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Non-concavity of the Robin ground state
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On a convex bounded Euclidean domain, the ground state for the
Laplacian with Neumann boundary conditions is a constant, while
the Dirichlet ground state is log-concave. The Robin eigenvalue
problem can be considered as interpolating between the Dirichlet
and Neumann cases, so it seems natural that the Robin ground
state should have similar concavity properties. The aim of this
paper is to show that this is false by analyzing the perturbation
problem from the Neumann case. First, we classify all convex poly-
hedral domains on which the first variation of the ground state with
respect to the Robin parameter at zero is not a concave function.
Then, we conclude from this that the Robin ground state is not log-
concave (and indeed even has some superlevel sets which are non-
convex) for small Robin parameter on polyhedral convex domains
outside a special class, and hence also on convex domains with
smooth boundary which approximate these in Hausdorff distance.
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1. Introduction and main results

The Laplacian eigenvalue problem on a bounded convex domain Ω ⊂ Rn is
to find a function u and a constant λ satisfying

(1.1) −Δu = λu in Ω,

subject to one of the following boundary conditions:

Dirichlet: u = 0 on ∂Ω,

Neumann: Dνu = 0 on ∂Ω,

or Robin: Dνu+ αu = 0 on ∂Ω.(1.2)
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Here ν is the outward pointing unit normal to Ω, and α is a real constant.
For each of these problems, there exists an non-decreasing sequence of eigen-
values

λ0 < λ1 ≤ · · · → ∞.

Our main interest in this paper is in the first Robin eigenvalue λR
0 (α) for

α > 0, and the corresponding ground state uα which is (up to scaling) the
unique eigenfunction with definite sign (which we take to be positive). The
Robin problem (1.1)-(1.2) with α > 0 is often regarded as interpolating
between the Dirichlet and Neumann cases: if we consider α as a parameter,
the Neumann case corresponds to α = 0 and the Dirichlet case to the limit as
α → ∞. Moreover, if we write the eigenvalues for each boundary condition
as λD

j , λ
N
j , λR

j (α), then the jth Robin eigenvalue λR
j (α) is monotone in α,

so in particular we have the following monotonicity property:

λN
j ≤ λR

j (α) ≤ λD
j for all α ≥ 0.

We are particularly concerned with the shape of the first eigenfunction
uα. In the Neumann case, the first eigenfunction u0 is constant. In the Dirich-
let case, the first eigenfunction u∞ is log-concave (that is, log u∞ is concave)
[6]. Explicit eigenfunctions on rectangular domains show that this cannot
be improved to concavity of the eigenfunction itself.

In the Dirichlet case, the log-concavity of the first eigenfunction is a
key step in proving the lower bound on the fundamental gap λD

1 − λD
0 [21,

25, 1]. Our investigation of the concavity properties of the ground state was
motivated by possible applications to such a lower bound for the Robin case:
indeed, in those cases where the first Robin eigenfunction is log-concave,
a similar proof as in the Dirichlet case applies, implying the (non-sharp)
inequality

λR
1 (α)− λR

0 (α) ≥
π2

D2
,

where D is the diameter of Ω and α > 0. We describe this result in Section 2.
For some domains, the Robin eigenfunction uα can be found explicitly

and is log-concave. For example, on a ball Ω = BR of radius R > 0, the first
eigenfunction uα is a rotationally symmetric function uα(r) satisfying

u′′α +
d− 1

r
u′α + λR

1 (α)uα = 0 on (0, R), with u′α(0) = 0.

Defining v = (log uα)
′, we have

(1.3) v′ =
u′′α
uα

−
(
u′α
uα

)2

= −d− 1

r
v − λR

1 (α)− v2 < −d− 1

r
v on (0, R).
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By (1.3), {rd−1v}′(r) < 0 on (0, R) and since v(0) = 0, we have that v < 0
on (0, R). Letting w = v′, we find that

w′ = −
(
d

r
+ 2v

)
w − λR

1 (α) + v2

r
< −

(
d

r
+ 2v

)
w on (0, R).

Since w < 0 for small r ∈ (0, R), the last differential inequality implies that
w < 0 on [0, R). The eigenvalues of the Hessian of log uα are (log uα)

′′ =

w < 0 and (log uα)′

r = v
r < 0, so uα is log-concave.

Another easily computed example is that of rectangular domains given
by products of intervals, where separation of variables produces the first
eigenfunction as a product of concave trigonometric functions, which is
therefore log-concave.

One might expect then that in general, the first Robin eigenfunction uα
with α > 0 on a convex domain is log-concave, a question raised by Smits
[22]. In this paper we show that this is not the case: there exist convex
domains, and small values of α > 0, for which the first Robin eigenfunction
uα fails to be log-concave and has some non-convex superlevel sets.

Our first two main results are concerned with convex polyhedral domains
Ω in Rd, d ≥ 1, by which we mean open bounded domains given by the
intersection of finitely many open half-spaces:

Ω =

m⋂
i=1

{
x ∈ R

d
∣∣∣ x · νi < bi

}
,

where ν1, . . . , νm are unit vectors and b1, . . . , bm are constants. Here, we can
assume without loss of generality that the description is minimal, meaning
that omitting any one of the half-spaces from the intersection results in a
strictly larger set. The faces of Ω are given by

Σi =
{
x ∈ Ω

∣∣∣ x · νi = bi

}
for i = 1, . . . ,m, each of which is itself a convex polyhedral subset of the
affine subspace {x ∈ Rd | νi ·x = bi}, where νi denotes the outer unit normal
to Ω on the face Σi.

We introduce a special subclass of polyhedral domains, with terminology
borrowed from [4]:

Definition 1.1. A convex polyhedral domain Ω in Rd is a circumsolid if
there exists a ball BR(y0) ⊂ Ω touching every face of Ω (that is, ∂BR(y0)∩Σi
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contains exactly one point for every i ∈ {1, · · · ,m}). Equivalently, Ω has the

form

Ω =

m⋂
i=1

{
x ∈ R

d
∣∣∣ (x− y0) · νi < R

}
.

We say that a convex polyhedron Ω is a product of circumsolids if there is a

decomposition of Rd into orthogonal subspaces E1, · · · , Ek, and circumsolids

Ωi ⊂ Ei for i = 1, · · · , k such that

Ω =
{
x ∈ R

d
∣∣∣ πi(x) ∈ Ωi for i = 1, . . . , k

}
where πi is the orthogonal projection from Rd onto Ei for each i. Trivially,

circumsolids are products of circumsolids.

For an open convex set Ω in Rd, the tangent cone Γx to Ω at x ∈ Ω is

Γx :=
{
r(y − x)

∣∣∣ y ∈ Ω, r > 0
}
=

⋃
r>0

r(Ω− x).

If Ω is a convex polyhedron, then the tangent cone Γx to Ω at x ∈ Ω is

Γx =
⋂

i∈I(x)

{
y ∈ R

d
∣∣∣ y · νi < 0

}

with index set

(1.4) I(x) :=
{
i ∈ {1, . . . ,m}

∣∣∣x · νi = bi

}
,

where I(x) = ∅ with Γx = Rd if x ∈ Ω. In fact, Γx is a cone over the subset

Ax = Γx ∩ Sd−1 of the unit sphere. In particular, Γx is the intersection of

finitely many half-spaces with the origin in their common boundary. We call

such a set a polyhedral cone.

Definition 1.2. For a convex polyhedral domain Ω, we say that a point

x ∈ ∂Ω has consistent normals if the outward unit normals {νi | i ∈ I(x)}
to the tangent cone Γx are such that there exists a solution γ ∈ Rd of the

system of equations

γ · νi = −1, i ∈ I(x).

Otherwise we say that x has inconsistent normals.
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Figure 1: Planar circumsolid examples: Regular triangle, regular pentagon,
skew quadrilateral.

An example of a convex polyhedral domain Ω with inconsistent normals
given in Figure 8. Consistency of the normals at x is equivalent to the
statement that the points {νi | i ∈ I(x)} lie in a hyperplane disjoint from
the origin, or to the statement that the tangent cone Γx is an (unbounded)
circumsolid (see Proposition 9.3).

1.1. Examples of polyhedral domains

In one dimension any interval is a circumsolid. Planar examples include all
regular polygons, such as the triangle and pentagon in Figure 1. However
circumsolids can be non-symmetric, such as the skew quadrilateral in Fig-
ure 1.

Every triangle is a circumsolid (Figure 2). The same is not true for
quadrilaterals: For the trapezium shown in Figure 3 only a specific spacing
between the ends (marked with a dashed line) results in a circumsolid; a
very long trapezium is not a circumsolid.

y0

ΩR

Figure 2: Skew triangle.

In higher dimensions any affine simplex is a circumsolid: For any d + 1
points x0, . . . , xd in Rd which do not lie in a (d − 1)-dimensional subspace,
the tetrahedron {

∑d
i=0 λixi |λi ≥ 0,

∑
i λi = 1} is a circumsolid (Figure 4).
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Ω

Figure 3: Trapezium.

Figure 4: Tetrahedron.

However, truncating one of the vertices as in Figure 6 does not pro-
duce a circumsolid unless the plane of truncation is chosen to match the
inscribed sphere. Other examples of three-dimensional circumsolids include
the platonic solids and other Archimedean solids (see for example Figure 5).

In the plane, the only domains which are nontrivial products of circum-
solids are rectangles (products of intervals in orthogonal one-dimensional
subspaces). In three dimensions, rectangular prisms (products of three in-
tervals) are products of circumsolids, as are prisms over planar circumsolids,
such as the example in Figure 7.

We note that if Ω is a product of circumsolids, then every boundary
point has consistent normals, since we can define γ by

πi(γ) = − 1

Ri
πi(y

i
0 − x) for i = 1, · · · , k,

where yi0 and Ri are the centre and radius of the circumsolid Ωi ⊂ Ei for
each i. In the plane, every boundary point of a convex polygon has consistent
normals. Figure 8 is an example of a convex polyhedron in R3 with vertex
x0 having inconsistent normals.

The family of products of circumsolids is a special subclass of convex
polyhedral domains Ω in Rd which is directly related to the concavity prop-
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Figure 5: Regular dodecahedron.

Ω

Figure 6: Tetrahedron with a flat top.

Figure 7: Prism over a regular pentagon.

erties of solutions v to the Neumann problem

(1.5)

{
Δv + μ = 0 in Ω,

Dνv = −1 on ∂Ω,

for some constant μ. Indeed, we show in Corollary 8.3 (see Section 8) that
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Ω
x0

Figure 8: Tetrahedron with non-horizontal sliced tip.

a weak solution v of (1.5) on a convex polyhedral domain Ω is concave if
and only if Ω is a product of circumsolids. Thus, if Ω is a convex polyhedral
domain outside this class, then v is not concave, and furthermore v has
some non-convex superlevel sets. Since the Robin problem (1.1)-(1.2) for
small positive α can be treated as a perturbation of (1.5), we conclude that
the Robin ground state uα is not a log-concave function on Ω for small α > 0.

1.2. Main results of this paper

The following theorems are the main results of this paper.

Theorem 1.3. Let Ω be a convex polyhedral domain in Rd, d ≥ 2, which
is not a product of circumsolids. Then for sufficiently small α > 0, the first
Robin eigenfunction uα is not log-concave.

In our next theorem, we provide sufficient conditions implying that the
first Robin eigenfunction admits non-convex superlevel sets.

Theorem 1.4. Let Ω be a convex polyhedral domain in Rd. If d = 2 and Ω is
not a product of circumsolids, then the first Robin eigenfunction uα admits
non-convex superlevel sets for sufficiently small α > 0. The same conclusion
holds if d ≥ 3 and Ω has boundary points with inconsistent normals.

We stress that although Theorem 1.3 is stated for polyhedral domains,
one cannot hope to avoid such non-concavity results by imposing more reg-
ularity on the boundary.

Corollary 1.5. Let Ω0 be a convex polyhedral domain in Rd, d ≥ 2, which
is not a product of circumsolids. Then for any sufficiently small α > 0, for
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any convex domain Ω which is sufficiently close to Ω0 in Hausdorff distance,
the first Robin eigenfunction uα on Ω is not log-concave.

For α < 0, the first Robin eigenvalue λα is negative, and the methods
used to prove Theorem 1.3 and Corollary 1.5 also lead to the following result.

Theorem 1.6. Let Ω be a convex polyhedral domain in Rd, d ≥ 2, which
is not a product of circumsolids. Then for sufficiently small α < 0, the first
Robin eigenfunction uα is not log-convex. Moreover, for any convex domain
Ω0 which is sufficiently close to Ω in Hausdorff distance, the first Robin
eigenfunction on Ω0 is not log-convex.

As mentioned before, our approach to Theorem 1.3 is to treat the Robin
problem (1.1)-(1.2) for small positive α as a perturbation from the Neumann
case α = 0. To be more precise, we show in Section 3 that the function
v = duα

dα

∣∣
α=0

is a weak solution of (1.5) for some μ. Thus, the concavity
properties of uα for small α relate directly to the concavity properties of v,
so we proceed to investigate the latter, in the particular case of polyhedral
domains. We deduce Theorem 1.3 from the statement that the solution v
of (1.5) on a convex polyhedral domain Ω is concave precisely when Ω is a
product of circumsolids.

Our argument proceeds as follows: After some preliminary material on
the perturbation problem in Section 3, we prove in Section 4 the surprising
result that every C2 solution of (1.5) on a polyhedral domain is a quadratic
function (see Theorem 4.3). In section 5 we relate this to semi-concave solu-
tions, by showing that any concave solution of (1.5) is C2 up to the boundary
(see Theorem 5.1). This involves expanding the solution in terms of homoge-
neous harmonic functions about any boundary point, and requires in partic-
ular the interesting observation that any degree two homogeneous harmonic
function with bounded second derivatives and with Neumann boundary con-
dition on a polyhedral cone in Rd is a quadratic function.

To the best of our knowledge, concavity conditions have not been used
so far in the existing literature to improve the regularity of weak solutions
to elliptic problems on polyhedral domains. Thus the regularity results The-
orem 5.1 and Theorem 5.3 are new and may be of independent interest.

In Section 8 we prove that those polyhedral domains on which a quadra-
tic function solves the equation (1.5) are products of circumsolids. This
completes the preliminaries needed to prove our main Theorem 1.3 in Sec-
tion 9.

In conclusion, we want to emphasize that the negative log-concavity
statements obtained in Theorem 1.3 and Corollary 1.5 do not (necessarily)
imply that the fundamental gap for the Robin case cannot hold. However,
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any strategy that depends on the log-concavity of the first ground state (as

in Section 2) will not obtain the result for all convex domains. Thus, we

discuss in Section 10 some interesting observations and open problems for

future progress.
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2. Motivation: log-concavity and the fundamental gap

In the case of Dirichlet boundary data, the log-concavity of the first eigen-

function is a key step in proving the lower bound of the gap between the

two smallest eigenvalues [1]. In the case that the first Robin eigenfunction is

log-concave, then a similar bound holds. Here we note that we can include a

potential, and since we impose the strong hypothesis that the first eigenfunc-

tion is log-concave, we do not need to assume that the potential is convex.

In the Dirichlet case, the sharp bound is found by making a more quantita-

tive log-concavity estimate (in essence, showing that the ground state in the

general case is at least as log-concave as it is for the one-dimensional case);

in this case, as we merely assume log-concavity, the lower bound is smaller

by a factor of three.

