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RELAXATION APPROXIMATION OF SOME INITTAL-BOUNDARY
VALUE PROBLEM FOR P-SYSTEMS*

GILLES CARBOU' AND BERNARD HANOUZET*

Abstract. We consider the Suliciu model which is a relaxation approximation of the p-system.
In the case of the Dirichlet boundary condition we prove that the local smooth solution of the
p-system is the zero limit of the Suliciu model solutions.
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1. Introduction
We study a relaxation approximation of the following p-system

Oy — Oz ug =0,
1.1
{ 8tuQ—8Ip(u1):O ( )

For the viscoelastic case, Suliciu introduces in [19] the following approximation
Oyuy — Ozuz =0,
Orus fﬁxv:&l (1.2)
O = pdsuz =~ (p(ur) —v),
where € and p are positive.
The aim of this paper is to prove convergence results for the initial-boundary

value problem when the relaxation coefficient ¢ tends to zero.
Under the classical assumption

VEER,p'(§) >0, (1.3)
the p-system is strictly hyperbolic with eigenvalues
Ar(ur) ==v/p'(u1) <Az(u1) = v/p'(u1). (1.4)

The semi-linear approximation system (1.2) is strictly hyperbolic with 3 constant
eigenvalues

==/ <p2=0<pz=/u. (1.5)

In all the paper we assume that u is chosen great enough so that the subcharacteristic-
type condition holds

p>p'(ur) (1.6)
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188 RELAXATION APPROXIMATION FOR P-SYSTEMS

for all the values of w; under consideration.

Formally, when ¢ tends to zero, the behaviour of the solution w®=(u®,v°)=
((u5,u3),v) for the relaxation system (1.2) is the following: p(u§)—v* tends to zero,
so that u® tends to a solution u= (uy,us) of the p-system (1.1).

Recent papers are devoted to the zero relaxation limit in the case of the Cauchy
problem. In [22] Wen-An Yong establishes a general framework to study the strong
convergence for the smooth solutions. This convergence result is obtained describing
the boundary layer which appears at t=0. We can apply Yong’s tools for the Suliciu
approximation

Oru§ — Ogus =0,
6{&5—8@’()5:0, (1-7)

1
O — b5 = = (pluf) —v*),

for (t,z) eR* xR, with the smooth initial data:
w®(0,2) =wp(z),z €R. (1.8)

We give more details about this question in the annex at the end of this paper.

Since the lifespan for a smooth solution u of the Cauchy problem for the p-system
is generally finite (see [12]), the strong convergence of the solution u° to u can only
be obtained locally in time. Nevertheless, under the assumption

VEERp () <T <, (1.9)

if wg is smooth, the solution for the semi-linear Cauchy problem (1.7)-(1.8) is global
and smooth. In this case, the question is: what about the global convergence?

Under further additional assumptions (in particular p’(£) >~ >0) the weak con-
vergence to a global weak solution of the p-system is obtained by Tzavaras in [21]
using the compactness methods of [17].

Other convergence results in some particular cases can be found in [8] and [10].

For other connected papers see also [13, 16, 20]...

In this paper we study the zero relaxation limit for the initial-boundary value
problem. To our knowledge general convergence results are not available for hyper-
bolic relaxation systems in domains with boundary in the literature. A special well
investigated problem is the semi-linear relaxation approximation to the boundary
value problem for a scalar quasilinear equation, see [11, 15, 9, 14], and [5, 1] for
related numerical considerations.

A first example of convergence result for a particular p-system (1.1) is obtained in
[4]. In that paper the p-system is the one-dimensionnal Kerr model, so p is the inverse
function of &+ (14+£2)€. The relaxation approximation is given by the Kerr-Debye
model which is the following quasilinear hyperbolic system

Opu§ — Oyus =0,
Ous — 0y ((1+20°) " 1ug) =0,
1
Ov° = - (1+0%)72(uf)? —2°).

