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Let p, be a 3-dimensional semi-stable representation of Gal(Q,/Q,)
with Hodge-Tate weights (0, 1,2) (up to shift) and such that N? #
0 on Dg(pp). When p, comes from an automorphic representa-
tion 7 of G(Ap+) (for a unitary group G over a totally real field
F* which is compact at infinite places and GL3 at p-adic places),
we show under mild genericity assumptions that the associated
Hecke-isotypic subspaces of the Banach spaces of p-adic automor-
phic forms on G(A%,) of arbitrary fixed tame level contain (copies
of) a unique admissible finite length locally analytic representation
of GL3(Q,) of the form considered in [4] which only depends on
and completely determines py,.
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1. Introduction and notation

Let p be a prime number, n > 2 an integer, F'*™ a totally real number field
and F a totally imaginary quadratic extension of F'™ such that all places
of FT dividing p split in F. We fix a unitary algebraic group G over F'
which becomes GL,, over F' and such that G(FT ®g R) is compact and G
is split at all places above p. We also fix a place p of F'™ above p. Then
to each Qp-algebraic irreducible (finite dimensional) representation W¥ of
HU‘W} 20G (F,}) over a finite extension E of Q, and to each prime-to-p level
UP in G (A%O;p), one can associate the Banach space of p-adic automorphic
forms §(U@, W#) (see e.g. § 6.1).

If p: Gal(F/F) — GL,(E) is a continuous irreducible representation
and @ is a place of I' above p, one can consider the associated Hecke
isotypic subspace S(U®, W¥)[m,], which is a continuous admissible repre-
sentation of G(F;7) = GL,(Fp) over E, or its locally Q,-analytic vectors

~

S(U®,W#)[m,]*", which is an admissible locally Q,-analytic representation
of GLy,(F). When nonzero, these representations of GL,,(F) are so far only
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understood when n = 2 and Fjz = Q, ([24], [42], [53], [20], [25], [59], [35], [18],
...). Indeed, though these representations are expected to be very rich, many
results from GL2(Q)) collapse (see e.g. [65], [79]) and it presently seems an
almost impossible task to find a way to completely describe them in general.
However, it is (quite reasonably) hoped that they determine the local Galois
representation pg := p|Ga1(f(5 /F) and (may-be less reasonably) hoped that

they also only depend on pgs. Note that the special case where p is auto-

morphic is of particular interest, since then the subspace S (UP, W¥)[m,]lale

of locally Qp-algebraic vectors is nonzero, given by the classical local Lang-
lands correspondence for GL,,(F}) tensored by Q,-algebraic representations

The aim of this work is to consolidate the above hopes in the case of
GL3(Qp). Let St3° be the usual smooth Steinberg representation of GL3(Q))

% = (Ind%ii’é)g”) 1)°/1 for i = 1,2 the two smooth generalized Stein-

berg representations where P1(Q,) = (I . 8) and P3(Q,) := (Z g g) Our
main result is the following.

Theorem 1.1 (Corollary 7.54). Assume p > 5, n = 3, Fz = Q, and
U$ = Hv7ép U, with U, mazimal if v|p, v # p. Assume moreover that:

and v

e 1 is absolutely irreducible
o S(U?, W¥)[m,]™e 0
e pg is semi-stable with consecutive Hodge-Tate weights and N2 40 on

Dst(pﬁ)
e any dimension 2 subquotient of pg 1= ﬁ|Ga1(fg~/F5) is nonsplit.

Then §(U@, W#®)[m,] contains (copies of ) a unique locally analytic rep-
resentation I1® xodet of GL3(Q)) with x a locally algebraic character of Q,
and IT of the form:
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where the C; j, éi,j are certain explicit irreducible subquotients of locally
analytic principal series of GL3(Qp) (see § 3.3 or [4, § 4.1]), where St§° =
80CGL,(,) LI and where — (resp. the dashed line) means a nonsplit (resp. a
possibly split) extension as subquotient. Moreover the representation II @
x odet completely determines and only depends on pg. In particular the
locally analytic representation S'\(UW, W#®)[m,]*" of GL3(Q,), hence also the
continuous representation S(U?, W#)[m,], determine pg.

In fact one proves the stronger result that the restriction morphism:

(1.2) Homgy,(g,) (IL® xodet, S(U, W®)[m,]*")
— Homgy,,(g,) (St @xodet, S(U, W¥)[m,]™)

is bijective. The third assumption in Theorem 1.1 implies that pg is up to

twist isomorphic to <€8 % %) where ¢ is the cyclotomic character. Hence pg

=2
is up to twist isomorphic to 0 ik , and the fourth assumption means
001

that we require the two * above the diagonal in ps to be nonzero, a kind
of assumption which already appears in the GL2(Q)) case (see e.g. [42,
Thm. 1.2.1)).

Without assuming p absolutely irreducible, consecutive Hodge-Tate
weights and the above condition on pg, but assuming FTt =Q, p absolutely
irreducible and a slightly unpleasant condition on S(U*, W) [m,)8le (see [4,
Rem. 6.2.2(ii)]), it was proven in [4, Thm. 6.2.1] that S(U¥, W#)[m,]*" con-
tains (copies of) a unique locally analytic representation which has the same
form as (1.1). However, nothing more was known of its possible link to pgz. So
the main novelty in Theorem 1.1 is that the GL3(Q,)-representation II ® xo
det contains eractly the same information as the Gal(Q,/Q,)-representation
pg- Note however that II® xodet is presumably only a small part of the rep-
resentation S (U®, W#)[m,]*". For instance one could push a little bit further
the methods of this paper to prove that §(U", W#)[m,]*" as in Theorem 1.1
in fact contains (copies of) a representation of the form I xodet with:

GL3(Qp) 1 an
vp — (IndE(Qp) el@el)” — vy

M =~ St

an GL3(Q,) 1 an an
(1.3) Yp, — (Indﬁ(@p) l@e @ 5) — P,
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which still determines and only depends on pg. In (1.3), we denote by St3",
resp. v%rf, the locally analytic Steinberg, resp. generalized Steinberg, and

by (Ind%%&(()@”) )2 the locally analytic principal series from lower triangular

matrices. In fact the subrepresentation of [I®yodet without the constituents
Cia, Cis (i = 1,2) in Theorem 1.1 can be seen as the “edge” of the rep-
resentation II ® xodet. But even adding those constituents to I xodet
(or more precisely (Il ® yodet)®? where d := dimp Homgr,,(q,)(St3° ®@x o
det, S (U®,W#)[m,]*")), we are presumably still far from the full represen-
tation S(U¥, W) [m,)2".

Theorem 1.1 (in its stronger form as above) is in fact a special case of
a conjecture in arbitrary (distinct) Hodge-Tate weights. In § 3.3, we show
that one can associate to pg, assumed semi-stable with N2 # 0 on Dg(pg)
and sufficiently generic (we explain this below, any pg as in Theorem 1.1 is
sufficiently generic), a locally analytic representation II(ps) = II ® x o det
of GL3(Qj) containing the same information as ps where II has the same
form as (1.1) but replacing St5°, vy by St5°(A\) =: St5° ®@pL(N), v%(A) =
vE O L(\). Here L(\) is the algebraic representation of GL3(Q)) of highest
weight A\ = k1 > ko > k3 where k1 > ko — 1 > k3 — 2 are the Hodge-Tate
weights of p5. We conjecture the following statement.

Conjecture 1.2 (Conjecture 6.2). Assume n =3, F5 = Q) and:

® p absolutely irreducible
o S(UP, W) [m, " £ 0
e pg semi-stable with N* # 0 on Dg(pg) and sufficiently generic.

Then the following restriction morphism is bijective:

Homgr,(g,) (I1(pg), S(US, W¥)[m,|™)
5 Homgy,(g,) (St2@rL(\) @ x o det, S(UC, W®)[m,]).

We now sketch the proof of Theorem 1.1. The preliminary step, which
is purely local and holds for arbitrary distinct Hodge-Tate weights, is the
definition of II(pg). Since N? # 0, the (p,I')-module D := D,iz(pg) over
the Robba ring with E-coefficients R g can be uniquely written as Rg(d1) —
RE(02) —RE(d3) for some locally algebraic characters 6; : Q, — E* (where,
as usual, Rg(d1) is a submodule, R (d3) a quotient and — means a nonsplit
extension). We assume that the triangulation (Rg(d1), Re(d2), Re(d3)) is
noncritical, equivalently the Hodge-Tate weight of d; is k; — (i — 1). Twisting
Drig(pg) if necessary (and twisting II(pg) accordingly), we can assume §; =
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xk 8y = zFe71 and 65 = akse2 (note that D is not étale anymore if
ki1 # 0, but this won’t be a problem). By the recipe for GL2(Q)), one can
associate to D? := Rp(d1) — Re(d2) and D3 := Rg(d2) — Re(d3) locally
analytic representations 7 2 and ma 3 of GL2(Q,). Then the representations:

CLQ R 02,2 -

/ ~ / ~~

St3(A\) — Ci1 C13, StP(A) — Ca Co3,

~ — ~ —
v%‘i()\) vp, (A)

can be defined as subquotients of the locally analytic parabolic inductions

GL3 p an GL3 b an
(Indﬁ1 (((f) ) 1,2 ® 63e2)% and (IndE(é;@) )51 ® (m2,3 ® € o detqr, )™ respec-

tively, see § 3.3.3. Note that these two representations (together) contain
what we call the two “simple” L-invariants of ps (given by the Hodge fil-
tration on the 2-dimensional filtered (p, N)-modules associated to D? and
D3). We consider the two following representations (see § 3.3.4 where they
are denoted IT' (A, 1)* and IT2(\,¢)1):

Cip
Cia \.01,3
N e
I = St°()) vE (M)
~
Ca
Cia
~
12 = St°()) v (A)
~ e AN
Ca1 Ca3
\~ e
Ca,2

We say that D is sufficiently generic if there are canonical isomorphisms
(induced by Colmez’s functor [24]):

(14) EXt%}Lg (Qp) (71—1727 7T172) — EXt%go,F) (D%7 D%)

Xt (g,) (723, T2:3) — Ext(, (D3, D3)

satisfying the properties of Hypothesis 3.26 in the text. We prove in Lemma
3.29, Proposition 3.30 and Proposition 3.32 that such isomorphisms are true
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under mild genericity assumptions on the (¢,I')-modules D? and D3. Note
that we couldn’t find these isomorphisms in the literature (though we sus-
pect they might be known), so we provided our own proofs, see e.g. the proof
of Proposition 3.32 in the appendix, where we go through the Galois side
and use deformation theory, which forces the aforementioned mild generic-
ity assumptions. Using these isomorphisms, we then prove that there are
canonical perfect pairings of 3-dimensional E-vector spaces (see Theorem
3.45):

Xté%r) (Re(d3), DY) x EXtéLS(Qp) (v%‘;(/\),ﬂl) — E
xti,r) (D3, RE(61)) X Extér ) (v (A), 1) — E.

1

E
E

For instance (1.5) comes from a perfect pairing Ext%¢7r)(RE(53),D%) X

~

EXt%go,F) (D?,RE(d2)) — E and an isomorphism ExtéLS(Qp)(v%’;()\)7H1) —
EXt%p,F) (D?,RE(d2)) induced by the isomorphism in (1.4) and locally ana-
lytic parabolic induction (see (3.90)). The (p,I')-module D gives an E-line
in the left hand side of both (1.5), (1.6), hence its orthogonal space gives a
2-dimensional subspace of ExtéL3 (Qp)(v%‘; (\),II') and a 2-dimensional sub-

space of ExtéLs(Qp) (vF (A, I12). Choosing a basis of each subspace and amal-
gamating as much as possible the four corresponding extensions produces a
well-defined locally analytic representation of the form (see (3.110)):

which turns out to determine and only depend on D. Then results of [4]
show that there is a unique way to add constituents Cy A4, C, 4, C15, Ca 5 on
the right so that the resulting representation II(D) = II(pg) contains II(D)~
and has the same form as (1.1) (see (3.111)).



Higher L-invariants for GL3(Q,) and local-global compatibility 783

We now assume k1 = ko = k3 and recall that pg is then upper triangular.
The strategy of the proof of Theorem 1.1 is the same as that of [32], [33] when
n = 2 and Fj is arbitrary, and is entirely based on infinitesimal deformations.
Very roughly, we replace the diagonal torus GL; x GL; in the arguments of
[32] by the two Levi Lp, = GLy x GLy and Ly, = GL1 x GLg, and we deal
with the GLo-factors using the p-adic local Langlands correspondence for
GLs (@p)-

Following Emerton’s local-global compatibility work for GL2(Q,) ([42]),
we first study the localized modules Ordp, (S(U#, W#®)5), i = 1,2 where
Ordp, is Emerton’s ordinary functor ([40], [41]) with respect to the parabolic
subgroup P;(Q,) of GL3(Q,) opposite to P;(Q,). We show that
Ordp, (S(U*, W* )) is a faithful module over a certain p-adic localized Hecke
algebra T(U p)g’ﬁord (see Lemma 6.7) and using the p-adic local Langlands
correspondence for GL2(Q)) over deformation rings (as in [53] or [67], see
also the appendix), we define a continuous admissible representation W%i (U®)

of Lp,(Q,) over T(U P)gi_ord (see (7.43)) and a canonical “evaluation” mor-
phism:

XPL,(Up) ®f(UP)Pi—ord W%(Up) — OI'dPl(S\(Up, Wp)ﬁ)

where Xp (U®) is the ﬁ'(U@)g"_ord-module

cts

&
Homs o= )R

U*),0rdp(S(U*,W¥®)5)),

W# being an invariant Opg-lattice in the algebraic representation W¥ (see
(7.44)).

Twisting if necessary, we can assume k1 = ko = k3 = 0. We want to prove
that the restriction morphism (1.2) (with x = 1 now) is bijective. Injectivity
is not difficult, the hard part is surjectivity. Let w be a nonzero vector in

the subspace D+ of ExtéLg(Q )(v%o ,IT") orthogonal to D under the pairings
P 3—1
(1.5), (1.6) and denote by II* the corresponding extension II' —v% . It is
3—i
enough to prove that the following restriction morphism is surjective for

i = 1,2 and any such w:

(1.7)  Homgr,,(q,) (11", Sw*, W¥)[m,]™")
— I’IOII]GL3 (@) ( Stgo, S(Upa Wp) [mp]an) .



784 Christophe Breuil and Yiwen Ding

We now assume ¢ = 1, the case ¢ = 2 being symmetric. Taking ordinary
parts induces an isomorphism (see the first isomorphism in (7.78)):

(1.8)  Homgr,(q,) (St5°, S(UY, W)z[m,|™)
5 Homyp,, (g, (St3° K1, (Ordp, (S(U?, W¥),[m,]))™)

where X is the exterior tensor product (GL2(Q,) acting on the left and
Q, on the right). By a variation/generalization of the arguments in the
GL2(Qp)-case, we prove that the restriction induces an isomorphism (see
Corollary 7.47):

(1.9) Homyp, (g, (m12 K1, (Ordp, (SUY, W®)5[m,))™)
— Homyp,, (q,) (St3°X1, (Ordp, (S(U?, W)5m,])™).

Note that the isomorphism (1.9) involves the “simple” L-invariant contained
in D? and is thus already nontrivial.

Denote by V, the tangent space of Spec(’?f‘(Up)g1 ~ord[1/p]) at the closed
point associated to the Galois representation p. Going through Galois defor-
mation rings, one can prove that there is a canonical morphism of E-vector
spaces dwip VvV, — Ext%%lﬂ)(D%,D%) such that the image of the com-
position dwfr’p :V, = Ext(l%r)(D%,D%) — Exttpvr)(D%,RE(ég)) is exactly
D+ (see Proposition 7.51). The proof of this statement is based on two
main ingredients. The first one (see Theorem 2.7) says that any extension
D? — D? which is contained as a (¢, I')-submodule in an extension D — D
is sent (after a suitable twist) to an element of Dt via Extao’r)(D%, D?) -

Ext%%r) (D2, RE(d2)) (the analogue of this statement in dimension 2 was
first observed by Greenberg and Stevens [46, Thm. 3.14], see also [23]). This
shows that the image is contained in D+. The second ingredient is a lower
bound on dimg V, (see Proposition 7.30) which implies that the image must
be all of D+.

The vector w is thus the image of a vector v € V,, via the above surjection
dwffp :V, = D+, and by definition of V), v is an Ele|/ €2-valued point of
Spec('ﬁ‘(U@)?_ord). Denote by Z, the corresponding ideal of 'i‘(UW)gl_ord,
by a generalization of arguments due to Chenevier ([19]), one can prove that
the Ele]/e2-module X p (U®)[Z,][1/p] of vectors in Xp (U#)[1/p] killed by T,
is free of finite rank (see (7.82)). This implies that any Lp, (Qp)-equivariant

morphism 712 81 — (Ordp, (S(U?, W);5[m,]))* extends to an E[e]/e*-



Higher L-invariants for GL3(Q,) and local-global compatibility 785

linear and L p, (Qp)-equivariant morphism
710 Mg e 1 — (Ordp, (S(UT, WP)[L,])™

where 71,58p(g 1 1= 7, (UY) @ gy ma-ons (T(U®)2 0" /7,)[1/p). Note that

T1,2 (resp. T) is an extension of w2 (resp. 1) by itself. By the adjunction
formula for Ordp,, we obtain a GL3(Q,)-equivariant morphism:

(1.10) (Indg?(@i?)?) %172 &E[e]/@ ’i’)an — §(Up’ W@)ﬁ[zv]an.

The representation I is a multiplicity free subquotient of the representa-
tion (IndEL' (@)

Pl(Qp)
GL3(Qp)-equivariant morphism:

T1,2 Mg e 1) and one can prove that (1.10) induces a

I — S(U2, W)y [m, ™ € S(U®, WO)s[Z, )

which restricts to the unique morphism St — S(U?, W¥)5lm,|*" corre-
sponding to m 2 X1 — (Ordp, (S(U*, W®)5im,]))*" via (1.8) and (1.9) (see
the proof of Theorem 7.52). This proves the surjectivity of (1.7) (for i = 1)
and finishes the proof of Theorem 1.1.

The results of this work are used in [9], where a more precise relation is
proven between the two “branches” in (1.1) and the filtered (p, N)-module
of p,, (along the lines of [4, Conj. 6.1.2]). But important questions remain.
For instance one can ask for a more explicit (local) construction of the
GL3(Qp)-representation II(p,,). Though there is so far no construction of
(analogues of) II(py,) for n > 4, one can also still try to push further the
results and methods of this paper in arbitrary dimension. Note that many
of the intermediate results used in the proof of Theorem 1.1 are already
proven here in a more general setting than just GL3. For instance we allow
an arbitrary parabolic subgroup of GL,, in §§ 4, 5, 6, 7.1.1 and we work in
arbitrary dimension n in all sections except §§ 3, 7.2.3 and the appendix.

We finally mention that some of our results in arbitrary dimension have
an interest in their own. For instance Corollary 7.34 gives new cases of classi-
cality for certain p-adic automorphic forms with associated Galois represen-
tation which is de Rham at p and Theorem 7.38 gives a complete description
(under certain assumptions) of the P-ordinary part of completed cohomol-
ogy for a parabolic subgroup P of GL, with only GLs or GL; factors in
its Levi subgroup, analogous to Emerton’s description in the GL2(Q))-case

([42]).
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At the beginning of each section, the reader will find a sentence explain-
ing its contents. We now give the main notation of the paper.

Notation

In the whole text we denote by E a finite extension of Q,, Op its ring of
integers, wg a uniformizer of O and kg its residue field. Given an E-bilinear
map V x W 2 E, for W C W we denote:

WHt:={weV, vuw=0YweW?}

For L a finite extension of QQ,, we let ¥ be the set of embeddings of L
into E (equivalently into Q, by taking E sufficiently large), q; = |ky|
with k7, the residue field of L, Gal;, := Gal(L/L) the Galois group of L,
Wi C Galg, the Weil group of L, and I'y, := Gal(L((p»,n > 1)/L) where
((pr)n>1 is a compatible system of primitive p”-th roots of 1 in L. When
L = Qp, we write I' instead of I'gp,. We denote by ¢ : Gal, - I't — E*
the cyclotomic character with the convention HT,(¢) = 1 for all o € ¥,
where HT,, is the Hodge-Tate weight relative to the embedding ¢ : L — E,
and by Z its reduction modulo p. We normalize local class field theory by
sending a uniformizer to a (lift of the) geometric Frobenius. In this way, we
view characters of Gal; as characters of L* without further mention. We
let unr(a) be the unramified character of Galy, sending a uniformizer of L*
toa € FX and |-| := unr(q;'). We denote by val, the valuation normalized
by val,(p) = 1.

If A is a finite dimensional Qp-algebra, for instance A = E or Ele]/€?
(the dual numbers), we write R 4 1, for the Robba ring associated to L with
A-coefficients (see for example [51, Def. 2.2.2]). When L is fixed, we only
write R 4. We denote by Extl('%FL)(-, -) the extensions groups in the category

of (¢,I'r)-modules over Rg 1 and by H&O 1ﬂL)(-) = Ext’(A%FL)(REL 9 ([1,
§ 2.2.5], [57], [22]). If § : L — A is a continuous character, we denote by
Ra,1(9) the associated rank one (¢,I'r,)-module (see [51, Cons. 6.2.4]). We
have:

Ext(,r,)(Re, RE) = Extga, (B, E) = Hom(Galg, E) = Hom(L*, E),
where the last isomorphism follows from local class field theory, and

Hom(Galy, E) (resp. Hom(L*, F))



Higher L-invariants for GL3(Q),) and local-global compatibility 787

is the E-vector space of continuous characters of Galy (resp. L*) to the
additive group E. We fix the isomorphism given by the above composition.
For any continuous § : L* — EX, the twist by 6! induces a canonical
isomorphism Ext%@’FL) (Re(6), Rp()) = Ext%%rL) (RE, RE), and we deduce
isomorphisms (uniformly in ¢):

(1.11) Ext(,p,)(Re(6), Re(6)) — Hom(L™, E).
By [33, Lem. 1.15], the isomorphism (1.11) induces an isomorphism:
(1.12) Ext;(Rg(6), Re(6)) — Homso(L*, E)

where Exté denotes the subspace of extensions which are de Rham up to
twist by characters, and Homy, (L™, E') denotes the subspace of smooth char-
acters. Finally, if L = Q,, we denote by wt(d) := lim,_¢ % € I the
Sen weight of §, for instance wt(z* unr(a)) = k for k € Z and a € E*.

Let G be the L-points of a reductive algebraic group over QQ,, we refer
without comment to [74], resp. [75], for the background on general, resp.
admissible, locally Q,-analytic representations of G over locally convex FE-
vector spaces, and to [73] for the background on continuous (admissible)
representations of G over E. If V is a continuous representation of G over
E, we denote by V" its locally Qp-analytic vectors ([75, § 7]). If V is a
locally Qp-analytic representation of G over F, we denote by V", resp.
Viale the subrepresentation of its smooth vectors, resp. of its locally Qp-
algebraic vectors ([43, Def. 4.2.6]). If X and Y are topological spaces, we
denote by C(X,Y’) the set of continuous functions from X to Y. If P is the
L-points of a parabolic subgroup of G and 7p is a continuous representation
of P over F, i.e. on a Banach vector space over E, we denote by:

(Ind$ WP)CU :={f: G — 7p continuous, f(pg) = p(f(9))}

the continuous parabolic induction endowed with the left action of G by
right translation on functions: (¢f)(¢") := f(g¢'). It is again a continuous
representation of G over F. Likewise, if wp is a locally analytic representation
of P on a locally convex E-vector space of compact type, we denote by:

(Ind% 7p)™ := {f : G — 7p locally Q,—analytic, f(pg) = p(f(g))}

the locally analytic parabolic induction endowed with the same left action
of G. It is again a locally analytic representation of G on a locally convex
E-vector space of compact type (see e.g. [54, Rem. 5.4]). If 7p is a smooth
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representation of P over E, we finally denote by (Ind%7p)> the smooth
parabolic induction (taking locally constant functions f : G — 7p) endowed
with the same G-action. We denote by dp the usual (smooth unramified)
modulus character of P.

If V, W are two locally Q,-analytic representations of G over E, we
define the extension groups Exth(V, W) as in [78, Déf. 3.1, that is, as the
extension groups Exti)(g E)(WV,VV) of their strong duals V'V, WV as al-
gebraic D(G, E)-modules where D(G, E) is the algebra of locally analytic
E-valued distributions. If the center Z of G (or a subgroup Z of the center
of G) acts by the same locally analytic character on V and W, we define the
extension groups with that central character Extia 7(V,W) asin [78, (3.11)],
and there are then functorial morphisms Ext"G’ Z(V,W) — Exti(V,W). If V,
W are smooth representations of G over E, we denote by Extg7w(V, W) the
usual extension groups in the category of smooth representations of G over
(see e.g. [28, § 2.1.3] or [62, § 3]). Finally, if (V;);=1,... » are admissible locally
analytic representations of G, the notation V3 — Vo — V3 —--- — V. means an
admissible locally analytic representation of G such that V; is a subobject,
V5 is a subobject of the quotient by Vi etc. where each subquotient V; — V41
is a nonsplit extensions of V;11 by V;.

If A is a commutative ring, M an A module and I an ideal of A, we
denote by M[I] € M the A-submodule of elements killed by I and by
Af{I}ZZZUn21AfU%}

2. Higher L-invariants and deformations of (¢, I')-modules

In this section we define and study certain subspaces Lpy(D : D}P™1) and
tev(D : DY) of some Ext! groups in the category of (¢, I'z)-modules that
will be used in the next sections.

We fix a finite extension L of Q, (and recall we write R for Rg ).
Let D be a trianguline (¢,I')-module over R of arbitrary rank n > 1. We
denote an arbitrary parameter of D by (1, - ,d,) where the §; : L* — E*
are continuous characters (see e.g. [11, § 2.1]). Recall that D can have several
parameters, see loc. cit.

Definition 2.1. We call a parameter (01, ,0y) of D special if we have:

S0y =1 [[ o™ vie{t,--- . n-1}
oeEX

for some ky; € Z.
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We say that (01, ,d,) as in Definition 2.1 is noncritical if ks ; € Z~g
for all o, i. It follows from the proof of [1, Prop. 2.3.4] that a trianguline
D with a special noncritical parameter is de Rham up to twist. It then
easily follows from Berger’s equivalence of categories [2, Thm. A] that such
a D has only one special noncritical parameter. In the sequel when we say
that (D, (41, -+ ,9,)) is special noncritical, it means that (d1,- - ,d,) is the
unique special noncritical parameter of D.

We now fix a special noncritical (D, (41, ,0,)) and for 1 <i<i' <n
we denote by Dg/ the unique (¢, I'r)-module subquotient of D of trianguline
parameter (J;,- - ,8;). It is then clear that (D', (d;,--- , &) is also a special
noncritical (¢, 'z )-module.

We first assume that for ¢ € {1,--- ,n — 2} the extension of Rg(d;+1)
by RE(d;) appearing as a subquotient of D?il is nonsplit. We consider the
following cup-product:

(2.1)  Ext(,p,)(Re(d), DI ") x Ext(, p, (D, DI
— Extl, ) (Re(6,), DI ).

Lemma 2.2. We have dimp Ext(, ., (RE(0,), DI ™) = (n—1)[L: Q) +1,

and the surjection D?_l — RE(0p—1) induces an isomorphism:

EXt%‘P,FL) (RE((Sn)7 D?il) — EXt%%FL) (RE((STL), RE(5n_1)) = F.
Proof. The lemma follows easily from [61, § 2.2] (see also [57]). O

By functoriality, we have ‘phe following commutative diagram of pairings
Ewh)ere we write Ext’ for Ext{,, 1, R for Rpg):
2.2

Ext'(R(6,),Dr™Y) x Exti(DM ', Dr%)  —— Ext}(R(5,),DI?)

| l

Ext'(R(5,),Dr™Y) x Exti(Drt,Dr ) ——  Ext}(R(5,),Dr Y

| |

Ext'(R(6,), DY) x Ext' (D', R(6,_1)) —=— Ext?(R(6,),R(6p_1))

with the bottom right map being an isomorphism by Lemma 2.2.

Proposition 2.3. Keep the above assumption and notation.
(1) The map K is surjective.



790 Christophe Breuil and Yiwen Ding

(2) The bottom cup-product in (2.2) is a perfect pairing and we have:
Ker(k) = Ext(,p,\(Re(dn), DY )"

with respect to the middle cup-product in (2.2).

Proof. (1) It is enough to show Ext%gO’FL)(D’ffl, D7) = 0. By dévissage it
is enough to show that EXt?%FL)(D?_l, REg(6;)) =0foralli e {1,--- ,n—2}.
We have a natural isomorphism:

2
EXt((p

(DL RE(8) = H, (DY) @r, Re(3).

Together with [57, § 5.2] (see also [33, Prop. 1.7(4)]), we are thus

reduced to show H ?(p FL)(D?*1 ®r, RE(6; 15)) = 0 which follows easily

from our assumption on D’f_l.
(2) Using the natural isomorphisms:

Ext{,p, (D7 Re(6n1)) = Hi,p, (DF)Y @r, Re(6n-1)),
Extl, ) (Re(0:), DY ™Y) 2 Hi,p, (D7 ®r, Re(,"),
Ext{,r,)(RE(6n), RE(0n-1)) = HE,p ) (Re(6-16,")),

1

I

we are reduced to show for the first statement in (2) that the cup-product:

Hi,r,) (DI @Ry RE(6n-1)) X H,p, (D™ ®©r, RE(G,))

% HY, 1, (Re(0,-1071)

is a perfect pairing. We have a commutative diagram (where we write H’
for H(, 1y, R for RE):

(2.3)

HY(D})Y 8r R(Ga-1)) x  HYDI™ @r R(5;Y) —2os HA(R(G,-10;1)

H l l

HY((DP)Y ©r R(6a-1)) x HY(DP ™' ©r R(5,112)) —— H*(R(e))

where the two vertical maps on the right are induced by the injection
Re(0;1) — Rp(6,e) (see for example [51, Cor. 6.2.9], and recall
from Definition 2.1 that we have 5,1 = 5 !¢ [Loes, ohon-1=1 with
kgn—1 —1 > 0). Moreover, using the same argument as in the proof of [33,
Lem. 1.13] (or by [11, Lem. 4.8(i)] together with an easy dévissage argu-
ment), the vertical maps are isomorphisms. By Tate duality (see [57, § 5.2]
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or [33, Prop. 1.7(4)]), the bottom cup-product in (2.3) is a perfect pairing,
hence so is the top cup-product. The first part of (2) follows.
By similar (and easier) arguments as in the proof of (1), we have

Ext?,p,y(Re(6,), D %) = 0.
By (2.2), we deduce:
Ker(k) C Ext(,p,\(Re(d,), D)™

However, since the bottom cup-product of (2.2) is a perfect pairing and the
bottom right map an isomorphism, we easily get Ext%so r,)(RE(dn), Drhtc
Ker(k), hence an equality. O

The (¢,T'r)-module D gives rise to a nonzero element in
Ext(,r,)(RE(0,), DY)

that we denote by [D]. In particular the E-vector subspace E[D] it generates
is well defined and we define (with respect to the two bottom pairings in

(2.2)):
Lem(D: DY™Y) = (E[D)* C Ext(,p,, (D", DI 1)
ten(D 2 DYTY) = (E[D)*" C Ext(, p,y (D Re(0n-1))-

By Proposition 2.3 (and the bottom right isomorphism in (2.2)), we deduce
a short exact sequence of E-vector spaces:

(2.4) 0 — Ker(k) — Lrm(D : DY) 5 tpp(D - DY) — 0.

The following corollary also follows easily from Proposition 2.3 and (2.4).

Corollary 2.4. (1) The (¢,I')-module D (seen in Ext%%FL)(RE(én),D?f_l))
is determined up to isomorphism by D’f_l, Op, and Lrm(D : D?_l) (resp.
and fpyp(D = DY)

(2) If D (seen in Ext%@7FL)(RE(5n),D71"”—1)) is nonsplit, then Lpn(D :
DY) (resp. bpni(D 2 DY) is of codimension 1 in Ext%%FL)(D?fl, D h
(resp. in Ext%%FL)(D?_l,RE(én_l))).
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By functoriality we have a commutative diagram for i < n — 1 (where
we write Ext® for Ext§(p7r), R for Rg):
(2.5)
Ext'(R(3,), DI~'/Di) x Ext"(D?~1/Di R(6_1)) —— Ext?(R(6n), R(6n_1))

3 | |

Ext'(R(5,), D7) x Ext'(D? ', R(0,_1)) —— Ext®(R(6,),R(6n_1)).

It is easy to deduce for i < n — 1 from [57, § 5.2] (see also [33, Prop. 1.7]):
Ext?, 1,y (RE(0n), Di) = Ext{, p,)(D{, Re(6,-1)) = 0

and it is clear that Hom(, r,y( D}, RE(0n—1)) =Hom, 1, (R £(6r), D 1/DY) =

>~

0. By dévissage, we deduce that w; is surjective, j; is injective and Ker(u;) =
Ext%so FL)(RE(én), D?). Also the two cup-products in (2.5) are perfect pair-
ings by Proposition 2.3. In particular we obtain the following lemma.

Lemma 2.5. We have in Ext%%FL)(D?_I,RE((Sn_l)) fori<n—1 (via j;):
(2.6) ' ' '
ten(D: DY) NExt(, 1y (DY 1/ DY, Re(6n-1)) = lem(D/Di: DY~ /DY)

and with respect to the bottom pairing in (2.5):

Ext{, (D7~ / D}, Re(0n-1)) = Ext(,p,\(Re(da), DY)
Remark 2.6. In particular, for ¢ = n — 2, we have a perfect pairing:
(2.7)

Ext(, p,)(RE(6n), RE(6n-1)) X Ext{,,y(RE(6n-1), RE(0n-1)) — E.

Thanks to (1.11) we can thus view:
KFM(D : D?_l) N EX‘C%%FL)(RE((sn_l), RE((Sn—I))

= tpn(D/D} 2 : DYDY
— Low(D/Dy 2 DY/ DE?)

as an E-vector subspace of Hom(L*, E) of codimension < 1. By [33, Prop.
1.9], the pairing (2.7) induces an equality of subspaces of the extension group
Ext{, 1,y (RE(0n-1), RE(0n-1)):

Exty(Re(0n-1), RE(6n-1)) = Ext}(RE(6,), Re(0n-1))"
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where Ext! denotes the subspace of extensions which are crystalline up
to twist by characters. In particular via (1.12) we have an inclusion in

Ext{, ) (Rp(0n-1), RE(8n-1)):
Homo (L, E) C lpy(D/ DY 2 D=1/ DP—2)

if and only if D/ D?‘z is crystalline up to twist by characters.

We now assume that for i € {2,--- ,n— 1} the extension of Rg(d;+1) by
RE(0;) appearing as a subquotient of D% is nonsplit. Similarly to the two
bottom lines of (2.2) we have a commutative diagram of pairings:

Ext!(D2,D2) x Ext' (D3 R(6)) —— Ext2(D2, R(61))

(2.8) Hll zl

Ext!(R(d2), D}) x Ext! (D2, R(6)) —— BExt2(R(82), R(61))

where the right vertical map is an isomorphism of 1-dimensional E-vector
spaces, the bottom cup-product is a perfect pairing, x’ is surjective, and:

dlmE EXt%(p,FL) (RE(52)7 ng)
= dimg Ext%¢7FL)(D’21,RE(51)) =(n—-1)[L: Q)+ 1.

We define as previously the orthogonal spaces

N

Lry(D : DY) Ext(, ) (D5, D)
tem(D : D3) € Exti,p,)(Re(62), D5)

of E[D] C EX‘E%@ ) (D3, RE(61)). We again have a short exact sequence:
0 — Ker(x') — Len(D : DF) 5 by (D : DE) — 0.
We have as in (2.5) a commutative diagram for 2 < i

Ext!(R(6), D}) x Ext! (D2 R(61)) —— Ext2(R(82), R(61))

A N |

Ext!(R(62), Di) x Ext!(Di, R(61)) —— Ext®(R(d2), R(61))
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where the cup-products are perfect pairings, j; is injective and wu; is surjec-
tive. Moreover as in Lemma 2.5, we have in Ext%cp r,)(RE(02), D) for 2 <'i

(via )

EFM(D : Dg) N EXt%%FL)(RE((SQ), D%) = KFM(Di : D%)
Theorem 2.7. Let ]5711_1 (resp. ﬁg} be a deformation of DY™" (resp. DY)
over Rjq/e of rank n — 1 (thus with DVt = D (mod €), resp. Dy =
D% (mod €)). Then there ezist a deformation D of D over REiq/e and a

deformation &, (resp. 01) of 8, (resp. 61) over E[e]/€? such that D sits in
an ezact sequence of (p,I'r)-modules over R e

0— DY — D — R (60) — 0

(resp. 0 — RE[E]/@((S )— D —» D" —0)
[D]):
Rejq/e (5;1571)] € Lem(D : D711_1)

if and only if (with notation as for

(D7 ®r

E[e]/€?

(resp. (D} ®r,,,.2 R (07 '01)] € Lona(D 2 D).

Proof We prove t the case D]~ ! the proof for Dy being symmetric. Replacing
D and Dn ! by D®RE[ Je2 RE[E]/€2 (5 (5 ) and Dn 1®RE[ Je2 RE[e]/e ((5 (5 )
respectively, we can assume 5n = 0,. By twisting by Rg(6, ), without
loss of generality we can assume ¢, = 1. Now consider the exact sequence

0 — D} — D” L— Dy~ 1 — 0. Taking cohomology, we get a long
exact sequence:

0= Hi,p,)(Di™Y) = Hi,p (DY) & Hi,p,y (DY) % HE,p, (DF )

with the map ¢ equal (up to nonzero scalars) to ([5?*1], -) where ( , ) is
the cup product in (2.1) with 6, = 1 (and [D}7!] is seen in Ext%(p FL)(D?_l,

D). So we have ([ﬁ’f_l], [D]) = 0 if and only if [D] € H(lgo FL)(D?_l) lies

in the image of pr if and only if a deformation D of D as in the statement
exists. But by definition we also have ([D} '], [D]) = 0 if and only if [D} '] €
Lem(D : DY), This concludes the proof. O

Remark 2.8. One can view Theorem 2.7 as a parabolic version of [46, Thm.
3.14] or [23, Thm. 0.5].
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When n = 2, the two cases in Theorem 2.7 obviously coincide, which in
particular implies the following corollary.

Corollary 2.9. Assume n = 2, then we have Lym(D : RE(61)) = Lrvm(D :
RE(02)) when these two vector spaces are viewed as subspaces of Hom(L*, E)
via (1.11).

Remark 2.10. For any o € X, denote by Hom,(L*, E) the subspace
of Hom(L*, E) consisting of locally o-analytic characters on L*. We have
Homeo (L™, E) C Hom,(L*,E) and dimg Hom,(L*,E) = 2. Let log, :
L* — L be the unique character which restricts to the p-adic logarithm
on OF and such that log,(p) = 0. We see that (val,,o olog,) form a basis
of Hom,(L*, E). Assume n = 2, D special noncritical and noncrystalline
(equivalently semi-stable noncrystalline with distinct Hodge-Tate weights)
and denote by Lrpym(D) C Hom(L*, E) the subspace of Corollary 2.9. Then
we have Lpy(D) N Homeo (L™, E) = 0 and

Lym(D)y := Lpy(D) NHom, (L, E)

is 1-dimensional (inside Hom(L*, E)). Thus for any ¢ € X there exists
Ly € E such that Lrni(D)s is generated by the vector o olog, —L, val,. By
comparing Theorem 2.7 with [81, Thm. 1.1] (which generalizes a formula due
to Colmez), it follows that this £, is equal to Fontaine-Mazur’s L-invariant
obtained from the Hodge line in the o-direct summand of the (¢, N)-filtered
module associated to D (with the normalization of [23, § 3.1]).

We end this section by a quick speculation. We can call Lpy(D : D?_l)
(resp. Lem(D : DF)) the (Fontaine-Mazur) L-invariants of D relative to
D?*l (resp. to D%). A natural question in the p-adic Langlands program is
to understand their counterpart on the automorphic side, e.g. in the setting
of locally Qp-analytic representations of GL, (L). The above results suggest
that such invariants might be found in deformations of certain representa-
tions of (lower rank) Levi subgroups of GLy(L). In the following section,
we indeed succeed in finding such L-invariants in the locally analytic repre-
sentations of GL3(Q)) constructed in [4] by means of the p-adic Langlands
correspondence for GLa(Q)).

3. L-invariants for GL3(Q))

In this section we use the subspaces Lryv(D @ D7 ') and fpy(D @ DP )
defined in § 2 to associate to a given 3-dimensional semi-stable noncrystalline
representation of Galg, with distinct Hodge-Tate weights one of the finite
length locally analytic representations of GL3(Q)) constructed in [4].
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3.1. Preliminaries on locally analytic representations

We recall some useful notation and statements on locally analytic represen-
tations. We fix the Q,-points G of a reductive algebraic group over Q, (we
will only use its Qp-points).

Lemma 3.1. Let Vi, Vo, V be locally Q,-analytic representations of G over
E such that V is a strict extension of Vo by V1 in the category of locally an-
alytic representations of G. Suppose Homg(Va, V') = 0, where Homg(Va, V')
is the E-vector space of continuous G-equivariant morphisms, and that V7,
Vo have the same central character x. Then V' has central character x.

Proof. For z in the center of G consider the G-equivariant map V — V,
v — zv—x(2)v. It is easy to see this map induces a continuous G-equivariant
morphism Vo — V| which has to be zero. The lemma follows. O

Let Vi — Vo — V be closed embeddings of locally Q,-analytic rep-
resentations of G over E with central character y. Let U be a strict ex-
tension of Vi by V and W := U/V, (where Vo — V — U). We can
then view U as a representation of G over Ele]/¢?> on which € acts via
€ : U —» Vi —— U. Thus the closed subrepresentation V of U is ex-
actly the subspace annihilated by e. We also see W as a representation
over Ele]/e? by making € act trivially, so that U — W is a surjection
of Ele]/e*-modules. Let ¢ : Q¥ — E be a continuous additive charac-
ter and define the character 1+ ¢e : QF — 1+ Ee C (E[¢]/e*)*. Set
U' = U ®pgjq/e (1 +9e) odet and W' := U’'/V, (where we still denote by
Va the image of V5 ®pgq e (1 + te) o det).

Lemma 3.2. We have W = W' as G-representations.

Proof. Let e be a basis of the underlying Ele]/e2-module of the representa-
tion (1 + 1) o det, we have a natural E-linear bijection f : U = U’, v+
v®e. For v € V, we have:

9(f(v)) = g(v®@e) = g(v) @ ((1 + Ye) o det(g))e = g(v) ® e = f(g(v))

where the last equality follows from the fact that g(v) € V < U is annihi-
lated by e. Thus f|y induces a G-equivariant automorphism of V' if we still
denote by V' the image of V ®pgjq/e (1 4 9¢) o det in U’'. We now consider
the induced map (still denoted by f):

f:U/Va = U Vs,
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The same argument using the fact that W is killed by e shows that f is
G-equivariant. O

The following lemma will often be tacitly used in the sequel.

Lemma 3.3. Let Z := (@;< )" for some integer r and x, X' be locally analytic

characters of Z over E. Assume x # X', then we have Ext%(x’,x) =0 for
i > 0.

Proof. This follows from [54, Cor. 8.8] together with [54, Thm. 4.8] and [54,
Thm. 6.5]. 0

Notation 3.4. Let Vi, Vo be admissible locally Qp-analytic representations
of G over E, W C Exté(Vg,Vl) be a finite dimensional E-vector subspace
and d := dimg W. Then we denote by &(V1, V;Bd, W) the extension of VQ@d
by V1 naturally associated to W.

Explicitly, let e1,--- ,eq be a basis of W over E and denote by
&E(V1, Vo, ;) € Ext(Va, V1)

the extension corresponding to e;, then we have:

i=1,.d
W, VLW = (Vi Va,e)
Vi

where the subscript V; means the amalgamate sum over V;. This is an ad-
missible locally Q,-analytic representation of G' over E which only depends
on W.

3.2. p-adic Langlands correspondence for GL2(Q,) and
deformations

We study Ext! groups of rank 2 special (i, T')-modules over Rx and relate
them to Ext! groups of their associated locally analytic representations of
GL2(Q)). We prove several results on these Ext! groups that are used in the
next sections. Some statements in this section might already be known or
hidden in the literature, but we provide complete proofs.
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3.2.1. Deformations of rank 2 special (¢,I')-modules. We define
and study certain subspaces of Ext! groups of (¢, ')-module over R and
relate them to infinitesimal deformations of rank 2 special (¢, I')-modules.
We now assume L = Q,, and let (D, (01,02)) be a special, noncritical and
nonsplit (¢, I')-module over Rg (see the beginning of § 2).

Lemma 3.5. We have dimpg Ext(l%r)(D, D) =5 and a short exact sequence:
(3.1)
0 = Ext(, 0y (D, RE(01)) = Ext(, (D, D) = Ext(, r (D, Rg(52)) = 0

where dimp Ext(, (D, Rp(81)) = 2 and dimp Ext(, (D, Rp(d2)) = 3.

@I

Proof. By the hypothesis on D we have a long exact sequence:

(3.2) 0— Hom(%p) (D, RE(51)) — Hom(%p)(D, D)
— Homy, (D, RE(82)) — Ext, (D, Rp(61))
— Ext(, (D, D) == Ext(, (D, Rg(d2)) — - -
By Proposition 2.3(1), & is surjective, and ¢ is injective since the third arrow
is obviously an isomorphism (using the fact that D is non-split and noting
that both source and target are 1-dimensional E-vector spaces). By (1.11)

we ha;/e dimp Ext(,  (RE(d2), RE(d2)) = 2. Using [57, Thm. 5.3, Thm. 5.7],
we get:

dimpg EXt%%F)(RE((;l),RE((sQ)) =1, EXt%W,F)(RE((SQ),RE((SQ)) =0

which implies dimpg Ext%%r) (D,RE(d2)) = 3 by an obvious dévissage. By

[57, Thm. 5.3] together with [57, § 5.2] we obtain (where DV is the dual of
D):

dimpg EXt%%F)(D,’RE((Sl)) =dimg H&P’F)(Dv QR g RE(él)) = 2.

The lemma follows. O

We have (see Lemma 2.2 for the latter)
dimpg Hom(w’p) ('RE((Sl), RE(él)) = dimg EX‘D?@’F) (RE((sg), RE(51)) =1.

