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MULTI-SCALE METHODS FOR WAVE PROPAGATION IN
HETEROGENEOUS MEDIA∗

BJÖRN ENGQUIST† , HENRIK HOLST‡ , AND OLOF RUNBORG§

Abstract. Multi-scale wave propagation problems are computationally costly to solve by tradi-
tional techniques because the smallest scales must be represented over a domain determined by the
largest scales of the problem. We have developed and analyzed new numerical methods for multi-scale
wave propagation in the framework of heterogeneous multi-scale method. The numerical methods
couple simulations on macro- and micro-scales for problems with rapidly oscillating coefficients. We
show that the complexity of the new method is significantly lower than that of traditional techniques
with a computational cost that is essentially independent of the micro-scale. A convergence proof is
given and numerical results are presented for periodic problems in one, two, and three dimensions.
The method is also successfully applied to non-periodic problems and for long time integration where
dispersive effects occur.
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1. Introduction
We consider the initial boundary value problem for the scalar wave equation,

{

uε
tt−∇·Aε∇uε=0, Ω×{0≤ t≤T},

uε=f, uε
t =g, Ω×{t=0},

(1.1)

on a smooth domain Ω⊂R
N with Aε(x) a symmetric, uniformly positive definite

matrix. The expression ∇·Aε∇uε should be interpreted as ∇·(Aε∇uε). We assume
that Aε has oscillations on a scale proportional to ε≪1. The solution of (1.1) will
then also be highly oscillating in both time and spatial directions on the scale ε. It
is typically very computationally costly to solve these kinds of multi-scale problems
by traditional numerical techniques. The smallest scale must be well represented over
a domain, which is determined by the largest scales. For wave propagation small
scales may also originate from high frequencies in initial data or boundary data.
We will however focus on the case when they come from strong variations in the
wave velocity field. Such variable velocity problems occur for example in seismic
wave propagation in subsurface domains with inhomogeneous material properties and
microwave propagation in complex geometries.

Recently, new frameworks for numerical multi-scale methods have been proposed,
including the heterogeneous multi-scale method (HMM) [5] and the equation free
methods [13]. These methods couple simulations on macro- and micro-scales. We use
HMM [5, 6, 4], in which a numerical macro-scale method gets necessary information
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34 MULTI-SCALE METHODS FOR WAVE PROPAGATION

from micro-scale models that are only solved on small sub domains. This framework
has been applied to a number multi-scale problems, for example, ODEs with multiple
time scales [10], elliptic and parabolic equations with multi-scale coefficients [7, 17, 1],
kinetic schemes [6], and large scale MD simulation of gas dynamics [15].

On the macro-scale we will assume a simple flux form,

ũtt−∇·F =0, (1.2)

in our HMM approximation of the wave equation (1.1). The solution ũ should be a
good approximation of the solution to (1.1) and the value of F on the macro-scale
grid is computed by numerically approximating (1.1) on small micro-scale domains.

The goal of our research is to better understand the HMM process with wave
propagation as an example and also to derive computational techniques for future
practical wave equation applications. One contribution is a convergence proof in the
multidimensional case that includes a discussion on computational complexity. The
analysis is partially based on the mathematical homogenization theory for coefficients
Aε with periodic oscillations [2, 3].

Classical homogenization considers partial differential equations with rapidly os-
cillating coefficients. As the period of the coefficients in the PDE goes to zero, the
solution approaches the solution to another PDE, a homogenized PDE. The coeffi-
cients in the homogenized PDE have no ε dependency. For example, in the setting
of composite materials consisting of two or more mixed constituents (i.e., thin ε peri-
odic laminated layers), homogenization theory gives the macroscopic properties of the
composite. It is interesting to note that the macroscopic properties are often differ-
ent than the average of the individual constituents that makes up the composite [3].
The wave equation (1.1), with Aε(x)=A(x,x/ε) and A(x,y) periodic in y, has an
homogenized equation,

{

ūtt−∇·Ā∇ū=0, Ω×{0≤ t≤T},
ū= f̄ , ūt= ḡ, Ω×{t=0},

(1.3)

where Ā(x) is called the homogenized or effective coefficient. The homogenized solu-
tion ū can be used as an approximation of the solution uε of the full equation since
uε(x)= ū(x)+O(ε). Note that the homogenized equations are often less expensive to
solve with numerical methods, since the coefficients varies slowly without ε variations.
We refer to [2, 18, 3, 12, 16, 9] for more about homogenization in general.

It should be noted that even if our numerical methods use ideas from homog-
enization theory they do not solve the homogenized equations directly. The goal
is to develop computational techniques that can be used when there is no known
homogenized equation available. In the research presented here many of the homog-
enized equations are actually available and could in practice be numerically directly
approximated. We have chosen this case in order to be able to develop a rigorous
convergence analysis and to have a well-understood environment for numerical tests.
We also apply the techniques to problems that does not fit the theory. In example
4.2.3 an equation with non-periodic coefficients is approximated and in example 4.5
an equation is solved over very long time. The latter is particularly interesting since
the homogenized solution contains dispersive effects, which influence the solution for
t=O(ε−2). This dispersive process is captured by a high accuracy HMM technique
without explicit approximation of any dispersive term.