For these two models we consider the ingoing wave boundary condition. In the case
of the smooth solutions we obtained a local strong convergence result. The main tool
of the proof is the use of the entropic variables as proposed in [7]. In these variables,
the system is symmetrized and the equilibrium manifold is linearized.
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Here we study the zero relaxation limit for the Suliciu approximation

Oru§ — 0yu§ =0,

Ous — Oy v° = 0,1 (1.10)
0v® = pduz =~ (p(uj) —v°),
for (t,z) eR*T xR*, with the null initial data
w®(0,2) =0,z €RT, (1.11)
and with the Dirichlet boundary condition
u5(t,0)=¢(t),t eRT. (1.12)
For the null initial data to be in equilibrium we assume that p(0) =0. We prove the

strong convergence of u° to the smooth solution of the initial-boundary value problem
for the p-system

8tu1 —&ch :0,
{&m ~ Bup(ur) =0, (1.13)
for (t,z) eR*T xR, with the initial-boundary conditions
u(0,2) =0,z €RT, (1.14)
ua(t,0)=¢(t),teRT. (1.15)

2. Main results

Let us specify the assumptions on the source term ¢ in the boundary condition
(1.12) or (1.15). In order to simplify we chose ¢ smooth enough on R and such that
supp ¢ C [0,b], with b>0. In this case the boundary conditions and the null initial
data (1.11) and (1.14) match each other so both initial-boundary value problem (1.10)-
(1.11)-(1.12) and (1.13)-(1.14)-(1.15) admit local smooth solutions.

First we consider the solutions for the second problem (1.13)-(1.14)-(1.15) and
using the methods of [12] we establish that the lifespan T* is generally finite with
formation of shock waves.

THEOREM 2.1. Assume the property (1.3). Let ¢ € C*°(R) with supp ¢ C[0,b], b>0,
@p#0. Let g the function defined by

13
9(6)= / Vo (5)ds.

We assume that
p" does not vanish on the interval g~ (—p(R)). (2.1)

Then the local smooth solution of (1.13)-(1.14)-(1.15) exhibits a shock wave at the
time T* <400 and we have

1l oo (jo,7#) xr+) S Cllpll Loe (R) - (2.2)
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We now investigate the smooth solutions of the initial-boundary value problem
(1.10)-(1.11)-(1.12) for a fixed €>0. The system is semi-linear strictly hyperbolic
and the boundary {z =0} is characteristic. It is easy to prove that the local smooth
solution w exists and, if the lifespan T is finite, we have

l[wll Los (0,75 xR+) = +00 (2.3)

(for general semi-linear hyperbolic systems, see [18]).
If we assume that p is globally lipschitz we establish that the smooth solutions
are global.

THEOREM 2.2. Assume the properties (1.3) and (1.9). Let @€ H3(R) with supp
@ CRY. Then the solution of (1.10)-(1.11)-(1.12) is global and

weCY'(RT; H (R)), 0,w € CO(RT; L*(R)). (2.4)

Finally, let us describe the convergence result.

THEOREM 2.3. We suppose (1.3). Let ¢ € H3(R) with supp ¢ CRT. We consider
a smooth solution u=(u§,uy) of (1.18)-(1.14)-(1.15) defined on [0,T*[. We suppose
that

p>  sup  p/(ud(t,x). (2:5)
(t,z)€[0,T*[xR+

Let T <T*. For e small enough, the relazation problem (1.10)-(1.11)-(1.12) admits
a solution w® = (us,v°) defined on [0,T] such that

uf =u’ +eul,
and there exists a constant K such that

[ulll Loo 0,711 () + 1040l oo (0,13 12 (R+)) < K. (2.6)

In this result we can remark that no boundary layer appears in the time variable
because the null initial data belongs to the equilibrium manifold V={v=p(u;)}. For
the space variable, we have the same boundary condition for both systems, so no
space boundary layer appears.

To prove Theorem 2.3 we do not use the method in [4]: as observed in [7], with
the entropic variables, we lose the semi-linear character of the system (1.10). We
prefer to write the following expansion of w®

w® =w’ +ew; = ((uf,u3),p(uf)) +ew;

so that the rest term w! satisfies a semi-linear hyperbolic system. In order to esti-
mate w?, we use the conservative-dissipative variables introduced in [2]. With these
variables the system is symmetrized and its semi-linear character is preserved. Fur-
thermore by this method we obtain a more precise result: for € small enough the
lifespan T is greater that the lifespan 7™ of the limit system solution and the con-

vergence is proved on all compact subset of [0,7*].