From [57, § 5.2] and the proof of Lemma 3.5 we have:

dimpg Ext%%r) (RE(52), RE(dl)) =dimg EXt%%F) (D, RE((Sl))
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= dimg Ext%%r) (Re(d1), Re(61)) =2

Moreover we also have Ext%%r) (D,Rg(61)) = H(w F)(D ®r, RE(61)) =0.
We deduce a long exact sequence:
(3.3) 0— HOIH(%F) (RE(51),RE(51)) — EXt%%F) (RE((SQ),RE((Sl))
— Ext(, (D, Rg(61)) == Ext(, r(Re(51), Re(61))
— EXt(ap F)(RE(ég),RE(él)) — 0

where dimpg Im(z1) = dimg Im(k;) = 1. Since

Ext(, ry(Re(62), Re(02) = H, 1y (Re(e)) =0,

we also have a short exact sequence:

(34) 0 — Ext(,(Re(0), Re(52)) = Ext(, (D, Re(5))
ﬁ> EXt%%F) (RE((Sl),RE((SQ)) —0

with dimpExt(, 1y (R&(02), Ri(d2) = 2 and dimp Ext(, o (Re(61), Re(d2)) =
1 (see the proof of Lemma 3.5). We denote by k¢ the following composition:
(3.5)

ko 1 Bxt(, (D, D) == Ext(, 1 (D, Rp(82)) = Ext(, (Re(51), RE(2))-

In the sequel we loosely identify Ext%@ ry(D, D) with deformations D of D
over Rpjg/e, dropping the [] (this won’t cause any ambiguity). We define:

Extg;(D, D) = Ker(ro) C Ext,, (D, D).

It is then easy to check that those D in Extm(D D) can be written as a
(nonsplit) extension of R g }/62(52) by RE[G]/ez((Sl) as a (¢,I')-module over
RElq e where & for i € {1,2} is a deformation of the character ¢; over
Ele] /€.

Lemma 3.6. We have dimg Extl,(D, D) = 4.

Proof. Tt follows from the surjectivity of x (Lemma 3.5) that Ker(kg) is the
inverse image (under the map k) of Ker(kz) in Extap ry(D, D). The lemma

follows then from (3.4) and a dimension count using the first equality in
Lemma 3.5. 0
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By (3.4), (3.1) and the proof of Lemma 3.6, we get a short exact sequence:
(3.6)
0 — Ext{, (D, Re(01)) = Exty;(D, D) & Ext(, r)(Re(62), Re(d2)) = 0

The map  in (3.6) is given by sending (D, (1, 02)) € Extl;(D, D) (with the
above notation) to d; € Ext( o) (RE(0 2), RE(d2)). In particular we deduce
from (3.6) the following lemma.

Lemma 3.7. Let D € Extl.(D,D) and (01,02) be the above trianguline
parameter of D over E[e]/€2. Then D € Ker(k) if and only if 3 = J5.

Let D; := D} = Ri(61) C D (notation of § 2), identifying Ext(1 (D1, D)
with Hom(Q), E) by (1.11) we view Lpm(D : D1) C Ext( (D1, Dy) (see
§ 2) as an E—Vector subspace of Hom(Q,', E). Since D is assumed to be
nonsplit, Lrn(D : Dy) is one dimensional by Corollary 2.4(2). The follow-
ing formula (sometimes called a Colmez-Greenberg-Stevens formula) is a
special case of Theorem 2.7 (via the identification (1.11)).

Corollary 3.8. Let D € Ext%ri(D,D) and (01,082) its above trianguline
parameter. Let 1 € Hom(QX, E) such that 6267 = 6907 (1 + vpe), then

Y € Lrm(D : Dy).

D )
Likewise one checks that the composition:
(3.7)  Ker(r) “— Ext{, (D, Rg(01)) = Ext{, r(Re(61), Re(51))
(see (3.1) for ¢ and (3.3) for 1) is given by sending (D, (01,85)) € Ker(r)
(cf. Lemma 3.7) to 0;. Hence, by Corollary 3.8 and dimg Im(x1) = 1, (3.7)
has image equal to Lrym(D : D1). Denote by ¢o the following composition:
1o Bxt(, 0y (RE(82), RE(61)) = Ext, r) (D, RE(01)) — Exti;(D, D)
(see (3.3) for ¢1). By Lemma 3.5 and dimg Im(:1) = 1 we see that Im(g) is
a one dimensional subspace of Ker(x). From (3.3) and (the discussion after)
(3.7), we deduce a short exact sequence:

(3.8) 0 — Im(s9) — Ker(k) =% Len(D : Dy) — 0.

In particular, Im(1g) is generated by (D, dy,0s) € Ext{;(D, D) with o =6
and (52 = (52.
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We denote by Ext%%mZ(P, D) the E-vector subspace of~Ext%<P’F)(D, D)
consisting of (¢, I')-modules D over R g, such that /\%E[ ) D =R pge(0102)
(i.e. with “constant” determinant), and by Ext;(D,D) the E-vector sub-
space of EXt%¢ F)(D,D) consisting of D such that D QR RE(él_l) is de
Rham.

Lemma 3.9. We have dimp Ext(,  ,(D,D) = 3.

Proof. We have a natural exact sequence:

(3.9) 0 — Ext(, 1) z(D, D) — Ext(, (D, D) — Hom(Q,', E)

where the last map sends D € Extap F)(D, D) to ¢ with v’ satisfying:
/\%EM/EQD = Rpe/e (0102(1 + Y'e)).

On the other hand, we have an injection j : Hom(Q,', F) — Extao r) (D, D),
Y= D ®p REglqe(1+ (1/2)¢) and it is clear that Im(j) gives a section of
the last map of (3.9). Hence the latter is surjective and the lemma follows

from the first equality in Lemma 3.5. O
Lemma 3.10. We have dimp (Ext, ) (D, D) N Ext{;(D, D)) = 2.
Proof. From Lemma 3.5, Lemma 3.6 and Lemma 3.9 it is suffi-

cient to show that Ext%¢7p)7Z(D,D) is not contained in Extl;(D, D).

However with the notation of the proof of Lemma 3.9, we have Im(j) N
Ext(,p z(D,D) = 0 inside Ext(, (D, D) and it is clear that Im(j) C

Extey; (D, D). If Ext{, 1 ,(D, D) C Exty;(D, D), this would imply

dimg Exty,; (D, D) > dimg Im(j) + dimg Ext(, ) ,(D, D) = 243 =5,

contradicting Lemma 3.6. O

Lemma 3.11. (1) We have Ext}](D,D) C Extl.(D, D).

(2) For D € Exti(D,D) of trianguline parameter 6, = 61(1 + 1),
5o = d2(1+41)2¢), we have De Ext}](D,D) if and only if 1; € Homuo (Q, E)
fori=1,2.

(3) We have:

2 Zf ,CFM(D : Dl) 7é HOHIOO(QX,E)

. 1 — §
(3.10) dlmEExtg(D’D)_{?) if Lru(D : D1) = Home(Qy, B).
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Proof. (1) Twisting by a character, we can (and do) assume that the §; for
i = 1,2 are locally algebraic (see Definition 2.1). Since wt(d20; ") € Zg we
have Ext;(RE(él), Re(d2)) = H;(RE((SQCSI_I)) = 0 and we deduce from (3.5)
(since being de Rham is preserved by taking subquotients) Ext;(D,D) -
Ker (ko) = Extl.(D, D).

(2) We know that Rpq/e(di(1 + 1i€)) is de Rham if and only if ¢; €
Homy (Q), E) (see e.g. [33, Rem. 2.2(2)]). The “only if” part follows. For
i € {1,2} let ¢; € Homoo(Q), E), 0; := 6;(1 + i) and

De EXt%%F) (RE[e]/e2 (52), RE[e]/e2 (51)) C EXttlri(D, D).
Since R (g /e (82) is de Rham, we are reduced to show that:

~71 ~~
D @R /2 RE[/e2 (52 ) € H(l<p,r) (RE[e}/e2(5152 1))

is de Rham. However, since wt(316, ') € Z~o and REq/e (5152_1) is de Rham,
we know (e.g. by [33, Lem. 1.11]) that any element in H(l%r) (REjqe (5152_1))
is de Rham. The “if” part follows.
(3) The exact sequence (3.9) induces a short exact sequence:
(3.11)
0 — Ext(, py z(D, D) N Exty(D, D) — Exty(D, D) — Homeo(Q, E) — 0

where the last map is surjective since the map j in the proof of Lemma 3.9

induces an injection Hom( E) < Ext;(D, D). We have

X
p )
D € Ext{, ) ,(D,D)NExt}(D, D)

if and only if 91,92 € Homy(Q,, E) and 1 + 2 = 0 (for ¢; as in (2)).
Moreover, for any D € Extl;(D, D) we have 11 — 1o € Lpm(D : Dq) by
Corollary 3.8. If Lpm(D : D1) # Homeo(Q,, E), we see this implies 1; = 0,
hence Ext%%F)’Z(D,D) N Ext,(D, D) = Im(io) is one dimensional by the
sentences before and after (3.8). If Lpm(D : D1) = Homoo(Q,, E), we
have Ext{, ) ,(D, D) N Exty(D, D) = Ext{, ,(D,D) N Exty;(D, D) by
(2) since 11 +1P2 = 0 and Y1 — 92 € Hom (Q,, ) is equivalent to 91,2 €
Hom(Q,, E), hence Exté%r)’Z(D,D) N Ext,(D, D) is 2-dimensional by

Lemma 3.10. The result then follows from (3.11). O
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Now fix k € Z>1, set 03 := S22 - |71 and consider the special case of
the pairing (2.1):
(3.12)
U
Ext(,p,\(RE(03), D) x Ext{,p (D, D) — Ext?, 1 (Rg(83), D) ~ E.

Recall the map Ext%w ry(Re(ds), Re(01)) — Extao r,)(Re(ds), D) is injec-
tive from our assumptions on the ¢;, i € {1,2,3}.

Lemma 3.12. We have Extiy;(D, D) = Ext(, 1 (R5(33), Rp(61))*" in (3.12)

and a commutative diagram:
(3.13)
Ext(, 1 (Re(ds), Re(02)) x Extl, ) (Rp(d), Rp(d) —— E

H dl H

e,

Ext!, ) (Rp(03). Re(62)) x  Extl (D,D) Y. g
Ext(,p (Re(%),D) x  Ext{,p (D,D) _Y . B

Proof. The top squares of (3.13) are induced from the bottom squares of
(2.2). Recall (see the proof of Lemma 3.6)

Exty; (D, D) = £~ (Ext(, r)(Re(62), Re(52))) € Ext(, ) (D, D).

Replacing the middle objects in (2.5) (for &, = d3, 6,—1 = d2, DI~ 1/D} =
D/D; = Rg(62) and D}™' = D) by their preimage under the map & :
Ext%Qp,F)(D,D) — Exté%r)(D,RE((Sg)), we obtain the bottom squares of
(3.13). This gives the commutativity. Together with the second part of
Lemma 2.5, the first statement also follows. ]

3.2.2. Deformations of GL2(Qp)-representations in special cases.
By the p-adic local Langlands correspondence for GL2(Q,), we can associate
a locally analytic representation 7(D) of GL2(Q)) to the (¢, I')-module D of

§ 3.2.1. Moreover, under mild hypothesis, we may identify Extap r) (D, D) to

EXtéLz(Qp)(T((D),TF(D)) (see Hypothesis 3.26(1) and Proposition 3.30). In
this section, we recall the explicit structure of m(D) (twisting by characters,
7(D) will be isomophic to 7(\, %) in (3.26) below). We then study Ext!
groups of certain subquotients of (D) and we construct analogues of the
groups Ext;, Extl. for 7(D) (such that Hypothesis 3.26 (2) and Lemma 3.28
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hold, see Proposition 3.22, Proposition 3.25). Many of the results in this
section may not be really new, but we include the proofs for completeness.

For an integral weight p of GL2(Q,), we denote by d, the algebraic
character of the diagonal torus T(Q,) of weight u. We fix A = (k1, k2) € Z?
a dominant weight of GL2(Q,) with respect to the Borel subgroup B(Q,) of
upper triangular matrices (i.e. k1 > ko), and denote by L(\) the associated
algebraic representation of GL2(Q)) over E. If s is the nontrivial element of
the Weyl group of GLg, we have s-\ = (ka—1, k1+1) (dot action with respect
to B(Qyp)). We denote by St5° be the usual smooth Steinberg representation
of GL2(Qp) over E and set:

._ GL2(Qp) an L GL2(Q,) an
I()) ._(IndE(QP) &)™, I(s-A):=(In B bs2)

where B(Q),) is the subgroup of lower triangular matrices. Then I()) has the
form I'(X\) =2 L(X) —St3°(A) —I(s-A) (recall — denotes a nonsplit extension),
St5°(A) := St5° ®pL(A) and where the subrepresentation L(\) — St5°(\) is
isomorphic to i(\) = (Ind%](&i?p) 1)>* ®p L(X). We denote by St5"(\) :=
I(A\)/L(X) = St5°(A) — I(s - A\) and set:

_ GL,(Q, _ an
) = (mdgg o1 1))

" GL2(Q, _ an

I(s-3) = (Wdg2 % g1 @)™

Then I(A) has the form St5°(A) — L(A\) —I(s-A) where the subrepresentation
St$°(\) — L(X) is isomorphic to i(\) := (Ind%%(&(()@p) 7 @ | ) @ L(A).
If V is a locally analytic representation of GL;(QP), we define the locally
analytic homology groups H;(N(Q,),V) as in [54, Def. 2.7] where N(Q,)
is the unipotent radical of B(Q,). The homology groups in the following
lemma (combined with Schraen’s spectral sequence [78, (4.37), (4.38)]) will
be frequently used in our study of the extension groups of locally analytic
representations.

Lemma 3.13. We have the following isomorphisms:

(3.14) Hi(N(Qp), L(N)) = {6en i=1
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B WH(-["tel ) i=0
(3.15) Hi(N(Qp),St5(N) = {dan(-[Ttel-]) i=1
0 1> 2
Os.2 1=0
(3.16) Hi(N(Qp),I(s-X) = qa(l-ITTel) i=1
0 1> 2
N Ssall-I7r@]-]) i=0
(3.17) Hi(N(Qp), I(s-2) = {6, i=1
0 1> 2.

Proof. The isomorphisms (3.14) and (3.15) follow from results on classical
Jacquet module together with [78, (4.41) & Thm. 4.10]. The isomorphisms
(3.16) and (3.17) follow from [54, Thm. 8.13] and [78, Thm. 3.15]. O

The following statement is not new, we include a proof for the reader’s
convenience.

Theorem 3.14. We have natural isomorphisms:
(3.18) B
Hom(Q;', E) = Extn,q,) (L(N), St5"(N)) ¢ — Extér, q,) (1(N)/ St5°(A), St (X))

Proof. The first isomorphism follows from [5, § 2.1], but we include a proof.
By [78, (4.38)], we have a spectral sequence (where Z(Q)) = Q,' is the center
of GL2(Qy), that we often shorten into Z):

Ext] o, 2 (Ho (N (@), LOV), T(N) = Ext o, (LN, TOV).
Together with (3.14), we have isomorphisms:
Hom(T(Qy)/Z(Qp), B) = Extyq,y z(6x,x) = Extéy, g,y 2(LV), I(N)).
By [78, Cor. 4.8], we have

Bxte,g,),2(L(N), LV) = Extdy, q,) 2 (L), L(A)) = 0.

By dévissage, Lemma 3.1 and [4, Lem. 2.1.1], we have then:

(3819)  Extly, g, 2(LO), I(N) < Extly o) 2(L(V), St (V)
= Ext{yr, g, (LN, S8 (V).
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The first isomorphism follows. By [4, Prop. 3.1.6] we have
Extfyr, g, (I(s - ). St5°(A)) = 0 fori = 1,2.

By [78, (4.37)] and (3.17), we have Extly o (I(s:)), I(s-A)) = 0fori € Zo.

By dévissage, we deduce ExtéLz(Qp)(I(s - A),St§"(A\)) = 0 for i = 1,2. The
second isomorphism then follows by dévissage again. O

By [78, (4.37) & (4.38)], we have a commutative diagram (with the

notation of the last proof):
(3.20)
Hom(T(Qp)/Z(Qp), B) —— Extrg,) z(0x,83) ——— Extar, ) z(L(V), I(N))

! ! !

Hom(T(Q,), E) —— Extr,)(6x,00) —— Extgr,q,) (LY, I(N).

Consider the short exact sequence:

0 — Ext, g,) (L), L) — Extr, g, (LA), I(A))
— Extgy, g,)(L(A), St5 (X)) — 0

where the last map is surjective by (3.19). Contrary to ExtéLZ(QP) 7 (LX), (X))

= 0, we have E:x{t(l}L2 (Qp)(L()‘)’ L(X)) # 0. More precisely, we have a commu-
tative diagram:

Hom(Z(Q,), E) —— Extly,q,)(L(V), ()

|

Hom(T'(Q,). B) — Extly,(q,)(L(). I(V)

where the bottom horizontal map is the composition of the bottom line in
(3.20) and where the left vertical map is given by 1 — 1) odet. In particular,
the natural surjective map:

(3.21) Hom(T(Qy), E) — Exty, g,y (L), St3"(N))

is zero on Hom(Z(Q,), E).
We can make this map more explicit (e.g. by unwinding the spectral

sequence [78, (4.37)]). Let ¢ € Hom(Q,', E') and choose 1; € Hom(Q,, F)
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for i = 1,2 such that ¢¥; — ¢9 = 1. Let o(¢1,12) be the following two
dimensional representation of 7'(Q)):

o (161, ) <8 2) _ ((1) wl(a)Jlrsz(d))

and consider the natural exact sequence:

0— I(\) — (Ind%(ﬁg(%) Ox ®p (11, 19))™ 25 T(X) — 0.

Then the locally analytic representation:
(3.22) m(A9)7 = pr (L(N)/L(A) = St5"(A) — L(A)

only depends on v and not on the choice of 1 and 9, and the map
(3.21) is given by sending ¢ to m(\,¢)~ (that is seen as an element of
ExtéLz(Qp)(L()\), St5"(A))). Moreover:

(3.23) (X, 1, 4) = pr (i(A)/L(N)

actually depends on (and is determined by) both ; and 2. By [78, (4.37)]
and (3.14), (3.15), we have

Hom(T(Qy), E) — Extig, ) (0x, 6x) — Extéy, g, (i(A), T(N))

P

and the composition is given by mapping (11,%2) to pr=1(i(\)). By [62,
Prop. 15] and the same argument as in the proof of [62, Cor. 2] (see also
[28]), we have:

(3.24) ExtGr, 0,).00(0(0),1) = 0, i € Zxo.

By a version without central character of the spectral sequence [78, (4.27)]
(which follows exactly by the same argument), we deduce from (3.24)

Extiy, (g,)(#(A), L(A)) = 0 for i € Zo.
Hence the natural push-forward map:
ExtéLQ(Qp) (i(A), I(N) — ExtéLQ(Qy) (i(A), St5"(N))
is a bijection. Putting the above maps together, we obtain:

Hom(T(Qy), B) < Exthy, g,y (i(N) S (N), (1, 2) —> w(\, b1, 1)
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Let 0 # ¢ € Hom(Q,, E) and define:
(3.25) T\ ) € Bxtéyp,q,) (T(V)/St5°(V), St5(N))

to be the preimage of 7w(A,¢)” in (3.22) via the second isomorphism of
(3.18) (we should write [7(),1)] to denote some element of the above Ext!
associated to the representation m(\, ), but as in § 3.2.1 we drop the [,
which won’t cause any ambiguity). So one has:

(3.26) 70 ) = SN — (L) — I(s - )
and we recall the irreducible constituents of St§"(\) are St5°(\) and I(s- ).

We now study the extension groups:

EXt%;Lz(@p)(Tr()\a7/’)»”()\,77[’)) and EXt%}LQ(QP)7Z(7T()\7¢)’7T(>\7¢))'

Note first that by [4, Lem. 2.1.1] one can identify ExtéLz(Qp) (m(\ ), m(N\ )

with deformations 7 of (), 1) over E[e]/€*. Let x» := 6)|z(q,), which is the
central character of w(A, ).

Lemma 3.15. For any 7@ € EXtéL2(QP)(7T()\, ), (N, 1)), there exists a
unique lifting X : Z(Qp) — (Ele]/€2)* of xn such that Z(Q,) acts on T
via X .

Proof. For v € T, we have (2 —x(2))v € w(\, %) and thus (z — xa(2))?v = 0
for all z € Z(Qp). The map v — (2 — xa(2))v induces a morphism from
(A, 9) (as quotient of 7) to 7(\, 1) (as subobject of 7) which is GL2(Qy)-
equivariant since z is in the center. But any such endomorphism of m(\, v) is
a scalar by [36, § 3.4] since all (absolutely) irreducible constituents of (X, )
are distinct. So for any v € 7 and z € Z(Q)), we have (z — xx(2))v € E(ev),
and hence there exists Y : Z(Qp) — (E[e]/e?)* (which a priori depends
on v) such that zv = Xx(z)v for all z € Z(Q)). We fix a v which is not in
(A, ¢) = em and define:

m(Xn) == {w em (z—xa(z)w=0Vze Z(Qp)}

which is a GL2(Q))-subrepresentation of 7 strictly containing 7(\, 1) = em.
Thus we have St3°(\) C 7(Xx)/7m(A,¢) since socqr,(g,) (A, ) = St5°(A)
and 7(xx)/7(A, ) is a nonzero subrepresentation of 7/em ~ (A, 1)). We
need to prove m(xy) = 7. If m(X)\) # 7, then there exists another lifting



Higher L-invariants for GL3(Q,) and local-global compatibility =~ 809

Xy # Xx such that w(X)) strictly contains m(\,1), and hence St5°(\) C
m(X\)/m(A, ). This implies Z(Q,) acts on the subextension V; C 7 of
St5°(A) by w(A,¢) = em via xx. However, by Lemma 3.1, this then im-
plies Z (Qp) acts on the whole 7 by the character x), a contradiction. Hence

m(Xx) = O

Lemma 3.16. We have a short exact sequence:

0 — Extgp,g,),2 (M ), 1(A, 1)) — Exté, g,y (1A 9), m(A, 1))

25 Hom(QX, E) — 0

D )
where pr sends T to ()A{/\Xxl — 1)/e where X is the central character of T
given by Lemma 3.15.

Proof. 1t is sufficient to prove pr is surjective. However, it is easy to check
that ¢/ — 7(\,¢) ®@p (1 + %e) o det gives a section of the map pr. The
lemma follows. [

The following lemma consists of some Ext calculations (using Schraen’s
spectral sequences [78, (4.37), (4.38)], Lemma 3.13 and dévissage). We sug-
gest to skip the proof on first reading.

Lemma 3.17. (1) We have ExtéLQ(Qp)(I(s “A), (A ) = ExteLg(Qp)(I(s :
A), (A, ) =0 for all i € Z>o.
(2) We have:

(S

)

| SO T ) =2
dimpg EXtGL (Qp)( ( ) ( )) =4,

dimp ExtGL @,).7 Z(L(A), m(\,¢)) = dimg EXt(1}L2(Qp)(L()‘)77T(A7w)) =1,
dimpg ExtGL (Q )7 Z(m(X, )/ St (), (A, )

= dimp EXtGL (Q )(W( )/ St3E(A), (A ) = 1.

dimpg ExtGL @,

(3) The following natural sequences are exact:

(327) 0— EthGLz(Qp),Z(Tr()\’ ¢)/ Stgo()\)’ ﬂ-()\’ w))
— EXt%}LQ(Qp),Z(W(A7 1/1)7 F(Aa T/’))
— Bxtgp, (g,).2(St5°(A), (A, 1))

(3:28) 0 — Extgy, (g, (m(A, 1)/ St (), (A, ¢))
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— Bxtr, g, (T 9), 1A, )
L EXtéLz(Qp)(Stgo()\)’ (A ¥))

with dimpg ExtéLz(Qp)’Z(w()\,w),ﬂ()\,w)) <3 and

dlmE EXt%}LQ(Qp) (ﬂ-()‘, d})v W(Aa ¢)) S 5.

(4) The following natural sequences are exact (see (3.22) for mw(A\, )~ ):

(3.29) 0 — Extgy, g, (St5°(A), m(A,9) )
5 Bxtir (g, (8657 (), (. 1)
— Extyp, g,y (St (A), I(s- X)) — 0

(3.30) 0 — Extyp, g, (St5°(X), St3°(N))
— EXtéLg(Qp) (Stgo()\)a 7['()\, ¢)7)

with dimpg EX‘CEM(QP)(S‘GSO()\),Stgo()\)) = 2, dimp Ext%}LQ(Qp)(StSO()\), (s -
A) =1 and

dimp Extey, g,) (36°(V), L)
= dimp Ext{yp, g,y (St5°(\), m(A, 9) 7/ St5°(V)) = L.

Proof. In this proof, we write Ext’ (resp. Ext%) for ExtiGLz(Qp) (resp.

EthGLg(Qp),Z)'

(1) We prove the case of I(s- \), the proof for I(s-\) being parallel. By
[78, (4.37)], (3.16) and Lemma 3.3, we have Ext‘(I(s-\),I(\)) = 0 for all
i € Z>o. By [78, Cor. 4.3], we have:

% ~ i— GL2(Qp an
Ext!(I(s- \), L()\)) 2 Ext'~! (L(A)V,(IndE(Qi) ) 5,08)™)

where p is the weight such that L(\)Y = L(u). However, by [78, (4.37)],
(3.14) (with X replaced by p) and Lemma 3.3, we have

Bxt! (L(A)", (Indi2 %) 8,65)™) = 0 for i € Z,
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hence Ext(I(s-\), L(\)) = 0 for all i € Z>o. By dévissage, we deduce:
(3.31) Ext!(I(s-\),St3"(\) =0, Vi > 0.

By [78, (4.37)] and (3.16) (+ Lemma 3.3), we also have:

(3.32) Ext’(I(s-A),I(s-A) =0, Vi>0

and by dévissage we deduce Ext!(I(s-\), L(A) — I(s- X)) =0 for i > 0. To-
gether with (3.31) this implies (again by dévissage) Ext?(I(s-\), 7(\,v)) = 0
for all ¢ > 0. This concludes the proof of (1).
(2) By [78, Cor. 4.8], we have Ext’(St3°(\),St5°(\)) = 0 for i = 1,2.
Consider the following map:
(3.33)
Hom(Q), E) — Ext'(St5°(A), St5°(N)), ¢’ — St3°(A) @ (1 + 1)'€) o det .

It is straightforward to see this map is injective. We claim it is also surjective.
For any nonsplit extension 7 & Extl(St2 (N), St5°(N)) (Which we view as
a representation of GLy(Q,) over Ele]/€?), let ¢/ € Hom(Q), E) be such
that the central character of 7 is given by x(1 4 ¢’¢) (argue as in Lemma
3.15 for the latter, though this is simpler here). Then the representation
T®pg[g e (1—(¢'/2)€) odet has central character x and hence is isomorphic
to St3°(A)¥? =2 St°(\) ®p Ele]/e? since Ext}(St3°(A), Sts°(\)) = 0 ([78,
Cor. 4.8]). So we have:

™

I

(T @ppgye (1= (¥'/2)€) o det ) @i e (14 (¥'/2)€) o det
(St5°(\) ®p El€]/€*) @pge (1+ (¥'/2)€) o det
= St5°(\) @5 (1+ (¢'/2)¢) o det.

1%

Thus dimg Ext!(St5°(\), St5°(A)) = 2. By [78, (4.38)] and (3.15), we have:

Ext}(St3°(\), 1(V) = Extrgg,) z(0( -7 @ - ),6x(- 7' @]-])
Exty(St°(\), I(s-\) = 0 Vi€ Zso.

Putting these together we deduce by dévissage:

(3.34)  Ext(St(N\), (A, )/ StSP(N)) =2 Exth (Sts(\), m(A, 1)/ St (N))
~ Exth(St3°(A), L(A) — I(s - A)) = Ext5(St3°(A), I(A)) = Hom(QX, E)

P )
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where, for the second last isomorphism, we use the exact sequence:
0 — StP(A) — I(A) — (L) —I(s-\)) — 0
together with Ext (St5°(\), St3°(\)) = 0, i = 1,2. Likewise we have:

(3.35) 0 = Ext,(Sts°()), St5°()\)) — ExtL(StsT(N), 7(A, )
— ExtL(St3°(N), m(X, 1)/ StS°(N)) — ExtZ(StS°(A), St°(A) =0

from which together with (3.34) we deduce dimg Ext}, (St5°(\), 7(A, 1)) = 2.
Similarly:

0 — Ext!(St5°(\), St5°(N)) — Ext! (St (N), w(\, %))
— Ext!(St3°(\), 7(\, ¥)/ St (N)) — 0

where the last map is surjective by (3.35) and the first isomorphism of (3.34).
By the above dimension computations we deduce

dimp Ext!(St5°(\), 7(\, 1)) = 4.

To prove the remaining equalities in (2), we only need to prove
dimpg Ext,(L(\), (X, 1)) = 1 since the other equalities follow easily from (1)
and Lemma 3.1. By [78, (4.38)] and (3.14), we have Ext, (L()\), I(s-\)) = 0
for i > 0 and by [78, Cor. 4.8], we have Exty(L()\), L()\)) = 0. By dévissage,
we deduce then ExtL(L(X), 1(A)/St5°(N)) = 0. By the exact sequence:

(3.36) 0 — Hom(L(X),I(N)/St3(\)) — Ext}(L(\), St3™(\))
— Exty (L), m(A,¢)) — ExtL(L(V), I(\)/St5°(A) = 0,

Theorem 3.14 and an easy dimension count, we get dimgExt}(L(\), (), v))=
1.

(3) This follows easily from (1), (2) and Lemma 3.16.

(4) To get the exact sequences, it is sufficient to prove that the maps:

Ext!(Sts°(\), 7(\, ¢)) — Ext'(Sts°(A), I(s- \))
Ext!(StS°(\), (A, 0)7) —  Ext!'(StS(N\), m(A, %)~/ StS(N))

are surjective and it is sufficient to prove they are surjective with Ext!
replaced by Ext} (since the vector spaces on the right hand side do not
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change). The second one follows easily from Ext%(St5°()\), Sts°(\)) = 0 (see
the proof of (2) above). By [78, (4.38)] and (3.15), we have

dimp Exth(St°(A), I(s- A)) = 1 and Ext,(St5°(\), I(s - \)) =

And by [78, Cor. 4.8] we have dimg Ext}(St3°(\), L()\)) = 1. The last two
equalities imply by dévissage

dimp Ext}, (StS°(\), m(\, 1)~/ St3°(N)) < 1.

The first, together with dlmE Exth(Sts°(\), 7(\,¢)) = 2 in (2), imply the
surjectivity of Extl(StS°(\), (A, %)) — ExtlL(St3°(A\), I(s - ), and then
dimpg Ext} (St5°(A), m(A,4) 7/ St5°(\)) = 1. We have seen

dimpg Ext!(St5°()), St5°(\)) = 2

O

in the proof of (2), and the rest of (4) follows from lemma 3.1.

Remark 3.18. It follows from (3.36) and (2) that, if ¢’ ¢ E¢) C Hom(Q,,E),
the image of m(\,%')”, seen as an element of Ext!(L(\),St3 ()\)), i
Ext!(L(\), (X, ¢)) is the unique nonsplit extension V of L(\) by 7(\, ).
Moreover V' contains the unique extension Vj of L(A)®2 by St3%(A
St3°(A) — I(s-\) with socle St5°(\) and we have (Vp)'ale = Vlals >~ G50 ()) —
L(\) 2 4()\). By Lemma 3.17(1) and (3.28), we have:

~

I~ B

EXtéLQ(@p)(L()\)aTF(%@Z))) = EXtéLz(@p)(W(%%ZJ)/S'E;O()\)’W()\W))
— Bxtgy, g, (TN 9), (A, 1))

and we let T be the image of V' € ExtéLz(@p)(L()\),Tr(A,@Z))) via the above
injection. It is not difficult then to deduce:

(3.37) ~lalg {Stgo(/\)eaz ) not smooth

StS°(A\) @4(A) 1 smooth.

Thus if ¥ is smooth, the map 728 — 7(\, )8 2 5()\) induced by 7 —
7(A, 1) is nonzero but not surjective.

We next construct Ext{y;(m(A, ), 7(A, 4)) € Extgyp, g ) (m(A ), (A, 4))
using the Jacquet-Emerton functor. We first make the following hypotheses,
which will be proved (under some mild technical assumption) in Proposition
3.30 below.
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Hypothesis 3.19. (1) Any representation in EXtéLQ(Qp)(TI'()\,1,[)),71'()\,1/)))
is very strongly admissible in the sense of [37, Def. 0.12] (which implies
m(\, ) itself is very strongly admissible).

(2) We have

dlmE EXt%}L2(Qp)7z(ﬂ-(A7 7/)), 7'('()\, ’11[))) = 3
dimEEXté}LAQP) (ﬂ'()\, /(/})7 ﬂ-()\? w)) = 9.

In particular (by Lemma 3.17(2)), the last maps in (3.27) and (3.28) are
surjective.

Denote by Hom(7T'(Qy), E)y the subspace of Hom(T'(Qy), E') generated
by those (1,12) € Hom( g,E)2 such that ¥ — 9 € E. For a locally an-
alytic character § : T'(Q,) — E*, denote by Ext}(Qp)(é, §)y C Ext%ﬂ((@p)(é, 0)
the E-vector subspace corresponding to Hom(7'(Q,), E), via the natural
bijection ExtlT(Qp)((S, 9) = Hom(7T'(Qp), E). Denoting by Jp the Jacquet-
Emerton functor relative to the Borel subgroup B (where the T'(Qj)-action
is normalized as in [38]), we have since ¢ # 0:

Je(SteM\) =6 |- 1) not smooth
JB(St5°(N) @& JB(L(N) 2 x(|-|®]|-|7") @ 6x ¢ smooth.
It is clear that the right hand side is contained in the left hand side. Since

m(\, 1) is very strongly admissible, it is not difficult to prove they are equal
using [7, Thm. 4.3] together with the left exactness of Jp and [37, Ex. 5.1.9)].

Lemma 3.20. (1) Let V € ExtéLQ(Qp)(Stgo(/\),W(A,w)), then Jp(V) #
Jp(m(A\, %)) if and only if V lies in the image of ExtéLQ(Qp)(StSO()\),
(A )7).

(2) The functor Jp induces a bijection:
(3.39)

Exty (g, (S18° (), (0, )7) = Bxthg ) (3r(1 @ |- |16 @ 17) .

(3.38) Jp(mw(\¥)) = {

Proof. In this proof we write x := 0\(| - | ® | - |~1) for simplicity.

(1) We first prove the “only if” part, and for that we can assume that
V' is nonsplit. If Jp(V) # Jp(w(A, 1)), then by (3.38) we see that Jp(V)
is isomorphic to an extension of x by Jp(m(A, 1)) and that there exists an
extension X of x by x such that j; : ¥ < Jp(V) (recall ExtlT(Qp)(X, dx) =0).

Denote by 6 := X®g (|| > ®|-|), which is thus isomorphic to an extension
of d) by dy. One can check (e.g. by the proof of [31, Lem. 4.11]) that the
morphism j; is balanced in the sense of [38, Def. 0.8]. From Hypothesis 3.19



Higher L-invariants for GL3(Q,) and local-global compatibility 815

(both (1) and (2) are needed), we deduce that V is very strongly admissi-

GLZ(QP)~ : GL?(QP) T yan
ble. Let IF( ) 0y denote the closed subrepresentation of (IndE @) 1) A)

generated by X via the natural embedding (see [37, Lem. 0.3] for details):

X — Jp((Ind5 207 5)™) — (Indg 2 61)™

By [37, Thm. 0.13], the map j; then induces a GL2(Q))-equivariant map:

ot I — ¥
such that the morphism j; can be recovered from js by applying the functor
JB(-). We have socgr,,(q,) Im(j2) =+ socar,(g,) V = St5°(A) (as V' is non-
split). This implies St5°(\) has multiplicity 2 in the irreducible constituents
of Im(j2), since otherwise we would have Im(j2) C 7(A, ) and thus ¥ <
Jp(Im(j2)) € Jp(m(A, %)) which is a contradiction. By the exact sequence
(3.29) together with the fact that I(s - \) is not an irreducible constituent

GL2(Q) T (winee it i : : : GL2(Qp) 5 yan
of IE( 2) Jdy (since it is not an irreducible constituent of (Indﬁ( 0.) 0x)*),

we obtain that V' comes from an element in Ext!(St5°(\), m(\,¢)7).

We prove the “if” part. For ¢ € Hom(Q,', E), let U(¢)') := St5°(\) ®g
(1+1'€) odet, hence Jp(U(¥')) = x @ (1 +¢'¢) o det. In particular, taking
Jp induces a bijection by (3.33):

Exteyr, (g,) (St5°(A), St5°(A)) = Hom(Z(Qp), E) ( < Hom(T(Qy), E)).

Denote by W (') € ExtéLQ(@p)(Stgo()\),W(A,w)_) the image of U(¢’) via
the injection in (3.30) (so U(¢') C W(v')). By left exactness of Jp we have:

(3.40) X ®p (14 ') odet — Jg(W(¥)).

Now let ¥ = (91,12) € Hom(T'(Qp), E)y \Hom(Z(Q,), E) (i.e. ¥1 # )2 and
11 — 19 € E1)) and consider the representation m(\, 1,12)~ in (3.23). We
know m(A\,¥)” C (A, ¢1,12)” and thus m(A, 11, 12)~ gives a nonsplit exten-
sion of St5°(\) by m(A, 1)~ (since the quotient i(\) is nonsplit). Note that by
construction (X, ¥y, 1)~ is a subquotient of W (W) := (Ind$h2 6, (14 We))an
and that we have a natural injection xy ®g (1 + Ve) — JBJEW(\I/)) (cf. [37,
Lem. 0.3]). Moreover 7(A, 91,12)” < W(¥)/L(\) and neither Jg(L(\)) nor
Jp(W(W)/L(N)/m(A1,¢92)") = Jp(I(s- A)) contains x as a subquotient
(the latter by [37, Ex. 5.1.9]). By left exactness of Jp we deduce:

(3.41) X ®p (1+ Ve) — Jp(m(A,¥1,1h)7).
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From Lemma 3.17(2)&(4) we deduce dimpg ExtéLZ(Qp)(StSO()\), T\ ¢)7) =
3 and we let II be the unique extension of St5°(\)®3 by m(A,¢)~ with
50CGL, (g ) I = St5°(A). The above discussion implies Jp(II) contains the
unique extension of x®2 by y with socle x attached to the 3-dimensional
space ExtT(Qp)(X, X)w- Indeed, let {1} odet, 1) o det, U3 := ¥} be a basis of
the 3-dimensional space Hom(7T'(Qy), E),, = ExtlT(Qp)(X, X)y where {4,145}
is a basis of Hom(Q), F) and ¥ = (v1,19) is as after (3.40), then we have
by (3.30) again:

P

T2 W (Y1) Or(ng)- W) G- TN 1, 102) "

By (3.40), (3.41), left exactness of Jp and (3.38), we deduce that applying
Jp to IT — St3°(\)®3 induces a surjective map:

(3.42) Jp(II) — Jp(St3(N)P3) =2 3,

This, together with (3.38) and left exactness of Jp, imply that any U €
Ext!(St5°(\), w(\, 1) 7) satisfies Jg(U) # Jp(m(\,1)).

(2) By the proof of (1) (see (3.40), (3.41), (3.42)) together with (3.38)
and ExtT(Q )(X, dx) = 0, we see that taking Jp induces a map:

EXt%}Lg(QP) (Stgo(A)7 71—()‘7 1?)7) — EXt%"(Qp) (X7 JB (ﬂ-()‘7 W )) EXtT(Q )(X X)

which induces an isomorphism

EXt%}LQ(Qp)(StSO()\)aﬂ-(Aaw) ) — EXtT( OG-

This finishes the proof. O

Remark 3.21. From the proof of Lemma 3.20, we can explicitly describe
the inverse of (3.39) as follows. Let ¥ € Hom(7T'(Q)), E)y, define:

X=0(" @] [7)(1+We) € Extre,) (|- [@]-17),a(-[@]-[7),
and consider the short exact sequence:

0— I(\) —> (Ind_( (?P) S (1+Te)™ 25 1(\) — 0.
If U = (¢/,9), ie. ¥ € Hom(Z(Q,), E), then pr=1(i(\))/L(\) has a sub-
representation isomorphic to St3°(A) ®g (1 + ¢’¢) o det. The inverse image
of X in (3.39) is then given by the push-forward of this representation via
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St5°(A) = w(A, ). If ¥ ¢ Hom(Z(Q)), E), the inverse image of ¥ is then
isomorphic to pr=t(i(\))/L(\).

We now denote by Extl(7(\, 1), 7(A, %)) the kernel of the composition:
(343) ko : Exty, g, (T(A 1), T(A, 1)) =5 Extéyp, g,y (St°(N), 7(X, ¢))
— Bty ) (SE (), T(5- V)
with k1 as in (3.28). In particular, by (3.28) we have
Im(bo) - EXt%ri(ﬂ-()‘a ¢)’ W()‘a @ZJ))

Proposition 3.22. (1) We have dimg Extl;(7(\, ), 7(\,¥)) = 4.
(2) For w € EXt%;LQ(QP)(ﬂ'()\,Qﬂ),ﬂ'()\,w)), we have

TE EXttlri(ﬂ-(>H ¢)7 7T(>\7 ¢))

if and only if 6x(| - | @ |- |71) appears with multiplicity 2 in Jp (7).
(3) We have a natural short exact sequence:

(3.44)
0— EXt(lng(Qp) (W(Ay w>/ Stgo()‘)v 7T()\, 77/})) i> EXt%ri(Tr(Av ¢)7 7T(/\, ¢))
— Extyg,) (- [@]-[7),0( - [®]-]™)), —0.

Proof. By Hypothesis 3.19(2) and Lemma 3.17(4) (see in particular (3.29)),
there is a natural exact sequence:
(3.45)

0—Ext!(m(\,4)/ St (N), m(\, ) 2 Extly (X, 1), 7(A, 4)) —Im(eq) — 0.

(1) follows by Lemma 3.17(2), (3.29) and a dimension count. Together with
(the proof of) Lemma 3.20(1), left exactness of Jp and (3.38), we easily
deduce (2) and (3), where the third map of (3.44) is given by:

(3.46)  Extiy(m(A,9), (A, ¢)) = Im(sy) 7 Ext i, o,) (S7(N): m(A ) )

(3.39) . _
——5 Extrg,) (- 1@ -7 (- [@]- 7)),

~

O
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Remark 3.23. By Lemma 3.20(2) and its proof, for any

7 € Extli(m(\, ), m(\, ),

the composition (3.46) sends 7 to the (unique) deformation Y €
ExtlT(Qp) (G-l @] 171,60 |®]- |_1))¢ such that X — Jp(7).

We denote by x the following composition:

(347) K EXt%ri(ﬂ-(Avdj)aﬂ-(AvT/}))
4
BB, Bxthig,) (1 [@]- )80 1@ 1-17),,

= Hom(T(Qp), E)y Rt Hom(Q,, E)

where the last map sends W = (1, 12) to ¥ (and hence is surjective). From
the exact sequence:

0 — Ey — Hom(T(Q,), E)y —2 Hom(Q), E) — 0
(where the injection is ¢ — ¥ = (1,0)), we obtain with (3.44) an exact
sequence (compare with (3.8)):
(3.48)

0 — Extgp, g, (T(A, 9)/ St5° (M), (A, 9)) = Ker(x) — Ep — 0.

Lemma 3.24. (1) We have dimg Ker(k) = 2, and 7 € Ker(k) if and only
if kK1(7) € Evi(m(X,,0)7) where k1 is as in (3.28) and v1 as in (3.29).

(2) We have ExtéLz(Qp%Z(w()\, ¥), m(A\¢))NKer(k) = Im(tg) (where the
intersection is in ExtéLz(@p)(Tr()\,@Z)),W()\,w))), and it is a 1-dimensional
E-vector space.

Proof. (1) The first statement follows from (3.48) and Lemma 3.17(2). By
(3.41) applied to ¥ = (1, 0) and Remark 3.23, the “if” part follows. However,
it is straightforward from (3.28) and Lemma 3.17(2) that the E-vector space
w1 (B ([r(X,4,0)7])) is also 2-dimensional. The “only if” part follows.
(2) The direction D is clear from the definitions and Lemma 3.17(3). By
(1), it is sufficient to show that if k1 ([71]) #£0, i.e. k1 ([7]) € E* 11 ([ (X, ¢, 0)7]),
then 7 does not have central character x, (which is the central character of
m(A,1)). Tt is then enough to show that m(\,%,0)” does not have central
character y,. By the construction following Theorem 3.14 and by Lemma
3.1 (applied first to the extension W of Vi = mw(\,4,0)” by Vo = L(A)

inside V := (Indg(ﬁ&(?“ 5y @5 o(1,0))™, then to Vi = W, Vs = St3(\)), if
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m(A\,1,0)” has central character x), so does (Inde%é(?p) o\ ®po(1,0))2" a

contradiction. O

We denote by Exty(m(A, 1), 7(A, ) C Extéy, g,y (1(A 1), 7(A,¢)) the
E-vector subspace generated by those 7 such that 7218 =£ (), )8,

Proposition 3.25. (1) We have (1o as in (3.28)):
Im(1g) C Extg(m(X, ¢), w(A, 1)) C Extyy (m(X,9), w(A, ).
(2) The exact sequence (3.44) induces an exact sequence:
(349) 0— EXt%}Lg(QP)(W()‘v w)/ Stgo()\)7 7T()‘7 w)) L_0> EXt;(T{'(A, w)v 7(()‘7 ¢))
— Homoo(T(Qp), E)y — 0

where we have identified Ext%((@p) (-1 ™60 1®]- ]_1))1/) with
Hom(T'(Qp), E)y and Homyo (T'(Qp), E)y is the subspace of smooth charac-
ters in Hom(T'(Qp), E)y. In particular:

2 % non smooth

dimpg Ext;(ﬂ()\aw)ﬂr()"w)) - {3 ¥ smooth.

