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BOUNDARY VALUE PROBLEM FOR THE THREE DIMENSIONAL
TIME PERIODIC VLASOV-MAXWELL SYSTEM*

M. BOSTANT

Abstract. In this work we study the existence of time periodic weak solution for the three
dimensional Vlasov-Maxwell system with boundary conditions. The main idea consists of using the
mass, momentum and energy conservation laws which allow us to obtain a priori estimates in the case
of a star-shaped bounded spatial domain. We start by constructing time periodic smooth solutions
for a regularized system. The existence for the Vlasov-Maxwell system follows by weak stability
under uniform estimates. These results apply for both classical and relativistic cases and for systems
with several species of particles.
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1. Introduction

The coupled nonlinear system given by the Vlasov-Maxwell equations is a classical
model in the kinetic theory of plasma. The main assumption underlying the model is
that collisions are so rare that they may be neglected.

Consider €2 an open bounded subset of R3, with boundary 92 regular. We intro-
duce the notations ¥ =0 x Rg’) and:

Ei:{(x,p)EGQxR;H + (v(p)-n(x)) >0}, (1.1)

where n(z) is the unit outward normal to 9 at « and v(p) is the velocity associated
to some energy function €(p) by v(p) = V,E(p), p€R3. The functions to be considered
are:

5(13):‘%7 v(p)=%7 (1.2)

for the classical case and:

2 2\ p 2\
em=ma((1+155) 1) ow=2(1+55) T 0

for the relativistic case, where m is the mass of particles, ¢y is the light speed in
the vacuum. We denote by f(t,z,p) the particles distribution depending on the time
t, the position z € and the momentum peR3 and by (E(t,z), B(t,x)) the electro-
magnetic field depending on ¢ and x. If we note by F'(¢,z,p) =q(E(t,x) +v(p) A B(t,z))
the electro-magnetic force, the Vlasov problem is given by:

Of+v(p)-Vaof+F(t,z,p) - Vof =0, (t,z,p) ERy x XR;’), (1.4)

f(t,x,p)=g(t,z,p), (t,x,p) ERy x X7, (1.5)
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622 TIME PERIODIC SOLUTIONS FOR THE VLASOV-MAXWELL SYSTEM

where ¢ is the charge of particles and ¢ represents the distribution of the incoming
particles, which is a given T periodic function. Some other boundary conditions can
be considered as we will see later on. The problem (1.4),(1.5) is coupled with the
Maxwell equations:

(T t
O E — c2rot B:—](E’x), 8, B +rot E=0, div E = p(g’z), div B=0, (t,z) €R, x Q,
0 0
(1.6)
with the boundary condition:
n(x) NE(t,x)+con(z) A (n(z) AB(t,x)) =h(t,x), (t,z) ERy x 0Q, (1.7)

where 60 is the permittivity of the vacuum, p(¢,z) qu3 f(t,z,p)dp is the charge
density, j =q fRS f(t,z,p)v(p)dp is the current density and h is a given T periodic

function on the boundary Ry x 082 such that (n-h)|g,xo0=0. We introduce also the
permeability of the vacuum, pg, given by egpuocd =1.

When the magnetic field is neglected, the electric field derives from a potential
E=-V,® and we obtain the Vlasov-Poisson system:

6tf+v(p)va:f_qvw(bvpf:0? (t7x7p)ERt XQXRfﬂ
f(t,z.p)=g(t,z,p), (t,x,p) ERy x X7,

AP = Sﬁ (t,z) R, x Q, B(t,2) =po(t,x), (t,x) ERy x 99,
0
where g is the potential on the boundary R; x 9Q. This model can be derived from
the relativistic Vlasov-Maxwell system by letting ¢y — +00, see Degond [12] for the
case of smooth solutions and [9] for the case of weak solutions.

Various results were obtained for the free space Vlasov-Poisson system. Weak
solutions were constructed by Arseneev [1], Horst and Hunze [26]. The existence
of classical solutions has been studied by Ukai and Okabe [35], Horst [25], Batt [2],
Pfaffelmoser [31]. The existence of global classical solutions for the Vlasov-Poisson
equations with small initial data is a result of Bardos and Degond [5], see also Schaeffer
[33], [34]. A powerful method has been proposed by Lions and Perthame [30] in order
to study the propagation of the moments for the three dimensional Vlasov-Poisson
system. The existence of global weak solution for the Vlasov-Maxwell system in three
dimensions was obtained by DiPerna and Lions [14], one of the key points being
the compactness result of velocity averages (see also [21]). The global existence of a
strong solution is still an open problem. Results for the relativistic case were obtained
by Glassey and Schaeffer [17], [18], Glassey and Strauss [19], [20], Klainerman and
Staffilani [27], Bouchut, Golse and Pallard [10].

However, for applications like vacuum diodes, tube discharges, cold plasma, so-
lar wind, satellite ionization, thrusters, etc. boundary conditions have to be taken
into account. Results for the initial-boundary value problem were obtained by Ben
Abdallah [6] for the Vlasov-Poisson system in three dimensions and Guo [23] for the
Vlasov-Maxwell system. Permanent regimes are particularly important. They are of
two types and they are modeled by stationary solutions or time periodic solutions for
boundary value problems. Another strong motivation to study such solutions is the
great difficulty to compute it numerically. The stationary problem for the Vlasov-
Poisson equations was studied by Greengard and Raviart [22] in one dimension and
by Poupaud [32] in three dimensions for the Vlasov-Maxwell system. An asymptotic
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analysis of the Vlasov-Poisson system was done by Degond and Raviart [13] in the
case of the plane diode. The regularity of the solutions for the Vlasov-Maxwell sys-
tem has been studied by Guo [24]. Results for the one dimensional time periodic case
can be found in [8] for the Vlasov-Poisson system and in [7] for the Vlasov-Maxwell
system.

The aim of this paper is to prove the existence of time T periodic solution for the
three dimensional Vlasov-Maxwell system (1.4),(1.5), (1.6),(1.7) when the boundary
conditions are supposed T' periodic, with T'> 0 fixed. The techniques introduced for
the analysis of the one dimensional case cannot be applied in the three dimensional
case. Indeed, the proof in [7] relies on the fact that in one dimension the solution of
the Maxwell equations can be computed explicitly, where in three dimensions such a
formula is not available. Our main result is the following theorem.

THEOREM 1.1. Assume that € is bounded, with 02 smooth and strictly star-shaped,
gEL® Ry xX7),h are T periodic such that >0, (n-h)|r,xo0=0 and:

Wo: _/ /_ 2))|(1+E(p))g (t,x,p)dtdoder/OT/m|h(t,x)|2dtda<+oo.

Then there is a T periodic weak solution (f>0,E,B)eL™(R;xQxR?)x
L2 (Ry; L2(Q)%)? for the Viasov-Mazwell system (classical or relativistic case):

loc

O:f+0v(p)-Vaf +q(E(t,z) +v(p) AB(t,2))-Vpf =0, (t,x,p) ER; x XX Ry,

o E —corotB——E— OB+ 1ot E=0, dwE—ﬁ div B=0, (t,z)eR; xQ,

50

f(t,%p):g(t w,p) ( )ERtxE
nAE(t,x)+conA(nAB(t,x))=h(t,z), (t,z) Ry x Q.

Moreover the continuity equation is satisfied Oip+div j=0 in D'(]0,T[x), there
are trace functions y*f>0, |71 flleo <||9llocs normal and tangential traces (n-E,n-
B),(nNE,nAB) and for some constant C depending on m,eq, 19,2 we have:

oos supsen [, [ €M (saxp)dwipt | (ol B+ B0 do)

//§3+ (1+5( )Y +f(t7$,p)dtda'dp

/ {eo[(n-E)? +|n/\E|2]+i[(n-B)2+|n/\B|2]}dtdc7
0 Joq Ho
< C-W,.

As in [14] we construct a T' periodic weak solution as weak limit of solutions for a reg-
ularized system. One of the crucial points consists of finding uniform a priori bounds
for the total (kinetic and electro-magnetic) energy by using the physical conservation
laws. As usual we prove the existence of a solution for the regularized problem by the
fixed point method. By the conservation laws of the mass and the energy we obtain:



624 TIME PERIODIC SOLUTIONS FOR THE VLASOV-MAXWELL SYSTEM

d

d
dt /QRgf(t,x,p)(1+5(p))da:dp+Zdt (1E(t,2)? +&|B(t,7)|?) do

+ / (v(p) - n(@))* £ (t,2,9) (1+E(p)) dodp
>+

+ 20 [ (I AE2+EnAB|?) do
2 Jaa

€0Co

= / [(v(p)-n(x))|g(t,x,p)(1+E(p))dodp —l——Q |h(t,x)\2da, teR,.
= a0
(1.8)

If for the initial-boundary value problems the equation (1.8) provides immediately
bounds for the total energy after integration on [0,t], ¢ >0, the situation is different
for the time periodic case, since in this case initial data are not available. Nevertheless,
after integration of (1.8) over a period we obtain:

//E+ v f(t,2,p)(1+E(p)) dtdodp
EOCO/ /aQ (InA B> +cinA B|?) dtdo
/ / . 2)lg(t,z.p)(1+€ (p)) dtdodp-+ =5 /O /3 Ih(e,2) dedo

(1.9)

In order to estimate the total energy we use also the momentum conservation law. We
suppose that 02 is strictly star-shaped with respect to some point xg €2 i.e., Ir>0
such that (n(x)-(x—x0)) >r, V& €909, and we multiply the Vlasov equation by the
test function (p- (z—x¢)):

%/ﬂ - f(t,x,p)(p-(x—fto))dmdp—l—/(v(p).n(x))'yf(t7x7p)(p.(x_xo))dgdp

P

—[ [ ftanw) pdedps [ [ aftam)Eom)nB)- - o) ddp
Q2 /RS QJRS
(1.10)

In the previous equality «vf denotes the trace of f on Ry x X (in fact vf=~Tf on
Ry x X" and vf =g on R; X X7). By using the Maxwell equations the last integral in
the above equation can be written:

// ft,x,p) E—I—v(p)/\B)-(a:—xo)dxdp:/(pE—Fj/\B)-(a:—xo)dx
QJRr3 Q
:50/ [(Ediv E—E Arot E)+ci(Bdiv B— BArot B)]-(z—x0)dx
Q
—Eo/at(E/\B)~(x—xo)dx. (1.11)
Q

We use also the identity (udiv uw—uArot u)izzgzlﬁ(uiuj) o 9_|y|?, 1<i<3

and the inequality (v(p)-p)>E(p), VpERE’). After integration by parts and direct
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computations the equations (1.10), (1.11) yield:

// & dtdxdp+—// (|E|> +c2|B|?) dtdx
R3

5OT/ / n-E)2+c(n-By)? dtdo
o
<R//| z))|- Iplvfdtdader—// [[nAE|?+c|nAB|?| dtdo

. -n 62 n- |n g .
wR/O /mnm E)|-[nAE|+|(n- B)|- [nA Bl dtdo, (1.12)

where R=sup,cyq|r—z0|. The estimate (1.12) together with (1.9) clearly give the
desired bounds. There is another important point to be clarified: in the above com-
putations we used the divergence equations div F = %, div B=0. In the case of the
initial value problem these equations hold true as soon as they are verified by the
initial data. In the time periodic case the idea is to regularize the Vlasov-Maxwell
equations and to use the time periodicity. Indeed we consider T periodic solutions for
the perturbed equations:

af+0if+v(p)-Vof +q(E+v(p)AB) -V, f=0, (t,z,p) ERy x QX R,

1
aE+0,E —c3rot B:f;j(t,x), aB+0:B+rot E=0, (t,x) e Ry x £,
0

where o >0 is a small parameter. Note that the continuity equation is in this case
ap+0p+div j=0. As usual, by taking the divergence in the perturbed Maxwell
equations we find (a+0;)(div £E—£)=0, (a+09;)div B=0 and by time periodicity
we deduce that div E = é, div B=0. Once we have obtained uniform estimates for the
total energy of the solutions for the regularized Vlasov-Maxwell system, the existence
of the T periodic weak solution for the non perturbed Vlasov-Maxwell system follows
easily by weak stability results (cf. [14]).

The content of this paper is organized as follows: first we recall some basic defini-
tions and results concerning the Vlasov problem. In the next section we prove general
existence and uniqueness results of the time periodic solution for evolution equations
with time periodic source terms. In particular, existence and uniqueness results for
the regularized Maxwell equations are obtained in Section 4. In section 5 we prove the
existence for the regularized Vlasov-Maxwell system by using a fixed point technique.
In the next section we obtain the a priori estimates by using the conservation laws
of the mass, momentum and energy. In section 7 we justify the passing to the limit
for the sequence of regularized solutions. We end with some remarks concerning the
system with specular a boundary condition.