G. CARBOU AND B. HANOUZET 191

3. Proof of theorem 2.1
We use the methods proposed by Majda in [12] for the Cauchy problem. We
denote by [ and r the left and right Riemann invariants of the system (1.1):

1= L (uz + (),

|

r= 5(”2 —g(u1)).

These variables define a diffeomorphism which inverse is given by

{Ul =g '(-r),

U =1+r.

These invariants (I,r) satisfy the diagonal system

Ol —v(l—7r)0,1=0,
Or+v(l—r)0,r=0,
1(0,2)=r(0,z)=0,2>0,
(I47)(t,0)=p(t),t >0,

where v(I—r)=+/p'(¢g~*(I—7)). The smooth solution of (3.1) is (0,r) where r is the
solution of the scalar equation

(3.1)

Or +v(—r)0,r =0,
r(0,2)=0,2 >0, (3.2)
r(t,0) =¢(t),t>0.

Under the assumptions (1.3) and (2.1) we will prove that the lifespan T* of the solution
of the problem (3.2) is finite and that this solution exhibits shock waves in T™*.

For solving (3.2) we can use the method of characteristics. The function r is
1

v(=p(T))

constant on the characteristic curves which are the straight lines t =T+

1
T €R. Denoting a(s) = ——— we obtain then that

v(=s)
r(T,0)=p(T)=r(T+a(p(T))z,x).
Let us introduce the mapping
(T, X)— (T, X)=(t,x) =(T+a(e(T)) X, X).
This map is a diffeomorphism for X < X with

d -1

X— — 2 (T
Lo dTa(w( )

Under assumption (2.1) we have 0 < X < +oco and we have

[7[] oo (m+ xj0, %) S 1Pl Loo (R) -

The characteristic curves through (0,0) and (b,0) cut the straight line {x =X} at
times

Ty— /0] X and Ty= b 70X s0 T° €[5, 2],
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4. Proof of theorem 2.2
In this section € >0 and g >0 are fixed. We rewrite system (1.10)

Opw+ Adyw = h(w)

where
0-10 0
A=|0 0 —1 | and h(w)= 1 0
0—p O g(p(ul)—v)

and by (1.3) and (1.9) p is globally lipschitz. As zero is an eigenvalue of the matrix
A, the boundary {z =0} is characteristic, so for completeness we give the proof of the
global existence. Using (2.3) it is sufficient to prove that the solution w is bounded on
any domain [0,7] x RT. In a first step we lift the boundary condition (1.12). We set
w(t,x)=p(t)n(x) where n is a smooth function compactly supported with 7(0)=1.
We replace us by us —w and we obtain the following initial-boundary value problem

Opw
ow+ Ad,w=h(w)+ | —0w |,
HOzw
(4.1)
w(0,2) =0,z e R,
u2(t,0)=0,t eRT.
We diagonalize the matrix A by the matrix P: w= PW with
11 1
P=1/u0—/u
n 0
We obtain
/10 0
oW + 0 00 |O,W=HW)+®o,
0 0yu
(4.2)
W(0,2)=0,z eRT,
Wl(t70) — Wg(t,O) :O,tERJ'_.
We have H(W)=P~1h(PW) so H is globally lipschitz
K >0,|0wH|< K. (4.3)

In addition, ® is given by

Opw
d=P | —Ow
HOzw
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We denote by T™* the lifespan of the solution W for system (4.2) and we assume that
T* <+4o0. We will prove that [|[W/| e (o, 7+]xr+) <+00 so that by (2.3) we obtain a
contradiction.

L? estimate

We take the inner product of the first equation in (4.2) by W and we obtain

1d

R+ R+t

Using the third equation in (4.2) and (4.3) we obtain

1d

§£HW”%2(R+)éc(l"_”W”zL?(]RJr))' (4.4)

H! estimate
We derivate system (4.2) with respect to ¢ and with similar computations we
obtain that

SN0 By < OO+ O s (15)
By Gronwall lemma we obtain from (4.4) and (4.5) that
WL 0,712 ®+)) H1OW [ Loo (0,771 L2 (R +)) < C(T7). (4.6)
So using the first equation in (4.2) we have
102 W1l| oo jo,7+);L2R+)) + 102 W]l Loo (j0,7+); L2 (R ) S C(T™), (4.7)
In addition we have
8,0, W — Oy, Ho (W0, Wa = H(t,z),
where
H = 0w, Ho(W)0, W1 + 0w, Hy(W )0, W3+ 0, Ps.
By (4.3) and (4.7) we have
[HN Lo (0,722 +)) < C(T),

and since

t t
&EWQ(t,x):/ (exp/ 8W2H2(W(T,(E))d7') H(s,z)ds,
0 s
we conclude that
10:Wa |l oo (0, 7+); 2 R+ y) < C(T).