Theorem 2.1. Let λ0 and λ1 be the two smallest eigenvalues for the eigen-

value problem

−Δu+ V u = λu in Ω,

with Robin boundary conditions (1.2) on a bounded convex domain Ω with

diameter D, and potential V ∈ L∞(Ω). If the ground state u0 associated to

λ0 is log-concave, then

(2.1) λ1 − λ0 ≥
π2

D2
.

Remark 2.2. It is worth mentioning that the assumption V ∈ L∞(Ω) in

Theorem 2.1 is only needed to ensure that the Schrödinger operator H =

−Δu+ V u admits a discrete spectrum.
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Proof. Let u0 and u1 be the eigenfunctions associated to λ0 and λ1 respec-
tively. Since u0 is positive on Ω, we can set

v(x, t) :=
e−λ1tu1(x)

e−λ0tu0(x)

which solves the parabolic equation

(2.2)
∂v

∂t
= Δv + 2D log u0 ·Dv on Ω× (0,+∞).

On the lateral boundary ∂Ω×(0,+∞), the normal derivative of v disappears:

Dνv =
e−λ1t

e−λ0t

(
Dνu1
u0

− u1Dνu0
u20

)
= v (−α+ α) = 0.

By hypothesis, u0 is log-concave, so the drift term in (2.2) given by X :=
2D log u0 satisfies the modulus of contraction inequality(

X(y, t)−X(x, t)
)
· y − x

|y − x| ≤ 0

corresponding to the modulus of contraction ω ≡ 0. Therefore by [1, Theo-
rem 2.1], for some large constant C > 0, the function

ϕ(s, t) := Ce−
π2

D2 t sin
(πs
D

)
for every s ∈ [0, D/2], t ≥ 0,

is a modulus of continuity for v, that is,

v(y, t)− v(x, t) ≤ 2ϕ
(

y−x
|y−x| , t

)
for every x, y ∈ Ω, t ≥ 0,

where π2

D2 is the second (or the difference of the second and first) Neumann
eigenvalue on the interval. From this, we can deduce that

e−(λ1−λ0)t osc
Ω

(
u1
u0

)
≤ C e−

π2

D2 t for all t ≥ 0,

which can only hold if inequality (2.1) holds. This completes the proof of
Theorem 2.1.

The above argument follows the approach used in the Dirichlet case [1].
A similar result would follow using the gradient estimate approach of [21, 25].
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The resulting estimate is sharp in the case α = 0, where it is the Payne-
Weinberger inequality for the first nontrivial Neumann eigenvalue [19, 26].
Otherwise, it is not sharp, as can be seen from the one dimensional case,
where the eigenvalues can be computed. It is appealing to conjecture that
the sharp lower bound for given α and D should correspond to the gap
for the corresponding one-dimensional problem, which would result in an
estimate which depends on α and increases from π2

D2 to 3π2

D2 as α increases
from 0 towards infinity. However, our main theorem (Theorem 1.3, that the
ground state is in general not log-concave) means that a sharp result must
necessarily be proved by rather different means.

3. The Robin eigenvalue problem and perturbations

In the first proposition of this section, we summarize some properties of
the first Robin eigenvalue λα and the corresponding eigenfunction uα. All
statements, except for (iv) concerning the C1-dependence respect to the
topology induced by the Hölder-norm C0,β(Ω), are quite well-known; see,
for example, [16, Theorem 1.3.1] or [13]. In fact, they follow from an ap-
plication of Kato’s perturbation theory for linear operators (more precisely,
see [15, Theorem 2.6 of Chapter 8.2]). The remaining part follows from [18,
Theorem 3.14]. We omit the proofs here, but we provide them in the online
preprint version [2].

Proposition 3.1. Let Ω be a connected bounded Lipschitz domain in Rd.
Then

(i) For every α ∈ R, there is a first Robin eigenvalue λα ∈ R with a
positive eigenfunction uα ∈ H1(Ω).

(ii) For every α ∈ R, the first Robin eigenvalue λα is simple.
(iii) The function α �→ λα is differentiable, with derivative given by

λ̇α =

∫
∂Ω u2α dH∫
Ω u2α dx

≥ 0.

(iv) The first Robin eigenfunction uα (normalised to have 1
|Ω|

∫
Ω u2α dx = 1)

is C1-dependent on α in H1(Ω) and in C0,β(Ω) for some β ∈ (0, 1).
More precisely, uα is continuously dependent on α in H1(Ω) and in
C0,β(Ω), and if for α0 ∈ R, v is the unique solution, orthogonal to uα0

in L2(Ω), of

(3.1)

{
Δv + λα0

v = −λ̇α0
uα0

in Ω,

Dνv + α0v = −uα0
on ∂Ω,
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then uα = uα0
+ v (α−α0) + o(α−α0) for every α in a neighbourhood

of α0, where o(α− α0)/(α− α0) → 0 in H1(Ω) ∩ C0,β(Ω) as α → α0.

Next, we state a convergence result on Robin problems on varying do-
mains. For this, we need to recall the definition of the Hausdorff comple-
mentary topology on open sets (cf [7, Section 2]). For closed subsets F1, F2

in Rd, the Hausdorff metric dH is defined by

dH(F1, F2) = max
{
sup
x∈F1

dist(x, F2), sup
x∈F2

dist(x, F1)
}
,

where dist(x, Fi) := infy∈Fi
|x− y|, with the conventions dist(x, ∅) = ∞ and

sup ∅ = 0, so that dH(∅, F ) = 0 if F = ∅ and dH(∅, F ) = ∞ otherwise. Let
Ωc = Rd \Ω be the complement of Ω. Now, a sequence (Ωn)n≥1 of open sets
Ωn in Rd converges to the open set Ω in Rd in the Hausdorff complementary
topology if for every closed ball B in Rd, one has that dH(B ∩ Ωc

n, B∩Ωc) →
0 as n → ∞. We write this as Ωn → Ω in Hc.

The next preliminary result is an application of [7, Theorem 3.4 and
Corollary 3.5] and the convergence (3.2) with respect to the Hölder-norm
follows from [18, Theorem 3.14].

Proposition 3.2. For d ≥ 1, let D ⊆ Rd be an open and bounded set,
and let Ω and Ωn be open domains with a Lipschitz continuous boundary
satisfying Ω, Ωn ⊂⊂ D. Let

Ωn → Ω in Hc, |Ωn| → |Ω|, Hd−1(∂Ωn) → Hd−1(∂Ω)

as n → +∞. In particular, for α > 0, let λα,n and λα be the first Robin
eigenvalue on Ωn and Ω, and let uα,n and uα be the first positive Robin
eigenfunctions with unit L2(Ω)-norm. Then

λα,n → λα as n → +∞,

uα,n 1Ωn
→ uα 1Ω in L2(D) as n → +∞,

Duα,n 1Ωn
→ Duα 1Ω in L2(D) as n → +∞.

Furthermore, there are γ ∈ (0, 1) and C > 0 such that

‖uα,n‖C0,γ(Ωn)
≤ C for all n ≥ 1,

and for every non-empty set B ⊆
⋂

n≥n0
Ωn, n0 ≥ 1, and 0 ≤ γ̂ < γ, there

is a subsequence (uα,kn
)kn≥1 of (uα,n)n≥1 such that

(3.2) uα,kn
→ uα in C0,γ̂(B) as n → +∞.
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4. Regular solutions are quadratic

When α0 = 0, the perturbation problem (3.1) reduces to equation (1.5),
with the constant μ computed by integrating the first equation over Ω and
applying the boundary condition, yielding μ = Hd−1(∂Ω)/Hd(Ω).

In this and the next several sections we consider a class of problems gen-
eralising (1.5), under the assumption that Ω is a convex polyhedral domain
in Rd for d ≥ 2.

Remark 4.1. A special feature of polyhedral domains is that for every x ∈ Ω
there exists r > 0 for which Br(x) ∩ Ω = x+ (Br(0) ∩ Γx) ; in other words,
near x, Ω is a cone.

We now establish a version of the strong maximum principle on general
open cones Γ with a Lipschitz boundary. In this paper, we apply Proposi-
tion 4.2 on cones with a polyhedral structure.

Proposition 4.2. Let Γ be an open cone with Lipschitz boundary and ver-
tex at the origin in Rd, and R > 0. Then for every weak solution w ∈
H1(BR(0) ∩ Γ) of problem

(4.1)

{
Δw = 0 on BR(0) ∩ Γ,

Dνw = 0 on BR(0) ∩ ∂Γ,

the following statements hold.

1. The mean value

w(r) = −
∫
A
w(rz) dHd−1(z)

of w(r·) over the set A = Γ ∩ Sd−1, r ∈ [0, R), is a solution of the
2nd-order linear ODE

(4.2)
1

rd−1

{
rd−1wr

}
r
= 0 on (0, R)

and hence, w is given by

(4.3) w(r) =

{
c11+ c2 log r if d = 2,

c11+ c2
1

rd−2 if d ≥ 3,

for constants c1, c2 ∈ R.
2. If w(0) = 0 and w ≤ 0 on BR(0) ∩ Γ, then w ≡ 0 on BR(0) ∩ Γ.
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Our proof uses a similar idea as in the proof of [11, Proposition 6.1, see
also Lemma 6.2].

Proof. We begin by recalling that the mean operator : L2(A) → R as-
signing u �→ u is the linear projection of the function u to the space of
constant functions on A, which we simply denote by R. But R also coin-
cides with the eigenspace ker(−ΔS

d−1

) of the first eigenvalue of the negative
Neumann Laplace-Beltrami operator −ΔS

d−1

on A. Thus, for r ∈ [0, R),
w(r·) − w(r) belongs to the orthogonal complement of ker(−ΔS

d−1

) which
is L2

0(A) := {u ∈ L2(A) |u = 0}, the space of functions u ∈ L2(A) with
zero mean over A. Since the space L2

0(A) is invariant under the Neumann
Laplace-Beltrami operator ΔS

d−1

on A, one has that

(4.4) 0 =

∫
A
ΔS

d−1

(w(rz)− w̄(r)) dHd−1(z) =

∫
A
ΔS

d−1

w(rz)dHd−1(z)

for every r ∈ [0, R). By hypothesis, w is harmonic in BR(0) ∩ Γ, which in
polar coordinates is

0 = Δw =
1

rd−1

{
rd−1wr

}
r
+ΔSd−1w on BR(0) ∩ Γ.

Now, taking the average over A of the last equation and using (4.4), one
sees that w is a solution of the 2nd-order linear ODE (4.2). Thus, there are
constants c1, c2 ∈ R such that (4.3) holds, completing the proof of claim (1).

To prove claim (2), we first note that by elliptic regularity theory [18],
each weak solution w of (4.1) is continuous on BR/2(0) ∩ Γ and hence, w(0)
and w(0) exist. In particular, if w(0) = 0 then w(0) = 0 and hence in (4.3)
we have c1 = c2 = 0. Thus, w(r·) has zero mean for all r ∈ [0, R). But, if in
addition, w ≤ 0 on BR(0)∩Γ, then w(r·) has zero mean if and only if w ≡ 0
on BR(0) ∩ Γ. This completes the proof of this proposition.

Although we are mostly interested in the perturbation problem (1.5),
the results of this section and the next also apply for a somewhat larger
class: We consider (weak) solutions v of the problem

(4.5)

{
Δv + μ = 0 in Ω,

Dνi
v + γi = 0 on Σi,

where μ and γ1, · · · , γm are constants. We observe (by integration of the
first equation over Ω and application of the boundary condition on each face
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Σi) that these constants necessarily satisfy the relation

m∑
i=1

γiHd−1(Σi) = μHd(Ω).

The main result of this section is the following:

Theorem 4.3. Let Ω be a polyhedral domain in Rd with faces Σ1, . . . ,Σm

and v be a solution of (4.5). If v ∈ C2(Ω) then v is quadratic; that is, there
are constants aij, bi, c ∈ R such that

v(x) =

d∑
i,j=1

aijxixj +

d∑
i=1

bixi + c for every x ∈ Ω.

Our strategy to prove Theorem 4.3 is to show that there exists a subspace
E in Rd on which the Hessian function (x, e) �→ D2v|x(e, e) is constant for all
unit vectors e ∈ E and x ∈ Ω. It will follow from this that v(x) is a multiple of
the squared length of the E component of x, plus another function depending
only on the E⊥ component, where E⊥ denotes the orthogonal complement
of E in Rd. This reduces the original problem to a similar problem on the
lower-dimensional space E⊥, enabling an induction on dimension to establish
the result.

Accordingly, we proceed by induction: For d = 1, a polyhedral domain
is simply an interval, and every solution to (4.5) is a quadratic function,
so the statement of Theorem 4.3 holds in this case. Now, assume that the
statement of Theorem 4.3 holds for every polyhedral domain in Rj for j < d,
and let Ω be a polyhedral domain in Rd and v ∈ C2(Ω) be a solution of (4.5)
on Ω. Since v ∈ C2(Ω), there exists (x0, e1) ∈ Ω× Sd−1 such that

Λ := max
x∈Ω, e∈Sd−1

D2v|x(e, e) = D2v|x0
(e1, e1).

Lemma 4.4. Suppose that v is a C2 function on an open subset B of Ω,
where Ω is a polyhedral domain in Rd. For j ∈ {1, . . . ,m}, let νj be the
outward pointing unit normal vector on face Σj and suppose

(4.6) Dνj
v + γj = 0 on Σj ∩B.

Then for every tangent vector e parallel to Σj one has

(4.7) D2v|x(e, νj) = 0 for every x ∈ Σj ∩B.
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In particular, νj is an eigenvector for the Hessian D2v|x for each x ∈ Σj∩B.

In the following, if Σj is a face of the polyhedral domain Ω then we write
TΣj for the tangent space of Σj ; or more precisely, it is the linear vector
space spanned by the linear independent vectors tangent to Σj .

Proof. On polyhedra, the normal vector νj is constant on face Σj . Differen-
tiating the boundary condition (4.6) in the direction of any tangent vector
e ∈ TΣj yields (4.7). Since Rd can be decomposed as a direct sum of the
tangent space TΣj and the normal vector νj , (4.7) implies that νj is an
eigenvector for the Hessian D2v|x for x ∈ Σj ∩B.

Our second lemma captures in slightly greater generality the dimension-
reduction argument outlined above:

Lemma 4.5. Suppose that v is a C2 solution of (4.5) on a convex open
subset B of Ω, where Ω is a polyhedral domain in Rd. If there exists (x0, e1)
in B × Sd−1 such that

(4.8) D2v|x0
(e1, e1) = Λ := sup

(x,e)∈B×Sd−1

D2v|x(e, e),

then there exists a subspace E of positive dimension in Rd such that

B ∩ Ω =
{
x ∈ B

∣∣∣ πE(x) ∈ ΩE , πE⊥(x) ∈ Ω⊥
}
,

where E⊥ is the orthogonal complement of E, πE and πE⊥ are the orthog-
onal projections onto E and E⊥, and ΩE = πE(Ω) and Ω⊥ = πE⊥(Ω) are
polyhedral domains in E and E⊥ respectively. Furthermore,

(4.9) v(x) =
Λ

2
|πE(x− x0)|2 +Dv|x0

(πE(x− x0)) + g(πE⊥(x))

for all x ∈ B, where g is a C2 solution of an equation of the form (4.5) on

πE⊥(B) ⊆ Ω⊥ ⊆ E⊥.

