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KERR-DEBYE RELAXATION SHOCK PROFILES FOR KERR

EQUATIONS∗
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Abstract. The electromagnetic wave propagation in a nonlinear medium can be described by a
Kerr model in the case of an instantaneous response of the material, or by a Kerr-Debye model if the
material exhibits a finite response time. Both models are quasilinear hyperbolic, and the Kerr-Debye
model is a physical relaxation approximation of the Kerr model. In this paper we characterize the
shocks in the Kerr model for which there exists a Kerr-Debye profile. First we consider 1D models
for which explicit calculations are performed. Then we determine the plane discontinuities of the full
vector 3D Kerr system and their admissibility in the sense of Liu and in the sense of Lax. Finally
we characterize the large amplitude Kerr shocks giving rise to the existence of Kerr-Debye relaxation
profiles.
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1. Introduction

In some contexts the propagation of electromagnetic waves in nonlinear media
can be modeled by the so-called Kerr-Debye model, which writes as a quasilinear
hyperbolic system with relaxation source-terms depending on the response time of the
material. Such hyperbolic relaxation problems have been investigated for a long time
in the mathematical literature, especially in relation to fluid mechanics; see [16] for a
review. In an important article ([5]), Chen, Levermore and Liu establish a theoretical
framework linking the properties of a relaxation system and its equilibrium model.
The Kerr-Debye model under consideration falls under this general framework.

To derive the models, one writes the tridimensional Maxwell’s equations







∂tD−curlH=0,
∂tB+curlE=0,
divD=divB=0,

with the constitutive relations

{

B = µ0H,

D = ǫ0E+P,

where P is the nonlinear polarization and µ0, ǫ0 are the free space permeability and
permittivity.

In nonlinear optics, a medium exhibiting an instantaneous response is classically
simulated by a Kerr model [18]

P =PK = ǫ0ǫr|E|2E.

∗Received: January 11, 2010; accepted (in revised version): April 19, 2010. Communicated by
Francois Bouchut.

†Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux, 351 cours de la
libération, 33405 Talence Cedex, France (aregba@math.u-bordeaux1.fr).

‡Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux, 351 cours de la
libération, 33405 Talence Cedex, France (hanouzet@math.u-bordeaux1.fr).

1



2 KERR-DEBYE RELAXATION SHOCK PROFILES

If the medium exhibits a finite response time τ >0 one should use the Kerr-Debye
model, for which

P =PKD= ǫ0χE and ∂tχ+
1

τ
χ=

1

τ
ǫr|E|2.

See for example [24] for further details.
The Kerr-Debye model is a relaxation approximation of the Kerr model and τ is

the relaxation parameter. Formally, when τ tends to 0, χ converges to ǫr|E|2 and
PKD converges to PK . More precisely, as already observed in [8], the Kerr system is
the reduced system for the Kerr-Debye system in the sense of [5].

The convergence of smooth solutions of the Kerr-Debye system towards a smooth
solution of the Kerr system when τ tends to zero is now well understood. The result
for the initial value problem, as the stability conditions of [22] are satisfied, is obtained
in [8]. For the more physically realistic situation of impedance boundary conditions,
in particular the ingoing wave, the result is proved in [4].

The convergence towards a weak solution of the Kerr system is far from clear -
even in the one-dimensional setting. Only a few partial results are available in the
literature for similar problems, and those results do not apply here; see comments
and references following (1.5), (1.6). As a first step into the comprehension of the
involved phenomena, we shall construct Kerr-Debye profiles for Kerr shocks. These
are smooth travelling wave solutions of the Kerr-Debye equations which converge to
a weak (discontinuous) solution of the Kerr system.

In the following we consider non-dimensionalized models, and as usual for relax-
ation equations the response time τ is denoted by ǫ. We therefore write the Kerr-Debye
equations as











∂tDǫ−curlHǫ=0,
∂tHǫ+curlEǫ=0, Dǫ=(1+χǫ)Eǫ,

∂tχǫ=
1

ǫ

(

|Eǫ|
2−χǫ

)

,

(1.1)

with

divDǫ=divBǫ=0.

Let us note that if the initial data are divergence free, then so are (Dǫ,Hǫ). Moreover
if χǫ is initially positive then so is χǫ for all positive times.

Once non-dimensionalized, the relaxed Kerr system writes as
{

∂tD−curlH=0,
∂tH+curl(P(D))=0,

(1.2)

where P is the reciprocal function of D:

D(E)=(1+ |E|2)E.

Denoting

q(e)= e+e3 (e∈R) and p= q−1, (1.3)

we have

E=P(D)=(1+p(|D|)2)−1D. (1.4)
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The equilibrium manifold for the Kerr-Debye model that is

V={(D,H,χ) : (1+χ)−2|D|2−χ=0}

can be also defined as

V={(D,H,χ) : χ=(p(|D|))2= |E|2}.

As proposed in [3] we also introduce the one dimensional models satisfied by solutions
D(x,t)=(0,d(x,t),0), H(x,t)=(0,0,h(x,t)) and x=x1∈R. In that framework the
solutions of the Kerr-Debye model (1.1) satisfy the system







∂tdǫ+∂xhǫ=0,
∂thǫ+∂x

(

(1+χǫ)
−1dǫ

)

=0,
∂tχǫ=

1
ǫ

(

(1+χǫ)
−2d2ǫ −χǫ

)

,

(1.5)

while the solutions of the Kerr model (1.2) satisfy the system

{

∂td+∂xh = 0,
∂td+∂xp(d) = 0.

(1.6)

It turns out that the 1D Kerr system (1.6) is a so-called p-system. As p′>0 it is strictly
hyperbolic, but the properties of the function p differ from the ones which appear
in the general framework of gas dynamics or viscoelasticity. For the last example,
some results concerning the convergence of Suliciu relaxation approximations towards
weak solutions of the p-system are obtained in [20]; see also [9, 10]. For Kerr-Debye
relaxation approximations, the convergence towards a weak solution of (1.6) is an
open problem.

Let us consider a planar discontinuity for the Kerr system (1.2) that is a weak
solution u(x,t)=(D,H)(x,t), such that

u(x,t)=

{

u− if x ·ω−σt<0,
u+ if x ·ω−σt>0,

where u±, σ, and ω (|ω|=1) are given and satisfy the Rankine Hugoniot conditions
(see (3.19) part 3). A Kerr-Debye profile of this discontinuity is a smooth solution

wǫ(x,t)=(Dǫ,Hǫ,χǫ)(x,t)=W

(

1

ǫ
(x ·ω−σt)

)

such that

W (±∞)=(D±,H±,χ±)

where (D±,H±,χ±) are in the equilibrium manifold, so that

χ±=(p(|D±|))
2= |E±|

2.

In [13] T.-P. Liu constructs such profiles for the 2×2 1D hyperbolic systems with
relaxation. In [23] W.-A. Yong and K. Zumbrun prove the existence of relaxation
profiles for small amplitude Liu-shocks in a general setting. Their results apply for
strictly hyperbolic reduced systems; see hypothesis (b) in [23]. These results do not
apply here because the 3D Kerr system (1.2) is not strictly hyperbolic and moreover
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the eigenvalues have variable multiplicities; see Section 3.1 herein. In the case of our
1D models, system (1.6) is strictly hyperbolic and the structural assumptions of [23]
are satisfied. In the present paper, without any smallness hypothesis, we characterize
all the shocks giving rise to the existence of a Kerr-Debye profile. We prove that a
Kerr-Debye relaxation profile exists if and only if the shock under consideration is
entropic in the sense of Lax.

Section 2 of the paper is devoted to the 1D systems (1.6) and (1.5), for which
explicit calculations are performed. First we characterize the Liu-admissible shocks,
which are the discontinuities satisfying condition (E) in Definition 2.1 below. In [12]
T.P. Liu proves that condition (E) is equivalent to the existence of a viscous shock
profile. Here, it turns out that this condition is not sufficient to ensure the existence of
relaxation profiles; in fact we prove that a profile exists if and only if the discontinuity
satisfies the additional assumption d−d+>0 (so p is convex or concave on the interval
(d−, d+). We then observe that the same condition holds for the existence of a
viscosity profile related to the Chapman-Enskog expansion of the Kerr-Debye system.