By Sobolev injections we can apply the continuation principle and we conclude
the proof of Theorem 2.2.
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5. Proof of theorem 2.3

We denote by T* the lifespan of the smooth solution u® = (u,u9) of system (1.13)-

(1.14)-(1.15). Since the boundary data ¢ belongs to H3(R) we have
il eCO([0,T*[; H3>*(RT)),i=0,1,2,3.
We define the profile w® by
w’ = (u”,0%) = ((u},u3),p(uf)).
We denote

y(t,z)=p' (ud(t,x)),t <T*, x>0,

= sup v(t,z),
(t,x)€[0,T*[ xR+

and by (2.2), I' <4o00. We fix y such that

(5.1)

(5.5)

u>T.
We will construct the solution w® of the relaxation problem (1.10)-(1.11)-(1.12)
writing
0
w'=wl4e| 0 | 4er,
ol
where

vt = =00 + poyul,

so that r satisfies the following system

8157’1 — 81-7“2 = 0,

_ 1
Oyro — Opr3 = 0¥ y

1
Oyr3 — uOyre = g(p'(u?)rl —r3) +F(t,a?,5r1)(T1)2 — ot

for (t,z)€[0,T*[xR™T, with the initial-boundary conditions
r(0,z)=0,x eRT,
ra(t,0)=0,0 <t <T*.

The function F' is defined by

Ft2,6) = / (1—5)p" (u(t,2) + 5€)ds.

(5.8)

(5.10)
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First step: we want to construct a suitable symmetrization for system (5.8). We
denote by A and B the matrices

0-1 0 0 00
A=[00 —-1],B= 0 00
0—up 0O ~v(t,x) 0 —1

With this object, we will use the conservative-dissipative form introduced in [2]. We
first need a symmetric positive definite matrix Ay such that AA, is a symmetric
matrix, and such that

00 0
BAo=|00 0 | with d>0.
00—d

Following [7], such a matrix can be constructed using the entropic variables. For the
special case of the Suliciu model we have

(y(t,x)"t 01 Ap11 Ao
Ao(t,z)= 0 10]|=
1 0p Ap,21 Ap22
We obtain
0 -1 0 00 O
Adg=| -1 0 —pu|,Bag=[00 0o |,
0 —u O 00~vy—u

and we remark that with (5.5), we have p—~ > p—I">0. Finally we can apply Propo-
sition 2.7 in [2]: the conservative-dissipative variables p is defined by p= P(¢,z)r with

(A()’ll)i% 0 ")/% 0 0
P(t,z)= - 0 10
_ 14— _ 1 _1 _1
((Ag1)22) 72 (A5 )21 (A5 1)22)2 (=772 0 (p—7)"2
In these variables, system (5.8) is equivalent to
1 0 0
€ 2
P3 F1(t,x,€p1)p1
for (t,z)€[0,T*[xR™", with the initial-boundary conditions
p(0,2) =0 for z€RT and ps(t,0) =0 for t € [0,T*]. (5.12)

The matrix A, = PAP~! is symmetric
0 —n2 0
Aita)=| =2 0 —(p—)
0 —(u—7)% 0
The matrix L is given by L(t,2)= Po;P~1+ PAJ,P~!. In addition, F; and H are
given by

N

Fl(tvxag):’7_1(M_7)_%F(t7$77_%§)7 (513)
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0
H(t,x)= Oyt
—(p—7)"20!