Proof. Without loss of generality, we can assume that we have chosen x0 ∈ B
so that the dimension of the eigenspace of Hv(x0) with eigenvalue Λ is
maximized. We begin by defining u to be the part of v without its quadratic
approximation about x0:

(4.10) u(x) := v(x)− v(x0)−Dv|x0
(x− x0)−

1

2
D2v|x0

(x− x0, x− x0)
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for every x ∈ B. Then u has the following properties:

u(x0) = 0, Du(x0) = 0, D2u|x0
= 0;

Du|x = Dv|x −Dv|x0
−D2v|x0

(x− x0, ·) for every x ∈ B;(4.11)

Δu(x) = Δv(x)−Δv(x0) = −μ+ μ = 0 for every x ∈ B ∩ Ω;(4.12)

Dνj
u(x) = 0 for all x ∈ Σj ∩B if j ∈ I(x0),(4.13)

where the index set I(x0) is given by (1.4). To see that (4.13) holds, first
note that this is trivially satisfied if x0 �∈ ∂Ω, since then I(x0) is empty.
If x0 ∈ ∂Ω, then by Lemma 4.4, for every j ∈ I(x0), v satisfies (4.7). If
x ∈ Σj∩B, then both x and x0 lie in the same face Σj and so (x−x0) ∈ TΣj .
By taking e = x− x0 and using (4.11) and (4.7), one has

Dνj
u(x) = Dνj

v(x)−Dνj
v(x0)−D2v|x0

(e, νj) = γj − γj = 0

for all x ∈ Σj ∩ B. Now, let E be the eigenspace of D2v|x0
corresponding

to its largest eigenvalue Λ. Then, e1 ∈ E ∩ Sd−1. We choose an orthonormal
basis {e1, e2, . . . , ek} of E, 1 ≤ k ≤ d, and set

f(x) := trE
(
D2u|x

)
=

k∑
i=1

D2u|x(ei, ei) for each x ∈ B.

Then f has the following properties:

f(x) =

k∑
i=1

(
D2v|x −D2v|x0

)
(ei, ei) for all x ∈ B by (4.10);

f(x0) = 0 by the above;(4.14)

Δf(x) = 0 for every x ∈ Ω ∩B by (4.12);

f(x) ≤ 0 for every x ∈ B;(4.15)

Dνj
f(x) = 0 for every x ∈ B ∩ Σj , if j ∈ I(x0).(4.16)

To see that (4.15) holds, note that by (4.8),

D2u|x(ξ, ξ) = D2v|x(ξ, ξ)−D2v|x0
(ξ, ξ) = D2v|x(ξ, ξ)− Λ ≤ 0

for all ξ ∈ E ∩ Sd−1 and x ∈ B. To show (4.16), fix j ∈ I(x0). Then
by Lemma 4.4 applied to v, the normal νj is an eigenvector of D2v|x for
x ∈ Σj . On the interior of the face Σj , v ∈ C3(Σj) (since u extends by even



Non-concavity of the Robin ground state 261

reflection in Σj as a harmonic function) and so we can differentiate (4.7)
again to find

(4.17) D3v
∣∣
x
(e, e, νj) = 0 for every e ∈ TΣj and x ∈ Σj .

Since the normal νj is an eigenvector of D2v|x0
, and all eigenspaces of the

matrix D2v|x0
are orthogonal, the eigenvector νj is either in E or belongs

to the orthogonal space E⊥. If νj ∈ E⊥, then ei is orthogonal to νj and so
is in TΣj for each i ∈ {1, · · · , k}. Then (4.17) implies

Dνj
f(x) = Dνj

(
k∑

i=1

D2v
∣∣
x
(ei, ei)

)
= 0

for every x ∈ B ∩ Σj . On the other hand, if νj ∈ E, then

Dνj
f(x) = Dνj

(
k∑

i=1

D2u
∣∣
x
(ei, ei)

)
= Dνj

(
Δu−

d∑
i=k+1

D2u
∣∣
x
(ei, ei)

)

= Dνj

(
0−

d∑
i=k+1

D2u
∣∣
x
(ei, ei)

)
= 0

for every x ∈ B ∩ Σj , where {ek+1, . . . , ed} is a basis for E⊥ ⊆ ν⊥j = TΣj ,
and we again use (4.17).

By Remark 4.1, the set Ω∩B ∩Br(x0) coincides with x0+(Γx0
∩Br(0))

for sufficiently small r > 0. Equations (4.14)-(4.16) (and that fact that f is
continuous on B since v ∈ C2(B)) allow us to apply Proposition 4.2 to the
function f̃(z) = f(x0 + rz) on B1(0) ∩ Γx0

to infer that f is identically zero
on a neighbourhood of x0. We conclude that the set where f vanishes is a
non-empty, open, and closed subset of B, hence equal to B. It follows from
(4.10) that trED

2v ≡ kΛ on B. Since D2v ≤ ΛI on B, this implies that
D2v(ei, ei) = Λ on B for all i = 1, . . . , k and so,

(4.18) D2v|x(e, e) = Λ for all x ∈ B and e ∈ S
d−1 ∩ E.

In particular E is contained in the Λ-eigenspace of D2v|x for every x ∈ B.
Since we chose x0 ∈ B such that k is the maximal dimension of the Λ-
eigenspace of D2v|x over all x ∈ B, we can conclude that E is the Λ-
eigenspace of D2v|x for every x ∈ B. It then also follows that

(4.19) D2v|x(e, ê) = 0 for all x ∈ B, e ∈ E, and ê ∈ E⊥.
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Now, writing x = πE(x) + πE⊥(x), integrating (4.18) along directions in E
yields

v(x) = v(πE(x0) + πE⊥(x)) +Dv(πE(x0)

+ πE⊥(x))πE(x− x0) +
Λ

2
|πE(x− x0)|2.

By (4.19), differentiating Dv(πE(x0) + πE⊥(x)) in a direction tangent to
E⊥ gives zero, so Dv(πE(x0) + πE⊥(x)) is independent of πE⊥(x) and in
particular is equal to Dv(x0). Defining g(πE⊥(x)) = v(πE(x0) + πE⊥(x))
shows that v is of the form (4.9).

If k = dim(E) = d then E⊥ is trivial and there is nothing further to

prove. Otherwise it follows that g is a C2 function on πE⊥(B) ⊂ Ω⊥, and
we have

0 = Δv + μ = Δg + kΛ + μ

and for νi ∈ E⊥ we have

0 = Dνi
v + γi = Dνi

g + γi.

That is, g is a C2 solution of an equation of the form (4.5) on the open

subset πE⊥(B) of Ω⊥ ⊆ E⊥. By Lemma 4.4, νj is an eigenvector of Hv(x)
at every point x ∈ Σj ∩B, and hence the normals νj are either in E or E⊥.
Then we can write

Ω ∩B =

m⋂
i=1

{
x ∈ B

∣∣∣ x · νi < bi

}
=

⋂
i: νi∈E

{
x ∈ B

∣∣∣ x · νi < bi

}⋂ ⋂
i: νi∈E⊥

{
x ∈ B

∣∣∣ x · νi < bi

}
=

⋂
i: νi∈E

{
x ∈ B | πE(x) · νi < bi

}⋂ ⋂
i: νi∈E⊥

{
x ∈ B

∣∣∣ πE⊥(x) · νi < bi

}
=

{
x ∈ B

∣∣∣ πE(x) ∈ ΩE , πE⊥(x) ∈ Ω⊥
}
,

where

ΩE =
⋂

i: νi∈E

{
x ∈ E

∣∣ x · νi < bi

}
and Ω⊥ =

⋂
i: νi∈E⊥

{
x ∈ E⊥

∣∣∣ x · νi < bi

}
.

This completes the proof of Lemma 4.5.
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Now, we can give the proof of Theorem 4.3:

Proof of Theorem 4.3. By Lemma 4.5 (applied with B = Ω), we have that
v is of the form (4.9) for some solution g of (4.5) on Ω⊥. If k = dim(E) = d
then v is quadratic and there is nothing further to prove. Otherwise the
function g is a C2 solution of an equation of the form (4.5) on Ω⊥ in Rd−k.
By the inductive hypothesis, g is a quadratic function, and therefore v is also
quadratic. This completes the induction and the proof of Theorem 4.3.

5. Tame domains

Our aim over the next several sections is to prove that concave solutions of
(4.5) are twice continuously differentiable up to the boundary. The result of
the previous section then implies that such solutions are quadratic functions.

Recall that a function f is semi-concave if there exists C ∈ R such that
the function x �→ f(x)− C|x|2 is concave.

Over the course of the next three sections we will prove the following:

Theorem 5.1. Let Ω be a polyhedral domain in Rd with faces Σ1, . . . ,Σm,
and v be a weak solution of problem (4.5) for some μ, γ1, . . . , γm ∈ R. If v
is semi-concave in Ω, then v ∈ C2(Ω).

The main difficulty in proving that v ∈ C2(Ω) is to understand the be-
haviour of v at points on the boundary ∂Ω, particularly where two or more
of the faces Σi intersect. We begin by using the series expansion (5.8) to
understand the behaviour of v near a boundary point x0 in terms of homo-
geneous Neumann harmonic functions on the tangent cone Γx0

. A crucial
step in our argument will be to prove the result that homogeneous degree
two Neumann harmonic functions must be quadratic if they have bounded
second derivatives. We will accomplish this in the next section. In the rest
of this section we will establish that this result is sufficient to prove regu-
larity.

Definition 5.2. For given vectors ν1, . . . , νm ∈ Rd, a polyhedral cone

Γ =

m⋂
i=1

{
x ∈ R

d
∣∣∣ x · νi < 0

}
is called tame if every degree two homogeneous harmonic function v ∈
C1,1(Γ) with homogeneous Neumann boundary condition on ∂Γ is quadra-
tic. If Ω is a polyhedral domain in Rd and B is a relatively open subset of
Ω, then B is called tame if the tangent cone Γx is tame for every x ∈ B.
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The significance of tameness for our argument is captured by the follow-
ing preliminary theorem which is the main result of this section.

Theorem 5.3. Let Ω be a polyhedral domain in Rd and B a relatively open
tame subset of Ω. Then every weak solution w ∈ C1,1(B)∩H1(B) of problem

(5.1)

{
Δw = 0 on Ω ∩B,

Dνw = 0 on ∂Ω ∩B

is in C2(B).

Proof of Theorem 5.3. Since any harmonic function is of the class C∞ at an
interior point (here, Ω∩B), it remains to consider the case when x0 ∈ ∂Ω∩B.
We first establish that the harmonic function w is twice differentiable at each
point x0 ∈ ∂ΩB, using the decomposition (5.8). Since the restriction of B to
a sufficiently small ball about x0 agrees with a translate of the tangent cone
to Ω at x0, it is sufficient to consider a Neumann harmonic function defined
on a ball about the origin in a tame cone Γ. In other words, we study weak
solutions w of problem (4.1) for R = 1.

We begin by setting A = Sd−1 ∩ Γ. Then the set B1(0) ∩ Γ can be
described by the polar coordinate map

(r, z) ∈ (0, 1)×A �→ rz ∈ B1(0) ∩ Γ.

Since the set A is a Lipschitz domain in Sd−1, there is a complete L2(A)-
orthonormal set of eigenfunctions {ϕi}∞i=0 for the Neumann Laplacian on A,
with associated eigenvalues λi which we arrange in non-decreasing order with
λ0 = 0. Let w ∈ H1(B1(0)∩Γ). Then for every r ∈ (0, 1), w ∈ H1( Br(0)∩Γ),
the trace w(r, ·) of w exists in L2(A). Using this, we see that w can be
rewritten in polar coordinates as

(5.2) w(rz) =

∞∑
i=0

wi(r)ϕi(z) for every (r, z) ∈ [0, 1)×A.

Here, for every r ∈ (0, 1), the series (5.2) converges in L2(A) as the Fourier
series of the trace of w(r, ·) in L2(A) with ith Fourier coefficient

(5.3) wi(r) := (w(r·), ϕi)L2(A)

for every i ≥ 1. In order to continue the proof of Proposition 4.2, we first es-
tablish some properties of the series decomposition (5.2) of the weak solution
w of (4.1). This is done in the next two statements.
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Lemma 5.4. Let Γ be an open cone with Lipschitz boundary and vertex at

the origin in Rd, and let w ∈ H1(B1(0)∩Γ) be a weak solution of Neumann

problem (4.1). Then for all i ≥ 1,

(5.4) fi := lim
r→1

wi(r)

exists, and furthermore the series
∑∞

i=0

√
1 + λif

2
i converges with

(5.5)

∞∑
i=0

√
1 + λif

2
i ≤ C ‖w‖2H1(B1(0)∩Γ).

Proof. Due the classical regularity theory of elliptic equations and by pos-

sible dilation, there is no loss of generality in assuming that every weak

solution w ∈ H1(B1(0) ∩ Γ) of Neumann problem (4.1) is continuous on

B1(0) ∩ Γ. Thus, the limit (5.4) exists for every i ≥ 1. Since the gradient

∇w ∈ L2(B1(0) ∩ Γ), one has that

w′
i(r) =

dwi

dr
(r) =

∫
A
∇w(rz) · z ϕi(z) dHd−1(z)

for every r ∈ (0, 1). Thus the H1(B1(0) ∩ Γ)-norm of w can be written

as

‖w‖2H1(B1(0)∩Γ) =

∫
B1(0)∩Γ

{
w2 + |∇w|2

}
dx

=

∞∑
i,j=0

{∫ 1

0

(
wiwj + w′

iw
′
j

)
rd−1 dr

∫
A
ϕiϕj dHd−1

}

+

∞∑
i,j=1

{∫ 1

0
wiwjr

d−3dr

∫
A
∇ϕi · ∇ϕj dHd−1

}

=

∞∑
i=0

∫ 1

0

((
1 +

λi

r2

)
w2
i + (w′

i)
2

)
rd−1 dr,

(5.6)

where∫
A
∇ϕi · ∇ϕj dHd−1 = −

∫
A
Δϕiϕj dHd−1 = λi

∫
A
ϕiϕj dHd−1 = λiδij .
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For δ ∈ (0, 1), consider the mapping g : [δ, 1) → R defined by

g(r) =

∞∑
i=0

√
1 + λiw

2
i (r) for every r ∈ [δ, 1),

and for every N ≥ 0,

gN (r) =

N∑
i=0

√
1 + λiw

2
i (r) for every r ∈ [δ, 1).

Then, by (5.6), gN (r) → g(r) as N → ∞ for every r ∈ [δ, 1) and

|gN (r2)− gN (r1)| ≤
N∑
i=0

√
1 + λi|w2

i (r2)− w2
i (r1)|

≤
N∑
i=0

√
1 + λi

∫ r2

r1

2|wi(r)w
′
i(r)| dr

≤
N∑
i=0

∫ r2

r1

(1 +
λi

r2
)w2

i +

∞∑
i=0

(
w′
i

)2
dr

≤ Cδ

∞∑
i=0

∫ r2

r1

(
(1 +

λi

r2
)w2

i + (w′
i)
2

)
rd−1 dr.