In Section 3 we consider the full vector 3D systems. The Kerr system has six real
eigenvalues

λ1≤λ2<λ3=0=λ4<λ5=−λ2≤λ6=−λ1.

The characteristic fields 1, 3, 4, 6 are linearly degenerate. If λ2 6=λ1 the second
characteristic field is genuinely nonlinear. We then characterize the Liu shocks and
the Lax shocks. The main result of this section is that Kerr-Debye relaxation shock
profiles only exist for Lax 2-shocks and Lax 5-shocks.

2. Kerr-Debye shock profiles for the 1D Kerr system

2.1. Admissible shock waves for 1D Kerr system. As already mentioned,
the system (1.6) is strictly hyperbolic, and the eigenvalues are

λ1(d)=−
√

p′(d)<0<λ2(d)=
√

p′(d), (2.1)

with the related eigenfunctions

r1=

(

−1
√

p′(d)

)

, r2=

(

1
√

p′(d)

)

. (2.2)

We observe that

λ′i(d,h)ri(d,h)=
p′′(d)

2
√

p′(d)
, i=1,2 (2.3)

is zero for d=0. Hence the characteristic fields are genuinely nonlinear only on {u=
(d,h) :d 6=0}.

If two constant states u+ and u− are connected by a shock propagating with
speed σ, then the Rankine-Hugoniot conditions

{

h+−h−=σ(d+−d−),
p(d+)−p(d−)=σ(h+−h−)

(2.4)

are satisfied.



D. AREGBA-DRIOLLET AND B. HANOUZET 5

We consider nontrivial shocks, i.e. d+ 6=d−. Rankine-Hugoniot conditions write
as















σ(u+,u−)=
h+−h−
d+−d−

,

(h+−h−)
2=(p(d+)−p(d−))(d+−d−).

(2.5)

For (d−,h−) fixed we denote H(u−) the Hugoniot set of u−=(d−,h−). It is the union
of four sets:

H±
1 (d−,h−)={(d,h) : h=h−∓

√

(p(d)−p(d−))(d−d−), d≷d−}

and

H±
2 (d−,h−)={(d,h), h=h−±

√

(p(d)−p(d−))(d−d−), d≷d−}.

H1(u−)=H+
1 (u−)∪H−

1 (u−) is the set of states u connected to u− with σ(u,u−)<
0, while H2(u−)=H+

2 (u−)∪H−
2 (u−) is the set of states u connected to u− with

σ(u,u−)>0.
In [11], T.P. Liu gives a generalization of Lax’s shock entropy conditions when

the characteristic fields are not everywhere genuinely nonlinear: the condition (E).

Definition 2.1. Let u− be a given left state and consider u+∈H(u−). The discon-
tinuity is Liu-admissible if

(E) σ(u+,u−)≤σ(u,u−), ∀u∈H(u−), u between u− and u+.

One-shocks. Liu’s one-shocks are the shocks satisfying condition (E) and such that
u+ belong to H1(u−). Here we have

σ(u,u−)=σ(d,d−)=−

√

p(d)−p(d−)

d−d−
. (2.6)

Lemma 2.2. For all d= q(e)∈R we denote

d∗(d)= q

(

−
1

2
e

)

=−
1

8
[d+3p(d)] (2.7)

where q is the function defined by (1.3). As a function of d, σ∈C1(R) and σ has a
unique global minimum which is reached at the point d∗(d−).

Proof. Writing σ′ as the derivative of σ(d,d−) with respect to d, we have

σ′(d,d−)=
1

2σ(d,d−)(d−d−)

[

p′(d)−
p(d)−p(d−)

d−d−

]

.

It is easy to see that as a function of d, σ∈C1(R) and that σ′(d−,d−)=
−p′′(d−)

4
√

p′(d−)
.

Let us define

K(d)=p′(d)−
p(d)−p(d−)

d−d−
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and k=K ◦q. We have

k(e)=
−2e2+ee−+e2−

(e2+ee−+e2−+1)(1+3e2)

and the roots are − 1
2e− and e−. This completes the proof.
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Fig. 2.1. Admissibility of a shock: d∗ is such that the secant (u−,u∗) is tangent to the graph
of function p at u∗.

As a first case, we study one-shocks with u+∈H+
1 (u−). We observe that if d−≥0,

then condition (E) cannot be satisfied since we must have d>d− and p is concave for
d−≥0.

Let us now suppose that d−<0. By Lemma 2.2 σ is decreasing on [d−,d
∗(d−)]

and increasing on [d∗(d−),+∞[. Therefore the condition (E) is satisfied if and only if
d+∈]d−,d

∗(d−)].
We turn our attention to u+∈H−

1 (u−). Note that u∈H−
1 (u−) if and only if −u∈

H+
1 (−u−). On another hand σ(−d,−d−)=σ(d,d−). Therefore, we can deduce that

the condition (E) is satisfied on H−
1 (u−) if and only if d−>0 and d+∈ [d∗(d−),d−[.

Finally, letting S be the function defined by

S(d,d−)=
√

(p(d)−p(d−))(d−d−), (2.8)

the following proposition summarizes these results.

Proposition 2.3. For a Liu one-shock, one has

σ=−

√

p(d+)−p(d−)

d+−d−
.

Moreover, let u− be a given left state.
If d−>0, u+ is a right state connected to u− by a Liu one-shock if and only if

d+∈ [d∗(d−),d−[, h+=h−+S(d+,d−).

If d−<0, u+ is a right state connected to u− by a Liu one-shock if and only if

d+∈]d−,d
∗(d−)], h+=h−−S(d+,d−).

If d−=0 there does not exist any right state connected to u− by a Liu one-shock.

Two-shocks. Similar considerations lead to
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Proposition 2.4. For a Liu two-shock, one has

σ=

√

p(d+)−p(d−)

d+−d−
.

Moreover, let u− be a given left state.
If d−>0, u+ is a right state connected to u− by a Liu two-shock if and only if

d+>d−, h+=h−+S(d+,d−).

If d−<0, u+ is a right state connected to u− by a Liu two-shock if and only if

d+<d−, h+=h−−S(d+,d−).

If d−=0, u+ is a right state connected to u− by a Liu two-shock if and only if

d+ 6=0, h+=h−+sgn(d+)S(d+,d−).

2.2. Shock profiles. In this section we construct Kerr-Debye relaxation shock
profiles that are smooth solutions of the Kerr-Debye system (1.5) with the form

wǫ(x,t)=W

(

x−σt

ǫ

)

, W =(D,H,X ),

and such that

W (±∞)=w±=(d±,h±,χ±).

We suppose that

w− 6=w+. (2.9)

It is well known that σ, (d±,h±) must satisfy the Rankine-Hugoniot conditions and
that w± belong to the equilibrium manifold, so we have (2.4), d+ 6=d−, σ 6=0 and

χ±=(p(d±))
2= e2±. (2.10)

The problem is to find W (ξ)∈C1(R,R3) such that







−σD′+H ′=0,

−σH ′+
(

(1+X )−1D
)′
=0,

−σX ′=(1+X )−2D2−X ,

(2.11)

and

(D(±∞),H(±∞),X (±∞))=(d±,h±,(p(d±))
2). (2.12)

Denoting E=(1+X )−1D, system (2.11) also reads as







−σD+H=C1=−σd±+h±,
−σH+E=C2=−σh±+e±,
−σX ′=E2−X .

(2.13)
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We also remark that by the last equation in (2.11) we have necessarily

∀ξ∈R, X (ξ)≥0. (2.14)

Let us determine some necessary conditions for the existence of smooth shock profiles.
First, by eliminating H from the two first equations of (2.13) we obtain

−σ2D+E=σC1+C2=−σ2d±+e±. (2.15)

Lemma 2.5. If W ∈C1(R,R3) is solution of (2.11)(2.12) with (2.9) then

σC1+C2 6=0. (2.16)

Proof. Suppose that σC1+C2=0. As d− 6=d+, one of them is not zero. Suppose
for instance that d− 6=0. There exists a non empty maximal interval ]−∞,ξ1[ where
D 6=0. By (2.15), on this interval we have

(

−σ2+(1+X )−1
)

D=0,

so that X is a constant. By the last equation of (2.13), D=d− on this interval. If ξ1
is finite, then D(ξ1)=0; otherwise the limit of D at +∞ is d+ 6=d−. In each case it is
a contradiction. The same can be done if d−=0 and d+ 6=0.