The article is organized as follows. In section 2 we first discuss the HMM frame-
work in a general setting and thereafter in section 2.1 our HMM method for the wave
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equation. We give a rigorous proof of the approximation error by the HMM method
in the periodic coefficient case in section 3. In section 4 we show numerical results,
which also includes a non-periodic problem and an example with very long time. The
last section 5 ends this paper with our conclusions.

2. Heterogeneous multi-scale methods (HMM)
In the HMM framework, the general setting of a multi-scale problem is the fol-

lowing: we assume that there exist two models, a micro model f(u,d)=0 describing
the full problem and a coarse macro model F (ũ, d̃)=0. The micro model is accurate
but is expensive to compute by traditional methods. The macro model gives a coarse
scale or low frequency solution ũ, which is assumed to be a good approximation of
the micro-scale solution u and is less expensive to compute. The model is however
incomplete in some sense and requires additional data. We assume that F (ũ, d̃)=0
can still be discretized by a numerical method, called the macro solver. A key idea in
the HMM method is to provide the missing data in the macro model (d̃) using a local
solution to the micro model. The micro model solution u is computed locally on a
small domain with size proportional to the micro-scale. The initial data and boundary
conditions (d) for this computation is constrained by the macro-scale solution ũ.

2.1. HMM for the wave equation. We will formulate a general HMM
framework for the wave equation on the domain Y =[0,1]d. Let uε be Y -periodic and
solve,

{

uε
tt=∇·Aε∇uε, Y ×{0≤ t≤T},

uε=f, uε
t =g, Y ×{t=0}.

(2.1)

We follow the same strategy as in [1] for parabolic equations and in [19] for the one-
dimensional advection equation. See also [8]. We assume there exists a macro-scale
PDE of the form







utt−∇·F (x,u,∇u,...)=0, Y ×{0≤ t≤T},
u=f, ut=g, Y ×{t=0},
u, Y -periodic,

(2.2)

where F is a function of x, u, and higher derivatives of u. The assumption on (2.2) is
that u≈uε when ε is small. In the clean homogenization case we would have F = Ā∇u,
but we will not assume knowledge of a homogenized equation. Instead we will solve
the PDE (2.1), only in a small time and space box, and from that solution extract a
value for F . The form of the initial data for this micro problem will be determined
from the local behavior of u. In the method we suppose that F =F (x,∇u).

Step 1: Macro model discretization. We discretize (2.2) using central differences
with time step K and spatial grid size H in all directions,






Un+1
m =2Un

m−Un−1
m + K2

H

(

F
(1)

m+ 1
2
e1
−F

(1)

m− 1
2
e1

)

+ · · ·+ K2

H

(

F
(d)

m+ 1
2
ed
−F

(d)

m− 1
2
ed

)

,

Fn
m− 1

2
ek

=F (xm− 1
2
ek
,Pn

m− 1
2
ek
), k=1, . . . ,d, (Note: Fn

m− 1
2
ek

is a vector),

(2.3)
where Fn

m±1/2ek
is F evaluated at point xm±1/2ek . The quantity Pn

m± 1
2
ek

approximates

∇u in the point xm±1/2ek . In figure 2.1 we show an example of the numerical scheme in
two dimensions. There Pn

m+ 1
2
e2

is given by the expression (A.4) in the Appendix. The

macro discretization H and K is supposed to be fine enough to capture all information
on the macroscopic scale.
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Fig. 2.1. The Numerical scheme (A.4) for P in two dimensions. In the figure above the
two components of F in two different positions are given by Fi+1/2,j and Gi,j+1/2. The U points
involved in computing Fn

m+ 1
2
e2

=Gi,j+1/2 and ∇u≈Pn
m+ 1

2
e2

are indicated by filled circles. Note

that the squares are where either (Aε
11∂x+Aε

12∂y)u
ε or (Aε

21∂x+Aε
22∂y)u

ε are computed, and not
the full gradient Aε∇uε.

Step 2: Micro problem. The evaluation of Fn
m− 1

2
ek

in each grid point is done by

solving a micro problem to fill in the missing data in the macro model. Given the
parameters xm− 1

2
ek

and Pn
m− 1

2
ek

, we solve a corresponding micro problem over a small

micro box Y ε, centered around xm− 1
2
ek

. In order to simplify the notation, we make a

change of variables x−xm− 1
2
ek

7→x. This implies that Aε(x) 7→Aε(x+xm− 1
2
ek
). The

micro problem has the form,







uε
tt−∇·Aε∇uε=0, Y ε×{0≤ t≤ τ},

uε(x,0)=(Pn
m− 1

2
ek
) ·x, uε

t (x,0)=0, Y ε×{t=0},
uε−uε(x,0), Y ε-periodic.

(2.4)

We see that there is a strong influence from the macro to micro scale due to the
initial data. The micro discretization h and k must be such that the solution to (2.4)
is resolved for the given initial data.

We keep the micro box size of order ε, i.e. τ , diamY ε=O(ε). We note that the
solution uε is an even function with respect to t (i.e. uε(x,−t)=uε(x,t)) due to the
initial condition uε

t (x,0)=0.

Step 3: Reconstruction step. After we have solved for uε for all Y ε× [0,τ ] we
approximate Fn

m− 1
2
ek

≈ F̃ (xm− 1
2
ek
,Pn

m− 1
2
ek
). The function F̃ is the mean value of

fε=Aε∇uε over [−η,η]d× [−τ,τ ] where [−η,η]d⊂Y ε. The approximation can be



B. ENGQUIST, H. HOLST AND O. RUNBORG 37

improved with respect to the size of τ/ε and η/ε by computing a weighted average of
fε. We consider kernels K described in [10]: we let K

p,q denote the kernel space of
functions K such that K ∈Cq

c (R) with suppK=[−1,1] and

∫

K(t)trdt=

{

1, r=0;

0, 1≤ r≤p.