Proof. (1) It is easy to see Im(ig) C Ext;(w()\,w),w()\,z/))). Since we have
SOCGL2(QP)7T()\ ) =2 Sts°(N), for any m € Ext;(w(/\,q/)),w()\,w)), its image
k1(7) in ExtGL (@,)(St3°(A), m(A, ¥)) (see (3.28)) in fact lies in the image of:

EthGLQ(Qp) (Stgo(A)7 W()H ,lp)lalg) — EXt%}LQ(Qp) (Stgo()‘)v 7(()‘7 W)
This easily implies ko(7) = 0 (ko as in (3.43)), and (1) follows.
(2) Let 7 € Ext;(ﬂ()\,w),w()\,w)). By (1) and Remark 3.23, we know
that there exists ¥ € Hom(7T'(Qp), E) such that:
(3.50) @] ™) ®r 1+ Ve) — Jp(F).
Moreover, the natural surjection © — m(A, 1) induces a nonzero map

7l S (X, )18 — m(A, ),

and hence we have St3°(\) — 7118 /r(\, )88 (since S0CGL,(Q,) T(As Q)lale =
St5°(A)). Thus St3°()) is not an irreducible constituent of 7 /78, from which
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we see (together with the left exactness of Jp and [37, Ex. 5.1.9]) that the
map (3.50) must have image in the subspace Jp(7'*#8). However, Jp(7'218)
is locally algebraic since so is 7#8, which implies ¥ € Homu(T(Q,), E) N
Hom(T(Qp)7 E)¢ = HomOO(T(@p)v E)w'

By (1), the sequence (3.44) hence induces (3.49), except for the surjectiv-
ity on the right. By Lemma 3.17(2) and an easy dimension count, it is enough
to prove this surjectivity. However, by the construction in Remark 3.21, if
¥ in Remark 3.21 is smooth, then we see that the inverse image 7 of ¥ in
(3.39) has extra locally algebraic vectors than (m(\,v)7)12le = 7(\, 1)l
Let 7 € EX’C%;L2(QP)(7T()\,¢),W(A,¢)) such that x1(7) = t1(71), it is easy to
see that we have an injection 73 C 7. Hence 7 € Ext;(ﬂ(A, ), (A, 1)), and
7 is sent (up to nonzero scalars) to ¥ via (3.46) (use Remark 3.23 and that
71 is sent to ¥ via (3.39)). This concludes the proof. O

Finally, for any locally algebraic character 6 : Q; — E*, it is obvious
that all the above results hold if we twist all the representations of GL2(Q))
by § o det.

3.2.3. p-adic correspondence for GL2(Qp) and deformations. We
relate the Ext! groups of § 3.2.1 to those of § 3.2.2 via the local p-adic
correspondence for GLy(Q,). Part of the argument (the proof of Proposition
3.32), which is essentially independent from the rest of the paper, is given
in the appendix.

We keep all the previous notation. For k € Z~¢ and 0 # ¢ € Hom(Q,, E),

we denote by D(k, 1) € Ext%%r) (R, Re(| - |2¥)) the unique (nonsplit) ex-

tension up to isomorphism such that:

(1.11)
(ED(k,¢))*" = Ep € Extl, 1y (Re(| - |2*), Re(| - [2")) = Hom(Qy, E)

p )
for the perfect pairing given by the cup-product:
Ext(, 1y (Re, Re(| - [2%)) x Ext(, 1 (Re(| - |2%), Re(| - |27) — E.

For A = (k1,k2) € Z? with k1 > kg, we denote by D(\,v) := D(ky —
ko, ) ®r, Re(z*) and A\ := (ki, ko 4+ 1). For o € EX, we set:

(3.51) D(a, N\, ) := DA\, ) ®r, Re(unr(a)).

We also make the following hypotheses.
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Hypothesis 3.26. (1) There exists an isomorphism of E-vector spaces:
(3.52)
pLL : EXt%%F) (D(pa >‘7 ¢)7 D(p’ )\’ Q,Z))) _N_> EXt%}LQ(Qp) (Tr()\ba ¢)’ W()‘ba w))

and any representation in Ext};LQ(QP)(W()\,w),ﬂ()\,w)) is very strongly ad-
missible.
(2) The isomorphism (3.52) induces an isomorphism:

(353)  Extiy (D(p, A, ), D(p, A, 1)) = Exctly (m(V, ), 7(X,40)).
(3) Let D € Extli(D(p, A\, %), D(p, X, %)) and (1,42) € Hom(QX, E)? such
that:

(2% (1 + i), | - | Tak2 (1 + boe))

is a trianguline parameter of D (see§ 3.2.1). If & € Extl; (W()\b, V), (N, 1/)))
is the image of D wvia the isomorphism (3.53), we have an embedding:

(|- T@]- [T+ We) — Jp(7)

where U = (¢1,12) € Hom(T'(Q,), E).

Remark 3.27. (1) By Lemma 3.5 and Lemma 3.17(3), Hypothesis 3.26(1)
implies Hypothesis 3.19.

(2) In Proposition 3.30 and Proposition 3.32 below, under mild hypoth-
esis and using some deformation theory, we will show that Colmez’s functor
induces an isomorphism (3.52) such that Hypothesis 3.26 holds. The result-
ing isomorphism (3.52) should also induce a bijection:

(3.54)
EXt(lgo,F),Z(D(pv A, TP), D(pa A, ¢)) — EXt%}Lz(Qp),Z(Tr()‘bv d})v W(Ab’ 7!1))7

but we won’t need this property in the paper.
Lemma 3.28. Assuming Hypothesis 3.26, then (3.52) induces isomorphisms:

(3.55) Exty (D(p,A\,%), D(p, A 0)) = Ext} (r(\,9), 7(\, %))
(3.56) Ker(k#) = Ker(r™)

where we denote by k& the morphism k in (3.2) and by k** the morphism

K in (3.47).
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Proof. For D € Extao ry (DA, %), D(A,¢)) it follows from Lemma 3.11 that
we have D € Ext;(D()\,¢),D()\,@Z))) if and only if D is trianguline and
the trianguline parameter of D is locally algebraic. Together with Remark
3.23, Proposition 3.25(2) and Hypothesis 3.26(2)&(3), the first isomorphism

follows. The second follows from Lemma 3.7 together with Remark 3.23,
(3.47) and Hypothesis 3.26(2)&(3). O

The following lemma is a trivial consequence of the Colmez-Fontaine
theorem ([27, Thm. A]) and of the main result of [2].

Lemma 3.29. Let o € EX such that val,(a) = M, then D(a, A\, 1)
is étale, i.e. D(o, \,¢) = Dyig(p) for a 2-dimensional continuous represen-
tation p of Galg, over E.

If o € E* is such that D(o/, X, ¢) = Dyig(p') is also étale, then o la’ €
O and p/ = p®p unr(a’a~!), hence p as in Lemma 3.29 is unique up to
twist by characters. Let p be as in Lemma 3.29 (for a choice of ) and denote
by 7(p) the continuous Banach representation of GL2(Q)) over E attached
to p via the local p-adic Langlands correspondence for GL2(Q,) ([24]). Then
we have using Remark 2.10 together with [59]:

T(p)™ = w(p~la, N, ) i=w(N, ) ©p unr(p~'a) o det.

Proposition 3.30. Assume p admits an invariant lattice such that its mod
wpg reduction p satisfies (A.2) (in the appendiz), then Hypothesis 3.26(1)
(hence Hypothesis 3.19 by Remark 3.27(1)) is true.

Proof. Let o € E* such that D(a,\,v) = Diig(p). By Corollary A.2,
Colmez’s functor V.-1 (see § A.1) induces a surjection:

(3.57) Extgr, o) (T(0): T(p)) — Ext(,p (D(a, A, ¢), D(a, A, )

where the Ext! on the left is in the category of admissible unitary Banach
representations of GL2(Q)) (recall unitary means that there exists a unit
ball preserved by GL2(Q,)). By the exactness of locally (Q,-)analytic vectors
([75, Thm. 7.1]), we have a morphism:

(3.58) Extar, g, (T(0):T(p) — Exter,q,) (F(0)* 7 (p)™)

which we claim is injective. Indeed, assume there is a continuous GL2(Q))-
equivariant section 7(p)*" — 7" C 7 for T € Extéb(@p)(%(p),%(p)). By
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[26], the universal unitary completion of 7(p)®* = m(p~ e, A’, 1)) is isomor-
phic to 7(p). By the universal property of this universal completion and
the exactness in [75, Thm. 7.1], we easily deduce that the above continu-
ous injection 7(p)*" < 7 canonically factors through a continuous injection
7(p) — 7 which provides a section to ™ — 7(p). However, by Lemma 3.5 we
have dimp Ext%%r) (D(a, A\, ), D(ev, A, ¢p)) = 5, and by Lemma 3.17(3) (and
twisting by unr(p~!a) o det) we have dimg Extéh((@p)(%(p)an,%(p)an) < 5.
Thus both (3.58) and (3.57) are bijective. The composition of (3.57) with
the inverse of (3.58) gives an isomorphism:

(3.59)  Ext!,p (D(a, A ), D(a, A, 9)) 5 Extly, ) (F(0)™, 7(p)™).

Twisting by Rg(unr(pa—!)) on the left hand side and by unr(pa—!) odet on
the right hand side, we deduce an isomorphism:

(3.60)
PLL : Ext(, 1y (D(p, A, 1), D(p, A, 1)) — Extyp, o (7N, ), 7(N, ).

The first part of Hypothesis 3.26(1) follows.
From the bijectivity of (3.58), we see any element in

EXtéLQ(Qp) (W(p_laa )‘bv ¢)7 ﬂ(p_laa /\ba w))

is isomorphic to the locally analytic vectors of an extension of 7(p) by 7(p)
(in the category of admissible unitary Banach representations of GL2(Q)))
and in particular is very strongly admissible. Twisting by unr(pa~!) o det,
we deduce any element in ExtéL2 @,) (m(N°,2h), (N, 1)) is also very strongly
admissible, which is the second part of Hypothesis 3.26(1). O

Remark 3.31. (1) Keeping the assumptions of Proposition 3.30, by the
same argument together with a version with fixed central character of (A.3)
(see (A.9)), we can show that (3.60) induces an isomorphism as in (3.54).

(2) Assume Endgay, (p) = kg, any element ¢ in the left hand side set
of (3.59) gives rise to an ideal 7y C Rj; with R;/Z; & Ogle]/€® (R is the
universal deformation ring of p, see § 5.1). With the notation of § A.2, the
map (3.59) then sends ¢ to (7" (p) ®r, R5/L:) ®o, E)™.

The following proposition is presumably not new, but we couldn’t find
the precise statement in the existing literature. We provide a complete proof
in § A.4.

Proposition 3.32. Keep the assumptions of Proposition 3.30 and
assume moreover Endgal, (p) = kg, and p > 5 if p is nongeneric (see just
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before Proposition A.4 for this terminology). Then Hypothesis 3.26 is true.
Consequently, the statements in Lemma 3.28 also hold.

Remark 3.33. Assume 1) smooth, let 7 € EXt;(ﬂ'(}\b, V), m(N\°,9)) as in Re-

mark 3.18 (with X replaced by A"), and let D € Ext}(D(p, A, %), D(p, A, v))
the inverse image of 7 via the isomorphism (3.55). By Remark 3.18 (see in
particular (3.37)), the existence of D confirms the discussion in [34, Rem.

1.6(a)].
3.3. L-invariants for GL3(Qp)

We use the previous results for GL2(Q,) and the results of § 2 to associate
to a 3-dimensional semi-stable representation of Galg, with N? # 0 and
distinct Hodge-Tate weights one of the finite length locally analytic repre-
sentations of GL3(Q)) constructed in [4].

3.3.1. Notation and preliminaries. We introduce some notation and
define some locally analytic representations of GL3(Q)) that will be used to
describe L-invariants for GL3(Q),).

We now switch to GL3(Q,) and we let B(Q,) (resp. B(Q,)) be the
Borel subgroup of upper (resp. lower) triangular matrices, T'(Q),) the diag-
onal torus and N(Q,) (resp. N(Q,)) the unipotent radical of B(Q,) (resp.
B(Qy)). We set:

Pl(@p) =

S *x %
S ¥ %
* X K

*
, PQ(QP) = O
0

EE

For i € {1,2} we denote by L;(Q,) the Levi subgroup of P;(Q,) containing
T(Qp), Ni(Q,) the unipotent radical of P;(Q,), P;(Q,) the parabolic sub-
group opposite to P;(Q,) and N;(Q,) the unipotent radical of P;. Finally
we let g, b, t, n, p;, [;, n;, n; the respective Q)-Lie algebras.

We fix A = (ki, ko, k3) a dominant integral weight of t with respect
to the Borel subgroup B, i.e. ki > ko > ks. We let L(\) (resp. L;(\) for
i € {1,2}) be the algebraic representation of GL3(Q)) (resp. of L;(Q,)) of
highest weight A and ) be the algebraic character of T'(Q,,) of weight A. To
lighten notation we set:

GL3 PO GL3(Q1>) an
Iz#(\) = (In 5) 6))
GL3 L GL3(Qp) 1 an
IS () = (Indg %) Li(v)
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'GLS P GL3(QP) S
D OVIRE (IndE(Qp) 1)™ ®g L(N)
-GL3 I GL3(Qp) oo
ip,*(N) = (Indg 057 1)" @p L)
We also set:
St (A) = Ig(N)/ Y ()
i=1,2
SN = iEE (A D z'g}a(»
i=1,2
VB (N = I (N)/LOY)
vE () = g (/L.

We have St3°(\) = St3"(\)lale, v%(A) = U%I:(/\)lalg and long exact se-
quences (cf. [78, Prop. 5.4]):

(3.61) 0 — L(\) =I5 (\) @ 15 (A) — 15 (A) — St§™(A) — 0

0— L(\) — z’%“()\) ® z'%“()\) — i3 (X) = St3°()) = 0.
For an integral weight p, we denote by L(u) the unique simple quotient of
the Verma module M (1) := U(g) ®y(p) #- Note that L(—)) is isomorphic to
the dual L(\)" of L(\). We use without comment the theory of [63], see e.g.
[8, § 2] for a summary. We often write GL3, P;, Z (= the center of GLj3)
instead of GL3(Qy,), P;i(Qp), Z(Q,) etc.

We now give several useful short exact sequences of admissible locally
analytic representations of GL3(Q,) over E. For i = 1,2, we have a nonsplit
exact sequence:

(3.62) 00— vF(A) — v () — ]—"%LS (L(=sj-A),1) — 0

where j # ¢ and s; denotes the simple reflection corresponding to the simple
root of L;(Qp). Indeed, by [4, Lem. 5.3.1], the theory of [63] and [8, Cor.
2.5], we have a nonsplit exact sequence:

G 3 G 3 G 3 T
0 —ip(A) — I (N) — Fp(L(=s; - A), 1) — 0,

which together with the fact Extey, g, (Fa*(L(=s; - A), 1), L(A)) = 0 (cf.
[78, Cor. 4.3]) implies that (3.62) is nonsplit by a straightforward dévissage.
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We let A1 2 := (K1, k2) (which is thus a dominant weight for GL2(Q)) as in
§ 3.2.2), it is easy to see that we have a commutative diagram (where we
write GL3 for GL3(Q)) etc.):

(Ind%LS (Indk  1)®@p Li(N))" —— (Ind%Lff St5°(A1,2) ® zhe)™

BNL,
(IndG™ ((Indg 6y)™))™ —— (IndZ S5 (A\12) @ b)) ™

where all the vertical maps are injective and all the horizontal maps are
surjective. Using the exactness and transitivity of parabolic induction, the
bottom surjection induces an isomorphism

ESON) /I%lL3()\) AN (Ind%L3 Sta™ (Ap2) ® ahe)an,

Together with (3.61), we deduce an exact sequence:

(3.63) 0 — v (A) — ( Ind%LS St3™ (A12) ® )™ — St5"(\) — 0.

By the theory of [63] and [8, Cor. 2.5], we have a nonsplit exact sequence:

(3.64) 0 —> (Ind%fs St3°®1)™ ®@p L(\) — (Ind%Ls St (Ar2) @ )™
— Fpt(L(=s2 - A),5t5° @1) — 0.

We also have another exact sequence (see e.g. [4, (53)]):

(3.65) 0 — v (N) — (Ind%L3 St3° ®1)™ ®@p L(\) — St5°(\) — 0.

From (3.63), (3.64), (3.62) and (3.65) and by comparing irreducible con-
stituents, we easily deduce that in (Ind%L3 St3™(A12) ® 2¥3)2 we have:

(3.66) (Indgfs St3°(A12) @ @)™ N () = vF (V).

Let Co1 = Fo*(L(—s5 - A), St5° @1) and:

S10 1= (IndFh S63°(Ar2) @ 7)™ /0 (V)

which is a subrepresentation of St§"(\) by (3.63) and (3.66) and sits in an
exact sequence by (3.64) and (3.65):

(3.67) 0— Stgo()\) — 5170 — 0271 — 0.
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We claim the latter is nonsplit. Indeed, as in the proof of [4,
Prop. 4.6.1], we have EXt(lgLS(Qp)<C2,17 v%';()\)) = 0. Together with the fact
that (3.64) is nonsplit, the claim follows by a straightforward dévissage. By
replacing P; by P» and s3 by s1, we define in the same way C} 1 as C21 and
S2,0 as S1,0, and we have similar results for C1; and S . In particular, we
have socgr,,(q,) Si0 = St3°(A).

In the sequel, we define several locally analytic representations C; ; and
S;,; of GL3(Qp) fori € {1,2} and j € {0, 1,2, 3}, these representations being
such that C; o = St3°()) for i € {1,2} and C;; < socqr,(q,) Si,j for all 7, j.

3.3.2. Simple L-invariants. We recall some facts on simple L-invariants.
We keep all the previous notation.

Lemma 3.34. Leti,j € {1,2}, i #j.
(1) We have ExtéLs(Qp)(v%o_()\), St3"(A)/Sj0) = 0 and an isomorphism:

ExtéLS(Qp) (3 (A); S50) — ExtéLS(Qp) (v3 (), St5"(A))-
(2) We have ExtéLS(Qp)(L()\), St§"(A)) = 0 and an isomorphism:

Extg, (q,) (V3 (V) St§" (V) = Extir, g, (ip" (), S5 (A).
Proof. In each case, the isomorphism follows from the first equality by an
obvious dévissage.

(1) It is enough to prove ExtéLg(Qp) (vF (A), C) = 0 for all the irreducible
constituents C' of St§"(X)/S; 0. By the theory [63], we know that C' is of the
form FgLB (L(—w - \), ™) were w is a nontrivial element of the Weyl group

distinct from s; (since we mod out by Sjo), Py C GL3 is the maximal
parabolic subgroup containing B such that w - A is dominant for Lp, (with
respect to BNLp, ) and 7 is a smooth irreducible representation of Lp, (Q,)
over E. If w # sj, i.e. w has length > 1, by [31, Lem. 2.6 (2)], we have
ExtéLS(Qp)(v% (A),C) =0. If w = s, then we have 7°° = St5° ®1 if i =1 or
7° =1® St5° if i = 2, and ExtéLS(Qp)(v%i()\),C’) = 0 (via Lemma 3.1) is
then one of the cases of [78, (4.45)] (or its symmetric).

(2) The first equality follows directly from [78, Prop. 5.6] and Lemma
3.1, and the isomorphism follows by an obvious dévissage. O

Let ¥ = (¢1,v¢2,v¢3) € Hom(T(Qp), F) (with obvious notation) and
consider the exact sequence:

GL3 GL:}(Qp) an pI‘ GL3
(3.68) 0 — Iz(\) — (IndE(Qp) A1+ We))™ — I7(N) — 0.
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For ¢ = 1,2, we see that pr— (sz‘"’( N/ D=1 QISL‘"’ (M) is by construction
an extension of ZGL3 (A) by St§"(A). By Lemma 3.34, it comes from a unique
extension IT¢(), \Il)g of v (A) by Sio. If ¥ is smooth (i.e. all ¢; are smooth,

Jj € {1,2,3}), by Con31der1ng the following exact sequence (which is then
“contained” in (3.68)):

0 —s ZGrLg (}\) (IndEI(-JS((;Qp)(I + \I/G))OO RF L()\) —) ZgLa(A) — 07

we see that I1°(\, ¥)o then comes via the embedding St5°(\) < S; from a
(unique) locally algebraic extension of v3 (A) by St3°(A).

Proposition 3.35. Fori € {1,2} the extension

HZ()\, \I/)(] S EXtéLs(QP) ('Ugo

P, ()‘)7 Si,O)

is split if and only if ¥; = i1, i.e. ¥ € Hom(Z,(Qp), E) where Z1,,(Qp)
is the center of L;i(Qp). Moreover, we have a commutative diagram:

Hom,(Q), E) —— ExtGL @, )( ;’Do()\) St5°(N))

(3.69) l l

Hom(Qy, B) ——  Extir, ) (0% (V), Sj0)

P P,

where the vertical maps are the natural injections, the bottom horizontal map
is given by the composition of

Hom(Q), E) > Hom(T(Qy), )/ Hom(Zy,(Q,), E)

p )
with W+ T4\, U)o, and the top horizontal map is induced by the bottom
map.

Proof. See [31, Thm. 2.17 & Rem. 2.18(ii)]. O

We now let 81 := xF1, 65 := | - |_1 k2=l 53 := | - |722%~2 and identify
Ext% r)(RE(0:), RE(6:)) with Hom(Qy, E) by (1.11).

Corollary 3.36. Fori,j € {1,2}, i # j, we have a natural perfect pairing:

Extéyr, o, (V3 (V) Sj0) X Extl, 1y (Re(di41), Re(5:) =5 E,
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and the same holds with S;o replaced by St§"(X\) (for i € {1,2}). Moreover,
the one dimensional subspace Extl(Rg(6;11), RE(8;)) of crystalline exten-
stons is exactly annihilated by the subspace EXtéLs(Qp)(U%(A)’ St5°(N)).

Proof. By Proposition 3.35 (together with the above identification) and
Proposition 2.3(2) (applied to Rg(6,) = Rg(diy1), DYt = Rge(s;) for
i =1,2), we obtain the perfect pairing of the statement. By Lemma 3.34(1),
we have a similar perfect pairing with S ¢ replaced by St§"(A). The last part
follows then from (3.69) and the discussion in Remark 2.6. O

3.3.3. Parabolic inductions. We study the locally analytic representa-
tion (Ind%L(?’(éQ)”) T(A1,2, %) @a*2)20 (cf. § 3.2.2) and some of its subquotients,
that we will use to describe L-invariants for GL3(Q,).

We keep the previous notation and fix 0 # ¢ € Hom(Q,, E). For a

locally analytic representation V' of GL2(Q,) over E we use the notation:

GL3 R GLS(QP) kS an
Iy (V, k3) .—(Indﬁl((@p) V@)

We have studied the subrepresentation I%;L?’ (St3°(A1,2), k3) in § 3.3.1. Ex-
1

actness of parabolic induction gives the isomorphism (recalling that s is the

unique nontrivial element in the Weyl group of GL2):

Iob(I(s - Ar2)s ks) =I5 (S5 (A1,2), ks) /15 (S65° (Au2), k).

From (3.66) and (3.62) (for i = 2) we deduce an injection fgLs(f(—sl .
A), 1) = IgL3(I(s - A1,2), k3) and together with (3.63) an isomorphism:

St = I (I(s - Ai2), ks) /Fp(D(=s1 - A), 1) = St§"(A)/S10-

Since C11 = Fg* (L(—s1 - A), St ®1) = St§*(1)/ St5°(A) and C1; is not

an irreducible constituent of S g by (3.67), we have a commutative diagram:

5270 —_— Stgn ()\)

l |

Cip —— St

where the vertical maps are the natural surjections and the horizontal maps
are injections. From the theory of [63], one moreover easily deduces that the
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irreducible constituents of Sy 1/C1 1 are:

(3.70)
{]—'%“3 (L(=s182-A),1), Fort(L(—=s152-0), 19St5°), Fpo* (L(=s251-A), 1),
FEU (L5251 - M), S6° @1), FEU (L(—s15051 - N, 1)},
all of them occurring with multiplicity one. Since w(A12,9)” =2 St5" (A1 2) —

L(A12) (see (3.22)), we have an exact sequence:
(3.71)

0 = I35 (St8" (A2), ks) — I (m(Ai, ) 7, ks) = I (L(A12), ks) — 0
where I (L(Ay2), k) = 1572 ()). Denote by:

51’2 = U%Ii(/\), CLQ = U%(A) = SOCGLS(QP) 5172.

Since 1%3 (St8" (A1,2), k3) /v (A) =2 St5"(A) (see (3.63)) and L(A) — I%LS (\),
it follows from (3.71) together with Lemma 3.34(2) that we have an injection:

L) = 155 (r(A\1,2,9) 7 ks) [0 (N).
We let II'(\,¢)~ be the cokernel, which is thus isomorphic to an
extens_ion of I%LS()\)/L()\) = o (A) by St3"(A). Finally we denote by 7%,
resp. Ba, the diagonal torus, resp. the lower triangular matrices, of GLj.

Lemma 3.37. We have a commutative diagram:

0 —— Sy —— M\ ¢)y —— v%(k) —— 0

! | |

0 —— St3"(\) —— M'(A\9)” —— v () —— 0

where TIY(\,1))o denotes the image of 1 wvia the bottom isomorphism of
(3.69).

Proof. Let Wy := (1, 12) € Hom(75(Qp), E) and

T = (1, ¢s,0) € Hom(T(Q,), E)

with 0 # 11 —e € Ev. We have (by the transitivity of parabolic inductions):
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. _ s GL1(Q, n
IG5 (1 (M2, 9) s ks) > I (Indg 0% 6, L (1 4+ 1)) /L(A2). k)

~ GLB P an 3
o~ (IndE(Qi? Lor(1 4 we)) ™ /1S ()

which induces an injection by (3.61) together with Lemma 3.34(2):

O ¢)" s W= <(Ind%1(gi?”) (1 + We))™/ -212 I%LS()\)>/L()\).

By Proposition 3.35 and the discussion above it, W contains IT'(\, )¢ as
subrepresentation, and it is easy to see that the injection Y\, ) — W
factors through IT'(\,4)~ (e.g. by comparing the irreducible constituents).
The lemma follows. O

We set 5]_72 = ]_—ng (L(—s251-A),1). By [4, Prop. 4.2.1 (ii)] and the proof
of [4, Lem. 4.4.1], we know that there exits a unique (up to isomorphism)

non-split extension Cy1 — C1 2, and it is a subrepresentation of S7 ;. Using
the formula in [4, § 5.2] and [78, (4.37)], it is not difficult to show:

Extér, g, (Cre, ]-"%Lf* (M(—s2-)), St ®1)) =0,
and hence (by dévissage) Ext%;L3(@p) (61,2, C’g,l) = 0. We deduce that St§"()\)
(which is of the form S7 9 — S1,1) has a unique subrepresentation of the form
St3°(A) —Chi1— 5172, containing S o. Denote by II' (A, )~ the push-forward
of ITIY (A, ¢)o via Sa9 < St5°(A) — C11 — C1 2, which, by Lemma 3.37, is a
subrepresentation of IT'(X, 1)~

Remark 3.38. If ¢ is not smooth then IT' (), 1))~ has the form:

Ci2
St5°(A) — Cr1
Cl,2
whereas if ¢ is smooth it has the form:
Cl,l — 6’1’2

/
St°(\) — C1 .

In all cases IT'()\,¢))~ has the form S; 9 — 511 — S12 = St3*(\) — 1.
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We now set:

Sug = I (s Maz), k) = (Indga B b, 0 [ @] [ 1)™

> 7S (M(—s1- N, 01| 91)

Crg = Fo (L(=s1-A), |- | @ - |@1)

~ 3(T GL- p
= FOU (T(=s1- V), |- |71 @ (Ind g %) |- | @ 1)) = socqryq,) Siss

where the last isomorphism follows from [8, Cor. 2.5]. The irreducible con-
stituents of Si 3/C1 3 are (from [63]):

(3.72)
{Fale L(=s150-7), [T @(Indg 28 [@1)%), Fo (L(=s2s1:0), 865° @1),

FG (L(=sa51 - X), 1), Fg¥ (L(=sasmisz- M), |- @] - | @ 1) },

all of them occurring with multiplicity one.

Lemma 3.39. The natural map:

(373) EXtGL( )(013, ( ,w) )—>EXtGL( )(013, ( ,1/})7)

is an isomorphism of 1-dimensional vector spaces.

Proof. (a) By [4, Prop. 4.6.1], we have:

Extyr, g,)(C1,3, (A 9) ") = Extgyp, o,)(C13, T (A, 9) 7/ St (V).

By [4, Prop. 4.4.2 & Prop. 4.2.1(i)] (resp. by [4, Lem. 4.4.1 & Prop. 4.2.1(i)]),
we deduce:

dimp Extgy, g,y (C13, T (A, 1)~/ St3°(A)) = 1

in the case where 1 is not smooth (resp. in the case where v is smooth).
(b) Since Homgy,,(q,)(C1, 3, I\, 0)~ /TIL(A, ) ™) = 0, we see (3.73) is
injective, and it is sufficient to prove EXtGLg(Qp)(CL?” C) = 0 for any irre-

ducible constituent of I (X, )~ /II*(X,1)~. By Step 3 of [4, Prop. 4.4.2], it
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is left to show EXtéLs(Qp)(CLZ’nC?,l) = 0. However, using [4, Cor. 5.3.2(ii)
& Lem. 5.3.3] and ([78, (4.37)]), one can show:

Extr, (g,)(C1,3, ]—"%Ls (M(—s2-)),St*®1)) =0

and hence EXtéLs(Qp)(CLi’n C5,1) = 0. The lemma follows. O

Now consider the exact sequence (see (3.25)):
(3.74)

0— I%LB (r(A12,9) 7, 2™) — I%LS (T(Ar2,¥),2%) 25 813 — 0,

The push-forward of pr=*(Cy 3) via I%'LB (m(A1,2,9) ", k) — II* (X, )~ gives

an extension of C}3 by II'(),4)~, which by Lemma 3.39 comes from an
extension of Cy 3 by II*(\,9)~ denoted by II'()\, ).

Lemma 3.40. The extension IT'(\,¢)) € ExtéLS(Qp)(CLg,Hl(/\,1/1)*) is
nonsplit.

Proof. The lemma follows from Step 2 of the proof of [4, Prop. 4.4.2]. O

Remark 3.41. (1) If 1 is not smooth then IT'(\, %) has the form:

/01,2\
St5°(A\) — C11 Ci3,
~ —
(3.75) Cla
whereas if v is smooth it has the form:
Cl,l — 5172

e
St5°(A) — C12— C1 3.

(2) One can actually show that the subquotient 51,2 — Cy3 in (3.75)
is also non-split (see [4, Rk. 4.4.3(ii)]). But we don’t need this fact in the

paper.
Denote by II*(\, ) the push-forward of (3.74) along

185 (w2, 0) ™ k) —> T\ )
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which thus has the following form by Lemma 3.37:
(3.76) I (A, 1) 2 Sy — S11 — S1o — S1.3 2 St3"(\) — S10 — S13

and contains II'(), ¢)) by Lemma 3.39. B

We define 0277;, 5271‘ fori € {1, 2, 3}, 0272, H2()\, ’(/J)(), HZ(/\, w)_, H2()\, ’(/J)_,
I12(\, ) and II2(), 1) in a similar way be replacing P; by Py (and modify-
ing everything accordingly, e.g. I(s-A12) ®z¥ is replaced by x¥* @ I(s- Aa3)
with Ag 3 := (ka, k3) etc.). In particular all these representations are subquo-

tients of (Ind%L(ié@) )k @ m(A2,3,%))™" and all the above results have their

symmetric version with Py replaced by P».

3.3.4. L-invariants. We associate a finite length locally analytic repre-
sentation of GL3(Q)) to a 3-dimensional semi-stable representation of Galg,
with N2 # 0 and distinct Hodge-Tate weights. Roughly speaking, the results
in § 2 and § 3.2.3 allow us to associate to such a Galg,-representation certain
deformations (i.e. extensions) of locally analytic representations of GL2(Q,).
We then use Schraen’s spectral sequences [78, (4.37), (4.38)] combined with
parabolic induction to go from extensions of locally analytic representations
of GL2(Q,) to extensions of locally analytic representations of GL3(Q)).
We keep the notation of the previous sections (in particular we have
fixed A = (k1, ko, k3) and 0 # ¢ € Hom(Q,', E)). From the constructions of

I1*(\, ) and II1(X, ) (and from Lemma 3.39), it is not difficult to see that
one has an injection:

(A, )" =T\ ¥) @sizen) S1o = M W).

From Remark 3.41, we see that IT'()\, )" has the following form (3 not
smooth on the left, 1) smooth on the right):

51,2\
Cia \'01,3 Cii— 6'1,2
Nl ~
St5°(N) Ci2 St3°(\) —Cr12—C13
AN AN
Ca1 Ca1.

We will show that the extension group ExtéLS(Qp) (v%’ (A), Y (A, ¥) ™) can

encode the information on (higher) L-invariants. We start with some lem-
mas.
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Lemma 3.42. (1) The natural map:
(3.77)  Extfy, g, (05 (A, TN ) 7) — Extéy, q,) (03 (V), (A, 9))

s an isomorphism.
(2) We have an exact sequence:

(3.78) 0 = Exty, (g, (05 (V) St3°(N) = Exteyr, g,y (03, (), ITH(A, ¢)+)
- EXtGL3(Qp) (v 7, (A), 11 YL 9)/ StR(N)) @ Extgyy, @) (“ (A),C21) —

where:

<

dlmE EXtéL3 (Qp)

<

dlmE :EX‘CIGL3 (@,)

[
Sy B3 Sl 18

4

e e e R

dlmE EXtéL3 (Qp)

Proof. (1) Tt is easy to see HomGLg(Qp)(v%‘;()\),ﬁl()\,w)/ﬂl()\,w)ﬂ =0,
and thus (3.77) is injective. It is sufficient to show

Xt (g, (V3 (), TTH A ) /T (A, ) ) = 0.

From [78, (4.37) & (4.41)] and [78, Prop. 4.10], we easily deduce that for
any irreducible representation W in the union (3.70) U (3.72) we have

ExtéLS(Qp)(v%‘; (A),W) = 0. As in Step 4 of the proof of [4, Prop. 4.3.1], we

also have ExthLB(Qp)(v%‘; (M), fgng’ (L(—s2-A),1)) = 0. Since the irreducible

constituents of ﬁl()\, ) /IIH (A, 1p) T are exactly given by the representations
in the set (3.70) U (3.72) U {fgLS(Z(—SQ - A), 1)}, the result follows by
dévissage. '

(2) First note that by Lemma 3.1 the extension groups in (3.78) do not
change if ExtéL3(Qp) is replaced by ExtGL (@,),z- BY [78, Cor. 4.8], we have

EXtéLg(Qp),Z(U%O (N),St5°(N)) = 0, from which we easily deduce (3.78). By

loc. cit. we also have:
dimp Extey, g,y 2(v5, (M), St5(N) = dimp Extgy, g, (V5 (A), St3°(1)) = 1.

It follows from (3.69) and ExtéLg(QP%Z(v%‘;(/\), St5°(A\)) = 0 that we have:

dimEEXt%}Lg(Qp) (’U%‘; ()\), 0271) :dimEEXté}Lg(Qp) (’U%‘; ()\), 51,0/ Stgo(/\)) =1.
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From Remark 3.41 and [4, Prop. 4.2.2 (ii) & Prop. 4.2.3 (ii)] we easily deduce:
Extir, ) (05 (A, L)/ St (V) — Extéy,q,) (05, (A, C12 = Ci3).

By [4, Prop. 4.3.1 & Prop. 4.2.1 (i)] the latter is one dimensional. This
concludes the proof. O

By [78, (4.38)], we have a spectral sequence:!

(8.79)  Extl,q )7 (Hi(N1(Q), 035 (V). 7(Ar2, ¥) @ 2*)

= EthLj;(Qp),z (v& (M), I%“ (m(A1,2, ), k3)).

From [78, (4.41) & (4.42)] and the discussion after [4, (52)] we have (with
obvious notation):

BE@) 5= @ Iiw)e (S ela(| odesl ).
lgw=1i

w-Ais
BN Lidominant
For all w with w - A dominant with respect to B(Q,) N L1(Q,) we have by
considering the action of the center of L;i(Q)):
Homyp, (q,) (L1(w -\ ®@g (|| odet &) - ), m(A12,9) @ 2*) =0
EthLl(Qp) (Ll(w AN ®@p (|- |_1 odet ®| - |2),7T()\1,2,@ZJ) & l‘k3) =0.

It is then easy to see from the above formula:
Hole(Qp) (Hl (Nl (Qp), U%‘; ()\)), 7T()\1,2, 1/)) X $k3) = 0.

Thus we deduce from (3.79) an isomorphism:

(3.80) Extp gz (St5°(A2) ® ™, m(Aig,¢) @ ™)
= Bxty,(g,),2 (05, (V) Ip 2 ((A1 2, 9), k3) ).

L Actually, to apply [78, (4.38)], one needs to show that the (dual of the) P;-
representation (A1 2,1) ® ¥ satisfies the condition (FIN) of [76, § 6]. However,
any irreducible constituent of (1 2, 1/)®x" is either locally algebraic or isomorphic
to a locally analytic principal series, and hence satisfies the condition (FIN) (see
the discussion in the beginning of [78, § 4.4] for the locally algebraic case, and the
discussion before Step 1 in the proof of [4, Prop. 4.3.1] for the case of principal
series). One deduces then that the dual of m(\;2,) ® 2% also satisfies (FIN).
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Denote by W be the kernel of 19" (m(Ay 2, ¢), k3) — II*(A,¢b), which (by
the definition of II*(\, ¥) and II* (), )™) is an extension of L(\) by vp (N).

By [31, Cor. 2.13], we have ExtELB(Qp)vz(v%‘;()\),I%LS(/\)) =0foralli>0

and:
A E ifi=1
Ext? 2. (A), L(A)) =
XGLs(Q,),2 (UPz( ), L( )) {0 otherwise.

By dévissage (recall I%L3 (A) = L(A) — o5 (N), see § 3.3.1), we get:

. E ifi=0
3.81 Ext! 7. (M) vp (A) =
(3.81) Xt (a2 (15, (), 05, (V) {o otherwise

Again by dévissage, we deduce Ex‘céL3 (@,),2 (v%‘; (M), W) =0 and an isomor-

phism:

Exthry 0,207, (M), W) = Bxtérq,).2 (v, (), L)

of 1-dimensional E-vector spaces (with [78, Cor. 4.8] for the dimension).
From the former equality we obtain an exact sequence:

(3.82) 0 — Extém((@p)’ 7 (v (), W)

P,
— EXtéLs (Qy),2 (U%.; ()\)7 I%ZLJ (7'['()\172, ¢)7 k3))

— Extly, 0,2 (035N, (A, %)) — 0.

Together with Lemma 3.42, (3.80) and a dimension count we obtain:

(383) dlmE EXt}/l(Qp),Z ( Stgo(ALQ) X ka,W(A1,27 1/1) X .%'k3)
= dimp Extéy, q,) 7 (05 (V) IgL (t(A1,2, %), k3)) = 4.
By (3.80) and (3.82), we have a natural surjection:
(3.84) EthLl(Qp)z (St5°(A12) ® a* (A2, ) ® IL‘kB)
— Extep, g,).2 (03, (A, (A, 9)).

Similarly, we have natural maps (without fixing the central character of
GL3(Qp) and using (3.64) and (3.65)):
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(3.85)  Exty (g, (St5°(A\2) @ 2®, m(Aig,v) @ &™)
— Extgr, o, (vE (M), I%LS (m(A12, ), k3))
— Extiy, g, (035 V), 1T (), )

whose composition is surjective by (3.84) and the isomorphism (Lemma 3.1):
Extér, g,).2 (V3 ' (V) I (A, ) — Extgy, @,) (3 (), ' (A, ¥)).

Remark 3.43. We can describe (3.85) (and similarly for (3.80) and (3.84))
in the following explicit way. For any

T € Bxty g,)(St5°(A12) ® 2", m(A1 2, ) @ 2™,

GL3(Qp) ~ 7)an

the parabolic induction (Ind= lies in an exact sequence:

Pl(@p)
(3.86) 0 — I%L3 (m(A1,2, ), kS) (IndGLfé%) 7)™
GL3(Qp) qpo00 ks an
= (Indg %7 St (Ar2) @ 2)™ — 0.

Then the first map of (3.85) is given by sending 7 to pr_l(v%'; (M) and the

second map is given by quotienting by the subspace W. In particular the
composition sends 7 to pr_l(vf (A)/W.

Consider the following composition:

(3.87)  Extgp,o,) (St5°(A2), m(A12,9))
— EXt}q(Qp) (Stgo()\LQ) ® l'ks, 7‘(’()\172, w) ® :Ekfd)

B, Bxtly o) (635 (V)L I 0)

where the first map sends 7 to 7 ® z*3

Lemma 3.44. (1) The composition (3.87) is surjective.

(2) The kernel of the composition (3.87) is 1-dimensional and is gener-
ated by 11 (m(A,,0)7) (see (3.29) and (3.23)).
Proof. (1) For any 7 € Ext}zl(Qp)VZ(Stgo()\l,Q) @k (A1 2,1) @), we can
view 7 as a representation of Li(Q,) over E[e]/e? by making € act as the
composition (unique up to nonzero scalars):

T — St (M2) @ 20— (A1 2,9) @ 2" —— T
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Let Zy := Q) — L1(Qp) = GL2(Qy) x Q, a+ (1,a), which acts on 7 by
a character X of Q) over Ele|/ €2 (by the same argument as in the proof of
Lemma 3.15). Consider 7 := 7 ®E[€]/€ (X~ ! o det), on which Z5 acts thus
by z*:. So there exists 7} € ExtGL @) (St5°(A1,2), m(A1,2,9)) such that

= ®:vk3 (“external” tensor product). However, by Lemma 3.2, Remark
3.43 and the fact that:

(%) = () 7)™ 5o
we see that the image of 7 via (3.84) is isomorphic to the image of 7, via
(3.87). Since (3.84) is surjective, so is (3.87).

(2) Since (3.87) is surjective, by counting dimensions using Lemma 3.42
and (3.83) we see that the kernel of (3.87) is one dimensional. It is thus
suﬂicient to prove ¢1(m(A,1,0)7) is sent to zero. Let W9 := (¢,0) and

= (¢,0,0). By construction (cf. (3.23)), m(X,¢,0)” is a subquotient of

(1 dGLf(Q)”)cS”( + Uy 56))™, and thus (IndgL&;@p’ w(A1,0)” @ zho)m i

a subquotient of (Ind%%(&(?p) Ox(1 + We))*". However, from the first part of

Proposition 3.35 and Lemma 3.34(1), we deduce (see Proposition 3.35 for
Hz()‘a \II)O):

[eS) 2 GL3(Qp) GL3
v (A) — IP(\, ¥) — (IndE(Qp) Sx(1+ Te))/ 212 L5 ().

In particular the image of 11(m(A,,0)7) via (3.87) contains vF (A) as a
2

subrepresentation, hence the associated extension is split. This concludes

the proof. O

We now can prove the main result of the section. We let A= (k:l, ko —
1,ks—2), ALy o= (ki ko —1), Ay g == (k2 —1,k3 —2) and D} := D(p, \} 5, )
(see (3.51), the notation D? is for (future) compatibility with the notation
at the beginning of § 2).

Theorem 3.45. Assume Hypothesis 3.26 for D3. The cup product (2.1)
together with the isomorphisms:

Ext(, ) (D}, DY) = Ext{, ) (D(p, A5, %), D(p, A 5,%))

3.52
% EXtéLz(Qp) (W(Al,Qa w)7 7T(/\172’ w))
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induce a perfect pairing of 3-dimensional E-vector spaces:

(@]

(3.88)  Ext{,p (Re(z™72-|72), D}) x Extgy, q,) (v3, (N, 1) — E

with TT = I (X, ) or TV (A, )T

Proof. The dimension 3 comes from Lemma 3.42(2). We have morphisms
(see (3.28) for k1):

(3.89)
Extgr, o,) (T(A2, %), T(A12,9)) =5 Exter, o,) (S5 (A12), m(A 2, 9))

(3.87) o = N
= Extgyp, o,) (03, (), I (A, 9)) ZExtey, ) (05, (V) A 9)T)

where the first morphism is the surjection in (3.28) (it is surjective by
Remark 3.27(1)) and the last isomorphism is Lemma 3.42(1). By Lemma
3.44(2) and Lemma 3.24(1), we obtain that the kernel of the composition in
(3.89) is equal to Ker(k*"") where we use the notation of Lemma 3.28. Note
that this composition is surjective by Lemma 3.44(1) (and the surjectivity
of k1). Now consider:

o (3.52)
(3.90) Ext{,p (D}, D}) = Ext{, 1y (D(p, X 5. 9), D(p, M 5, ) =

(3.89)
EXtéLz(QP) (77()\1,2a¢)77r(>\1,2,¢)) —" Extg taL.(Q,) ( ()\) Hl()\ ¢)+)

By (3.56), the kernel of the composition in (3.90) is thus isomorphic to
Ker(x8%). Since this composition is moreover surjective, the theorem then
follows from Proposition 2.3 (where # there is denoted x&* here). O

We let 81 := 2%, 8y := 22~1|. |71 and 63 := 2¥272| . |72, The following
proposition shows that the pairing (3.88) is compatible with the one in
Corollary 3.36 for simple L-invariants.

Proposition 3.46. Assume Hypothesis 3.26 for D?. We have a commuta-
tive diagram:
(3.91)

Ext{y,(g,) (02 (V) St (V) % Ext{, ) (Re(%), Re(%)) —— E

[ d H

Extéy, g, (U35 (N, ' (A ¥)) % Ext{,p (Re(d),D}) —— E
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where the left vertical map is the natural injection, the middle vertical map
is the natural surjection, the bottom (perfect) pairing is the one in Theorem
3.45 and the top (perfect) pairing is the one in Corollary 3.36. The same
holds with (St§™(\), IT1 (A, v)) replaced by (S1,0, T (A, ) 7).

Proof. (a) We first show that the composition:

(3.92)  Extiy (m(A12,9), 7(Ai2,9)) — Extgp, g,y (A2, %), 7(Ar2,9))

— Extéy, g,y (S8°(M2), 7M1 2,9)) — Extéy, gy (V3 V), T, 4))

factors through:

), St5"(\))

(3.93)  Extiy (m(A12, %), 1(A12,%)) — EXtGL @) (v vp, (A
(03 (), T ().

— ExtGL

By (3.45), the composition of the first two maps in (3.92) has image equal
to Im(¢1) (cf. (3.29)). It is thus sufficient to show that the composition:

(3 94)
EXtGL @ )(St2 ()\1 2) ()\172, w)f) gEXt%}LﬂQ )(Stgo(/\lg), 71'()\172, 1/1))

CED, Bty (0 ()T (1))

factors through:

(3.95)
Extar,g,) (S65°(AL2), m(AL2, ) ™) — Extéy g,y (V5 (A), St5"(N))

— Extgr, o,) (03, (N, T (A, ).