As a consequence we have

∀ξ∈R,
[

1−σ2(1+X (ξ))
] D(ξ)

1+X (ξ)
=σC1+C2 6=0. (2.17)

Denoting

θ(X )= [1−σ2(1+X )]2

we remark also that

(σC1+C2)
2=χ−θ(χ−)=χ+θ(χ+). (2.18)

Proposition 2.6. If W ∈C1(R,R3) is solution of (2.11)(2.12) with (2.9) and (2.4)
then

d+d−>0 and ∀ξ∈R D(ξ) 6=0. (2.19)

Moreover

∀ξ∈R θ(X (ξ)) 6=0, (2.20)

X is solution of the ordinary differential problem

X ′=
1

σ

X θ(X )−χ±θ(χ±)

θ(X )
, (2.21)

X (±∞)=χ±=(p(d±))
2, (2.22)
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and D and H are given by







D=
(σC1+C2)(1+X )

1−σ2(1+X )
,

H=C1+σD.
(2.23)

Proof. Using (2.14) and (2.17), by taking into account the continuity of D and
the equalities

σC1+C2=−σ2d±+p(d±)

we obtain (2.19).
The property (2.20) is an immediate consequence of (2.17).
Hence D is given by the first equation of (2.23) and we obtain the ODE (2.21)

from the third equation of (2.11).

Reciprocally, according to the above results we consider data such that

{

d− 6=d+, d−d+>0,
Rankine−Hugoniot conditions (2.4)are satisfied.

(2.24)

Such data satisfy the relation

χ−θ(χ−)=χ+θ(χ+).

Let us study the problem (2.21)(2.22). We point out the fact that if X (ξ) is a solution
of this problem then X (ξ−τ) is also a solution for all τ ∈R. Hence uniqueness does
not hold for (2.21)(2.22).

Proposition 2.7. Suppose that the data satisfy conditions (2.24). A solution of
problem (2.21)(2.22) exists if and only if one of the two following conditions holds:

(i) σ<0 and 0< |d+|< |d−|,

(ii) σ>0 and 0< |d−|< |d+|.
Moreover, any solution X is monotone, positive, and X ∈C∞(R).

Proof. We denote by ψ the function defined by

ψ(X )=X θ(X )−χ−θ(χ−)=X θ(X )−χ+θ(χ+).

As d− 6=d+ and d+d−>0, χ− and χ+ are two distinct real roots of ψ. Hence there
exists a third real root χ0. We have

χ0+χ−+χ+=2(σ−2−1), (2.25)

so using

σ−2=
q(e+)−q(e−)

e+−e−
=1+e2++e+e−+e2−

we obtain

χ0=(p(d+)+p(d−))
2.
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Denoting χm=min(χ−,χ+) and χM =max(χ−,χ+) we thus have

0<χm<χM <χ0. (2.26)

Equation (2.21) reads as

X ′=σ3 (X −χm)(X −χM )(X −χ0)

θ(X )
.

We have

θ(y)=σ4[σ−2−1−y]2

and

σ−2−1= e2++e2−+e−e+∈]χM ,χ0[, (2.27)

so that θ is positive on [χm,χM ].
By the general theory of ODEs, for all y0∈]χm,χM [, this equation has a unique

solution X ∈C1(R) such that X (0)=y0. It remains to study the behavior of this
solution at infinity.

We remark that since X (ξ)∈]χm,χM [ for all ξ∈R,

sgn(X ′)=sgn(σ).

If σ<0 then

lim
ξ→−∞

X (ξ)=χM , lim
ξ→+∞

X (ξ)=χm

Therefore a solution of (2.21)(2.22) exists if 0<χ+<χ−, which is equivalent to

either 0<d+<d− or d−<d+<0.

With similar considerations, we prove that if σ>0 then a solution of (2.21)(2.22)
exists if

either 0<d−<d+ or d+<d−<0.

Reciprocally, if neither (i) nor (ii) hold, by the general theory of ODEs the desired
solution does not exist.

We are now in position to prove the main result of this section.

Theorem 2.8. There exists a Kerr-Debye relaxation shock profile W ∈C1(R;R3)
solution of (2.11) (2.12) with (2.9) if and only if the conditions (2.24) are fulfilled
and the such defined shock is Liu-admissible. In that case each component of the
profile is monotone.

Proof. Suppose that a shock profile exists. By Proposition 2.6 conditions (2.24)
are satisfied and X is solution of (2.21) with (2.22). Therefore by Proposition 2.7
either condition (i) or condition (ii) is satisfied. In view of Propositions 2.3 and 2.4,
the shock is Liu-admissible.

Reciprocally suppose that conditions (2.24) are satisfied and that the shock is
entropic. Then either condition (i) or condition (ii) is satisfied in Proposition 2.7 so
that there exists a solution X ∈C∞(R) of (2.21) with (2.22) and X is positive.
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We take

C1=−σd−+h−=−σd++h+, C2=−σh−+p(d−)=−σh++p(d+).

A straightforward computation gives relations (2.18). We define D and H by (2.23).
Then we have

(

D

1+X

)2

=
χ+θ(χ+)

θ(X )
.

Consequently the last equation of (2.13) is satisfied. It is easy to verify that so are
the two first equations of (2.13).

It remains to verify the limits at infinity:

lim
ξ→+∞

D(ξ)=
(−σ2d++p(d+))(1+p(d+)

2)

1−σ2(1+p(d+)2)
=d+

and similarly

lim
ξ→−∞

D(ξ)=d−.

The limits for H are then immediate by the second equation of (2.11).
The monotonicity of the shock profiles is a direct consequence of the above con-

siderations.

Let us detail Theorem 2.8 for a Liu-admissible shock σ, (u+,u−).
If σ<0 and d−>0 then the profile exists if d+∈]0,d−[, does not exist if d+∈

[d∗(d−),0].
If σ<0 and d−<0 then the profile exists if d+∈]d−,0[, does not exist if d+∈

[0,d∗(d−)].
If σ>0 and d− 6=0 then the profile always exists; if d−=0 then it does not exist.
Let us point out that the condition d− 6=0 is also required to apply the results of

[23] for the weak shocks. We note that if d− 6=0 the Shizuta-Kawashima [19] condition
is satisfied. This condition is also crucial for studying the stability of relaxation shock
profiles; see [14] and references therein. In a recent paper [7] the existence of profiles
for weak shocks under a weaker (Kawashima-like) assumption is proved.

Remark 2.9. By (2.17) we have

(1−σ2(1+X ))E=σC1+C2 6=0.

We can directly show that E is necessarily a solution of the ODE

E′=−
σ

σC1+C2
E(E−e+)(E−e−)(E+e++e−), (2.28)

which of course leads to the same conclusions. This is possible because E is here a
scalar quantity. This will not be true in the full vector 3D system.

Remark 2.10. If d+=0 or d−=0, then we can construct discontinuous shock profiles.
In the case of an entropic one-shock with d+=0 and d−∈R the following solution can
be written:







D(ξ)=d− if ξ <0, 0 otherwise,
H(ξ)=h− if ξ <0, h+ otherwise,
X (ξ)=χ− if ξ <0, χ− eξ/σ otherwise.
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A similar solution exists for an entropic two-shock with d−=0 and d+∈R.

We can prove the following asymptotic behavior of the shock profiles.

Theorem 2.11. Let W be a shock profile with (2.12) and (2.9). We define

R+=
e−+2e+
e−+e+

1

σ

(

1−
e+

e−

)

, R−=
2e−+e+
e−+e+

1

σ

(

1−
e−

e+

)

.