From (5.1) we have
Oy eCO([0,T*[; H* (R")),i=0,1,2,3, (5.14)
and using (2.2) there exists o> 0 such that
y(t,z)>a for (t,x) €0, T*[xR*. (5.15)
Using (5.14), (5.15) and (5.5) we have

AlyatAhawAl ECO([OaT*[aLOO(R+))a (516)

L,0;L,0,LeC’([0,T*[; L= (R™)). (5.17)
Using (5.1) and (5.7) we have
OiH eCO([0,T*[; H' " (R™)),i=0,1. (5.18)

We recall that by (5.10) and (5.13) we have

=

1
Fy(t,a,&) ="' (t,2)(p—~(t,x))~ /O(1*S)p”(U‘f(t,stv’%(t,w)ﬁ)ds,

so, by (5.14), (5.15) and (5.5) we have
F1,0,F1,0,F1,0:Fy €CO([0,T*[; L (RT x [-1,1])). (5.19)

Now we fix T<T™ and we introduce T, defined by

1
Tszsup{t<T,||p||Lm<[o,t]xR+) < } (5.20)

We will prove that, for € small enough, 7. =T and that there exists K such that for
all € small enough,
ol Lo (jo,77: 11 ) + 10epll oo ([0, 7; 22 R+ )y < K- (5.21)

First, by variational methods, we obtain L2-estimates on p and d;p. To obtain
L?-estimates on 9,p we use the equations taking into account that the boundary
{x =0} is characteristic.

Second step: variational estimates We take the inner product of system
(5.11) by p and we obtain that

1d 1
**IIpI\QLZ(RﬂﬂL/ Alaxp-f)der/ Lp-pdx+*/ pgdw:/ Fy(t,z,ep1)pips
2dt R+ R+ € Jr+ R+

+/ H-pdzx.
R+
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Using (5.12) we obtain that
1
Alazp'pdx:—f/ (0, A1) p- pdx.
R+ 2 Jr+

With the estimates (5.16),.., (5.19) and since €|p| <1 on [0,7.] x R, there exists
a constant C' >0 such that, for t <7,

1d

1
5@”0”%2(%) + g/w p3dx <C(1+||pll7e ey + o1l Lo @yl o1l L2 @) o3l L2 ) -

Therefore we obtain that for ¢t <T,
d . o 1 2 2 2 2
$||P|\L2(R+)+g R+p3dx§0(1+HpHL2(R+)+‘€||p1HL°°(]R+)||p1||L2(R+))' (5.22)

We can derivate (5.11)-(5.12) with respect to ¢

0 0
1
8t3tp+A18x8tp+L3tp+g 0 :—atAlaxp—atLp—i— 0
atp3 3tF1(t,:c,€p1),0%
0
+ 0 + 0 +0:H.
£0c Fy(t,x,ep1)0p1p7 2F\(t,x,ep1)p10p1

With the same arguments as before we obtain that there exists C'>0 such that for
<T.,

d 1
%HatpH%?(Rﬂ T2 /]R+ (Dip3)*de <C(L+[lpll7e ey + 10epl T2 ey + 1020172 Rt )

+Ce||p1l|Foe ey (101 172y + 1060117 2m)))-
(5.23)
We define ¢ by

1

) = (101320, + 100D 22 ) (5.24)

so we obtain by (5.22) and (5.23) the L?-estimate: there exists C'>0 such that for
t<T,

L2+ %(Ilpslliz(m +0psll72(gr)) < C(L+((1)? (5.25)

dt 2 2 2
tellpillzoe ey ()" +1102p 2 r+))-

Third step: We now estimate 9,p using the equations

Oip1 —v%é’xpz +(Lp)1 =0,
ip2 =72 0upr = (=")2Oups+ (Lp)2 = Ha, (5.26)
Oeps — (—")20up2+ (Lp)s+ £t p3=Fi(t,z,ep1)p7 + Hs.