Then, sending N → +∞ in the above inequality yields

|g(r2)− g(r1)| ≤ Cδ

∞∑
i=0

∫ r2

r1

(
(1 +

λi

r2
)w2

i + (w′
i)
2

)
rd−1 dr,(5.7)

for every 0 < δ < r1 < r2 < 1. By (5.6), the right hand side in the last
estimate of (5.7) tends to zero as r1, r2 → 1−. Hence, the Cauchy criterion
implies that

lim
r→1−

g(r) =

∞∑
i=0

√
1 + λi f

2
i exists,

where fi is defined by (5.4). This shows that the function g is absolutely
continuous on [δ, 1] for every δ ∈ (0, 1). By the mean value theorem for
integrals, there is an rδ ∈ (δ, 1) satisfying

g(rδ) =
1

1−δ

∫ 1

δ
g(r)dr = 1

1−δ

∞∑
i=0

∫ 1

δ

√
1 + λiw

2
i dr ≤ Cδ

1−δ‖w‖
2
H1(B1(0)∩Γ),
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where we also used (5.7) and (5.6). Using this together with (5.7), one
finds

g(r) = g(r)− g(rδ) + g(rδ) ≤ C ‖w‖2H1(B1(0)∩Γ)

for some C > 0 independent of r ∈ (δ, 1). Sending r → 1, we find (5.5).

Due to Lemma 5.4, every weak solution w of (4.1) has the following
series expansion.

Proposition 5.5. Let Γ be an open cone with Lipschitz boundary and vertex
at the origin in Rd, and follow the notation of Lemma 5.4. Then every weak
solution w ∈ H1(B1(0) ∩ Γ) of (4.1) satisfies

(5.8) w(rz) =

∞∑
i=0

fi r
βiϕi(z) for every z ∈ A and r ∈ (0, 1),

where for every integer i ≥ 0, βi > 0 and a zero of the quadratic equation

(5.9) β2
i + (d− 2)βi − λi = 0.

There exists γr ∈ (0, 1) such that the convergence of the series in (5.8) holds
in H1(B1(0) ∩ Γ) ∩ Cγr(Br(0) ∩ Γ) for every 0 < r < 1.

Proof. For every i ∈ N0, we define

ψi(rz) := rβiϕi(z) for every rz ∈ B1(0) ∩ Γ.

Then ψi is harmonic on B1(0) ∩ Γ since

Δ(rβiϕi(z)) = rβi−2ΔSd−1ϕi +
d− 1

r

∂rβi

∂r
ϕi +

∂2rβi

∂r2
ϕi

= rβi−2
(
−λi + (d− 2)βi + β2

i

)
ϕi

= 0

by (5.9) and the fact that ϕi satisfies

ΔS
d−1

ϕi + λiϕi = 0 on A.

Furthermore, ψi satisfies Neumann boundary conditions on B1(0)∩∂Γ, since
ϕi satisfies Neumann conditions on ∂A. Thus, each ψi is a weak solution
of (4.1).
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Now, let w̃ : B1(0) ∩ Γ → R be given by

w̃(rz) :=

∞∑
i=0

fi ψi(rz) =

∞∑
i=0

fi r
βi ϕi(z) for every rz ∈ B1(0) ∩ Γ,

where fi is given by (5.4). Next, we show that the infinite series of w̃ con-
verges in H1(B1(0) ∩ Γ). For this, let w̃N be the partial sum of w̃ given
by

w̃N (rz) =

N∑
i=0

fi r
βiϕi(z) for every rz ∈ B1(0) ∩ Γ.

For integers 1 ≤ M < N , applying (5.6) to w̃N − w̃M =
∑N

i=M+1 fir
βiϕi,

we find

‖w̃N − w̃M‖2H1(B1(0)∩Γ) =
N∑

i=M+1

∫ 1

0

(
f2
i r

2βi+d−1 + β2
i f

2
i r

2βi+d−3
)
dr

=

N∑
i=M+1

(
1

2βi + d
+

β2
i

2βi + d− 2

)
f2
i

≤ C

N∑
i=M+1

(βi + 1) f2
i

≤ C

N∑
i=M+1

√
1 + λif

2
i .

Lemma 5.4 implies that the infinite series
∑∞

i=0

√
1 + λif

2
i is convergent,

and so there is w̃ ∈ H1(B1(0) ∩ Γ) such that w̃N → w̃ in H1(B1(0) ∩ Γ).
Since every partial sum w̃N is a weak solution of (4.1), the limit function w̃
is also a weak solution of (4.1) and has L2-trace

∞∑
i=0

fi ϕi on A.

Since the same is true for w, we have w = w̃, proving that (5.8) holds in
H1(B1(0) ∩ Γ). To obtain convergence of the series (5.2) in Cγr(Br(0) ∩ Γ)
for every 0 < r < 1 with some γr ∈ (0, 1), we employ a reflection argument
in a small neighbourhood U of each boundary point of Br(0)∩ ∂Γ as in [18]
and use the interior Hölder-regularity result [14, Theorem 8.24]. Further, we
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can cover Br(0) ∩ Γ \ ∂Γ by finitely many balls and apply again the interior
Hölder-regularity to w. Summarising, we see that for every 0 < r < 1, there
is a γr ∈ (0, 1) such that the series (5.2) converges in Cγ

r (Br(0) ∩ Γ).

Lemma 5.6. Let Γ be a tame polyhedral cone in Rd with outer unit face
normals ν1, . . . , νm, and let B = B1(0)∩Γ, where B1(0) is the open unit ball
in Rd. Then there exist constants C > 0 and γ ∈ (0, 1) depending only on Γ
such that for every weak solution w ∈ C1,1(B)∩H1(B) of (5.1), there exists
a linear functional L : Rd → R with {ν1, . . . , νm} ⊆ ker(L) and a symmetric
bilinear form a : Rd × Rd → R with trace tr(a) :=

∑d
i=1 a(ei, ei) = 0 such

that the following estimate holds:

(5.10)
∣∣w(x)− w(0)− L(x)− 1

2a(x, x)
∣∣ ≤ C ‖w‖L∞(B∩Γ) |x|2+γ

for every x ∈ B1/2(0)∩Γ. Consequently w has derivatives up to second order
at x = 0, with Dw|0 = L and D2w|0 = a.

Proof of Lemma 5.6. We only need to consider the case d ≥ 2. By Propo-
sition 5.5, w has the series decomposition (5.2). Since in the series (5.2),
ϕ0 ≡ 1 and β0 = 0, we have w(0) = f0. Thus, writing in polar coordinates
x = rz for r > 0 and z ∈ Sd−1,

w(rz) = w(0) +
∑
i>1

fi r
βi ϕi(z) for every rz ∈ B ∩ Γ.

The second derivatives D2ψi of ψi(x) := |x|βiϕi(x/|x|) are homogeneous of
degree (βi − 2). In particular, for every i with βi < 2, D2ψi is unbounded
as r = |x| approaches zero, except in the case where βi = 1 and ψi is a
linear function. Since w ∈ C1,1(B), the only non-zero ψi with 0 < βi <
2 are those with βi = 1, and these form a linear function L. Those ψi

satisfy homogeneous Neumann boundary conditions on B ∩ ∂Γ, implying
that L(νi) = 0 for every i = 1, . . . ,m. Now, defining

v(rz) :=
∑
βi=2

fi r
2 ϕi(z) for every rz ∈ B ∩ Γ,

one has that

(5.11) w(rz) = w(0) + L(rz) + v(rz) +
∑
βi>2

fi r
βi ϕi(z)

for every rz ∈ B∩Γ. The function v is harmonic and homogeneous of degree
2, satisfies Dνv = 0 on ∂Γ and has bounded second derivatives since they
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are given by limits of second derivatives of w ∈ C1,1(B) as r → 0+. Thus
v ∈ C1,1(Γ). Since Γ is tame, t v is a quadratic homogeneous function. Thus,
there is a symmetric bilinear form a on Rd such that

v(x) = 1
2a(x, x) for every x ∈ Γ.

By the harmonicity of v, it follows that

0 = Δv(x) = tr(a) for every x ∈ B ∩ Γ,

and since v satisfies homogeneous Neumann boundary conditions,

0 = Dνi
v(x) = Dv|x(νi) = a(x, νi) for every x ∈ Σi and i = 1, . . . ,m.

Differentiating the last equality in any direction e ∈ TxΣi,= (νi)
⊥ gives

0 = a(e, νi) for every e ⊥ νi,

showing that νi is an eigenvector of a.
Next, set β∗ = min{βi > 2 : fi �= 0}. Then we need to show that the

reminder term

(5.12) S(rz) :=
∑
βi>2

fir
βiϕi(z) = rβ∗

∑
βi>2

fir
βi−β∗ϕi(z)

on the right-hand side in (5.11) converges pointwise for every x = rz ∈ B∩Γ.
To see this, we note that by the definition of fi ((5.3)–(5.4)) and since
‖ϕ‖L2(A) = 1, one has that

(5.13) |fi| ≤ ‖w‖L∞(B∩Γ) for every i ≥ 1,

and by (5.9), there are i0 ∈ N and M1, M2 > such that

(5.14) M1

√
λi ≤ βi ≤ M2

√
λi for all i ≥ i0.

Thus, by [9, Corollary 1], there is a constant C1 = C1(d) > 0 such that

(5.15) ‖ϕi‖L∞(A) ≤ C λ
d−1

4

i ≤ C

M1
β

d−1

2

i for every i ≥ 1.

Further, by [20, Theorem 4.12] and (5.14), there are i∗ ∈ N and C =
C(d, |A|) > 0 such that

(5.16) βi ≥ M1

√
λi ≥ C i

1

d−1 for all i ≥ i∗,
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where we denote the constant M1C(d, |A|) again by C. Now, let 0 < r < 1.

Then there is an N(r) > 2 such that the function f(β) := β
d−1

2 rβ−β∗ is

monotonically decreasing on [N(r),+∞). If we choose the index i∗ in (5.16)

a bit larger such that C i
1

d−1 ≥ N(r) for all i ≥ i∗, then by applying (5.13),

(5.15) and (5.16) to (5.12), one sees that∣∣∣∣∣∣
∑
βi>2

fi r
βi−β∗ ϕi(z)

∣∣∣∣∣∣ ≤ C1 ‖w‖L∞(B∩Γ)
∑
i≥i∗

β
d−1

2

i rβi−β∗

≤ C1 ‖w‖L∞(B∩Γ)
∑
i≥i∗

√
i rC i

1
d−1

−β∗
,

where infinite series
∑

i≥i∗

√
i rC i

1
d−1 −β∗ is finite by the classical integral

test. This shows that the series S in (5.12) converges pointwise on B ∩ Γ,

and uniformly on B1/2(0) ∩ Γ. In particular, S is bounded on B1/2(0) ∩ Γ

by C1/2 ‖w‖L∞(B∩Γ) for some constant C1/2 > 0. Applying this to (5.11)

and noting that β∗ > 2 yields the desired estimate (5.10). The fact that

Dw(0) = L and D2w(0) = a follows from this estimate.

Continuation of the Proof of Theorem 5.3. The remaining difficulty in the

proof of Theorem 5.3 is to confirm continuity of the second derivative. As

before in Lemma 5.6, it suffices to consider a Neumann harmonic function

w on a cone, and to establish the continuity of the second derivative at the

origin. Accordingly, we fix a point x0 in ∂Ω∩B, and r0 > 0 sufficiently small

to ensure that

Ω ∩Br0(x0) =
{
x0 + x

∣∣∣ x ∈ Γx0
, |x| < r0

}
,

where Γx0
is the tangent cone to Ω at x0. To show that the second derivatives

of w are continuous at x0, it is sufficient to show that the Neumann harmonic

function

ŵ(x) =
u(x0 + r0x)

‖w‖L∞(Br0 (x0)∩Γx0 )

for every x ∈ B ∩ Γ

has continuous second derivative at the origin, where B = B1(0) is the open

unit ball and Γ a polyhedral cone with vertex at the origin.

Now, we label parts of Γ according to the number of faces which intersect.

Recall the faces of Ω are Σi with outward unit normal vectors νi for every
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i = 1, · · · ,m. Then

Γ(k) :=
⋃

S⊂{1,··· ,m}
|S|=k

(⋂
i/∈S

{
x
∣∣∣ x · νi ≤ 0

})
∩

⎛⎝⋂
j∈S

{
x
∣∣∣ x · νj = 0

}⎞⎠

denotes the set of all x ∈ Γ where k faces intersect. Thus Γ(0) = Γ, Γ(1) = ∂Γ,
and 0 ∈ Γ(m).

We now proceed by (decreasing) induction on k, starting with k = m:

Proposition 5.7. Let Γ be a tame polyhedral cone in Rd. Then there exist
constants C > 0 and γ ∈ (0, 1) depending only on Γ such that for every weak
solution w ∈ C1,1(B1(0) ∩ Γ) ∩H1(B1(0) ∩ Γ) of (5.1),∣∣w(y)− w(x)−Dw|x(y − x)− 1

2D
2w|x(y − x, y − x)

∣∣
≤ C ‖w‖L∞(B1∩Γ) |y − x|2+γ

(5.17)

for every x ∈ B1/2(0) ∩ Γ(m) and y ∈ B1(0) ∩ Γ.

For the proof of Proposition 5.7 we will use the following auxiliary result,
which will be also useful several times later.

Lemma 5.8. Let a be a symmetric bilinear form and L a linear functional
on Rd, and let c ∈ R. Define

q(x) = a(x, x) + L(x) + c for every x ∈ R
d.

If for r > 0 and M ≥ 0, one has that supx∈Br(0)
|q(x)| ≤ M , then |c| ≤ M ,

‖L‖ ≤ 2M/r, and the eigenvalues λi of a satisfy |λi| ≤ 2M/r2.

Proof. Choosing x = 0 gives |c| ≤ M , implying that |a(x, x) + L(x)| ≤ 2M
for all x ∈ Br(0). Further, for x ∈ Br(0), we have (by replacing x by
−x) that |a(x, x) − L(x)| ≤ 2M , and hence (taking sums and differences)
|a(x, x)| ≤ 2M and |L(x)| ≤ 2M . Thus, |λi| ≤ 2M/r2 follows by choosing
x/r to be a normalised eigenvector of a, and ‖L‖ ≤ 2M/r follows by choosing
x ∈ ∂Br(0) with L(x) = ‖L‖|x|.

In order to apply the lemma above, we need a suitable ball. This is
provided by the following:

Lemma 5.9. Let Ω be a bounded open convex set in Rd. Then there exist
σ > 0 and R > 0 such that for every x ∈ Ω and every r ∈ (0, R), there exists
x̂ ∈ Ω such that the open ball Bσr(x̂) is contained in Br(x) ∩ Ω.
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Proof. Let ρ− be the inradius and x− an incentre of Ω, and let ρ+ be the
circumradius of Ω. Then, for R = 2ρ+ (so that Ω is included in BR(x) for
any x ∈ Ω) and σ = ρ−

R , one has that

(5.18) BσR(x−) = Bρ−(x−) ⊆ Ω = Ω ∩BR(x)

for any x ∈ Ω. Now, for fixed x ∈ Ω and r ∈ (0, R), let

Tλ(y) = x+ λ(y − x) for y ∈ R
d and λ = r

R ∈ (0, 1).