2. The Vlasov equation

The Vlasov equation describes the evolution of a population of charged particles
under the action of the electro-magnetic force. In this section we suppose that the
electro-magnetic field is a given T periodic function (E, B). The time periodic Vlasov
problem is given by:

O f+v(p) Vo f+F(t,z,p)-Vpof=0, (t,z,p) ERy xQ xRi, (2.1)

f(taxvp):g(taxvp)v (t#cap)GRtXEi' (22)
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By taking into account that V(. ) - (v(p), F(t,2,p)) =0, the equation (2.1) can be
written also:

Of+Va (W) )+ V- (F(t,x,p)f)=0, (t,z,p) ERy x QxR

Since there is no uniqueness for the Vlasov problem (2.1),(2.2) (because the distribu-
tion function can take arbitrary constant values on the characteristics which remain
in the domain), it is convenient to consider also the perturbed problem:

af+0uf+v(p) Vo f +F(t,a,p)-Vyf=0, (t,z,p) ERy x A xRS, (2.3)

with the boundary condition (2.2), where o> 0 is fixed. We introduce the definitions
of weak/mild solution for the perturbed Vlasov problem:

DEFINITION 2.1. Assume that E,B¢€ L®(R; x Q)? and (v(p)-n(x))g€ L}, (Ryx X7)

loc

are T periodic. We say that f€ L} (R;x fo,) is a T periodic weak solution for

loc

the perturbed Vlasov problem (2.3),(2.2) iff f is T periodic and:
T
| [ e o) Vo= Fltan)- Vo
0 P

:—/0 /7(1}(?)-n(gc))g(t,:ap)go(tm,p)dtdodp, (2.4)

for all test functions which belong to:

To={pC' (R x AxR3)|TR>0: 0= 1{ <R}, Plr,xz+ =0,0(-+T) =}

REMARK 2.2. In the above definition we can assume that E, B are only in
L#(]0,T[xQ)? by requiring more regularity on f, namely fe L, (Ry x 2 x R3), where
s is the conjugate exponent of r.

Suppose now that E,B are T periodic and belong to L>®(R;;W1>°(Q))3. In
this case we can define the notion of solution by characteristics or mild solution.

First of all let us introduce the characteristics: for (t,z,p) € Ry x Q x Rg we denote by
(X (s),P(s))=(X(s;t,x,p),P(s;t,x,p)) the unique solution of the system:

dX
df = :F(S,X(S;t,$,p),P(S;t,$,p)), Sin(t>33,p) S S S sout(trxap)a
s
(2.5)
with the conditions X (s=t;t,z,p) =z, P(s=t;t,x,p) =p. Here s;,,50ut represent the

incoming, respectively outgoing time given by:

dP
U(P(S,t,l‘,p)), E

sin(t,z,p) =sup{s <t| X (s;t,z,p) € 90},

Sout(t,x,p) =inf{s >¢| X (s;t,x,p) € IQ}.
By using the time periodicity of the electro-magnetic field we check easily that
Sin(t+T,2,0) = 8in(t,2,p) + T, Sout(t+T,2,p) = Sout(t,2,0) + T, (2.6)
and:

X(s+T;t+T,x,p)=X(s;t,x,p), P(s+T;t+T,xz,p) = P(s;t,z,p), (2.7)
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for all (,2,p) €Ry X A X R, si (t,2,p) <5 < S0yt (t,2,p). The mild formulation follows
formally by solving:

omp—atgo—v(p) VI@_F(ul‘ap) -Vp(pzw(t,l‘,p>, (t,.’l?,p) ERt xQ XR?),

with the boundary condition ¢|g,xs+=0. By integration along the characteristic
curves we obtain:

5ouf(t I,p)
¢ (t,z,p) = / e~ (s, X (s3t,2,p), P(sit,a,p))ds,
t

and we define the mild solution by:

DEFINITION 2.3. Assume that E,B€L>®(Ry;Wh*°(Q))2 and (v(p)-n(x))ge
L, (RyxX7) are T periodic, «>0. We say that fe L, (R; x QxR2) is a T pe-

riodic mild solution for the perturbed Vlasov problem (2.3),(2.2) iff f is T periodic
and:

/ / ft,z,p)(t,x,p)dtdedp = — / / )9(t,x,p)py,(t,z,p)dtdodp,
R3 -

(2.8)
for all test functions which belong to:

={ e CO(Ry x AxR2)|IR>0:0=1p-Lypi<py, ¥(-+T) =1}

For a=0 one gets the definitions of the weak /mild solution for the Vlasov problem
(2.1),(2.2). The existence of the T periodic mild solution is a standard result and
follows by change of variables along characteristics (see also the Remark 2.6).

PROPOSITION 2.4. Assume that E,B € L>®(Ry;Wh>(Q))? and g€ L= (R, x £7) are
T periodic, «>0. Then the perturbed Viasov problem (2.3),(2.2) has a unique T
periodic mild solution f € L>°(R; x QxR3), verifying || flloc < ||glloo. Moreover, if g>
0 then f>0.

REMARK 2.5. It is easy to check that all T" periodic mild solutions are also T" periodic
weak solutions.

REMARK 2.6. It is well known that the mild solution of problem (2.3), (2.2) is given
by f(t,z,p)=e “t=sint@P) g(s, X (8401t 2,D), P(8in;t,2,p)) if 84 (t,2,p) > —00 and
f(t,z,p) =0 otherwise. Observe that when the electro-magnetic field and the bound-
ary data g are T periodic, the equalities (2.6), (2.7) imply immediately that f is T
periodic.

REMARK 2.7. Under the same hypothesis as in Proposition 2.4, the T" periodic mild
solution f has a trace yv* f € L>°(Ry; x XT) verifying the following Green formula:

/ / f(t,z,p)(ap—Orp—v(p)-Vap—F(t,x,p) Vpp)dtdedp
R3

//, )9(t,z,p)p(t,z,p)dtdodp

/ /2+ WY f(t,2,p)e(t,x,p)dtdodp, (2.9)
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for all o€ C'(R; x QxR?) with compact support in momentum and T periodic in
time. The trace 4" f is given by the same formula as in the Remark 2.6 and we have
17" flloo <llglloo- Moreover, if g >0 then 4t f>0.

ProproSITION 2.8. Under the same hypothesis as in Proposition 2.4, a T periodic
bounded weak solution of the perturbed Vlasov problem (2.3),(2.2) is unique and there-
fore coincides with the T periodic mild solution.

Proof. Assume that fe L (R, xQng) is a T periodic weak solution with
boundary data g=0. We have 0, f +v(p)-V,f+F(t,z,p)-Vpf=—af € L°(R, x Q2 x
R3) and therefore (cf. [4], [15]) we obtain:

%(&gfz—kv(p) NofP+F-V,f3)=—af?

After integration on ]0,T[xQ xR? we deduce that:

// RSf (t,z,p) dtdrdp+ = //E+ 2) (v 1)2(t,2,p) dtdodp =0,

or f=0,yTf=0. O
PROPOSITION 2 9. Under the same hypothesis as in Proposition 2.4, with g>0,
fo Js- I( (2))|g(t,z,p) dtdodp < +oo, the T periodic mild/weak solution belongs

to Ll(}O T[XQ xR3) and

/ / ft,z,p)dtdedp < — / / x))|g(t,x,p) dtdodp.
RS -

Proof. By applying the mild formulation with the test function ¥ (t,z,p) = xr(|p|)
where xr(u) = Xx(%), X € Ce(R), x(u) =1if |u| <1, x(u) =0if [u]| >2 and 0< x <1, we
deduce that 0< Lpf; < é and therefore:

T T

/// f1{|p|<R}dtdxdp§// fYdtdzdp

0 JQJRS a QJR3
// x))|g dtdodp,YR > 0.

The conclusion follows by letting R — 400 and by using the monotone convergence
theorem. ]

3. Time periodic evolution equations

We intend to solve the time periodic Maxwell equations by using standard theory
of maximal monotone operators. We present here some easy results of existence and
uniqueness for linear evolution equations with time periodic source terms. We need
the following lemma.

LEMMA 3.1. Assume that g€ L}
Then:

(R4;R) 4s a T periodic function and a>0 is fized.

loc

¢
/ e (=) g(s)ds
0

1
< (aT +4) lgllzrqo,rp), ¥t =>0.
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Proof. Consider G:[0,4+00[—R, G(t) :fot {g9(s)—(g)}ds, where (g):= %fOTg(t)
dt. Obviously G is T periodic and bounded |G (t)| <2-||g||z1qo,7p), ¥t >0. We have:

/te“”“‘s)g(S) ds:/te‘a“‘s) (9(s)—(g)) ds+ (g) -/te‘a(t‘s) ds

0 0 0
:/0 e*a(tfs)G'(s)ds—i-a*l(l—e*at)(g)
—G(t) +a~(1—e=)(g)—a /0 e~ (s) ds.

Finally we deduce that:

¢
/ e (=9 g(s)ds

0

t
<IG@)|+a~ ()| + |Gl - / ae=e (=) g
0

1
S(aT +4> gl Lo, zp- (3.1)

|
PROPOSITION 3.2. Assume that A:D(A)C H— H is a linear mazimal monotone
operator on a Hilbert space H, f € C1(Ry;H) is T periodic, a >0 fived. Then there is
a unique T periodic solution & € C(Ry; D(A))NCY(Ry; H) for the perturbed evolution
equation:

azx(t)+2'(t)+ Az(t) = f(t), t ER;. (3.2)

Moreover, we have the following estimates:
1 !/ 1 !/
€l zoe sy < { 7 T4 [ I F Lo, rpmys 1€ e @ < | oo +4 ) 1 L2 go -

Proof. Consider an arbitrary xo€ D(A) and denote by z(-;0,20)€
C([0,400[; D(A))NC*([0,4+00[; H) the unique solution of (3.2) with the initial con-
dition xy. We have:

a(z(t+T)—xz(t)+2'(t+T)—2'(t)+ Az(t+T) — Az(t) =0, t > 0.

After multiplication by x(t+T)—x(t), by using the monotonicity of A we obtain:

d
@{emllx(HT) —a(1)*} <0, t>0,

which implies that lz(t+T)—zt)| <e *z(T)—z(0)|| < e “*(2||zo|| +
Ifllzrqo, vy )- If we denote by (), the functions x,(t) =x(nT +1),0<t<T,n>0
we deduce that:

n+1(8) = 2n (Ol <e= T aol| + 1 fll 22 o)
< e @lwoll+ 1 fll 2 o),
and therefore x,, — ¢ in C([0,T]; H). We have

§(T)= lim z(T)= lim w(nT+T)= lim z,.1(0)=¢(0).

n—-+4oo n—-+4oo
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With the notation yp, (t) =z (t+h) —z(t), we have:
a(ya(t+T) = yn(t) +yp(t+T) —yh(t) + Ayn(t+T) — Ayn(t) =0, ¢ 2 0.

After multiplication by yj,(t+7T)—ys(t) we deduce as before that +|ys(t+T)—
Yn(t)|| e L|lyn(T) =y (0)[|, h>0,¢>0 and by passing h\,0 we obtain:

' (t+T) =2’ ()| <e™*[|2"(T) —2"(0) [ < e™* Q2l|2"(O) | + | f | 22 o, 75

In particular @], (t) — a7, (¢)]| <e™ T (2[|2" (0) |+ || /| L2 o, 1)) and therefore z], —
n in C([0,T);H). Now, by taking into account that A is closed and [z,(t),f(t)—
ax, (t) —z, ()] € Graph(A), 0 <t <T,n>0 we find by passing to the limit for n — 400
that [£(2), f(t) —a&(t) —n(t)] € Graph(A),0<t<T or £(t) € D(A) and a&(t)+n(t)+
AE(t)=f(t),0<t<T. It is easy to check that n=¢" and thus £ € C([0,T];D(A))N
C1([0,T);H) is a T periodic solution for (3.2). In order to estimate ¢ observe that:

LDy @2 < 1F O 2], t20,

alla(®)+ 5

which implies by using the Bellman lemma that:

t
lz@)l < e z(0)]] +/0 e £ ()l ds.

From the Lemma 31 we deduce that |z, (t)|| <e T+ ||z0] +

(ar +4) 1 ller oy, or [I€llp=eymn < (Gp+ 4 fllorgorpm-  In order to esti-

mate & we write ayy(t) 4y}, () +Ayn(t) = f(t+h)— f(t) and as before we deduce
that for h>0,t>0 :

t

IOl <= Ll )]+ [ e (s 1) =1 (5) .

By passing to the limit for A\, 0 one gets:

t

2" @)l < e[l (0)] +/0 eI f ()] ds,

and thus by using the Lemma 3.1 finally we find that [[£'(|zem,;m) < (ﬁ +
DI Nlzrqo,rizy- The uniqueness of the periodic solution follows easily by standard
arguments: consider £1,&; two periodic solutions. We have as before that:

d
04||€1(t)*§2(t)||2+%@H&(t)*52(t)||2+(14§1(t)*Afz(t)@(f)*fz(t)):o-
After integration on [0,7] one gets that oszT €1(t) —&(t)||?dt <0, or & =&s. 0

REMARK 3.3. The previous result holds for f & Wlicl (Ry; H), T periodic (see also [3],
p. 138).