By the construction in Remark 3.43, it is easy to see that any element in the
image of (3.94) comes by push-forward from a certain extension of vZ’ (A)

by ﬁl()\, 1)~ . By the proof of Lemma 3.42(1), one has:
Ext, (v (), St3"(N)) — Extg (v (N), T (A, ) 7).
GL3(QP) P2 ’ 3 GL3(QP) P2

We deduce that the map (3.94) factors through Exté'L3 @,)(VE. (A), St5(A)).
(b) We prove the following map is surjective:

Excti (1(A1,2, 9), m( A2, ) — Exctiy, @,) (V5. (A), St5*(A)).
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The composition of the last two maps in (3.92) is equal to (3.89) and
has kernel equal to Ker(k®") by the proof of Theorem 3.45. From
(3.47) we have Ker(xk™) C Extl;(m(A12,%),7(A12,%)), so the kernel
of the composition in (3.92) is Ker(x*""). From Lemma 3.24(1), we get
that the kernel of the composition in (3.93) is (also) Ker(x*') and is 2-
dimensional. From Lemma 3.34(1) and Proposition 3.35 we deduce
dimpg ExtéLS(Qp)(v%‘;()\),St%n()\)) = 2. Together with Proposition 3.22(1)
and a dimension count, we obtain that the first map in (3.93) is surjective.
From the proof of (a), it follows that the first map in (3.95) is also surjective.
In summary, we have a natural commutative diagram:

(3.96)

Extyy (m(A2,9), m(M2,9))  —— Bxtgp,q,) (vE (1), S5 (V)

l l

Bxtir, g, (TO0.2:9), 0.2, 8)) —— Bxtiyq,) (v (0,10, 0)

where the horizontal maps are surjective and the vertical maps are injective.

(c) By the discussion in (a), the morphism (3.95) can be constructed in
a similar way as in Remark 3.43. In particular, for

its image in Extém((@p)(v%o (N), St3"(A)) is a subquotient of (Ind%L(S(éQ; )% ®
xks)2 By the transitivity of parabolic inductions, one can check the follow-

ing diagram commutes:

Hom(T2(Q,), E)y P, Hom(QX, E)

D

! !

(3.9 - .

where the left vertical map is given by the inverse of (3.39) (see Remark 3.21
for its construction), and the right vertical map is given as in Proposition

3.35 (see the discussion above Proposition 3.35 for its construction). We

t

deduce that the following diagram commutes (see (3.47) for x*"* = x and
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recall (3.93) comes from (3.95) by the proof of (a)):

3.93
Extly (m(A2, ), m(h20)) " Extly, o) (63 (1), S5 (V)

(3.97) “l zl

Hom(Q,, E) —" Hom(Q,, E)

where the right vertical map is the inverse of the bottom horizontal map in
(3.69) (via Lemma 3.34(1)).

(d) By Hypothesis 3.26(2)&(3), the bottom squares of (3.13) induce a
commutative diagram:

(3.98)
Extly (1(A12,%), 7(A12,¥)) x Bxtl, 1 (Re(0), Re(%)) —— E

| T |

Extdy, o) (T2, 9), m(\2, ) x  Ext! . (Re(6),D}) —— E.

And the top squares of (3.13) induce another commutative diagram:
(3.99)

EXt%ﬂ (7T()\172,¢),7T()\172,1/1)) X EXt%%r) (RE(dg),RE(ég)) L) FE

| H H

Ext), r(Re(5:), Re(62)) x Extl,p (Re(5),Re(%) —2o E

where we identify Hom(Q,;, ) with Ext%%r)(RE((Sg),RE(ég)) (see (1.11)).

(e) We finally prove the proposition. By (3.96), (3.98) and Theorem 3.45,
we deduce a commutative diagram as in (3.91) but with the top pairing Uy
replaced by the pairing induced by the top pairing of (3.98) via the surjection

(see (b)):
Extey (m(A12,9), m(A12, ) — Exter, g,y (V5. (M), S5 (V).

However, by (3.99) and (3.97), we see these two pairings actually coincide.
This concludes the proof. ]

We fix a nonsplit extension D € Ext%w r) (RE(d3), D?) and we let (as-
suming Hypothesis 3.26 for D?):

(3.100)  Law(D : DY) C Bxtly gy (V3 (A, T (A, 9))
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= Extr, (g, (05, (A, (A 9)T)
be the 2-dimensional E-vector subspace annihilated by D via (3.88).

Remark 3.47. By Theorem 3.45 and its proof, the composition (3.90) actu-
ally induces an isomorphism Ext%q} F)(D%, REe(62)) — ExtéLS(Qp)(v%’ (A),10)

with IT = II*(\, ) or II}(), 1) ™. Moreover, for a nonsplit
D € Ext{, (Rg(d), DY)

as above and from the definitions of ¢p\(D : D?) and Ly (D : D?), this
isomorphism induces an isomorphism:

(3.101) tem(D : D) =5 Lo (D : D?)

since both are annihilated by D via the corresponding pairing.

We define (cf. Notation 3.4):

(3.102)  TYD)™ = &I\ ¢), 03 (N, Law(D : DY)
(3.103)  IY(D)” = &M\ )" vx (NP2, Law(D : DY)).

It follows from the perfect pairing (3.88) and Lemma 3.42(1) that D is
determined by the subspace Loy (D : D?), hence by II'(D)~ and II'(D)".
Let:

Laut(D : D?)g := ExtéLz(Qp) (02 (X), St57(A)) N Lawt(D : D?)

which we also view as a subspace of EXtéLS(Qp) (v%o (A), S2,0) by Lemma
3.34(1). By Proposition 3.46, we have via the pairing U; (u; as in Proposition
3.46 and identifying D with its corresponding extension):

(3.104) Lawt(D : D)o = (Buy(D))*.
We assume now that the extension u; (D) of Rg(d3) by R (d2) inside D
is nonsplit. As Uy is perfect (cf. (3.91)) this implies dimpg Loyt (D : D?)g = 1.
We define (cf. Notation 3.4):
(D), = &(S§ (V)05 (A), Laus(D : D})o)
D)y = &(S20,0% (N, Lau(D : DY)o)-

We have injections II' (D)5 < (D)~ and II}(D); < II}(D)".
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Remark 3.48. Identifying Ext( ) (REe(d2), Re(62)) with Hom(Qy', E), the
vector space (Euy (D)) via the top perfect pairing U; of (3.13) is thus a one
dimensional subspace of Hom(Q,, E). We let ¢’ be a basis. By Corollary

3.36, we have 1T} (D), = TI2(\, ¢/ )0 where we denote by I12(\,¢')o the image
of ¢/ via the bottom bijection of (3.69).

Proposition 3.49. Assume Hypothesis 3.26 for D} and N? # 0 on the
filtered (p, N')-module associated to D ([2, Thm. A], and note that the latter
implies that uy (D) is nonsplit and v is non smooth). Then there ezists a
unique subrepresentation:

(D)} € Extgr, (g, (05 (), I (A, 9)) \ Extgr, ) (05, L (N), St (X))

of YD)~ such that II'(D)~ = II'(D)] ®gz=(n) IIN(D)3 . In particular,
Y (D)~ has the following form.:

Proof. Considering the surjection in (3.78):

pr: ExtéL (@) ( ( ), 11 ( ¢)+)
B, Bxtly g, (43, (0, T )/ S (0) @Exthy g, (43,0, Caur).

We see with Lemma 3.42(2), Remark 3.41 and the form of IT*(\, )T at the
beginning of § 3.3.4 that we have:

Ker(pr) = ExtéLg(Qp) (U%Z()\), St5°(N))
Ker(pr;) = ExtéLS(Qp) (v%’;()\), S10)
Ker(pry) = ExtéLg(Qp) (v%';()\), (), V).

And it follows from Lemma 3.42(2) that the first kernel has dimension 1 and
the two others dimension 2. We first show:

(3.105) Ker(pr) N Laut (D : D?) = Ker(pr) N Laws (D : D)o = 0.
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The first equality is clear since by definition and Lemma 3.34(1) we have
Lot (D : D?)g = Ker(pry) N Laue(D : D?). As N? # 0, the quotient u; (D)
(as an extension of R (d3) by RE(d2)) is not crystalline, hence by the sec-
ond part of Corollary 3.36, u;(D) is not annihilated by ExtéLS_(Qp)(v%‘; (N,

St5°(A)). Since the latter vector space has dimension 1, one deduces from
(3.104):

(3.106) Exté,g,) (V5 (M), St5°(A)) N Law(D : D)o =0

and the second equality in (3.105) follows. As Laut(D : D?) has dimen-
sion 2 and ExtéLg(Qp)(v%';()\),Hl(/\,¢)+) dimension 3, we easily deduce
from (3.105) and dimpg Ker(pr;) = 2 that dimg Ker(pr;) Ndimg Loyt (D :
D3?) =1 for i = 1,2. Let Lawt(D : D3)1 = Ker(pry) N Law(D : D?) C
Extéh((@p) (U%‘; (A),II* (X, %)) and set (with Notation 3.4):

(D)7 = & (A, ), 0% (A), Lawe(D : D).

Since we have Lo (D : D?)1 @ Law(D : D?)g = Laut(D : D?) (as follows
from (3.105)) and Ker(pr) N Law (D : D?); = 0 (ibid.), one easily checks the
statements in the proposition. O

Replacing Py by Pa, we define II*(\, )" := II*(X,¢)) @geze(n) S2,0 <
ﬁQ(A,w) as for ITH(\,¢) " at the beginning of § 3.3.4. All the above results
have their analogue (or symmetric) version. Let D3 := D(p2,/\ﬁ273,1/1) (see

the beginning of § 3.2.3). The following theorem is the analogue of Theorem
3.45 and Proposition 3.46.

Theorem 3.50. Assume Hypothesis 5.26 for D3. The isomorphism (3.52)
and (2.8) induce a perfect pairing:

Extéyr, o, (V5 (V) 1) x Ext{, ) (D3, Rp(61)) — B
such that the following diagram commutes:

Extér, (g,) (v (A),117) x Ext(, ) (RE(82), Re(01)) NN

| “] H

Extép, o, (05 (A),1) x Ext{, ) (D§,Re(d)) —— E

with (117, 11) = (S0, TI2(A,40)T) or (St3*(N),I12(\,¢)) and where the top
perfect pairing is given as in Corollary 3.36 (via Lemma 3.34(1)).
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For D € Ext%%r) (D3, RE(61)), we define (using the symmetric version
of Lemma 3.42(1)):

(3.107)  Law(D: D3) := (ED)* C Extgy, g,y (03 (V) (A, 4)7)

= Exti,o,) (03 (), (A, )

and likewise using Lemma 3.34(1):

Lawt(D : D)o = Lowt (D D) N Extlyy, o) (055 (V). S2,0)
C Extgr,(q,) (05 (V). S20) = Extgr,(q,) (05, (V). St (V).

We have L (D : D3)o = (Eui(D))* via the pairing Uy in Theorem 3.50.
We also define:

(3.108)  I(D)” = E(IPNY)T,0F (N2, Law(D 2 D3))

(3.109)  I*(D)~ = &P\ A)@Q Lowt(D : D3))
?(D); := 5(520, Eaut(D D3))
ﬁQ(D)l’ = &(St5"(\),v )\) Laut(D:DQ)O)

and we have I12(D)] — I12(D)~ and TI2(D)] < [2(D)~. Similarly as in
Proposition 3.49, assuming Hypothesis 3.26 there exists a unique represen-
tation if N2 # 0:

I2(D); € Extéy, g,y (03 (), TN, 9)) \ Extiy, g, (V5 (), St3°(N))

such that I1*(D)~ = II*(D)] &gz (x) I*(D)3 .

Now we fix (D, (01, 02,d3)) a special noncritical (p,T')-module of rank
3 over Ry (see the beginning of § 2) with §; = 2%, §y = z*2~1|. |71 and
63 = x¥72| . |72, We assume the extension of RE(52) (resp. of Rg(d3)) by
Rp(d1) (resp. by RE(52)) is nonsplit and we let 1, be a basis of Lgy(D? :
Re(61)) € Hom(Q,, E) and 95 a basis of Lrm (D3 : Re(d2)) € Hom( s E)
(see § 2), i.e. we have D? = D(p, )\{2,1#1) and D3 = D(p?, )\273,1#2) (see the
beginning of § 3.2.3 and (3.51)). We assume N2 # 0, which is equivalent to
1; not smooth for ¢ = 1,2 and we also assume that Hypothesis 3.26 holds
for D? and D3 (recall that under quite mild genericity assumptions this is
automatic by Lemma 3.29, Proposition 3.30 and Proposition 3.32). We can
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then associate to D the above representations:
(D)~ = TY(D); ®gzen M1(D); < (D)~
II’(D)” = I*(D)] ®seen) IP(D); < II*(D)~.

By the symmetric version of Lemma 3.37, the subrepresentation Sy,0—vZ (N)
of TI2(\,¢2) C IT?(D), C (D)~ is isomorphic to the image I1%(\, v2)o of

19 via the bottom map of (3.69). By Lemma 2.5, we deduce:

Lem(D3 : RE(52)) = tem(D3 : RE(52))
= lpm(D : D%) N EXt%SD,F)(RE((SQ),RE(éQ))
= Bt C Hom(Q,, E™).

Thus by Remark 3.48, II'(D); is also isomorphic to IT?(),12)o. In particu-
lar, we have an injection I11(D), < II?(D); . Similarly, we have an injection
11%(D); < I}(D)]. Denote by II%(D)~ the following subrepresentation of
IIY(D)~ and I%(D):

Cip—Cip2
~

(D) = SE()
~
Co1—Cap

and put IL(D)~ := II'(D)~ @po(p)- 11*(D)~, which is thus of the following
form (where C1 4 = v¥ (A) = Cz2 and Ca 4 = v (N) = (4 2):

P2 Pl
G
Cia \01,3 —Cl4
~N 7
Ci2
(3.110) (D)~ = St(\)
\ Ca
RN
Ca1 Ca3—Co4
N7
Capo

It follows from the previous results that the (¢,I')-module D and the
GL3(Qp)-representation II(D)~ determine each other. From the results of
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[4, § 4] (see in particular [4, Rem. 4.6.3]), there is a unique locally analytic
representation II(D) containing II(D)~ of the form:

Cip Cia
Cia Ci3 Cis

/ ’\ e ’\ P
Cip Cia
BIT(D) = StF(N)

\ C,2 Cou
NN
Ca1 Ca3 Cop
D U N
(P Coy

where the irreducible constituents C 5, Ca s, 5174, 5’2,4 are defined in [4,
§ 4.1].

For x : Q) — E* and D' := D ®g, Re(x), we finally set II(D')™ :=
(D)~ ® x odet, II(D') :=II(D) ® x o det, and if D’ = D,js(p) for a certain
p: Galg, — GL3(E), we set II(p) := II(D’). In particular, we have thus
associated to any sufficiently generic semi-stable p: Galg, — GL3(E) with
distinct Hodge-Tate weights and with N2 # 0 on Dy (p) = (Bt ®q, p)Gae g
locally analytic representation II(p) of GL3(Q)) over E which has the form
(3.111) and which only depends on and completely determines p.

4. Ordinary part functor

In this section we give several properties of the ordinary part functor of [40]
and review the ordinary part of a locally algebraic representation that has
an invariant lattice ([42, § 5.6]).

4.1. Notation and preliminaries

We start with some preliminary notation. We fix finite extensions L and
E of Q, as in § 1 and denote by wy, a uniformizer of L. We let G be a
connected reductive algebraic group over L (G will be split from § 4.3 on),
B a Borel subgroup of GG, P a parabolic subgroup of G containing B with
Np the unipotent radical of P and Lp a Levi subgroup of P. We let P be
the parabolic subgroup of G opposite to P, N its unipotent radical and
Z1,,, the center of Lp = L.
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Let K be a compact open subgroup of G(L), as in [40, § 3.3] we say K
admits an Twahori decomposition (with respect to P and P) if the following
natural map:

(KN N5(L)) x (KN Zp, (L)) x (KN Np(L)) — K

is an isomorphism. We let In D Iy D I3 D --- D I; D I;+1 D --- be a cofinal
family of compact open subgroups of G(L) such that:

e [, is normal in I
e [; admits an Iwahori decomposition.

For i € Z>o, we put N; := Np(L)NI;, L; :== Lp(L)NI; and N; := N5(L)NI;.
Fori>j >0, we put [; j := NZ-LJ'NO, which can be checked to be a compact
open subgroup of Iy such that:

Ni X Lj X No ;> Ii,j-

Remark 4.1. For any ¢ € Z>q, the subgroups N, L;, and N; of I, are
normalized by Lo, and hence I; ; is normalized by Lg for any ¢ > j > 0.
We show this for N; (the other cases are similar). Let z € Ly, we have
zN5(L)z~! = Np(L), which together with the fact zI,z~! = I; implies
zN;z7t = 2(Ns(L) N I;)z~t = Np(L) N I; = N;.

Now we set:
Lb:={z2¢€ Lp(L), 2Noz~" C No}

and ZL+P = LENZy, (L). We will assume moreover the following hypothesis.
Hypothesis 4.2. For any z € ZZFP and i € Z>o, we have N; C zN;z7 1.

Example 4.3. (1) Let G = GL,, P a parabolic subgroup containing the
Borel subgroup B of upper triangular matrices, and let Lp = GL,, X --- X
GL,, be the Levi subgroup of P containing the diagonal subgroup 7. Let
I :={g € GL,(O1), g =1 (mod @} ™)}, we have:

Zf =A{(a1,-- ,ar) € Zp, (L), valy(a1) > --- > val,(ax)}

where a; € L™ is seen in (the center of) GLy, (L) by the diagonal map. It is
straightforward to check that Hypothesis 4.2 is satisfied for {;}icz.,.
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(2) Let G = GSpy, P the Siegel (resp. Klingen) parabolic subgroup and
Ii :=={g € GSp4(OL), g=1 (mod wt™)}. The Iwahori decomposition of I;
in both cases follows from [70, (2.6) & (2.7)], one has in the Siegel case:

ZZFP = {diag(a1, a1, a2,a2) € Zr,.(L), valy(a1) > valp(az)},
and in the Klingen case:
Z;P = {diag(a1, az, a2, a3/a1) € Zr, (L), valy(a1) > val,(as)}.
Hypothesis 4.2 is again satisfied for {I;}icz.,.

4.2. The functor Ordp

We review and/or prove useful results on the functor Ordp of [40], [41].

Let A be a complete noetherian local Og-algebra with finite residue
field, and m4 be the maximal ideal of A. Let V' be a smooth representation
of G(L) over A in the sense of [40, Def. 2.2.5]. Recall we have in particular
V=l V[m?%]. The A-submodule Vo of elements fixed by Ny is equipped
with a natural Hecke action of L}, given by (cf. [40, Def. 3.1.3]):

(4.1) z-v= Z z(zv)

ZENy/zNoz—1

where z € L, v € VNo and 7 is an arbitrary lift of  in Ny. Note that the
A-module V™ is a smooth representation of Ly over A. Following [40, Def.
3.1.9], we define:

(4.2) Ordp (V) := Hom s 1 (AlZL, (D), V™) ;1) foseer
which is called the P-ordinary part of V. Here the A-module
HomA[ZZrP] (A[ZLP (L)]7 VNO)

is naturally equipped with an A-linear action of Z,, (L) given by (z- f)(x) :=
f(zx), and (‘)ZLP(L)_ﬁnite denotes the A-submodule of locally Zy,,(L)-finite
elements (cf. [40, Def. 2.3.1 (2)]). By [40, Lem. 3.1.7],

HomA[ZZrP] (A[ZLP (L)]7 VNO)
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and Ordp(V) are smooth representations of Lp(L) over A. By [40, Thm.
3.3.3], if V' is moreover admissible (cf. [40, Def. 2.2.9]), then Ordp(V) is a
smooth admissible representation of Lp(L) over A. As in [40, Def. 3.1.10],
we have the canonical lifting map:

(4.3) Lean : Ordp(V) — Vo £ £(1)

which is L}-linear, and injective if V' is admissible (cf. [40, Thm. 3.3.3]). We
put:

NOrdp(V) :={v e V™o such that there exists z € ZZP with z-v =0}

which is an A-submodule of Vo stable by L}JS. The following theorem is a
consequence of the results in [40, § 3], but we include a proof.

Theorem 4.4. Assume V is an admissible representation of G(L), then we
have:

Ordp(V) ® NOrdp(V) = V™
as smooth representations of Lo, where Ordp (V') is sent to VN by tean.

Proof. We easily reduce to the case where V is annihilated by m’j for a
certain n € Zxg.

(a) Set V; := V%t since V is smooth we have Vo = lim, V;. By Hy-
pothesis 4.2 and [40, Lem. 3.3.2] (applied to Iy = I} = I;;), we see that
V; is stable by the action of ZL+P. Since V is admissible, V; is a finitely
generated A-module. Let B; be the A-subalgebra of End4(V;) generated by
ZZP, then B; is a finite commutative A-algebra. Note that B; is actually a
finite A/m"-algebra since V; is annihilated by m’, so in particular it is Ar-
tinian. For a maximal ideal m of B;, we call m ordinary (resp. nonordinary)
if Image(Zz'P) Nm = (resp. Image(ZZrP) Nm # () where Image(ZZP) is the
image of ZZFP in End4(V;) (or in B;). Since B; is artinian we have a natural
decomposition:

Bi= I Bim x I Bdm = Bioax Binou

m ordinary m non ordinary

and another decomposition:

44 Vi = (Wod® Vidnora = [ V) x [ Vidm.

m ordinary m non ordinary



Higher L-invariants for GL3(Q,) and local-global compatibility 853

Note that, for v € V;, we have v € (V)norq if and only if there exists z € Zzp
such that z - v = 0. In particular (V;)nora = NOrdp(V) NV;. Note also that
V; is stable by Lg since I;; is normalized by L. Since the action of Ly and
ZZP commute, (4.4) is equivariant under the action of Ly.

(b) For j > i, the natural injection V; — Vj is equivariant under the
action of erp and Lg. Therefore the restriction to the subspace V; induces
a surjection kj; : B; — B; of finite A/m’;-algebras (it is surjective because
both A-algebras are generated by the image of ZL+P). For a maximal ideal n
of B, it is clear that n is ordinary (resp. nonordinary) if and only if HJ_ZI (n) is
ordinary (resp. nonordinary). Thus the inclusion V; < V; induces injections
(Vi)ord = (Vj)ord and (Vi)nord = (Vj)norda which are equivariant under the
action of Ly and Z;P. From (V;)nora = NOrdp(V)N'V; in (a), we also see
NOI‘dP(V) = hﬂi(‘/i)nord‘

(c) By [40, Thm. 3.3.3], we have Ordp(V) = lim, Ordp (V)% and tean is
injective. Moreover, we have:

(45) Ordp(V)" = Homyz; | (AlZen(DLVEY) 7 1) e
= Hom 7+ | (A[Zp,.(L)], V1)

where the first equality follows by definition (recall Ly, and hence L;, nor-
malize Ny and commute with ZLFP), and the second follows by the proof of
loc.cit as we now explain. Since V% is a finitely generated A-module, any
element in HomA[ZZP](A[ZLP(L)],VI“) is locally Zp,,(L)-finite, hence we
have an inclusion:

(4.6)

Homyiz | (A1Z1, (L)), V) € Homyyy 1 (A[Zp, (LLVEN) 00 e
However, by the proof of [40, Thm. 3.3.3], we have tcan(Ordp (V1) C Vi)
in other words, any element in the right hand side set of (4.6) has image in
V%ii and thus is contained in the left hand side (note that by Hypothesis
4.2, the A-module U in the proof of [40, Thm. 3.3.3] is actually equal to
Vi with the notation of loc. cit.).

(d) Combining (4.5) with the isomorphism at the end of the proof of [40,
Lem. 3.1.5] (applied to U = Vi = Vi), the map tcan induces an isomorphism
Ordp (V)% =5 (V;)orq which is equivariant under the action of Lg and ZZFP.
Thus we deduce Ordp(V) & hgli(W)ord and together with (4.4) and (b):

Vo = lim V; = lim (Vi)ora ® (Vi)nora) = Ordp(V) @ NOrdp(V)
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which concludes the proof. O

Corollary 4.5. Assume A := Op/w}, for some n >0, V is an admissible
representation of G(L) over A and V is an injective object in the category
of smooth representations of Iy over A. Then Ordp(V') is an injective object
in the category of smooth representations of Ly over A.

Proof. By the same argument as in the proof of [42, Cor. 5.3.19], there
exists r > 0 such that V is a direct factor of C(Iy, A)®" as a representation
of Iy where C(Ip, A) (= the A-module of continuous, hence locally constant,
functions from Iy to A with the discrete topology on the latter) is endowed
with the left action of Iy by right translation. Since Iy admits an Iwahori
decomposition, we deduce from this that V™ is a direct factor of:

(47) W= (C(Lo, AN = (C(No, A) @0, e, C(Lo, A)) "

where Lo acts on the latter by I(f ® h) := f ®I(h). By [41, Prop. 2.1.3], W
is an injective object in the category of smooth representations of Ly over
A. Tt follows from Theorem 4.4 that Ordp (V) is a direct factor of W, and
hence also an injective object. O

Let now V be a wpg-adically continuous representation of G over A in
the sense of [40, Def. 2.4.1]. Then V/w' is a smooth representation of G
over A/wf, for all n € Z~g. Following [40, Def. 3.4.1], we define:

(4.8) Ordp(V) := lim Ordp(V/whV)

which is a wg-adically continuous representation of Lp(L) over A (cf. [40,
Prop. 3.4.6]). We have the canonical lifting map (cf. [40, (3.4.7)]):

(4.9) Lean : Ordp(V) — Vo

which is L}j-equivariant. By [40, Thm. 3.4.8], if V is moreover admissible
([40, Def. 2.4.7]), Ordp(V') is also admissible and tcay is a closed embedding
(where the target and the source are equipped with the wg-adic topology).

Let V be a unitary Banach space representation of G(L) over E and
V0 an open bounded G(L)-invariant lattice of V' (i.e. a unit ball preserved
by G(L), which exists by definition as the representation is unitary). Then
V0 is a wg-adically continuous representation of G over O and we put
Ordp(V) := Ordp(VY)[1/p], which is easily checked to be independent of
the choice of VY. For any compact group K we endow C(K, Og) and C(K, E)
with the left action of K by right translation on functions.
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Corollary 4.6. Assume moreover that V|, is isomorphic to a direct factor
of C(Io, Op)®" for some integer r > 0. Then Ordp(V9)|L, (resp. Ordp(V)|L,)
is isomorphic to a direct factor of C(Lo, Og)®" (resp. C(Lo, E)¥") for some
mnteger s > 0.

Proof. Let nyi,ng € Z~gy with ny > ny and consider the exact sequence:
ni
0— VO/ahzmm ZE, y0 ghe 5 v0 /gt 0.

Since V|, is a direct factor of C(Iy, O)®", arguing as in (4.7) we deduce
an exact sequence (which is equivariant for the action of ZZFP and Lg):

0= (VO T2 (VO fae) o (VO oot} 0.
Together with Theorem 4.4, it follows that
Ordp (VO /@) [y 2 Ordp (V0 /).
Moreover, from Corollary 4.5 we deduce that the dual
Homo, (Ordp(V®/@}), Op/w})

is a finitely generated projective O /w'[[Lo]]-module. By a projective limit
argument, it is then not difficult to deduce that Homp, (Ordp(V?), OF) is
also a finitely generated projective Op[[Log]]-module. Dualizing back using
[73, Lem. 2.1] the corollary follows. O

4.3. Ordinary parts of locally algebraic representations

We review and generalize the ordinary part of a locally algebraic represen-
tation of G(L) that admits an invariant lattice (see [42, § 5.6]).

We keep the notation of §§ 4.1 & 4.2 and now assume that G is split. We
fix a split torus 71" over L and a Borel subgroup containing 7" such that B C P
(where P is the parabolic subgroup of loc. cit.). We let V, be a smooth
admissible representation of G(L) over E, L()) the irreducible Q,-algebraic
representation of G(L) over E of highest weight A € Hom(Resy, /g, T, Gm q,)
where A is dominant with respect to Resy g, B and we set:
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We denote by Lp(A) the irreducible Q,-algebraic representation of Lp over
E of highest weight A and by dr,,, » the central character of Lp(\). Note that
we have Lp(\) = L(\)No = L(\)NP(1) and by [38, Prop. 4.3.6]:

(4.10) JP<V) gJP(VOO) XE LP<)\)

where Jp(V') on the left is the Jacquet-Emerton functor of the locally alge-
braic representation V' relative to the parabolic subgroup P(L) and Jp (V)
is the usual Jacquet functor of the smooth representation V.

For i > 0 consider:

Vi:=V6iiopLp\) C VN =2V gp Lp())

which is finite dimensional over E since V., is admissible. We equip V2
and V™o with the Hecke action of L} given by (4.1). Note that we have
z-(veu) = (z-v)® (2u) for 2 € L), v € VA and u € Lp()). In particular
by Hypothesis 4.2, V; C Vo is invariant under this ng—action. Denote by
B; the E-subalgebra of Endg(V;) generated by the operators in Z;P, then B;
is an Artinian E-algebra. Similarly to what we did in the proof of Theorem
4.4, a maximal ideal m of B; is called of finite slope if Image(erp) Nm=1(
(inside Endg(V;)). Let m be such a maximal ideal of finite slope and consider:

Zj, — Bi - Bij/m — Q,.

Note that the image of erp lies in @X. We call m of slope zero if the above
composition has image contained in the units ZTJX (this is independent of the
choice of the last embedding). Denote by (V;). with * € {fs, null, 0, > 0} the
direct sum of the localizations of V; at maximal ideals which are respectively:
of finite slope, not of finite slope, of slope zero, not of slope zero. We have
thus:

(411) V; = (W)fs S¥ (‘/;)null = (V;)O @ (‘/;>>0
and note that v € (V) if and only if there exists z € ZZFP such that
z - v = 0. Moreover, as in the proof of Theorem 4.4, for j > i the natural

injection V; < V; induces a erp—equivariant map for * € {fs,null, 0, > 0}:

(Vi)e — (Vj)s-
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For x € {fs, 0}, this action (uniquely) extends to Zr,,. (L) since the action of
ZZFP on (V;), is invertible. For * € {fs,0,null, > 0}, we set:

(4.12) (V). = lim(V))

i

which is an E-vector subspace of Vo stable by L} (indeed, each (V;), is
a generalized eigenspace of some sort for the action of ZZP on V;, and the
action of LJ]S on VNo = h%mZVZ commutes with that of ZZFP, SO preserves
generalized eigenspaces of Z;P even though it may send a vector of V; to
V; for some j > i). Moreover, for * € {fs,0} this action of L} on (V),
uniquely extends to Lp(L) by [38, Prop. 3.3.6]. The decomposition (4.11)
induces L;—equivariant decompositions:

(4.13) Vo= (oY g (VN0 =2 (V)g @ (V) 2.

It follows from (4.10), Ve = VNo@p Lp(\) and the proof of [38, Prop. 4.3.2]
(we leave here the details to the reader) that we have an isomorphism of
locally algebraic representations of Lp(L) (called the canonical lifting):

(4.14) Jp(V) = (V)i (5p)

where (0p) means the twist by the modulus character dp.

If W is an E-vector space, recall an Og-lattice of W is by definition an
Op-submodule which generates W over E and doesn’t contain any nonzero
E-line. If W is a E[Z,(L)]-module such that the Z,(L)-orbit of any el-
ement of W is of finite dimension, by the very same construction as above
we have a decomposition W = Wy @ W~ analogous to (4.13).

Lemma 4.7. Let W be an E-vector space equipped with a erp—actz'on and
let f: W — VNo be an E-linear ZZP—equivariant map.

(1) If W is moreover an E|[Zy, (L)]-module, then f factors through a
71, (L)-equivariant map f: W — (Vo).

(2) If W is an E[Zr,(L)]-module such that the Zr,, (L)-orbit of any
element of W is of finite dimension, then f restricts to a Zp,,,(L)-equivariant
map Wy — (VNo)o. In particular, if W admits a Zr,,(L)-invariant Op-
lattice, then f factors through W — (VNo)q.

Proof. (1) For v € VYo we have v € (Vo) if and only if there exists z €
ZZFP such that z-v = 0, which easily implies (1) using the first isomorphism
in (4.13).
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(2) From the assumption on W we can write W = lim (W) where the
W, € W are finite dimensional and preserved by Zr,,.(L). By (1) it is enough
to prove f((Wa)o) € (V¥o)g, but this is clear from the definition. If W0 is
a Zr,(L)-invariant Og-lattice of W, then W° N W, is a Zp, (L)-invariant
Og-lattice in W, which easily implies (W, )9 = W, and (2) follows. O

Remark 4.8. It easily follows from the first statement in Lemma 4.7(2) and
the fact the Lp(L)-representations (VV°)g doesn’t depend on the choice of
Ny up to isomorphism (see [38, Prop. 3.4.11]) that the Lp(L)-representation
(VNO)O also doesn’t depend on the choice of Ny up to isomorphism.

Assume from now on that V' is a unitary G(L)-representation, i.e. admits
an Op-lattice V9 which is stable by G(L), and set V;? := V; N V°, which is
thus an Og-lattice of V; stable by ZZFP (note that (V0)No = lim, V). Denote
by A; the Opg-subalgebra of Endp, (V,°) generated by ZZFP. Then A; is an
Op-algebra which is a free Op-module of finite type. We have B; = A;®p, F
and A; = [, (A4;)n where the product runs over the maximal ideals n of A;.
As in the proof of Theorem 4.4, a maximal ideal n of A; is called ordinary
if Image(Z; ) Nn = 0. And we put:

(Vio)ord = Dn ordinarya/;O)n (Vio)nord = On nonordinary(vio)"'

We have Vio o~ (Vo)ord a5 (V-O)nord and we set (V;)ord 1= (V-O)Ord ®o, E.

K3 (2 (2

Lemma 4.9. We have (V?)orq 2 V2N (Vi)o, and hence (Vi)ora = (Vi)o-

1

Proof. Let m be a maximal ideal of B; and n the unique maximal ideal of
A; containing m N A4; and j : B;/m < Q, an embedding as above. Then the
restriction of j to A;/(m N 4;) induces j : 4;/(mN A;) — Z, and we have
n/(mnN 4;) = j7Y(myz) (where ms— is the maximal ideal of Zj). It is then
easy to see that n is oﬁdinary if andponly if m is of slope zero. The inclusions

(VO € (Vi)a € (Vi)m thus imply (V?)ora € V2N (V;)o. On the other hand,

2

we have V2 N (Vi)m C (V) and thus V2 N (Vi)g C (V?)ora- The lemma

(2

follows. 0

The action of ZZFP on (V?)ora being invertible, it (uniquely) extends to

an action of Zp, (L) and the isomorphism (V,?)oq ®0, E = (V;)o of Lemma
4.9 is equivariant under the action of Zr,(L). We set (using Lemma 4.9 for

the second equality):

(415)  Ordp(V?) :=lm(V)ora = VO N (VI0)g s (V)N = lim(V;?)
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and Ordp(V) := Ordp(V?) ®e, E < Vo, The combined actions of Z; (L)
and of L5, on Ordp(V?) (the action of L} being induced by that on (V?)Mo)
imply with [38, Prop. 3.3.6] that this LJ]S—action uniquely extends to Lp(L).
We deduce that Ordp(V) is a unitary representation of Lp(L) over E and
we call it the P-ordinary part of V.

Lemma 4.10. We have an isomorphism Ordp(V) = (VNo)o in particular
the Lp(L)-representation Ordp (V) is independent of the choice of VO and
Ny, and (Vo)q is a unitary representation of Lp(L) over E.

Proof. The isomorphism follows from the second equality in (4.15). The
lemma follows since (VV°)y doesn’t depend on any lattice. O

Remark 4.11. If we drop the assumption that V admits an invariant Op-
lattice, then the Lp(L)-representation (V\°)y might not be a unitary rep-
resentation of Lp(L) over E.

Lemma 4.12. Let P’ O P be another parabolic subgroup of G and Lp: the
Levi subgroup of P' (containing Lp). Then we have:

Ol‘dp(V) = OI‘deLP/ (Ordp/(V)).

Proof. Let Ny := No N Np/(L) and Ny := No N Npnr,, (L). We have
No = N} x NJ and thus an isomorphism V™ = (VNo)No'. By Lemma
4.10 and (the first statement in) Lemma 4.7(2), we see that the embedding
((VNo)g)Ne')g < Vo factors through (VNo)g. On the other hand, we have
an embedding (V™o)g «— (Vo) (using Zp,,, (L) C Z1,(L)) which factors
through an embedding (Vo) — (((VN0)g)o')g using Lpnr,, = Lp and
(again the first statement in) Lemma 4.7(2). We deduce an isomorphism
(VNo)g =2 (((VNo)g)Nd' )y whence the result by Lemma 4.10. O

Remark 4.13. If we drop the assumption that V admits an invariant Op-
lattice, the proof of Lemma 4.12 still gives (V¥0)g = (((VNo))No')g (with
the notation in the proof of loc. cit.). And if we use Lemma 4.7(1) instead
of Lemma 4.7(2), the same proof gives (Vo) 2 (((VNo)g)No' )y (which can
also be deduced from (4.14)).

Fix n € Z~¢ and consider V°/ w, which is a smooth representation of
G(L) over Of/w®. We have (VO)No /o = lim (VY /w®). For i € Z~q the
qtfot)ient A;/ zé%Eof A; s (isognor/phii togtl}fel éEiz)ﬂ%—subalgebra of
Endo, /on (V0 /@) generated by ZZFP. We have a natural bijection between
the maximal ideals m of A; and the maximal ideals m of A;/w}, (since any
maximal ideal of A; contains wg). And it is easy to see that m C A; is
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ordinary if and only if m is ordinary (see the proof of Theorem 4.4). We
deduce an isomorphism of A;/w’-modules (see (4.4)):

(4.16) (Vz‘o)ord/w% — (Vio/w%)ord

Lemma 4.14. We have an Lp(L)-equivariant injection where Ord p(V%/ ™)
is defined as in (4.2):

(4.17) limg (V)? /2y )ora < Ordp(V°/w).

(2

Moreover, the composition of (4.17) with the canonical lifting (4.3) gives the
natural injection ligi(Vio/w%)ord — (VO/e)No,

Proof. For any i > 0, by the last isomorphism in the proof of [40, Lem. 3.1.5]
we have:

(V2 [ )ora = Hownoy oy 5| (O3 21, (L)) V)
= HomOE/w}g[erP] (OE/W%[ZLP (L)], Vio/w%)ZLP(L)fﬁnite
— Homo, jenzt | (Op/mgZL, (L)), (Vo/w%)NO)ZLP(L)_ﬁmte
where the second isomorphism follows from the fact V° is of finite rank over

Opg. The first part of the lemma follows. By unwinding the maps, the second
part also easily follows. O

Remark 4.15. (1) The embedding

lim VY /e = (VO) fmp — (VO /o)™

is not surjective in general. Consequently (e.g. by the proof of Lemma 4.14),
(4.17) might not be surjective in general.

(2) If the inclusion V?/w?% < (V°/wh)l is an isomorphism for all i
(which in particular implies (V)™ /@ 5 (VO/w%)No and that the G(L)-
representation V°/w?, is admissible), it follows from (4.5) and the proof of
Lemma 4.14 that (4.17) is an isomorphism.

Lemma 4.16. We have a natural Lp(L)-equivariant injection:

(4.18) Ordp(V?) < lim Ordp(V° /w}) = Ordp(V°) (see (4.8))



Higher L-invariants for GL3(Q,) and local-global compatibility 861

where VO := lim Vo/wE Moreover, the composition of (4.18) with the
(projective limit over n of the) canonical lifting (4.9) coincides with the
composition of the natural injections:

Ordp(V?) — (VO)No s (VO) N0
Proof. For any n € Zsq, by (4.15) and (4.16) we have:

Ol“dp(VO) = hﬂ(v;o)ord - ligﬁl(v;oﬂﬂ%)ord-
It is easy to see (whV%,) NV = (@iV?) NV = @ VL. Hence the above
surjection induces an isomorphism Ordp(V?)/wh = hgl(Vl0 /@ )ord- We
also have N, Ordp(V?) = 0 since the same holds for VY. Thus we obtain
an injection:

Ordp(V) > lim (Ordp(V°) /) 2 lim (Hm(V2 /@ ora)-

n 7

By (4.17) and taking the projective limit over n, (4.18) follows. The second
part of the lemma follows from the second part of Lemma 4.14. O

Remark 4.17. By (4.3) and Remark 4.15(2), if V? /@ =5 (VO /)i for
all 7, then we see that (4.18) has dense image where Ordp(V?) is endowed
with the wg-adic topology.

The proof of the following lemma is straightforward, we omit it.

Lemma 4.18. Let W be a unitary Banach representation of G(L) over E,
WO ¢ W an open bounded G(L)-invariant lattice and f : VO — WO an
Opg-linear G(L)-equivariant morphism, which induces a G(L)-equivariant
morphism f:V — W. Then f induces an Lp(L)-equivariant morphism:

(4.19) Ordp(VY) — Ordp(W?) (resp. Ordp(V) — Ordp(W))

such that the following diagram commutes (resp. with V°, WO replaced by
vV, W):

OrdP(Vo) S OI‘dP(Wo)

(4.20) J l

(VO —— (WO

Moreover, if f is injective and V° = WONV, then the morphisms in (4.19)
are injective.
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4.4. An adjunction property

We study some adjunction property of the functor Ordp(-) of § 4.3 on locally
algebraic representations.

We keep the notation of §§ 4.1, 4.2 & 4.3. If U is any E-vector space,
denote by C°(Np(L),U) the E-vector space of U-valued locally constant
functions with compact support in Np(L) endowed with the left action of
Np(L) by right translation on function. If Uy is a smooth representation of
Lp(L) over E, recall that there is a natural Np(L)-equivariant injection:

[e's) G 00
(4.21) C(Np(L), Uso) —> (Indﬁg; Uso)

sending f € C°(Np(L),Ux) to F € (Indggg Us)® such that:

Flg) = {ﬁ(f(n)) for g =pn € P(L)Np(L)

0 otherwise.

Lemma 4.19. Let Uy be a smooth admissible representation of Lp(L) over
E and assume that U := Uso ® g Lp(\) is unitary as representation of Lp(L)
(Lp(\) as in the beginning of § 4.3).

(1) The locally algebraic representation (Indggjz; Uso)>® @ L(X) is uni-
tary as representation of G(L).

(2) There is a natural Lp(L)-equivariant injection:

(4.22) U =Us ®g Lp(\) — Ordp ((Indggg Use)™ ©5 L(V))

such that the composition of (4.22) with the natural injection (see just after

(4-15)):

Ordp ((Indggg Uso)™ @5 L(\)) — ((Indggg Uso)™ @5 L))

has image in
C&(Np(L),U)™ = (C(Np(L),U*) @ L(A)™

via (4.21) (tensored with L(\)) and maps u € U to the unique function f, €
C®(Np(L),U)No with f,(n) =u for alln € Ny and f.(n) =0 otherwise.
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Proof. For simplicity, we write V := (Indggg Uso)® ®g L(N). Let U? be an

Lp(L)-invariant Opg-lattice of U and U? := Hm U°/w. We have G(L)-
equivariant embeddings:
G(L) rpyan G(L) 170 ce
(4.23) Ve— (Indﬁ(L) U)™ — (Indﬁ(L) U ®o, E) .
Since the right hand side of (4.23) has an obvious invariant lattice given by
nd—- , 1ts Intersection with the left hand side also gives an invariant
Indy( ) UO), its ion with the left hand side also gi invari

lattice on V', hence V is unitary. We have:
U 5 Jp(C(Np(L), U)) (05") — Jo(V)(05")

where the first isomorphism follows from [38, Lem. 3.5.2] (the above action
of Np(L) on C°(Np(L),U) being extended to P(L) as in [38, § 3.5]) and the
second injection follows from the left exactness of Jp(-). Since U is unitary,
by Lemma 4.7(2) and Lemma 4.10 we deduce an injection:

U — Ordp(V)( = Jp(V)(0p") — V)

(recall the second embedding follows from (4.14) and the third from (4.13)).
Moreover the composition is equal to the composition:

U =5 Jp(C(Np(L), U)) (65") — C(Np(L), U)No s Vo

sending u € U to f, € C°(Np(L),U)Ne as in the statement of the lemma
(see [38, § 3.5], in particular the proof of [38, Lem. 3.5.2], see also the be-
ginning of [37, § 2.8]). O
Lemma 4.20. Keep the notation and assumptions of Lemma 4.19 and let
U be an Lp(L)-invariant Og-lattice of U and U := (lgln U%/wo?) ®0, E.

Assume that U is an admissible Banach representation of G(L) over E ([73,
§ 3/). We have a natural commutative diagram:

U —_— U

(4.22>l zl

G(L IS L) el
Ordp ((IndFEL; Uso)™® ®p L()\)) —— Ordp ((IndﬁELg U)C )

where the bottom map is induced by (4.23) and Lemma 4.18, and where the
isomorphism on the right is [40, Cor. 4.5.5].
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Proof. By (4.20) and the fact (4.9) (with V' = (Indggg U)C") is an embed-

ding (note that V' is admissible by assumption), it is sufficient to prove that
the following diagram:

U S

U
(4.24) | |

G(L . No G(L
(md3 ;) Uso)™ @5 L(V)™ —— ((Ind(;

is commutative. By Lemma 4.19 the left map sends u € U° to
fu € C°(Np(L), U)o,
By [40, § 4] the right map is induced by the maps (with obvious notation):
U Jaoy — C2(Np(L), U /@)™, T fu

then taking the inverse limit over n and inverting p. We see (4.24) commutes.
O

Proposition 4.21. Let Uy, be a smooth admissible representation of Lp(L)
over E, U := Uy ®p Lp(X\) and V' a unitary admissible Banach represen-
tation of G(L) over E. Let f : U — Ordp(V) be an Lp(L)-equivariant
injection and denote by U the closure of U in the Banach space Ordp(V').
Then f induces G(L)-equivariant morphisms:

—~

(4.25) (IndSH Use)® @p L(A) — (IndS

L) 751\ C°
= LU) —V

(L)

from which f can be recovered as the following composition:

4.22
(4.26) U 229, Ordp (S0 Us)™ @5 L(A)) — Ordp(V)
where the last map is induced from the composition (4.25) and Lemma 4.18.

Proof. Note that U is a unitary representation of Lp(L) and that U is a uni-
tary admissible Banach representation of Lp(L) over E by [40, Thm. 3.4.8].
The second map in (4.25) is then obtained by applying [40, Thm. 4.4.6],
and the first map is obtained as in (4.23) (with U° := Ordp(V?) N U where
VY is an open bounded G(L)-invariant lattice in V). The second part of the
proposition follows from [40, Thm. 4.4.6] together with Lemma 4.20. O
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5. P-ordinary Galois representations and local Langlands
correspondence

In this section, for P a parabolic subgroup of GL, we define P-ordinary
Galois representations and prove some standard compatibility with classical
local Langlands correspondence which will be used later. We denote by L a
finite extension of Q.

5.1. P-ordinary Galois deformations

We define P-ordinary Galois deformations and recall some useful standard
statements.