Then R− is positive, R+ is negative, and there exists a positive constant K such that

∀ξ∈R, |W (ξ)−w+|≤KeξR+ and |W (ξ)−w−|≤KeξR− . (2.29)

Proof. Take data such that conditions (2.24) are fulfilled and the shock is
entropic, so that shock profiles exist. By Theorem 2.8, a shock profile is determined
by a solution X of problem (2.21)(2.22), D and H being given by (2.23) with ad hoc
C1 and C2. Suppose that

|X (ξ)−χ+|≤Ce
ξR+ . (2.30)

Then

|D(ξ)−d+|= |σC1+C2|

∣

∣

∣

∣

1

(1+X )−1−σ2
−

1

(1+χ+)−1−σ2

∣

∣

∣

∣

= |σC1+C2|
|χ+−X|

(1−σ2(1+χ+))(1−σ2(1+X ))
.

By (2.27) we know that

1−σ2(1+X )≥1−σ2(1+χM )>0.

Therefore

|D(ξ)−d+|≤
|X −χ+|

θ(χM )
, |H(ξ)−h+|≤ |σ| |D(ξ)−d+|.

Finally, it remains to prove inequality (2.30) to obtain the behavior at +∞.
Therefore we consider a solution X of problem (2.21)(2.22) such that X (0)=y0∈

]χm,χM [. Then X (ξ)∈]χm,χM [, Equation (2.21) reads as

X ′=f(X ),

and for all y∈]χm,χM [,

1

f(y)
=

1

f ′(χ−)(y−χ−)
+

1

f ′(χ+)(y−χ+)
+

1

f ′(χ0)(y−χ0)
.

We have already proved that sgn(f(X ))=sgn(X ′)=sgn(σ).

If σ<0 then χ+<χ− so f ′(χ+)<0 and f ′(χ−)>0.

If σ>0 then χ−<χ+ so f ′(χ+)<0 and f ′(χ−)>0.

Hence in all cases we have f ′(χ+)<0 and f ′(χ−)>0. By a straightforward com-
putation one finds

R+=f ′(χ+) and R−=f ′(χ−),
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which proves that R+<0 and R−>0.
To conclude the proof of the theorem, we remark that the solution of (2.21)

satisfies the following equality:

ξ=ln

∣

∣

∣

∣

X (ξ)−χ−

y0−χ−

∣

∣

∣

∣

1/R−

+ln

∣

∣

∣

∣

X (ξ)−χ+

y0−χ+

∣

∣

∣

∣

1/R+

+ln

∣

∣

∣

∣

X (ξ)−χ0

y0−χ0

∣

∣

∣

∣

1/f ′(χ0)

.

This can also be written as

e−ξR+ |X (ξ)−χ+|= |y0−χ+|

∣

∣

∣

∣

X (ξ)−χ−

y0−χ−

∣

∣

∣

∣

−R+/R−
∣

∣

∣

∣

X (ξ)−χ0

y0−χ0

∣

∣

∣

∣

−R+/f ′(χ0)

from which we deduce the first inequality in (2.29). The second inequality is proved
similarly.

2.3. Chapman-Enskog expansion. In the above paragraph we saw that if a
Kerr-Debye shock profile exists then the interval ]d−,d+[ (or ]d+,d−[) cannot contain
zero. As proposed in [5] it is a classical technique to perform the Chapman-Enskog
expansion of a relaxation system. In that way one obtains a viscous approximation
of the Kerr system. We shall observe that this approximation is degenerate for d=0,
so if the associated viscous shock profile exists then the interval ]d−,d+[ (or ]d+,d−[)
cannot contain zero.

Let us first establish the Chapman-Enskog expansion for Kerr-Debye system.

Proposition 2.12. The Chapman-Enskog expansion of the system (1.5) leads to the
viscous approximation system

{

∂td
ǫ+∂xh

ǫ=0
∂th

ǫ+∂xp(d
ǫ)= ǫ∂x(B(dǫ)∂xh

ǫ),
(2.31)

where the diffusion coefficient is

B(d)=
2(p(d))2

(1+3(p(d))2)2
. (2.32)

Proof. We rewrite the Kerr-Debye system as







∂td+∂xh=0,
∂th+∂x((1+χ)

−1d)=0,
∂tχ=

1
ǫG(d,χ)=

1
ǫ

(

(1+χ)−2d2−χ
)

.

(2.33)

Following [5] we expand w=(d,h,χ) in the neighborhood of the equilibrium point
(d,h,(p(d))2) and choose

χ=(p(d))2+ǫm1(d,h)+O(ǫ2).

Using (iii) and (i) in (2.33) we find

m1(d,h)=
−2p(d)p′(d)

∂χG(d,(p(d))2)
∂xh=

2d

(1+3(p(d))2)2
∂xh.

Then we substitute m1 into the expression for χ and then substitute the obtained
expression of χ into (ii) in (2.33) to obtain the viscous approximation (2.31).
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Let us now seek viscous shock profiles of the Chapman-Enskog expansion. We
are looking for solutions of (2.31) of the form

dǫ(x,t)=d

(

x−σt

ǫ

)

, hǫ(x,t)=h

(

x−σt

ǫ

)

(2.34)

such that

dǫ(±∞)=d± and hǫ(±∞)=h±. (2.35)

If such a profile exists then d is a regular solution of the ODE

d′=
1

σB(d)

(

−σ2(d−d±)+p(d)−p(d±)
)

.

Denoting e=p(d) we obtain the following result.

Proposition 2.13. If a viscous shock profile of the Chapman-Enskog expansion exists
then the interval ]d−,d+[ (or ]d+,d−[) cannot contain zero and e=p(d) is a solution
of the ODE

e′=−
σ

2
(1+3e2)e−2(e−e−)(e−e+)(e+e−+e+). (2.36)

We observe that the existence condition for relaxation profiles is the same as the
one of a viscosity profile for (2.31), however in Equation (2.28) E=0 is a root, while
in Equation (2.36) e=0 is a singularity.

We can also consider the nondegenerate viscous approximation

{

∂td+∂xh= ǫ∂xxd,
∂td+∂xp(d)= ǫ∂xxh,

and consider a Liu-admissible one-shock (so we have condition (E)) with d− > 0,
d+∈]d∗(d−),d−[. By [12] there exists a viscous profile for this shock. Note that for
d+∈]d∗(d−),0] Kerr-Debye relaxation profiles and Chapman-Enskog viscous profiles
do no exist.

3. Kerr-Debye shock profiles for the full vector 3D Kerr system

In this part we focus our attention on the cases with three spatial dimensions. In
order to exhibit the admissible shocks of the 3D Kerr system, we must first study the
properties of its characteristic fields. Then we prove our main result: there exists a
Kerr-Debye profile for a shock if and only if it is a Lax 2-shock or 5-shock.

3.1. Characteristic fields of Kerr system. Let us recall that the Kerr
system is hyperbolic symmetrisable [8, 4]. For the sake of completeness we actually
calculate the eigenmodes (see also [6]). We then see that four characteristic fields are
linearly degenerate while the two others are partially genuinely nonlinear.

3.1.1. Eigenmodes. System (1.2) is a 6×6 system of conservation laws
which, setting u=(D,H), can be synthetized as

∂tu+

3
∑

j=1

∂xj
Fj(u)=0.
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We let Aj(u) denote the Jacobian matrix of Fj and for all ξ∈R
3, ξ 6=0, we set

A(u,ξ)=
3

∑

j=1

ξjAj(u).

In order to obtain the eigenvalues of the system (1.2), we introduce the following
notation:

∀v∈R
3 Rξ v :=





0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0



 v= ξ×v.

With the above notation it is easy to see that for all u=(D,H)∈R
6, ξ∈R

3,

A(u,ξ)=

(

0 −Rξ

RξP
′(D) 0

)

,

where P is defined in (1.4). The matrix P
′(D) is regular for all D∈R

3, and we have

P
′(D) = −2(1+ |E|2)−1(1+3|E|2)−1EET +(1+ |E|2)−1I3,

P
′(D)−1 = 2EET +(1+ |E|2)I3.

Since the system is hyperbolic, we are looking for λ∈R and a nonzero vector r=
(X,Y )∈R

3×R
3 such that







−λX−RξY =0,

RξP
′(D)X−λY =0.