Indeed, approximate f by f. in Wl’l(Rt;H) with f. € C1(Ry; H), T periodic and

loc
notice that the corresponding solutions (z.)co converge in C1(Ry; H).
REMARK 3.4. The equation ax(t)—z'(¢t)+Ax(t) = f(t),t €R; has also a unique T
periodic solution verifying the same estimates (take z(t) =y(T'—t),0 <t <T', where y
solves ay+y' + Ay = f, with f(t)=f(T —1),0<t<T).
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By transposition we can define the notion of T" periodic weak solution as follows:

DEFINITION 3.5. Assume that A: D(A) C H— H is a linear operator densely defined
on a Hilbert space, f€ L} (Ry;H), T periodic. We say that x € C(Ry;H) is a T

loc
periodic weak solution of (3.2) iff x is T periodic and:

/0 (1), asp(t) — o/ (1) + A% (t)) dt = / (F(8).o(8)) d,

for all g € C(Ry; D(A*))NCH(Ry; H), T periodic.
PROPOSITION 3.6. If A: D(A) C H— H is a linear maximal monotone operator on a
Hilbert space, f € L} _(Ry; H) is T periodic, >0 is fived, then there is a unique T peri-

loc

odic weak solution § € C(Ry; H) of (3.2) verifying ||€|| Lo v, ;) < (al—T + ) fllrqo,rpsm) -

Proof. Consider f,€CY(Ry;H), T periodic, such that lim, . . fn=/f in
LY(J0,T[;H) and denote by z, € C(Ry;;D(A))NCY(Ry; H) the corresponding strong
solution. By the Proposition 3.2 we have that ||z, — oo < (27 +4) [ fn —
Jmllz1qo,r:y and thus (z,,), converges to some 7' periodic function §€ C(Ry; H)
such that ||§HLOO(Rt;H) < (;7 +4) Hf”Ll(]O,T[;H)- If QDEC(Rt;D(A*))ﬂCI(Rt;H) is T
periodic, we have for all n:

T T
/ (at),plt) — @' (1) + A* (1)) di = / (Fu(®),0(0) dt.
0 0

By passing to the limit in respect to n we deduce that & is a T periodic weak solution.
In order to prove the uniqueness, consider x1,x> two T periodic weak solutions and
therefore we have:

T
/0 (@1(t) —22(t),00(t) — ¢/ (t) + A" (1)) dt =0, Yo € C(Ry; D(A*)) NC (Ry; H),
Tperiodic.

In particular we deduce that f0T<;v1(t) —x9(t),9(t))dt=0, Vg€ C*(Ry; H), T periodic
(take o the strong T periodic solution for ap(t) — ¢’ + A*p(t) =g(t), t €Ry). Tt follows
by density that fOT (w1 (t) —22(t),g(t)) dt =0, Vg e L}, (Ry;; H), T periodic, or x1 =1z.0

loc

4. The Maxwell equations
In this section we assume that the charge and current densities p=gq fR3 fdp, j=
P

q [gs v(p) fdp are given T periodic functions and we study the time periodic Maxwell
P
equations:

1
O E —cirot B=——/j(t,x), &;B+rot E=0, (t,r) ER; x Q. (4.1)
€0
On the boundary we impose the Silver-Miiller condition:
n(x) NE(t,z) 4+ con(x) A(n(x) AB(t,x)) =h(t,x), (t,2) € Ry x . (4.2)

In order to be consistent to the perturbed Vlasov problem we consider also the per-
turbed Maxwell equations:

1
aBE(t,r)+0FE —cirot B= —s—j(tw), aB(t,x)+ 0 B+rot E=0, (t,x) eRy xQ,
0
(4.3)
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where >0 is fixed. Let us introduce the standard Hilbert spaces H (rot ;Q), H(div ;)
defined by:

H(rot ;Q) ={ue L2(Q)" |rot we L2(Q)*}, H(div ;Q) = {ue L2(Q)"|div ue L2(Q)},

endowed with the norms:

1/2 . . 1/
(Hu”iz(ma + [|rot u|‘i2(ﬂ)3) , respectively (HU”iz(Q)S +||div u||ig(9)) .

It is well known that C*(€)? is dense in H(rot ;Q) and H(div ;) (see [16]). The
application ¢ € C1(Q)% = nAp e C1(9Q)? extends by continuity to a continuous linear

!
map nA: H(rot ;Q) — (Hl/Q(GQ)S) :H*1/2(8Q)3 such that:

/rot u-@dm—/u-rot ®dr = (RAUP) ir-1/2(00)% 117200
Q Q

for all functions u € H (rot ;Q), € H'(Q)®, p=d|yq € H1/2(8Q)3. On the other hand,

the application ¢ € C*(Q)? —n-pecC(0Q) extends by continuity to a continuous
linear map n-: H(div ;Q) — (Hl/Q((‘?Q))/ =H~/2(09) such that:

div u@dx—&—/ u-grad ®dr=(n-u,) g-1/2(80), H1/2(50)

Q Q

for all functions u € H (div ;Q), ® € H(Q), = B|oq € H/2(99). We note H = L2(0)°

1/2
endowed with the norm (|\E||2L?(Q)3 e \|B||§2(Q)3) and define A: D(A) CH—H

given by:

D(A)={(E,B)eH|rot E,rot BeL2(Q)° nAE,nABeL*09)°,
nAE+conA(nAB)|sq =0},

and:
A(E,B)=(—cirot B,rot E), Y(E,B)€ D(A).

We check by direct computations that for (E,B) € D(A) we have:
(A(E,B),(E,B»:—c%/{rot B-E—rot E-B}dx
Q
:co/ |n/\E|2dU:cg/ |nAB|*do > 0.
o9 o9

We have the following result (see [29]):
PROPOSITION 4.1. The operator A is maximal monotone.

PROPOSITION 4.2. The adjoint of the unbounded operator A is given by A*: D(A*) C
H —H where:

D(A*)={(E,B)€H|rot E,rot B€ L2(Q)° nAE,
n/\B€L2(8Q)3,n/\E—con/\(n/\B)|QQ:0},
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and:

A*(E,B)=(c3rot B,—rot E), ¥(E,B) € D(A*).

REMARK 4.3. By direct computation we check that for (F,B) € D(A*) we have:
W(EBLEB) = [ nnBPdozo,
o9

and as before we can prove that A* is maximal monotone (see also [11], p.113).
We consider also the equation:

d (0, 90) + A" (0 (1), 9(8)) = (f(£),9(t)), tERy. (4.4)

alplt).0(0) - 5

PROPOSITION 4.4. Assume that (f,g) € C'(Ry;H) is T periodic, a>0 fized. Then
there is a unique T periodic solution (p,1) € C(Ry; D(A*))NCH(Ry;H) for the equation
(4.4) which verifies the estimates:

1
Itlz=e0 = (7 +4) I s goion,

and:

1/2 3/2
Co/ ||n/\<P||L2(]0,T[;L2(aQ)3)ZCo/ ||n/\¢||L2(10,T[;L2(asz)3)

1
< (7 +4) I oo,

Proof. The existence and uniqueness of the T periodic solution as well as the
first estimate follow by the Proposition 3.2, the Remarks 4.3,3.4. By the other hand
observe that:

(o). A (.)) =0 /8 gt do=c /a v do

After integration on ]0,T, equation (4.4) gives:
T
@ o +eolln AP o issomy < | IUE-a@)lbe Nt o0l

1
<Nz goriro - D e=ce0 <  +4) E0IE i

and thus the second estimate follows. O

REMARK 4.5. If (f,g) € L}, .(R4;H) is T periodic, then the T periodic weak solution

loc
of the equation (4.4) verifies the same estimates as in the Proposition 4.4.

We can prove now the existence and uniqueness of the T periodic solution for the
perturbed Maxwell equations. Let us start with a result for strong solutions.

PROPOSITION 4.6. Assume that jeCl(Rt;Lz(Q)S) is T periodic and that there is
l~zeCl(Rt;Hl(Q)g)002(Rt;L2(Q)3) T periodic such that nAhlg,xoo="h. Then for



634 TIME PERIODIC SOLUTIONS FOR THE VLASOV-MAXWELL SYSTEM

a>0 fized there is a unique T periodic solution (E,B) € C(Ry; H(rot ;9)?)NCH(Ry;H)
for the perturbed Mazwell problem (4.3),(4.2). Moreover we have:

//{IE (t,2)|2+c2|B(t,z)[2} dtdz + 2> // (A B(L2) 2+ 2ln A B, 2) ) dido
__%/0 /Qj(t,x%E(t,x)dtdx—kEO/o /m|h(t,$)\2dtda, (4.5)

1/2 ,
1 1311 2 o, 722 (02
I, B)ll e ey <co o (+4) 12l 22 o, sz o)) + <04T+4> e .,

€0
(4.6)
and:
T T 1 T )
/0 (E(t), BW®)), (().9(6) )i =co / /mmw)hdtdo—% / /Q §(t.2) - (t, ) dd,
(4.7)

for all (f,g) € Li,.(Re;H), T periodic, where (p,v) is the T periodic weak solution for
(4.4).

Proof. In order to prove the uniqueness consider (E1, By ), (Fa, B2) two periodic so-
lutions and observe that, since n A (Ey — Ea) +con A (nA(By— Ba))|r,x00 =h—h=0,
then (E,B)=(E, — FE2,B1— B2) € C(Ry;; D(A))NCH(Ry;H) is also a T periodic solu-
tion for the perturbed evolution equation a(E,B)+ 4 (E,B)+A(E,B)=0. After
multiplication by (E,B) and integration on ]0,7[ we deduce that (E,B)=(0,0). In
order to prove the existence let us take (E1,B;) € C(Ry; D(A))NC(Ry;H) the unique
T periodic solution for:

d J
We verify that (E,B)=(E1+h,B;) is a T periodic solution for (4.3),(4.2) with (nA
E(t),nAB(t)) € Lz(aﬂ)ﬁ. By multiplying (4.3) by (E, B) and by using (4.2) we obtain:

- d- -
o(Ey,By) —ah——h,—rot h) € C*(Ry;H).

al|(E, B)||2+2dt||(E B)||2+Co/89(7l/\E) (nANE— h)daff—/ (t,z)-E(t,x)dx.

Using again (4.2) we find that (nAE)-(nAE—h)=2%(InAE[>+c&nAB|*—|h|?) and
therefore:

/{|E (t,2)[2+2| B(t,2)[2} dz + = /{|E (t,2)[+ 2| B(t,2)|”} da

2.dt
—|——/ {|n/\E(t,x)|2—|—c(2)|n/\B(t,x)|2}dcr

2 Jaa

1
= — [ j(t,2) Et,x)de+2 [ |h(t,2)] do. (4.8)

€0 Jo 2 Jaq

Finally, after integration on ]0,7'[ we deduce:

T T
a/ /{|E(t,x)|2+c§|B(t,x)|2}dtdx+%O/ / {InAE(t,x)|> +c2lnAB(t,z)*} dtdo
0 JQ 0 JoQ2

1 /T T
——//j(t,a:)~E(t,x)dtdx+c—O// |h(t,x)|? dtdo.
€0Jo Ja 2 Jo Joq
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For (f,9) € CY(Ry;H), T periodic, consider (¢,1) the unique T periodic solution of
(4.4). After multiplication by (¢,%) of the perturbed Maxwell equations and integra-
tion on 0,7 we find that:

T T
/0 (B(), B()). (F(£),9(t))) dt = / (E(t), 1))l (t) (1))

4
di

:00~ATAQ(nA¢)-h(t7x)dtda
—% /0 T/Q J(62)- o (t, ) dida.

By using Proposition 3.6 and Remark 4.5 we verify easily that the previous equality
holds for (f,g) € L}, (Ry;H), T periodic, with (p,1) the associated T periodic weak

solution. By the Proposition 4.4 we deduce that for all (f,g) € L}, .(Ry;H), T periodic,
we have:

(0, 9) + A" (p(t),9(t))) 2 dt

/0 (B(),B®). (f(t). ()

12( 1
<cyf <aT +4) 1/2||h||L2(]0,T[;L2(BQ)3)”(fvg)”Ll(]O,T[;H)

1 1 .
+ . (aT +4> 130 2r go, 7202y | (Fs9) | L1 go, 77 »

and thus the estimate (4.6) of our proposition follows. d

REMARK 4.7. In particular the solution constructed above verifies:

T T
/ /{E(t,m)~(oz<p—8t<p)—C%B(t,x)-rot gp}dtdac—c%// (nAB)-pdtdo
0 Ja 0 Joa

1 T
:f—/ /j~<pdtdx,
€o.Jo Ja
and:

T T
/ /{B(t,x)'(aw—atw)—i—E(t,x)mot 1/)}dtdw+// (nAE)-¢dtdo=0,
0Jo 0 JoQ

for all ¢, € CH(R; x Q)3, T periodic.
DEFINITION 4.8. Assume that j € L} (Rt;L2(Q)3) and he L? (Rt;LZ(aQ)3) are T

loc loc
periodic, (n-h)|r,xo0=0, a>0 fired. We say that (E,B)€C(Ry;H) is a T periodic
weak solution for the perturbed Mazwell problem (4.3), (4.2) iff (E,B) is T periodic

and:

| (0. B).ale0).0(0) = G 0) +A" (@O D)l

T
:CO// (nAp)-h(t,x)dtdo
0 Joan
1 (T
——/ /j(t,gc)~ap(t,gc)dtdac7
€0 Jo Ja
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for all (p,1) € C(Ry; D(A*))NCH(Ry;H), T periodic.
PROPOSITION 4.9. Assume that j€ L1 (Ry;L2(Q)°) and he L2, (Ry; L2(09Q)°) are T

loc loc
periodic, (n-h)|r,xo0=0. Then, for a>0 fized there is a unique T periodic weak so-

lution for the perturbed Mazwell problem (4.3),(4.2) verifying the equalities (4.5),(4.7)
and the estimate (4.6).