We fix P a parabolic subgroup of GL,, containing the Borel subgroup
of upper triangular matrices and with a Levi subgroup Lp given by (where

k
Zi:1 ni =n):

GL,, 0 0
0 GL,, 0
(5.1) . .
: : . 0
0 0 -+ GLy,

Definition 5.1. Let A be a topological commutative ring and (pa,Ta) a
continuous A-linear representation of Galy, on a free A-module T's of rank n
(we often just write pa for simplicity). The representation pa is P-ordinary
(over A) if there exists an increasing filtration of Ta by invariant free A-
submodules which are direct summands as A-modules such that the graded
pieces are of rank ny, ng, - -+, ng over A.

Choosing a basis of T4 over A, we see that a P-ordinary representa-
tion gives rise to a continuous group homomorphism Gal;, — P(A). Fix a
P-ordinary representation p = (p,T,) of Galy over kg together with an
invariant increasing filtration 0 = Ty, 0 € Ty, 1 € -+ € Tk = T, as in
Definition 5.1. Denote by (p;,81; Tkp.e = Thp,i/Thpi-1), ¢ € {1,--- ,k}, or
simply p;, for the representations of Galy, over kg given by the graded pieces
(thus p; is of dimension n;). We assume the following hypothesis on p and
the p;.

Hypothesis 5.2. We have Endga, (p) = kg, Endga, (p;) = kg for i =
L,k and Homga, (p;, p;) = 0 for all i # j.
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Let Art(Op) be the category of local artinian Og-algebras with residue
field k. Let Def; (resp. Def; ) be the usual functor of deformations of p
(resp. of p;), i.e. the functor from Art(Op) to sets which sends A € Art(Op)
to the set {((pa,Ta),i4)}/~ where (pa,T4) is a representation of Galy, over
A as above, i 4 is a Gal-equivariant isomorphism Ty®akg — Tk, (Tk, being
the underlying vector space of p) and ~ means modulo the Galy-equivariant
isomorphisms Ty — T, such that the following induced diagram commutes:

Ta®akp —— Ty @4 kg

(5.2) ta lz A lz

TkE p— Tk-E

(resp. with p; instead of p). If A — B in Art(OF) then T} is sent to T4 ®4 B
(and i4 to itself via T4 ®4 B ®p kg = T4 ®4 kg). By choosing basis, the
functor Def;(A) can also be described as the set:

{pa : Galp, — GLy(A) such that the composition with
GL,(A) - GL,(kg) givesp: Galp, — GLy,(kg)}/~

where ~ means modulo conjugation by matrices in GL,(A) which are con-
gruent to 1 modulo the maximal ideal my of A. Since Endga, (p) & kg
(resp. Endga, (p;) = kg), it is a standard result (first due to Mazur) that
this functor is pro-representable. We denote by Rj (resp. Rp ) the univer-
sal deformation ring of 5 (resp. of p;), which is a complete local noetherian
Opg-algebra of residue field kg.

We now switch to P-ordinary deformations. We define the functor

Defg{_ﬁoigd : Art(Og) — {Sets}

by sending A € Art(Ofg) to the set:

{((pa,Ta), Taarin)} /~

where ((pa,Ta),i4)is as above, The = (0=Tao CTa1 S -+ CTap=Ta)
is an increasing filtration of T4 by invariant free A-submodules which are
direct summands as A-modules such that i4 induces a Galp-equivariant
isomorphism T4; ®4 kg — Ty, for i € {1,---,k}, and where ~ means
modulo the Galj-equivariant isomorphisms T4 — T7 satisfying (5.2) and
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which moreover respect the increasing filtration on both sides. Alternatively,

by choosing adapted basis one can describe Defg {_;r}d(A) as the set:

(5.3) {p: Galp — P(A) such that the composition with
P(A) - P(kg) gives p: Galp, — P(kg)}/~

where ~ means modulo conjugation by matrices in P(A) which are congru-
ent to 1 modulo the maximal ideal m4 of A. The following two propositions
are standard, we provide short proofs for the convenience of the reader.
Lemma 5.3. The functor Defg{_;r}d is a subfunctor of Defp.

Proof. Let A € Art(Og), starting from ((pa,Ta),i4) € Defz(A), it is enough
to prove that there is at most one filtration 74 4 on T4 such that i4 induces
isomorphisms T4 ; ® 4 kg 5 T}, and that any isomorphism 7'y 5T 1’4 satis-
fying (5.2) is automatically compatible with the filtrations (when they exist).
For the first statement, by dévissage it is enough to prove TIEH = Tfi (where

TEZ, TEZ are two filtrations). But the equivariant map TISH — Ty/ Tlﬂ must

be zero (and hence Tf(ll% = f(a) since the Galy-representation T4/ Tlﬁ is by

definition a successive extension of p;, ¢ # 1 and we have Homga), (TI(H, pi) =

0 for i # 1 by Hypothesis 5.2 (and an obvious dévissage). The same argu-

ment replacing T4/ Tlﬂ by T /T’y ; shows that any equivariant isomorphism

T4 = T’ must send T4 ; to TI’M. d
Proposition 5.4. The functor Defg{}()_gd s pro-representable by a complete
local noetherian Op-algebra RE 7' of residue field k.

p{p:}
Proof. By Schlessinger’s criterion ([72]), Lemma 5.3 and the fact that Defz

is pro-representable, it is enough to check that, given morphisms f; : A — C,
fo: B — C in Art(Og) with fo surjective and small, the induced map:

P—ord P—ord P—ord
Deff, 7y (A0 B) — Deff GH(A) Xperz o) Def7 7y (B)

is surjective. But this is immediate from the description (5.3). O

By Proposition 5.4, Lemma 5.3 and the fact that R; is a complete lo-
cal noetherian Og-algebra, we see (e.g. by [45, Lem. 2.1]) that the nat-
ural morphism R; — R§ {_po_r}d is surjective. Moreover, for i € {1,---,k},
we have a natural transformation of functors Defg {*;r}d — Def5, sending
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((pa;Ta),Tae,ia) to gr; T e with the induced i 4. It corresponds to a canon-
ical morphism of Og-algebras R; — Rg {;Ed and we deduce a morphism of
local complete Og-algebras (Wlth obvious notation):

p——

(5-4) ®i:1,- Rp, — Rﬁ {por}d

Let us now consider equal characteristic 0 deformations. Fix a P-ordinary
representation p of Galy, over E together with an invariant increasing filtra-
tion 0 =Tgo C Tp1 € --- C Tgr = T as in Definition 5.1 and denote by
(pisgr;i Tee :=Tri/TEi-1), i € {1,--- ,k} the graded pieces. As previously
we assume the following hypothesis on p and the p;.

Hypothesis 5.5. We have Endga,(p) = E, Endga,(pi) = E for
i=1,---,k and Homgay, (pi, p;) =0 fori # j.

Let Art(E) be the category of local artinian E-algebras with residue
field £ and define Def, (resp. Def,, ) as Defs (resp. Def; ) but replacing
Art(E) by Art(Og) and p (resp. p;) by p (resp. p;). Then from Hypothesis
5.5 the functor Def, (resp. Def,,) is pro-representable by a complete local
noetherian E-algebra of residue field E denoted by R, (resp. R,,). Likewise
we define the functor Def?’ {;gd of P-ordinary deformatlons of p on Art(E)
in a similar way as (5.3) and before by replacing p, Ty, ; and p; by p, T
and p;. By the same proof as for Lemma 5.3 and Proposition 5.4, we obtain
the following proposition.

Proposition 5.6. The functor DefP{ Or}d is a subfunctor of Def, and is pro-

representable by a complete local noetherian FE-algebra RP{ Ogd of residue

field E.

Let (p, {p;}) as before satisfying Hypothesis 5.2. Let & : Rg{_;gd — Og be

a homomorphism of local Og-algebras and denote by p5 (resp. P, Z) the defor-
mation of 7 (resp. of 7;) over O associated to & via Deff’; 57 Olid — Def5 (resp.

Deff {Zr}d — Def}, ). In particular, pg is a representation of Galy, over a free
Opg-module T, endowed with an invariant filtration by direct summands
To,,; as Op-modules such that the graded pieces give the representations
pgﬂ., i=1,--- k. Let p¢ := pg ®o, E and p¢; = pg’i ®o, F.

Proposition 5.7. (1) We have that (pe, {pe,i}) satisfies Hypothesis 5.5.

(2) The E-algebra RTC=°" | is isomorphic to the (Ker(€)®o, E)-adic

pe{pe.i}t
completion of Rf{;r}d ®o, E.
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Proof. (1) is straightforward from Hypothesis 5.2 and a dévissage.

(2) Denote by Deff{fr} © (resp. Def; (¢)) the generic fiber of Deff{ Or}d
(resp. Defz) at £ in the sense of [52, § 2.3]. By [52, Lem. 2.3.3], it is sufficient
to prove Defi{;rf(é) >~ De ff {‘;)rd} By [52, Prop. 2.3.5], the generic fiber
Def5 (¢) is isomorphic to Def,,. Moreover, by the argument in the proof of
loc. cit. (together with Lemma 5.3 and Proposition 5.7), the isomorphism

Def5 (¢ = Def pe induces an injection of functors:

(5-5) Defy (e — Defy 0 -

For A € Art(E), let Ag be an Opg-subalgebra of A such that Ay is finitely
generated as Opg-module and Ag[l/p] = A. The canonical surjection of
FE-algebras A — FE induces a surjection of Opg-algebras Ay — Op. Let
((pa;Ta), Tae,ia) € Deflij{(;)rgdi}(A). As in the proof of [52, Prop. 2.3.5],
the free A-module T4 admits a Gal-invariant Ag-lattice T4, such that
Ta, ®a, Op = pg. We define an invariant filtration on T4, by T4, =
Tai N Ta, (inside Tx). It is not difficult to check that TAM is a direct
summand of T4, as Ag-module and that T, ; ®4, Op = Tp, ;. Hence
((p4sTa), Taerin) € Defl0% (A) (see [52, § 2.3]) which implies (5.5)

p{p:},(8)
is also surjective, and thus an isomorphism. O

Definition 5.8. Let p (resp. p) be a P-ordinary representation of Galy, over
kg (resp. E) and fiz an invariant increasing filtration of the underlying space
Ty, (resp. Tg) as in Definition 5.1 leading to representations p; (resp. p;)
fori € {1,--- ,k} on the graded pieces. The representation p (resp. p) is
strictly P-ordinary if the following conditions are satisfied:

e (p,{p;}) satisfies Hypothesis 5.2 (resp. (p,{pi}) satisfies Hypothesis
5.5)

e if D (resp. p) is isomorphic to a successive extension of n;-dimensional
representations p (resp. p;) fori =1,--- k, then p, = p; (resp. p} =
pi) foralli=1,--- k.

In particular, if 5 (resp. p) is strictly P-ordinary, there is a unique in-
variant increasing filtration on its underlying space as in Definition 5.1.

Lemma 5.9. Let p be a strictly P-ordinary representation of Galy over kg,
§ 1 Ry — Og a surjection of local Og-algebras and ,02 the deformation of
p over Of associated to £. Assume that pg, and thus pe := pg ®o, E, are
P-ordinary.

(1) The morphism & factors through the quotient R_ Ord of Rp.

(2) The representation pe is strictly P-ordinary.
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Proof. Any choice of filtration as in Definition 5.1 on the underlying space
of ,02 satisfies that its reduction modulo wg gives the above unique filtration
on the underlying space of 5, from which (1) follows easily. The proof of (2)
is by the same argument as for Lemma 5.3. U

When p (resp. p) is strictly P-ordinary, by Definition 5.8 the repre-
sentations p; (resp. p;) are defined without ambiguity and we then write
P—ord ._ pP-ord P—ord .__ pP—ord
By =Ry gy (vesp. RBymo =R

5.2. Classical local Langlands correspondence

We give a sufficient condition in terms of the (usual) local Langlands corre-
spondence for a p-adic Galois representation to be P-ordinary. The results
of this section will be used in §§ 6.3 & 7.1.

Let p: Galp — GL,(E) be a potentially semi-stable representation of
Galy, over E and L’ a finite Galois extension of L such that p|gal,, is semi-
stable. Following Fontaine we can associate to p a Deligne-Fontaine module:

DF(p) := ((Bs ®q, p)“™*', ¢, N, Gal(L'/L)),

where Dy, := (Bg ®q, p)Galer is a finite free L{ ®q, E-module of rank n,
L, being the maximal unramified subextension of L’ (over Q,), where the
(¢, N)-action on Dy, is induced from the (¢, N)-action on Bgt, and where the
Gal(L'/L)-action on Dy, is the residual action of Galy. As in [16, § 4], we as-
sociate to DF(p) an n-dimensional Weil-Deligne representation WD(p) in the
following way. By enlarging E, we assume E contains all the embeddings of
L’ (and hence L) in Q,. We have thus L{, ®q, £ =1],. 1, E and therefore
an isomorphism Dy, — Ha:Lg<—>E Dy s where Dy 5 := Dy, QLy®q, E,001 E.
Each Dy, is stable by the N-action. Moreover, for w € Wy, (the Weil
group of L), we have that r(w) := ¢~ ") o acts L}, ®q, E-linearly on Dy,
where a(w) € [Lo : Qp]Z is such that the image of w in Galg, is equal to
Frobo‘(“’), Frob being the absolute arithmetic Frobenius, and where w de-
notes the image of w in Gal(L'/L). We still denote by r(w) the induced map
Dy s — Dy o for o : Ljj < E, then we denote by W(p) the representation
(Dr5,7) of Wp, and by WD(p) := (W(p), N) the Weil-Deligne represen-
tation obtained when taking IV into account. Both W(p) and WD(p) are
independent of the choice of o: if we replace o by o oFrob™ for j € Z (Frob
being the absolute arithmetic Frobenius on L}), then ¢/ : Dy, — Dy in-
duces an isomorphism of Weil-Deligne representations Dy , — D L’ ,ooFrob~7
(cf. [15, Lem. 2.2.1.2]). In fact, we only make use of W(p) in the sequel. We
let W(p)* be the semi-simplification of W (p).
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For a representation W of Wy, and an integer s, we set W(s) .= W ®
|-|° =W ®g unr(q;®). Let 7°° be a smooth irreducible (hence admissible)
representation of GL,(L) over E such that rec(r>)(152) = W(p)*, where
rec(m>) denotes the semi-simple representation of Wp, associated to 7>
normalized as in [47, Thm. A]. Asin § 4.3, let A = (A\o1, -, Aon)oex, €
Hom(Resy, g, T, Gn) be a dominant weight with respect to Resy g, B (s0
Aoi > Agiq1 for all o). Put 7 := 7% ®@p L(\). Assume that, for all o € ¥,
the o-Hodge-Tate weights HT,(p) of p are given by HT;(p) := { Ao, + 1 —
N, Aoi +1 =14, , A1} Let P C GL, as in (5.1) and choose Ny a
compact open subgroup of the unipotent radical Np(L) as in § 4.1. Recall
that we defined a canonical representation (770)g of Lp(L) = Hle GL,, (L)
in (4.12) (see Remark 4.8). For i € {1,--- ,k}, we denote by s; := Z;;% n;
where we set ng := 0 (hence s; = 0).

Proposition 5.10. Fori=1,--- ,k let m3° be a smooth irreducible represen-
tation of GLy, (L) over E. If there is an embedding (®F_ 7)) @ Lp()\) —
(7Vo)o of locally algebraic representations of Lp(L) = Hle GL,, (L), then
there exist p;: Galp, — GLy,,(E) fori=1,--- ,k such that:

e p is isomorphic to a successive extension of the p; (thus p; is potentially
semi-stable for all i),
177’”

e rec(m°) (751 — si) = W(pi)™,
i HTO’(pl) = {)‘U,j +1- j}j:5i+1y"'75i+1 fO’F (S EL'

In particular, if (7)o # 0, then p is P-ordinary over E in the sense of
Definition 5.1.

Proof. The very last assertion easily follows from the others and the finite
length of the Lp(L)-representation (77¥0)q (which follows from (770)y C
Jp(7)(0p"), see (4.14), and the finite length of Jp(r)). The general idea
of the proof below is the following: by classical local Langlands correspon-
dence, we deduce first a “P-filtration” of the Weil representation W(p)™,
then we show that this filtration actually comes from a filtration of Galois
representations.

(a) First we reduce to the case k = 2 (i.e. P maximal). Take P’ O P such
that the Levi subgroup Lp: of P’ satisfies Lp: = (GLB_”’“ GS > By the

Nk

proof of Lemma 4.12 (see Remark 4.13), we have with the notation as loc.
cit. (mNo)g =2 (((mN0)g)No')g. Thus if (RF_,7°) @ Lp(A) — (7)o, there
exists a smooth irreducible representation 7% = (7n')* ® 73° of Lp/(L)
over E such that 7% ®@p Lp/(A) <= (7o) and (®F_,7°) @ Lp(\) —

(2

(=% ®p Lp/()\))Nél)O. Assume the statement holds for & = 2, we then
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obtain p’, pj, corresponding to (7')*°, mp° respectively as in the proposition.
Applying the same argument with p/, (7)), N = (A\s;) sex, instead of

=1, ,n—ny
p, ™, X and using an easy induction, we deduce the statement for arbitrary

~ (GL,, 0
(b) Assume now Lp = ( 0 GLy,
(5.6)

(m° @ 75°) @5 Lp(A) = (7)o = Jp(m)(0p") = Jp(r¥)(5p") @& Lp(A)

> . The composition

corresponds to an injection 7{° ® m3° — JP(TI'OO>((5I;1). The latter injection
induces (for example see [38, (0.2)]) a nonzero, hence surjective, morphism
(recall P is the opposite parabolic):

GL,.(L) oo 00\ X 0o
(5.7) (Indﬁ(L)( ) 130 @ 1) = 1,

Let W; := rec(w oo)(1_2”"), i € {1,2} be the semi-simple representation of
W, associated to 7°, we have (see for example [77, Thm. 1.2(b)], noting
that our rec(—) is a( ) of loc. cit.):

W(p)™ = W1 @& Wa(—n1)

with W; |w,, being unramified. For ¢ € {1,2} let DF; := (%, ¢, N =
0,Gal(L'/L)) be the Deligne-Fontaine module associated to (W;, N = 0
([16, Prop. 4.1]). Enlarging E if needed, there exists a p-submodule Dy of
Dp = (B ®q, p)G2l such that the @lLo'Q]_semi-simplification of Dy is
isomorphic to Z; as ¢-modules over Lj ®q, E. Indeed, for o : Ly — E, by

~—

choosing appropriate generalized cp[LézQP]—eigenvectors, we see there exists
a @[LGZQP]-submodule D14 of Dy, such that Difa = 91, (since 71, is a
Lol _submodule of Dy, and E is sufficiently large). We can then take
D to be the w—submodulé of D, generated by D1 ,. We will show that Dy
is stable by N and by Gal(L'/L) (hence is a Deligne-Fontaine submodule of
D) and that the induced filtration on D is admissible

(c) We first show that we have (where t (") := % Q oy val p(det (oo @l))):

(5.8) v(D1) :(ZZ;—1— (,]>[E:L].
cex j=1

From the discussion above [47, Thm. A], the central character wye= of 7¢°
coincides with A% rec(m®) = A% (Wi(2521)). On the other hand, since
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(7%° @ 75°) @p Lp(\) < (7o), we deduce

val, (wre () + Valp(wL)< Z i /\a,j> =0,

oce¥r j=1

and hence (5.8). We equip D ®p,; L' with the Hodge filtration Fil*(D;®y, L")
induced by Dy, @, L'. Since HT 4 (p) := {Aon+1-n, -+, Agit1—i,- -, Ao1}
for o € Xy, it is easy to deduce (where tg(-®p; L') == 3, dimp, i Fil'(-®
L')/Fil'' (- @, L')):

ty(Dy @, L') > ( S S G-1- AUJ))[E L.

oed j=1

(d) We show that D; is stable by the monodromy operator N of Dy, .
Let o : Ly — E, by the relation Ny = ppN and the fact that ¢/ induces an
isomorphism D1 5 — Dy sopep-i fOr j € Z>0, it is sufficient to prove that
D1, is stable by N. Let f’ := [L{, : @,] and denote by D/, the (¢/', N)-
submodule of Dy, , generated by D; ,. Let D’ be the (p, N)-submodule of
D generated by D, ie. D! _ . =l(D}) for j € Zx.

Claim. If D! # D;, then there exists a (¢/', N)-submodule D of D/,
such that:

dimg DZ =dimpg DLJ =mn; and tN(D”) < tN(Dl)

where D" is the (¢, N)-submodule of D’ generated by D/.

We first prove the claim in the case where there is « € E* and m € Zg
such that the ¢/ -eigenvalues on D lie in {a, p~/ a,--- ,p~/™a} (enlarging
E if necessary) and « is an eigenvalue of /", Since D!, is generated by D1,
we see from Ny = ppN that «a is also a o/ -eigenvalue on D1 . Since N
is nilpotent on D/, there exists s € Z>¢ such that dimg Ker(N®) > ny
and dimg Ker(N*™1) < ny as (¢f', N)-submodule of D’,. Consider the short
exact sequence:

0 — Ker(N*~1) — Ker(N*) 2 N*~1(Ker(N®)) — 0.

Let M be a ¢f -submodule of N*~(Kex( N®) of dimension n; —dimg Ker( N1
and let D” be the preimage of M in Ker(N®), which is thus a (¢!, N)-
submodule of D/, of dimension ny. Since D/, # Dy ,, we have Ker(N*™!) ¢
Dy, or D1, ¢ Ker(N*®) (indeed, otherwise we have Ker(N*™Y) C Dy, C
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Ker(N*®) which implies N(D;,) C Ker(N*™!) C D;, hence D;, stable
by N and D! = D;,). In both cases, by comparing the ol -eigenvalues,
it is not difficult to see tx(D1) > ty(D”). The claim in this case fol-
lows. In general, we have a decomposition Dy, = ®jc;D1,; where the
of'-eigenvalues on the D 4 ; lie in disjoint finite sets of elements of E* of
the form {aj,p*f/aj, . ,p_f'm3aj} with a; an eigenvalue of " on D1y
Since D/, is generated by D; 5, from N¢ = ppN we have D/ = @]GJD/
where D;,- is generated by D1, ; and the ! -eigenvalues on D!, ; lie in
{aj,p T aj, -+, p~F'™Mia;} for mj > m’;. We put Dy ;== D14 ; if Dlw =
D’ - and define D”J C D’ - as above When Diy; # D . The claim then
follows with DY := @JGJD

Assume now D/ # D, and let D" be as in the claim. The same argu-
ment as in (¢) with the induced Hodge filtration gives then ¢z (D" @, L') >
(Xoes, Dt —1= X J))[E : L] > ty(D"), which contradicts the fact
that Dy, is adm1851ble So we have D! = Di,, D; = D' and these spaces
are stable by N. By (c) and the fact that Dy, is admissible, we deduce:

ty (D1 ®r;, L (ZZ]—I— Aog))[E: L)

oeXy j=1

and hence together with(5.8) that D; is a weakly admissible (¢, N)-submodule
Ofl)Lu

(e) For a ¢/-module W over E and a € R, denote by W, (resp. W<,)
the E-vector subspace of W generated by the generalized o/ -eigenvectors
of eigenvalues 3 satisfying val,(5) < a (resp. val,(3) < a). If W is moreover
a (¢, N)-module over Lj ®q, E, it is easy to see that W<a and W<, are
still (¢, N)-submodules (over Ly ®q, E) of W. Let pu; := EL,] > oves, (-
1 —Xs5). We now show (Dp/)<y, =0 and D1 = (Dr/)<y,, - Since tg(W) >
(2 vex, (=Aa1))[E ¢ L] for any nonzero E-vector subspace W of Dy, (with
the induced filtration) and since Dy is admissible, it follows that (Dr/)<,, =
0. We show (D1)<y,, = Di (and hence Dy = (D)<, , since otherwise
one easily deduces ty((Dr/)<p,,) > tN((Dr/)<p,,)). Assume not and let
ny < ny such that dimg(D1)<y, = nif’ (note that dimg Dy = nyf" and
that (D1)<y,, is free over Ly ®q, E (as is easily checked)). Then we deduce:

tn ((D1)<p,, ) < tn(D1) — < > (n—-1- )\a,nl))(nl —ny)[E: L]

gEXL

- ( 3 i(]‘—l—AU’j))[E : L]—( > (m—l—/\a,m)>(n1—n’1)[E : L.

oeX j=1 ocEXL
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But we also have (with the induced Hodge filtration and by the same argu-
ment as in (c)):

t ((D1) <) 2(223—1 o)) I+ L]

oeXr j=1
(> i(j—l—)\m))[E:L} -(X i (= 1= Aoy))[E: L.
oeX j=1 o€¥r j=ni+1

Since j =1 —Xsj <np—1— Ay, forall j <ng and o € X, we deduce
tu((D1)<p,,) > tn((D1)<p,, ), contradicting the fact Dy is weakly admissi-
ble (see the end of (d)).

(f) Since Gal(L'/L) commutes with ¢, we see that D; = (Dp/)<p, ,
is stable by Gal(L'/L). Let p; be the continuous representation of Galy,
over F associated to D; by the Colmez-Fontaine theorem ([27, Thm. AJ)
and py = p/p1. Thus W(p)** = W(p1)* & W(p2)™ and the first and third
properties in the statement are then clear. To finish the proof, we only
need to show that the W -representations W(p;)* and W, (see (b)) are
isomorphic. Let DF} := (D%, o, N = 0,Gal(L'/L)) be the Deligne-Fontaine
module associated to (W(p1)*, N = 0) ([16, Prop. 4.1]) where D{® denotes
the semi-simplification of D; for the ¢f -action, we are reduced to show that
DF} and DF; = (21,p, N = 0,Gal(L'/L)) (see (b)) are isomorphic (that
is, one has to take care of the Gal(L’/L)-action). The natural inclusion
Wi < W(p)* induces an embedding of Deligne-Fontaine modules:

DF, — DF := (D5, 0, N = 0,Gal(L'/L))

where the latter is isomorphic to the Deligne-Fontaine module associated
to (W(p)*, N = 0) and where D denotes the semi-simplification of Dy,
for the o/ -action. Similarly, the inclusion W(p;)*® < W(p)* induces an
injection DF} —— DF. By construction, we also know %; = D$* as ¢-
module. However, by (e) we have Df° = (D7)<y, , thus we also have
D = (DF)<p,, since (DF)<y, is only defined in terms of the p-action.
So both DF; and DF} are isomorphic to the Deligne-Fontaine submodule
(DE)<pn, >, N =0,Gal(L'/L)) of DF. This concludes the proof. O

6. Automorphic and P-ordinary automorphic
representations

In this section we start the global theory: we give the global setup, state
our local-global compatibility conjecture for GL3(Q)), and prove several
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useful results on the P-ordinary part of (localized) Banach spaces of p-adic
automorphic forms on definite unitary groups.

6.1. Global setup and main conjecture

We introduce the global setup and state our main local-global compatibility
conjecture for GL3(Q)).

We fix field embeddings (oo : Q < C, 1, : Q < Q,. We also fix F* a
totally real number field, F' a quadratic totally imaginary extension of F'*
and G/F™ a unitary group attached to the quadratic extension F/F* as in
[1, §6.2.2] such that Gx p+ F = GL,, (n > 2) and G(FT®gR) is compact. For
a finite place v of '™ which is totally split in F' and o a place of F' dividing
v, we have thus isomorphisms ig 5 : G(F,") — G(F;) — GLy(F;). We let
¥, denote the set of places of F'* dividing p and we assume that each place
in X, is split in F'.

We fix a place p of F'™ above p, a place ¢ of F' dividing o and we set
L := F} = F5. We have thus an isomorphism ig 5 : G(Ff) = GLy(L). We
also fix an irreducible Qp-algebraic representation W¥ of Hv‘p’v?ﬁp G(E})
over F and a compact open subgroup U}’ = ]_[v|p7v7,ép U, of Hvlp,v;ﬁp G(F;h).

v

We fix an open compact subgroup UP = pr U, of G(A%") and we put
U® :=UPUY . Set:

(6.1)

S(UP,W¥) = {f :G(FY)\ G(A%)/UP — W¥,  f is continuous and

7(995) = (95) 7' (f(9)) for all g € G(AF:) and all gf € US|

Let W® be an Og-lattice of W¥ stable by U}, we define §(U@, %) by replacing
W¥ by * in (6.1) for x* € {W¥® W /w$,} (where s > 1). Since G(FT ®gR) is
compact, G(F1) \ G(A%,)/UP is a profinite set. We see that §(UK’, W®) is
a Banach space over E with the norm defined by the (complete) Opg-lattice
S (U®, W#). Moreover, S (U?,W¥) is equipped with a continuous action of
G(Fg) = GLa(L) given by (¢'f)(9) = f(gg') for f € S(U®,W?), ¢' €
G(F}), g € G(A%,). The lattice S(U®, W) is obviously stable by this
action, so the Banach representation S(U?, W) of GL,(L) is unitary. We
also know (see e.g. the proof of Lemma 6.1) that S(U?, W¥) is admissible.
Let 3(UP) be the set of primes v of F'T satisfying:

e v{p and v is totally split in F'
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e U, is a maximal compact open subgroup of G(F.").

Let T(U?) := OE[Tij )] be the commutative polynomial Op-algebra gener-

ated by the formal variables Téj ) where j € {l,---,n} and v is a finite
place of F' above a finite place v in X(UP). The Og-algebra T(UP) acts on

S(U?, W¥) and S(U?, W) by making 7Y act by the double coset operator:

o

0 ._ 1 (Lo 0 -1
(6.2) T;" == [UngzGﬂ}( 0 1, 9y Uv}

W

where w; is a uniformizer of Fj, and where g, € G(F,) is such that
i6.5(95 1Uugy) = GLy(OF,). This action commutes with that of GL,,(L).

Recall that the automorphic representations of G(Ap+) are the irre-
ducible constituents of the C-vector space of functions f : G(FT)\G(Ap+) —
C which are:

e C> when restricted to G(F* ®g R)
e locally constant when restricted to G(A%)
o G(FT ®qg R)-finite,

where G(Ap+) acts on this space via right translation. An automorphic
representation 7 is isomorphic to 7, @™ where 7o, = W is an irreducible
algebraic representation of (Resp+ /o G)(R) = G(F* ®@gR) over C and 7°° =
Homg(p+gor) (Woo, ™) = @7, is an irreducible smooth representation of
G(A%,). The algebraic representation Weo|(Res,. L@ 18 defined over Q

via it and we denote by W), its base change to @p via tp, which is thus an
irreducible algebraic representation of (Resp+ /o G)(Qp) = G(F T ®qQ,) over
Q,- Via the decomposition G(FT ®q Q,) — [L,es, G(F), one has W, =
®uex, W, where W, is an irreducible Q,-algebraic representation of G(F,)
over Q,. One can also prove 7 is defined over a number field via oo (e.g.
see [1, § 6.2.3]). Denote by 7P := ®;+p7rv, so that we have 7°° = 7P @),
(seen over Q via 1y,), and by m(r) € Z>1 the multiplicity of 7 in the above
space of functions f : G(FT)\G(Ap+) — C. Denote by S(U®, W¥)lkls the
subspace of S (U®, W®) of locally algebraic vectors for the GL, (L)-action,
which is stable by T(UP). We have an isomorphism which is equivariant
under the action of GL, (L) x T(UP):

(6.3)

SUeWeyEepT, = P (") e (Supusm ) g (To 5 We) ™"

™
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where m = Mo ®¢ ©° runs through the automorphic representations of
G(AFp, ) such that the algebraic representation W), associated to 7, as above
is of the form W, = W, ®g (W¥)V, where (W¥)" is the dual of W¥ and W,
is a Q,-algebraic representation of GL,(L) over Q,, and where Téj ) e T(UP)
acts on (7°°P)U” by the double coset operator (6.2). Indeed, let S (Up E)
be as in [7, § 5], then we have S(U®, W¥) = (S(Up E) ®g W@) . The
isomorphism in (6.3) follows easily from [7, Prop. 5.1]. We also define for
x € {We W W8 /w$, }:

S(U?, %) := {f :G(FT)\ G(A%.)/UP — %, f is locally constant
and f(gg8) = (g5) " (f(g)) for all g € G(A%,) and all g§ € U@}

All these spaces are equipped with the action of GL, (L) x T(UP) by right
translation on functions for GL, (L) and by the double coset operators (6.2)
for T(UP). We have moreover GL,,(L) x T(UP)-equivariant isomorphisms:

6.4) SUW/ws) = SUW9/ws) = SU,W)/w

(6.5) S@Ur,we) = @S(U@,W@/w@
(6.6) S(US,W¥) = <UK’ W@) R0, B = S(U,Wo)™,

Finally, for a compact open subgroup U, of GL,(L), we define for * €
{We W W¥ /wi, }:

S(UPU,, ) = {f L G(FM)\ GAS,)/UPT, — =,
7(995) = (95) 7' (f(g)) for all g € G(AF.) and all gf € US|
We thus have:

(6.7) liﬂS(U”UP,*) = S(U?, %).
U,

Following [21, § 3.3], we say that UP is sufficiently small if there is a
place v { p such that 1 is the only element of finite order in U,. The following
(standard) lemma will be useful.
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Lemma 6.1. Assume UP sufficiently small, then for any Uy, W% as above
and any compact open subgroup U, of G(Fg) there is an integer r > 1 such

that §(UW,\\NW)|U(p is isomorphic to C(Ugy, Op)®".

Proof. Let S(UP,Op) = {f: G(F")\G(AE,)/UP — Op, f is continuous}.
The Og-module S(UP, Og) is equipped with a natural action of G(F* ®q
Qp) x T(UP), and we have an isomorphism S(UP, W) = (5(UP, Op) ®o,
we)Ur,

(a) We first show that for any compact open subgroup U, of G(F'+t®@qQ),)
there exist an integer r’ such that §(UP,OE)\UP >~ C(Up,, Og)". Since UP
is sufficiently small, we have UPU, N gG(F*)g~! = {1} for all g € G(AE,)
(the left hand side is a finite group as G(F7) is discrete in G(A$.), then
UP being sufficiently small implies it has to be {1}). From which we deduce
a Up-invariant isomorphism:

(6.8) I, sUp, — G(FH\G(AF,)/UP, sh+—s sh

where h € U, and s runs through a representative set of G(F™)\G(A%,)/
UPU,. Indeed, first (6.8) is clearly surjective. If sihy = sphg in G(FT)\
G(A%,)/UP (for hi,hy € Up), we have s; = s = s, and there exist g €
G(FT'), u € UP such that shy = gshou in G(A%¥,). This implies g lies
in s71(UPU,)s N G(FT) = {1}, and the injectivity follows. From (6.8), we
deduce (a).

(b) From (a) we deduce using U, = U, U}

S(U®, W)y, 22 C(Uy, Op)B0,[C(US, Op)" ®o0, W7 .

Since [C(UY, Op)" ®0, W¥#]Ur is easily checked to be a finite free O g-module,
the lemma follows with r the rank of this Og-module. ]

Let Galp := Gal(F/F), p: Galp — GL,(E) a continuous representation
and assume p is unramified for v € 3(UP). We associate to p the unique
maximal ideal m, of residue field £ of T(U?)[1/p] such that for any v €
Y(UP) and 0 a place of F' above v, the characteristic polynomial of p(Froby),
where Froby is a geometric Frobenius at 0, is given by (compare [14, § 4.2]):
(6.9)

X" oo (C1 (VD) ST 0TI o (1) (VD) T 0,(T3")

where N7 is the cardinality of the residue field at ¢ and 6, : T(UP)[1/p]/m, =
E. Recall that (see for example [21, Prop. 3.3.4]) if S(U?, W¥)[m,]"2!s =£ 0
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then pg is in particular de Rham with distinct Hodge-Tate weights. We end
this section by our main local-global compatibility conjecture when n = 3
and L = Q. If p, : Galg, — GL3(£) is a semi-stable representation
such that N? # 0 on Dt (pp), there exists a unique triangulation Rg(d1) —
RE(62) —RE(d3) on the (¢, I')-module Dyig(pp) (with Rg(d1) as unique sub-
object and Rg(d3) as unique quotient). If (Dyig(pp), (61,62, 03)) is (special)
noncritical and if the (¢, I')-modules Rg(d1) — RE(d2) and Rg(d2) —RE(d3)
satisfy Hypothesis 3.26, we say that D,ig(pp) is sufficiently generic. We have
then associated to such a p, a finite length locally analytic representation
II(p,) at the end of § 3.3.4 which determines and only depends on p,.

Conjecture 6.2. Assume n = 3 and F; = Fy = Qp. Let p: Galp —
GL3(E) be a continuous absolutely irreducible representation which is un-
ramified at the places of X(UP) and such that:

o S(UP,W#)[m, e £ 0
® p5 = plcal,. is semi-stable with N2 40 on Dqi(pg)
e Diig(pg) is sufficiently generic.

Let I(pg) be the locally analytic representation of GL3(Qp) at the very end
of § 8.3.4, then the following restriction morphism is bijective (recall we have

I(pg)'*'8 = socar,(0,) (pg)):

Homgr, (g,) (IL(pg), S(U, W¥)m,))
_N_> HomGLa(Qp) (H(pﬁ)lalg’ S(Upv Wp) [mp]) .

6.2. Hecke operators

We give (or recall) the definition of some useful pro-p-Hecke algebras and of
their localisations.

We keep the notation of § 6.1. For s € Z~y and a compact open sub-
group U, of GL,(L), we let T(U?U,, W¥®/wi,) (resp. T(UYU,, W¥?)) be
the Op/wj,-subalgebra (resp. Opg-subalgebra) of the endomorphism ring
of S(UPU,, W¥/w¥,) (resp. S(UYU,, W¥)) generated by the operators in
T(UP). Since S(U*Uy,, W¥® /w?,) (resp. S(UU,, W¥)) is a finite free O /wj,-
module (resp. Og-module), T(U¥U,,, W® /w},) is a finite Op/wj,-algebra
(resp. T(U*U,, W?) an Og-algebra which is finitely free as OE—module).
For s’ < s, since we have:

(6'10) S(UpUme/w%) (X)(’)E/wfS OE/w%j = S(UQUKWWP/W%:‘)’
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it is easy to see:

(6.11) T(U Uy, W?) 5 lim T(U U, WY /).

For U,» C U, an inclusion of compact open subgroups of GLy(L), the
natural injections:

S(U U, 1, WP wh) — S(USU, 2, W /w$)
S(UPU,1, W) — S(USU, 2, W¥)

induce natural surjections:

T(UUp2, W¥/wy) —» T(UYUp 1, WY /wy)
T(UUy 2, W®) —» T(U*Ugp1, W)

giving rise to projective systems when Uy, gets smaller. From (6.11) we de-
duce isomorphisms:

(6.12) T(U®) :=limlim T(U U, W* /)
s U,

= lim lim T(U¥U,,, W* /@) 2 lim T(UST,, W),
U, s Ug

Lemma 6.3. The Og-algebra ']NT(Up) 1s reduced and acts faithfully on

~

S(Ue, we).

Proof. By construction, the algebra 'ﬁ‘(U ©) acts Op-linearly and faithfully
on S(UP, W¥) = th@ S(U*U,, W¥®). By (6.5) and (6.4), this action extends
naturally to an Og-linear faithful action of T(U*) on S (U®, W#) and hence
to an E-linear faithful action on S(U¥®, W#). Since the operators in T(UP)

acting on S(U¥, W?) are semi-simple (which easily follows from (6.6) and
(6.3)), we deduce T(U?) is reduced. O

To a continuous representation p: Galp — GL, (kg) which is unramified
for v € ¥(UP), we associate a maximal ideal m; of residue field kg of T(UP)
by the same formula as (6.9) replacing 6, by 05 : T(UP)/m; — kp.

Definition 6.4. A mazimal ideal m of T(UP) is called (U, W¥)-automorphic
if there exist an integer s and a compact open subgroup U, as above such
that the image of m in T(UYU,, W® /w$,) is still a mazximal ideal, or
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equivalently such that the localisation S(UYUg,, W¥ /@, )m is nonzero. A
continuous representation p: Galp — GLy(kg) is called (U, W¥)-automor-
phic if mg is (U, W®)-automorphic.

Lemma 6.5. There are finitely many (U, W®)-automorphic mazimal ideals
of T(UP).

Proof. By (6.10) and (6.7), the maximal ideal m is (U*®, W¥)-automorphic if
and only if the GLy,(L)-representation S(U¥, W¥ /wg)n is nonzero. Let Uy,
be a pro-p compact open subgroup of GL,,(L). Suppose S(U®, W¥ /wg)m #
0, then we have (using exactness of localization):

S(U Uy, W ) m = (S(US, WF [mg) )" # 0.

Hence the image of m C T(U?) in T(U¥U,, kg) is still a maximal ideal in
T(U®U,, kg). Since T(U¥U,, kg) is Artinian, it only has a finite number of
maximal ideals, and the lemma follows. O

If mis (U®, W¥®)-automorphic, by (6.12), Lemma 6.5 and the proof, we
can associate to m a maximal ideal (still denoted) m of T(U#) of residue
field kp. We have T(UYU,, W®/w3,) = ], T(UYU,, W®/w},)m for any
pro-p compact open subgroup of GL, (L), where the product is over the
(U®, W¥#)-automorphic maximal ideals m of T(U?). We then deduce by (6.12)
T(U®) = I T(U$)wm and isomorphisms:

(6.13) T(U® )y = @@T(U”UW,W“’/WE),“ = @T(UPUP,WW),“.

s U, U,
Note that T(UYU,, W® /w?},)m (resp. T(UPU,, W¥)y,) is isomorphic to the
Op-subalgebra of the endomorphism ring of S(UYU,, W¥/w¥,)m (resp.
of the endomorphism ring of S(UPU,, W¥),, = m S(U*U,, W® /) m)
generated by the operators in T(UP). It is also easy to see that:

(6.14) S(UP, W) = lim lim S(UCU, WY /)
s U,

[

is a direct summand of §(U§J,W@) (where the localisation §(UP,W‘7)m is
with respect to the T(U#)-module structure on S(U?, W#), which might
be different from the localisation at m with respect to the T(U?)-module
structure). When m = mj comes from a continuous p: Galp — GL,(kg) as
at the beginning of § 6.2, we simply denote by M the localisation of a ﬁ‘(Up)—
module (resp. of a T(U?)-module) M at mz. We easily check Se, W#)5 =
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~

S(U®, W¥); ®0,, E. The following result is then a consequence of Lemma
6.3 and its proof.

Lemma 6.6. Let p be (U?, W¥)-automorphic, then the local Og-algebra
T(U®)5 is reduced and acts faithfully on S(U®, W¥)5.

6.3. P-ordinary automorphic representations

We relate the space Ordp(S(U®, W¥)5) to P-ordinary Galois representations
(§ 5.1).

We keep the previous notation. We let p: Galp — GLy,(kg) be (U®, W¥)-
automorphic and absolutely irreducible. We fix P a parabolic subgroup of
GL,, as in § 5.1. Recall we have from (4.15):

~ 13 Ii,'i
Ordp(S(U¥, W¥)5) = hg (S(U@,Wp)ﬁ )ord
where (I;;); is as in § 4.1 with (I;); as in Example 4.3. For any i > 0,
(S(UP,WW);i)Ord = (S(U%1;;, W®)5)ora is stable by T(U®) (since the ac-
tion of T(U¥®) on S(UW,WW)Q“" commutes with that of L}), and we de-
note by T(U®I, ;, Wp)g —ord the O p-subalgebra of the endomorphism ring of
(S(Up,Wp)g’i)ord generated by the operators in T(UP). Since:

(S(Ue, Wo)Z5) | S(US, W) = S(UST;;, WPy,

ord

we have a natural surjection of local Og-algebras (finite free over Op):
T(U 1,5, W) —> T(US I 5, W)E 0,

We set:
T(U®)F~ord = lim T(U9 1.5, W) E =0

which is thus easily checked to be a quotient of ﬁ‘(Uﬁ’)ﬁ and is also a complete
local Og-algebra of residue field kg. Moreover, as in the proof of Lemma 6.3,
the operators in T(UP) acting on (S(Up,Wp)g’i)ord ®o, E are semi-simple
(since they are so on S(U®,W¥)). We have as in loc. cit. the following
consequence.

Lemma 6.7. The Og-algebra ’ﬁf‘(Up)gford is reduced and the natural action
of ﬁ‘(U@)g_ord on Ord,(S(U®, W¥®)5) and Ordp(S(U®, W¥)5) is faithful.
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From now on we assume that the compact open subgroup U? is suffi-
ciently small (see the end of § 6.1).

Lemma 6.8. (1) The Og-module Ordp(S(U%,W¥®)5) is dense for the p-
adic topology in Ordp(g(UP,Wp)ﬁ) (see (4.8) for the latter). Consequently,
the action of rTIJ‘(U@)%LOM on Ordp(S(U¥, W¥);) extends to a faithful action
on Ordp(:S'\(UW,Wp)ﬁ).

(2) The representation Ordp(:S’\(U@,WK’)ﬁ)\LP(@L) is isomorphic to

a direct summand of C(Lp(Opr),Og)®" for somer > 1.

Proof. (1) From Lemma 6.1 we deduce that there exist » > 1 and a GL,,(Op)-
representation @) such that:

(6.15) S(U®, W?)5laL, 0,) @ Q = C(GLA(Or), O)®"

which implies using (6.6) that S(U®,W¥)5|aL, (0,) is a direct summand of
C(GL,(OL),0p)* . It is easy to see that the condition in Remark
4.15(2) is satisfied with VO = C*(GL,(OL),Og), which then implies
it is also satisfied with V° = S(U?, W¥);. Thus the natural injection from
(4.17):
(6.16)

Ordp (S(UY, W*)5) /w5 = (lim (S, W®)0) ) /s < Ordp (S(U”, W®)5/w)

P
%

is actually an isomorphism for all s > 1 by the proof of Lemma 4.16. Then
(1) follows (see also Remark 4.17).
(2) The statement follows from (6.15) and Corollary 4.6. O

We now make the following further hypothesis on G and F' till the end
of the paper.

Hypothesis 6.9. We have either (p > 2, n < 3) or (p > 2, F/F* is
unramified and G is quasi-split at all finite places of FT).

When n < 3, Rogawski’s well-known results ([71]) imply that strong base
change holds from G/F* to GL,, /F. When F/F* is moreover unramified,
it also holds by well-known results of Labesse ([55]).

Remark 6.10. It is possible that for n > 3 the recent results ([60], [50])
now allow to relax (for this paper) some of the assumptions in Hypothesis
6.9. Note that the main result of the paper will be anyway for n = 3.