(3.1)

One can see that λ=0 is a double eigenvalue with the eigenvectors

(0,ξ)T , (P′(D)−1ξ,0)T .

A real λ 6=0 is an eigenvalue if and only if there exists a nonzero vector X ∈R
3 such

that

(

λ2I3+R2
ξP

′(D)
)

X=0. (3.2)

In that case, the Y component of the eigenvector is

Y =λ−1RξP
′(D)X. (3.3)

Let us first compute R2
ξP

′(D). We have

R2
ξEE

T =(ξ×(ξ×E))ET

and

R2
ξ = ξξ

T −|ξ|2I3,

so that

R2
ξP

′(D)=−2(1+ |E|2)−1(1+3|E|2)−1(ξ×(ξ×E))ET + (1+ |E|2)−1(ξξT −|ξ|2I3).
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We therefore look for λ 6=0 and X such that

(

λ2−
|ξ|2

1+ |E|2

)

X−
2ETX

(1+ |E|2)(1+3|E|2)
ξ×(ξ×E)+

ξTX

1+ |E|2
ξ=0. (3.4)

We remark that if X is orthogonal to both E and ξ we have the solution

λ2=
|ξ|2

1+ |E|2
.

If ξ×E 6=0 we have the eigenvectors

(|ξ|2ξ×E,λξ×(ξ×E))T .

Another notable vector is X= ξ×(ξ×E). This vector is equal to zero if and only
if ξ×E=0. Let us first suppose that this is not the case, and take X= ξ×(ξ×E).
Then ξTX=0 and

λ2=
|ξ|2

1+ |E|2
+

2ETX

(1+ |E|2)(1+3|E|2)
.

By using

ETX=ET
(

−E|ξ|2+(ET ξ)ξ
)

=−|E|2|ξ|2+(ET ξ)2

we obtain

λ2=
|ξ|2(1+ |E|2)+2(ET ξ)2

(1+ |E|2)(1+3|E|2)

and

RξP
′(D)X=−λ2ξ×E,

so

Y =−λξ×E.

Finally we have six real eigenvalues:

λ1≤λ2<λ3=λ4=0<λ5=−λ2≤λ6=−λ1 (3.5)

where

λ21=
|ξ|2

1+ |E|2
, λ22=

|ξ|2(1+ |E|2)+2(ET ξ)2

(1+ |E|2)(1+3|E|2)
. (3.6)

The eigenvalues λ1, λ2, λ5, λ6 are simple except in the case ξ×E=0. More precisely,

Property 3.1. The nonzero eigenvalues are double if and only if ξ×E=0. In that
case the dimension of the eigenspace for λ1 or λ6 is 2.

Proof. We have λ1=λ2 if and only if |E| |ξ|= |ET ξ|, which is equivalent to
ξ×E=0.

If ξ×E=0 then the equation (3.4) writes as

(

λ2−
|ξ|2

1+ |E|2

)

X+
ξ

1+ |E|2
(ξTX)=0.
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For all vectors X orthogonal to ξ, we find an eigenvector (X,Y ) corresponding to the
eigenvalue λ1 so the property holds.

We sum up the above facts in the following proposition:

Proposition 3.2. The 3D Kerr system (1.2) is hyperbolic diagonalizable. The eigen-
values are given by (3.5) and (3.6), and the inequalities in (3.5) are strict if and only
if ξ×E 6=0.

The eigenvectors corresponding to the eigenvalue 0 are

r3(u,ξ)=

(

0
ξ

)

, r4(u,ξ)=

(

P
′(D)−1ξ

0

)

. (3.7)

If ξ×E 6=0 the others eigenvectors are

ri(u,ξ)=

(

|ξ|2ξ×E
λiξ×(ξ×E)

)

, i=1,6, (3.8)

and

ri(u,ξ)=

(

ξ×(ξ×E)
−λiξ×E

)

, i=2,5. (3.9)

If ξ×E=0, the others eigenvectors are:

ri(u,ξ)=

(

|ξ|2Xk

λiξ×Xk

)

, i=1,2,5,6, k=1,2. (3.10)

where X1 and X2 are two nonzero independent vectors orthogonal to ξ.

3.1.2. Characteristic fields properties. Clearly the characteristic field
related to the zero eigenvalue is linearly degenerate. Let us consider the others eigen-
values.

Proposition 3.3. The characteristic fields related to the eigenvalues λ such that
λ2= |ξ|2(1+ |E|2)−1 are linearly degenerate.

Proof. A characteristic field is linearly degenerate if for all ξ 6=0 and for all
u=(D,H), λ′(u,ξ)r(u,ξ)=0. As the eigenvalue only depends on E=P(D), it is
enough to verify that

∂(λ2)

∂E
P

′(D)X=0

where X is orthogonal to both E and ξ. We have

∂(λ2)

∂E
=−|ξ|2(1+ |E|2)−22ET , (3.11)

and as X is orthogonal to E,

P
′(D)X=(1+ |E|2)−1X,

so λ′(u,ξ)r(u,ξ)=0.
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Proposition 3.4. Take ξ 6=0. The characteristic fields 2 and 5 are genuinely non-
linear in the direction of ξ in the open set

Ω(ξ)={(D,H)∈R
6 : ξ×D 6=0}.

That is, for all u∈Ω(ξ) and i=2,5,

λ′i(u,ξ)ri(u,ξ) 6=0. (3.12)

Proof. We note first that u∈Ω(ξ) if only if ξ×E 6=0 or ξ×(ξ×E) 6=0. In this
proof we denote

δ=(1+ |E|2)(1+3|E|2), λ2=λ22=λ
2
5.

The condition (3.12) is satisfied if and only if

∂(λ2)

∂E
P

′(D)(ξ×(ξ×E)) 6=0.

First we compute ∂(λ2)
∂E to be

∂(λ2)

∂E
=2δ−1

(

[|ξ|2−2λ2(2+3|E|2)]ET +2(ET ξ)ξT
)

. (3.13)

By using the identity

|ξ|2ET =(ET ξ)ξT −(ξ×(ξ×E))T (3.14)

we obtain

∂(λ2)

∂E
=2δ−1

(

α(ET ξ)ξT + β (ξ×(ξ×E))T
)

(3.15)

with

α=3−2λ2|ξ|−2(2+3|E|2), β=−1+2λ2|ξ|−2(2+3|E|2)>1.

We use again (3.14) to obtain

P
′(D)(ξ×(ξ×E))= δ−1

(

a(ET ξ)ξ+bξ×(ξ×E)
)

(3.16)

with

a=
2|ξ×(ξ×E)|2

|ξ|4
>0, b=

|ξ|4+3(ET ξ)2|ξ|2+ |ξ×(ξ×E)|2

|ξ|4
>0.

Consequently we obtain

∂(λ2)

∂E
P

′(D)(ξ×(ξ×E))=2δ−2
(

aα(ET ξ)2|ξ|2+bβ|ξ×(ξ×E)|2
)

which writes as

∂(λ2)

∂E
P

′(D)(ξ×(ξ×E))=
2|ξ×(ξ×E)|2

δ2|ξ|4
[

(2α+3β)|ξ|2(ET ξ)2

+β(|ξ×(ξ×E)|2+ |ξ|4)
]

,

which is strictly positive because

2α+3β=3+2λ2
2+3|E|2

|ξ|2
>0.
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3.2. Admissible plane discontinuities. In this paragraph we study Kerr
planar shocks and planar contact discontinuities. These are travelling waves

u(x,t)=u(ω ·x−σt), (3.17)

propagating in a fixed direction ω, |ω|=1, with velocity σ, which are weak piecewise
constant solutions of the Kerr system (1.2) such that

u(ω ·x−σt)=

{

u−, if ω ·x−σt<0,
u+, if ω ·x−σt>0,

(3.18)

where u−=(D−,H−) and u+=(D+,H+) are two constant vectors of R6.

3.2.1. Rankine-Hugoniot conditions. As usual the jump of X is denoted

[X]=X+−X− .