Proof. Consider jz € C1(Ry; L2()*) and hy € CF(Ry; HY(Q)*)NC2(Ry; L2(Q)%) T
periodic such that jp—j in Ll(]O,T[;LQ(Q)S) and nAhy—h in L2(}0,T[;L2(8Q)3).
Denote by (Ej,Bj) the corresponding T periodic strong solutions. By (4.6),(4.5)
we deduce that (Fy,Bi)— (E,B) in C(Ry;;H) and (nAEg,nABy) converges in
L2(10,T[;L2(09)°) to some function denoted (nAE,nAB). Finally, by passing to
the limit for k— +oo we deduce that (E,B) verifies (4.5),(4.7),(4.6). Observe also
that by the Remark 4.7 we have:

T T
/ /{Ek(t,x)~(ago—atga)—chk(t,x)mot gp}dtdx—cg/ / (nABy)-@dtdo
0Ja 0 Joq

1 T
=—f//jk-godtdx,
€oJo Ja

for all ¢ € C1(R; x Q)3, T periodic, and by passing to the limit for k — +oco we deduce
that:

T T
/ /{E(t,x)~(agaf(’9tcp)fc(2)B(t,x)~rot gp}dtd:vfcg/ / (nAB)-pdtdo
0Ja 0 JoQ

1 (7
z——/ /jwpdtdx.
€oJo Ja

Similarly we obtain that:

T T
//{B(t,x)-(aw—8t¢)+E(t,x)-rot w}dtdx+// (nAE) -1 dtdo =0,
0 JQ 0 JoQ

for all ¢ € C*(R; x Q). In order to prove the uniqueness, consider (Ey, B ),(Es, Bs)
two T periodic weak solutions and observe that (E7; —Fs,B1 —Bs) is a T periodic

weak solution corresponding to j =0, h=0. Thus, by Proposition 3.6 we obtain that
Fy—E;=0,B;—B>;=0. O

5. The perturbed Vlasov-Maxwell system

We study now the full perturbed Vlasov-Maxwell system (2.3), (2.2), (4.3), (4.2).
We prove the existence of a T' periodic solution by using the Schauder fixed point
theorem. Let us start by the relativistic case.

5.1. The relativistic case. In this case we have |[j(t,2)]<|q|-
Jgs l0@)|f(t,2,p) dp < col|p(t,x)], (t,2) € Ry x Q. We consider the set:
p

X={(E,B)e L*(Ri;H) | (E,B)(-+T)=(E,B)(")},

and define the application F: X — X, F(E,B)= (E,B) by:

(E.B)— (Ee.B.)— [ —j=q / o(p)f(t,2.p)dp— j. — (B, B),

R
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where:
(i) (E.,B:) is the convolution of (E,B) (the extension of (E,B) by 0 outside Q) by
Ce(t,2):

(Ee,Be)(t,x)=((E,B)*C.)(t,x)

T
= \/0 /Q(E(Svy)vB(Svy))Cs(t*S,lL'*y)deya(t,m)GRtXQ,

with

Co ) = Cor e (02) =G, () Corea (2) = [ £ e G (22T B2 (

CQECOO(Rg) C3ECOO( ) <27<3>0 SuppCQCB(Oal)a SUPPC3 1 fR3C2
Jp¢3(u)du=1 (note that (E.,B.) is also T periodic);

(#3) f is the T periodic mild solution of (2.3),(2.2) corresponding to the regular force
F.(t,x,p)=q(E:(t,x)+v(p) ABe(t,x)) (cf. Proposition 2.4);

(i74) je is the convolution of j (the extension of j by 0 outside Q) by Q/(t,x):
Ce(—t,—x):

T
jelt) = () (tx) = / / §(5,9)Ce (s — t,y— ) dsdy, (t,2) €Ry x ;

(iv) (E,B) is the T periodic weak solution of (4.3),(4.2) (see Proposition 4.9)
associated to the current density j..

Let us consider Moei=cy/” (G +4) il 2oz Lz(aﬂ))+(aT+4)7HC2”4L§/(]§3)
l f) fs I (2))lgdtdodp and  C={(E,B) € X |||(E,B)|| Lo (ki) < M }

Wthh is a convex compact subset in respect to the weak * topology of L (R:;H).
In order to apply the Schauder theorem, we need the following two propositions. We
postpone the details of proofs to the end of this section.

PROPOSITION 5.1. Assume that g,h are T periodic such that >0, (n-h)|r,xo0=0

and
/ / x))|g(t,z p)dtdadp—i—/ / h(t,z)|? dtdo < +oo.
- o0

Then F(X)CC.

PROPOSITION 5.2. Assume that g€ LRy xX7),h are T periodic, with g>0, (n-
h)|Rt><gQ =0 and

//7 z))|E(p)g(t, $>p)dtd0dp+/oT/69|h(t,x)2dtdo<—|—oo,

Then the application F is continuous in respect to the weak % topology of L™= (Ry;H).

The main result of this section is given in the following theorem.
THEOREM 5 3 Assume that g€ L®(RyxX7),h are T periodic, ¢g>0,

fo Js-I( (x))|E(p )gdtdadp—l—fOTfag|h\2dtda<—|—oo and  there is  he
Cl(R,Hl( ))ﬁCQ(Rt;LQ(Q)B) T periodic such that nAhlr,xo0=h. Then,
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for every a,e1,69>0 there is a T periodic solution for the perturbed relativistic
Vlasov-Mazwell system:

af +0uf +v(p) - Vaof +a(Ex() +v(p) A(B*C:)) - Vi f
=0, (t,z,p) ERy x QxR
i
aE+0,E—cirot B=— 8 , aB+0,B+rot E=0, (t,z) Ry x€Q, (5.1)
0

f(t,z,p)=g(t,x,p), (t,z,p) ERy x X~, nAE(t,x) +conA(nAB(t,z))
=h(t,x), (t,x) eRy x99,

with j =4 [z f(t,2,p)v(p) dp.
Moreover ||(E,B)| po®,1) < Mae, (E,B) € C(Ry; H(rot ;92)*)NCH(Ry;H) and:

//{|Etx)|2+co|B(t )2} dtda + 2 // {InAE(t,x)|> +calnAB(t,z)*} dtdo

_= = ' o
50/0 /Q(j*CE )(t,x)- E(t,x) dtdz + 5 /O /an|h(t7$)|2dtda.

(5.2)

Proof. By the Propositions 5.1,5.2, the fixed point theorem of Schauder applies
and thus we deduce the existence of a T periodic solution for the perturbed Vlasov-
Maxwell system. The other statements follow by the Proposition 4.6. ]

The following proposition establishes an a priori estimate for boundary terms.

PROPOSITION 5.4. Under the hypothesis of Theorem 5.3, consider (f,E,B) the T
periodic solution constructed above. Then we have:

T T
a// ‘f(t,x,p)(1+5(p))dtdxderoz/ /{50|E(t,x)|2+L|B(t,x)|2}dtdx
]RS

//z+ nWrIA+EW ))dtdgdp+*// {eolnNEP* + In/\B|2}dtda

//7 z))|g(1+E(p ))dtdadp+—/ /m (t,x \thdo' (5.3)

Proof Consider the test function ¢(t,2,p) =E(p)xr(|p|). By using the Green
formula (2.9) we have:

/ / K Y+ 1€ () xa(lp)) didodp+ / / (2))9€ (9)xr(p]) dtdodp

+a/() /Q Rgf(t’x’p)g(p)XR(lpDdtdxdp

- Bx Bx(.))- (el Lop
_/0 /Q/R%Qf((E Ce)+v(p) AN(B*(.)) (v(p)XR(|p|)+5(p)x(R) 7 |p|>dtdxdp.
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Observe that we can pass to the limit for R — +o0o in the last integral since Ex(. €
L>(Ry x Q) and

oo+ () - Bl<r (w250 Il )

<f o) (1+2- 1 1)
<f-co- (142X [loc) € L*(0,T[x 2 x RY).

By passing to the limit for R — +oc0 and by using the monotone convergence theorem
we deduce that:

/ /E+ )77 FE(p) dtdodp+ / / ) 2))g€ (p) dtdodp
+04/0/Q Rsff,’(p)dtdxdp

- /0 ' /Q /R 2 (EColo) drddy

T
:/ /E(t,x)~(j*§g/)(t,x)dtdx.
0 JQ

Similarly, by using the test function ¢(t,2,p)=xr(|p|) and by letting R— 400 we
obtain that:

// Rgfdtdxdp—i—// Yyt f dtdodp— //7 g dtdodp.

By combining with (5.2), finally one gets (5.3). d

REMARK 5.5. In particular the above computations imply

// fdtdxdp<// x))|g dtdodp,

R3 -

// £(p fdtda:dp<// 2)ERP )gdtdadp+—// ]2 dtdo.
RB - oQ

PROPOSITION 5.6. Under the hypothesis of Theorem 5.3 we have for a.e. t€R;:
1
o[ [ e st dedpsa [ flBta)+ o B} do
Q ]Rg
d
i [ [ rtan e dodpr5 G [ ol B P de
QJRS
+ [ 00 n@)(+E@)* Fltap) dodp
1
+ 2 At InAB(t2)2+ —|nAB(t,z)2} do
2 Jaa Ko

= [ 1@ ne)I 0 +E@atta ) dodp+ 250 [ ne)f do
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Proof. By using the Green formula (2.9) with the test function p(¢,x,p)=0(t)-
E(p)-xr(lpl), 0€CL(J0,T[) and by letting R— 400 we obtain:

/OTe(t) /Q/R3 afé(p) dzdpdt‘F/OTg(t)/E(”(P)‘n(f))g(p)vfdadpdt

= ! ! T ! 2)- (G (¢, z) dx
- / o'(1) / RECIEZE / 0(t) / () (F%CY)(t,2) da di (5.4)

or:

d
o [ stame@dps G [ | ftapem) s
QJrg QJr3

+ [ ) @) ft.p)E ) dodp
>+
:_/7(”(1’)'”(95))9(75733717)5(27) dUdp-l—/QE(t,x)-(j*CE‘/)(t,m) dz, a.e. tER;.
(5.5)

By combining (4.8) (written for the current density E*CE‘/) with (5.5) one gets
1
o [ ewitapdudpsa [ (olBEof + Bt} do
QJRr3 Q Ho
-ﬁ-i/ f(t,z,p)E(p) dxd —i—lg/{a |E(t x)\2+i|B(t z)]*} da
dtQ]R% y,P)e P pZdtQO ) Lo )

4w n@)Ewnt ) dodp+ S [ felnn Bl
o+ o0
+ LA BE2) ) do

Ho

= [ 16w n@)lewotapndodp+ S [ ptafds (50
- oN

Similarly we obtain for a.e. t € Ry:

oz/Q Rgf(t,x,p)dmder;i/Q Rgf(t’x’p)dxdp+/2(“(p)'"(x))Wf(t,x,p)dadp:O.

(5.7)
The conclusion follows by using the mass and energy balances (5.7), (5.6). 0

PROPOSITION 5.7. Under the hypothesis of the Theorem 5.3 we have ap+ Oyp+ div j =
0, in D'(]0,T[xQ), div E=(p%(Y)/eo, div B=0.

Proof.  Since oszTfQ ngfdtda:d)z)—&—fonE+ (v(p)-n(x))yTf dtdodp:fOTfE, |(v(p)-
n(z))|gdtdodp, we can consider as test function in the weak formulation all func-
tion ¢ € C1(]0,T[x€2). We have:

T
(ap+0p+div j,<p>=/ / flap(t,r) —0yp—v(p) - V) dtdrdp =0,
0 JQJRS



M. BOSTAN 641

or ap+0ip+div j=0in D'(]0,T[xQ) (in fact the above equality holds for all function
©eCL([0,T] xQ), T periodic). We verify easily that we have also a(ﬁ*@/)Jrat(ﬁ*
CE‘/) +div (E*CQ/) =01in D’(]0,T[x). Now, by taking the divergence of the perturbed
Maxwell equations we have:
. . 1 .. - v @ 1 —
adiv E4+0div E=——div (jx¢Y)=—(p*{Y)+—0:(p*CY),
€0 €0 €0

and thus:

« (div E— 1(,0*(!)) +0; <diV E— l(p*Ce\/)> =0,
€0 €0

and we deduce by periodicity that div E= %(p* 2 ) In the same manner we have
adiv B+ 0,div B =0 which implies that div B=0. O

We detail here the proofs of Propositions 5.1, 5.2.
Proof. (Proposition 5.1) By the estimate (4.6) we have:

o 12( 1

B B)llame.0 <) (3 +4) Vil guramconrs

1 1 .
ot 5“]6”L1(]0,T[;L2(Q)3)‘

On the other hand we have:
v 1 ,
3=l 1o, 7 L2(0)%) ||J( Mz 16l e dtZEHQHL? 131l L2 go, 701 (0%
2

But from the Proposition 2.9 we deduce that:
131l go.rzr ()2 < \CI|/ // lv(p)|f(t,z,p) dtdzdp

COM// x))|g(t,x,p) dtdodp,

and therefore H(E,B)HLOQ(R“H) <M. |

Proof. (Proposition 5.2) Consider (Ej,Bj) — (E,B) weakly x in L*(R;;H). De-
note by f, f the T periodic mild solutions of (2.3) corresponding to the regularized
forces Fy, . =q(Er*(+v(p) A (Br*(e)):

afk +atf7€ +U(p) va:fk +q(E/€*CE +’U(p) A (ER*CE)) . vpfk :Oa (t,l‘,p) ERt x £ x wa
respectively F. =q(Ex(.+v(p) A (Bx(.)):
af +0uf +v(p) Vo f +a(Ex(+v(p) A(B*(:)) -V f =0, (t,2,p) €Re x QX RY,

with the boundary conditions (2.2). Since (Ey, By) converges weakly % in L™ (Ry;H),
we have the pointwise convergence (Ej* (., By *(.)(t,2) — (E*CE,E*gs)(t x), (t,z) €
R; x Q, as k — +o00. Moreover, (Ejx(., B *(.) is bounded in L™= (R; x 2)¢ and by the
dominated convergence theorem we deduce that (Ej*(., Bp*(.) — (Ex(.,Bx(.) in
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L?(]0,T[xQ) as k goes to +oc0. Since (fx)r is bounded in L>°(R; x @ xR3), || fi|loo <

l9lloc, We can suppose (after extraction of a subsequence) that f — f weakly * in
L>°(R; x Q2 xR3). In order to prove that f is the T' periodic weak solution of (2.3),(2.2)

corresponding to the field (Ex(., Bx(.), take ¢ € 7,, and observe that:

/3 Ji(t,x,p) Vpgodp—\/sf(t,x,p) Ve dp, weakly in L2(}0,T[><Q),
RS RS

. fe(t,z,p)(VpeAv(p)) dp— . f(t,2,p)(Vpp Av(p)) dp, weakly in L2(]0,T[x Q).