Since Tλ(y) = (1− λ)x+ λy, convexity of Ω implies that Tλ(Ω) ⊆ Ω. Thus,
by (5.18) and since Tλ(BR(x)) = Br(x), one has that

Bσr(x−) = Tλ(BσR(x−)) ⊆ Tλ (Ω ∩BR(x))

and

Tλ (Ω ∩BR(x)) = Tλ(Ω) ∩ Tλ(BR(x)) ⊆ Ω ∩Br(x),

as claimed.

With these preliminaries, we can prove the base case of our (decreasing)
induction.

Proof of Proposition 5.7. For x ∈ B1/2(0) ∩ Γ(m), the tangent cone Γx to
Ω at x agrees with Γ at the origin. Thus, we can apply Lemma 5.6 to the
function

wx(x̂) = w

(
x+

x̂

2

)
for every x̂ ∈ B1 ∩ Γ

and obtain that∣∣wx(x̂)− wx(0)−Dwx|0(x̂)− 1
2D

2wx|0(x̂, x̂)
∣∣ ≤ C ‖w‖L∞(B1∩Γ) |x̂|2+γ

for all x̂ ∈ B1/2(0) ∩ Γx. Now, setting x̂ = 2(y − x) for y ∈ B1/4(x) ∩ Γ
and using the definition of wx we obtain that estimate (5.17) holds for all
y ∈ B1/4(x) ∩ Γ. To derive the same inequality for y ∈ B1(0) \ B1/4(x),
we first derive bounds on the size of Dw|x and D2w|x, using Lemma 5.8:
by Lemma 5.9 applied to Ω = B ∩ Γ and r = 1/4, there are σ > 0 and
x∗ ∈ B ∩ Γ such that the open ball Bσ/4(x∗) is contained in B1/4(x) ∩ Γ.

Due to estimate (5.17) and since w is bounded on Bσ/4(x∗), there is a C > 0
such that

sup
y∈Bσ/4(x∗)

∣∣Dw|x(y − x) + 1
2D

2w|x(y − x, y − x)
∣∣ ≤ C ‖w‖L∞(B1∩Γ).
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For y ∈ Bσ/4(x∗), setting x̂ = y−x∗, this shows that the quadratic function

q(x̂) := Dw|x (x̂+ x∗ − x) + 1
2D

2w|x(x̂+ x− x∗, x̂+ x− x∗)

is bounded on Bσ/4(0) and hence by Lemma 5.8, the coefficients of q are

bounded. Moreover, the quadratic part of q gives that the eigenvalues λi(x)

of D2w|x satisfy |λi(x)| ≤ 32C/σ2. Since D2wx|0 = 1
4D

2w|x and D2wx|0
is symmetric by Lemma 5.6, the Hessian D2w|x is symmetric and so, the
bound on λi(x) implies that

(5.19) ‖D2w|x‖ ≤ 32C
‖w‖L∞(B1∩Γ)

σ2
.

Further, the linear part of q gives that

‖Dw|x +D2w|x(x∗ − x)‖ ≤ 8C
‖w‖L∞(B1∩Γ)

σ

and since (5.19) and |x− x∗| < 1/4, this yields that

‖Dw|x‖ ≤ 16C
‖w‖L∞(B1∩Γ)

σ
.

Now, if y ∈ B1(0) \ B1/4(x), then we have 1
4 ≤ |y − x| ≤ 3

2 , and so, the

bounds on w(y), w(x), Dw|x, D2w|x, |y − x| and |y − x|−1 show that∣∣w(y)− w(x)−Dw|x(y − x)− 1
2D

2w|x(y − x, y − x)
∣∣

≤ C ‖w‖L∞(B1∩Γ)

≤ C ‖w‖L∞(B1∩Γ) |y − x|2+γ ,

as required.

Next, we establish the inductive step:

Proposition 5.10. Let Γ be a tame polyhedral cone in Rd. If a weak solution
w ∈ C1,1(B1(0) ∩ Γ) ∩H1(B1(0) ∩ Γ) of (5.1) satisfies

(5.20)
∣∣w(y)− w(x)−Dw|x(y − x)− 1

2D
2w|x(y − x, y − x)

∣∣ � |y − x|2+γ

for every x ∈ B1/2(0)∩Γ(k), y ∈ B1(0)∩Γ and some γ ∈ (0, 1), then w also

satisfies (5.20) for all x ∈ B1/2(0) ∩ Γ(k−1) and y ∈ B1(0) ∩ Γ.
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To prove this proposition, we intend to apply Lemma 5.6 about x ∈
(B1/2(0) ∩ Γ(k−1)) \ Γ(k). In order to do this we need to estimate the cone

radius

(5.21) ρ(x) := sup
{
r > 0

∣∣∣Br(x) ∩ Γ = x+ (Br(0) ∩ Γx)
}
,

where Γ is a polyhedral cone in Rd with vertex at the origin and Γx the

tangent cone to Γ at x ∈ ∂Γ \ {0}. This is supplied by the following result.

Lemma 5.11. Let Γ be a tame polyhedral cone in Rd. Then there exists a

σ > 0 such that

(5.22) ρ(x) ≥ σd(x,Γ(k)) for all x ∈ Γ(k−1) \ Γ(k).

To show that Lemma 5.11 holds, we need to introduce the following

definition and the subsequent lemma.

Definition 5.12. A convex cone Γ in Rd admits a linear factor E if there

exists a linear subspace E of Rd of positive dimension with orthogonal com-

plement E⊥ in Rd and a convex cone Γ̃ in E⊥ such that

Γ =
{
x ∈ R

d
∣∣∣ πE⊥(x) ∈ Γ̃

}
,

where πE⊥ is the orthogonal projection onto E⊥. In this situation, we write

Γ = Γ̃⊕ E.

The following observation is used in the inductive step of our argument,

and will also be used again later.

Lemma 5.13. Let Γ be a polyhedral cone in Rd with vertex at the origin and

outer unit face normals ν1, · · · , νm. Let x0 ∈ ∂Γ\{0}. Then the tangent cone

Γx0
to Γ at x0 has a linear factor Rx0, and so had the form Γx0

= Γ̃⊕Rx0,

where Γ̃ is the polyhedral cone in the (d − 1)-dimensional subspace (Rx0)
⊥

of Rd defined by

(5.23) Γ̃ =
⋂

i∈I(x0)

{
x ∈ (Rx0)

⊥
∣∣∣x · νi < 0

}
,

where I(x0) :=
{
i ∈ {1, . . . ,m}

∣∣∣x0 · νi = 0
}
.
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Proof. Since

Γx0
=

⋂
i∈I(x0)

{
x ∈ R

d
∣∣∣x · νi < 0

}
,

and i ∈ I(x0) implies νi ·x0 = 0, we have that νi ∈ (Rx0)
⊥ for all i ∈ I(x0).

Therefore Γx0
= Γ̃⊕ Rx0, where Γ̃ is given by (5.23).

Proof of Lemma 5.11. If there is no such σ > 0 such that (5.22) holds, then

there exists a sequence (xn)n≥1 of points xn ∈ Γ(k−1) \ Γ(k) such that

(5.24)
ρ(xn)

d(xn,Γ(k))
→ 0.

Since both ρ(·) and d(·,Γ(k)) are homogeneous of degree one, we can scale

xn so that xn ∈ Sd−1 ∩ Γ.

We first exclude the possibility that there are α > 0 and a subsequence

(xn′)n′≥1 of (xn)n≥1 such that d(xn′ ,Γ(k)) ≥ α for all n′ ≥ 1. Otherwise,

for such a subsequence (xn′)n′≥1 of (xn)n≥1, one has that ρ(xn′) → 0. Since

xn′ ∈ Sd−1∩ (Γ(k−1) \Γ(k)), we can extract another subsequence of (xn′)n′≥1

which we denote, for simplicity, again by (xn′)n′≥1 such that xn′ converges

to a point x̄ ∈ Sd−1 ∩ Γ(k−1) \ Γ(k). Label the faces so that x̄ · νi is in

non-increasing order. Then, since x̄ ∈ Γ(k−1) \ Γ(k), we have x̄ · νi = 0 for

i = 1, . . . , k − 1 and x̄ · νk < 0. Since the function x �→ x · νi is continuous,
any point x in Γ(k−1) \ Γ(k) sufficiently close to x̄ also satisfies x · νi = 0 for

i = 1, . . . , k − 1 and x · νi < 1
2 x̄ · νk < 0 for i ≥ k. It follows that

Γx = Γx̄ =

k−1⋂
i=1

{
z
∣∣∣ z · νi < 0

}
,

so the tangent cone is constant and hence the cone radius ρ is continu-

ous on Γ(k−1) near x̄. In particular, we have that ρ(xn′) is bounded below,

contradicting the fact that ρ(xn′) → 0.

The remaining possibility is that d(xn,Γ
(k)) converges to zero. Passing to

a subsequence, we have convergence to a point x̄ ∈ Sd−1∩Γ(k). In particular

for n sufficiently large xn ∈ Bρ(x̄)(x̄) ∩ Γ̄.

In Lemma 5.13, we have observed that since x̄ �= 0, the tangent cone Γx̄

is the product Γx̄ = Γ̃ ⊕ Rx̄, where Γ̃ is a polyhedral cone in the (d − 1)-

dimensional subspace (Rx̄)⊥. Thus, it follows that ρ(xn) and d(xn,Γ
(k)) are

invariant under translation in the x̄-direction and homogeneous of degree
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one under rescaling about x̄. Therefore, we can replace xn by

x̃n =

(
xn − xn·x̄

|x̄|2 x̄
)

∣∣∣(xn − xn·x̄
|x̄|2 x̄

)∣∣∣ ∈
(
Γ̃× {0}

)
∩ S

d−1

and still have a sequence (x̃n)n≥1 satisfying x̃n ∈ Γ̃ ∩ (Γ(k−1) \ Γ(k)) and
(5.24), where xn is replaced by x̃n.

Now, we repeat the above argument inductively, with Γ replaced by Γ̃.
At each application, the dimension of the cone reduces by one, which is
impossible since Γ is finite-dimensional. This contradicts our assumption
that there is no positive σ satisfying the statement of Lemma 5.11, so the
proof of the Lemma is complete.

Now, we can complete the proof of the inductive step.

Proof of Proposition 5.10. Fix x ∈ (B1/2(0) ∩ Γ(k−1)) \ Γ(k). Let x̃ ∈ Γ(k)

be the closest point to x in Γ(k) satisfying |x − x̃| < 1/2. We claim that
x̃ ∈ B1/2(0). As λx̃ is in Γ(k) for λ > 0, g(λ) := |x − λx̃|2 is minimised at
λ = 1, and so 0 = g′(1) = −2(x− x̃) · x̃. Since x− x̃ and x̃ are orthogonal,

|x|2 = |x− x̃+ x̃|2 = |x− x̃|2 + |x̃|2 ≥ |x̃|2

and since |x| < 1/2, it follows that |x̃| < 1/2 as claimed. Hence, by hypoth-
esis, w satisfies (5.20) at x̃. More precisely,

(5.25)
∣∣w(y)−w(x̃)−Dw|x̃(y − x̃)− 1

2D
2w|x̃(y − x̃, y − x̃)

∣∣≤C|y − x̃|2+γ

for all y ∈ B1(0) ∩ Γ for some constant C > 0 and γ ∈ (0, 1). To make use
of this, we define

w̃(y) := w(y)− w(x̃)−Dw|x̃(y − x̃)− 1
2D

2w|x̃(y − x̃, y − x̃)

for every y ∈ B1(0)∩Γ. Then w̃ is a weak solution of (5.1) on B1(0)∩Γ and
by (5.25),

(5.26) |w̃(y)| ≤ C|y − x̃|2+γ for y ∈ B1(0) ∩ Γ.

To proceed, we will apply Lemma 5.6 about x. But first note that by x̃ ∈ Γ(k),
after a possible re-ordering, we may assume without loss of generality that
x̃ · νi = 0 for all i = 1, . . . , k and since x ∈ Γ(k−1) \ Γ(k), there must be an
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1 ≤ i0 ≤ k such that x · νi0 < 0. Now, let ρ(x) be the cone radius around x
given by (5.21) and we claim that

(5.27) ρ(x) ≤ |x− x̃|.

If ρ(x) > |x− x̃|, then there is an ε > 0 such that

x+ (B(1+ε)|x−x̃|(0) ∩ Γx) = B(1+ε)|x−x̃|(x) ∩ Γ

and since x̃ ∈ B(1+ε)|x−x̃|(x)∩Γ, there is a v ∈ B|x−x̃|(0)∩Γx such that v =

x̃−x. Then x+(1+ε)v ∈ x+(B(1+ε)|x−x̃|(0)∩Γx) and hence, x+(1+ε)v ∈ Γ.
However,

(x+ (1 + ε)v) · νi0 = x · νi0 + (1 + ε)(x̃− x) · νi0 = −εx · νi0 > 0,

which contradicts the definition of Γ, proving our claim (5.27). Since |x−x̃| <
1/2,

ŵ(y) := w̃(x+ yρ(x)) for y ∈ B1(0) ∩ Γx

is a well-defined function. Moreover, ŵ is a weak solution of (5.1) on B1(0)∩
Γx. Hence, by Lemma 5.6, there is a γ ∈ (0, 1) and a C > 0 such that∣∣ŵ(y)− ŵ(0)−Dŵ|0y − 1

2D
2ŵ|0(y, y)

∣∣ ≤ C‖ŵ‖L∞(B1(0)∩Γx)|y|2+γ

for y ∈ B1/2(0) ∩ Γx. Note, by (5.26) and using (5.27),

(5.28) sup
B1(0)∩Γx

ŵ = sup
Bρ(x)(x)∩Γ

w̃ ≤ sup
B2|x−x̃|(x̃)∩Γ

w̃ ≤ C|x− x̃|2+γ .

Combining the last two estimates then gives∣∣ŵ(y)− ŵ(0)−Dŵ|0(y)− 1
2D

2ŵ|0(y, y)
∣∣ ≤ C|y|2+γ |x− x̃|2+γ

for y ∈ B1/2(0) ∩ Γx. By the definition of ŵ, this gives∣∣w̃(y)− w̃(x)−Dw̃|x(y − x)− 1
2D

2w̃|x(y − x, y − x)
∣∣

≤ C

(
|y − x|
ρ(x)

)2+γ

|x− x̃|2+γ

for every |y − x| < 1
2ρ(x). Since by Lemma 5.11, there is a σ > 0 such that

(5.29) ρ(x) ≥ σ|x− x̃|,
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we can conclude from the last estimate that

(5.30)
∣∣w̃(y)−w̃(x)−Dw̃|x(y − x)− 1

2D
2w̃|x(y − x, y − x)

∣∣≤C|y − x|2+γ

for every |y−x| < 1
2ρ(x). From this, we deduce bounds on Dw̃|x and D2w̃|x:

By Lemma 5.9 applied to Ω = B1/2(x) ∩ Γ, there are x∗ ∈ B1/2(x) ∩ Γ and

σ∗ > 0 such that the open ball Bσ∗ρ(x)(x∗) is contained in Bρ(x)(x) ∩ Γ.