From the first equation in (5.26), and with (5.15) and (5.17) we have for ¢ € [0,7T]

||81p2||L2(]R+) <C. (5.27)
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Let us introduce g1 = py +772 (1 —~) 2 p3. From the second equation in (5.26) we have
Oup2 =72 0upr +72 00 (72 (p=7)%)p3 + (Lp)o = Ho,
so, by (5.15), (5.14), (5.17) and (5.18) we obtain that
102p1| 2Ry <C(1+4)). (5.28)

We cannot estimate d,p; or d.ps by the same method because the boundary
{x=0} is characteristic. We rewrite the third equation in (5.26)

1
Qups+_ps =72 (=) 7 (Depr + (Lp)1) — (Lp)s+ Fi(t,a,ep1)p? + Ha.

So eliminating p; we obtain

_ 1 1 1. . 1 1 -
py 16t,03+gp3:7 ()2 [0ep1 — 0 (v 2 (—7) %) ps] + My (t,2)pr + Ma(t,) pa
+M;3(t,x)ps+ Hz + Fy (t,z,ep1)p?, (5.29)

with p1=p1 —~~ 2 (u—~)2 ps.We derivate (5.29) with respect to 2 and we obtain the
equation satisfied by 0, p3

6
3t3xp3+7(ta$)axp3:ZTi (5.30)

i=1
with
1

T= p Ty (5

+2F; (tz,ep1)p1y 2 (H—7)? —Ma(t»x)) ;

_1 1 _1 1 _1 1
Y72 (=72 0u(v T (p—7)2) + 0 Fi(t,mepr)y 2 (n—7)7 Pt

_ 1 1 ~
Ty=p~ 'y (n—7)20:0:p1,

Ty=p~ 'y (81»(7*% (1=7)%)0up1 — Ou (v~ 1) Dips
~0u(YE (=) T (Y E (=) 7))
+ (0 M)+ (95 Ma)pa+ (9, Ma)ps )
Ts= p'~0,Hs,

Ty= p=y(M10,p1 + M20,p2),

Ts=pu 'y (8wF1 (t,z,ep1)pt — O F (t7$75p1)81(7_% (e —’Y)%)Pfﬂe,
—2F (t,2,6p1) 05 (7% (ufv)%)plpz) ,

To= 'y (€0 Fy(t, 2,ep1) pi0upr +2F (t,3,6p1) pr0sp1) -
For t€[0,T%], using (5.5), (5.14) (5.15) and (5.19) we obtain that

pty
g

T(t,(ﬂ)*

‘ <C+Collprlpoe@sy-
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We define T} <T. by

1
7! :max{t<Ts, o1l o) < 30— } (5.31)

so there exists 71 >0 and 75 >0 such that

VtSTEI,Vx>O7%§T(t,x)§%. (5.32)
We solve equation (5.30) by Duhamel formula
6
Oups=» T, (5.33)
i=1

with
’Z}(t,a:)z/o exp(—/ 7(0,2)do)T;(s,x)ds.

We define ¥ by

W(t) =sup(s), (5.34)
(0,¢]

where v is given by (5.24). Integrating by parts in 7; we obtain
t ) ) t
Titar) = [ 1o (e b r(s.aesp(— [ (0,2)d0)0up(s,0)ds
0 s

t t
—/O eXp(—/ 7(0,2)do)ds (17 (=) %) (5,2) 001 (5,2)ds
R (=) 2 0a o (1,).
Using (5.32), (5.5), (5.14), (5.15) and (5.28) we have

t
Tt o < [ exp(=(¢=s)Cw()+ D1+ Z)ds+ Clu(0)+ 1),
0
and we obtain that
VE<T!, | Tillpe@me) < C(L+T(t)). (5.35)

Using (5.5) (5.14) (5.15) (5.24) (5.34) and also (5.18) for T5 and (5.27) and (5.28) for
T4, we obtain

VE<T0 12l o) | sl o) + 1 Tall L2y < Ce(14 2 (1)), (5.36)
For the nonlinear terms T5 and Ts we use in addition (5.19) (5.20) and we obtain
VE<T, | Tl L2ty + 1 Toll 2@y <C(L+T(1)). (5.37)

Therefore we obtain the following estimation for d,.p using (5.27) (5.28) (5.33) (5.35)
(5.36) (5.37)

VST [ 0up] 2e) < C(L+ (1), (5.38)
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so we have
VE<T, ||pll g rt) < Cr (14 ¥(2)). (5.39)

Fourth step: By a comparison method we estimate W. For t <TJ2, integrating
(5.25) from 0 to ¢, using (5.38) and (5.39) we obtain that

(\I!(t))2§02/0 (1+(T(s)* +e(T(s))*)ds. (5.40)

We introduce the differential equation
yL=Co(14y.+ey?), y=(0) =0. (5.41)

There exists €9 >0 such that, for e <gg, the lifespan of y. is greater than T'. So we
have

Ve<eg, Vi <T,ye(t) <yeo (1) <yeo (T) =Ch.
By comparison principle we deduce from (5.40) that
Ve <eo,VE<STL, (U(1))? < Cs,
and from (5.39),
Ve <eo, VE<TL [lpll ey < Cr(1++/Cs).

