equation

θ(t)=Gγ(t)θ0−B(θ,θ)(t), (1.3)

where

B(θ,ψ)(t)=

∫ t

0

∇xGγ(t−s)(ψR[θ])(s)ds, (1.4)

and Gγ(t) is the convolution operator with kernel gγ given by ĝγ(ξ,t)= e
−|ξ|2γt.

Throughout the present paper, a solution of (1.3) will be called a mild solution for
the IVP (1.1).

The physical case n=2 and u=(−R2(θ),R1(θ)) corresponds to well known 2D
surface quasi-geostrophic equations with fractional dissipation (2DQG) which have
been used in models of geophysical fluid dynamics. They are derived from general
quasi-geostrophic equations in the special case of small Rossby number and vertically
stratified flows [5, 13].

∗Received: October 9, 2009; accepted (in revised version): April 25, 2010. Communicated by
Paul Milewski.

†Universidade Estadual de Campinas, Departamento de Matemática, CEP 13083-859, Campinas-
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The theory of geophysical dynamics has a large number of applications, which has
motivated several authors to study 2DQG from a mathematical point of view; see e.g.
[2, 5, 6, 7, 8, 9, 10, 12, 14] and their references. Concerning the uniqueness of Leray-
Hopf weak solutions, some results were obtained in [6, 8, 9] by assuming further Leray-
Prodi-Serrin or integral-regularity type restrictions. Later on, in a remarkable paper,
the authors of [2] show that Leray-Hopf weak solutions with arbitrary data θ0∈L

2(R2)
and 1/2≤γ≤1 become smooth for any t>0, and as a consequence those solutions
are unique. Furthermore, it follows that smooth solutions do not develop singularities
at finite time. For periodic conditions, this last breakthrough also was proved in [10]
by a different method based on the preservation of a certain continuity modulus. In
[7] this approach was extended for the whole space setting. In the supercritical case
0≤γ < 1

2 , it is still an open problem to know whether smooth solutions blow up (or
not) at finite time (see [10]).

In [6, 12, 14] the authors proved some interesting asymptotic results, which, for
given data θ0∈L

2, assure the existence of one Leray-Hopf weak solution satisfying
certain decays. In the case 1

2 ≤γ≤1, any weak solution presents the decays given in
[6, 12, 14] because the uniqueness holds true in that range.

On the other hand, the authors of [3] proved well-posedness of small mild solutions
for (1.1) in the framework of weak-Lp spaces, and thereby they obtained existence of
solutions in BC([0,∞);L

n
2γ−1 ). Later on, the same authors obtained in [4] some decay

rates and asymptotic behavior results in Lebesgue spaces for solutions of 2DQG and
all their derivatives. In particular, without assuming any smallness condition, they
showed the existence of a global mild solution θ∈C([0,∞);L

n
2γ−1 ) and uniqueness

in the class C([0,∞);L
n

2γ−1 )∩C((0,∞);Lq) with q> n
2γ−1 . Among other decays, that

solution satisfies

lim
t→∞

t
|k|
2γ

∥∥∇k
xθ(·,t)

∥∥
L

n
2γ−1

=0 and lim
t→∞

t
|k|
2γ +αq

∥∥∇k
xθ(·,t)

∥∥
Lq =0, (1.5)

for every multi-index k and q> n
2γ−1 , where αq =

2γ−1
2γ − n

2γq . As well as for the case of
Leray-Hopf weak solutions, it is natural to wonder whether any mild solution belong-
ing to C([0,∞);L

n
2γ−1 ) presents the same large time behavior (1.5). Motivated by this,

it emerges the need to prove the uniqueness of solutions in the class C([0,∞);L
n

2γ−1 ).
The aim of the present paper is to show this property by employing the framework of
weak-Lp spaces. Precisely, we prove the following result:

Theorem 1.1. Assume 1
2 <γ<

n+2
4 and 0<T ≤∞. If θ and ψ are two mild solutions

of (1.1) in C([0,T );L
n

2γ−1 ) with the same initial data θ0, then θ(·,t)=ψ(·,t) for all
t∈ [0,T ). Consequently, for n=2 any mild solution in C([0,∞);L

n
2γ−1 ) satisfies the

property (1.5).

Let us recall that a Leray-Hopf weak solution for (1.1) with data θ0∈L
2 is a

solution in the sense of distributions that belongs to L∞((0,T );L2)∩L2((0,T );Hγ).

Since L
2

2γ−1 (R2)*L2(R2) when γ 6=1, clearly a mild solution in C([0,T );L
2

2γ−1 ) is not
in general a Leray-Hopf weak solution (in particular, the data are taken in different
classes). Thus, beyond employing a distinct approach, our uniqueness result (even
for n=2) is different from the above-mentioned result for Leray-Hopf weak solutions.