The Rankine-Hugoniot conditions for (1.2) write as







σ[D]=−ω× [H],

σ[H]=ω× [E],
(3.19)

where [E]=E+−E−=P(D+)−P(D−).
The divergence free conditions write as

ωT [D]=ωT [H]=0. (3.20)

If σ 6=0, these conditions are fulfilled as soon as (3.19) is satisfied.
If the characteristic field for an eigenvalue λ=λ(u,ω) is linearly degenerate, con-

tact discontinuities exist, i.e. plane discontinuities satisfying (3.19) and such that

σ(u+,u−)=λ(u+)=λ(u−). (3.21)

If λ=0 we have stationary contact discontinuities (σ=0).

Proposition 3.5. Stationary contact discontinuities are characterized by

{

ω× [H]=0,
ω× [E]=0.

The only divergence free ones are constant.

Let us now study the situations where σ 6=0. In what follows we consider nontrivial
discontinuities satisfying (3.19) : [u] 6=0, which is equivalent to

[D] 6=0. (3.22)

We first establish a preliminary result.

Lemma 3.6. Let D+ and D− be two distinct vectors in R
3. Then

0<
[D]T [E]

|[D]|2
< 1. (3.23)
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Proof. Since P is one-to-one, the jump of D is zero if and only if the jump of E
is. We have

[D]T [E]={(1+ |E+|
2)E+−(1+ |E−|

2)E−}
T (E+−E−)

≥|E+−E−|
2+

1

2
(|E+|

2−|E−|
2)2>0.

Furthermore,

|[D]|2− [D]T [E]≥
1

2

(

|E+|
2−|E−|

2
)2

+
∣

∣|E+|
2E+−|E−|

2E−

∣

∣

2
.

Moreover |E+|
2E+= |E−|

2E− if and only if E+=E−, and we obtain the result.

Proposition 3.7. Consider u− 6=u+ and σ 6=0. The Rankine-Hugoniot conditions
(3.19) are satisfied if and only if the following properties hold:

(i) The field D is divergence free, i.e.

ωT [D]=0, (3.24)

(ii) The jump of H is given by

[H]=σω× [D], (3.25)

(iii) The three vectors ω, [D] and [E] are coplanar, and

(iv) The propagation speed σ satisfies

σ2=
[D]T [E]

|[D]|2
. (3.26)

Hence by Lemma 3.6, σ2∈]0,1[.

Proof. Necessary conditions. It is obvious that ωT [D]=ωT [H]=0 and

[D]T [H]=0, [E]T [H]=0. (3.27)

We obtain (3.25) by using (3.19-1) and (3.20) in

[H]= ([H]T ω)ω−ω×(ω× [H]).

By (3.25) and (3.27) we have

[E]T (ω× [D])=0,

which means that ω, [D] and [E] are coplanar. By (3.19) we have

σ2[D]=−ω×(ω× [E]),

hence

σ2[D]= [E]−(ωT [E])ω.

By taking the scalar product of the previous expression with [D] one finds (3.26).
Sufficient conditions. On the one hand

σ[D]=−σω×(ω× [D])
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because ωT [D]=0, and we deduce (3.19-1). On the other hand, by (iii), there exist
two real numbers α and β such that

[E]=α[D]+βω,

hence

[E]T [D]=α|[D]|2 and ωT [E]=β.

By (3.26) α=σ2 and thus

[E]=σ2[D]+([E]T ω)ω,

which implies

σ[H]=σ2ω× [D]=ω× [E]

and (3.19-2). This completes the proof.

Remark 3.8. It is easy to verify that

ωT ([E]× [D])=ωT (E+×E−)(|E+|
2−|E−|

2)

so that ω, [D] and [E] are coplanar if and only if

ωT (E+×E−)(|E+|
2−|E−|

2)=0. (3.28)

The fields related to the eigenvalues λ such that λ2=(1+ |E|2)−1 are linearly de-
generate. The associated contact discontinuities are characterized as follows:

Proposition 3.9. A discontinuity σ, u+, u− is a contact discontinuity associated to
an eigenvalue λ such that λ2=(1+ |E|2)−1 if and only if

{

|E+|= |E−|,
σ2=(1+ |E+|

2)−1=(1+ |E−|
2)−1,

(3.29)

and
{

ωT [E]=0,
[H]=σω× [D].

(3.30)

Moreover these contact discontinuities are the only discontinuities satisfying Rankine-
Hugoniot conditions (3.19) and such that |E−|= |E+|.

Proof. Condition (3.29) is equivalent to condition (3.21), so the first part is a
consequence of Proposition 3.7.

Finally, if a discontinuity satisfies (3.19) and |E−|= |E+| then the expression
(3.26) implies (3.29) and therefore the discontinuity is a contact discontinuity associ-
ated to an eigenvalue λ such that λ2=(1+ |E|2)−1.

At this point, it remains to study the discontinuities which are neither stationary
nor contact discontinuities related to an eigenvalue λ such that λ2=(1+ |E|2)−1: all
those for which the jump of |E| is not zero. By (3.28) these discontinuities are such
that E+, E− and ω are coplanar (hence also are D+, D− and ω). Modifying only the
property (iii) in Proposition 3.7 we obtain the following characterization:
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Proposition 3.10. The nontrivial discontinuities satisfying (3.19) with a nonzero
jump of |E| (|E+| 6= |E−|) are the σ, u+, u−, (D+ 6=D−) such that formulae (3.24),
(3.25), (3.26) hold and the three vectors ω, D+, D− are coplanar, i.e.

ωT (D+×D−) = 0. (3.31)

In the following the discontinuities satisfying the previous conditions are called
shocks.

Let us recall that for a fixed left state u− the Hugoniot set of u−, denoted H(u−),
is the set of the right states u+ such that there exists a shock connecting u− and u+.
We then let σ=σ(u+,u−) denote the shock velocity. One can give a similar definition
by fixing the right state.

In Proposition 3.10 the coplanarity condition is trivial ifD−×ω=0 orD+×ω=0.
We consider two cases.

Proposition 3.11. Case D−×ω 6=0.
Let u−=(D−,H−) be a fixed left state such that D−×ω 6=0. Let ζ be a unitary

vector orthogonal to ω in the plane defined by (ω,D−) .
The set H(u−) of the right states u+ connected to u− by a shock is the union of

two curves H±(u−) parametrized by d∈R and constructed as follows: H+(u−) (resp
H−(u−)) is the set of (D+,H+)∈R

6 such that

D+=(ωTD−)ω+ dζ, d∈R,

σ satisfies (3.26), σ>0 (resp σ<0) and H+ satisfies (3.25).
One can describe similarly the set of left states connected by a shock to u+ such

that D+×ω 6=0.

The proof is immediate. Let us remark that if

D−=(ωTD−)ω+d− ζ

then [D]=0 if and only if d+=d−, and |E+|= |E−| if and only if d+=±d−.

Proposition 3.12. Case D−×ω=0.
Let u−=(D−,H−) be a fixed left state such that D−×ω=0. Then the set H(u−)

of right states connected to u− by a shock is the set of u+=(D+,H+) satisfying (3.24)
such that

σ2=λ21(u+)=(1+ |E+|
2)−1 (3.32)

and H+ satisfies (3.25).
One can similarly describe the set of left states connected by a shock to u+ such

that D+×ω=0.

Proof. We have D+=(ωTD−)ω+d+ζ (d+ 6=0) where ζ is an arbitrary unitary
vector orthogonal to ω, which gives (3.32).

Remark 3.13. Since d+ 6=0 we have

|D+|> |D−|,so

|E+|> |E−|and

σ2=λ21(u+)<λ
2
1(u−). (3.33)

This is a semi contact discontinuity; the propagation speed of a contact discontinuity
coincides with both the eigenvalues associated to the right state and the left state; see
(3.29). Here we have only the equality for the eigenvalue related to the right state.
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3.2.2. Admissible shocks. We focus our attention on the admissibility of
shocks in the sense of Liu or in the sense of Lax.

Definition 3.14. Let u− be a left state for which the Hugoniot set is a union of
curves, and consider u+∈H(u−). The discontinuity is Liu-admissible if

(E) σ(u+,u−)≤σ(u,u−) ∀u∈H(u−) with u between u− and u+.