Furthermore we will denote Kη as a scaling of K

Kη(x) :=
1

η
K

(
x

η

)

, K ∈K
p,q,

with compact support in [−η,η]. We use kernels of this sort to improve the approxi-
mation quality for the mean value computation,

F̃ (xm− 1
2
ek
,Pn

m− 1
2
ek
)=

∫∫

Kτ (t)Kη(x)f
ε
k dxdt, fε=Aε(x+xm+ 1

2
ek
)∇uε, (2.5)

where here the multi variable kernel Kη(x) is defined as

Kη(x)=Kη(x1)Kη(x2) · · ·Kη(xd), (2.6)

using the single valued kernel Kη, still denoted by Kη. The domain Y ε is chosen
such that [−η,η]d⊂Y ε and sufficiently large for information not to propagate into the
region [−η,η]d. Typically we use

Y =[−ymax,ymax]
d, ymax=η+τ

√

sup‖Aε‖2, (2.7)

c.f. discussion about micro solver boundary conditions in [19]. In this way we do not
need to worry about the effects of boundary conditions. Note therefore that other
types of boundary conditions could also be used in (2.4).

Remark 2.1. It is possible to find functions with infinite q. In [10] a kernel Kexp is
given, where p=1 and q is infinite:

Kexp(x)=

{

C0 exp
(

5
x2−1

)

, |x|<1,

0, |x|≥1,

where C0 is chosen such that
∫
Kexp(x)dx=1. This kernel is suitable for problems

where Aε is of the form Aε(x)=A(x/ε).

Remark 2.2. The weighted integrals above are computed numerically with a simple
trapezoidal rule.

Remark 2.3. In our implementation, the micro problem (2.4) is solved with the
same numerical scheme as the macro problem (2.3).

2.2. Computational cost. We will now discuss an alternative to computing
(2.5) on-the-fly in the macro solver. In some cases, when the dimension and the num-
ber of parameters in the problem are few, a sequential coupling can prove to be more
efficient. We stress that the algorithm suggested here does not require precomputing
and all analysis are made for on-the-fly computations.
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Let us assume that the time step is proportional to ε in all direct solvers. Using
a direct solver for (2.1) on the full domain implies a cost of order ε−(d+1). The total
cost for on-the-fly HMM is of the form (cost of micro problem)×Md where

Md∼
1

K
· 1

Hd
(2.8)

is the number of micro problems needed to be solved. The cost of a single micro
problem is of the form (τ/ε)×(η/ε)

d
. We assume kernels with τ,η∼ ε and that Md

does not depend on ε. With these assumption our HMM method has a computational
cost independent of ε. The constant can, however, still be large as it is proportional
to Md which depends inversely on K and Hd. Fortunately the computational cost of
the HMM process can be reduced significantly. We observe that the function F̃ (x,p)
in (2.5) is linear in p. It is in fact composed of three linear operations:

1. Compute initial data u(x,0) and ut(x,0) from p, u(x,0)=p ·x.

2. Solve uε
tt−∇·Aε∇uε=0 for 0≤ t≤ τ .

3. Compute average F̃ =
∫∫

KτKηf
εdxdt where fε=Aε∇uε

The first operation is clearly a linear operation. In step two we compute a solution
to a linear PDE, therefore this step is linear as well. Computing the integral average
in step three is also a linear operation.

As a corollary we can apply the HMM process to a smaller number of micro
problems and form linear combinations of those for any given F̃ computation. More
precisely, after precomputing F̃ (x,ei), i=1,2, . . . ,d we can compute F̃ for fixed x∈Ω
and any p∈R

d,

F̃ (x,p)=

d∑

i=1

piF̃ (x,ei), (2.9)

where pi is the ith coefficient in p in the basis e1,e2, . . . ,ed. In conclusion, by precom-
puting the micro problems F̃ (xm,ei) in (2.9) we only need to solve d micro problems
in each macro grid point xm=mH. There is no need to solve any micro problems
again in the next macro time step. The complexity is as before O(1) in ε, but now
Md∼d/Hd which means a smaller constant not depending on the number of time
steps. Note that this works if Aε does not depend on t. If Aε depends on t or is
nonlinear in u it would in general not be as cost effective to precompute F̃ .

Remark 2.4. In fact, if Aε is ε-periodic and the macro grid is such that xm= r (
mod ε), where r is constant and independent of m, we only need to solve d micro
problems in total, i.e., Md=d. In this case, the total cost is independent of both ε
and the macro grid sizes H, K.

Remark 2.5. The macro scheme suggested here is embarrassingly parallel in space.
This fact has been exploited by the authors in a Message Passing Interface (MPI)
code. We think that it would be possible to implement the same algorithm in a
general purpose GPU environment and see a good utilization of the hardware.