Also, we remark that the decay property (1.5) is obtained by assuming just θ0∈L
2

2γ−1 .
Finally, we refer the reader to [11] for uniqueness results in spirit of Theorem 1.1

for Navier-Stokes equations n≥3. The paper is organized as follows: In Section 2,
for the sake of completeness, we recall some properties about Lorentz spaces, and in
Section 3 we prove Theorem 1.1.
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2. Lorentz spaces

In this section we recall some properties about Lorentz spaces. For a deeper
discussion we refer the reader to [1]. The distribution function of a measurable func-
tion f is defined by λf (s)=m({x∈Rn : |f(x)|>s}), with m standing for the Lebesgue
measure on Rn. The Lorentz spaces L(p,q) is the set of all measurable functions such
that the norm ‖·‖(p,q)

‖f‖(p,q)=





(
p

q

∫ ∞

0

[
t
1
p f∗∗(t)

]q dt
t

) 1
q

, if 1<p<∞, 1≤ q<∞,

sup
t>0

t
1
p f∗∗(t), if 1<p≤∞, q=∞,

(2.1)

is finite, where

f∗∗(t)=
1

t

∫ t

0

f∗(s) ds and f∗(t)= inf{s>0 :λf (s)≤ t}.

Equivalently, one can define L(p,q) (including for 0<p≤1) by means of the quantity
‖·‖∗(p,q) given by (2.1) with f∗ in place of f∗∗. One has L(p,p)=Lp, and L(p,∞) is also

called weak-Lp space. This space is the largest one among L(p,q)-spaces, since the
continuous inclusions

L(p,1)⊂L(p,q1)⊂Lp⊂L(p,q2)⊂L(p,∞)

hold true for all 1≤ q1≤p≤ q2≤∞. The dual space of L(p,1) is L(p′,∞) and the one
of L(p,q) is L(p′,q′) for 1<p,q<∞. Moreover, interpolation theory in Lorentz spaces
yields

(L(p0,q0),L(p1,q1))θ,q =L
(p,q), (2.2)

provided that 1<p0<p1<∞, 0<θ<1, 1
p
= 1−θ

p0
+ θ

p1
and 1≤ q0,q1,q≤∞. The prop-

erty (2.2) still holds true for 0<p0≤1, but in this case one needs to consider L(p0,q0)

endowed with the quantity ‖·‖∗(p,q) instead of ‖·‖(p,q). Hölder-type inequalities work
well in Lorentz spaces, namely

‖h‖(r,s)≤C(r)‖f‖(p1,q1)‖g‖(p2,q2), (2.3)

for 1<p1,p2<∞, 1
r
= 1

p1
+ 1

p2
, s≥1 and 1

q1
+ 1

q2
≥ 1

s
.

3. Proof of the uniqueness result

First we recall some properties for {Gγ(t)}t≥0 on the Lorentz spaces.

Lemma 3.1. Assume that 0<γ<∞, 1≤p1≤p2≤∞, 1≤ q1,q2≤∞ and k∈ ({0}∪
N)n is a multi-index. Then

‖∇k
xGγ(t)θ0‖(p2,q2)≤C t−

|k|
2γ − n

2γ ( 1
p1

− 1
p2

)‖θ0‖(p1,q1). (3.1)

Moreover, if θ0∈L
n

2γ−1 , 1
2 <γ≤

n+1
2 , n

2γ−1 <q≤∞, and αq =
2γ−1
2γ − n

2γq , then

lim
t→0+

‖Gγ(t)θ0−θ0‖
L

n
2γ−1

=0 and lim
t→0+

tαq‖Gγ(t)θ0‖Lq =0. (3.2)
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Proof. The property (3.2) is proved in [4, Lemma 2.1], and (3.1) follows by
interpolating the inequality (2.1) of [4].

The estimates below can be found in [3] (see also [15] for (3.3) in the case γ=1
and n≥3), but we include their proofs for the convenience of the reader.