Let £1 >0 such that ¢; <gg such that

1
2006.

Ve<e,Ci(14++/C3) <

So, by (5.20) and (5.31), we have for e<e;, T} =T.=T and we conclude the proof
by the estimate

K >0,Ve<er, |pllLee o, 11,51 ®+)) + 10epl Los (0,702 (R +)) S K.

6. Annex
Using the method in W.A. Yong [22] we show the convergence result for the
Cauchy problem

&€ &€
6{&1 - 8IU/2 = O,

for (t,z) eR* xR with the smooth initial data
w®(0,2) =wo(z) = (up(x),vo(x)) for x €R. (6.2)
Let us introduce u® the smooth solution of the Cauchy problem

0 0__
Oy — Opuy =0,

atug — (%p(u(l)) =0,
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with the initial data
u®(0,2) =uo (). (6.4)
As in Tzavaras [21] we assume that there exists v>0 and I' >0 such that
VEER, v<p'(§) <T <y, (6.5)
so the problem (6.1)-(6.2) admits a global solution w® = (u®,v°) such that
w® €CORY; H(R))NCH(RT; H~H(R)).
We will prove the following convergence theorem.

THEOREM 6.1. Under assumption (6.5), if wo € H*(R) with s>2, then there exists
T1 >0 such that when € tends to zero, u® tends to u® in L>°([0,T1]; H*(R)).

REMARK 6.1. It would be possible to relax hypothesis (6.5) as in Theorem 2.8; in this
case, the lifespan of we® is uniformly greater that T .

REMARK 6.2. In fact it appears a boundary layer in time which affects only the third
component of we.

Sketch of the proof

First step: the stability assumption in [22] are satisfied. As in [21] and [7], we
consider the strictly convex entropy function for the system (6.1)

1, ) TR
S(uhuQ,v):iuﬁulv—gul— h™(y)dy,
0

where h(§)=p(§) — u& which is strictly decreasing by (6.5). So Ag(w)=£&"(w) is a
symmetrizer for the system. Denoting a = (h™!)' (v — pu1) we obtain

—p—p2a 01+ pa
Ag(w)= 0 10 ;
14+pa 0 —a

and the system (6.1) is equivalent to the quasilinear symmetric system

00 O 1 14 pa
Ag(w)diw+ | 0 0 —1 | Opw=—(p(u1)—v) 0 . (6.6)
0-10 € —a
We denote
0 1 00
Qw)= 0 and P(w)= 0 10/,
p(ur) —v —p'(u1) 01
and we obtain
000
P(w)Q'(w)P " (w)=[00 0 |. (6.7)

00 -1
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On the equilibrium manifold V ={v=p(u1)}, we have

9 (' (u1))* 0 —p' (u1)
Ao(w)Q’(w)+Q’(w)A0(w)=m ,(z ) 8 (1) . (6.8)
—p (u1

Using (6.6), (6.7) and (6.8) we obtain the stability conditions in [22].

Second step: we use Theorems 6.1 and 6.2 in [22]. We introduce the interior

profile w® = ((u,u,),p(u})) and the boundary layer term I°=I° —w°(0,z) where I°
is the solution of

dlo

> =Q), I(r=0)=wo(x).

We have I9=19=0 and

Ig(’]’,m) = (UO(m) _p(ulvo))eiTa

and we obtain

w® (t,x) :wo(t,a:)—l—lo(ga:)—l—(’)(a),

so we conclude the proof of Theorem 6.1.

REMARK 6.3. If wg belongs to the equilibrium manifold then the order zero boundary
layer term vanishes.

REMARK 6.4. In fact using more precisely [22] and the appendiz of [3] we can prove
that T, can be arbitrarily close to the lifespan of u® as in Theorem 2.3.

REMARK 6.5. In this annex the matriz P introduced in [22] plays an analogous role
as the matriz P in section 5.

[10]
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