3. Convergence theory
In this section we apply the HMM process to the problem (1.1) with Aε(x)=

A(x/ε) where A is a Y -periodic symmetric positive matrix and show that it generates
results close to a direct discretization of the homogenized equation (1.3). We will
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show a convergence result for smooth (i.e., C∞) solutions and data. In particular we
show that

F̃ (x,p)=F (x,p)+O
((

ε

η

)q)

. (3.1)

The functions F̃ and F are defined in (2.5) and (2.2) respectively and we note that
here F (x,p)= Āp where Ā is the homogenized coefficient. The integer q depends on
the smoothness of the kernel used to compute the weighted average of fε in (2.5).

We will formulate the problem in the setting of elliptic operators. For the analysis
we solve the micro problem (2.4) over all of Rd

{

uε
tt−∇·Aε∇uε=0, R

d×{0≤ t≤ τ},
uε=p ·x, uε

t =0, R
d×{t=0}.

(3.2)

Note that this gives the same F̃ as in (2.5) if we choose a sufficiently large box Y ε.

Theorem 3.1. Let F̃ (x0,p) be defined by (2.5), where uε solves the micro problem

(3.2) exactly, Aε(x)=A(x/ε), and A is Y -periodic and C∞. Moreover suppose K ∈
K

p′,q, f and g are C∞ and τ =η. Then for p 6=0,

1

p

∣
∣
∣F̃ (x0,p)−F (x0,p)

∣
∣
∣≤C

(
ε

η

)q

,

where C is independent of ε, η, p and q. Furthermore, for the numerical approxi-

mation given in (2.3) in one dimension, with H=nε for some integer n and smooth

initial data, we have the error estimate:

|Un
m− ū(xm,tn)|≤C(T )

(
H2+(ε/η)q

)
, 0≤ tn≤T,

where ū is the homogenized solution to (1.3).

Proof. We will prove the theorem in the following steps:

1. Reformulate the problem as a PDE for a periodic function.

2. Define an elliptic operator L(y).

3. Expand ∇y ·A(y) and v(y,t) (to be defined) in eigenfunctions of L(y).

4. Compute time dependent vj(t) coefficients in the above eigenfunction expan-
sion.

5. Compute the integral of fε to get F̂ .

6. Compute the solution to a cell problem and give final estimate.

Step 1. Express the solution to (3.2) as

uε(t,x)=p ·x+v(x/ε,t). (3.3)

We insert this into (3.2) to get a PDE for v
{

vtt=
1
ε∇y ·A(y)p+ 1

ε2∇y ·A(y)∇yv(y),

v(x,0)=0, vt(x,0)=0,
(3.4)

where y=x/ε. Since A is Y -periodic, so is v, and we can solve (3.4) as a Y -periodic
problem.
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Step 2. We define the linear operator L(y) :=−∇y ·A(y)∇y on Y with periodic
boundary conditions. Denote wj(y) to be the eigenfunctions and λj to be the cor-
responding (non-negative) eigenvalues of L. Since L is uniformly elliptic, standard
theory on periodic elliptic operators informs us that all eigenvalues are strictly posi-
tive, bounded away from zero, except for the single zero eigenvalue [14]

0=λ0<λ1≤λ2≤ . . . , (3.5)

and wj ∈C∞ forms an orthonormal basis for L2
per(Y ). Also note that w0= |Y |−1 is a

constant function.

Step 3. We express ∇y ·A(y) and v(y) in eigenfunctions of L:

∇y ·A(y)=
∞∑

j=1

ajwj(y) and v(y,t)=

∞∑

j=0

vj(t)wj(y). (3.6)

Note that here aj are column vectors and as in the one dimensional case we have that
a0=0 since the mean value of ∇y ·A(y) is zero,

a0=

∫

Y

∇y ·A(y)w0(y)dy=
1

|Y |

∫

Y

∇y ·A(y)dy=0. (3.7)

Step 4. We plug the eigenfunction expansions (3.6) into (3.4) and find that

∞∑

j=0

v′′j wj =
1

ε
p ·

∞∑

j=1

ajwj−
1

ε2

∞∑

j=1

Lvjwj =

∞∑

j=1

p ·aj
ε

wj−
∞∑

j=1

λj

ε2
vjwj . (3.8)

By collecting terms of wj we obtain

v′′j +
λj

ε2
vj =

p ·aj
ε

. (3.9)

This is a system of ODEs similar to the form

y′′+αy=β, (3.10)

which has the solution of the form (α>0)

y(t)=Aeit
√
α+Be−it

√
α+

β

α
. (3.11)

Note that all λj >0 (j >0) so it is known that the vj functions in the problem have
the form

vj(t)=Aje
it
√

λj

ε +Bje
−it

√
λj

ε +rj , rj =
εp ·aj
λj

, (3.12)

and the special v0 is given by

v0(t)=
p ·a0
2ε

t2+Ct+D=Ct+D since a0=0. (3.13)

By plugging the general solution (3.12) into the initial conditions of (3.4), we can
formulate equations for Aj and Bj (j >0),

v(0,x)=0⇒
∞∑

j=0

vj(0)w
ε
j (x)=0⇒vj(0)=0⇒Aj+Bj+rj =0; (3.14)

vt(0,x)=0⇒
∞∑

j=0

v′j(0)w
ε
j (x)=0⇒v′j(0)=0⇒ i

√
λj

ε
Aj−

i
√

λj

ε
Bj =0. (3.15)
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Similary, for v0(t)

v0(0)=0⇒C=0, and v′0(0)=0⇒D=0, (3.16)

thus v0(t)≡0. We solve for Aj and Bj and obtain

Aj =Bj =
rj
2
=−εp ·aj

2λj
, j=1,2, . . . (3.17)

All in all, the vj(t) coefficients in explicit form are







v0(t) =0,

vj(t) =− εp·aj

2λj

(

e
it
√

λj

ε +e
−it

√
λj

ε

)

+
εp·aj

λj
=

εp·aj

λj

(

1−cos
t
√

λj

ε

)

j=1,2, . . .