Lemma 3.2. Suppose that 0<γ<∞ and 1<p<q<∞. Then

∫ ∞

0

t
1
2γ (n

p
−n

q
− (2y−1))‖∇xGγ(t)φ‖(q,1)ds≤C‖φ‖(p,1). (3.3)

Moreover, if n>2(2γ−1)>0 then

sup
t>0

‖B(θ,ψ)‖( n
2γ−1

,∞) ≤K sup
t>0

‖θ(·,t)‖( n
(2γ−1)

,∞) sup
t>0

‖ψ(·,t)‖( n
(2γ−1)

,∞) . (3.4)

Proof. Let g(t)= t
1
2γ (n

p
−n

q
−(2γ−1))‖∇xGγ(t)φ‖(q,1) and 1<p1<p<p2<q such

that (n
p
− n

p2
)<2γ. By Lemma 3.1, one has

g(t)≤Ct
n
2γ ( 1

p
− 1

pk
)−1

‖φ‖(pk,1), for k=1,2. (3.5)

Take 0<l2<1<l1 satisfying 1
lk
= n

2γ (
1
pk

− 1
p
)+1. Notice that (3.5) implies g(t)∈

Llk,∞(0,∞) and ‖g(t)‖L(lk,∞)((0,∞))≤C‖φ‖(pk,1) for k=1,2. Interpolation theorems

in Lorentz spaces [1] yield

‖g(t)‖L1(0,∞)≤C‖φ‖(p,1),

which is equivalent to (3.3). In order to treat (3.4), we define

f(·,s)=(ψR[θ])(·,t−s) if 0<s<t and f(·,s)=0 otherwise.

Next observe that 2γ−1
n

=1− n−(2γ−1)
n

and n
n−2(2γ−1) >

n
n−(2γ−1) >1. Thus, from du-

ality and Hölder’s inequality (2.3), we have

‖B(θ,ψ)‖( n
2γ−1 ,∞) = sup

‖φ‖
( n

n−(2γ−1)
,1)

=1

∣∣∣∣
∫

Rn

B(θ,ψ)φ(x)dx

∣∣∣∣

= sup
‖φ‖

( n
n−(2γ−1)

,1)
=1

∣∣∣∣
∫

Rn

∫ ∞

0

(∇xGγ(·,s)∗f(·,s))(x)ds φ(x)dx

∣∣∣∣

= sup
‖φ‖

( n
n−(2γ−1)

,1)
=1

∣∣∣∣
∫ ∞

0

∫

Rn

(∇xGγ(·,s)∗φ)f(x,s)dxds

∣∣∣∣

≤ sup
‖φ‖

( n
n−(2γ−1)

,1)
=1

∫ ∞

0

‖f(·,s)‖
( n

2(2γ−1)
,∞)

‖∇xGγ(·,s)∗φ‖
( n

n−2(2γ−1)
,1)
ds.

(3.6)

Finally, since 1
2γ (

n
p
− n

q
− (2y−1))=0 when p= n

n−(2γ−1) and q= n
n−2(2γ−1) , the

inequality (3.3), together with Hölder’s inequality and the L(p,∞)-continuity of Riesz
transforms, allow us to estimate the right hand side of (3.6) by
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≤C sup
t>0

‖f(·,t)‖( n
2(2γ−1)

,∞) sup
‖φ‖

( n
n−(2γ−1)

,1)
=1

‖φ‖( n
n−(2γ−1)

,1)

≤K sup
t>0

‖θ(·,t)‖( n
(2γ−1)

,∞) sup
t>0

‖ψ(·,t)‖( n
(2γ−1)

,∞) .

3.1. Proof of Theorem 1.1.

First step. Let us denote ω=θ−ψ, φ=Gγ(t)θ0−θ and ζ=Gγ(t)θ0−ψ, and

for simplicity pγ =
n

2γ−1 . In this step we show that ω(·,t)= 0 in [0,T̃ ], for some T̃ >0
small enough. To begin, we estimate the difference ω as

‖B(θ,θ)−B(ψ,ψ)‖(pγ ,∞)=‖B(θ,θ)−B(ψ,θ)+B(ψ,θ)−B(ψ,ψ)‖(pγ ,∞) .

≤‖B(ω,θ)‖(pγ ,∞)+‖B(ψ,ω)‖(pγ ,∞) . (3.7)

Writing θ and ψ in terms of φ and ζ, respectively, and afterwards inserting them into
(3.7), we can bound the right hand side of (3.7) by

≤‖B(ω,φ)‖(pγ ,∞)+‖B(ω,Gγ(t)θ0)‖(pγ ,∞)+‖B(ζ,ω)‖(pγ ,∞)+‖B(Gγ(t)θ0,ω)‖(pγ ,∞)

:= I1(t)+I2(t)+I3(t)+I4(t).

The inequality (3.4) implies, for all t∈ [0,T̃ ], that

I1≤C sup
0<t<T̃

‖ω‖(pγ ,∞) sup
0<t<T̃

‖φ‖(pγ ,∞) and I3≤C sup
0<t<T̃

‖ω‖(pγ ,∞) sup
0<t<T̃

‖ζ‖(pγ ,∞).