Definition 3.15. A discontinuity σ, u−, u+ is a Lax k-shock if
{

λk(u+)<σ<λk+1(u+),
λk−1(u−)<σ<λk(u−).

(3.34)

Liu’s condition may be applied only in the presence of a shock curve. Here such a
curve exists only if D−×ω 6=0.

Proposition 3.16. Let u−=(D−,H−) be a fixed left state such that D−×ω=0.
Consider u+∈H(u−). If σ<0 the shock is not a Lax shock. If σ>0 the shock satisfies
the 5-shock conditions with large inequalities:

{

λ5(u+)<σ=λ6(u+),
λ4(u−)<σ<λ5(u−).

Proof. For σ<0, a one-shock cannot hold because σ=λ1(u+)>λ1(u−). A 2-shock
cannot hold because λ2(u+)>σ.

For σ>0: the first inequality is true because D+×ω 6=0. Moreover λ4=0 and
λ5(u−)=λ6(u−), hence following (3.33) we obtain the desired inequalities.

Remark 3.17. One obtains a similar result with σ<0 by considering the Hugoniot
set of a fixed right state such that D+×ω=0.

If the shock satisfies the conditions of Proposition 3.11 then we may study Liu’s
condition. With the same notations as in Proposition 3.11, let u− be such that
D−×ω 6=0, and

D−=d1ω+ d− ζ, d1=ω
TD− , d− 6=0.

Consider u∈H(u−) where

D=d1ω+ dζ. (3.35)

In order to characterize the admissibility conditions (E) or (3.34) we first express σ
as a function of parameter d in (3.35). We have

P(D)=E= e1ω+ eζ

with

e=
d

1+ |E|2
=

d

1+p(
√

d21+d
2)2

=:f(d).

As [D]= [d]ζ, σ2=
[e]

[d]
and hence

σ2(u,u−)=
f(d)−f(d−)

d−d−
. (3.36)
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Let us remark that if d1=0 we have p(d)=f(d) so that (3.36) reduces to (2.6). In fact
we show in the following lemma that the functions f and p have the same qualitative
properties.

Lemma 3.18. The function f has the following properties:

(i) f(0)=0, f ′(0)=(1+e21)
−1, f ′′(0)=0,

(ii) f is an odd increasing function,

(iii)f is strictly convex on ]−∞,0], strictly concave on [0,+∞[.

Proof. We have

f ′(d)=
1

1+ |E|2
−

2ed

(1+3|E|2)(1+ |E|2)2
=λ22(D,ω). (3.37)

Using (3.11),

f ′′(d)=−
2(e1ω

T +eζT )

(1+ |E|2)2

[

−
2ee1

(1+ |E|2)(1+3|E|2)
ω+

1+3e21+e
2

(1+ |E|2)(1+3|E|2)
ζ

]

=−
2e

(1+ |E|2)2(1+3|E|2)
.

As a consequence we have the following lemma.

Lemma 3.19. For all d− 6=0 there exists a unique d∗(d−) 6=d− such that

f ′(d∗)=
f(d∗)−f(d−)

d∗−d−
.

Moreover, d∗(d−)d−<0 and |d∗(d−)|< |d−|.

We now give the characterization of Liu-admissible shocks:

Proposition 3.20. The Liu-admissible shocks are 2-shocks or 5-shocks.
For the 2-shocks (σ<0), consider u− with D−×ω 6=0 and u+∈H−(u−). The discon-
tinuity is Liu-admissible if and only if d+ belongs to the interval with extremities d−
and d∗(d−).
For the 5-shocks (σ>0), consider u− with D−×ω 6=0 and u+∈H+(u−). The discon-
tinuity u−, u+, σ is Liu-admissible if and only if |d+|> |d−| and d+d−>0.

Proof. Using formulas (3.36) and (3.37) we observe that

lim
u→u−

σ2(u,u−)=λ
2
2(D−,ω)=λ

2
5(D−,ω)

and

2σσ′(d)=
1

d−d−

(

f ′(d)−
f(d)−f(d−)

d−d−

)

.

Let us remark that these shock conditions are analogous to the ones found in part
2 for the 2×2 case.

We conclude this section with the following proposition.
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Proposition 3.21. The Lax-admissible shocks are 2-shocks or 5-shocks.
For the 2-shocks (σ<0), consider u− with D−×ω 6=0 and u+∈H−(u−). The discon-
tinuity is Lax-admissible if and only if |d+|< |d−| and d+d−>0.
For the 5-shocks (σ>0), consider u− with D−×ω 6=0 and u+∈H+(u−). The discon-
tinuity u−, u+, σ is Lax-admissible if and only if |d+|> |d−| and d+d−>0.

Proof. We prove the case σ<0 only, the other one is similar. A Lax-admissible
shock must satisfy the condition

λ2(u+)<λ2(u−)(<0).

By (3.37) it is equivalent to

f ′(d+)>f
′(d−),

so |d+|< |d−|. The condition λ1(u−)<σ<λ3(u+) writes as

1

1+ |E−|2
>

d+(1+ |E−|
2)−d−(1+ |E+|

2)

(d+−d−)(1+ |E−|2)(1+ |E+|2)
. (3.38)

If d−<0 then d+∈]d−,−d−[ and the above inequality is equivalent to

d+(|E+|
2−|E−|

2)>0.

Moreover |E+|
2< |E−|

2 because p is an increasing function and |d+|< |d−|. Therefore
the Lax condition is satisfied only if d+<0.

If d−>0, d+∈]−d−,d−[ so (3.38) writes as

d+(|E+|
2−|E−|

2)<0.

Hence the Lax condition is satisfied only if d+>0.
If we suppose conversely that |d+|< |d−| and d−d+>0, then condition (3.34)

follows from (3.36).

Remark 3.22. The Lax shocks are precisely the Liu shocks such that d+d−>0, and
for the 5- shocks the Lax and Liu shocks coincide.

3.3. Shock profiles. In this part we consider a plane Kerr discontinuity which
is not a contact discontinuity; in particular σ 6=0. By Proposition 3.9 we suppose that

|E+| 6= |E−|. (3.39)

By Proposition 3.10 we have (3.24), D+, D−, E+, E− and ω are coplanar, σ satisfies
(3.26), and H satisfies (3.25).

Our goal is to construct a Kerr-Debye relaxation shock profile. We therefore look
for a smooth function W such that

(D,H,X )(x,t)=W

(

1

ǫ
(x ·ω−σt)

)

=W (ξ) (3.40)

is a solution of (1.1) and satisfies

W (±∞)=(D±,H±,χ±), (3.41)
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where (D±,χ±) is in the equilibrium manifold

{(D,χ); (1+χ)−2|D|2−χ=0},

so that

χ±= |E±|
2 (3.42)

and by (3.39),

χ+ 6=χ−. (3.43)

Hence the profile we look for is a smooth solution of the ordinary differential system






(−σD−ω×H)′=0,
(−σH+ω×(1+X )−1D)′=0,
−σX ′=(1+X )−2|D|2−X ,

(3.44)

defined on R and satisfying (3.41). Let us remark that as σ 6=0, those profiles are
divergence free, which reads as

ωTD′=ωTH ′=0. (3.45)

Proposition 3.23. If there exists a shock profile then the solution component X (ξ)
is a solution of the ordinary differential equation

σX ′ = X −
|ωTD±|

2

(1+X )2
−
θ(χ±)(1+χ±)

−2|ω×(ω×D±)|
2

θ(X )
(3.46)

where θ(X )=(T (X ))2=(σ2(1+X )−1)2 as long as X 6=−1 and X 6= 1−σ2

σ2 .

Proof. Eliminating H between (3.44-1) and (3.44-2) we have

(σ2D+(1+X )−1ω×(ω×D))′=0.

Hence

σ2D+(1+X )−1ω×(ω×D)=σ2D±+(1+χ±)
−1ω×(ω×D±), (3.47)

with the compatibility between right and left values insured by the Rankine-Hugoniot
conditions and by (3.42). On another hand, using the fact that D=(ωTD)ω−ω×
(ω×D) along with (3.45) and (3.47) we have

σ2D+(1+X )−1ω×(ω×D)=σ2(ωTD±)ω−T (χ±)(1+χ±)
−1ω×(ω×D±).