By combining with the strong convergence of (Ej (., By *(.) it is easy to prove that
f is the T periodic weak solution for (2.3),(2.2) associated to the field (E*(., Bx(.).
In fact, by the uniqueness of the T periodic weak solution (see Proposition 2.8) we
deduce that f is the T' periodic mild solution f = f. Moreover we can prove that all
the sequence (fx)x converges to f weakly % in L™ (R; x £ x ]Rf’)). Now we want to pass
to the limit in the perturbed Maxwell equations. We need to establish the convergence

for the regularized current densities (jk*d )k By using the Green formula (2.9) with
the test function ¢(t,2,p)=|p|-xr(|p|) we find that:

/ // Te(t,z,p)|pIxr(Ip]) dtdxdp</ / x))|g(t,z,p)|plxr(|p|) dtdodp

E B Ipl |
+/0 /Q/qu,fk(t,%l?){(Ek*Cg)+U(p)/\(Bk*<€)}.|m( (p]) + (R)> dtdzdp.

By passing to the limit for R— +o0o we deduce that:

of / / fulta.p)- o didadp< | / )lg(t,2,p)- |pl didodp

IqI
) z))|g dtdodp- 3/2 G2l L2 ) | Bkl oo (roL2(0)5),  (5-8)

and therefore, since fonzf [(v(p) -n(x)|(14+E(p))g(t,z,p) dtdodp < +o0, we deduce
that fOTfQ Jgs fr - Ipl dtdzdp is bounded by some constant C, uniformly in k. Simi-

larly we obtain that fOTfQ Jgs f-Ipldtdzdp <C. We can prove that j, — j weakly in
P
LY(]0,T[xQ). Indeed, for ¢ € L>(]0,T[x) we have:

T T
jkgadtda:—/ /jgodtdx
Q Q

1{\p\<R} dtdl‘dp

]RS
+%///S(fﬁf)lv(p)l'\cpI-Ipldztd;z;dp

fk_ 1{|p\<R} dtdl‘dp

2C-co-lql-lllloo
R .

RS
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We take R large enough such that 2C - ¢g - |q| - ||¢]|oo/Rs < /2 and since fr, — f weakly
* in L°(Ry x 2 x R3) we have:

1)
q(fx—F)v(p)e-1qp|<rsy dtdzdp| < 7W€2/€5,

R3

which implies that ‘fOTfQ(jk—j)ap dtdx| <6, Vk>ks. We deduce the pointwise con-

vergence (j,xCY)(t,x)— (G%CY)(t,2),V(t,x) ER, x Q.  Moreover, since (j,*C)x
is bounded we have jpx(Y —jx¢Y in L2(J0,T[xQ)3. Consider now (p,)€
C(Ry, D(A*))NCY (R H) T periodic and note (f,9) =a(p,v) — g (,9) +A*(0,9).
We have:

T E % T
/<(Ek(t),Bk(t)),(f(t),g(t)»Hdt:CO// (nA0)-h(t.2) dtdo
’ 0 JoQ2
1 (T -
‘;/0/Q(Jk*é“!)(m)~<p(t,x)dtdx. (5.9)

Since H(Ek,ék)”Lw(R”H) <M, ., Vk we can suppose that, at least for a subsequence,
we have (Ej, By) — (e,b) weakly  in L°(Ry;H). By passing to the limit in (5.9) for
k — 400 one gets:

T T
/ (e(t). (1)), (f().9(t))) 2 dt=cq / / (nAg)-h(t,z)dido
0 0 JoQ

L G () ot 2 dtda
aO/O/Q(J () (tx)-p(t ) dtdz,

and thus (e,b) = (E' B)=F(FE,B) (the unique T periodic weak solution of (4.3), (4

2)
associated to jx(Y ). By the uniqueness of the T" periodic weak solution of (4.3),(4.2)
we deduce also that all the sequence F(Ey,By)=(Ey,By) converges to (E,B)=
F(E,B) weakly * in L°°(Ry;H), or the application F is continuous in respect to
the weak x topology of L™ (R;;H). |

5.2. The classical case. Let us analyze now the classical case, with £(p)=

2
%, v(p)=L, Vpe RE’,. We introduce also the energy and the velocity functions:

eup)=me? [ (14122 - we(p)= 2 (1417 o
¢ m2c? P e m m2c? ’

with ¢>0. Observe that lime,400&c(p) =E(p), limeto00ve(p)=v(p) uniformly
on bounded subsets of ]Rf). The idea is to get the existence for the perturbed
classical Vlasov-Maxwell system by letting ¢— +oo in the perturbed relativistic
Vlasov-Maxwell system (but keeping ¢( fixed in the perturbed Maxwell equations).

THEOREM 5.8. Assume that g€ L™ (R, xX7), h are T periodic, with g >0 and

//7 z))[E(p)g(t, x,p)dtdodp+/ /{m (t,2)[? dtdo < +oo,
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and there is h e C’l(Rt;Hl(Q)?’) OCQ(Rt;Lz(Q)S) T periodic such that n A h|g, xa0 = h.

Then for every a,e1,e9 >0 there is a T periodic solution for the pem‘urbedl classical
Viasov-Maxwell system

af +0uf +v(p)- Vo f +q(ExCe)+v(p) N(Bx(.)) Vypf=0, (t,2,p) R x QX R},
= C\/

aE+0,E—cirot B=-1%%
€0

, aB+0,B+rot E=0, (t,z) Ry xQ, (5.10)

f(tz,p)=g(t,z,p), (t,2,p) ERy x X7, nAE(t,z) +con A (nAB(t,x))
=h(t,z), (t,x) ERy x O,

with j=q [, f(t,2,p)v(p)dp. Moreover (E,B) € C(Ry;H(rot ;Q2)?)NCH(Ry;H) and
P
the solution verifies:

T . o 2
a/O/Q - f(tx,p)(l+€(p))dtdxdp+a/0 /sz{EO‘E(t7x)| +%|B(t,x)| } dtda

/ /E+ Nyt F(L+E(p)) dtdodp

1
—0/ {eo|n AE|> + —|nAB|?} dtdo
o Ko

//7 z))|lg(1+E(p)) dtdo dp+—/ /BQ (t,x)|? dtdo,

(5.11)

1
ap+dp+div j =0, div E:E—(p*g;/), div B=0 in D'(]0,T[xQ).
0

. T T

Proof. Since [Tfy_ (ve(p) - n(2))|E.(p)g dtdodp < [T |(v(p) - n(x))|E(p)g dtdodp
< +00, by the Theorem 5.3 we deduce that there is a T' periodic solution (f.,E.,B.)
for the system:

Ozchr@tchrvc(p)'mechq((Ec*Cs)Jrvc(p)/\(Ec*Cg))'foc
=0, (t,z,p) ERy x QxR

= Y
aECJratchc(Q) rot B, = JexGe

9 ch+ath+rOt EC:07 (t,x) GRt X Q,
€0

fe(t,x,p)=g(t.z,p), (t,2,p) ERy X X7, nAEc(t,x) +conA(nABe(t,z))

=h, (t,x) ER; x 99,
with jC:qu3 fe(t,z,p)ve(p) dp. Indeed the Propositions 5.1, 5.2 hold true by defin-

ing the application F. as before and by taking C.={(E,B) € X | ||(E,B)| e ®,x) <
Mg .}, where

12 1
Mace=el/*( 7 +4) V2l miascon

1 2
. (+4) cll 16l / /| o)) |gdtdodp.
oTl a-gp- 52
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Moreover, the Proposition 5.4 applies as well and thus we have:

T T
2, 1 2
a// RBfc(t,m,p)(1+5c(p))dtdzdp+a/0 /{2{50|Ec(t,x)| +M0\Bc(t’x)‘ }dtdx
// ve(p W fe(1+E.(p)) dtdodp
>+
49/ / &dnAEA?+iﬁnABAﬁdmg

// (ve(p) - n(@))]g(1+Eul(p)) dtdodp +H/ /m Ih(t,2) 2 dtdo
//7 x))|g(1+E(p ))dtdadp+—/ /8Q (t,2)|* dtdo.

We deduce that E,., B, and nA E.,nA B, are uniformly bounded in L2(]0,T'[; L?(£2)3),

respectively in LQ(]OaT[;LQ(aQ)S) in respect to ¢>0. Observe also that (E.,Be).
is bounded in L (Ry;H). Indeed, by observing that (v.(p)-p)=|ve(p)|-|p|€
[Ec(p),2E:(p)], we have:

||Jc||L1 (10, T[;L1(2)3)

// R3|”c p)|- fe(t,a,p) dtdzdp

T
:// \UC(P)|'fc'l{\p\g}dfdxdva// [ve(p)| - for 1qjp|>1y dtdxdp
0 JQ ]R% 0JQ ]R%

r 1 T
S/O /Q/Rg Efc(t;xap) dtdmder/o /Q/Rg 2E.(p) fe(t,x,p) dtdxdp
T e | .
o </0 /7(m +2&(p))|(v(p) n(x))\gdtdodp+coeo/0 /m\h| dtda)
—Cl

For the last inequality we use Remark 5.5. Therefore, as in the proof of Proposition
5.1 we deduce that:

12( 1
[(Ee, Be)ll oo (1) < e/ (aT +4) 1/2||h||L2(]o,T[;L2(aQ)3)

1 G2l 2
+(+4) - '|q|'01202.
OLT 50.53/2

Take (ci)r with ¢x>0,Vk and limy_, oo cp=—400. We denote by (fx,FEx,Bx) the
corresponding solution. After extraction of subsequences we can assume that:

fr—f weakly x in L™ (R, xQxRi), v fe =t f weakly x in L®(R; x 271),
(Ey,Br)— (E,B) weakly % in L (Rs;H),

(RnAEy,nABy)— (nAE,nAB), weakly in L2(|0,T[;L2(99)").
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By standard arguments we deduce that:

T T
a// f(t,x,p)(l—l—g(p))dtdxdp—l—a//{50|E(t,m)\2+i|B(t7x)|2}dtdx
RS

//z+ DY F+EQP ))dtdadpﬂL*// {eoln A B>+ \n/\B|2}dtdg

//7 z)|g(1+E(p ))dtdadp+—/ /{m (t,z)]* dtdo =C/(g,h).

As usual we prove that limg . y oo (ExxCe, Bp* (o) = (Ex(., Bx(.) in L?(]0,T[x) and
by combining with the weak * convergence of fr,yT fx, after passing to the limit for
k — +occ in the Green formula (2.9), we deduce that f," f verify the weak formulation
of the perturbed T periodic Vlasov problem corresponding to the electro-magnetic
field (Ex(.,B*(.) and to the energy and velocity functions &£(p),v(p) (since (E«
(., Bx(.) is regular, by the uniqueness of the 7' periodic weak solution when a >0 we
deduce that f is also the T periodic mild solution). Now we want to pass to the limit
in the perturbed Maxwell equations. By observing that:

T 1 T
[ Lo it Attty [0 [ )l ) vy
0o JaJrs QJre

—*///RSS’“ ) fio(t, 2, p) dtdwdp

and
T 1 T
[ LS Ay dttraps g [l s iy
0 R3 3
:—/// f(t,x,p) dtdxdp
R3

2 Cg,
_E a )
we deduce as in the proof of Proposition 5.2 that limg_, . jr=j weakly in
L1(]0,T[x)3 and that 1imk_,+oo(3k*§5\/):3*@/ strongly in L2(]0,7[x Q). Consider
(#,4) €C(Ry; D(A*))NCH (Ry;H) T periodic and note (f,9)=a(p, ) — g (w,¥)+
A*(p,1)). We have:

! T
/ <<Ek(t)’Bk(t))’(f(t)’g(t)»?%dt:Co// (nA@)-h(t,x)dtdo
’ 0 Joa
50/0 /Q(]k ) (t, ) p(t, ) dtd,

and after passing to the limit for k — 400 we deduce that (E,B) is a T periodic weak
solution for the perturbed Maxwell equations, corresponding to the current density
E*Q/. By the Proposition 4.6 we deduce that (F,B) is a T periodic strong solution.
The other statements follow exactly as in the relativistic case. ]
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6. A priori estimates

In the following we want to establish a priori estimates for the normal trace of the
electro-magnetic field as well as for the total (kinetic and electro-magnetic) energy. For
this we suppose that 0f2 is strictly star-shaped in respect to some point zo € (i.e.,
Ir>0 such that (z—x) -n(x)>r,Vered). After translation we can assume that
x0=0€Q and thus z-n(z) >r, Va € 9Q. This hypothesis was already used in order to
estimate the solutions of the Maxwell equations by using the multiplier method (see
[28]). These estimates for the normal trace of the electro-magnetic field and the total
energy are summarized in the following proposition.