(3.8)
In order to deal with I2 and I4, take

1
l
= 1

pγ
+ 1

d
and apply (3.1) with p2=pγ and p1= l

to obtain

I
2
+I4≤2C

∫ t

0

(t−s)
− n

2γ ( 1

l
− 1

pγ
)− 1

2γ ‖ω(·,s)‖(pγ ,∞)‖Gγ(t)θ0‖(d,∞)ds

≤C sup
0<t<T̃

‖ω(·,t)‖(pγ ,∞)

(
sup

0<t<T̃

tαd‖Gγ(t)θ0‖(d,∞)

)∫ t

0

(t−s)−
n

2γd
− 1

2γ s−αdds

≤C sup
0<t<T̃

‖ω(·,t)‖(pγ ,∞)

(
sup

0<t<T̃

tαd‖Gγ(t)θ0‖(d,∞)

)
, (3.9)

for all t∈ (0,T̃ ), where we have used above that − n
2γd −

1
2γ −αd+1=0 and

∫ t

0

(t−s)−
n

2γd
− 1

2γ s−αdds= t−
n

2γd
− 1

2γ −αd+1

∫ 1

0

(1−s)−
n

2γd
− 1

2γ s−αdds=C<∞.

Now, adding the inequalities (3.8) and (3.9) one gets

sup
0<t<T̃

‖ω(·,t)‖(pγ ,∞)= sup
0<t<T̃

‖B(θ,θ)−B(ψ,ψ)‖(pγ ,∞)≤Γ(T̃ ) sup
0<t<T̃

‖ω(·,t)‖(pγ ,∞),

with Γ(T̃ ) given by

Γ(T̃ )=C

(
sup

0<t<T̃

‖φ(·,t)‖(pγ ,∞)+ sup
0<t<T̃

‖ζ(·,t)‖(pγ ,∞)+ sup
0<t<T̃

tαd‖Gγ(t)θ0‖(d,∞)

)

≤C

(
sup

0<t<T̃

‖φ(·,t)‖Lpγ + sup
0<t<T̃

‖ζ(·,t)‖Lpγ + sup
0<t<T̃

tαd‖Gγ(t)θ0‖Ld

)
,
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since the continuous inclusion Lr⊂L(r,∞) holds true. Notice that
‖φ(·,t)‖Lpγ ,‖ζ(·,t)‖Lpγ →0 as t→0+, because θ,ψ and Gγ(t)θ0 (see (3.2) in

Lemma 3.1) take the same initial condition θ0∈L
pγ . Thus we can choose T̃ >0 small

enough so that Γ(T̃ )<1, and then ω(·,t)=θ(·,t)−ψ(·,t)=0 for all t∈ [0,T̃ ].

Second step. Next we show that θ(·,t)=ψ(·,t) in [0,T ). To this end, define

T ∗=sup{T̃ : 0<T̃ <T, θ(·,t)=ψ(·,t) for all t∈ [0,T̃ )}.

If T ∗=T, then we are done. Otherwise, we have 0<T ∗<∞, θ(·,t)=ψ(·,t) for t∈
[0,T ∗), and by continuity θ(·,T ∗)=ψ(·,T ∗). From the first step, there is σ>0 so
small that θ(·,t)=ψ(·,t) for t∈ [T ∗,T ∗+σ). Therefore θ(·,t)=ψ(·,t) in [0,T ∗+σ),
which contradicts the definition of T ∗.
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[1] J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin-Heidelberg-New York, 1976.
[2] L.A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-

geostrophic equation, Ann. Math., 171, 1903–1930, 2010.
[3] J.A. Carrillo and L.C.F. Ferreira, Self-similar solutions and large time asymptotics for the dis-

sipative quasi-geostrophic equation, Monatsh. Math., 151, 111–142, 2007 (preprint posted
in January 2005 at www.uab.cat/matematiques).

[4] J.A. Carrillo and L.C.F. Ferreira, The asymptotic behaviour of subcritical dissipative quasi-

geostrophic equations, Nonlinearity, 21, 1001–1018, 2008.
[5] P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in the 2D quasi-geostrophic

thermal active scalar, Nonlinearity, 7, 1459–1533, 1994.
[6] P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J.

Math. Anal., 30, 937–948, 1999.
[7] H. Dong and D. Du, Global well-posedness and a decay estimate for the critical dissipative

quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst., 21, 1095–1101,
2008.

[8] N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equa-

tions in the sobolev space, Commun. Math. Phys., 251, 365–376, 2004.
[9] N. Ju, On the two dimensional quasi-geostrophic equations, Indiana Univ. Math. J., 54, 897–

926, 2005.
[10] A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative

quasi-geostrophic equation, Invent. Math., 167, 445–453, 2007.
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