We now also assume that U, is maximal in GL,(L) = GL, (F}) for all
v|p, v # p. Let S(UP) be the union of ¥, and of the places v ¢ ¥, such that
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U, is not hyperspecial. Since p is (U¥, W®)-automorphic, recall we have in
particular that p is unramified outside S(UP) and 5" oc = pRE" ! where p" is
the dual of p and c is the nontrivial element in Gal(F/F ™). The functor A
pa of (isomorphism classes of) deformations of 7 on the category of local
artinian Op-algebras A of residue field kg satisfying that p4 is unramified
outside S(UP) and that p*joc = py ®e™ 1 is pro-representable by a complete
local noetherian algebra of residue field kg denoted by R;gww»y. By [80,
Prop. 6.7] (which holds under Hypothesis 6.9, this is the place where p > 2
is required), for any compact open subgroup U, of GL, (L), we have a natural
surjection of local Og-algebras R; g»y — T(UYU,, W¥)5, from which we
easily deduce using (6.13) a surjection of local complete Og-algebras:

(6.17) Ry swr) — T(U®)5.

In particular, ’i”(U“)ﬁ and ﬁf(U“’)giOTd are noetherian (local complete) Op-
algebras.

~

Lemma 6.11. The representation Ordp(S(U®, W¥)5) is a wg-adically ad-

missible representation of Lp(L) over T(U@)g_ord in the sense of
[42, Def. 3.1.1].

Proof. The lemma follows by the same argument as in the proof of [42, Lem.

5.3.5] with (5.3.3) of loc. cit. replaced by the isomorphism (6.16). O
Assume now that pgz = p|gal,._ is strictly P-ordinary (cf. Definition
5.8) and is isomorphic to a successive extension of p; for i = 1,--- , k with

p; + Galp — GLy, (k) (recall L = Fg). The restriction to Galg, gives a
natural morphism:

(6.18) Rpg — Rp s(u»)-

We fix p: Galp — GL,,(F) a continuous representation such that p is un-
ramified outside S(UP) and p"Yoc = p@el~". We set p,:= m,NT(UP), which
is a prime ideal of T(UP) (see (6.9) for m,), and pg := p|Gal,_. We assume

§(U@,W@)ﬁ[pp] # 0, then p, can also be seen as a prime ideal of ’T(U@)ﬁ
(using (6.12)). Note that this implies that the mod p semi-simplification of
p is isomorphic to p (and is thus irreducible).

~

Theorem 6.12. (1) The action of Ry on Ordp(S(U?, W¥)5) via (6.18)
and (6.17) factors through joord (see the very end of § 5.1).

~

(2) If Ordp(S(U®, W®);5[p,]) # 0 then pg is P-ordinary.
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Proof. (1) Assume first S(U¥, W®)5[p,] # 0. By (6.6) and (6.3), there is an
automorphic representation 7 of G(Ap,) (with W, trivial in (6.3)) which
contributes to:

S(U@’ Wp)ﬁ[mp] = S(Up>Wp)ﬁ[pP] R0y E.

By the local-global compatibility for classical local Langlands correspon-
dence (see e.g. [80, Thm. 6.5(v)] and [17] taking into account our vari-
ous normalisations and note that this uses Hypothesis 6.9 via strong base
change), pg is potentially semi-stable with HT;(pg) = {1 —n,---,0} for all
o : L — E and rec(my)(352) = W(pg)* where m,, is the p-th component
of m and is viewed as a representation of GL, (L) via ig g (see § 5.2 for the
notation). If Ordp(S(U%, W¥#)5lm,]) # 0, then there exists 7 as above such
that moreover Ordp(7,) # 0 (since we actually have S(U?, W#);[m,] = 7"
as GL, (L)-representations for some r > 1). It follows from Lemma 4.10 and
Proposition 5.10 that pg is P-ordinary. Denote by I P—ord the kernel of the

natural surjection Rz — R;ford, which we also view as an ideal of T(U¥);
5
via:

(6.18) 6.17) ~
(619) Rﬁg — Rﬁ,S(UP) — T(Up)p

Then Lemma 5.9 easily implies I7~°"4 C p,. in particular S(U®, W®);[p,,]
is killed by I7~°"d. With (6.6) and (6.3) we deduce that Ordp(S(U*?, W®)5)
is also killed by I7~°"d. By Lemma 6.8(1), Ordp(S(U®,W¥);) is dense in

~

Ordp(S(U¥,W¥);) for the wg-adic topology. We deduce then:
7= Ovdp (S(U, W9),) C Nigz, @l Ordp (S(UP, WP),) =0

and (1) follows.

(2) Let pp, be the prime ideal of Rj_ attached to pg, which is just the
preimage of p, via (6.19), and m,_ := p,_[1/p], which is a maximal ideal
of Rs_[1/p]. If Ordp(g(Up,Wp)ﬁ[pp]) # 0 then we have I7~°"[1/p] C m,_,

since otherwise 1 € m,_ -+ I”~°"[1/p] annihilates Ordp(S(U®, W#)zlm,]) =

Ordp(S(U®, W¥)5(p,]) ®o, E by the first part. From the discussion above
Proposition 5.7, we obtain that pgz is P-ordinary. O

By Theorem 6.12(1) and the last part in Lemma 6.8(1), the surjection
T(U@)ﬁ—»T(U@)g_OTd factors through:

T(Up)p ®R5K,5 Rg@—ord _ T(Up)%’—ord.
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In particular, we have natural morphisms of local complete noetherian Op-
algebras of residue field kg:

PN (5.4) P—ord e P—ord
(6.20) w: ®:1k 5~ Ry — T(UP); o

We end this section by the following proposition.

Proposition 6.13. Let o, be a smooth admissible representation of Lp(L),
A be a dominant weight as in the beginning of § 4.3 (for G = GL,, and P
as above), x be a closed point of Spec(ﬁ'(U@)gford[l/p]), and my be the
associated mazximal ideal. Then any Lp(L)-equivariant morphism:

Too @ Lp(X) — Ordp (S(U?, W#)){m,}

has image in Ordp (§(Ug’7 we)lale) m,].

Proof. Replacing o, ® g Lp(A) by its image, we can assume the morphism
is injective. From Proposition 4.21 we deduce that the image is in
Ordp(S(U*, W#)ll8) hence also in Ordp(S(U, W#)!218) {m,}. From (6.3) it
is easy to check that Ordp(S(U?, W¥®)18)[m,] = Ordp(S(U?, W¥®)4l8){m,},

whence the result. O

7. L-invariants, GL,(Q,)-ordinary families and local-global
compatibility

We now assume that the field L = Ff = Fz in § 6.1 is Q, and study

~

Ordp(S(U®,W¥#)5) when the factors in the Levi Lp of the parabolic sub-
group P are either GL; or GLys. We derive several local-global compat-
ibility results in this case. In particular we prove Conjecture 6.2 when
HT(ps) = {k1,k1 — 1,k1 — 2} for some integer k; (under mild genericity
assumptions).

7.1. GL2(Qp)-ordinary families and local-global compatibility

When the factors of the Lp are either GL; or GLy we prove local-global

~

compatibility results for the Lp(Qj)-representation Ordp(S(U®, W¥)5) by
generalizing Emerton’s method ([42]).
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7.1.1. Dominant algebraic vectors. In this section, which is purely
local, we prove density results of subspaces of algebraic functions.

We fix H a connected reductive algebraic group over Z, and denote by A
the finitely generated Z,-algebra which represents H. For any f € A, the nat-
ural map Homy, _a.(A,Zy) = H(Zp) — Zyp, 2z — z(f) lies in C(H(Zy), Zy)
and induces an E-linear morphism A ®z E — C(H(Zy), E). We denote by
C¥&(H(Z,), F) its image, which is called the vector space of algebraic func-
tions on the compact group H(Z,). By [66, Lem. 6.A.15], C¥&(H(Z,), F)
is dense in the Banach space C(H(Z,), E). For f € C(H(Zp),E), we set
v(f) := inf.cp(z,) val,(f(2)) and note that the associated norm gives the
Banach topology on C(H(Z,), E). Now we let H = GL,, r > 1. By [66,
Prop. 6.A.17] we have a GL,(Zy)-equivariant isomorphism:

(7.1) C¥8(GL,(Z @HomGL (0,C(GL(Zy), E)) ®p o

where ¢ runs through the irreducible algebraic representations of GL, over
E and where Homgy, (z,)(0,C(GL;(Zp), E)) denotes the E-linear GL,(Z)-
equivariant morphisms with GL,(Z,) acting on C(GL.(Z,), E) by the usual
right translation on functions. Recall there exists a one-to-one correspon-
dence between the integral dominant weights A = (A1, ---, A\,) for GL, with
respect to the Borel subgroup of upper triangular matrices, i.e. such that
A1 > Ay > -+ > A, and the irreducible algebraic representations L(\) of
GL,. For a € Z, we put:

(7.2)
CY3(GL/(Z,), B) == P  Homgr,(z,) (LN, C(GLA(Zp), E)) @5 L(N).
)‘:(Aly"W)‘ﬂ)
Alga

Lemma 7.1. For any a € Z, the vector space C%lf(GLr(Zp), E) is dense in
C(GL(Zp),E).

Proof. We first prove the lemma for » = 1, in which case we have by (7.1)
(with obvious notation) C*8(ZY, E) = &;czEx?. Let W be the closure of
@jgaE:cj, we have to prove 27 € W for any j € Z. It is enough to prove that,
for any j € Z and M > 0, there exists j' < a such that v(z?" — 27) > M.
If we consider j' := j — (p — 1)pM" with M’ > M sufficiently large so that
j" < a, then we indeed have val,(z/" — 27) = valp(:c(p_l)pM/ —1) > M for
any z € Z,,. The case r = 1 follows.

For general r, denote by ¢11 : Z) — GL(Zy), u + diag(u,1,---,1) and
consider the induced map SL,(Zy) x Z; — GL;(Zp), (u,v) = ut11(v). This
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map is a homeomorphism and thus induces an isomorphism:
h: C(GLy(Zy), E) = C(SLy(Zp) x ZY, E) = C(SLy(Zyp), E)®pC(Z) , E).

For a dominant weight A = (A1,---, ) as above, let L(\)o := L(A)s1,,(z,)-
We claim that h|cas(qr, (z,),z) induces an isomorphism via (7.1):

(7.3) Homgy, (z,) (L(A),C(GLr(Zy), E)) ®5 L())
— (Homsgy, (z,) (L(X)o,C(SLy(Zy), E)) ® L(A)o) ®@p Ea™

Indeed, we have a natural commutative diagram (induced by the restriction
map):

Homgy, (7,) (L(A),C(GLy(Zy), E)) ®p L(A) —— C(GL(Z,), E)

l

Homgy, (7)) (L(A)o, C(SLr(Zy), E)) ®g L(X\)g —— C(SLy(Z,), E)

where the horizontal maps are the evaluation maps and are injective by (7.1).
The morphism C(GL(Zyp), E) — C(Z,, E) induced by ¢1 is easily checked
to send (via (7.1)) Homgr, (z, )( (A\),C(GL,(Zp), E)) ®g L(A) (on)to Ex.
We thus obtain the morphism in (7.3), which is moreover injective since h
is. Since we have from the proof of [66, Prop. 6.A.17]:

(7.4) dimpHomgy, (z,) (L(X),C(GL(Zy), E))
= dlmE HomSLT(Zp) (L(A)o, C(SLT(ZP), E)) = dlmE L(A),

we deduce that (7.3) is an isomorphism. The isomorphism A then induces a
bijection:

CU8(QL,(Z,), E) = CY8(SL,(Z,), E) @ CX4(Z), E).

Since Czlf(Z;,E) is dense in C(ZY,E) and C"§(SL,(Zy), E) is dense in
C(SL,(Z,), E), we deduce that C*8(SL,(Z,), E) ®g Calg(ZX E) is dense in
C(SL(Zp), E)®EC(Z),E), that is Cilf(GLr(Zp), E) is dense in
C(GL,(Zp), E). - O

We fix P a parabolic subgroup of GL,, asin § 5.1 (or § 6.3) with Lp as
n (5.1). We have in particular:

—_

C(LP(ZP)7E) = ®i:17m7kc(GLm(Zp)vE)
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C*8(Lp(Zy), E) = (X) C"8(GLy,(Zy),E).
i=1, .k

For i € {1,--- ,k} we define s; := E;;B n; (with ng := 0) as in § 5.2 and
set:

(7.5)  CY(Lp(Z,).E):= P ( ® CAE(GL,,, (Z,), ))
1y A)EZ =1,
A>Aa > >N,

where \; :== (Ag;41, -, A and:

S'i+1)

C~*8(GLn, (Zp), E) := Homgy, (z,) (L(A:), C(GLy, (Zy), E)) ©p L(X;).

We define the subspace Cili(Lp(Zp), E) of Cilg(Lp(Zp), E) in the same way
but taking in (7.5) the direct sum only over those (dominant) A such that
As; > Ag;41 for i = 2,--- k. We call vectors in Cj_lg(Lp(Zp),E) dominant
Lp(Zp)-algebraic vectors.

Proposition 7.2. The vector spaces C 8 (Lp(Zp),E) and Cilg(Lp(Zp),E)
are dense in C(Lp(Zy), E).

Proof. Tt is enough to prove the result for the first one. Using an easy in-
duction argument, we can reduce to the case where k = 2. In this case, we
have (see (7.2)):

CY8 (Lp(Zy), E)

~ P (cél—alg(GLm(Z) E)opC 71(GLn2(Zp),E)).

A =(A1,5An)
AIZ'“ZAnl

From (7.4) we have that dimg C*~38(GL,,(Z,), E) < 400, which implies
that Fy := Cch—a8(GL,, (Z,), F) ®k C(GLn2(Zp),E) is a Banach space.
From Lemma 7.1 we have that

CR™(GLy, (Zp), B) @5 C25. 1 (GLn, (Zy), E)

is dense in F) . We deduce that the closure of Cilg(Lp(Zp), E)inC(Lp(Zy), E)
contains @y Fy = C8(GLy,(Zy), E)®EC(GLn,(Zy), E). But C*¢(GLy, (Z,), E)
is dense in C(GLy, (Zy), E), hence ), Fy is dense in C(Lp(Zy), E') and the
lemma follows. - O
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Let V' be an admissible continuous Banach representation of Lp(Q))
over ¥ and put:

(7.6) yLp(Zy)—alg @HomLP( ) V)®po = @ Vegpo”) )®Ea

where o runs through the irreducible algebraic representations of Lp and o
is the dual of 0. By [43, Prop. 4.2.4], the evaluation map induces a natural
injection VEr(Zr)=als <y 1 We denote by VfP(ZP)falg (resp. ij(z‘”)falg)
the subspace of VEr(Zr)=2lg defined as in (7.6) but taking the direct sum
over those irreducible algebraic representations of Lp of highest weight
(A1,-++,An) such that Ay > --- > A, (resp. such that Ay > --- > X\, and
As;, > Ag,41 for i =2, -+ k). If W is a closed subrepresentation of V| one

easily checks that Wkr ) =als oy i le (Ze)=0le i 4 e {0, +,++}.

Corollary 7.3. Assume that V| () is isomorphic to a direct summand

of C(Lp(Z,),E)®" for some r > 1. Then VEr &)= G dense in V for
* € {0, +, ++}.

Proof. If V1, V5 are two locally convex FE-vector spaces and X; C V;, ¢ =
1,2 two E-vector subspaces, then X; & X is dense in Vi @ V5 (with the
direct sum topology) if and only if X; is dense in V; for i = 1,2. The
result follows then from Proposition 7.2 together with (V3 & Va )LP(Z v)=alg
(Vl)fp( »)=ele g (Vz)* PZo)=els o 4 € {0, 4+, ++}.

oo

7.1.2. Benign points. We define benign points of Spec 'E'(Up)g_ord[l/p]
and prove several results on them.

We keep the previous notation. We also keep all the notation and as-
sumption of § 6.3 with L = Q, (in particular U? is sufficiently small, U,
is maximal for v|p, v # p, and we assume Hypothesis 6.9). We denote by
B the subgroup of upper triangular matrices in GL,, and by T the torus of
diagonal matrices. We assume moreover n; < 2 for all : = 1,--- | k (though
many results in this section hold more generally). For x a closed point of
Spec 'ﬁ‘(Up)g_Ord[l/p], we denote by m, the associated maximal ideal, k(z)

the residue field (a finite extension of E) and by p :=mz N T(Up)g_ord (a
prime ideal). We also denote by m, (resp. p.) the corresponding maximal
ideal of T(U ©)5[1/p] (resp. the corresponding prime ideal of T(U ©)5). We
easily deduce from the left exactness of Ordp ([40, Prop. 3.2.4]) an Lp(Q))-
equivariant isomorphism:

Ordp (S(U?, W),[p,]) = Ordp (S(U, W)5) [p]-
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-~

and we recall that Ordp(S(U®, W¥®);[p,]) is an invariant lattice in the ad-

missible unitary L,(Qp)-representation Ordp(S(U®, W¥);[m,]). We denote
by:

pz : Galp — GLy(Rp (un)) — GLo(T(U®)E7") — GL, (k())

the continuous representation attached to x and set p, 5 := PzlGal, . We
o

also denote by x; for i € {1,---,k} the associated point of Spec Rp [1/p]
via (6.20) and p,, : Galg, — GLy, (k(x)) the attached representation. Thus
Pz, 18 a successive extension of the p,, for i = 1,---  k and is strictly P-
ordinary by Lemma 5.9 (applied with E = k(z)). In particular each py, is
indecomposable by Hypothesis 5.5.

Definition 7.4. A closed point x € Spec ﬁ‘(U@)g_ord[l/p] is benign if:

Lp(Zy,)—alg 7& 0.

Ordp (S(UY, W¥)_[m.])

We recall that a closed point = € Spec ﬁ‘(U@)ﬁ[l/p] is classical if
S(U®, W¥)5[m, )" £ 0.

If x classical, then it follows [43, Prop. 4.2.4] that there is an integral domi-
nant A = (A1, ,A,) as in § 7.1.1 such that:

(S, Wo)p)ma @p LA)Y)™ @p L)
< S(U®, Wo)sm, )5 < (S(UF, WO),)[m].

One then easily deduces from (6.3) and, e.g. [80, Thm. 6.5(v)] (taking into
account the normalisations) and [14, Rem. 4.2.4], that HT(p, 5) = {\1, A2 —
1,--+, A, — (n—1)}. In particular, A is uniquely determined by x.

Proposition 7.5. (1) A benign point is classical.

(2) The set of benign points is Zariski-dense in Spec ﬁ‘(U@)gford[l/p].
Proof. (1) Let x be a benign point. The admissibility of the Lp(Q,)-continuous
representation Ordp(S(U¥, W#®)5lm,] together with [75, Thm. 7.1] and [43,
Prop. 6.3.6] imply that there exist a smooth admissible representation 75° of
Lp(Qy) over k(x) with (73°)Fr(Z») £ (0 and A integral dominant such that:

(7.7) T =712 @p Lp(\) «— Ordp (S(U?, W¥)5m,]).
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Denote by 7, the closure of 7, in Ordp (§(UK’, W¥)5[m,]), by Proposition
4.21 we have continuous Lp(Qj)-equivariant morphisms:

(Qp) OO o n(Qp) GL"(QP)/\ ce
(Indf( o) ) ®r L(\) — (Indf( o) )" (Indﬁ(Qp) Tz)

— S(UP, W¥)5[m,],

the composition of which is nonzero. (1) follows (and A is the unique domi-
nant weight as discussed just before Proposition 7.5).
(2) Let T := [, z, Mz Where Zp is the set of benign points of the scheme

Spec 'ﬁ‘(UP)g_Ord[l/p], we have to prove Z = 0. By Lemma 6.8(2) and Corol-
lary 7.3, Ordp(S(U®, W#)5)57 ) is dense in Ordp(S(U?, W#)5). Since
by Lemma 6.8(1) the T(Up)gford-action on Ordp(S’\(U@ W#)5) is faithful,

it is thus sufficient to prove that Ordp(§ (u®, W@)p) # ()=l i annihilated
by Z. Let A be an integral dominant weight, by (7.6) we are reduced to prove
that any

€ (Ordp(S(U?,W¥)5) @5 Lp(\)Y)r®) @ Lp(A)

is annihilated by Z. It is enough to consider the case v = Voo ® u with
Voo € (Ordp(S(U®, W9)5) @p Lp(\)Y)Er@) and u € Lp()). Let Vi be
the smooth Lp(Q))-subrepresentation of (Ordp(S(U?, We)5)@p Lp(X\)Y)™
generated by v. Consider the Lp(Q))-equivariant injection (see [43, Prop.
4.2.4)):

(7.8) Vo @1 Lp(X) « Ordp(S(U, W9)5).

By Proposition 4.21 again, this injection induces:

(7.9) (Ind5 B Vi)™ @p L(A) — SO, W)
~ P S W), s SO, WP,

x classical

where the middle isomorphism follows from (6.3). Since we can recover the
injection (7.8) from (7.9) by applying the functor Ordp(-) (cf. Proposition
4.21), we see (7.8) factors through:

OrdP< D §(U”,Wp)ﬁ[mx]>g @ 0vdr (SO, W¥)plm,))

x classical x classical
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< Ordp (S(U?, W¥®),m,)).

Since Va is generated by ve and each Ordp(S(U , W¥#)5lm,]) is preserved
by Lp(Qp), there is a finite set C' of classical points such that (7.8) has image
in GaecOrdp(S(U?, W¥)5[mg]). In particular v € Ordp(S(U*, Wﬁ)ﬁ)i”(z’”)_alg
is contained in:

@D 0rdp (U7, Wl )= B Ordp (S, Wglm,]) 12

zeC xeCNZy
and hence is annihilated by Z. (2) follows. O

Let = be a closed point of Spec ﬁ‘(U“’)PiC’rd[l/p] Fori =1,---,k we
denote by 7(ps,) the continuous finite length representation of GLj,(Qp)
over k(x) associated to p,, via the p-adic local Langlands correspondence
for GL2(Qp) ([24]) normalized as in [6, § 3.1] when n; = 2, via local class
field theory for GL1(Qp) = Q, normalized as in § 1 when n; = 1. Recall

that By denotes the lower triangular matrices of GLs.

Proposition 7.6. (1) If x is a benign point then p, 5 is semi-stable.

(2) If x is benign (hence classical by Proposition 7.5(1)) and if X =
(A1, A2, -+, A\p) is the unique integral dominant weight associated to x before
Proposition 7.5, then for i = 1,--- |k, p., is semi-stable with HT(p,,) =
{As;41 = Sis Asj4n; — (8i +ny — 1)} (note these two integers are the same
when n; =1 and recall s; = ZJ —oNj)-

Proof. We fix a benign point x and use the notation of the proof of Propo-
sition 7.5(1).

(1) Let 0 # v € (7°)Lr(Z) be an eigenvector for the spherical Hecke
algebra of Lp(Q)) Wlth respect to Lp(Zy) and let 7 be the Lp(Qp)-
subrepresentation of 73° generated by v. Then it is easy to check that we

have:
® 7

where if n; = 1, 15,41 = 7;° is an unramified character of Q; and if
n; = 2, either there exist unramified characters ¥s, 11, ¥s,4+2 of Q; such that
(IndGL2 Q’“ Y41 @ Vg, 42)> With g, 11 # s, 42 or mf° is isomorphic

to the composmon of an unramified character of Q; with the determinant
character (note that we can assume 5,11 # 1,2 in the first case since

||2
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otherwise we would in fact be in the second). As in (7.7), we have an Lp(Q))-
equivariant embedding:

(7.10) ( 0% 77;?0) @p Lp(\) — Ordp (S(U?, W¥),[m,])
=1,k

which, by Proposition 4.21, induces a nonzero morphism:

GL, a
(7.11) (IndF(Q() D @i ;1) @5 LY — S(UL, W*)5[m,].
By (6.3) and the local-global compatibility at ¢ = p in the classical lo-
cal Langlands correspondence (cf. [17]), there exists an automorphic repre-
sentation m of GG associated to p, such that the factor of 7w at the place
o is of the form m, ®p(y) Q, where 7, is an irreducible constituent of

(Indﬁ(@() 2 Qj=1,... kT °)>° (note that the action of GL,(Q)) on 7, actually

also depends on ). Since the representation 77° is unramified for all 4, it
easily follows from [17] and properties of the local Langlands correspondence
that the potentially semi-stable p, 5 must be semi-stable. This proves (1).
Moreover, since p is irreducible so is p,. Thus 7, is a generic representation
of GL,,(Q,) by genericity of local components of cuspidal automorphic rep-
resentations of GL,, using base change to GL,, ([71], [55]). This implies that
oo

v

©° is infinite dimensional when n; = 2 since otherwise it is easy to check

that (Indf(Q() )®Z 1, x75°)* has no generic irreducible constituent.

(2) The fact that p,, is beml—stable follows from (1). By [17], there exists
m(x) € Z>1 such that:

(7.12) SUP,W)plme] ™ = (my, @ LX) *".

In fact, we have (the second equality following from the fact that U, is
maximal for v|p, v # p):

(7.13) m(x Z m() dimg (7 Z m() dimg (7 oo p\U”

where 7 runs through the automorphic representations of G(Ap, ) such that
T(UP)[1/p] acts on (7°°P)V" via T(UP)[1/p]/m, = k() (hence the factor of
7 at the place of @ is of the form 7, @y (,) E). Since each 72 fori = 1,--- , k,
and thus ®;—1 ... y77°, has an irreducible socle, the injection (7.10) factors
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through an Lp(Q,)-equivariant injection:

(7.14) ( & 7°) ®e Lp(\) — Ordp (1, ®g L(N)).
i=1,,k

Applying Proposition 5.10, we see p, (, is isomophic to a successive extension
of pf,, with HT(pl, ) = {As, 41— Si» As,4n, — (8i +n;—1)}. Since p, , is strictly
P-ordinary, we have p/, = p,, for all i, which finishes the proof of (2). O

Remark 7.7. If n; = 1, set as,+1 := p*iths.11(p); if n; = 2, set ag,41 :=

Vs, +1(P)P% s Qsi42 = ¢Si+2(p)p8i+1 (so a5i+1a;}i‘2 # p~', by the proof of
Proposition 7.6 (1)). It follows from [17] and [77, Thm. 1.2(b)] that we have:

1—n

(7.15) rec(mg)( 5

12

)

W (pe,)™ = @y unr(ay)

(rec := semi-simplified local Langlands correspondence, see § 5.2). Since
(®i:17...,k 7rf°) ®p Lp(\) is unitary by (7.10), we have if n; = 1:

(7.16) valp(as,+1) = —As;41 + 8i
and if n; = 2:
(7.17) valp(as,41) + valp(os,42) = =As 41— Asi2 + 8 + (8 + 1),

If n; = 2, we have W (p,,)* = unr(as,+1) ®unr(as,+2) (by Proposition 5.10).
Hence by weak admissibility, we see:

(7.18) — g1+ 8i <valp(ag,+1) < —Asi42+si+1, VIi=1,2

Together with (7.16), we see a; # aj if j, 7/ do not lie in {s; + 1, s; + n;}
for any ¢ € {1,--- ,k}. If X is moreover strictly dominant, i.e. A\; > \j;1 for
all j, we deduce ajozj_,l ¢ {1,p,p~1} if j, j' do not lie in {s; + 1, s; +n;} for
any i€ {1, ,k}.

Lemma 7.8. The injection (7.14) is bijective.

Proof. Denote by Ip :={i=1,--- ,k, n; = 2}. Let S,,, be the Weyl group
of GL,, identified with the permutations on the set {1,n;}. For w € S,,, we
set /Bw,sri—l = p_SiasH—l if n; = 1; and /Bw,si—i—l = p_Si_lasi+wi(l)a /Bw,s,i—f—Q =
Py, (2) if i = 2. We have:

(7.19)

IBaLy (®izt,. k%) @8 Lp(X)” 20y @ (@, (woesie! (@j=11mr(Bu ;)
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where 0y is the algebraic character of T'(Q,) of weight A, ss denotes the
semi-simplification as T'(Qj)-representations. On the other hand, we deduce
from Remark 4.13:

Jpar, (Ordp(ry, ®p L(N))) < Jg(rp @5 L(N))(6p).

Comparing [69, Thm. 5.4] with (7.19) (recall that 7, is a constituent of

(Ind%?“g:?’)) ®j=1,... k7)) and using Remark 7.7, one can check that any

character:
(7.20) X/ — JB(ﬂ'p QE L()\))[(SISI]SS/JBQLP ((®¢:17...7kﬂ'§o) RE Lp()\))ss

does not appear on the right hand-side of (7.19). Let 7% be the smooth
admissible representation of Lp(Qy) over k(x) such that Ordp(m,®pL(\)) =
% @g Lp(X). Let X’ be as in (7.20). If X’ injects into Jpnr,, (W}’;O RF Lp()\))
(which is equivalent to x'0y" < Jpnr,(7%)), by [37, (0.1)] we deduce a
nonzero morphism:

Lp(Qy) / o0 o)
(Indg(g,inL @, X ON0B0Ls) ™~ — 75

and hence a nonzero morphism:

(7.21) (Ind%?(é%%% (o) X0N05L,) ™ @ Lp(A) — Ordp(m, ®@p L(N)).
However, Ordp (7, ®fg L(\)) is unitary, while, by (7.16), (7.17) and (7.18),
one can check that the left hand-side of (7.21) does not have any unitary
subquotient (e.g. by considering the central characters, the key point being
that, for w in the Weyl group of GL,, which does not lie in the Weyl group
of Lp, if we replace the a; by the a;- = a5 for j = 1,---,n, then at
least one of (7.16), (7.17) or (7.18) cannot hold). Consequently, any x’ as
in (7.20) cannot inject into Jpnr,(Ordp(m, ®E L(X))), and hence cannot
appear in the semi-simplification of the latter (using that there does not
exist nontrivial extension between different characters of T'(Q,)). It follows
that the natural injection induced by (7.14):

Iy (®iz1,.. x75°) @5 Lp(X)) « Jpnr, (Ordp(r, @p L(N)))

is bijective. Since Jp(m,) does not have cuspidal constituents and Jpnr, is
an exact functor, we deduce that the injection (7.14) must be bijective. [
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Proposition 7.9. With the notation of Proposition 7.6 and its proof, we
have an Lp(Qp)-equivariant isomorphism:

~ em(z)
(7.22)  Ordp (S(UP, W¥)5[m,]15) = (( R =) Lp(A)) .
=1,k
Proof. This is an immediate consequence of (7.12) and Lemma 7.8. O

Corollary 7.10. (1) If x is benign, the representations p, are crystalline
fori=1,--- k.
(2) If x is benign, there exists an Lp(Qp)-equivariant injection:

(7.23) QR (Flpr)8 @™ odet) — Ordp (S(U, W¥)5[m,]).
i=1,-k

Proof. (1) We use the notation of Proposition 7.6 and its proof. The first
statement is clear when n; = 1 by Proposition 7.6(2). By loc. cit. and its
proof, it is enough to prove that for n; = 2 we have asiﬂa;b # ptl. From
the proof of Proposition 7.6, we have already seen asi+1a;12 £ p~!. Assume
there exists i such that n; = 2 and aSiHa;er = p, then 77° is reducible and
has a 1-dimensional quotient. Let 7T;- be the (unique) irreducible quotient of
73 for j =1, k, we have ®§:17qu° — ®§:17T;- where 7} is 1-dimensional.
By Lemma 7.8 and the fact that Ordp(m, ®g L())) is a direct summand
of Jp(mp ®E L(N)) (65") (which follows from (4.13)), we deduce an Lp(Q))-
equivariant surjection Jp(m,) — (®§’:17T;)((5p). By [69, Thm. 5.3(3)] this

induces a nonzero morphism 7, — (Ind%%&?”(@?zlﬂg)(é p))>°, which is an

injection since 7, is irreducible. However (Ind%{g(?p)(®§:17T;-)(5p))°° does

not have any generic irreducible constituent since dimg,) m; = 1. This gives
a contradiction and finishes the proof of (1). Note that we also obtain that
¢ is irreducible for i = 1,--- k.

(2) By well-known properties of the p-adic local Langlands correspon-
dence for GL2(Q),) we have:
unr (o, 1)zt TS
(Imd%i‘2 unr(o, 1) @ unr(as,+2/p)) " ®@p Li(A; — si) 1y =2

n; =

R(pr ) = {

where )\; — s; is by definition the weight (As,+1 — Si, As,42 — s;). Using € =
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zunr(p~!), we easily deduce:

(7.24) Q) (F(ps) ™8 @™ o det) = ( w;?°> ®p Lp(\),
i=1,-k i=1,

_.
e

whence (2) by (7.10). O

7.1.3. P-ordinary eigenvarieties. We define and study P-ordinary
Hecke eigenvarieties and use them to prove geometric properties of the
scheme Spec T(Up)g_ord[l/p].

We keep the notation and assumptions of the previous sections. We now
consider the locally analytic representation of T'(Qy):

T, (Ordp(S(U®, W¥)5)™)

where Jpnr, is Emerton’s locally analytic Jacquet functor (]38, § 3.4]). This
is an essentially admissible representation of 7'(Q,) over E ({43, Def. 6.4.9])
which is equipped with an action of T(U @)g —ord commuting with T(Q,).
Let 7 be the rigid analytic space over E parametrizing the locally ana-
Iytic characters of T'(Q,) and (Spf T(U”)g —ordyrig the generic rigid fiber (&
la Raynaud-Berthelot) of the formal scheme Spf T(U W)g —ord associated to

the complete noetherian local ring T(U K")g ~ord (in particular the points of

™ P—ord\ri : N P—ord
(Spt T(U®); ~*%)"8 are the closed points of Spec T(U®); [1/p]). Then,

~

following [39, § 2.3] the continuous dual Jpng, (Ordp(S(US, W¥)5)*™)Y is
the global sections of a coherent sheaf on the rigid analytic space

(Spf T(U®)E—ordyie x5 T,

the schematic support of which defines a Zariski-closed immersion of rigid
spaces:

gbord — (Spf T(U®)E—erd)ie x g T

In particular y = (z,x) € EX7° if and only if there is a T(Q,)-equivariant
embedding:

X — I, (Ordp(S(UL, W¥)5)™) [my].
By the same proof (in fact simpler) as for [12, Cor. 3.12] using Lemma 6.8(2)

to ensure that the analogous results of the ones in [12, §§ 3.3 & 5.2] hold in
our setting, we have the following proposition.
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Proposition 7.11. The rigid analytic space EF=' is equidimensional of
dimension n.

Definition 7.12. A point y = (x,x) € EF7 is P-ordinary classical if:

e x is of the form x°°d\ where x*° is smooth and X\ = (A1, ,\n) is
integral dominant
o JonL, (Ordp(S(U, W¥)5)8) [my, T(Qy) = X] # 0.

Lemma 7.13. Let y = (z,x) € £~ be P-ordinary classical, then the
point x is classical.

Proof. This follows by the same argument as in the proof of Proposition
7.5(1) (except that we don’t necessarily have (73°)Lr(Z») = 0 anymore),
using the adjunction property of the functor Jpnr,(:) on locally algebraic
representations and then applying Proposition 4.21. O

Lemma 7.14. Let A = (A1, , \n) be an integral dominant weight, x*° =
@ @X° be an unramified character of T(Q,), andy = (z,x) € EF~ord
with x = HXx® = x1 ® -+ ® Xn. If we have for all i = 1,--- , k such that
(7.25)

valp(Xs,+1(P)) < Asi41 — Asiv2 (equivalently val, (X5 1(p)) < —Asi+2),

then y is P-ordinary classical.

Proof. Asin § 3.3.1 we use without comment in this proof the theory of [63]
(see [8, § 2] for a summary). For i € {1, k} let my, 41 1= atitx 2, if
n; = 1 and:

GL2 (A7 -
mi = Fart (Mi(=2), |- |72 @ ] - [X3)

if n; = 2 where — ), is the algebraic weight (—\s, 11, —As,12) and M;(—);) :=
U(gly) ®ye,) (—20) (by being the Lie algebra of By). It follows from [7, Thm.

~

4.3] that the injection x — Jpnr,(Ordp(S(U®, W#)5)*")[m,] induces a
nonzero continuous Lp(Qp)-equivariant morphism:

—_

(7.26) Q). T — Ordp(S(U?, W¥)p)™ m,]

-----

where the completed tensor product on the left hand side is with respect
to the projective limit topology, or equivalently by [43, Prop. 1.1.31], the
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inductive limit topology, on m1®p ()" * *@p(a)Tk- If valp(pxsoy1(p)) < 1—As, 42,
by [8, Cor. 3.6] the representation:

GL2 (T _
fﬁz 2(Li(_5 “Ai) || 1X§?+1 ®|- |X§f+2)
~ GL2(Q, _ e
= (IndE(?(é%) |- 1X§?+1x>\1+2 le |- |X§?+2x>\%+1+1)an

does not have a GLAQP)—invariant lattice, where L;(—s - ;) is the unique
simple subobject of M;(—);). We then easily deduce that the map in (7.26)
factors through a (nonzero) morphism:

(7.27) ( ® 7rZ°°) ®p Lp(\) — Ordp(g(Uﬂ W)5)* m,]
=1,k

o . _ L GL2(Qp) | |-
where 7f° 1= unr(5;) if n; = 1 and 77° := (IndEQ(QP) |7 I ® ] XS04 0)

if n; = 2. By Proposition 4.21, the lemma follows. O

The proof of the following lemma is standard and we omit it (see e.g.
the proof of [12, Thm. 3.19]).

Lemma 7.15. The set of points satisfying the conditions in Lemma 7.14 is
Zariski-dense in EF—ord,

Proposition 7.16. The set of P-ordinary classical points is Zariski-dense
in (c/'P—ord'

Proof. This follows from Lemma 7.14 and Lemma 7.15. O

Replacing the locally analytic T'(Q))-representation

Jpnr, (Ordp(S(U, W#)5)2)

~

by Jp(S(U¥?, W¥®)2"), we obtain in the same way a rigid analytic variety &
over E together with a Zariski-closed immersion:

& — (SpfT(U)p)"8 x5 T

such that (z,x) € &€ if and only if there is a T(Qp)-equivariant embedding

x = Jp(S(U?, W¥)3")[m,]. Moreover £ is also equidimensional of dimension
n. Consider now the following closed immersion:

Lo (Spf T(U)E ™M) 8 x g T e (SpET(U®),)"8 x5 T
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(z,x) — (z,x0p").

Let y € £P7°"d be P-ordinary classical. By Lemma 7.13 and Jnr, 0Ordp <
Jp(05") (see § 4.3), we see (I ~°(y) is a classical point in &. Together
with Proposition 7.16, we deduce that «©'~°" induces a closed immersion of
reduced rigid analytic spaces:

(7.28) JFrodghiod e g4

where “red” means the reduced closed rigid subspace.

Corollary 7.17. The rigid space Sr];;ord is isomorphic to a union of irre-
ducible components of Ereq-

Proof. This follows from (7.28) and the fact both Erlzgord and &,eq are equidi-
mensional of dimension n. O

Recall that, for any (x, x) € £, the associated Galg,-representation p, 5
is trianguline (see [51] and also [58]) and that (x,x) is called noncritical
if xo5'(1®e '@ - ®e'™) gives a parameter of the trianguline (p,T)-
module Dy (ps,5) associated to p, 5 (with the usual identification of the
T'(Qp)-character §; ®- - -®6,, and the parameter (d1,--- ,d,)). We call a point
y = (z,x) of EF=°" noncritical if 17~°"(y) is noncritical, or equivalently if
stl_;rquP(l ®e '®---®e'™") is a trianguline parameter of Dyig(ps. ).

Lemma 7.18. Let y = (x,x) be a P-ordinary classical point with x benign,
then y is noncritical.

Proof. We use the notation of Definition 7.12 and of Lemma 7.8 and its
proof. By Lemma 7.8 and (7.19), there exists w € S‘QIP| such that x> =
unr(By,1) ® - - @ unr(By ). It follows from Proposition 7.6(2) and its proof
together with Corollary 7.10(1) that:

(Xl - [Tt x| - faterre s

is a trianguline parameter of Dyig(pg,) if n; = 2 and x3°, jat+1e™% = p, if

n; = 1 (where i € {1,--- ,k}). Together with the fact p, s is isomorphic to a
successive extension of the p,,, we deduce that X(st_arlep (lee - -®e™)
is a trianguline parameter of p, 5. O

We say that an r-dimensional crystalline representation V' of Galg, is
generic if the eigenvalues (¢;)i=1,... » of ¢ on Deyis(V) are such that gpicpj_l ¢

{1,p,p 1} for i # j.
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Lemma 7.19. Let y = (z,%) € E77 be as in Lemma 7.14 and assume
moreover for all i =1,--- |k such that n; = 2 (with the notation of loc. cit.):

)‘87’,-‘—1 - )‘SH-Q B
2

(7.29) val, (Xs,+1(p)) < L

Then x is a benign point and p, is crystalline generic fori=1,--- k.

Proof. We use the notation of Lemma 7.14. Since xs,41(p) + Xs,+2(p) = 0
(as follows from (7.27)), we easily deduce from (7.29) that:

(7.30) X (X (p) Tt {p 2 p 1)

which implies that 7{° in the proof of Lemma 7.14 is irreducible. It then fol-
lows from (7.27) that z is benign. Hence the p,, are crystalline by Corollary
7.10(1). Moreover, by the proof of Proposition 7.6(2), the crystalline eigen-

values of ¢ on Deris(pz,) are given by {p* X2 (p), p* X, 4(p)} if n; = 2

and p*x3°, if n; = 1. We deduce then from (7.30) that p,, is generic. [

Denote by w! the following composition:
wh o gh—ord (Spfﬁ‘(U@)g_ord)rig xg T 2% (Spf ’f‘(U@)g_ord)rig.

Denote by Z; the set of P-ordinary classical points y = (z,x) € € P=ord gch
that:

e y satisfies all the conditions in Lemma 7.14 and Lemma 7.19 (in par-
ticular z is benign)

e x = X0 is such that A = (A1, -+, A,) is strictly dominant, i.e.
)\j > )\j+1 for all j.

We let Z; = w!(Z]) C (Spfﬁ‘(Up)g_Ord)rig, which we can also view as a
subset of (closed) points of the scheme Spec 'ﬁ‘(Up)g_Ord[l/p].

Proposition 7.20. (1) The set Z, is Zariski-dense in EF~°4 and accumu-
lates (see [12, Déf. 2.2]) at any point (x,x) with x locally algebraic such that
X is unramified.

(2) The set Zy is Zariski-dense in the scheme Spec ﬁ‘(U”)g_ord[l/p].

Proof. (1) The proof is standard and we omit it.
(2) Let X be the Zariski closure of Z; in Spec T(Up)gford[l/p] and X be

the associated closed subspace of (Spf T(U p)g —ordyrig Note that X contains
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the Zariski closure of Z; in the rigid space (Spf ﬁ‘(U p)g —ordyrig By Propo-
sition 7.5(2) it is enough to show any benign point of Spec ']T(Up)g_ord[l/p]
belongs to Xy, or equivalently to X when seen in (Spfﬁ‘(U@)gford)rig. Let
x be a benign point and y = (x, %) a P-ordinary classical point of £F—°rd
lying above x. The existence of y follows easily from Corollary 7.10(2) and
its proof. By (1), Z{ accumulates at y, in particular y lies in the Zariski clo-
sure of (w!)~1(Zy) in £~ from which we easily deduce that w'(y) =
lies in the Zariski closure of Z; in the rigid space (Spf’ﬁ‘(U@)g_ord)rig. As
the latter is contained in X, (2) follows. O

Remark 7.21. We do not know if Z; is also Zariski-dense in the rigid
analytic space (Spr(Up)g—ord)rig'

Lemma 7.22. Let y = (z,x) € X' such that Z; accumulates at y. Let
i€{l,---,k} and assume Xsi+1Xs_ii2 # 2™ - |2 for any m € Z if n; = 2.
Then p,, is trianguline and there exists an injection of (p,I')-modules over
Ri(x):

(7.31) Ri(a) (Xs+16%) = Drig(pz,) n; =1
Rk(m) (XSHrls_Si : ‘_1) — Drig(pxi) n; = 2.

Proof. Let i € {1,--- ,k}, by Lemma 7.18 we have (7.31) for any point in
Z1. The result then follows from the global triangulation theory ([51], [58]),
and we leave the (standard) details to the reader. O

Proposition 7.23. Let y = (z,x) € EF7 be a P-ordinary classical point
with x benign. Then any injection as in (7.23) extends to an injection of
locally analytic representations of Lp(Q,) over k(x):

Lp(Q, _ an =~ an
(7.32) (ndgr &) x0phe,)™ — Ordp (S(U2, W9)5[m,])™,
Proof. We use the notation in the proofs of Proposition 7.6 and Lemma

7.14. Let V be an irreducible constituent of (Ind%? (2@:()@10) X5]§}1 L) By a

dévissage using [13, Cor. 2.2, Lem. 2.8 & Lem. 2.10] together with [63, Thm.
5.8], we deduce that V' & @Zzlsz where V; =2 1° ®@p L;i();) if n; = 1 and
Vi = m° QF Li(\;) or }—%}QLZ(Li(_S PUNE ’_IXS?H ® |- ‘X??Jrz) it n; = 2.
Assume that we have an injection:

(7.33) V < Ordp (S(U, W#)5m,])™



Higher L-invariants for GL3(Q,) and local-global compatibility 905

for a constituent V' such that there exists i € {1,--- ,k} with V; not locally
. GLo /~ _
algebraic (so n; =2 and V; = ]-'ELz(LZ-(—s-Ai), |- 1x§f+1 @ |- IxLy2))- Ap-
plying the functor Jpnr,, (+) to (7.33) gives a point ¢/ = (, x’) € £~ with
(X')>° = x> (which is unramified) and X | = xs, 4122 A0ty =
X8i+2x)\si+1*/\s,i+2+1' If Xsi+1Xs_i£rz 7& prsit1—Asirz2] . ‘2 (thus X8i+1xs_i}i-2 7&
a™| - |? for any m € Z, and hence also x, (X} 42)" " # @™ - |* for any
m € Z), applying Lemma 7.22 to the point 3’ (via Proposition 7.20(1)),
we easily deduce a contradiction with the fact the 2-dimensional crystalline
Galg, -representation p,, is nonsplit. Hence such a point ¢’ doesn’t exist on
EP=ord (and we can’t have (7.33)). If Xs'i"l'le_i];‘rQ = gt A2| L 12 we have

valy(xs;+1(p)) = w —1 < As;41 — As,;+2. As in the proof of Lemma
7.14, we then see by [8, Cor. 3.6] that V; does not admit a GLy(Qj)-invariant
lattice, a contradiction with (7.33). Using [7, Cor. 4.5] we deduce that v’
again doesn’t exist on £77°". The proposition then follows by the same
arguments as in [4, § 6.4 Cas i = 1] (or as in [10, § 5.6] when k = 1) using
Lemma 6.8(2) as a replacement for [4, Lem. 6.3.1] and the above discussion
as a replacement for [4, Prop. 6.3.4]. O

Corollary 7.24. Let x be a benign point, then any injection as in (7.23)
extends to a closed injection of Banach representations of Lp(Q)) over k(z):

—_

(7.34) ®z~=1,~- 7k(%(pzi) ® % odet) — Ordp (S(U?, W¥)5my,]).