PROPOSITION 6.1. Assume that Q0 is bounded, with 02 smooth and strictly star-
shaped (in respect to 0€ ). Under the hypothesis of the Theorems 5.8, 5.3, consider
(f,E,B) the T periodic solution of the perturbed Vlasov-Mazwell system (classical case
(5.10), or relativistic case (5.1)) with fived 0 <a,e1,e2 <1. Then the electro-magnetic
field has normal trace (n-E,n-B)€ L?(]0,T[x0Q)?

/div E(t)@(:c)der/E(t,x)~Vf,30dx:/ (n(z)-E(t,x))0(z) do,¥V 0 € CH(Q),
Q Q Gi9)
a.e.t €Ry,

and:
/B(t,x)-Vdea::/ (n(2)- B(t,2))0(z) do,¥0 € C* (), a.e.t € R,.
Q oQ

Moreover, the solution satisfies the following estimate:
T T 1

[ ][ reenewasips [ [ bl + 5o s
0 JQJR 0JQ Ho

//Z+ N(A+E(p)y" f(t,z,p) didodp

1 2 2
+/ {col(n- ) +nABP] - (0 B+ [n A B} dedo

<C- {// z))|(1+E(p ))gdtdadp+// h(t,z)|? dtdo} C'Ei,
- o0 ad-&y

for some constant C and exponents q,r,s >0 and the total energy is uniformly bounded
m time:

/ E(p)f(t..p) drdp+ / {eol E(t, ) + \B(t D)Pde< S
]R3 Q

C-&5

ad-e]

+C- {/ /7 o)) [(14+E(p))g(t, x,p)dtdodp+/0 /mh(t,x)|2dtda},VteRt.

For the proof of Proposition 6.1 we need several lemmas.

LEMMA 6.2. Assume that O is regular (C*), we H(div ;Q)NH (rot ;Q). Then we
have the following equality in D'(Q2):

u;div u— (uArot u); :Z— (wjuy) — |u|2 v1<5<3. (6.1)

1
2 dx;
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The proof of the above lemma is immediate and is left to the reader. In order to
estimate the normal trace of the electro-magnetic field we need the following lemma.
For the sake of presentation we start with the stationary case.

LEMMA 6.3. Assume that Q is bounded with 02 reqular and strictly star-shaped in
respect to 0 €Y. Consider u€ H(div ;Q)N H(rot ;Q) with nAue L? (89)3 such that

/(uidiv u—(uArot u)i)ﬂ(m)dx+/wi~vmt9dx
Q Q
:/vﬂ(x) dac—l—/ (n(x) w;(x))0(x) do, (6.2)
Q a0

for all functions 0 € C1(Q)3, 1 <i <3, where v;, w; = (wij)1<j<s, n-w; are some given
functions verifying v; € L*(Q),w; € Ll(Q) , wi; >0, now; € L1(00N),1<i<3. Then u
has a normal trace in L*(0) i.e., there is n-u€ L?(9Q) such that [, div uf(z)dx+
Jqu-Vabdr= [y, (n(z)-u(x))d(z)do, V0 C(Q). Moreover we have the estimate:

3

In-ull3a oy + 3 lwidlls o+l s < CLIR AU g
=1
3

Hvll gy + Y In-will L1 o0y }-
i=1
Proof. Since we H(div ;Q)NH (rot ;Q), n/\uGLQ(aﬁ)g, we can approximate u

by smooth functions u* € C1(€2)3 such that u* — u,rot u* —rot u in L2(Q)3, div uF —
div w in L2(Q), nAu* —nAu in L2(8Q)3. By using the Lemma 6.2 we have:

3
0 1

Zgj(“fuﬁ 292, | k12 =uFdiv u — (W Arot uF);

—u;div u— (uArot u);+rF V1<i<3, (6.3)

where r¥ —0 in L}(Q) as k— +oo. By using (6.3) and the hypothesis (6.2) with the
test function 6(x) =1, we obtain for 1<i<3:

1 1
u; u xin; do — / ukuk(S dx—f/ |uk|2wmida—|—f/ |u|? da
s[> i 2/,
3
:/xivi(x)da:+/ (n(m)~wi(x))xidaf/Zwij&j d:c+/rfxidx. (6.4)
Q 9] o Q

By taking the sum for 1<i<3 in (6.4) we obtain:
> 1 1
/ E wiidx—i—/ (uk-x)(uk-n)da—i—f‘/ |uk|2d;v—f/ |u* > (n-z) do
i=1
z-v(x da:—|—/ )i da—|—/rk-xdx. (6.5)
/ aQZ ’ Q
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By using the decomposition u* = (n-u*)n—nA(nAu¥) after easy computations we
obtain the identity:

3
1 1 1
/ E wiidx+f/\uk|2dx+f/ (uk~n)2(n(x)-x)d0:f/ |u* An|?(n(z)-z) do
o 2Jo 2 Joa 2 Joo

—l—/aQ(uk~n)[(n/\(n/\uk))-x]da+/x-v(x)dat

Q

3
n\x) w;\xr))xr; ac Tk'x Z. .
# [ Do) w@nados [ r-erd (66)

Q

By our hypothesis there is 0 <7 < R such that r < (n(z)-z) <|z| < R, Yz € 9Q and thus
we have:

3 3
1 r R
/szu' dfﬂ‘i‘gHUkHZLz(Q)s + §||”'Uk||2L2(aQ) < §Hn/\uk”%2(ag)3 +RZ |- wil| 1 a0
i=1 =1
+R[[v]| L1 ()2 +R||7“k||L1(Q)3 +R|n-u”|| 12 90 ||n/\ukHL2(6Q)37 (6.7)

which implies that:

3
S il ey Hlab 3 s + 11w 3oy < O RY(In A 220y + 1ol s s
=1

3
+Z‘|n'wiHL1(8Q)+||Tk||L1(Q)3)' (6.8)

i=1
Since nAuF —nAu in L2(89)3 and ¥ —0 in Ll(Q)3 we deduce that (n-u®); is

n
bounded in L2(9Q). In fact we can prove that (n-u*); converges in L?(0f). For
this let us introduce the bilinear application:

a;(f,9) = fdiv g—(f Arot g)s, f € L3(Q)°,g € H(div ;Q) N H (rot ;).
We have:

ai(f_g7f_g):a’i(fvf)_ai(gag)_ai(gaf_g)_a'i(f_gvg)a
Vf,ge€ H(div ;Q)NH(rot ;).

Observe that a;(u*,u*) = a;(u,u)+rF, a;(u!,ul) = a;(u,u) +rl. By taking into account
that:

las(u' u* =)l () < Muill 2o 1div o = div u'l| 2 () + @]l L2 0ye rot u*

—rot ul||L2(Q)3 —0,
when k,l — +o00 and:

llas (u” —ul ul) || 1oy < lluf —ull 2 [|div ul || 22 (o)

Hlu® =] 2z llrot ' 22 — 0,
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when k,l — 400 we deduce that for 1 <i<3 we have:

3
1
Zai (uf —uby(uh —ub)y—= a'|uk—ul|2:ai(uk—ul,uk—ul)

where % —0 in Ll(Q)3 when k,l— +o00. Now, by the previous computations (this
time with v =0,w=0,n-w=0) we deduce that:

k ! k ! kijj1/2

- wk —n-wl]| L2 g00) < ORI AU —nAu | g2 gaqys + I g b

and thus (n-u*); is a Cauchy sequence in L?(9f2), or (n-u*); converges in L2(09).
Moreover, the limit doesn’t depend on the approximation sequence (u*); and we can
associate to u the normal trace n-u:=limj_, 1oon-u* in L%(02). By passing to the
limit in (6.8) we find:

Y llwiillzi @) HlulFz gy + 110 w)l7e00) < CrR) (I AUl T2 a0y + 10 L1 ()2

3

Y lnewill L oe))- (6.9)
i=1
Moreover we have [,div u¥0(x)dz+ [ u* Vo0dz= [,,(n(z) u*(x))0(z)do, V0 €

C1(Q), and by passing to the limit for k— +oo we find that:

i = n(x)-u(x z)do L.
/lev uf)(as)der/Qwa@dxf/aQ( (x)-u(x))(z) do, Vo€ C*(Q2)

a
Once we have defined n-u € L?(02) we can define the trace of u on 9 by yu=

(n-u)yn—nA(nAu)€ L2(69)3. By construction we have (n-yu)=(n-u) and n Ayu=
nAwu and therefore:

||’VUH%2(39)3 :||n-’yu||%2(3m + H”/\’Y“Hiz(agﬁ

3
SC{HW\U@z(an Hl[ollpr s + D lIn-will L1 o0 }
i=1

Moreover, the equality 2321 2 (uguy) — % B 9_|u|? =v; +div w; holds in D'(Q),V1<
i <3. Indeed, for § € C1(Q) we can write for 1 <i<3:

3
/ Zi(ufuf - li| k)2 9($)das=/ (u;idiv u— (uArot u); +rf)0(z) dx
Q —) 6.’15] 2 8 Q

:/ x)dx— /wZ )-V.0dx
Q Q

+/89<<) ))G(x)do—l—/ 0(z) dz.
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After integration by parts we deduce that:

3

/ kzu n,0 d07§/89|uk|2n oz / kzuk 00 dx+ /| k|2§j‘ dr
Jj=1 i

:/9”1( 2)6(z) do — /Qwi(x).vmedx
+ /6 Q(n(x)-wi(x))a(x)dﬁ /Q r¥0(z) dw

and by passing to the limit for £ — 400 we obtain:
E 1 °. o0
YUu); yu)n; 0(x da—f/ yul?n; 0(x da—/ui uj=——dx
| Y uno@ydo—3 [ pupnota)da— | > i

+ [ Il 5o da
:/Qvi(x)ﬂ(x)dx—/gwi(x)'VIde—f—/BQ(n(x)-wi(x))ﬁ(x)do.

We have similar results for the time dependent case. The proof is left to the reader.

LEMMA 6.4. Assume that Q is a bounded domain with 0Q regular (C') and
strictly star-shaped in respect to the origin 0 € ). Consider we L*(]0,T[; H(div ;Q))N
L2(10,T[; H(rot ;Q)) with nAue L2(]0,T[;L*(99)°) such that:

T T T
//{uidiv u—(uArot u)i}ﬁ(t,z)dtdx+/ /zi(t,x)atﬁdtder/ /wi~Vx9dtd:v
0 JQ 0 JQ
//vztm (t,z) dtdm—i—// x))0(t,z) dtdo, 1 <i<3,
[5}9]

for all functions 0 € C1 (R, x Q) T periodic in time, where z,v,w; = (w;;)1<j<3,n " W;
are some given functions verifying z,UGLl(]QT[;Ll(Q)g),wi eL'(jo,T[;L* (Q)d),wii
>0,n-w; € L*(]0,T[x09Q),1<i<3. Then u has a normal trace n-u € L?(]0,T[xdN):

div u(t) 6(x) dx+/

u(t,x)~Vw9da:=/ (n-u(£))0(x) do, V0 € C1(Q) a.e.t €Ry,
Q o0

Q

and we have the estimate:
3

[[n- UHLz(OT[xaQ)+Z||wn||L1(]o T[xQ)+||U||L2(0T[ £2(0)3) < '(”n/\u”i2(]07T[;L2(8Q)3)
=1
3

Hll Ly go, o )2) + Z - wi || 1 o, 7% 09))-
=1

REMARK 6.5. We can define the trace yu=(n-u)n—nA(nAu)€ L*(0, T[;LQ(GQ)B)
and we have Z] 1 az (ujuy) — 2800 O_|u|? =wv; + 02 +div w; in D'(]0,T[xQ), 1< <3.

REMARK 6.6. The previous results adapt easily when replacing udiv u—uArot u by
co{Bdiv E—EArot E}+ -{Bdiv B~ B Arot B}.
We give here the details for the proof of Proposition 6.1.
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Proof. (Proposition 6.1) Consider the test function ¢;(t,z,p)=p;0(t,z), 1<i<
3,0 C1(R; x Q), T periodic. By using the Green formula (remark that this is possible

. T T
since [; [o, ng (14+E&(p)) f dtdzdp < +o0, [5 [+ (v(p)-n(x))(1+E(p))y" f dtdodp < +oo
and thus in both classical and relativistic cases we have fOTfQ Ja DI f dtdzdp < 400,
IN fEJr x))|plyt f dtdodp < +o0) we deduce that:

/ / ft,z,p)p:ib(t,x dtdxdp—i—/ / x))pivf(t,z,p)0(t,x) dtdodp
RS

/ / f(t,2,p)pi (010 +v(p) - V,.0) dtdxdp
QJRS

L 6.0 6P (B

+v(p) A(B%(.)}; dtdadp.