(3.18)
The solution to our problem (3.4) can then be expressed as

v(y,t)= εp ·
∞∑

j=1

aj
λj

(

1−cos
t
√
λj

ε

)

wj(y). (3.19)

Step 5. Now plug the expression (3.19) into the expression (3.3)

fε=(∇uε)A(x/ε)=p ·



1+
∞∑

j=1

aj
λj

(

1−cos
t
√

λj

ε

)

∇y ·wj(x/ε)



A(x/ε). (3.20)

We write down and analyze the function fε in two parts fε=p ·(Λ1+Λ2), where







Λ1(x/ε)=
(

I+
∑∞

j=1
aj

λj
∇y ·wj(x/ε)

)

A(x/ε),

Λ2(x/ε,t)=−∑∞
j=1

aj

λj
cos

t
√

λj

ε ∇y ·wj(x/ε)A(x/ε).
(3.21)

Step 6a. First we show that Λ1= Ā. To do that we need to use the so-called cell
problem (or corrector problem, see [11, section 4.5.4]),

{

L(y)χ=−∇y ·A, Y,

χ Y -periodic.
(3.22)

We rewrite the cell problem (3.22) using a eigenfunction expansion

∞∑

j=0

λjχjwj =−
∞∑

j=1

ajwj ⇒χj =−aj
λj

, j=1,2, . . . , (3.23)

where χj are column vectors with coefficients of χ in the eigenfunction expansion. For
the other term Λ1 we now will make good use of the eigenfunction expansion of the
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cell solution χ,

∫∫

Kτ (t)Kη(x)Λ1dxdt=

∫

Kη(x)



I+
∞∑

j=1

aj
λj

∇ywj(x/ε)



A(x/ε)dx

=

∫

Kη(x)(I−∇yχ(x/ε))A(x/ε)dx

=

∫

Kη(x)(A(x/ε)−∇yχ(x/ε)A(x/ε)) dx

=

∫

Kη(x)(A(x/ε)−A(x/ε)∇yχ(x/ε)) dx

= Ā+O
((

ε

η

)q)

, (3.24)

where we used Lemma 3.2, in each coordinate direction.

Step 6b. Now we should show that
∫∫

Kτ (t)Kη(x−x0)Λ2dt→0,
τ

ε
→∞. (3.25)

For that we need a Lemma from [10]:

Lemma 3.2. Let fε(t)=f(t,t/ε), where f(t,s) is 1-periodic in the second variable

and ∂rf(t,s)/∂tr is continuous for r=0,1, . . . ,p−1. For any K ∈K
p,q there exists

constants C1 and C2, independent of ε and η, such that

E= |Kη ∗fε(t)− f̄(t)|≤C1η
p+C2

(
ε

η

)q

, f̄(t)=

∫ 1

0

f(t,s)ds.

If f =f(t/ε) then we can take C1=0. Furthermore, the error is minimized if η is

chosen to scale with εq/(p+q).

We now apply Lemma 3.2 to obtain
∣
∣
∣
∣
∣

∫

Kτ (t)cos
t
√
λj

ε
dt

∣
∣
∣
∣
∣
≤C2

(

2πε
√
λjτ

)q

=C ′ 1

λ
q/2
j

( ε

τ

)q

. (3.26)

Let bj and the column vector g(y) be defined as

bj =

∫

Kτ (t)cos
t
√
λj

ε
dt, g(y)=

∞∑

j=1

bjχjwj(y), (3.27)

where we again used the solution to the cell problem (3.22) in the formulation of g(y).
We then express

∫∫
KτKηΛ2dxdt using g, followed by a change of variables:

∫∫

Kτ (t)Kη(x−x0)Λ2dxdt=−
∫

Kη∇y ·g(x/ε)A(x/ε)dx

=−
∫

K(x)∇y ·g
(
ηx+x0

ε

)

A

(
ηx+x0

ε

)

dx

=−
∫

ε

η
K(x)A

(
ηx+x0

ε

)

∇·g
(
ηx+x0

ε

)

dx.
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By doing integration by parts, using K(ek)=K(−ek)=0 (k=1,2, . . . ,d), together with
Cauchy-Schwartz inequality, we obtain

∫

[−1,1]d

∇·
(
ε

η
K(x)A

(
ηx+x0

ε

))

︸ ︷︷ ︸

O(1) column vector

g

(
ηx+x0

ε

)

dx

≤






∫

[−1,1]d

(

∇·
(
ε

η
K(x)A

(
ηx+x0

ε

)))2

dx

∫

[−1,1]d

g2
(
ηx+x0

ε

)

dx






1/2

, (3.28)

which is bounded by C‖g‖(L2
per)

d where C is independent of ε, and η. Finally we need

to show that ‖g‖→0. This is done by observing that

‖g‖2(L2
per)

d =

∞∑

j=1

b2jχ
2
j ≤ b2max

∞∑

j=1

χ2
j = b2max‖χ‖2(L2

per)
d , (3.29)

where |bmax| is bounded by,

C ′

λ
q/2
1

( ε

τ

)q

, (3.30)

following the computations in (3.26). Then finally, we add our results from the cal-
culations above and obtain

F̂ (x0,p)=p ·
∫∫

Kτ (t)Kη(x−x0)f
εdxdt

=p ·
∫∫

Kτ (t)Kη(x−x0)(Λ1(t)+Λ2(x/ε,t))dxdt

=p ·
(

Ā+O
((

ε

η

)q))

. (3.31)

This proves the theorem.