Proof. (a) We use the notation in the proofs of Proposition 7.6 or Corollary
7.10. When n; = 2, by exchanging oy, +1 and ag, 42 if necessary, we can as-
sume valy(avs, 1) > valy(as, 12). Let x := o\ with x§°, | 1= unr(p™% o, 41)
if ng =1 and X2 == unr(p™* tag,41), X2 = unr(p” o, 42) if n; = 2.
We have (z,x) € £, From Proposition 7.23, we deduce a continuous
Lp(Qp)-equivariant injection:

(7.35)
an Lr(Qp) —1  an a
®z~:1,... Ko (Indgr ™ 10,y X950 1) e Ordp (S(U, W¥);5[my))
where 7" 1= x4, 41 ifn; = 1 and 73" := (Ind%L(Q(éQ)p) Xs,41]- |71 @xs, o] )20 if

n; = 2. By the above condition on o, 11, s, +2, we know that 7(p,, )®@e% odet
is isomorphic to the universal unitary completion of 7" (see [3] for the
case where ag, 11 # as,4+2 and [64] for the case where ag, 11 = as,12). It
then follows from [13, Lem. 3.4] that the universal unitary completion of
@izl,...ykﬂ?n is isomorphic to @Zzlk(%(pm) ® €% o det). We deduce that
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(7.35) induces a continuous L p(Qy)-equivariant morphism:

—_

(7.36) ®i:17_”7k(?(p$i) Oh(a) €% 0 det ) — Ordp (S(U, W®)5my))
which restricts to (7.35) on the left hand side. Since (7.35) is injective and
the two Banach representations in (7.36) are admissible (for the left hand
side, this follows by induction e.g. from [13, Lem. 2.14]), it follows from [75,
§ 7] that (7.36) is also injective, and from [73, § 3] that it is automatically
closed. O

We now give a lower bound on the Krull dimension of the scheme
Spec T(Up)g_ord[l/p]. We denote by W the rigid analytic space over E
parametrizing the locally analytic characters of T(Z,), by w? the composi-
tion:

5£d ord . (Spfﬁ*(Up)g—ord)rig 5T bra T

and by w3 the composition of w? with the natural surjection 7 — W.

We fix x € Z; and use the notation in the proof of Lemma 7.8. For
J C Ip, welet wy = (wyy)ier, € S|21P‘ with wy; # 1 if and only if ¢ € J,
and put x; := 6x(®7_; unr(By,,;)) with the notation of (7.19). By definition,
A is strictly dominant. By (7.19) and the proof of Lemma 7.18, we have that
vy = (z,x7) € EF7°4 and y; is noncritical. By Proposition 7.6, the second
part of Remark 7.7 and Lemma 7.19, we easily deduce that p, s is crystalline
generic. Recall we have assumed Hypothesis 6.9. We now assume one more

condition till the end of the paper.

Hypothesis 7.25. If n > 3, we have U, mazximal hyperspecial at all inert
places v.

It then follows from [19, Thm. 4.8 & 4.10] and the smoothness of W that
the rigid variety E.q is smooth at the point +7=°"(y ;) (see (7.28)), which
therefore belongs to only one irreducible component of 4. Combining [19,
Thm. 4.8 & 4.10] with Corollary 7.17, we deduce the following result.

Proposition 7.26. The morphism w% s €tale at the point y .

Fori € {1,---,k}, we denote by w; : R5 — T(Up)gford the i-th factor of
w in (6.20) and we still denote by w; the induced morphism on the respective
(Spf -)"e. We fix i € {1, ,k} and denote by w} the following composition:

(7.37) Vgl L (Spt T(UP)Eo)iE 4y (Spf Ry, ).
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Recall we have @(Sprﬁ_)ng’mi = Ry, (52, § 2.3] and see § 5.1 for R, ),
hence the tangent space:

VY(Spf R;,)"8,@; — Homk(xi)—alg(@\(Spf R5,)"e,x;> k(xl) [6]/62)

of the rigid analytic variety (Spf Rpi)rig at x; is naturally isomorphic to
ExtéalQ (pz,, pz,)- Extending scalars if necessary, we can see everything over
the finite extension k(z) of k(z;). Assume first n; = 1, then we have

dlmk(x) EXt(l}aIQp (pria pxz) =2

and we denote by Ext; (pz,, pz,) the 1-dimensional k(z)-vector subspace of de
Rham (or equivalently crystalline) deformations. Assume n; = 2, since py, is
crystalline, generic and nonsplit, we have dimk(x)Ext%;alQp(pxi , Pz;) =5 (e.g. by
similar arguments as in Lemma 3.5). For each refinement (aig, 4,1 s, 4-,(2)
on the Frobenius eigenvalues {as, 41, s, 42} of Deis(pz,) with w; € Sy, one
can proceed as in (3.5) and Lemma 3.6 and define a k(x)-vector subspace
Ethlyi (Pays pa;) Of EXt%}al@p (Pz;s Pz;) = EXt%@,F) (Drig(pl‘i ), Dig (p.)), analo-
gous to the subspace Extl:(D, D) of Ext%%r)(D, D) in Lemma 3.6, consist-
ing of trianguline deformations of p,, over k(z)[e]/e? with respect to the
triangulation on Dyig(p,) associated to the refinement (O‘si—l—wi(l)? a5i+wi(2)).
We denote by Ext;(pxi, pz.) C Ext%;alQp (pz,, pz,) the k(x)-vector subspace
of de Rham deformations, or equivalently of crystalline deformations (since
Pz, is crystalline generic).

Lemma 7.27. Leti € {1,--- ,k} such that n; = 2.
(1) For any w; € Sa, we have

dlmk(ac) Ethlui (pl“npwz) =4, dlmk(x) Ethly (pw7,7px1) =2

(2) W@ hcwe ZwiESQ Ext’}vl (pl‘wpitl) = EXtéaIQp (p$” Pz1)

Proof. (1) follows by arguments similar to the ones in the proofs of Lemma
3.6 and Lemma 3.11. (2) easily follows from dimy,,) Exty, (pa,, pz;) = 4 and

dimy,(z) Extgay, (0o, pz) = 5. O

For a morphism f : X — Y of rigid analytic varieties and a point z € X,
we denote by dfy : Vx o — Vy f(z) the k(z)-linear map induced by f on the
respective tangent spaces of X and Y at x and f(x).
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We fix J C Ip and denote by V; = Vep—oma the tangent space of Er]e)gord

at the point y;. We let Ew},yJ be the composition:

— dwj
dwil,y.] : VJ EthGal@p (pr ? pﬁvz) I EthGalQp (p$@7 pl‘y)/ :E)Xt;(pl‘Z ) pl‘l)

where we recall that Vigps r, yris o, = Extéad@ (pz;, Pz, ). We set:

EW;J = (aw37yJ)i:17"'7k : VJ - @ EthGalQp (px”pzl)/EXt;(pzl,le)
=1,k

Proposition 7.28. (1) Leti € {1,--- ,k}, we have

Im(dwil,yJ) g EXt'llUJl(pﬂCz?le)
where Ext}v‘])i(pm“ Pz,) = Extéal% (pz;y Pz;) if ny = 1.
(2) The morphism Ew;J induces a bijection (using the fact Ext;(pxi,
pz,) C EthluJ,i (Pzis P.)):

EW;J : VJ L> @ EthﬁJJ,i(pﬂﬁwpri)/EXt;(privpwi)‘
i=1,---,k

Proof. (1) Let v € Vy, set py, = dw}, (v), which we view as a deformation
of p,, over k(x)[e]/€*, and let X := dw; (v), which we view as a deformation
of xs over k(x)[¢]/e?. From the global triangulation theory (see for instance
[58, Prop. 5.13]) and Lemma 7.22, we derive:

(7.38) {R’“(w”e” e (Va1=™™) = Deglpe)  mi=

Rk(z)[e]/ez (S(/J,sﬂrlg_& : |_1) — Drig(ﬁxi) n; = 2.

Then (1) follows by definition of Ext%uh (Pz,s Pz, )-
(2) By Proposition 7.26, we have dimy,,y V; = n. By Lemma 7.27(1) and
the discussion before it we have:

Hence it is enough to prove that Ew;J is injective. If 0 # v € V; then we
have dwj,, (v) # 0 by Proposition 7.26, and hence there exists j € {1,--- ,n}
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such that the character X j; is not locally algebraic (i.e. doesn’t come from
an extension of x s ; by x.; given by Eval,). It then follows from (7.38) and
(1.12) that p,, ¢ Ext;(pxi,pxi) if j € {s;i 4+ 1,5 4+ n;}, whence dw, (v) #
0. ]

We denote by V. the tangent space of the rigid variety (Spf ﬁ'(U@)gford)rig
at the point x.

Corollary 7.29. We have dimy ) Ve > n+ (n — k).

Proof. For any J C Ip the morphism Ewé} factors as:

7 EB d 1 x
(7.40) dw,, :Vy 4 v, @ Extéal@p(pxi,pmi)
=1,k
- @ EXtéal@p(pImpwi)/EXt;(pl‘mpzi)‘
i=1, k

This implies an inclusion of k(x)-vector spaces:

(7.41)
> m(dey,) ST (Ve — @D Exthay, (o2, p2)/ Bxtylpr,s p2.) )
JCIp i=1,k

But, by Proposition 7.28 we have:

Dnsy,) = @ (D Brto, (oupu)/Bxtyfonp)

12

JCIp JCIp i=1,
= & (EB (Bxt), pxi,pmJ/Ext;(pmi,pxi)))
k JCIp
- @ EXtéal@p (P, Pxi)/EXt;(mepmi)
=1,k

where the last morphism is surjective by Lemma 7.27(2). Together with
(7.41) it follows that the morphism

Vo — @i=1, k EXt%}al@p (P2 Pz;)/ EXt;(pxw Pz,)
is in fact surjective. Since the right hand side has dimension n + |[Ip| =

n + (n — k) by Lemma 7.27(1) and the discussion before it, the corollary
follows. o
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Proposition 7.30. Each irreducible component of Spec’ﬁ]f(U@)gford[l/p]
has (Krull) dimension > n+ (n — k).

Proof. By Lemma 6.7 Spec T(U W)g —ord[] /p] is a reduced scheme and by
Proposition 7.20(2) the set of closed points Z; is Zariski-dense in the scheme
Spec T(Up)g ~ord[1 /p]. Thus for each irreducible component X of the scheme

Spec 'ﬁ‘(U@)gford[l/p], there exists a closed point of X which is in Z; and
such that X is smooth at x. Since the completed local rings of the scheme
Spec T(Up)g_ord[l/p] and of the rigid space (Spf ’]I‘(Up)g_ord)rig at x are iso-
morphic (see e.g. [29, Lem. 7.1.9]), the tangent space of Spec ’E(Up)gford[l/p]
at the point « is isomorphic to V,. The result then follows from Corollary
7.29. U

7.1.4. Local-global compatibility. We prove local-global compatibility
results for the Lp(Qp)-representation Ordp(S(U®, W¥)5) by generalizing
Emerton’s method ([42]).

We keep the notation and assumptions of §§ 6.3, 7.1.1, 7.1.2, 7.1.3 (in
particular we assume Hypothesis 6.9 & 7.25) and we assume moreover that
the GL2(Q),)-representations p; satisfy the assumption (A.2) in the appendix
when n; = 2. We denote by 7; the representation of GL,,(Q,) over kg
associated to p; by the modulo p Langlands correspondence for GL2(Q))
normalized as in [6, § 3.1] when n; = 2 and by local class field theory for
GL1(Q,) normalized as in § 1 when n; = 1. We denote by 7™V the uni-
versal deformation of 7; over Rp (see for example § A.2, where we consider

deformations in the sense of [42, Def. 3.3.7]). We set:
(7.42) m(UY) = " &g, TU9)F

where ® means the mp-adic completion of the tensor product (still denoting
by m; the maximal ideal of T(U W)g ~ord) One can check that this is an

orthonormalizable admissible representation of GLy,(Qp) over T(U W)g —ord
in the sense of [42, Def. 3.1.11]. We set:

(7.43) TH(UP) = ®i:1 L (m(UP) ®e™ odet)

P—ord
P

(the mz-completed tensor product being over T(U) ) which is an or-

thonormalizable admissible representation of Lp(Q,) over "A]f‘(U@)%D —ord We
have:
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TE(U) @xgrogz-ons (FO)E " )

~

o (™ @, kg) ®E% odet) = (i ® €% o det).
ek i=1,- k

—_

As in [42, Def. 6.3.4], we define the Og-module:

(7.44)  Xp(U®):= Hom%(;p)g,mwp @) (72 (U®), Ordp(S(U?, W¥)5))

where “cts” denotes the continuous maps for the mgz-adic topology on the
source and the wg-adic topology on the target. Note that X p(U®) is equipped
with a natural action of 'ﬁ(U@)g_ord.

We fix a point x of (Spf'ﬁ(U@)g_ord)rig and let x; for ¢ € {1,--- ,k} the
associated closed points of Spec R [1/p] as in § 7.1.2. For i € {1,--- ,k} we
let 7(pg,)? be the open bounded GLy, (Qp)-invariant Oy, -lattice of 7(p,,)
given by 7(pg, )0 = mpiv @R, Ok(zy Where the morphism Rz — Oy
is given by z;. We can deduce then (note that the mgz-adic topology on
ﬁf(Up)g_ord/px coincides with the p-adic topology):

—

(7.45) ©5(U®) D(yoyp—or 'ﬁ'(UK’)g_Ord/px = ® T(pa,)  ®e* odet ),

z‘:1,~-.,k(

from which we easily get:

(7.46) Xp(U®)ps]

—

= Homo, . (1.0, (&), (Flpe) @ odet ), Ordp(S(U°, Wo);) b))

(where ® means the p-adic completion of the tensor product). We refer to
[42, Def. C.1] for the definition of a cofinitely generated ']I‘(Up)g ~ord_module.

Lemma 7.31. The ’A]T‘(U@)gford-module Xp(U?) is cofinitely generated.

Proof. We verify the conditions in [42, Def. C.1]. The first three conditions
are easy to check from the definition (7.44). We have an injection of k-
vector spaces:

(7.47) Xp(U®)/wp

— Homi(U@)g_ord[Lp(Qp)] ( 1 k(ﬁ@gsiodet),Ordp(§(UP7WP)ﬁ)/WE)
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from which we deduce an injection of kg-vector spaces:

(7.48) (Xp(U®)/wg)[my]

— HomkE[LP(QPH ( ® (ﬁi®§si0det), (Ordp(g(Up,Wg’)ﬁ)/wE)[mﬂ)
=1,k

By Lemma 6.8(1) and its proof (see the isomorphism (6.16)), we have an
isomorphism:

(7.49)  (Ordp(S(U°, W®)5) /@) [mz] = Ordp(S(U?, W /w)5) [ms]

which is a smooth admissible representation of Lp(Q,) over kg. Together
with the fact that ®;—; ... x(T; ®€% odet) can be generated over Lp(Q,) by a
finite dimensional kg-vector subspace, we easily deduce that the right hand
side of (7.48) is finite dimensional over kr. The lemma follows. O

Theorem 7.32. (1) The T(U@)gford—module Xp(U®) is faithful.
(2) For any point x € (Spf’f(U")g_ord)ﬂg, we have Xp(U®)[ps] # 0,

equivalently by (7.46) there exists a nonzero morphism of admissible Banach
representations of Lp(Qy) over k(z):

—

(7.50) ®i:1,... A (F(pa,) Py €% 0 det ) — Ordp (S(U, W¥)5) [my].
Proof. By [42, Prop. C.36], (1) and (2) are equivalent, hence it is enough to
prove (1). By Corollary 7.24, if x is a benign point we have Xp(U®)[p,] # 0.
By Proposition 7.5(2) the benign points are Zariski-dense in the scheme

Spec ']NT(UKJ)%D ~ord[1 /p]. The theorem then follows by the same argument as
in the proof of [42, Prop. C.36] (see also [6, Prop. 4.7]). O

Corollary 7.33. Let x € (Spfﬁ‘(U@)g_ord)rig, there exists a nonzero mor-
phism of admissible Banach representations of GLy,(Q)) over k(x):

GL..(Q,) <y = s " .3 .
(7.51) (Indﬁ((@p) ®i:1,-~~ B (F(pa,) ® €% o det )) — S(U?, W¥)5[m,].
Proof. This follows from (7.50) and [40, Thm. 4.4.6]. O
Corollary 7.34. Let z € (Spfﬁ‘(UfJ)g_ord)rig and assume:

o for any i € {1,--- ,k}, the Galg, -representation p,, is irreducible de
Rham with distinct Hodge-Tate weights {—pus,+1, —fts,+n, }
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& 1 > —p2 > > .
Then the point x is classical.

Proof. Let \j := —p;+(j—1), thus XA :== (A1, -+, Ap) is a dominant weight. It
follows from [24, Thm. VI.5.7 & V1.6.18] that there exists a nonzero smooth
representation 7 of GLy,(Q,) over k(z) such that 7(p,,)1ale = 7° Ok(a)
L;()\;) where \; :== (Xs,41, As,+n, ). Moreover, since p,, is irreducible, we know
that 7(p, ) is also irreducible as a continuous representation of GLy, (Q,). We
claim that the morphism (7.50) restricts to a non-zero Lp(Q,)-equivariant
morphism:

752 ( Q) @) Lr(N)

=1,k

I

(F(pz,)™® @ % o det) — Ordp (§(UW7 W)5m,]).
=1,k

Indeed, let 0 # v = 11 ® - v € ®i:1,...,k(7?(pxi)lalg ® &% o det) C
itk (TP, k() €% odet ), if (7.52) is zero, we see the morphism (7.50)
sends v to zero. However, since 7(p,,) is irreducible for all ¢, it is not diffi-
cult to see that @;—;.... x(T(pz,) ® €% o det) can be topologically generated
by v under the Lp(Q))-action. We deduce hence (7.50) is zero, a contradic-
tion. By Proposition 4.21, the morphism (7.52) induces a nonzero GL,,(Q))-
equivariant morphism:

GL”(QP) oo o g
(Indﬁ((@p) ® ™ ) ®k(z) L()\) — S(U'@7 W@)ﬁ[mx]

=1,

which implies S(U¥, W#)5[m,]1818 £ 0, whence the result. O

Remark 7.35. For x € (Spf ﬁ‘(UW)g_Ord)rig, by passing to a smaller parabol-
ic subgroup, it should be possible to prove that Corollary 7.34 still holds
when p,, is reducible for some i.

We set (where Homp, = Opg-linear homomorphisms):
(7.53) Mp(U®) := Homop, (Xp(U?),OF)

which, by [42, Prop. C.5], is a finitely generated TNT(U@)%D ~ord_module which is

Opg-torsion free. Moreover by [42, Lem. C.14], for any « € (Spf ﬁ’(U@)g*OTd)rig,
the Oy(y)-modules Mp(U¥)/p, and Xp(U?)[p.] are finitely generated free
of the same rank, that we denote by mp(z).
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Lemma 7.36. Let x be a benign point, then mp(x) = m(x) (see (7.13) for
m(x)).

Proof. Consider the following composition:

—

Homy, q,) (®i:1  (Fpr) @ % o det), Ordp(S(U7, WF),) [mx])

—

— Homy, g, (®i21 (@@ e odet), Ordp(S(U7, W9),) [mx])

— Homy (g, < ® (F(pz) ™ @ % o det),Ordp(g(UK’, Wp)p)[mx]>
=1,k

where 7{" is as in the proof of Corollary 7.24. The first map is injective since
@':1,.. L™ is dense in @izlj... k7 (pz,) (see the proof of Corollary 7.24). By
Corollary 7.24, the composition is surjective. By the proof of Proposition
7.23, the second map is injective. We deduce then that all these maps are
bijective. From Proposition 4.21, we deduce an isomorphism:

HomLP(Q ) ( ® (A(px )lalg ® ¥ o det), Ordp (§(U@, W@)ﬁ[mx]lalg))
ok

5 Homy,(q, < ® 2 )8 @ % o det ), Ordp(g(Up,Wp)ﬁ)[mx]).
i=1,-

1

The lemma follows from these isomorphisms together with (7.46), (7.24),
Proposition 7.9. ]

Let S, b= Ord(pp) be the set of (isomorphism classes of) irreducible Lp(Z,)-
representatlons o= ®f:10z over kg such that:

HOIHLP(ZP) (J, Ordp (S(Up WP/WE) [ ])) 7& 0.

For i € {1,---,k} let Sy (p;) be the set of (isomorphism classes of) irre-
ducible GLy,(Zy)-representations o; such that there exist irreducible
GLy, (Zy)-representations o; over kg for j # i such that ®§:1(aj ®e% odet) €
SP Ord( 5)- Finally let S(p;) be the set of Serre weights attached to p;,
that is the set of irreducible summands in soc(7i|aL,, (z,)), and let gP—ord
be the set of (isomorphism classes of) irreducible Lp(Zj,)-representations
o2 x| (0; ®E% odet) with o; € S(p;).

Proposition 7.37. We have SP O]rd(pp) C §P-ord(p 5), hence Sq(p;) C
S(ﬁz) fOT any i € {17 ak}
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Proof. The proposition follows by similar arguments as in the proof of [42,
Thm. 5.7.7(1)]. For o0 = @% | (0; ® €% o det) € Sg_ord(ﬁﬁ), we lift o to an
algebraic representation © = ®;-1 ... ;0; of Lp(Z,) over O of (dominant)
weight A such that A;, > A;.41and 0 < Ag 4y, —As, 41 <p—1fori=1,--- k.
Since Ordp(S(U¥, W#)5) is isomorphic to a direct factor of C(Lp(Zy), Op)®"
(cf. Lemma 6.8(2)), we have an isomorphism (e.g. by [68, Lem. 2.14]):

Homy, (z,) (©,0rdp(S(UY, W®);)) /wr
;> HomLP(ZP) (0’, OI‘dP(S(Up, WW/WE)ﬁ))

We deduce, using that A is dominant:

(7.54) 0+ Homy,,(z,) (O, OrdP(g(U@’WP)ﬁ)
& HOmLP (Z,) (('-)7 Ordp(:s’\(U@’ W@)ﬁ)i}? (Zp)falg) ‘

By (6.3) and the same argument as in the proof of Proposition 7.5(2), it
follows that there exists a nonempty finite set C' of benign points such that
the Og-module (7.54) is isomorphic to:

P Homy, (7, (©,0rdp(S(U?, W*)5)[p.])
zeC

with each factor in the direct sum being nonzero. Let x € C' and consider
(recall © is an Op-lattice in Lp(X) stable by Lp(Z,)):

(7.55) 75 = (Ordp (S(U”, W¥)p[m,]) ®o, Lp(X))™
> (Ordp (SWF.Wo)plp,]%) @0, 69)" .

By assumption we have (73°)E7Z») =£ 0, so that (picking up 0 # v €
(72°)Lr(Zn)) we can define smooth irreducible GLy, (Q,)-representations 7
as in the proofs of Proposition 7.6 and Corollary 7.10(1). In particular we
have ®;—1 ... x° < 12 and (79°) Gk (o) 2£ 0, and from (7.24) we also have
7X@ Li(\;) = T(ps,)®® @e% odet where \; = (Mg, 41, As, +n,)- But the latter
isomorphism together with (72°)%Lni (Zp) £ 0 easily imply, using that ©; is
up to scaling the only Og-lattice in L;();) which is stable by GLy, (Z,):

0, =0; ®F % odet € S(;).

The proposition follows. O
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Theorem 7.38. If there exists ¢ such that n; = 2 and p,; s peu ram-
ifié (up to twist), assume that any subrepresentation m = ®;=1... ym; of
Ordp(S(U®,W¥ /wEg)s) is such that m; is infinite dimensional. Then the
evaluation map:

(7.56) ev : Xp(U?)B5 70y r-oa T (UF) — Ordp(S(UY, W¥);)

is an isomorphism where ® denotes the wg-adic completion of the usual
tensor product.

Proof. (a) By [42, Lem. C.46], the map ev is injective with saturated image
(see [42, Def. C.6]) if and only if the induced morphism:

(7.57) (Xp(U?)/@p)lm] @x, ( Q) (7 @2 o det))
=1,k

— Ordp(S(U¥, W¥ /wg)s) [my]
is injective. By (7.48), it is enough to prove that the evaluation map:

(7.58)
Homy,(1,(@,)) ( (7 @k, £ o det), (Ordp(S(UY, W¥);) /w5) [mﬁ])
=1, k
Oy (R (7 @1, 2 0 det)) — Ordp(S(UP, W /)5 [my]

i=1, k

is injective. By [42, Lem. 6.4.15], it is enough to show that any nonzero
homomorphism in:

Homy,, (7,.(@,)] ( (fi Qg €O det), (Ol”dp(g(Up, W@)p)/wE) [mp])
i=1, k

is injective. But this follows from the same argument as in the proof of [42,
Thm. 6.4.16] (using Proposition 7.37 and the assumption to deal with those
7; which are reducible).

(b) We show that the map ev is surjective. Since its image is satu-
rated, it is enough to prove the surjection after inverting p. By [42, Lem.
3.1.16] and the proof of [42, Prop. 3.1.3], Im(ev ®FE) is a closed Lp(Q))-
subrepresentation of Ordp(S(U?, W#)5) which is preserved by T(U p)g —ord,
By Lemma 6.8, Corollary 7.3 and the same argument as in the proof of
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Proposition 7.5(2), it is enough to prove that for any benign point z, we
have:

Lp(

Z,)—alg
n C Im(ev®FE).

(7.59) Ordp (S(U®, W¥)5[m,])

Using the adjunction formula of Proposition 4.21, we can deduce (see the
proof of Proposition 7.5(2)):

(7.60)  Ordp (S, W¥)plm,]) ™ € Ordp (S(UF, W9)5lm, ).
Then (7.59) easily follows from Proposition 7.9, (7.24), Corollary 7.24 and
(7.46). -

Remark 7.39. The assumption in Theorem 7.38 when p; is peu ramifié is
in the style of “Ihara’s lemma” (see e.g. the proof of [42, Thm. 5.7.7(3)])
and one can conjecture that it is always satisfied.

Corollary 7.40. Keep the assumption of Theorem 7.38. There exists an in-
teger s > 1 such that we have an isomorphism of smooth admissible Lp(Qy)-
representations over kg:

bs
( R (T o, 2 o det)> % Ordp (S(U, W* /wpg)5[m3)]).
=1,k
Consequently, Sg_ord(ﬁﬁ) = S’Pford(ﬁﬁ).

Proof. By Theorem 7.38, (7.49) and (7.45), (7.57) is actually an isomor-
phism. The corollary follows since (Xp(U¥)/wE)[my| is a finite dimensional
kg-vector space. O

Corollary 7.41. Keep the assumption of Theorem 7.38. Let wx €
(Spr(U@)gford)rig, then:

Ordp (S(WUP, Wo)5) [me] 2 (Bicr.. 1(F(pa,) Bpie) € o det)) *™ ).

Proof. The corollary follows from Theorem 7.38, [42, Lem. 3.1.17]
(applied with A = T(U®)Y~4 and M = T(U®)£~/p,), (7.45) and the
definition of mp(x). O

7.2. L-invariants

We prove Conjecture 6.2 when pgs has consecutive Hodge-Tate weights as-
suming weak genericity conditions.



918 Christophe Breuil and Yiwen Ding

7.2.1. Preliminaries. We start with easy preliminaries.

Throughout § 7.2 we keep the notation and assumptions of § 6.3 and of
all the subsections of § 7.1, in particular we assume Hypothesis 6.9 and that
the open compact subgroup U¥ is such that UP is sufficiently small, U, is
maximal for v|p, v # p, and U, is maximal hyperspecial at all inert places
v if n > 3 (Hypothesis 7.25). We assume moreover that 7 is such that pg is
a successive extension of characters ; for i = 1,--- ,n with X, X, +1 =% (so
in particular all the n; are 1 and k = n) and that pﬁ is strictly B-ordinary
(Definition 5.8). This implies X; = &'~ fori = 1,--- ,n and p > n. We fix
p: Galp — GL,(E) a continuous representation such that p is unramified
outside S(UP) and such that:

o S(U?, W¥)5[m, ke £ 0
e pg is semi-stable noncrystalline and is isomorphic to a successive ex-
tension of characters x; : Galg, — £ such that y;x;. +1 =ec.

The first assumption implies that p is absolutely irreducible (since p is),
is automorphic (by (6.3)) and satisfies p¥ o ¢ = p® ¢!™", and then the sec-
ond implies that the monodromy operator on Dy (pg) satisfies N =l £
(use [17] together with the fact that the automorphic representation asso-
ciated to p has a generic local component at p by base change to GL,, and
the irreducibility of p, see the proof of Proposition 7.6(1)). In particular
(X1, ,Xn) is the unique parameter of the (p,I')-module D := Diig(pg)
and it is moreover special (see Definition 2.1 and use [2, Thm. A]) and such
that y; = e'7¥xy for i = 1,--- ,n. We also easily deduce that pg is strictly
P-ordinary for any parabohc subgroup P of GL,, containing B.

Using [17], we see that there exists m(p) such that:

(7.61) S(U?, W#),[m, |28 = (St @ o det) @)

where St;° denotes the standard smooth Steinberg representation of GL,,(Qp)
over E. As in (7.13), we have by (6.3) and our assumptions on U, for v|p,

v # @
(7.62) m(p Z m(r) dimg (7 Z m(m) dimg (7 oo p)U”

where 7 runs through the automorphic representations of G(Ap, ) which

contribute to the locally algebraic representation S(U#, W)5[m,)'8le. We
easily check that:

(7.63) Ordp(Ste° @x1 o det) 22 Jp (St @y o det)(55") =2 x1 o det.
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Lemma 7.42. We have an isomorphism of T(@p)‘repr636ntati0n8,'
socr(q,) JB (S(U2, W) my]) = ((x1 o det) @ 35) 7.

Proof. From the global triangulation theory ([51], [58]) applied to the eigen-
variety &€ (see § 7.1.3), exactly the same proof as the one of [4, Prop. 6.3.4]
gives:

7.64 Homy (g y (6, J5 (S(U?, W®)5[m,])) # 0 = 565" = x1 o det .
( ) T(Qp)( plMp B X

There exists thus an integer m’ > 1 such that the isomorphism in the
statement holds with m(p) replaced by m’. By (7.61) and (7.63), we have
m’ > m(p). Using [7, Thm. 4.3] together with (7.64), we see that an “extra”
copy of (x1o0det)®dp in the socle would yield an extra copy of Sto° ®y; odet
in S(U?, W®)5[m, ]38 hence m’ = m(p). O

We denote by x the point of (Spf ﬁ‘(U@)ﬁ)rig associated to p (thus m, =
m,). By (7.63) and Lemma 4.12, we obtain that € (Spfﬁ(Up)g_ord)rig for
all P DO B.

For 1 <i < i’ < n, we denote by p! the (unique) subquotient of pz which
is isomorphic to a successive extension of the characters x; for i < j <4’
We have Dyig(pl) = D! = the (unique) subquotient of D isomorphic to a
successive extension of the Rg(x;) for ¢ < j < i’ (see the beginning of § 2
for this notation).

7.2.2. Simple L-invariants. For Lp with only one factor being GL2, we
show that one can recover the corresponding simple L-invariant in
Ordp(S(U*, W#)5)[m,] (Corollary 7.47). We work in arbitrary dimension.
We keep the notation and assumptions of § 7.2.1. By Theorem 7.38, we
have an isomorphism (note that the assumption in loc. cit. is here automatic

since n; = 1 for all 7):
(7.65) XB(U?)gnyz-onmg(UY) = Ordp(S(U?, W*)p).

Recall we defined the integer mp(x) just before Lemma 7.36.
Lemma 7.43. We have mp(xz) = m(p).

Proof. By Corollary 7.41 combined with (4.18), (7.61) and (7.63), we have
mp(z) > m(p). By [40, Thm. 4.4.6], we have:
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GL,(Q, 0 a
(7.66) Homgr,(q,) ((Indg 5" D @ xa o det, U2, W)5[m,])

% Homyyg, (x1 © det, Ordp(S(U?, W¥)5m,))).

We have an obvious injection:

(7.67) Homgy, (g, ((Ind_( "(()@P) 1) ® x1 o det, S(U?, W*),[m,])

— HomGLn(Qp) ((IndE(Q() ») 1)an ® x1 0 det7 S’\(Up, Wp)ﬁ[mp]an) .

From the description of irreducible constituents of (Ind_( Q(?”) 1)2 for B C

P (see [63, § 6]), Lemma 7.42 and [8, Cor. 3.4], we obtain if P D B:

Homgy, (g,) ((Indg 77 1) @ x1 o det, S(U, W¥)glm, ™) =0,

from which we deduce:

Homgr, o,) ((Ind_( () P 1) @ xp o det, S(U?, W#)5[m,)™")

<~ Homgy, (g, (St2" @x1 o det, S(U?, W¥)5[m,]*")
«—— Homrp(g,) ( Sty ®x1 o det, S, W) 5[m,]*")

where St3" := (Ind%%é(()@‘” 1)an/ ZPDB(IndP(Q() ) 1)2*. Together with (7.61),
(7.67), (7.66) and Corollary 7.41, we deduce then mp(x) < m(p). The lemma
follows. 0

Lemma 7.44. The 'f(Up)g_ord[l/p]—module Mp(U®)[1/p] is locally free at
the point x.

Proof. (a) Let X := Spec A := Spec('f(Up)prord[l/p]/p) be any irreducible
component containing the closed point z. We show that the A-module
Mp(U®)[1/p]/p (see (7.53)) is locally free at x, from which the lemma fol-
lows by [48, Ex. I1.5.8(c)] (recall that 'ﬁ‘(U”)g_Ord, hence 'f(Up)g_ord[l/p]
and X, are reduced by Lemma 6.7). We define:

7 := {Dbenign points in X} U {x}.

By Proposition 7.5(2), we know that Z is Zariski-dense in X. By Lemma
7.36 (resp. by Lemma 7.43), we know mp(z') = m(2') for 2’ € Z\ {x} (resp.
mp(x) = m(p)).
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(b) For any finite place [ { p of F', we deduce from (6.17) a continuous
representation p4 ( : Galp, — GL,(A). By [44, Prop. 4.1.6], we can associate
to pa, a Weil-Deligne representation over A. Then the statement of [1, Prop.
7.8.19] (with “open affinoid” replaced by “open affine”) still holds where the
rigid space X of loc. cit. is replaced by the scheme X in (a) and the Weil-
Deligne representation in [1, Prop. 7.8.14] is replaced by the one above (the
argument of the proof of [1, Prop. 7.8.19] is then analogous, and even easier
since we are in the setting of affine schemes). An examination of their proofs
then shows that [19, Lem. 4.5] (for any n) and [19, Lem. 4.6] (for n < 3)
both hold verbatim with (p, O(X)) of loc. cit. replaced by (pa,ilwy, ; A). From
(7.13), (7.62) together with m(w) = 1 (which follows from [71] and [55]), we
then deduce m(z') = m(p) for all 2/ € Z, and hence mp(z’) = m(p) by (a)
for all 2/ € Z.

(c) Denote by M the coherent sheaf on X attached to the A-module
Mp(U#®)[1/p]/p. For any prime ideal p’ of A, set:

mp(p') = dimpac(azp) (Mp(U?)[1/p]/0') @a/p Frac(A/p'))

which is upper semi-continuous on Spec A by [48, Ex. I1.5.8(a)]. In particular,
the sets:

Upm = {p’ € Spec A, mp(p’) <m} = {p’ € Spec A, mp(p’) <m + 1}

are Zariski-open for m € Zx¢. It follows from (b) that we have Z C U,,(,)
and ZNUpyp)—1 = (). Since Z is Zariski-dense in X, this implies Un(p)-1 =
and thus the function p’ — m(p’) is constant of value m(p) on the open set
Um(p) Which contains the point z. By [48, Ex. I1.5.8(c)], we deduce that M
is locally free on U, (,), which finishes the proof. O

)

Denote by V,, the tangent space of (Spf ﬁ‘(U@)ﬁB_ord)rig at x. Recall that
we have a natural morphism (see (7.37)):

w = (wi)i=1 o : (Spf'ﬁ‘(U@)EB*Ord)rig SN H(Spf Rﬁ%)rig

=1

where p; = X;. Recall also that we uniformly (in ¢ = 1,--- ,n) identify the

tangent space of (Spf R5 )" at w;(z) with Hom(Q), E) via:

EXtéal@p (pibm pﬂ?z) = EXtéalQp (Xia XZ)
(1.11)

%Ext%%r)(RE(Xi),RE(Xi)) =~ Hom( ;,E).
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Lemma 7.45. The morphism dw, : Vy — @i=1,... , Hom( I8 X E) induced
by w on the tangent spaces is injective. Moreover, the induced morphism:

(7.68) V — @ (Hom(Q), E)/ Homs(Q), E))

is bijective.

Proof. By Proposition 7.30, we have dimp V; > n. Since this is also the
dimension of the right hand side of (7.68), it is enough to prove that dw,
is injective. Let 0 # v € V, such that dw,(v) = 0 and denote by Z,
Ker(T(U@)ﬁB_OTd — Ele]/€?) the ideal attached to UN(SO T(U@)g_ord/l =
Ogle]/€?). From [42, Prop. C.11] applied with M = T(Up)gford/Iv we ob-
tain:

(Mp(U®)/Z)[1/p]
~ Homp, (Homs Fuey- wa(T(UP) BT, Xp(U)), Op)[1/p)

(7.69) = Homo, (X5(U®)[Z,)],Or)[1/p].

From (7.69) and Lemma 7.44 it easily follows that (XB(UW)[IU])[l/p] is free
of rank mp(x) over (ﬁf‘(U@)g*md/Iv)[l/p] >~ Ele]/e%. Fori = 1,--- ,n denote
by X; the extension of x; by x; associated to dwj »(v) € Hom(Q, ,E). From
(7.42) we get (mi(U®)/T,)[1/p] = Xi (since n; = 1). Let x := @, (i ® £%)
and ¥ = ®?:1(% ® €%) where the tensor product ®! ; on the latter is
over Ele]/e?. By (7.65) together with [42, Lem. 3.1.17] applied with M =
’]I‘(U@)B ord /7, we obtain a commutative diagram:

X@ms(x) -~ OrdB(S'\(Up W#)z)[m,)]

(7.70) l l

Xoems(@) = Ordp(S(U?, W9)5)|L).
Since dw,(v) = 0, the character Y is locally algebraic by (1.12). It then

follows from m?> C Z,[1/p] and Proposition 6.13 that the bottom horizontal

map in (7.70) factors through Ordg(g(Up,W")ﬁ) [m,], which contradicts
(7.70). The lemma follows. O

Recall that for 4 = 1,--- ,n — 1 the (p,I')-module D/™" was defined at
the end of § 7.2.1, and that L’,FM(D’Jrl REe(xi)) is the line in

Ext{,p, ) (Re(xi) Re(xi) = Hom(Qy, E)
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defined as the orthogonal of ED/™ C Ext%%FL)(RE(XiH), RE(xi)) via the
pairing as in (2.1), see § 2.

Proposition 7.46. For ¢ = 1,---,n — 1, the morphism dw;, — dwit1z
factors through a surjection:

dwi,;r - dwi+1,a¢ Ve —» EFM(ZDE—"_1 : RE(XZ)) - HOHI( ;;:E)

Proof. Recall we have a morphism of rigid spaces (see (6.20)):
W' (SpET(U®)Z~") 8 —y (Spf RDo)re.

For any nonzero v in V;, let p (resp. x;) be the Galg -representation over
Ele]/€? attached to dw!,(v) (resp. dw; .(v)). We know that p (resp. X;) is a
deformation of pg (resp. x;) over E[e]/€®. It follows from Proposition 5.7(2)
that v can be seen as an El[e]/e?-valued point of Spec Rff’&?}, hence that
p is isomorphic to a successive extension of the X; as Galap—representation
over E[e]/e. Then from Theorem 2.7 we easily deduce (dw; ; — dw;+1.4)(v) €
/JFM(DZ:H :Re(xi)) foralli=1,--- ,n—1.If dw; , — dw;11, = 0 for some %
(equivalently dw; » —dwj11 , is not surjective), then the morphism in Lemma
7.45 cannot be surjective, a contradiction. O

For r € {1,--- ,n — 1}, we denote by P, the parabolic subgroup as in
(5.1) with k =n—1,n;, =1fori € {1,---,n—1}\{r} and n; = 2 for
i = r (note that this implies n > 3). We have isomorphisms of smooth
representations of Lp, (Qp) over E:

(7.71)  Ordp, (Sty° @x1 o det) 2 Jp, (St;° ®@x1 o det)(dp")
= (( ® 1) ®St§°> ® (x1 o det)

=1, ,n—1
i#£r
where the first isomorphism follows from the second (see § 4.3 for Ordp,)
and where the second easily follows from Jpnr, (Jp, (St;°)) = Jp(Sty’) = 6p
and the usual adjunction for Jpnz,, ().

Corollary 7.47. Forr=1,--- ,n — 1, the restriction morphism:
(7.72)
Homg,, 0, (( @ x)@E( e odet), Ordr (BUF, W)y [m,))
i=1,...,n—1

£
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—Homy,, o, ((( @ 1)@8t57) ©(xiedet). Ordp, (S W)p)m ] )

is an isomorphism. In particular, we have (see (7.61) for m(p)):

dimp Homp,, (qg,) (( ® Xl) Q (7 (p:“) ®eto det),
i=1,...,n—1
i#r

Ordp, (S(U7, W¥)g)[m,]) = m(p).
Proof. Note first that y;®e% = xq fori =1,--- ,n.Let 0 # ¢ € Lpy(DIH! -

RE(Xr)), then we have the following restriction maps (writing Ordp, [m,] for
Ordp, (S(U2, W¥)5)[my]):

Homy, o, (( @ x1)@Fp™) @ o det), Ordp [m,))
i:l%;é.;‘nfl
= Homy, (g ( (W(p;+1)an®er_1odet),OrdPr[mx]an>
#’Z‘ '
—~ Homp, (g, ( D) (r(0,)”®(x o det)), Ordp, [m,])
;J !
— Homyp, (q, (( ®St2> (Xlodet),Orde[mx]an>
z;ér

where the first isomorphism follows from the fact that the universal com-
pletion of 7(pt1)2 = 7(0,1)) ® x1 o det is T(pl 1) ([26] and see § 3.2.2 for
7(0,1) and 7(0,%)7). Using [8, Cor. 3.4], (7.28) and Lemma 7.42, we de-
duce that the second and third morphisms are injective by the same type of
argument as in the proof of Proposition 7.23. By the same arguments as in
[4, § 6.4 Cas i = 1] using Lemma 6.8(2) and Lemma 7.42, one can prove that
the second morphism is moreover surjective (see also the end of the proof
of Proposition 7.23 for analogous considerations). By Proposition 7.46 and
an easier variation of step (c¢) in the proof of Theorem 7.52 below, it follows
that the third morphism is also surjective (see also the proof of [32, Prop.
12] for similar arguments). The last assertion follows from (7.61), (7.71) and
Proposition 4.21. O
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Remark 7.48. (1) Corollary 7.47 would actually be an easy consequence
of Theorem 7.38, but we prove it here without the assumption in Theorem
7.38. This is important as it is used in the proof of the main result.

(2) Applying [40, Thm. 4.4.6] to (7.72), one can in fact (re)prove [31,
Thm. 1.2] in the case where L = Q, and pz is ordinary.

7.2.3. Higher L-invariants. The main result of this section is Propo-
sition 7.51, which can be seen as a version of Proposition 7.46 for higher
L-invariants. We still work in arbitrary dimension.

We keep the notation and assumptions of §§ 7.2.1 & 7.2.2. We fix r €
{1,---,n =1} and set P := P, (so p > n > 3). Since pg is strictly B-
ordinary, one can check that pg is strictly P-ordinary. With the notation of
§ 5.1 we have k =n — 1 and:

Xi ie{l,---,r—1}
p; = 4 nonsplit extension of X, by X, i=r
Yi—‘rl ZE{T"‘l,,TL—l}

with p, satisfying (A.2).

Lemma 7.49. The ?T(Up)gford[l/p]—module Mp(U®)[1/p] is locally free at
the point x.

Proof. By (7.46) and the last statement in Corollary 7.47 we have mp(z) =
m(p). Together with Lemma 7.36, the lemma then follows by the same ar-
gument as in the proof of Lemma 7.44. O

We denote by V;, the tangent space of (Spf'ﬁ“(U“)g*(’rd)rig at z. Let dw,
be the induced morphism:

(7.73) dog: Vo — @B (Extlay (prispe.)/ Exty(pe,: pr.)
=1 n—1

where w = (w;)i=1,-. n—1 ¢ (SPET(U?)E )8 — T, . ,,_,(Spf Rp, )"
(there will be no confusion with the tangent space V, and the map w in
§ 7.2.2 and note that p,, = x; if i <7, pz, = xir1 if i > 7 and p, = pit1).

The following lemma is analogous to Lemma 7.45.
Lemma 7.50. The morphism dw, is bijective.

Proof. By Proposition 7.30, dimg V, > n + 1. By Lemma 3.5 and Lemma
3.11(3), we see the right hand side of (7.73) has dimension (n—2)+(5-2) =
n + 1. It is thus enough to prove that dw, is injective.
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(a) Let veVy I,:= Ker(’ﬁ]f(U@)gford — E[e]/€?) be the ideal at-
tached to v (so ']NT(Up)g_Ofd/Iv% Ogle]/€?) and p; fori = 1,--- ;n—1 the
extension of pg, by pq, associated to dw; o(v). Denote by i=(mU* ) @77, r-ora

T(U@)gford/Iv)[l/p] (cf. (7.42)), which is isomorphic to the unitary Banach

representation of GL,,(Q,) over Ele]/e* attached to p; via (3.52), Propo-
sition 3.30 and Remark 3.31(2). Note that for i # r we have m; = p; as
characters of Q) over E[e]/e*. We set (cf. (7.43)):

7= (7R (U?) ®Fgroyr-oma T(UY)5 =" /) [1/p)

~ ( R rn® e) @5 (F(ps,) ® ™1 o det)
i=1,--,n—1

K b
iF#r

7 1= (1B(U°) Oggeys-os TUPE /L) 1/

< 03¢ 51‘@5&) ®pi/e (Tr @ ™" o det)
i=1,,n—1

i#£r

Il

where the tensor product of the p; in the last term is over E[e]/e2. Since 7
is free of rank one over Ele]/e? for i # r, we see that 7 is isomorphic to an
extension of 7 by 7. Since Mp(U¥®)[1/p] is locally free at z by Lemma 7.49,
by (7.69) and the discussion that follows we see that the evaluation map
(7.56) induces a commutative diagram:

ame@) s Ordp(S(U, W¥)5)[m,]

(7.74) l l

Fmp(®) Ordp(g(Up,Wp)ﬁ)[Iv]

where the vertical maps are the natural injections (coming from 7© C 7[e]
for the first) and where the top horizontal map is also injective by Corollary
7.47 (and its proof).