By (5.28), we have

|w̃(x)|+ |w̃(y)| ≤ C|x− x̃|2+γ for every y ∈ Bσ∗ρ(x)(x∗)

and so, by (5.30),∣∣Dw̃|x(y − x) + 1
2D

2w̃|x(y − x, y − x)
∣∣ ≤ C|x− x̃|2+γ

for every y ∈ Bσ∗ρ(x)(x∗). Moreover, from the previous application of Lem-

ma 5.6 to ŵ, we know that the Hessian D2ŵ|0 = ρ−2(x)D2w̃|x is symmetric.

Thus Lemma 5.8 yields that

‖Dw̃|x(x∗ − x) + 1
2D

2w̃|x(x∗ − x)‖ ≤ C |x− x̃|2+γ∥∥Dw̃|x +D2w̃|x(x∗ − x)
∥∥ ≤ 2C|x− x̃|2+γ

σ∗ρ(x)
≤ C|x− x̃|1+γ ,(5.31)

∥∥D2w̃|x
∥∥ ≤ 2

4C|x− x̃|2+γ

σ2
∗ρ

2(x)
≤ C|x− x̃|γ ,(5.32)

where we used the estimate (5.29) in the second inequalities of both (5.31)

and (5.32). Since |x− x∗| ≤ C|x− x̃|, inequality (5.31) implies that

(5.33) ‖Dw̃|x‖ ≤ C|x− x̃|1+γ .

Next, we establish estimate (5.30) for y ∈ (B1(0)\Bρ(x)/2(x))∩Γ: On this

set, we have |x−x̃|+|y−x̃| ≤ C|y−x| due to (5.29) and since ρ(x)/2 ≤ |y−x|.
Thus, by (5.26), (5.33), and (5.32),∣∣w̃(y)− w̃(x)−Dw̃|x(y − x)− 1

2D
2w̃|x(y − x, y − x)

∣∣
≤ |w̃(y)|+ |w̃(x)|+ ‖Dw̃|x‖ |y − x|+ 1

2‖D
2w̃|x‖ |y − x|2

≤ C|y − x̃|2+γ + C|x− x̃|2+γ + C|x− x̃|1+γ |y − x|+ C|x− x̃|γ |y − x|2

≤ C|y − x|2+γ ,
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as required. This shows that estimate (5.30) holds for all y ∈ B1(0) ∩ Γ.

Finally, we note that w̃ and w differ by a quadratic function, so

w̃(y)− w̃(x)−Dw̃|x(y − x)− 1
2D

2w̃|x(y − x, y − x)

= w(y)− w(x)−Dw|x(y − x)− 1
2D

2w|x(y − x).
(5.34)

Therefore inequality (5.20) holds for all y ∈ B1(0) ∩ Γ and x ∈ B1/2(0) ∩
Γ(k−1), and the proof of Proposition 5.10 is complete.

Completion of the Proof of Theorem 5.3. Now, Proposition 5.7 and Proposi-

tion 5.10 allow us to establish estimate (5.17) for all points x ∈ B1/2(0) ∩ Γ

and all points y ∈ B1(0)∩Γ, by (decreasing) induction on k: Due to Propo-

sition 5.7, estimate (5.17) holds for x ∈ Γ(m), and by Proposition 5.10 if es-

timate (5.17) holds for x ∈ Γ(k) then it also holds for x ∈ Γ(k−1). Therefore,

by induction, estimate (5.17) holds for all x ∈ B1/2(0) ∩ Γ(0) = B1/2(0) ∩ Γ.

This allows us to complete the proof of Theorem 5.3 by proving that D2w

is continuous at the origin. So we must prove that D2w|x approaches D2w|0
as x ∈ B1/2(0) ∩ Γ approaches zero. To do this, we apply estimate (5.17)

about x ∈ B1/2(0) ∩ Γ: Let

w̃(y) := w(y)− w(0)−Dw|0(y)− 1
2D

2w|0(y, y)

for every y ∈ B ∩ Γ. Then by estimate (5.17),

(5.35) |w̃(y)| ≤ C ‖w‖L∞(B1∩Γ)|y|2+γ for every y ∈ B1(0) ∩ Γ.

Note, Dw̃|y = Dw|y − Dw|0 − D2w|0(y, ·) and D2w̃|y = D2w|y − D2w|0.
Hence, (5.34) holds and so, we can apply estimate (5.17) to w. Then, one

finds ∣∣w̃(y)− w̃(x)−Dw̃|x(y − x)− 1
2D

2w̃|x(y − x, y − x)
∣∣

≤ C ‖w‖L∞(B1∩Γ)|y − x|2+γ

for every x ∈ B1/2(0)∩Γ and y ∈ B1(0)∩Γ. From this together with (5.35),

we deduce that

sup
y∈B|x|(x)

∣∣Dw̃|x(y − x) + 1
2D

2w̃|x(y − x, y − x)
∣∣ ≤ C|x|2+γ
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for every x ∈ B1/2(0)∩Γ. By Lemma 5.9 there is a ball of radius comparable

to |x| in B|x|(x) ∩ Γ, and applying Lemma 5.8 on this ball gives that

|Dw̃|x(x) + 1
2D

2w̃|x(x, x)| ≤ C|x|2+γ , ‖Dw̃|x +D2w̃|x(x, .)‖ ≤ C|x|1+γ ,

and

(5.36) ‖D2w̃|x‖ ≤ C|x|γ

for every x ∈ B1/2(0) ∩ Γ. Since D2w̃|x = D2w|x −D2w|0, inequality (5.36)
can be rewritten as

‖D2w|x −D2w|0‖ ≤ C|x|γ for every x ∈ B1/2(0) ∩ Γ,

proving that harmonic functions on a tame cone B1 ∩ Γ satisfying homoge-
neous Neumann boundary condition on B1 ∩ ∂Γ are C2,γ . This completes
the proof of Theorem 5.3.

6. Polyhedral cones are tame

Next, we prove the following, making the tameness hypothesis in Theo-
rem 5.3 redundant.

Theorem 6.1. Every polyhedral cone Γ in Rd is tame.

Proof. The proof uses an induction on the dimension d ≥ 1, and uses the
regularity results for tame domains established in the previous section. Our
argument here is similar to that used in the proof of Proposition 4.3, in that
we apply a strong maximum principle to the Hessian of the function. The
homogeneity of the function allows us to consider points x0 ∈ ∂Γ, which
are not near the vertex of the cone, and this is the basis of the induction
on dimension: We observe that by Lemma 5.13, the tangent cone is a direct
product of a lower-dimensional cone with a line: Γx0

= Γ̃⊕Rx0, where Γ̃ is a
polyhedral cone in the subspace (Rx0)

⊥. To proceed, we need to understand
the relationship between homogeneous harmonic functions on Γx0

and those
on Γ̃:

Lemma 6.2. Any homogeneous degree 2 Neumann harmonic function u on
Γ̃⊕ Rx0 has the form

(6.1) u(x+ sx0) = ũ(x) + sṽ(x) + C

(
s2|x0|2 −

1

d− 1
|x|2

)
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for x ∈ Γ̃, s ∈ R, where ũ is a homogeneous degree 2 Neumann harmonic
function on Γ̃, ṽ is a homogeneous degree 1 Neumann harmonic function on
Γ̃, and C is constant.

Proof. Without loss of generality, we may assume that |x0| = 1. We choose
an orthonormal basis for Rd so that x0 = ed. Denote A = (Γ̃⊕Red) ∩ Sd−1,
and Ã = Γ̃∩Sd−2. Then homogeneous degree 2 harmonic Neumann functions
on Γ̃ ⊕ Red are determined by their restriction to A which is a Neumann
eigenfunction. The corresponding eigenvalue is determined by the relation
(5.9) which produces λi = 2d when βi = 2 (cf [8, Chapter 2.4]).

In the case d = 2, the cone Γ̃ cannot be Re1, since then Γ would be R2,
contradicting x0 ∈ ∂Γ. Therefore Γ̃ is a ray in the direction of ±e1, and the
cone Γ̃⊕ Rx0 is congruent to the half-space H = {x > 0} in R2.

Any Neumann harmonic function u on H extends by even reflection to
an entire harmonic function on R2, which is therefore C∞. In particular a
homogeneous degree 2 Neumann harmonic function on H is C2 at the origin
and therefore agrees with the degree 2 Taylor polynomial, since the second
derivatives are homogeneous of degree zero, which must equal C(x2 − y2).
In this case, (6.1) is satisfied with ṽ ≡ ũ ≡ 0.

Now, consider the case d ≥ 3. We will construct eigenfunctions on A from
eigenfunctions on Ã using separation of variables: We parametrise points of
A by the map

Φ : Ã×
[
−π

2
,
π

2

]
→ S

d−1 given by Φ(z, θ) = (cos θ) z + (sin θ) ed,

for every z ∈ Ã and θ ∈
[
−π

2 ,
π
2

]
. The following construction is quite general

(producing a basis of eigenfunctions on warped product spaces in terms of
eigenfunctions on the warping factors), but we describe it here only in our
specific situation.
The metric g induced by the map Φ on Ã× [−π/2, π/2] is

g = cos2 θḡ + dθ2,

where ḡ is the metric on Sd−2. The Laplacian in these coordinates is

ΔS
d−1

=
1

cos2 θ
ΔS

d−2 − (d− 2) tan θ ∂θ + ∂2
θ .

If ϕ is an eigenfunction on Ã satisfying ΔS
d−2

ϕ + μϕ = 0 on Ã, then the
function f(θ)ϕ(z) satisfies the eigenvalue equation

(6.2) Lμf := −f ′′ + (d− 2) tan θ f ′ +
μ

cos2 θ
f = λf on A
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S
d−1

A

(z, θ)

θ
S
d−2

z
Ã

with eigenvalue λ. Then fϕ is a Neumann eigenfunction of Lμ on A pro-
vided ϕ satisfies homogeneous Neumann boundary conditions on ∂Ã and
fϕ extends continuously to the poles θ = ±π

2 of A. If ϕ is constant on Ã
(corresponding to μ = 0) then this amounts simply to the requirement that
f extends continuously to [−π/2, π/2], but if ϕ is non-constant (correspond-
ing to μ > 0) then continuity of fϕ at the poles amounts to the requirement
that f has limit zero at ±π

2 . We note that the endpoints ±π/2 are regular
singular points of the ODE (6.2). Thus, a solution f to (6.2) satisfies the
asymptotics

f(θ) ∼
(
C1(θ + π/2)−

d−3

2
−
√
( d−3

2 )
2
+μ + C2(θ + π/2)−

d−3

2
+
√
( d−3

2 )
2
+μ

)
as θ → −π/2, and

f(θ) ∼
(
C3(π/2− θ)−

d−3

2
−
√
( d−3

2 )
2
+μ + C4(π/2− θ)−

d−3

2
+
√
( d−3

2 )
2
+μ

)
as θ → π/2. Continuity requires that f has limit zero at ±π

2 , hence C1 = 0
and C3 = 0.

The operator Lμ is essentially self-adjoint on L2
(
(−π

2 ,
π
2 ), (cos θ)

d−2dθ
)
.

Accordingly, for any μ there is an increasing sequence of values λμ,j ap-
proaching infinity such that there is a solution fμ,j of equation (6.2) satis-
fying the required endpoint conditions. These form a complete orthonormal
basis for L2

(
(−π

2 ,
π
2 ), (cos θ)

d−2dθ
)
. We claim that if {ϕi}∞i=0 is a complete

orthonormal basis of Neumann eigenfunctions on Ã with eigenvalues μi, then
the resulting collection of eigenfunctions {fμi,j(θ)ϕi(z)} forms a complete or-
thonormal basis of Neumann eigenfunctions on A. To see this, suppose that
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g is a function in L2(Ã× [−π/2, π/2], dωḡ(cos θ)
d−2dθ) which is orthogonal

to fμi,j(θ)ϕi(z) for all i and j. That is, we have∫ π/2

−π/2

∫
Ã
g(z, θ)ϕi(z) dωḡ(z) fμi,j(θ)(cos θ)

d−2 dθ = 0

for all i and j. Fix i, and let gi(θ) =
∫
Ã g(z, θ)ϕi(z)dωḡ(z). Then gi is

orthogonal to fμi,j in L2
(
(−π

2 ,
π
2 ), (cos θ)

d−2dθ
)
for every j, and so vanishes

almost everywhere. It follows that

gi(θ) = 0 for a.e. θ ∈ (−π

2
,
π

2
) and every i.

But this means that for a.e. θ ∈ (−π
2 ,

π
2 ), g(θ, ·) is orthogonal to ϕi in

L2(Ã, dωḡ) for every i and hence, g(θ, z) = 0 for almost all z ∈ Ã. This
proves that g = 0 almost everywhere, proving completeness.

It follows that an eigenfunction on A with eigenvalue λ = 2d is a finite
linear combination of terms of the form fμi,j(θ)ϕi(z) for which λμi,j = 2d.

Lemma 6.3. For λ = 2d, solutions fμ of (6.2) with the required boundary
conditions

fμ ∼ C±(π/2− |θ|)−
d−3

2
+
√
( d−3

2 )
2
+μ as θ → ±π/2

exist only for μ = 0, μ = d − 2 and μ = 2(d − 1), and these are given by
f0(θ) = sin2 θ − 1

d−1 cos
2 θ, fd−2(θ) = sin θ cos θ, and f2(d−1)(θ) = cos2 θ.

Proof. The particular solutions given are constructed from homogeneous de-
gree two spherical harmonics (harmonic polynomials on Rd). These arise
from the above construction in the case Ã = Sd−2, and so give rise to
solutions of (6.2). On Sd−1, we have xd = sin θ and |x| = cos θ, where
x = (x1, · · · , xd−1).

Therefore, the harmonic function

x2d −
1

d− 1
|x|2 restricts to f0(θ) = sin2 θ − 1

d− 1
cos2 θ on S

d−1.

The restriction of this to Sd−2 is constant, hence an eigenfunction with
eigenvalue μ = 0 on Sd−2. It follows that L0f0 + 2df0 = 0.

The harmonic function

xdx1 restricts to sin θ cos θ
x1
|x| = fd−2(θ)ϕ

(
x

|x|

)
on S

d−1,
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where ϕ(x) = x1 is a homogeneous degree one harmonic function on Rd−1,
hence an eigenfunction of the Laplacian on Sd−2 with eigenvalue μ = d− 2.
It follows that Ld−2fd−2 + 2dfd−2 = 0.

Finally, the harmonic function

x22 − x21 restricts to f2(d−1)(θ)ϕ

(
x

|x|

)
on S

d−1,

where f2(d−1)(θ) = cos2 θ and ϕ(x) = x22−x21, which is the restriction to Sd−2

of a degree 2 homogeneous harmonic function on Rd−1, hence an eigenfunc-
tion of the Laplacian on Sd−2 with eigenvalue μ = 2(d − 1). It follows that
L2(d−1)f2(d−1) + 2df2(d−1) = 0, as required. These formulae can be checked
by explicit computation.

The harder part of the proof is to show that these are the only solutions
of (6.2) with the required boundary conditions. It is convenient to perform
a transformation of equation (6.2) to de-singularise the endpoints at ±π/2.
To do this we introduce the new variable s by

tanh(s/2) = tan(θ/2),

so that s ∈ R increases over the entire real line as θ increases from −π/2 to
π/2. This choice implies that dθ

ds = cos θ, and we have the identities cos θ =
1

cosh s , sin θ = tanh(s) and tan θ = sinh s. The equation (6.2) transforms to

0 = fss − (d− 3) tanh sfs +

(
2d

cosh2 s
− μ

)
f.