Therefore

θ(X )(1+X )−2|ω×(ω×D)|2=θ(χ±)(1+χ±)
−2|ω×(ω×D±)|

2.

It follows that as long as X 6=−1 and X 6= 1−σ2

σ2

(1+X )−2|D|2=
|ωTD±|

2

(1+X )2
+
θ(X±)(1+χ±)

−2|ω×(ω×D±)|
2

θ(X )

and (3.46) follows by (3.44-3).

Let us now study the right hand side of (3.46), which we denote ψ. If the profile
exists then there exists a smooth solution of (3.46) with X (±∞)=χ± , χ+ and χ−
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must be two consecutive zeros of ψ, and ψ must keep a constant sign between those
two values. Therefore ψ is a monotone non constant function on this interval, which
implies that

χ+ 6=χ− .

This is true by (3.39) since we do not consider contact discontinuities.
The function ψ writes as

ψ(X )=X −ϕ(X ), ϕ(X )=
a

(1+X )2
+

b

θ(X )
(3.48)

with

a= |ωTD±|
2, b=θ(χ±)(1+χ±)

−2|ω×(ω×D±)|
2.

These two coefficients are nonnegative. In (3.48) we cannot have b=0 and a>0
because otherwise

ψ(X )=X −
a

(1+X )2

has only one zero. As a consequence we have

{

D−×ω 6=0,
D+×ω 6=0.

(3.49)

The only zero of T (X ) is χ= 1−σ2

σ2 and by Lemma 3.6,

χ>0. (3.50)

Furthermore let us remark that

T (χ+) =
1

1+χ−

(χ−−χ+)
DT

− (D+−D−)

|D+−D−|2
,

T (χ−) =
1

1+χ+
(χ−−χ+)

DT
+ (D+−D−)

|D+−D−|2
.

(3.51)

If b=0 and (3.49) holds, then θ(χ±)=0. If θ(χ+)=0, then

DT
− (D+−D−)=0

and so D−×ω=0, which contradicts (3.49-1). The same holds with θ(χ−)=0. Con-
sequently

θ(χ−) 6=0 and θ(χ+) 6=0 (3.52)

which is equivalent to

χ− 6=χ, χ+ 6=χ. (3.53)

Consequently ψ(χ±) is well defined and we obtain

ψ(χ−)=ψ(χ+)=0. (3.54)
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Fig. 3.1. Representation of the function ϕ in (3.48). Left: a=0 (χ−=1.74, χ+=0.18, χ=
1.36). Right: a 6=0 (χ−=1.74, χ+=0.23, χ=1.38).

As b>0, χ is a singularity for ψ. If a=0 then the function ϕ is convex on ]−∞,χ[
and on ]χ,+∞[, ϕ(±∞)=0, and ϕ(χ±0)=+∞; see Figure 3.1 (left). If a>0, the
function ϕ is convex on the intervals ]−∞,−1[, ]−1,χ[ and ]χ,+∞[, ϕ(±∞)=0,
ϕ(−1±0)=+∞, and ϕ(χ±0)=+∞, see Figure 3.1 (right).

In both cases, if the profile exists then the zeros χ− and χ+ of ψ are necessarily
in the interval ]0,χ[, which we may characterize by

T (χ+)<0, and T (χ−)<0

or, using (3.51), by






(χ−−χ+)D
T
− (D+−D−)<0,

(χ−−χ+)D
T
+ (D+−D−)<0.

(3.55)

Let us denote χm=min(χ−,χ+), χM =max(χ−,χ+). Then [χm,χM ]⊂]0,χ[ and ψ is
positive on ]χm,χM [, so σ>0 implies that χ−=χm and χ+=χM , and σ<0 implies
that χ−=χM and χ+=χm. In order to make condition (3.55) explicit we use the
notations of Proposition 3.11:

{

D+=d1ω+ d+ ζ,

D−=d1ω+ d− ζ,
(3.56)

with d+ 6=d− and, by (3.49), d+ 6=0 and d− 6=0. Then (3.55) reads as
{

d− (χ+−χ−)(d+−d−)>0,
d+ (χ+−χ−)(d+−d−)>0,

(3.57)

which forces

d−d+ >0. (3.58)

Moreover χ+=
(

p
(√

d21+d
2
±

))2

so that χ−<χ+ if and only if d2−<d
2
+.

If d−>0 and d+>0, then χ−<χ+ if and only if 0<d−<d+, and so we have
(3.57).

If d−<0 and d+<0, then χ−<χ+ if and only if d+<d−<0, and so we have
(3.57) again.
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As a conclusion, χ− and χ+ belong to the interval ]0,χ[ if and only if inequality
(3.58) holds in (3.56).

If σ>0, we have a 5-shock, X is an increasing function from χ− to χ+, so |d−|<
|d+| and d+d−>0 so the shock is admissible in the sense of Lax (and Liu).

If σ<0, we have a 2-shock, X is a decreasing function from χ− to χ+, so |d−|> |d+|
and according to Proposition 3.21 condition (3.58) impose that the shock is admissible
in the sense of Lax.

Reciprocally, let us consider a shock as defined in Proposition 3.10 and suppose
that condition (3.58) is satisfied (so we have also (3.49)). Then χ− and χ+ are in the
interval ]0,χ[ and ψ is positive on ]χm,χM [.

If σ>0 and χ−<χ+ there exists a solution X of (3.46) with X (±∞)=χ±, and
X is an increasing function.

If σ<0 and χ+<χ− there exists a solution X of (3.46) with X (±∞)=χ± and
X is a decreasing function.

We compute D by using the fact that

D=(ωTD)ω−ω×(ω×D), ωTD=ωTD±,

and

ω×(ω×D)=T (X )−1(1+X )T (χ±)(1+χ±)
−1ω×(ω×D±).

The expression of H is obtained by using (3.44-2).

Theorem 3.24. Consider a shock as defined in proposition 3.10. There exists a the
Kerr-Debye profile for it if and only if it is a Lax 2-shock or a Lax 5-shock.

3.4. Revisited one-dimensional cases. The plane discontinuities of Kerr
system (1.2) are weak solutions of a 6×6 one-dimensional system. Without loss of
generality we can assume that ω=(1,0,0). If we denote x=x1 this system writes as































∂tD1=0,
∂tD2+∂xH3=0,
∂tD3−∂xH2=0,
∂tH1=0,
∂tH2−∂xP3(D)=0,
∂tH3+∂xP2(D)=0.

(3.59)

The divergence free conditions write

∂xD1=0 and ∂xH1=0, (3.60)

so that D1 and H1 are constant. Let us look for discontinuities such that

D−=(0,d− 6=0,0), H−=(H1,0,h−),
D+=(0,d+,D3,+), H+=(H1,H2,+,h+).

(3.61)

A contact discontinuity (for the 1 or 6 characteristic fields) satisfies conditions (3.29)
and (3.30), so we have

d2++D2
3,+=d2− .
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If moreover D3,+=0, then H2,+=0 and (d,h)=(D2,H3) is a weak solution of the
2×2 one dimensional system (1.6). In this case d+=−d− and this weak solution is
not a Liu admissible solution of (1.6).

If a contact discontinuity does not hold then d2++D2
3,+ 6=d2− and by (3.31) D3,+=

0, hence by (3.59) H2,+=0. Such a weak solution is necessarily a 2-shock or a 5-shock,
the condition D−×ω 6=0 reads as d− 6=0, Propositions 3.20, 3.21 apply directly. As
before, (d,h)=(D2,H3) is a weak solution of the 2×2 one-dimensional system (1.6).
This weak solution is a 1-Liu shock (resp. 2- Liu shock) of system (1.6) if and only if
it is a 2-Liu shock (resp. 5-Liu shock) of system (3.59).

Let us remark that Liu and Lax admissibility of shock coincide for the 2×2 system
(1.6), but this is not the case for the 6×6 system (3.59) where the Lax condition must
be more restrictive; see remark 3.22. As a conclusion we can see that for the system
(3.59) the Lax-admissibility of a shock is characterized by the existence of a related
Kerr-Debye relaxation profile.
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