(b) We prove that the injection m = 7 has image exactly e7. It is enough
to prove that ¢ induces m — 7[e] (since then we have a short exact sequence
0 =757 — et — 0 and we use that 7 is an extension of m by 7). From
[43, Lem. 3.1.17] we deduce isomorphisms:

(XHU BT AU L) [1/0) = (XHUIT) 1/ p)@ g T2



Higher L-invariants for GL3(Q),) and local-global compatibility 927

(XRU) B0y -ora SO [pa]) [1/0) = (XU p]) [1/p) @ 1 2w 7™ )

using that (Xp(U®)[Z,])[1/p] is free of rank mp(x) over E[e]/e? by the same
argument as in the proof of Lemma 7.45 (and using Lemma 7.49). The result
follows using (-)[Z,][€] = (-)[pz)-

(c) Suppose now that we have dw,(v) = 0. Then it follows that 7% =
T; = pi is locally algebraic when i # r (use (1.12)) and that 7. is an
extension of T(pz, )8 by 7(ps, )8 when i = r (use (3.55)). In particular
we have a commutative diagram:

0 Wlalg L %lalg Wlalg 0

(7.75) l l l

L

Oo— @ — ®™ —— ® —— 0

where the vertical maps are the natural inclusions. By (b), the multiplication
by € on 7 factors as T —» 7 — er < 7. It follows from (7.75) that the multi-
plication by € on 7218 also factors as 718 — rlals 5 ¢rlale y Flale iy partic-
ular we have 1(7'%8) = e7'*I inside 7*¢. From m? C Z,[1/p] and Proposition
6.13, any morphism 7418 — Ordp(S(U¥, W#)5)[Z,] factors through 738 —
Ordp(S(U¥, W")lﬁalg)[mp] It then follows that the bottom horizontal mor-
phism in (7.74), which is E[e]/e*linear, sends (ex'®8)mr(@) —= (glalg)yme(z)
to 0, which contradicts the injections in (7.74). The lemma follows. O

We consider the E-linear injection
¢ Hom(Q), B) = Extlyy, (57 00™), &0 o @ (1+ ve)

and set dw,l, 1= dw,z—Eodw, 1, (if 1 < n—1) and dw, , := dw,z—Eodw, 14
(if r > 1). The following result is somewhat analogous to Proposition 7.46
(see § 2 for Lrm(+) and frm(-)).
Proposition 7.51. (1) Inside Ext(,p(D;t, D) = ExtGalQ( r+L o+l
we have Im(dw;t,) € Lem(D;+? 2 DI (if r < n— 1) and Im(dw,,) C
Len (DI DIFY) (if r > 1).

(2) If r <n —1 (resp. if r > 1) the composition:

m(duw,) — Ext{, 0 (D7, DI — Exti, 0y (D7, Re(xr1))

(resp. Tm(dw, ) — Bxt{, (D, DIt — Ext(, 1 (Re(xr), D))
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induces a surjective map

Im(dw,,) = eae(Dy 2 2 DY) C Ext, oy (Dr Y Re(xrt1)

(resp. Im(dw; ) — lem(Dy 5y 2 DiFY) C Extiy, 1y (RE(xr), DitY))-

Proof. (1) From (6.20) we have w’ : (Spf Ri;ﬁ_ord)rig — (Spf’f(UP)g_ord)rig.
Let 0 # v € V, and p (resp. p;) the Galg -representation over Ele]/e>
attached to dw/,(v) (resp. dw; »(v)). We know that p (resp. p) is a deformation
of pg (resp. py,) over Ele]/e?, and using Proposition 5.7(2) we see as in the
proof of Proposition 7.46 that p is isomorphic to a successive extension of
pi as representations over Ele]/€2. (1) follows then from Theorem 2.7.

(2) We prove the statement for Im(dw,",) (and r < n—1), the other case
being similar. By Corollary 2.4(2) and Lemma 3.5 (and the assumptions on
pg in § 7.2.1), we have dimp fpp (D212 : DY) = 2. Recall that we have by
Lemma 3.5 and Lemma 3.11(3):

dimp Ext}

<p,F)(D:+1’D:+1)/EXt;(D:+1aD£+1) =5-2=3

By Lemma 7.50, it is then not difficult to deduce dimp Im(dw;’,) > 3. By
(1) and (2.4), we have an exact sequence (see (2.2) for the morphism «):

0 — Im(dw;",) N Ker(xk) — Im(dw;",) — e (D2 2 D).

We have dimg Ker(k) = 2 by (2.4), Corollary 2.4(2) and dimg fpp (DI
Dty = 2. If dimpIm(dw,,) > 4, the result is thus clear. As-
sume dimpg Im(dw,,) = 3, it is enough to prove dimpg Im(dw,,) N Ker(x) <
1. From Lemma 3.7 and Lemma 3.11(1)&(2), we deduce dimg Ker(x) N
Ext (D;t!, Ditl) = 1. It easily follows from Lemma 7.50 that the mor-

phism Ew;f L = Ewm —€&o EerrLz is surjective (note that it is well-defined
since ¢ sends Homoo (Q)f, E) to Exty(pi ™, prt1)). This implies that the com-
position:

(7.76)  Tm(dw,!,) — Ext{, (D!, D*
— Ext(, (D, DY)/ Exty (D7, DI+

is also surjective, hence bijective as source and target have dimension 3.
If dimpIm(dw,,) N Ker(k) = 2, we have Ker(x) C Im(dw,,) since
dimg Ker(x) = 2, and thus Im(dw,,) N Exty(D;, DitY) # 0 as Ker(k) N
Ext (D; !, D) # 0, which contradicts the fact (7.76) is bijective. This
concludes the proof. O
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7.2.4. Local-global compatibility for GL3(Qp). In dimension 3, we
finally use most of the previous material to prove our main local-global
compatibility result (Corollary 7.54).

We keep all the notation of §§ 7.2.1, 7.2.2, 7.2.3 and now assume n = 3
(and thus p > 3). For r = 1,2, we let £, € E such that:

Ve, :=log, —L, val, € Len (DI RE(xr)) € Hom(QX, E).

P
We set A = (Wt(X1) wt(x1),wt(x1)) € Z* and let a € E* such that
x1 = unr(a)z"*x1), We define vE (A) for r = 1,2 as in § 3.3.1, (N, v¥r,)
as in (3.76) and set vF (o, A) = v (A) ® unr(a) o det, I (a, \, ) =
(N, 9z, )@unr(a)odet and Lo (D:D3) C ExtéLg(Qp)(v%'; (a, \), I (v, A, )
as in (3.100) (tensoring by unr(a)odet). The assumptions on pg imply in par-
ticular that D is sufficiently generic in the sense of (the end of) § 6.1. We set
YD)~ = &M (a, g, ), v (a N2 Lout(D : D?)) as in Notation 3.4
(see (3.102) when o = 1). L1kew1se we define H2(a ANr,) = HZA(/\ Yr,) ®
uni(a)odet (see before § 3.3.4), Loyt (D: D3) CExtgy (o) (vp (a, M), 11 Ha, A\, 1)
(see (3.107)) and we set (see (3.109) when a = 1):

(D)~ = & (I (c, A, b,), v (0, NP2, Lo (D = D)),

Theorem 7.52. Forr € {1,2}, the following restriction morphism is bijec-
tive:

(7.77)  Homgr,(g,) (II"(D)~, S(U?, W¥)5[m,])
—>H0mGL3( )(StS ®px1 o det, S([]p W@) [ ])

Proof. We only prove the case r = 1, the case r = 2 being symmetric.

(a) It follows from (7.64) that (7.77) is injective (by the usual argument:
if (7.77) is not injective, there exists an irreducible constituent V' of (D)~
such that V < S(U®, W#®)zlm,], hence Jp(V) — Jp(S(U®, W#e)zm,)),
which contradicts (7.64) using [8, Cor. 3.4)).

(b) We have natural morphisms:

(7.78) Homgy,(g,) ( St5° @(x1 o det), S, W) 5[m,))
— Homyp, (g, ((St3°®1) ® (x1 o det), Ordp, (S S(U*, W¥®)5m,)))
— Homp, (g,) (F(p}) @ x1,Ordp, (S(UY, WK’) [m]))
=5 Homar,(g,) (dS" @ %(p3) @ x1), S(U, W¥)5(m,))

P1(Qp)
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— Homay,(q,) ((Indg (% % (p})™ @ x1)™, S(U7, W¥)slm,]™)

—N—) HomGL3(Qp)( (a A ¢Ll) (Up Wp) [ ] )

where the first map is given by Lemma 4.18 together with (7.71) and is bijec-
tive by Proposition 4.21 together with (7.61), the second isomorphism follows
from Corollary 7.47, the third from [40, Thm. 4.4.6], the fourth map is injec-
tive since the locally analytic vectors are dense in the corresponding Banach
representation, and where the last bijection follows from the fact that any ir-

reducible constituent of the kernel W of the surjection (IndgL(?’éQ)” ) T(p})™®

x1)™ —» II* (o, A, ¥z,) does not occur in SOCGL,(Q )S(UK’ W#®)5lm,|*" (see
the discussion below (3.80) and argue as in (a)). One can check by using the
functor Jp(-) that the composition in (7.78) gives a section of the restriction
morphism:

(7.79) HOHIGLS(Q,)( Ya, \ e, ), S(UP, WE)5[m o)
— HomGLs( Q,) (Stg ( X1 © det)a §(Up7 Wp)ﬁ[mp])’

which is therefore surjective. Since (7.79) is injective by (again) the same
argument as in (a), it follows that (7.79) is bijective. Consequently, the
fourth injection in (7.78) is also bijective.

(¢) By (a) and (b), it is enough to prove that, for any line Ew C Loyt (D
D?), setting II := &I (o, A, ¢z, ), v (a A), Ew) (see Notation 3.4, in fact
this is just here the representation asso<31ated to the extension w), the fol-
lowing restriction morphism is surjective:

(7.80) Homgy,(g,) (IL S(UY, W¥),m,])
— Homgy,(g,) (St @(x1 o det), S(U?, W¥);[m,)).

As in (7.78), we have:

(7.81) Homgyp,(g,) (St5° ®(x1 o det), S(U, W#)5[m,])

— Homy,, (q,) (F(p)@x1, Ordp, (S(U?, W¥)p[m ])) Xp(U9)lpz]®0, E
where we use the notation in § 7.2.3. Let 0 # w € Law(D : D?) =
lev(D 2 D3) (cf. (3.101)), by Proposition 7.51(2) there exists v € V;
such that dwix(v) = ow € Ext%%r)(D%,RE(Xg)). Denote by Z, the ideal
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of T(U@)?*Ofd attached to v (see e.g. the beginning of the proof of Lemma
7.50). Recall we have (see e.g. (b) in the proof of Lemma 7.50):

(7.82) (Xp(U®)[T,))[1/p)] is free over Ele]/€>.

Let fp be a nonzero element in the right hand side of (7.80), and let f :
F(p2)©x1 <= Ordp, (S(UL, W®)5m,]) and e € (Xp(U*)[p.])[1/p] be the cor-
responding elements via (7.81). By (7.82) and Xp(U®)[p.] = Xp(U®)[Z,][€],
there exists ¢ € (Xp(U¥)[Z,])[1/p] such that e = e. As in the proof of
Lemma 7.50 (see (7.74)), letting 71 (resp. X1) be the deformation of 7(p?)
(resp. x1) over E[e]/e? attached to dw; . (v) (resp. dws . (v)), we have a com-
mutative diagram:

m:=7(p?) KE x1 . Ordp(S(U?, W¥)5)[m,]

(7.83) l l

7= 71 R je X1 —— Ordp(S(U?,W¥),)[L,]

where f is the morphism corresponding to € and where we write X instead
of ® to emphasize that it is an exterior tensor product of representations
(GL2(Qp) acting on the left and Q,; on the right). Using Proposition 7.51(1),
let wq := dwix(v) € Lrm(D : D?) and 7, the associated deformation of
7(p?) over Ele]/e? via (3.52). From the definition of dwffz we have:

(7.84) 72 ((x7'X1) o detaL, ®pid/eTuw,) B e X1
= (Xl_lil) ° detLP1 ®E[€]/62 (%wo Xp Xl)

By [40, Thm. 4.4.6], taking (Ind%L&(PQ)’” ) -)¢” and then locally analytic vectors,

the maps ¢ and fin (7.83) induce morphisms of locally analytic representa-
tions of GL3(Q)) over E:

GL3(Qp) _an)an GL3(Qp) ~an)an a an
(7.85) (Indﬁl((é%)w ) <—>(Indﬁ1(£p@))7r )M S(US, W)L, ]

Let 7y := Ty, Xg X1, from (7.84) we deduce:

GL3(Qp) ~an\an ~, 1~ GL3(Qp) ~an\an
(7.86) (Indﬁf‘(([(p?) ) T ) >~ (x] 1X1) o detgr, ®E[€]/€2(Indﬁ?((é% ) o ) .
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As in (b), (7.85) factors as (see (a) for W):

(787) T (e, A e,) — (Indpy ot %) 7)™ /W — S(U2, W),[L,)
Since wy € Lpm(D : D?) w € Lpm(D : D?), it follows from (3.89)
and Remark 3.47 that II = &I\, ¢z, ), v v 2 (A), Fw) ® unr(a) o det is a

subrepresentation of (IndGL(S‘éQ)” ) 3" )™ /W. By Lemma 3.2 and (7.86), we

deduce that II is also a subrepresentation of (IndGL(‘q'éQ)" )% T2 /W . Hence
(7.87) induces GL3(Q))-equivariant morphisms:

(7.88) I (o, A, oz, ) — T L5 S(UP, W9, [T,

As ‘the composition in (7.88) restricts to fy via (7.79), we see it has image
in S(U®,W#)5[m,] (using that the analogue of (7.79) with S(U®, W¥)5[Z,]
instead of S(U®, W¥)5[m,] is still an injection). If m,Im(f) # 0, we deduce
that

m, () 2 22

7, (A) ® unr(a) o det

is a subrepresentation of S(U¥ , W¥9)5(Z, v}an, a contradiction. Thus we have
m, Im(f) = 0, i.e. f also has image in Swe, W#)5[m,]*". The map f — f
gives a section to (7.80), which concludes the proof. O

We refer to § 3.3.3, § 3.3.4 for the definition of the subrepresentations

(X, e, o, TU(N, e, ), T (A, e, )+ of TIT(A, v, ). We set I (o, A, oz, Jo:=
II"(A\, ¥z, )o ® unr(a) o det, II"(a, A\, 0z, ) == II"(\, ¢z, ) @ unr(a) o det, and
" (a, A\, e, )T = TI"(\, e )T @ unr(a) o det.

Corollary 7.53. Let r € {1,2}.
(1) Let ¢ € Hom(Q,, E), an injection

£ St @(x1 o det) — S(UY, W¥)5[m,]

extends to f1 : II" (a, A, )T — S(Up W#®)zlm,] if and only if ¢ € Ev, .
(2) Let s€ {1,2}, s # r, and letUEExtGL @, )( (a A), " (a, A\, 2he ).

An injection TI" (a, X\, ¢z, )T — S(UW,W@)[)[ N 6:Etends to:
E(I (e, A, ¢, )T, 0% (a, A), Bv) — S(U?, W9)5m,)]

if and only if v € Lo (D : D).
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Proof. For i € {1,2}, denote by 7¢(a, \) := St5° @(x1 o det) — vy (a, A) the
unique nonsplit locally algebraic extension of v (o, A) by St5° ®(x1 o det).

(1) By Theorem 7.52, f extends to fo : I (o, A\, e, )T — :S'\(U@,
W#®)5[m,], the “if” part follows. If ¢ ¢ Evr , we have By + Evp, =

Hom(Q,, E) and an injection induced by fo, fi (where S5 is defined as
in § 3.3.3 with A = 0):

" (a, A, ¥z, )o D, y@(xrodet) (@ A, ¥)og — S(U, Wo)5m,).
By Proposition 3.35, we deduce that the left hand side is isomorphic to:
5’(5’370, (v%)@g, ExtéLS(@p)(v%or, 5’370)) ®g (x1 o det)

and hence contains 7" (a, A) C & (S50, vE , Eval,) ®@g (x1 0det) as a subrep-

resentation. However 7" (c, A) is not a subrepresentatlon of S(U® , W#)5[m,]
by (7.61), a contradiction.

(2) follows by the same argument. Indeed, if v ¢ Laui(D : DIFL), then
Ev+ Loy (D : DI = ExtéLS(Qp)(U%O (a, A), II" (v, A, 92 )F). One deduces

from Lemma 3.42 that 7°(a, A) is a subrepresentation of:

EM" (a, N, )T, °°(a A)s Bv) ©11r (a0, )+ 1I7(D) ™

(where IT" (D)~ C II" (D)~ is defined in (3.103) and (3.108) modulo the twist
by unr(a) o det), a contradiction. O

We can now state our main result. We fix p|p, plp, U® =[], Us and
W#® as in § 6.1.

Corollary 7.54. Assume n = 3, F;j = F5=Qp, p > 5 and U, mazimal if
vlp, v # p. Let p: Galp — GL3(E) be a continuous representation which is
unramified at the places of X(UP) and such that:

® 1 is absolutely irreducible

o S(U®,W¥)[m, ]l 0

o pg is semi-stable with consecutive Hodge-Tate weights and N2 40 on
Dt(pg)

e any dimension 2 subquotient of pg = ﬁ|Ga1F§ 18 nonsplit.

Then we have the following results.
(1) The statement in Conjecture 6.2 is true, i.e. the restriction morphism
1s bijective:
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Homgy,(q,) (I(pg), S(UC, W¥)[m,])
% Homgr,(g,) (T(pg)"™&, S(U, W¥)[m,]).

(2) The representation pg of Galg, is determined by the locally analytic
representation S(U®, W¥)[m,]*" of GL3(Qp) (hence also by the continuous
representation S(U®, W¥)[m,] ).

Proof. (1) By the same argument as in [4, § 6.2 Etape 1], we can assume that
UP? is sufficiently small. Define II(D)™ as at the end of § 3.3.4, then it follows
from Theorem 7.52 and (a) in its proof (and arguing e.g. as in [4, § 6.2 Etape
2]) that the statement holds with II(D)~ instead of II(pg) = 1I(D). By [4,
§ 6.4 Cas ¢ > 3], we have:

Homg,(q,) (I(D), S(UY, W¥)[m,))
AN HomGLg(Qp) (H(D)_, S\([]W7 WP)[mp])

and (1) follows. (2) is a direct consequence of Corollary 7.53 (which a fortiori
still holds when UP is not sufficiently small). O

Appendix A. Appendix

The aim of this appendix is to give a complete proof of Proposition 3.32, for
which we couldn’t find precise references in the existing literature.

A.1. Notation and preliminaries

We recall some notation and results of Emerton and Colmez.

As in [40], we denote by Comp(Opg) the category of complete noetherian
local Op-algebras with finite residue field. For G a topological group which
is locally pro-p and A € Comp(Opg), we denote by Modg"(A) the category of
smooth representations of G over A in the sense of [40, § 2.2], Modi*(A) the
full subcategory of smooth representations of finite length and Modlgn(A)
the full subcategory of smooth representations locally of finite length (i.e.
the subrepresentation generated by v is of finite length for any vector v).
We denote by () := Homp, (-, F/Og) = Pontryagin duality.

We let Modl,**"8(A) be the category of profinite augmented representa-
tions of G over A in the sense of [40, Def. 2.1.6]. By [40, (2.2.8)], the functor
7+ 7w induces an anti-equivalence of categories:

(A1) ModS(A) = ModP™ ™8 (A4),
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As in [40, § 2.1], we denote by Modfgaug(A) the full subcategory of
Modf,°*"8(A) consisting of augmented G-representations that are finitely
generated over A[[H]] for some (equivalently any) compact open subgroup
H of G. We denote by Mod%®™°(A) the category of orthonormalizable ad-
missible representations of G' over A in the sense of [42, Def. 3.1.11]. By
[42, Prop. 3.1.12], the functor = — Homy (7, A) induces an anti-equivalence
of categories between Mod%*™°(A) and the full subcategory of Modféaug(A)
consisting of G-representations which are moreover pro-free A-modules.

We denote by Repfé}gl% (Og) the category of continuous representations
of Galg, on finite length (hence torsion) Og-modules equipped with the dis-
crete topology. Recall that Colmez defined a covariant exact functor (called
Colmez’s functor, see [24]):

V: MOd%Iiz(Qp)(OE) — Repg}@l@? (OE)

For a continuous character ¢ : Q; — O} (which we view as a continuous
character of Galg,), we denote by V¢ the functor 7 +— V(7) ® (. As in
[42, § 3.2], for A € Comp(Og), V (resp. V() extends to a covariant and
exact functor, still denoted by V (resp. by V), from the full subcategory
of Modgig‘(’(@p)(A) consisting of A-representations m such that T®4 A/my €

Modféﬁz (@p)(kE) to the category of continuous Galg,-representations on fi-
nite rank free A-modules.

A.2. Deformations I

The main results of this section are Corollary A.2 and Corollary A.7 below.
We keep the notation of § A.1. We fix p: Galg, — GL2(kEg) a continuous
representation and let 7(p) be the smooth representation of GL2(Q)) over
kg associated to p by the mod p Langlands correspondence normalized so
that V-1(m(p)) = p (this is the normalization of [6, § 3.1]). We assume:

(A.2) pE <é ;) up to twist by a character (with * zero or not).

Note that the assumption implies that 7(p) has length < 3.

We denote by Def; the groupoid over Comp(Opg) of deformations of
p (see [42, Def. 3.3.6]) and by Def (5) ortno the groupoid over Comp(Op)
of orthonormalizable admissible deformations of m(p) (see [42, Def. 3.3.7]).
Following [42, Def. 3.3.9] we denote by Def7 ) ortho © Defr(p) ortho the sub-
groupoid of deformations 7 such that the center of G acts on w by the
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character det(V.-1(m))e. The following theorem follows from work of Kisin
and Pagkunas (see [42, Thm. 3.3.13 & Rem. 3.3.14)).

Theorem A.1l. The functor V.-1 induces an isomorphism of groupoids:

(A.3) Def7 5 ortho — Def;.

Let £ = (pg, t¢) € Def(p)(Og) and pg := pg ®o, E (recall i¢ is a Galg, -
equivariant isomorphism ¢¢ : pg ®o, kg — p). We still denote by ¢ :=
(7’['2, t¢) € Def*(m(p))(OF) the inverse image of § via the isomorphism (A.3)
and set 7(pg) := ’R’?@(QEE. The map pg — 7(pe) is the p-adic local Langlands
correspondence for GL2(Q,) (normalized as in [6, § 3.1]).

Corollary A.2. The functor V.- induces a natural surjection:

(A4) Extéy o, (F(0e). 7 (pe)) — Exta, (v, pe)

where the extension group on the left is in the category of (admissible) uni-
tary Banach representations of GLa(Qp).

Proof. Let m € Extéb((@p)(%(pg)ﬁ(pg)) and 7y a GL2(Qyp)-invariant open
lattice. Using that two open lattices in the Banach space 7 are commen-
surable and the exactness V. -1, one easily checks that V.-1(7)[1/p] is in
Extéal% (p¢, pe) and doesn’t depend on the choice of 7. This defines the
morphism (A.4). We prove (A.4) is surjective. Let pe be a deformation of
pe over Ele]/e?. By the proof of [52, Prop. 2.3.5], one can find a finite Op-
subalgebra A C Ele]/€* such that A[1/p] = E[e]/e* and a deformation pa ¢
of p over A such that pg ¢ ®4 Op = pg (via the natural surjection A — Op
induced by Ele]/e? — E) and pa¢ ®4 Ele]/e* = pe. By (A.3), there exists a
deformation 74 of m(p) over A such that V.-1(74) = pae. It is straightfor-
ward to check that m4[1/p] € ExtéLz(Qp)(%(pg),%(pg)) (using (A.3) again)
and that 74[1/p] is sent to pe via (A.4). O

From now on, we assume moreover Endgalg, (p) & kg. By [53, Lem.
2.1.2], we also have Endgr,(q,)(m(p)) = kg. We now still denote by Def;
(resp. Def] ) orthor Defr(p) ortho) the (usual) deformation functor (e.g. as
in §5.1) attached to the groupoid Def; (resp. Def:(r(ﬁ),ortho’ Def () ortho)-
We know that Def; is representable, hence so is Def;kr(ﬁ),ortho by Theorem
Al

Let ¢ := /\iEﬁ be the determinant of p. Recall that any element in
ExtéalQp (p,p) (resp. ExtéL2 (Qp)(ﬂ(ﬁ), 7m(p))) can be viewed as a deformation
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p (resp. &) of p (resp. w(p)) over kg[e]/e?. In particular we have a kp-linear
morphism:

(A.5) Extéal% (p.p) — Hom(Galg,, kg) = Hom(Q), kp)

(= group homomorphisms to the additive group kg) sending p to (Z/Z_l —
1) /e where ¢ = /\i ()P~ We define Ext1 C(p, p) as the kernel of (A.5).

By the assumptions on p, each 1rredu01ble constltuent 7 of m(p) has mul-
tiplicity one in 7 (p). Using the same arguments as in the proof of Lemma

3.15, we can then show that there exists ¢ : Q) — (kgle ]/€2)* such that

the center Z(Q,) = Q, acts on 7 by C'z. We thus deduce another kg-linear
morphism:

(A6)  Extly, g, (m(0), 7(p)) — Hom(Q) k), 7 (CC ' —1)/e

and we define ExtGL ©, )Cs( w(p), m(p)) as the kernel of (A.6), which is the

kp-vector subspace of extensions with central character (z.

Lemma A.3. We have short exact sequences of kg-vector spaces:

_ (A.5)
0— EXtéal@p,g(P, p) — Extga, (p.p) —— Hom(Qy, E) — 0
0 Ext! 7)) — Extl 5),7(7) 2, Hom(@X, ki) —0
= Extey o) 72 T(0): 7(p) = Extgy (7 (0), 7(P)) om(@Q,, kg) —0.

Proof. 1t is enough to prove that (A.5) (resp. (A.6)) is surjective. The map
= p® (1+1/2€) (resp. ¥ — w(p) ® (1 4 10/2€) o det) gives a section of
(A.5) (resp. of (A.6)). O

As in [67], we call p generic if either p is irreducible or p = <%1 ; )
2
oz

*
0 5) for some ¢ :

Galg, — kj; (recall we have * # 0 since Endgal, () = k).

for 610, ¢ {&,1} and we call 5 nongeneric if p = <

Proposition A.4. We have:

dimy, Bxte,,,  +(7,7) = dimy, Bxtey, o ) = (7(7), (7)) = 3,

dlmkE EXtGalQ (pa ) - dlmkE EXtGL (o) )(W(ﬁ),ﬂ'(ﬁ)) =9.
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Proof. By Lemma A.3, it is enough to prove the result for ExtG o, T and
EX‘UGL2 (Q”)l’zg. By our assumptions on p,1 we easily check that
dimg,, EXtGal (p, p) = 3. The result for Ext, (©,)% follows from [67,

Prop. 6.1] (in the supersingular case), [67, Cor. 8.5] (in the generic nonsuper-
singular case) and [68, Thm. 6.10] together with dimg,, Extéah@ f(ﬁ’ p) =3

(in the nongeneric case). O

Since Endgr,, (g,)(7(p)) = ke and dimg, EXtéIQ(Qp)(ﬂ(ﬁ),TF(E)) < oo by
the last equality in Proposition A.4, it follows from Schlessinger’s criterion
that the functor Def (5) ortho 18 representable. Using Theorem A.1, the third
equality in Proposition A.4 and [45, Lem. 2.1] (and the representability
of Defy, Def’ 7(7),0rtho’ Def 1 (3) ortho), We easily deduce that we have in fact
isomorphisms:

5 Def

(A.7) Def” ) ortho — Def5.

m(p),ortho 7(p
Recall Art(Opg) is the category of local artinian Op-algebras with residue

field kg and let C(Og) be the subcategory of Modgrﬁa(lfQ%)(OE) dual to

ModlélL (@,)(Or) via(A.1). Denote by Def(5)v qo,) the functor from Art(Op)
to (isomorphism classes of) deformations of ()" in the category C(OF) in
the sense of [67, Def. 3.21] (since we only deal with commutative rings here,
we drop the subscript “ab” of [67, § 3.1]). As Home (o, (7(p)",7(p)") = ki
and dimy, Exté(o (7 (P w(p)Y,7(p)Y) < oo, Schlessinger’s criterion again im-
plies that Def 5)v c(0,) is pro-representable by a complete local noetherian
Og-algebra R 5)v of residue field kp.

When considering a deformation, we now do not write anymore the
reduction morphism ¢ (which is understated).

Lemma A.5. (1) Let A in Art(Og) and Ma € Def gy c(0,)(A), then

My € Modfésu(g(@ )(A) and M4 is a pro-free A-module.
(2) Let A in Art(Op) and ma € Defr(5) ortno(A), then Homa(ma, A) €

Def ( ) (OE)(A)

Proof. (1) Since A is in C(Opg), it is profinite. By definition (see [67, Def.
3.21]), M4 is a flat A-module and by [30, Exp. VII5(0.3.8)], the second
part of (1) follows. It is straightforward to see M4 is in Modgﬁjﬁép)(A). Let
H be a pro-p compact open subgroup of GL2(Q)), the algebra A[[H]] is
(noncommutative) local. Since 7(p) is admissible, we know M ® 4\ kp =

7(p)Y ®kp((H]) kE is a finite dimensional kg-vector space. By Nakayama’s
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lemma (see e.g. [56, Lem. 4.22]), we deduce My is finitely generated over
Al[H))

(2) By [42, Prop. 3.1.12] and its proof, we have that M4 := Homa (74, A)
is flat over A and Ma® kg = 7(p)Y. Since 74 is admissible and A is artinian,
74 is locally finite by [40, Thm. 2.3.8]. The lemma follows by definition of
C(Op). O

Proposition A.6. We have an isomorphism of deformation functors:

Defﬁ(/‘)),ortho — Defﬂ(ﬁ)V,C(OE)v
[A — {WA}/N] — [A — {MA = HOII]A(TFA,A)}/N].

Proof. This follows from [42, Prop. 3.1.12] and Lemma A.5. O

Proposition A.6 together with (A.3) and (A.7) imply an isomorphism of
deformation functors:

(A8) Defﬂ(ﬁ)v’c(oE) —N—> Defﬁ

and hence Ry v = Rp. Let p"Y be the universal deformation of p over
R5 (for Def;), N € C(Op) the universal deformation of 7(p)¥ over R; (for
Def ;. (5)v c(0,)) and 77 (p) € Modgﬁgi’@p)(Rﬁ) the universal deformation of

7(p) (for Defr(5) ortho)-

Corollary A.7. We have N = Hompg, (7" (p), Rp).

Proof. This easily follows from Proposition A.6. OJ
Corollary A.8. Let I be an ideal of Ry, then we have:

N &g, R5/I = Homp,_s7 (7" (p) ®r, R5/I, R5/T).

Proof. This follows from the isomorphism in Corollary A.7 and [42, Lem.
B.7]. OJ

Remark A.9. Recall the isomorphism in Corollary A.7 and the isomor-
phism in Corollary A.8 are topological isomorphisms where the left hand
side is equipped with the profinite topology and the right hand side with
the topology of pointwise convergence (see [42, Prop. B.11(2)]).

For any ¢ : Q, — O we denote by MOdl(f;ifz(Qp),c(OE) the full subcate-
gory of Modléii(@p) (Og) of representations on which Z(Q),) acts by ¢, and by
C¢(Og) the full subcategory of C(Og) dual to MOdgEQ(Qp),C(OE) via (A.1).
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For any ¢ : Q) — Oy such that ( = ¢ mod wg, we denote by Def% the sub-
functor of Def5; of deformations with fixed determinant ¢ and by R% the uni-
versal deformation ring for Def%. We denote by Def v c..(0,) the deforma-
tion functor on Art(Op) defined in the same way as Def(5)v c(0,) replacing
C(Og) by the subcategory C¢-(OF). By the second equality in Proposition
A.4 and Schlessinger’s criterion, Defr v ¢, (0,) 18 pro-representable by a
complete local noetherian Opg-algebra Rff(p)v of residue field kg. It is not
difficult to see that the isomorphism in (A.8) induces a natural isomorphism
¢ ™~ e .
(so that R — Rﬂ(ﬁ)v).
(AQ) Defﬂ(ﬁ)v,(;'(g(OE) ;> Def%

We denote by A'°¢ the universal deformation of 7(p)" over R;@)v = R%
for Def ;. (5)v c..(0,) (note that N'¢ is denoted by N in [49]) and by p"iv:¢
the universal deformation of p over R%. Let A be the universal deformation
ring of the trivial 1-dimensional representation of Galg, over kg and umiv
the corresponding universal deformation (which is thus a free A-module of
rank 1). We have R; = R%@)@EA and pilV o pUiviCR ., UiV where &
denotes the wpg-adic completion of the usual tensor product. We equip 1*™V
with a natural action of GL2(Q)) via det : GL2(Q,) — Q.. One easily sees

univ S C(OE)
Proposition A.10. We have N = N¢Rp, 1M1,

Proof. We have that N¢®¢, 1" is a deformation of 7(5)" over R%@)OEA
in C(Og), from which we deduce a morphism of local Og-algebras Rz —
R%@)(QEA. One can easily check this is an isomorphism (e.g. by proving the
tangent map is bijective). The proposition follows. O

A.3. Deformations II

We prove here a key projectivity property of N.

We keep the previous notation and assumption (in particular p satisfies
(A.2) and is such that Endgal, (p) = kg). We assume moreover p > 5 if p
is nongeneric.

Proposition A.11. There exist x, y € Ry such that S := Og[[z,y]] is a
subring of Rs and N is a finitely generated projective S[|GLa(Zp)]]-module.
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Proof. We fix K a pro-p compact open subgroup of GLy(Z,) such that
K = K/Zy x Zy with Zy := K N Z(Q,) isomorphic to Z,. If R is a (non-
commutative) ring, we denote by Modf}% the category of finitely generated
R-modules. It is enough to prove the statement with GL2(Z,) replaced by
K.

(a) By [49, Thm. 3.3] (in the generic case) and [49, Thm. 3.5] and its
proof (in the nongeneric case), there exists  in the maximal ideal of R% such

that N @ pe R%/ x is a finitely generated Og[[K]]-module and is projective

fg .
Og[[K]]Ce * (K]]

Zy acts by Ce. In particular N¢¢ is a finitely generated S;[[K]]-module for
Sy := Og[[z]]. We first want to prove that N°¢ is moreover projective in

Modg| 1.
also imply S; — R%). Let x : Zg — O}, such that x? = ¢ (enlarging E if
necessary and using Zy = Z,), we deduce an isomorphism of Og[[K/Zy]]-
modules (using that Og[[K/Zy]] is a local ring):

in the category Mod = the full subcategory of Mod%E[ on which

with obvious notation, as N is a R%—module note this will

(W @ x " o det) ®pe RS /a = Op[[K/Z]]*"

and fit is enough to prove that N] := N ® x~! o det is projective in
Modg 1xe/ 2,

(b) As at the beginning of [68, § 2.5], it is enough to prove
Torfl[[K/ZOH (M1, kg) = 0 where Torfl[[K/ZOH(—,kE) denotes the i-th de-
rived functor of (\)®g, k)2, kE in MOd%l[[K/Zo}] (recall S1[[K/Zy]] is a local
ring of residue field kg). Indeed, let P be a projective envelope of Nj in

MOdggl[[K/Zo]] (whose existence follows from [56, § 23 & Prop. 24.12]), and
consider a short exact sequence 0 —+ M; — P — N7 — 0 in Modggl[[
If Torlsl[[K/ZOH(/\/'17 kg) =0, we get:

K/Zo]"

0 — Mi®g,(ix/z)1kE — POs,(ix/zo)1ke — M @s, 1/ z)1kE — 0
Since P is the projective envelope of N7, we have
P®s(ir/z1ke — M®s, (k2. kB,

whence M1®g, (1k/z,)kE = 0, and M1 = 0 by Nakayama’s lemma ([56,
Lem. 4.22]). Now, the exact sequence 0 — N] —— Nj — Ni/z — 0
(recall N'¢¢ is flat over R%) induces:
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(A.10)
Tory /7N AG k) 25 Tory /2N k) — Tord 2N (A f, ki)
— M®g,(1k/z)kE = M®g, (k)2 kE — N1/2)®s,(1K/2,1kE — 0.

Let r := dimy, N1®Sl[[K/ZonE = dimkE(./\/1/3:)®51[[K/Z0”1<:E. By the argu-

ment as at end of the proof of [68, Prop. 2.34], Torlsl[[K/ZOH(/\/'l,kE) is a

finitely generated Si-module (even a finite dimensional kp-vector space).
Using the exact sequence:

0 — Si[[K/Zo]]*" — SillK/Zo|*" — Opl[K/Z]]*" (= M /z) — 0,

we easily deduce Torfl K/ ZO]](Nl /z,kp) — k%", which implies with (A.10)
that the morphism Torfl[[K/Z“H (N1, kp) = Torfl[[K/Z"”(Nl, kg) is surjec-

tive. But since z — 0 € kg, we deduce Torlsl“K/ZOH (N1, kg) = 0 and hence
N is projective, and even isomorphic to S1[[K/Zp]]®".

(c) We now finish the proof. Let I'" := 1 + pZ,, the pro-p completion
of Q is isomorphic to I' x Z, from which we deduce A = Og[[I" x Z,]].
There exists thus y € A such that A = Sy[[I']] with Sz := Ogl[y]]. Since Zy
is a subgroup of finite index of ', we deduce A is finite étale over Sa[[Zp]],
and hence 1"V is a finite projective S5[[Zp]]-module. Together with (b),
Proposition A.10 and K = K/Zy x Zy, we obtain that N & /\/<5<§30E univ
is a finitely generated projective S[[K]]-module with S := Ogl[z,y]]. This
concludes the proof. O

A.4. Proof of Proposition 3.32

We finally prove Proposition 3.32.

We keep the previous notation. We assume p > 5 and fix p: Galg, —
GL2(FE) as in Proposition 3.30, so that we have D,ig(p) = D(a, A, v) with
D(a, A\, ¢) as in Lemma 3.29. It is enough to prove the proposition with
D(p, \, ), W(Ab,q/)) replaced by D(a, A\, ¢), m(p~ta, )\b,w) respectively (as
in the proof of Proposition 3.30). We fix a mod p reduction p of p satisfying
(A.2) and Endgaly, (p) = kg, and we define using Corollary A.7 and Remark
A9:

I1 == Hom(s; (V. 0p) @0, £ = Hom3, (Homp, (x"™(2). Ry). Op) G0,

where “cts” means the continuous morphisms. It follows from [73, Thm. 1.2]
and Proposition A.11 that the Banach space II (equipped with the supre-
mum norm) is an Rp-admissible continuous representation of GL2(Q)) in
the sense of [12, Déf. 3.1].
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Lemma A.12. We have an isomorphism of Banach spaces:
T = Hom{® ® (Rp, (’)E)®R_ univ(5)[1/p]

where R (in Hom$%® ® (R5,Og)) is equipped with its mg_-adic topology and
® is the wg-adic completzon of the usual tensor product.

Proof. Note that Hom® * (Rp,OF) is a cofinitely generated Rz-module by
[42, Prop. C.5]. By [73, Thm. 1. 2], it is enough to prove
Hom@E(HomCtS (Rﬁ, OE)®R— umv( ),Or) 2 N.

But:

( ®r, """ (p), OF)
= Homp, (HOH]%SE Rp,OE ®R, umv( ), OE)
=~ Homp, (7" (p HomoE (HomCtS (R3,05),0g))
= Hompg, (7rum ) > N

)
)

where the first two isomorphisms are easy, the third one comes from [42,
Prop. C.5] and the last one from Corollary A.7. O

Any p € ExtéalQ (p, p) gives rise to an E|e]/e*-valued point of R5, hence
to an ideal Z; C R; with R5/Z; = Ogle] /€.

Lemma A.13. Let w(p)*" be the image of p via (3.59), then we have an
isomorphism w(p)*™ = I1[Z5]*" of locally analytic representations of GL2(Q))
over E.

Proof. By the same proof as for Lemma A.12 using
11[Z5] = Hom@: (N'/Z5, Op) ®o, E
and Corollary A.8, we deduce
M(T] = Hom: (Ry/ T, Op) .z, (7™ (7) /T5)[1 /).

The result follows then from Remark 3.31(2) and the fact Hom$® (R5/Z5, OF)
is free of rank one over R;/Z; = Ogle] /€. O

As in [12, Déf. 3.2], we denote by II%~21 the subspace of locally Rp-
analytic vectors of II and consider the locally analytic T'(Q,)-representation
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Jp(IIf=am) (T B asin § 3.2.2). Asin [12, § 3.2], the strong dual Jg(IT1%7—an)V
corresponds to a coherent sheaf M over (Spf Rz)"& x T (T as in § 7.1.3)
and we let X denote the schematic support of M. A point z = (pz, ;) €
(Spf R5)"8 x T lies in X if and only if there is a T(Q,)-embedding &, —
Jp(Ilfr=anfp ) 1) = Jp(7(ps)™") where p,, C Rj is the prime ideal attached
to p, and the isomorphism 7(p, )™ = I17%7~ an[ppz] = I[p,,]*" is proven as
for the one in Lemma A.13.

Consider the Zariski-closed trianguline variety X,i(p) of (Spf Rz)"8 x T
defined exactly as in [12, § 2.2] (for K = Q, and n = 2) but without
the framing, i.e. replacing RpD by Rz. As in [12, Thm. 2.6] the rigid vari-
ety Xui(p) is equidimensional of dimension 4 and contains a Zariski-open
Zariski-dense subspace Uti(p)™® which we define in the same way but re-
moving the framing. Arguing inside (Spf R; )“g x T, it easily follows from
[25], [59] (and the above characterization of points of X) that there is an
embedding U™ (p)*8 — X (be careful that there is a shift on the T-part
between the two sides analogous to (the inverse of) [11, (3.2)]), and hence we
deduce a closed embedding (note that X,i(p) is reduced) J: Xui(p) — X.
The pull-back M := j*M is thus a coherent sheaf on Xy,i(p).

It follows from Proposition A.11 that A is finitely generated and projec-
tive as S[[GL2(Zp)]]-module where S = Og|[[z, y]] — Rjz. In this case, by the
same argument as in [12, §§ 3.3, 3.4 & 3.5] (see especially [12, Thm. 3.19]),
one can prove that the set Z of points (p,d) € X such that p is crys-
talline generic (see before Lemma 7.19) and ¢ is noncritical (see before
Lemma 7.18) is Zariski-dense and accumulation in X. Since such points
are in Uyi(p)™® (modulo the aforementioned shift) we deduce that j in-
duces an isomorphism Xy,i(p) 5 X,eq. In particular, the noncritical point
x:= (p,0x(|-|®1)unr(a) odet) is in Xy,i(p) (indeed, as j is an isomorphism,
all the trianguline representations with mod p reduction isomorphic to p
appear on X(p) since they do on X using [25], [59]).

Using the isomorphism Xi.i(p) — X;eq and the above characterization
of points of X together with [25], [59] and [37, Ex. 5.1.9], it easily follows
that there exists a sufficiently small affinoid neighborhood U C th( ) of x
such that the special fiber of the coherent sheaf M at each point 2’ € U is
one dimensional over the residue field of z’. Since U is reduced, we deduce
M, is locally free of rank 1 over U by [48, Ex. I11.5.8(c)] (which is there
in the scheme setting, but the rigid setting is analogous). We denote by V,
the tangent space of Xi,i(p) at 2 and we identify the tangent space of 7 at
0z := 0x(]-|®1) unr(a)odet with Hom(7'(Q,), £). By the global triangulation
theory ([51], [58]) and using similar arguments as in [11, §4.1], we have the
following facts:
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e the morphism Xi,i(p) — (Spf R5)"¢ induces an isomorphism:
(A.11) Jo: Ve — EXttlri(PaP)

e for v € V,, denote by ¥, = (4.1, %,2) € Hom(T(Q,), E) the image
of v in the tangent space of T at &, induced by Xi,i(p) — T, then
the Galg, -representation j,(v) is trianguline of parameter (z*|- |(1 +
Yy 1€) unr(a), 2% (1 + 1y, 2€) unr(a)).

Now let 0 # v : Spec Ele]/e? < U be a nonzero element in V,. Since M; is
locally free at z, we have that W, := v*M; is a free E[e]/e>-module of rank
1. The action of R; on W, is induced by v : Spec E[e]/e* — U — (Spf R;)"¢
and we denote as usual by Z, the corresponding ideal of R;. Moreover T'(Q,)
acts on the E-dual of W, by 0x(]-|®1)(1+4 ¥ye) unr(a) odet. Note that it is
possible that ¥, = 0, but we always have Z,, # m, by (A.11). Since the rigid
space (Spf R;)"& x T is nested ([1, Def. 7.2.10]), so are its closed subspaces
X and Xi(p). It follows that the composition:

v : Spec Ele]/€? — U — Xi(p) — X

induces a surjection I'(X, M) — v*M = W, (using that the image of the
composition I'(X, M) — I'(U, M) - v*M = W, is dense as a composition
of continuous maps with dense images, hence is surjective since W, is fi-
nite dimensional). Taking duals and keeping track of the shift, we obtain an
R x T(Qp)-equivariant injection §y: (|-|®]-|71)(1+ ¥, e) unr(p~ta) odet —
JB (HRF*an). Since the F-dual of W, is killed by Z,,, we see that this map fac-
tors through an El[e]/e?-linear embedding of locally analytic representations

of T(Qy):
(A.12) Sl -1®]- ™Y1+ Tye) unr(pa) — Jp(II=0[Z,])

(note that the left hand side of (A.12) always has dimension 2 over E even
if U, = 0).

We can now finally prove Proposition 3.32. By Proposition 3.30, Lemma
3.6 and Proposition 3.22(1), it is enough to prove that (3.59) maps Ext.; to
Ext.; in such a way that Hypothesis 3.26(3) holds (up to twist by unr(p~'a)
on both sides). Fix an extension in Ext{;(p, p), i.e. a trianguline deformation
p of p over E[e]/€?, by (A.11) and what is below (A.11), we have that (21
(1 + 9y 1€) unr(a), z%2(1 + b, 2€) unr(a)) is a parameter for Dyig(p) where
v € V, is the associated vector. Let 7(p)®" be the image of p via (3.59), by
Lemma A.13 we have 7(p)® = I1[Z,]** = I1%»~2%[Z,] and by (A.12) together
with Proposition 3.22(2), we finally deduce the result.
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