Defining f = (cosh s)
d−3

2 g then produces the equation

(6.3) 0 = gss +

(
(d+ 1)(d+ 3)

4 cosh2 s
−

(
d− 3

2

)2

− μ

)
g.

The behaviour at θ = ±π/2 translates to the condition that g is asymptotic

to C2e
s
√
( d−3

2 )
2
+μ as s → −∞ and to C4e

−s
√
( d−3

2 )
2
+μ as s → ∞.

Next, we consider the Riccati equation associated to the ODE (6.2),
which is the first order ODE satisfied by the function q = gs

g :

∂sq =
gss
g

−
(
gs
g

)2
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= μ+

(
d− 3

2

)2

− (d+ 1)(d+ 3)

4 cosh2 s
− q2.

The boundary conditions then become the requirement that

lim
s→−∞

q(s) =

√(
d− 3

2

)2

+ μ

and

lim
s→+∞

q(s) = −

√(
d− 3

2

)2

+ μ.

The function q approaches infinity whenever the value of g crosses zero.
We remove these singularities by defining a new variable σ which gives
(twice) the angle from the positive x axis of the point (g(s), gs(s)), so that
tan (σ/2) = gs(s)/g(s) = q. This is defined only modulo 2π, but a contin-
uous choice of σ exists and is uniquely defined up to an integer multiple
of 2π. It follows from the definition that tan(σ/2) = q, and we deduce
that

(6.4) σs = (1 + cosσ)

(
μ+ 1 +

(
d− 3

2

)2

− (d+ 1)(d+ 3)

4 cosh2 s

)
− 2.

From the asymptotic conditions on q, our construction requires a solution σ
such that

σ(s) → σ−(μ) := 2 arctan

⎛⎝√(
d− 3

2

)2

+ μ

⎞⎠
as s → −∞, and σ(s) → σ+(μ) modulo 2πZ as s → ∞, where

σ+(μ) := −2 arctan

⎛⎝√(
d− 3

2

)2

+ μ

⎞⎠ .

For each μ there is a unique solution σμ(s) of (6.4) with σμ(s) → σ−(μ) as
s → −∞ (arising from the solutions of (6.2) with the required asymptotics
near θ = −π/2 provided by the theory of regular singular points). It re-
mains to find those values of μ for which σμ has the required behaviour as
s → ∞.

The crucial property we require is monotonicity of σμ(s) with respect to
μ for each s:
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Suppose μ2 > μ1 ≥ 0. Then we observe that σμ1
(x) satisfies

∂sσμ1
= (1 + cosσ)

(
μ1 + 1 +

(
d− 3

2

)2

− (d+ 1)(d+ 3)

4 cosh2 s

)
− 2

≤ (1 + cosσ)

(
μ2 + 1 +

(
d− 3

2

)2

− (d+ 1)(d+ 3)

4 cosh2 s

)
− 2,

so that solutions of (6.4) for μ = μ2 cannot cross σμ1
from above. But now

for s sufficiently negative we have σμ1
(s) as close as desired to σ−(μ1), while

σμ2
(s) is as close as desired to σ−(μ2), and we have σ−(μ1) < σ−(μ2). That

is, we have σμ1
(s) < σμ2

(s) for s sufficiently negative, and the comparison
principle implies that this remains true for all s ∈ R. This proves that σμ(s)
is strictly increasing in μ ≥ 0 for any fixed s. The limit σμ := lims→∞ σ(μ, s)
therefore also exists and is (weakly) increasing in μ, although it can (and
will) be discontinuous.

Our construction produces a solution fμ with the required boundary
behaviour precisely when σμ − σ+(μ) = 2πk for some k ∈ Z. Since σμ is
increasing in μ and σ+(μ) is strictly decreasing in μ, we have that σμ−σ+(μ)
is strictly increasing in μ, and hence each integer k can arise for at most
one value of μ. We note from (6.4) that σμ(s) is strictly decreasing at any
point where it takes values which are an odd multiple of π (corresponding
to points where g(s) = 0), and hence the value of k can be computed as
the number of points where the corresponding solution g of (6.3) equals
zero.

The three solutions constructed above allow us to compute σμ−σ+(μ) for
these three specific values of μ: For μ = 0, the solution f0 = sin2 θ− 1

d−1 cos
2 θ

gives rise to

g = (cosh s)−
d−3

2

(
1− d

d− 1

1

cosh2 s

)
,

which has two crossings of zero, so that we have σ0 − σ+(0) = −4π. For

μ = d− 2, the solution fd−2 = sin θ cos θ gives g = (cosh s)−
d+1

2 sinh s which
has a single crossing of zero and so, we have σd−2−σ+(d−2) = −2π. Finally,

for μ = 2(d − 1), the solution f2(d−1) = cos2 θ produces g = (cosh(s))−
d+1

2 ,
which has no zero crossings, and hence σ2(d−1)−σ+(2(d−1)) = 0. Since the
σμ−σ+(μ) is strictly increasing, there can be no other values of μ between 0
and 2(d−1) for which σ−σ+ ∈ 2πZ. For μ > 2(d−1) we have σμ−σ+(μ) > 0,
and we observe that the line σ = π cannot be crossed by solutions of (6.4)
from below, so that we can never have σμ − σ+(μ) = 2πk for k a positive



288 Ben Andrews et al.

integer. This completes the proof that only the values μ = 0, d− 2, 2(d− 1)
are possible.

Finally, we complete the proof of Lemma 6.2: The argument above shows
that a Neumann eigenfunction on A with eigenvalue 2d has the form

f0(θ)ϕ0(z) + fd−2(θ)ϕd−2(z) + f2(d−1)(θ)ϕ2(d−1)(z)

where f0, fd−2 and f2(d−1) are given in Lemma 6.3, and ϕ0, ϕd−2 and
ϕ2(d−1) are Neumann eigenfunctions with the corresponding eigenvalues on

Ã ⊂ Sd−2. In particular, ϕ0 is a constant, ϕd−2 is the restriction to Ã of
a Neumann homogeneous degree 1 harmonic function ṽ on Γ̃ ⊂ Rd−1, and
ϕ2(d−1) is the restriction to Ã of a Neumann homogeneous degree 2 harmonic

function ũ on Γ̃.
The homogeneous degree 2 Neumann harmonic function u is then given

by extending this eigenfunction on A using the homogeneity:

u(x+ sx0) = |x+ sx0|2
(
cos2 θũ

(
x

|x|

)
+ sin θ cos θṽ

(
x

|x|

)
+ ϕ0

(
sin2 θ − 1

d− 1
cos2 θ

))
= |x+ sx0|2

(
|x|2

|x+ sx0|2
1

|x|2 ũ(x) +
s|x|

|x+ sx0|2
1

|x| ṽ(x)

+ ϕ0

(
s2

|x+ sx0|2
− 1

d− 1

|x|2
|x+ sx0|2

))
= ũ(x) + sṽ(x) + ϕ0

(
s2 − 1

d− 1
|x|2

)
where we used sin2 θ = s2

s2+|x|2 and cos2 θ = |x|2
s2+|x|2 , the expressions for f0,

fd−2 and f2(d−1) from Lemma 6.3, and the homogeneity of ṽ and ũ.

Remark 6.4. The proof above applies with minor modifications to prove
that for any positive integer k, the values of μ which can give rise to an
eigenfunction on A with eigenvalue λ = k2 + (d − 2)k (corresponding to
the restriction of a harmonic function on Γ̃ × R which is homogeneous of
degree k) are precisely μ = j2 + (d − 3)j for j = 0, . . . , k (corresponding
to eigenfunctions on Ã given by the restriction of a harmonic function on Γ̃
which is homogeneous of an integer degree no greater than k).

Lemma 6.5. If Γ̃ is a tame cone in a (d − 1)-dimensional subspace E =
(x0)

⊥ of Rd, then Γ̃⊕ Rx0 is a tame cone in Rd.
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Proof. Suppose u is a homogeneous degree two Neumann harmonic function

on Γ̃⊕ Rx0, with bounded second derivatives. By Lemma 6.2 we can write

u(x+ sx0) = ũ(x) + sṽ(x) + C

(
s2|x0|2 −

1

d− 1
|x|2

)
for every x ∈ Γ̃,

where ũ is a homogeneous degree 2 Neumann harmonic function on Γ̃, ṽ

is a homogeneous degree 1 Neumann harmonic function on Γ̃, and C is

constant. The last term has bounded second derivatives, so the sum of the

other two terms must also. Fixing s = 0 we conclude that ũ has bounded

second derivatives, and hence is quadratic function since Γ̃ is tame. Fixing

s = 1 we conclude that ṽ also has bounded second derivatives. But the

second derivatives of a homogeneous degree one function are homogeneous

of degree −1, and hence are unbounded unless they are zero. Therefore ṽ is

a linear function, and we conclude that u is a quadratic function.

Now, we complete the proof of Theorem 6.1. We apply an induction on

dimension. Suppose that u is a homogeneous degree 2 Neumann harmonic

function on Γ with bounded second derivatives. We must show that u is a

quadratic function.

First, for d = 1 then every Neumann harmonic function is constant,

so every homogeneous degree 2 Neumann harmonic function vanishes and

hence is a quadratic function.

Now suppose that every polyhedral cone in Rp is tame for 1 ≤ p < d,

and let Γ be a polyhedral cone in Rd. We observe that by Lemma 5.13, for

every x0 ∈ ∂Γ \ {0} the tangent cone Γx0
is a product of a cone Γ̃ in (x0)

⊥

with Rx0. By the induction hypothesis, Γ̃ is tame, and hence by Lemma 6.5

we conclude that Γx0
is tame. That is, Γ \ {0} is a tame domain. It follows

from Theorem 5.3 that u is C2 on Γ \ {0}.
Since the second derivatives of u are bounded, there exists a sequence

(xk)k≥1 of points xk in Γ and a sequence (ek)k≥1 of ek ∈ Sd−1 such that

eTkD
2u(xk)ek → C2 := sup

(x,e)∈Γ×Sd−1

eTD2u(x)e as k → +∞.

The second derivatives of a homogeneous degree 2 function are homogeneous

of degree zero, so we can replace (xk)k≥1 by (x̃k)k≥1 given by x̃k = xk

|xk| ∈
Sd−1 ∩ Γ, and conclude that eTkD

2u(x̃k)ek → C2 as k → +∞. By compact-

ness, (x̃k, ek) converges for a subsequence of k to (x̄, e) ∈ (Sd−1 ∩ Γ)× Sd−1.

Since u is C2 at x̄, we have that D2u|x̄(ē, ē) = C2.
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Now we apply Lemma 4.5 with B = Γ \ {0}, and deduce that Γ =
ΓE × Γ⊥, where ΓE is a polyhedral cone in a subspace E of Rd of positive
dimension K, and Γ⊥ is a polyhedral cone in E⊥, and we have

u(x) = Λ|πE(x)|2 + g(πE⊥(x)).

If K = dimE = d then since u is harmonic we have Λ = 0 and u vanishes.
Otherwise we write

u(x) = KΛ

(
1

K
|πE(x)|2 −

1

d−K
|πE⊥(x)|2

)
+ g̃(πE⊥(x)).

The first term is harmonic, and u is harmonic, so the last term g̃ is also
harmonic. Furthermore, since u is homogeneous of degree 2, so is g̃, and g̃
also satisfies zero Neumann boundary conditions on Γ⊥ since u and the first
term do. Finally, g̃ has bounded second derivatives since u does. Therefore by
the induction hypothesis, g̃ is a quadratic function, and so u is quadratic and
Γ is tame. This completes the induction and the proof of Theorem 6.1.

7. Concave implies regular

The results of the previous two sections allow us to complete the proof
of the main regularity result, Theorem 5.1. We begin with the following
observation.

Lemma 7.1. Let Ω be a bounded domain in Rd with a continuous boundary
∂Ω. For μ ∈ R, let v ∈ H1

loc(Ω) be weak solution of Δv + μ = 0 on Ω. If v
is semi-concave on Ω, then v belongs to C1,1(Ω).

Proof. Note, that due to classical regularity theory of second order elliptic
equations (cf [14, Corollary 8.11]), v ∈ C∞(Ω). By assumption, there is
constant C ∈ R such that D2v|x ≤ CI for every x ∈ Ω. Given any x ∈ Ω
and any unit vector e, choose an orthonormal basis {e1, · · · , ed} with e = ed.
Then

D2v|x(e, e) = Δv(x)−
d−1∑
i=1

D2v|x(ei, ei) ≥ μ− C(d− 1)

for every x ∈ Ω. Thus D2v is also bounded from below. It follows that Dv
is Lipschitz with bounded Lipschitz constant, and so extends continuously
to Ω as a Lipschitz function.

We are now ready to prove Theorem 5.1.
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Proof of Theorem 5.1. We prove that v is C2 on a neighbourhood of any
point x0 ∈ ∂Ω. Choose r > 0 sufficiently small such that

(7.1) Br(x0) ∩ Ω = x0 + r(B1(0) ∩ Γx0
)

and set

w(x) = v(x0 + rx)−Dv|x0
(rx) +

μ

2d
r2|x|2 for every x ∈ B1 ∩ Γx0

.

Then w is well-defined on B1 ∩ Γx0
, with Δw = 0 on B1 ∩ Γx0

, and

Dνw|x = rDνv|x0+rx − rDνv|x0
+

μ

d
r2 x · ν = 0 for x ∈ B1 ∩ ∂Γx0

,

since both x0 and x0+ rx are in Σi, so Dνi
v|x0+rx = Dνi

v|x0
= −γi. We also

use that x is normal to νi. This shows that w is a weak solution of (5.1). By
hypothesis, there is a constant C ∈ R such that D2v ≤ C on Ω, and so

D2w|x(e, e) = r2D2v|x0+rx(e, e) +
μ

d
r2|e|2 ≤

(
r2C +

μ

d
r2

)
|e|2

for every e ∈ Rd and x ∈ B1 ∩ Γx0
, showing that w is semi-concave on

B1 ∩ Γx0
. Thus, by Lemma 7.1, w is in C1,1(B1 ∩ Γx0

). By Theorem 6.1,
B = B1(0)∩Γx0

is tame and hence by Theorem 5.3, w ∈ C2(B). Since x0 is
arbitrary, w ∈ C2(Ω).

The results of Theorem 5.1 and Theorem 4.3 imply the following:

Corollary 7.2. Let Ω be a convex polyhedral domain in Rd with faces
Σ1, . . . ,Σm, and for given μ, γ1, . . . , γm ∈ R, let v be a weak solution of
problem (4.5). If v is semi-concave, then v is a quadratic function.