Final step. Now we show the error estimate |Un
m− ū(xm,tn)|≤C(T )(H2+(ε/η)q).

We observe that F̃ in the Theorem is of the form

F̃ = Ã(x)p, (3.32)

where Ã is ε-periodic. By (3.31),

|Ã(x)−Ā|≤C

(
ε

η

)q

. (3.33)

By choosing H=nε for some integer n, we find that the macro scheme (2.3) is a
standard second order discretization of the problem

{

utt−Ã(0)uxx=0, Ω×{0≤ t≤ τ},
u(0,x)=f(x), ut=g, Ω×{t=0},

(3.34)



44 MULTI-SCALE METHODS FOR WAVE PROPAGATION

since Ã(xm) = Ã(mnε) = Ã(0) for all m. Hence, if g=0 (the result is true also for
g 6=0),

un
m=

1

2

(

f(xm−
√

Ã(0)tn)+f(xm+

√

Ã(0)tn)

)

+O(H2). (3.35)

On the other hand, the solution of the homogenized (1.3) with g=0 is

ū(xm,tn)=
1

2

(

f(xm−
√

Ātn)+f(xm+
√

Ātn)
)

. (3.36)

Therefore we get the error estimate

|Un
m− ū(xm,tn)|≤ sup

|t|≤T

∣
∣
∣
∣
f(x+

√

Ã(0)t)−f(x+
√

Āt)

∣
∣
∣
∣
+C(T )H2 (3.37)

≤|f ′|∞T |
√

Ã−
√

Ā|+C(T )H2 (3.38)

≤C(T )
(
H2+(ε/η)q

)
, (3.39)

for 0≤ tn≤T . This proves the Theorem.

4. Numerical results
In this section we show numerical results when applying the HMM process to

various problems in one, two and three dimensions. The notation in the experiments
in the d-dimensional setting (d=1,2,3) is the following: We let Y =[0,1]d denote the
macro domain and ε be the micro problem scale. We denote H and K to be the
macro grid size and time step respectively and for the micro-scale we denote h and k
to be the grid size and time step respectively. We use explicit second order accurate
finite difference schemes (see Appendix).

4.1. Convergence study of different kernels. In figures 4.1 and 4.2
we present convergence results for the flux F in terms of η/ε. We use different
type of kernels for the problem (4.1) with Aε(x)=A1(x/ε) and Aε(x)=A2(x,x/ε)
where A1(y)=1.1+sin(2πy) and A2(x,y)=1.1+ 1

2 (sin2πx+sin2πy). We compare
our numerical results to the theoretical bounds in Theorem 3.1. On problems with
both fast and slow scales, which is not directly covered by Theorem 3.1, we see a (slow)
growth of the error as τ,η→∞ consistent with the general approximation result in
Lemma 3.2. We plot (ε/η)q and ηp separately with dashed lines.

4.2. 1D results. The general form for the one-dimensional examples is:
{

uε
tt=∂xA

εuε
x, Y ×{0≤ t≤T},

uε=f, uε
t =0, Y ×{t=0},

(4.1)

where Y =[0,1]. We show some dynamics in figure. 4.3 where we solved (4.1) for the
Aε and f given in example one below. The homogenized solution to (4.1) will be of
the form

{

ūtt=∂xĀūx, Y ×{0≤ t≤T},
ū=f, ūt=0, Y ×{t=0},

(4.2)

where Ā is given by the harmonic average of A(x,y) over one Y -period,

Ā(x)=

∫ 1

0

dy

A(x,y)
, (4.3)

and x being held fixed.
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Fig. 4.1. Convergence results, error |F̃ − F̄ | plotted against η/ε (τ =η) for fixed ε=0.01 and
where Aε=A1 with only fast scales. The dashed line corresponds to the (ε/η)q term in Theorem
3.1. The bottom figure shows results for the exponential kernel (see Remark 2.1) and indicates super
algebraic convergence rate.

4.2.1. Example one. In the first wave propagation problem we choose Aε

and f as

{

Aε(x)=A(x/ε), A(y)=1.1+sin2πy,

f(x)=exp(−(x−x0)
2/σ2), x0=0.5, σ=0.1.

(4.4)

We can compute Ā from (4.3) with techniques from complex analysis

Ā=

√

21

100
=0.458257569495584. . . (4.5)

We will solve (4.2) with a fully resolved discretization or direct numerical simulation
(DNS), discretized homogenized solution (HOM), and our HMM method (HMM). We
have used ε=0.01, τ =η=10ε. In figure 4.4 we show a snapshot of the solutions these
methods at time T =1. We use a kernel (same in both time and space) K ∈K

5,6, that
is K has 5 zero moments and is 6 times continuously differentiable.