Let us consider i=1 and compute the term involving the electro-magnetic field:

T )l Ty —
I1=/ /6(t7x){p(t’$>(E1*C€)+j2(t7m>(B3*<5)_j3(t?w)(B2*C5)}dtd$U
0 Ja
T
:/0 /Q{El(t,:c)(@)*g!)+Bg(t,;c)((972)*g)732(@56)((%)*@)}&&

T
:/0 /QH{El(t’x)(ﬁ*Q/)+B3(t>x)(32*<2/)—Bz(tw)(?g*gg/)}dtdx

—|—/OT/QE1(t,x)/OT/Q(0(5,y)G(t,x))p(s,y)cs\/(ts,xy) dsdy dtdzx
+ / T/ By(t,2) / ' / (6(s,) — 0(t.)) s (,9)CY (t — 5,2 — y) dsdy dtda
//thx// 5.9) —0(t.2))ja (5,9)CY (t — 5, —y) dsdy dida

=M+ R1(0

By using the perturbed Maxwell equations as well as the Proposition 5.7 the main
term M7 can be written as:

T
M, :/ /e(t,.’lﬁ){ElgodiV E—‘rEQBQ(OtEg-FatEg—Cg(I‘Ot B)3)
0Jo
—e0Bs(aBy + 01 Ey — ci(rot B)o)}dtdx
T
:/ / 0(t,x){eo(E1div E— (E Arot E)q)+ L(Bldiv B—(BArot B)y)

Ho
—2aeg(EAB)y }dtdx

//50 (ENDB)10:0 dtdz.
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Finally we obtain for 1 <4 <3 that:

/ /{50 (E;div E—(E Arot E);)+ (B div B— (B Arot B);)}0(t,x) dtdx

+/ /aO(EAB)iatadtdx

0 Jo
T T

+/ / (/ pifdp> 8t9dtdx+/ / (/ pw(p)fdp) -V, 0dtdx
0o Jao \Jrs 0o Jo \Jrs

T
:a/o /Q <2€O(E/\B)i+/R%pifdp> 0(t,x) dtdx

T
+/0 399(?5’13) <Ag(v(p)'N($))pi7f dp) dtdo — R;(6),

for all 6 € C1(R; x Q), T periodic. Let us introduce the notations:
vi:2aEO(E/\B)i—|—a/ pifdpe L'(]0,T[xQ),1<i<3,
3

P

w; = / piv(p)f dpe L (0. (LN, 1<i<3,
RS

P

n-w; :/RB (v(p)-n(z))pivfdpe L*(]0,T[x09Q),1<i<3,

Zizﬁo(E/\B)H‘/ pif dpe L'(]0,T[xQ),1<i<3.

P

Then we have for 1<i<3, € CY(R; x Q), T periodic:

/ ! / {eo(Esdiv E—(EArot E)i)+—(Bidiv B— (BArot B),)}(t,) dtdz
0 JQ Ho

T
+/ /{zi(t,m)8t0+wi(t,x)~Vm9}dtdx
0Ja

:/OT/Qvi(t,x)e(t,x) dtdx+/0T/m(n-wi)9(t,m) dtdo — R;(0).

(6.10)

We can not apply directly the Lemma 6.4 since we have the extra term R; in (6.10).
By performing the same computations as in the proof of Lemma 6.3 we deduce that
there is a constant C' such that:

/OT/Q/R% (p'v(p))fdtdrder/OT/Q{soE|2+u10|3|2}dtdx

[ tatnemr L nemyaao
<C{// {eoln A B+ |n/\B|}dtda+aso//|E/\B|dtd:c
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+a// R3|p\fdtdxdp+//| o)\ pl-fdtdodp+ 37 R,

i=1

(6.11)

where R; is the corresponding term to the test function 6(z)==z;, for example:

R1=/T/ El(t,w)/T/(yl—xl)p(&y)é‘!(t—S,w—y)dsdydtdx
//Bgtx//ylf:cl Go(8,9)CY (t — s,z —y) dsdy dtdx
//thx/ /y1 21)ja(5,9)CY (t — 8,0 —y) dsdy dtda.

Note that from the Proposition 5.4 and the Theorem 5.8 we already have an uniform
estimate for the tangential traces (nAE,nAB) in LQ(]O,T[;L2(89)3). On the other
hand, by using one more time (5.3), (5.11) one gets:

T T
2a€0c0/ / |EAB|dtdxg2a,/i°/ \B(t,2)| - |B(t,2)| dtds
0JQ Ko Jo Jo

T 2 1 2
ga/ /{sg\E(t,x)| + o[ B(t.a) ) did

//_ x))|€(p)g(t,x,p) dtdodp

S50 / \h(t,)|? dtdo. (6.12)
o

We have also:

a/T/ RS|p|f(t,1:,p)dtdxdpgozC-/OT/Q/RS(1+5(p))f(t,:c,p)dtd:z:dp
<C. (/ /7 o))|(1+E(p))g(t, m,p)dtdodp+—/ /dQ (t,x |2dtdo>

(6.13)
/ / x))|-|plvf(t,2,p) dtdodp
<c. / / e )I(1+E@))y (t,2,p) dtdodyp
Co€o 2
<. (/ / o) I(1+E())g(t,2,p) didodp-+ 2 aQ|htx)| dtdo>
(6.14)

Now we need to estimate the term R;, 1 <¢<3. We have:

T —_ —_ —_
IRy <e2 / / (B2 1%C) - Jol+ (Bl %) - ol + (Bal o) s} dtde.
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Note that for both classical or relativistic case we have:

C
|p(t7$)|:|Q|ASf'1{\p\SR} dp+|Q|/RSf'1{|p|>R} dp§C~RS||fHoo+E/RB(1+5(P))fdp

3/4
§C~|f||éé4'(/RB(1+6(P))fdp> ;

3/4

1/4 (T

and thus [|pll, 4 o 7o SC IR (ST Juy L+ E@) S dtdadp) ™ < G, where
for the last inequality we used (5.3), (5.11). Thus, by using the Holder and Young
inequalities and (5.3), (5.11) we deduce that:

// |E1|xC) - |pt,x)|dtdx <||(|E1]| %) || pe - ||P|| 4<||E1||L2 ||Cs|| ||P||L§(]O)T[XQ)
¢ C
—WIIQIIL% Nall 3 - =7
C

- 1/4 3/4°
ad/d.el/t. Y

In the relativistic case we have also Hj||L3(]0 T S <C-a3/* and thus we obtain

similar bounds for the terms fo Jo(IBs|*¢e) - |j2| dtda, fOTfQ(|§2|*CE)-\j3|dtda:, which
implies that |Ry|<C-a~%/4 ~5é/4-
interpolation:

g1~ Y4, In the classical case we can estimate j by

¢ )< Pleap< || flloe-RE+ 2D [P ey 0 ) a
|J(’$)|_|Q|/Rgmf p<C-|/fll R - me( z,p)dp

4/5
<C-|IfIE° (/Rss(p)fdp> :

1/5 _
and thus ||j||L4(]0 xS <C-|fI1% '(fo foRg fdtda:dp) <C-a~*/5. Now, by
using the Holder and Young inequalities we deduce that:

T
| [ 0Bl Co-linte.a) < (Bl 1l 5 < Bl Il 113 g
C C

<oz ool Il S

C

= 3/10_9/10°
13/10.3/10. 5/

Therefore, in the classical case we have |R1\§C-075/4'€§/4~61*1/4+C’-a*13/10~

E§/10,€1—3/10_ The conclusion follows easily by observing that (p-v(p)) > E(p), VpER3

an combining (5.3), (5.11), (6.11), (6.12), (6.13), (6. we can take
d by combining (5.3), (5.11), (6.11), (6.12), (6.13), (6.14) ke q=

1077"_
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3. s=:. We deduce that there is ¢ €]0,77 such that:

5.5 =
// E(p)f(to,x,p)dxder/{€0|E(t0,z)|2+i|B(t0,1‘)|2}dJU
R3 Q Mo

<7 {/ /7 o))|[(1+E(p))g(t, x,p)dtdadp+/OT/aQ|h(t,x)|2dtda}

o s
T al-€7

By using the balance of the total energy (see the proofs of Proposition 5.6, especially
formula (5.6) and Theorem 5.8) we deduce that for t €]tg,tg+T'[ we have:

/ E(p) S (t,2,p) drdp+ - / {eol E(t, )2 + —|B(t,x>|2}dx
R3 Ho

<[ R35<p>f(to,x,p> dadp+5 [ el Blto.a) P+ |Blto.) do

/ / x))E(p)g(s, x,p)dsdcdp—ko—go/ / (s,2)|? dsdo,
- o0

and the last conclusion follows by time periodicity. |

7. The Vlasov-Maxwell system
We are ready to prove Theorem 1.1 (existence of T periodic weak solution for the
three dimensional Vlasov-Maxwell boundary-value problem).

Proof. (Theorem 1.1) We take >0 a small parameter and we consider 0<
«,e1,69 <1 such that aq=n1/4,5’1"=771/4 and €3=mn where ¢,r,s>0 are given in
Proposition 6.1. We regularize also the boundary data h by taking h, —h in
L2(J0,T[;L2(09)%) such that there is h, € C(Ry; HY(Q)*)NC2(Ry; L2(Q)”) T peri-
odic with Tl/\ithRtxaQ =h,. From the Theorems 5.3, 5.8 applied to the boundary
data (g,h,,) we deduce the existence of a T' periodic solution for the perturbed Vlasov-
Maxwell system (f, >0, E,,B,). By the Proposition 6.1 we deduce that for all s € R;:

1
/ E(p)fy(s,,p) dedp+ / {0l By(5,)|2 + — | By (5,2) 2} dax
QJR3 Q Ho

//2+ NA+EP)YT f,(t,2,p) dtdodp
// {eo [(n-E,)? +|n/\E|]+i[(nB) +|nAB, %]} dtdo
<C- WO,n+C'77 s (71)
where Wo, = [ i, |( (@) (1+EP))g(t,x,p) didodp+ [} [o0|hy(t,2)|? dtdo.

After extraction of subsequences we can suppose that there is f,4Tf,E,B,(n-
E),(n-B),nANE,nANB such that fy:=f, —f weakly x in L>*(R, XQXR?)),
'7+fk::'y+fnk_\'7+f weakly * in L®(R;x¥7"), (E,By):= (Eyy,Bny,) — (E,B)
weakly in L%(]0,T[;L*(22)%)2, (n-Eg,n-By):=(n-E,, ,n-By,)—(n-E,n- B) weakly
in L2(]0,T[x00)?, (n/\Ek,nABk)::(n/\Enk,n/\Bnk)é(n/\E,n/\B) weakly in
L2(]O,T[;L2(GQ)3)2, where n; —0, as k—+4o0o. We note also by ay,e1,k,82,, the
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. 1/4 1/4 .
values given by af :nk/ ek :nk/ ,€5 . =Nk. Obviously, by weak % convergence we

have:

a0kl oo, [ lloe) < max(iming [ iloslimminf [+ i o) < 1]

For R>0, € C°(R;), § >0 we have:

/ / O(t)E(p) - 1(jp <y f(t,,p) dtdadp
]RS

2, 1 )2 -
+/0 /9(t){50|E(t,x)| + |B(t7 )|°}dtd

S}ﬁlm_"l_nf{// 9 1{‘p‘<R}fkdtdxdp—‘r/ /9 {€0|Ek|2 f|B;€| }dtdl‘}
— 100 R3

<jminf / 0()(C - Wo, +C /) dt

T
:C-WO/ 0t) dt
0
By letting R — +o00 we deduce that:

1
/ E(p)f(s,x,p)dxdp—l—/{50|E(s,x)|2+H—|B(s7m)|2}dx§C-WO, a.e. sERy.
R3 Q 0
Similarly we have:

//E+ z))(1+E(p))y +f(ta$ap)1{\p\g3}dtdadp

2 2 1 2 2
+// {eo[(n-E)*+|nAE| ]+%[(n~B) +|nAB*]} dtdo

<hm1nf// NA+E(p ))’y+fk(t,x,p)1{|p‘<3}dtdadp
k——4oo S+ -

1
// {eo [(n-Ex)*+|nAEy| ]+M—[(n Bi)?+|nABy|*]} dtdo)
<C-Wy, VR>0.

We check that (f, F, B) is a T periodic solution of the Vlasov-Maxwell system. Indeed,
by the Green formula we have for all functions ¢ € C1(R; x Q x Rg) T periodic, with
compact support in momentum:

T
_/O /Q Rs fk(_akw(t’%p)_'_at(p—i_v(p)VI‘P+Q((Ek*C5k)
A (BrxCe,.)) - V) dtdadp

// W fredtdodp — // g dtdodp.
s+ -

Observe that akaTfoR3 ofrdtdrdp—0 since || filloo <|l9lloo, and (Eg*(e,,Brx
P
() — (B, B) weakly in L%(]0,T[;L*(Q)3), as k— +o0o. Note that the compactness
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average result of DiPerna and Lions [14] adapts easily in the time periodic case
and still holds true for bounded spatial domains (use a cut-off function ne€ C°(Q)
and write fr=nfr+(1—n)fr as it was done in [23] page 256). For test functions

o (t,2.0) = 91(1,2) - ¢2(p), 1 € CL(R, x Q) T periodic, @3 € C1(RE), by using the ve-
locity average result we have:

k1u+n thpgfkdp /thpgfdp, in L*()0,T[; L*(Q)?),

Jim [ (Fppanoto)fedp= [ (Topano)fdp, in 200.TFI)°)
oo Jag %

and thus by combining strong and weak convergence we can pass to the limit in the
nonlinear term:

k—-+oco

im [ / {1(Brrcey) / Vieahdotor(Brrte): [ (Tyeano(o) idp} deds

Z//{%E-/ przfdp+<p1B~/ (Vpp2 Av(p)) f dp} dtdz. (7.2)
0JQ ]R]?7 ]Rg

Finally we deduce that:

/ / R3ftw,p (Drp+0(p)- Voo +a(B(t,) +0(p) A B(L,2)) - Vyip) didardp

k/(/ +f¢Mda@>t/&/ \gp didodp, Vo= o1 -2,
z+ -

and by density the previous equality holds for all ¢ € C1(R; x Q x Rf’,) T periodic and

compactly supported in momentum. Now take o, € C1(R; x Q)3, T periodic with
nAp—conA(nAp)=0 on R; x 9Q. We have:

T T
/ {Ek-(akcp—atgo)—chk-rot v} dtda:—kc%/ /{Bk-(akw—ﬁﬂb)—kEkmot Y} dtdx
0 Jao 0Jao

T T
1 _
:co// (n/\cp)-hkdtda——/ /(jk*g;é)wdtd:c.
0 Jon €o.Jo Jo

Since (E,Bg)x is bounded in L2(]0,T[; L%(22)?) we have:

lim ak//Ektx tx)dtdwf hrn ak//Bktx (t,z)dtdx=0.

k——+oo

We have also:

T T
Gk*@i)'@dtdﬂ?—/ /j~<pdtdx <
2 0 Ja

€

ij : (@*C@k - 30) dtdx

(k=) - pdtda|=IF + 15
Q
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For the first term IF we write:

T
K S/o /sz /R ()] fi(t,2,p) |(@%Ce ) (8:7) = p(t,2)| - 1 p <y dtddp

1 T
JrE/// [w(P)|-Ipl- fr(t,2,p) -2+ #lloc - L{jp|> ry dEdzdp
0 JQ ]Rg
T
S//Q|(30*C5k)(t,w)—90(t,x)|</R |’U(p)|.||g||oo.]_{|p|<R}dp> dide
' :
4 w [T
+M/// E(p) fx(t,z,p) dtdxdp.
R 0 JQ R;’;

For § >0 we take Rs large enough such that % fOTfQ fR%E(p)fk (t,z,p) dtdzdp < g,
uniformly in k. By using the dominated convergence theorem we have also:

T
g [ <w<ek><t7x>—so(t7x>|< / |v<p>|-||g||oo-1{|p|§mdp> dtdz =0,
—+ Jo JO RE

and therefore limg_, oo [ f =0. For the second term we have:

g™ 112

1{|p|<R} dtd.ﬁbdp
]R3

=I5 +1}.