4.2.2. Example two. We now consider a variation of (4.1) where Aε is
defined as

Aε(x)=A(x,x/ε), A(x,y)=1.1+
1

2
(cos2πx+sin2πy) . (4.6)
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Fig. 4.2. Convergence results, error |F̃ − F̄ | plotted against η/ε (τ =η) for fixed ε=0.01 and
where Aε=A2 with both fast and slow scales. The dashed line with negative slope corresponds to the
theoretical bound from the first term in Lemma 1 and the dashed line with positive slope corresponds
to the ηp term.

The homogenized operator Ā will not be constant but a function with explicit x
dependence. We compute analytically Ā(x) to be

Ā(x)=
√

α(x)2−β2 α(x)=1.1+
1

2
cos2πx, β=

1

2
. (4.7)

For this experiment we use ε=0.01, K=2H, H=3.33 ·10−3. For the micro problem
we use k/h=0.5 and h= ε/64. The kernel from K

9,9 with τ =η=10ε. The small H is
to lessen the effect of the numerical dispersion. We show results from T =1 in figure
4.5.

4.2.3. Example three. In the last one-dimensional example the macro
equation is unknown, i.e. homogenization does not provide Ā. We define Aε as a sum
of many micro-scale oscillations







Aε(x)=1.1+
1

5

5∑

i=1

sin2π
x

εi
, εi=

1

90+5(i−1)
,

f(x)=exp(−(x−x0)
2/σ2), x0=0.5, σ=0.1.

(4.8)

A plot of Aε is shown in figure 4.6. The numerical parameters for the macro-solver
(HMM and homogenized) are H=3.33 ·10−3, K=0.5H. The micro solver uses τ =
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Fig. 4.3. The dynamics of the problem (4.1) can be seen for 4 snapshots at ti=3/(i
√
Ā),0≤ i≤

3. Note the small oscillations superimposed on the smooth profile. We observe how the initial pulse
separates in one left going and one right going pulse. The effect of the periodic boundary condition
can be seen as the waves pass each other at the boundaries between frames 2 and 3.
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Fig. 4.4. A snapshot of two superimposed solutions to (4.1) together with a zoomed section.
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Fig. 4.5. A snapshot of two superimposed solutions to (4.6) together with a zoomed section.
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Fig. 4.6. A snapshot of a direction solution to (4.6) and the HMM solution (left) together with
the material coefficient Aε from example 4.2.3 (right).

10ε3, η= ε3, h= ε3/64 and k=0.5h. The kernel K used, for both time and space, is
K ∈K

5,6. The results are shown in figure 4.6.

4.3. 2D results. In this section we present the numerical results for a two
dimensional wave propagation problem over the unit square Y =[0,1]× [0,1].

4.3.1. Example four. We define Aε(x) by the diagonal matrix,

{

Aε(x)=diag(aε(x),aε(x))

aε(x)=a(x/ε), a(y)=1.1+sin2πy1.
(4.9)

The corresponding homogenized matrix Ā in (1.3),

Ā=diag(
√
0.21,1.1), (4.10)

and as in 1D the initial data f is defined as a Gaussian,

{

f(x)=exp(−‖x−x0‖22/σ2),

x0=[0.5 0.5], σ=0.1.
(4.11)
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Fig. 4.7. Full numerical simulation when Aε has only a fast scale.
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Fig. 4.8. Direct solution of the homogenized equation when Ā is constant.

We use the exponential kernel Kexp∈K
1,∞. We let T =1 and the scale parameter ε is

set to 0.01. The macro scheme uses H=3.33 ·10−3 and K=0.5H. The micro scheme
uses h= ε/64 and k=0.5h. We show the numerical results in figures 4.7, 4.8, and 4.9.

4.3.2. Example five. We let Aε(x) be defined by the diagonal matrix,

{

Aε(x)=diag(aε(x),aε(x))

aε(x)=a(x,x/ε), a(x,y)=1.1+ 1
2 (sin2πx1+sin2πy1).

(4.12)



50 MULTI-SCALE METHODS FOR WAVE PROPAGATION

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4.9. HMM approach, when Aε has only fast scales.
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Fig. 4.10. Full numerical simulation and Aε is defined by (4.12).

and the corresponding homogenized matrix Ā in (1.3),
{

Ā(x)=diag(ā(x),1.1) ,

ā(x)=
√

α(x)2−β2, α(x)=1.1+0.5sin2πx1, β=0.5.
(4.13)

The numerical parameters are chosen the same as in example 4.3.1. We show the
numerical results in figures 4.10 and 4.11.

4.4. 3D results. Here we present numerical results for a wave propagation
problem in three dimensions in a locally periodic media over the box Y =[0,1]3.
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Fig. 4.11. HMM approach and Aε is defined by (4.12).

4.4.1. Example six. In this three dimensional problem Aε(x) is a diagonal
matrix

{

Aε(x)=diag(aε(x),aε(x),aε(x)) ,

aε(x)=a(x/ε), a(y)=1.1+sin2πy1,
(4.14)

the corresponding homogenized matrix Ā in (1.3) is

Ā(x)=diag
(√

0.21,1.1,1.1
)

, (4.15)

and the initial data f is defined as a Gaussian,

{

f(x)=exp(−‖x−x0‖22/σ2),

x0=[0.5 0.5 0.5], σ=0.1.
(4.16)

In this experiment we have used ε=0.01. The homogenized simulation uses T =0.25,
H=0.05, K=0.25H. The HMM solver uses T =0.25, H=0.05, K=0.25H on the
macro solver. The micro solver uses η= ε, τ =5ε, h= ε/64, k=0.3h and a polynomial
kernel K ∈K

9,9. The results are presented in figure 4.12.