1{\p\>R} dtdl‘dp

Q R3

By using the inequality |p|-|v(p)| = (p-v(p)) <2&(p) we have for R large enough:

1 (T 1T
L’féﬁ/// fk-HwHw\pl-Iv(p)\dtdxderﬁ/// fllllse - Ipl - [v(p)| dtdzdp
0 JQJR] 0 JaJrs

2l elloe [T 2ol [T
el [ [ peyadoapr 2202 [T [ geiyanap <,
R Jo JaJrs B Jo JaJrg 2

for R> Rs, since (fo Jo ij p) fr dtdxdp) is bounded. Now, for R=Rs we can use

the weak x convergence fj, — f in order to obtain I¥ < %, for k> ks. Finally we proved
the convergence limg_, | oo fOTfQ(jk*gg{) -wdtdx:fonQj-wdtdx. By using the weak
convergence (Ey, By) — (E,B) in L2(]0,T[; L?(€2)3)? and hy, — h in Lz(]O,T[;Lz(aﬂ)g)
we deduce that:

T
//{—E(t,:r:)~8tg0—c(2)B(t7x)~r0t p}dtde
0Jo

T
+cg/0 /Q{fB(t,x)-8t1/1+E(t,x)«rot Y} dtde

T
:co// (nAp)-h(t,x) dtda——// (t,z) - p(t,z) dtdz.
0 Joa
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In fact, by using the Remark 4.7, we can prove that:
T T
//{fE(t,:c)ﬁtgachB(t x)-rot cp}dtda:fco// (nAB)-p(t,z)dtdo
0 Jo 0 Joaq

1 (T
———//jwpdtdam
€0 Jo Ja

and:

//{ B(t,z) -0+ E(t,x) -rot 1/1}dtd$+// (nAE)-9Y(t,x)dtdo =0,

for all ¢, € CY(R; x Q)2, T periodic. By the Proposition 6.1 and by using that
div B, = %(ﬁk*g}‘i) we have for € C1(R; x Q):

T T T
//i(pk*q)e@,x)dtdﬂ//Ek(t,x)-vzedtdxz// (n- B)0(t,2) dido.
0 Ja¢o 0 JQ 0 Joq

As previous we have limy_, 1 oo fonQ (P *Q{)G dtdr = fonQ p0 dtdx and thus, by passing
to the limit for k£ — 400 one gets:

T
/ —p@dtder/ /E V. 0dtdx = // n-E)0dtdo,
Q€o 0

ordiv E= Eip and (n- E) is the normal trace of E. Similarly we deduce that div B=0
and (n-B) is the normal trace of B. By using the Green formula (2.9) with the test
function §=0(t,z), 0 € C1(R; x Q), T periodic, we have:

T T
/ / / oy fr dtdazdp—/ / Jr(0:04+v(p) -V .0) dtdxdp
0 JaJrs R3

/ / x))07 fr dtdodp=0.
By using that

(Jo o fe L+ E @ frdtdrdp) | (ffe (0(p) n(@) 1+ E@) frdtdodp) — are
bounded, after passing to the limit for k — +oo we deduce that

_ fOTfQ 000 dtdx — fOTfQj -V 0dtdx+ fOTfE (v(p) -n(x))0qyfdtdodp=0 and in particu-
lar O;p+div j=0in D' O

8. Final remarks
By using basically the same arguments, it is possible to analyze also the time
periodic Vlasov-Maxwell system when the boundary condition (2.2) is replaced by:

f(t,2,p)=g(t,x,p)+a(t,z,p)- f(t,z,R(t,x)p), (t,z,p) ERy x X7, (8.1)

with R(t,x): R} —R3, R(t,z)p=p—2(p-n(zx))n(z),¥(t,z,p) ERy x T and
0<a(t,z,p)<ap<1,V(t,z,p) ERyx X~ (for the definition of T periodic weak
solution for the problem (2.1), (8.1) consider in the weak formulation (2.4) test
functions ¢ € C1(Ry x 2 x Ri), T periodic, compactly supported in momentum such
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that o(t,z, Rp) =a(t,z,p)p(t,x,p), V(t,z,p) ER; x X7). We assume that g,h are T
periodic, >0, g€ L® (R x X7), (n-h)|r, xo0 =0 such that:

T
Wo= / / z)|(1+E(p))g(t.z,p) dtdodp+/ / |h(t,2)|? dtdo < +oc.
- 0 Joo
The proofs are quite similar and we don’t detail them. We only indicate how a priori

estimates can be obtained in this case by formal computations. For example, by using
the weak formulation of the Vlasov problem with the test function 1 we get:

//2+ " f(t,z,p) didodp=— //7 Ny~ f(t,@,p) didodp,

and by using the boundary condition (8.1) we deduce that :

// Y1 —a(t,z, Rp))y*t f(t,z,p) dtdodp
>+

/ /7 )g(t,z,p) dtdodp.

Since a(t,x,p) <ag<1,V(t,z,p) €R; x X7, finally one gets:

/ /,gi )y f(ta,p) didodp < 7 / / |(@(p) n(2))\g(t,,p) dtdodp.

_ao

Similarly, by using the weak formulation of the Vlasov problem with the test function
&(p) and by combining with the conservation of the electro-magnetic energy (obtained
by multiplication of the Maxwell equations by (F,B)), we deduce as before that:

/T/ (v(p)-n(x)EP)yT f(t,z,p) dtdoderCO/T/ {e |n/\E\2+i|n/\B|2}dtda
o Js+ sl 2 0 0

—/OT/(v(p)-n(a?)) ()7 f(txp)dtdadp—i—o—go/ /89 (t,2)|? dtdo,

and by using the boundary condition (8.1) we obtain as above that:
(1-ao) / / (@))€ ()T f(t,x,p) dtdodp
>+
1
+£/ / {eo|n ANE|?+—|nAB*}dtdo
2 Jo Joo Ho

- /T/ () @) @glt.a.p) dedodp+ 5 | /m Ih(t2) | dtdo,

1—a0/ /7 D)EWr £ (t,,p) dtdody

and:

1
+a05°// {eo|n AE|> + —|nAB|?} dtdo
0 JoQ Ho

T
<-— /0/7(v(p)-n(m))€(p)g(t x,p)dtdadp—&—aoo—go/ /89 (t,2)|* dtdo.
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From this point the computations follow exactly as for the case of absorbing condi-
tions.

Note also that all these results apply for the Vlasov-Maxwell system with several
species of particles. We point out that similar a priori estimates can be established
by formal computations for the T" periodic solutions of the classical Vlasov-Maxwell-
Fokker-Planck system, which is obtained from the classical Vlasov-Maxwell system
by replacing the Vlasov equation by:

of+v(p) - Vaf+q(E(t,z)+v(p) AB(t,z)) V, f
=div,(aV,f+Bv(p)f), (t,x,p) ER; x AX R,

where 3>0,0 >0 are fixed parameters.

REFERENCES

A. Arseneev, Global existence of a weak solution of the Vlasov system of equations, U. R. S. S.
Comp. and Math. Phys., 15, 131-143, 1975.

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Diff.
Eq., 25, 342-364, 1977.

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff,
1976.

C. Bardos, Problémes auzx limites pour les équations aux dérivées partielles du premier ordre,
Ann. Sci. Ecole Norm. Sup., 3, 185-233, 1969.

C. Bardos and P. Degond, Global existence for the Viasov-Poisson equation in three space
variables with small initial data, Ann. Inst. H. Poincaré, Anal. non linéaire 2, 101-118,
1985.

N. Ben Abdallah, Weak solutions of the initial-boundary value problem for the Viasov-Poisson
system, Math. Meth. Appl. Sci., 17, 451-476, 1994.

M. Bostan and F. Poupaud, Periodic solutions of the 1D Vlasov-Mazwell system with boundary
conditions, Math. Methods Appl. Sci., 23, 1195-1221, 2000.

M. Bostan, Permanent regimes for the 1D Vlasov-Poisson system with boundary conditions,
SIAM J. Math. Anal., 35, 922-948, 2003.

M. Bostan, Convergence des solutions faibles du systéme de Viasov-Mazwell stationnaire vers
des solutions faibles du systéeme de Viasov-Poisson stationnaire quand la vitesse de la
lumieére tend vers linfini, C. R. Acad. Sci. Paris, Ser. I, 340, 803-808, 2005.

F. Bouchut, F. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for
the 3D Vliasov-Mazwell system, Arch. Ration. Mech. Anal., 170, 1-15, 2003.

H. Brezis, Analyse Fonctionnelle, Masson, 1998.

P. Degond, Local existence of solutions of the Viasov-Mazwell equations and convergence to the
Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci., 8, 533-558,
1986.

P. Degond and P.-A. Raviart, An asymptotic analysis of the one-dimensional Viasov-Poisson
system: the Child-Langmuir law, Asymptotic Anal., 4, 187-214, 1991.

R. J. Diperna and P. L. Lions, Global weak solutions of the Vlasov-Mazwell system, Comm.
Pure Appl. Math. XVII, 729-757, 1989.

R. J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Invent. Math., 98, 511-547, 1989.

G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, 1972.

R. Glassey and J. Schaeffer, Global existence for the relativistic Vlasov-Mazwell system with
nearly neutral initial data, Comm. Math. Phy., 119, 353-384, 1988.

R. Glassey and J. Schaeffer, On the ’one and one-half dimensional’ relativistic Viasov-Mazwell
system, Math. Meth. Appl. Sci., 13, 169-179, 1990.

R. Glassey and W. Strauss, Singularity formation in a collisionless plasma could only occur at
high velocities, Arch. Rat. Mech. Anal., 92, 56-90, 1986.

R. Glassey and W. Strauss, Large velocities in the relativistic Vlasov-Mazwell equations, J.
Fac. Sci. Tokyo, 36, 615-627, 1989.

F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of
a transport equation, J. Funct. Anal., 88, 110-125, 1988.



M. BOSTAN 663

C. Greengard and P.-A. Raviart, A boundary value problem for the stationary Viasov-Poisson
equations: the plane diode, Comm. Pure and Appl. Math. vol. XLIII, 473-507, 1990.

Y. Guo, Global weak solutions of the Vlasov-Mazwell system with boundary conditions, Com-
mun. Math. Phys. 154, 245-263, 1993.

Y. Guo, Singular solutions to the Viasov-Mazwell system in a half line, Arch. Rational Mech.
Anal., 131, 241-304, 1995.

E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear
Viasov equation, Math. Meth. Appl. Sci., 3, 229-248, 1981.

E. Horst and R. Hunze, Weak solutions of the initial value problem for the unmodified nonlinear
Viasov equation, Math. Meth. Appl. Sci., 6, 262-279, 1984.

S. Klainerman and G. Staffilani, A new approach to study the Viasov-Mazwell system, Commun.
Pure Appl. Anal., 1, 103-125, 2002.

V. Komornik, Ezact Controllability and Stabilization: the Multiplier Method, RAM, Masson,
Paris, John Wiley & Sons, Ltd., Chichester, 1994.

J. E. Lagnese, A singular perturbation problem in exact controllability of the Mazwell system,
ESAIM, Control. Optim. Calc. Var., 6, 275-289, 2001.

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional
Vlasov-Poisson system, Invent. Math., 105, 415-430, 1991.

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions
for general initial data, J. Diff. Eq., 95, 281-303, 1992.

F. Poupaud, Boundary value problems for the stationary Viasov-Mazwell system, Forum Math.,
4, 499-527, 1992.

J. Schaeffer, Global existence of smooth solutions to the Viasov-Poisson system in three dimen-
stons, Comm. P.D.E.; 16, 1313-1335, 1991.

J. Schaeffer, Global existence for the Vlasov-Poisson system with nearly symetric data, J. Diff.
Eq., 69, 111-148, 1987.

T. Ukai and S. Okabe, On the classical solution in the large time of the two dimensional Viasov
equations, Osaka J. Math., 15, 245-261, 1978.