Remark 4.1. Due to the vast computational expense to use DNS we are unable to
show DNS results.

4.5. Long time example. We finally show a problem of the same form as
example 4.2.1, but we will solve it for T =O(ε−2). In [20] it was shown that the
effective equation in this long time regime is of the form,

{

utt−Āuxx−βε2uxxxx=0, Y ×{0≤ t≤T},
u=f, ut=0, Y ×{t=0}.

(4.17)
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Fig. 4.12. Three dimensional solutions of the homogenized equation and by using the HMM
technique.

This is still on the same flux form as assumed in (2.1) with F = Āux+βε2uxxx. There-
fore, it turns out that we only need to make the HMM process a little bit more accurate
for long time computations. The modifications needed are:

• Initial data in micro solver needs to be of higher order. We use a third order
polynomial to approximate the higher macro derivatives.

• The integration kernel needs to be smoother to give more accurate F (error
less than O(ε2)) in order to capture the correct dispersion relationship, i.e.,
(ε/η)q <ε2. This implies also that:

• The micro box needs to be a little bigger, τ,η∼ ε1−2/q, where q is defined in
(2.1).

We present the numerical computations in figure 4.13 for the same A and initial
data as in the first example and ε=0.01, T =91.58 (approximately 62

√
Ā). The

HMM solver uses H=1/300 (approximately 31/
√
T ), K=H/2 and a kernel with

τ =η=10ε from K
5,6. The micro solver uses h= ε/64 and k=h/2 and the long time
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DNS computation itself uses h= ε/128, k=h/2.

The long time problem is part of ongoing research by the authors and we will
shed some more light on it in a future publication.
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Fig. 4.13. 1D longtime DNS simulation (thin line) compared to a finite difference solution of
the effective equation (4.17) (circles) and a HMM solution (crosses).

5. Conclusions

We have developed and analyzed numerical methods for multi-scale wave equa-
tions with oscillatory coefficients. The methods are based on the framework of the
heterogeneous multi-scale method (HMM) and have substantially lower computational
complexity than standard discretization algorithms. Convergence proofs for finite time
approximation are presented in the case of periodic coefficients in multiple dimensions.
Numerical experiments in one, two, and three spatial dimensions show the accuracy
and efficiency of the new techniques. Finally we explored simulation over very long
time intervals. The effective equation for very long time is different from the finite
time homogenized equation. Dispersive effects enter, and the effective equation must
be modified [20]. It is interesting to note that our HMM approach with just minor
modifications accurately captures these dispersive phenomena.

Appendix A. Numerical schemes.

We present a detailed description of the numerical schemes used in the macro and
micro solvers. The schemes are designed for one, two, and three dimensions and can
be generalized to higher dimensions. All the schemes are second order accurate in
both time and space.

A.1. 1D equation. The finite difference scheme on the macro level has the
form







Un+1
m =2Un

m−Un−1
m +K2Y n

m,

Y n
m=

1

H

(

Fn
m+ 1

2

−Fn
m− 1

2

)

,

Fn
m±1/2=F (xm±1/2,P

n
m±1/2),

(A.1)

where Pn
m−1/2=

1
H

(
Un
m−Un

m−1

)
and Pn

m+1/2=
1
H

(
Un
m+1−Un

m

)
. The micro level
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scheme defined analogously:






un+1
m =2un

m−un−1
m +k2ynm,

ynm=
1

h

(

fn
m+1/2−fn

m−1/2

)

,

fn
m+1/2=am+ 1

2

un
m+1−un

m

h
,

fn
m−1/2=am− 1

2

un
m−un

m−1

h
.

(A.2)

A.2. 2D equation. The two dimensional problem is discretized with a scheme
with the following schemes: The finite difference scheme on the macro level is







Un+1
m =2Un

m−Un−1
m +K2Y n

m,

Y n
m=

1

H

(

F
(1)

m+ 1
2
e1
−F

(1)

m− 1
2
e1

)

+
1

H

(

F
(2)

m+ 1
2
e2
−F

(2)

m− 1
2
e2

)

,

F
(k)

m± 1
2
ek

=F (xm± 1
2
ek
,Pn

m± 1
2
ek
), t= tn,

(A.3)

where Pn
m+ 1

2
e2

is given by (see figure 2.1)

Pn
m+ 1

2
e2
=
[

1
2H

(
Um+e1

+Um+e1+e2

2 − Um−e1
+Um−e1+e2

2

)
1
H (Um+e2 −Um)

]

, (A.4)

and the other Pn
m± 1

2
ek

are components defined analogously. The micro level scheme

is formulated as
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When approximating f
(2)

m− 1
2
e1

we take the average of un
m±e2 and un

m+e1±e2 to ap-

proximate u(xm+ 1
2
e1±e2 ,t

n). Then we use those two averages to approximate the y

derivate of u at u(xm− 1
2
e1). The scheme is second order in both space and time.

A.3. 3D equation. The macro scheme for the three dimensional problem is
of the form
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where Pn
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and the other Pn
m± 1

2
ek

defined analogously. The micro level scheme is a second order

accurate scheme defined analogous with the 2D scheme (A.5)
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and the other terms as,
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