8. Quadratic solutions and circumsolids

In this section we determine precisely which are the domains on which the
solution of (1.5) (or, more generally, (4.5)) is a quadratic function:

Proposition 8.1. Let v be a quadratic function on Rd, and let E1, · · · , Ek

be the eigenspaces of the Hessian of v with eigenvalues λ1, · · · , λk. Then v
satisfies an equation of the form (4.5) on a convex polyhedral domain Ω if
and only if Ω = {x ∈ Rd | πEi

(x) ∈ Ωi}, where Ωi is a polyhedral domain in
Ei for each i. Furthermore, v satisfies equation (1.5) if and only if λi < 0
and Ωi is a circumsolid in Ei with center at the maximum of v|Ei

and radius
equal to −1/λi for each i (see Definition 1.1).
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Proof. For a quadratic function, the Hessian D2v|x is constant. Accordingly
we denote the Hessian by A and let E1, . . . , Ek be the eigenspaces of A, so
that we have v(x) = 1

2

∑k
i=1 λi|πi(x)|2 + b · x+ c, where πi is the orthogonal

projection onto Ei, where λ1, · · · , λk are the eigenvalues of A, and b ∈ Rd

and c ∈ R are constants.
First we show that v satisfies (4.5) on a polyhedral domain Ω if and only

if Ω is a product of polyhedral domains Ωi ⊂ Ei: If Ω has this form then

Ω =

k⋂
i=1

{
x | πi(x) ∈ Ωi

}
=

k⋂
i=1

mi⋂
j=1

{
x
∣∣∣ πi(x) · νij ≤ bij

}
=

⋂
i,j

{
x
∣∣∣ x · νij ≤ bij

}
,

where Ωi =
⋂mi

j=1{x ∈ Ei | x · νij ≤ bij} for each i. Thus the normals to the

faces of Ω are νji for 1 ≤ i ≤ k and 1 ≤ j ≤ mi, corresponding to the face

Σj
i = Ω ∩ {x | x · νji = bji}. The derivative of v is given by

Dv|x(e) =
k∑

p=1

λpπp(x) · e+ b · e,

so on the face Σj
i we have

Dνj
i
v|x =

k∑
p=1

λpπp(x) · νji + b · e = λix · νji + b · e = λib
j
i + b · e,

which is constant on the face. Also we have Δv =
∑k

i=1 dim(Ei)λi which is
constant, and so v is a solution of an equation of the form (4.5) on Ω.

The converse statement follows from the argument of Lemma 4.5: Equa-
tion (4.7) shows that each normal vector νi to a face of Ω is an eigenvector
of A, and so lies in Ej for some j. This allows us to write

Ω =
⋂
i

{
x ∈ R

d
∣∣∣ x · νi < bi

}

=

k⋂
j=1

⋂
νi∈Ej

{
x ∈ R

d
∣∣∣ x · νi < bi

}
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=

k⋂
j=1

⋂
νi∈Ej

{
x ∈ R

d
∣∣∣ πj(x) · νi < bi

}

=

k⋂
j=1

{
x ∈ R

d
∣∣∣ πj(x) ∈ Ωj

}
where Ωj =

⋂
i: νi∈Ej

{x ∈ Ej | x · νi < bi}.
Now we specialise to the case of equation (1.5): First suppose v is strictly

concave, so that λi < 0 for i = 1, · · · , k. Then we have

(8.1) v =
1

2

k∑
i=1

λi|πi(x)|2 + b · x+ c =
1

2

k∑
i=1

λi

∣∣∣∣πi(x)− 1

λi
πi(b)

∣∣∣∣2 + c̃

for some constant c̃. Hence 1
λi
πi(b) is the maximum point of v restricted to

Ei. The condition that Ωi is a circumsolid in Ei with centre at the maximum
of v|Ei

and radius −1/(2λi) is that

Ωi =

mi⋂
j=1

{
x ∈ Ei

∣∣∣ (
x− πi(b)

λi

)
· νij < − 1

λi

}
.

In this case, we have for x in the face Σi
j = {x | (x− πi(b)

λi
) · νij = − 1

λi
} that

Dνi
j
v(x) =

∑
p

λp

(
πp(x)−

πp(b)

λp

)
· νij

= λi

(
πi(x)−

πi(b)

λi

)
· νij

= λi
−1

λi
= −1

as required. Conversely, if we suppose that the boundary condition in (1.5)
holds, then we can show that λi < 0 for every i as follows. We have

Dv|x(e) =
k∑

p=1

λpπp(x) · e+ b · e.

Integrating over Ωi and using the divergence theorem gives

−|∂Ωi| =
∫
∂Ωi

νij ·Dv =

∫
Ωi

ΔEiv = dim(Ei)λi|Ωi|,
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so that λi < 0 and v is strictly concave. Therefore v has the form (8.1), and

the boundary condition gives

−1 = Dv|x · νij = λi

(
πi(x)−

πi(b)

λi

)
· νij

so that Ωi is a circumsolid in Ei with radius 1
λi

and centre at πi(b)
λi

.

Corollary 8.2. For a convex polyhedral domain Ω, there is a quadratic

function v solving the elliptic boundary-value problem (1.5) if and only if Ω

is a product of circumsolids.

Proof. Proposition 8.1 shows that if Ω has a quadratic solution of (1.5)

then Ω is a product of circumsolids. Conversely, suppose Ω is a product of

circumsolids. Then there is a decomposition Rd = E1 ⊕ · · · ⊕ Ek of Rd into

orthogonal subspaces E1, . . . , Ek and

Ω =

k⋂
i=1

{
x ∈ R

d
∣∣∣ πi(x) ∈ Ωi

}
,

where

Ωi :=

mi⋂
j=1

{
x ∈ Ei

∣∣∣ (x− pi) · νij < Ri

}
for some pi ∈ Ei and Ri > 0. The above calculations show that

v(x) = −1

2

k∑
i=1

|πi(x)− pi|2
Ri

for every x ∈ Ω,

is a solution of (1.5) on Ω.

Summarising, let v be a weak solution of (1.5) on a convex polyhedral

domain Ω in Rd. Then by Lemma 7.1, if v is semi-concave then v ∈ C1,1(Ω).

Note that for every boundary point x0 ∈ ∂Ω and r > 0 small enough, v can

be written as v(x0 + r·) = w + q on B1(0) ∩ Γx0
for a quadratic function q

and a weak solution w of (5.1). Then Theorem 5.3 and Theorem 6.1 state

that v ∈ C1,1(Ω) implies v is in C2(Ω) and according to Theorem 4.3,

the latter yields that v is quadratic. By Proposition 8.1, v then needs to

be concave. Combining this together with Corollary 8.2, we can state the

following characterisation.
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Corollary 8.3. Let v be a weak solution of (1.5) on a convex polyhedral

domain Ω in Rd. Then the following statements are equivalent.

(i) v is semi-concave;

(ii) v is in C1,1(Ω);

(iii) v is in C2(Ω);

(iv) v is quadratic;

(v) v is concave;

(vi) Ω is a product of circumsolids.

9. Proof of the main results

In this section, we complete the proofs of our main results: Theorem 1.3,

Theorem 1.4, and Corollary 1.5.

Proof of Theorem 1.3. Suppose Ω is polyhedral domain in Rd that is not

a product of circumsolids. We first show that for all α > 0 small enough,

the first Robin eigenfunction uα is not log-concave. Set vα = log uα. Then

v0 ≡ 0 and so, by Proposition 3.1, vα can be expanded as

vα = αv + fα,

where fα belongs to o(α) in C0,β(Ω) for all α > 0 small enough, β ∈ (0, 1),

and v is a solution of the Neumann problem (1.5) for μ = dλα

dα |α=0
. Now, by

Corollary 8.3, v is not concave on Ω. Thus, there exist x, y ∈ Ω and t ∈ (0, 1)

such that

ε := t v(x) + (1− t) v(y)− v(tx+ (1− t)y) > 0.

On the other hand, for every δ > 0, there is an α0 > 0 such that ‖fα‖∞ ≤ δα

for all 0 < α ≤ α0. Set δ = ε/4, and let α be less than the corresponding

α0. Then

tvα(x) + (1− t)vα(y)− vα(tx+ (1− t)y)

= α [t v(x) + (1− t)v(y)− v(tx+ (1− t)y)]

+ tfα(x) + (1− t)fα(y)− fα (tx+ (1− t)y)

≥ αε− 3δα > 0,

so vα is not concave for any α < α0, proving Theorem 1.3.
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Next we consider the convexity of superlevel sets {x
∣∣ uα(x) > c}. We

first establish two preliminary results. The first is a Lichnérowicz-Obata
type result for the first non-trivial Neumann eigenvalue on a convex subset
of the sphere Sd−1, which extends partially the result of [12] by allowing
non-smooth boundary, resulting in a larger class of equality cases.

Theorem 9.1. For d ≥ 3, let A be a convex open subset of the sphere Sd−1.
Then the first nontrivial eigenvalue

λ1(A) = inf
ϕ∈C∞(A):

∫
A
ϕdHd−1=0

∫
A|Dϕ|2 dHd−1∫
A|ϕ|2dHd−1

of the Neumann Laplacian on A satisfies λ1 ≥ d−1. Moreover, λ1(A) = d−1
if and only if the cone Γ = {x = rz ∈ Rd | z ∈ A} in Rd has a linear factor,
so that (after an orthogonal transformation) Γ = Γ̃×R for some convex cone
Γ̃ in Rd−1. In this case, the corresponding eigenfunction is the restriction to
Sd−1 of the linear function L(x, y) = y for (x, y) ∈ Rd−1 × R.

Proof. First suppose that A has smooth boundary. Then for any u ∈ H1(A)
and f ∈ H3(A) with Dνf = 0 on ∂A, the following Reilly-type formula
holds: ∫

A
(Δf − (d− 1)u)2 dHd−1 −

∫
A
|∇2f − ug|2dHd−1

− (d− 2)

∫
A
|∇f +∇u|2dHd−1 −

∫
∂A

h(∇̄f, ∇̄f)dHd−1

= (d− 2)

[
(d− 1)

∫
A
u2dHd−1 −

∫
A
|∇u|2dHd−1

]
,

(9.1)

where ∇ is the covariant derivative on Sd−1, h is the second fundamental
form of ∂A, and ∇̄f is the gradient vector of the restriction of f to ∂A. This
is proved by integration by parts and application of the curvature identity
(the proof due to the first author for the situation without boundary is
described in [10, Theorem B.18]).

In particular, given u ∈ H1(A) with
∫
A u dHd−1 = 0, let f be a solution

of the problem

(9.2)

{
Δf = (d− 1)u on A;

Dνf = 0 on ∂A.

With this choice of f , the first term on the left hand-side in (9.1) vanishes,
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and the remaining terms are non-positive, so the right-hand side is non-

positive, proving the following Poincaré inequality∫
A
|∇u|2 dHd−1 ≥ (d− 1)

∫
A
u2dHd−1

for all u ∈ H1(A) with
∫
A u dHd−1 = 0, implying that λ1(A) ≥ d− 1.

Now, consider the general case, where the boundary of A may not be

smooth. Suppose that {An} is a sequence of convex domains in Sn with

smooth boundary, which converge in Hausdorff distance to A (these can be

constructed by smoothing level sets of the distance to ∂A, for example). Let

{un} be the corresponding sequence of first eigenfunctions, normalised to∫
An

u2n dHd−1 = 1. The solution of (9.2) is then given by fn = − d−1
λ1(An)

un.

As n → ∞ we have λ1(An) → λ1(A), so λ1(A) ≥ d− 1.

Suppose that equality holds. Then, we can find a subsequence along

which un converges weakly in H1 to the first eigenfunction u on A, and

the interior regularity estimates imply that un converges to u in C∞(B)

for any compact subset B of A. The right-hand side of (9.1) is equal to

(d− 1)− λ1(An), which converges to zero as n → ∞. The first term on the

left hand-side in (9.1) is equal to zero for every n, and the last term on the

left is non-positive by the convexity of An. Thus, on any compact subset B

of A, we have∫
B
|∇2fn − (d− 1)un|2 dHd−1 + (d− 2)

∫
B
|∇fn +∇un|2 dHd−1

≤
∫
An

|∇2fn − (d− 1)un|2 dHd−1 + (d− 2)

∫
An

|∇fn +∇un|2 dHd−1

≤ (d− 2)(λ1(An)− (d− 1)).

Since fn converges to −u in C∞(B), one has that∫
B
|∇2fn − (d− 1)un|2 dHd−1 + (d− 2)

∫
B
|∇fn +∇un|2 dHd−1

→
∫
B
|∇2u+ ug|2 dHd−1

as n → +∞, while (λ1(An) − (d − 1) → 0 as n → ∞. Therefore we have

∇2u+ ug = 0 at every point of B, and hence at every point of A since B is

an arbitrary compact subset of A.



298 Ben Andrews et al.

It follows that u is the restriction of a linear function on Rd to Sd−1. To
see this, define e(z) := u(z)z +∇iu(z)g

ij∂jz ∈ Rd. Then we have

∂ke = ∂kuz + u∂kz +∇k∇iug
ij∂jz +∇iug

ij(−gkiz)

= (∇2u+ ug)kig
ij∂jz = 0,

so that e is constant on A. Finally, we have u(z) = e(z) · z, which is a
linear function. The claimed structure of A now follows from the Neumann
condition Dνu = 0.

This result has an immediate consequence, which is important in our
proof of Theorem 1.4.

Lemma 9.2. Let Γ be a polyhedral convex cone in Rd with vertex at the
origin. Then there is a harmonic function ŵ on Γ which is homogenous of
degree one and satisfies Dνŵ = −1 on ∂Γ.

Proof. Set A := Γ ∩ Sd−1. First, consider the case when Γ does not admit a
linear factor. Then by Theorem 9.1, d−1 is in the resolvent set ρ(−ΔS

d−1

|A ) of

the operator −ΔS
d−1

|A equipped with homogeneous Neumann boundary con-

ditions and realised in L2(A). Therefore, there exists a unique weak solution
ϕ̃ of

(9.3)

{
ΔS

d−1

ϕ̃+ (d− 1)ϕ̃ = 0 on A,

Dνϕ̃ = −1 on ∂A.

It follows that the function

ŵ(rz) := r ϕ̃(z) for every r ∈ [0, 1] and z ∈ A

is harmonic on Γ, homogeneous of degree one, and satisfies Dνŵ = −1 on
∂Γ.

Now, suppose Γ has a linear factor, so that there is a k ∈ {1, . . . , d− 1}
such that A = (Rk⊕ Γ̃)∩Sd−1 for a polyhedral cone Γ̃ in Rd−k with no linear
factors. In particular, if k = d − 1 then Γ̃ = (0,+∞), and then ϕ̃(z) = z is
a solution of (9.3) on Γ̃ and so,

ŵ(x1, . . . , xd−1, z) := z for every (x1, . . . , xd−1, z) ∈ Γ

is harmonic on Γ, homogeneous of degree one, and satisfies Dνŵ = −1 on
∂Γ. Otherwise we have 1 ≤ k ≤ d−2 and Γ̃ is a convex polyhedral cone with
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has no linear factor. Then by the first case, there is a harmonic function w̃
on Γ̃ which is homogeneous of degree one and satisfies Dνw̃ = −1 on ∂Γ̃.
Then the function

ŵ(x1, . . . , xk, z) := w̃(z) for every (x1, . . . , xk, z) ∈ R
d−k × Γ̃ = Γ

is a harmonic on Γ, homogeneous of degree one, and satisfies Dνŵ = −1 on
∂Γ. We note that the solution space is in general of dimension k, since we
can add an arbitrary linear function on the linear factors.

Further, in dimension d ≥ 3, we will use the following characterisation
of polyhedra with boundary points with inconsistent normals. We omit the
proof of this result.

Proposition 9.3. Let Ω be a convex polyhedral domain in Rd, d ≥ 2, with
outer unit face normals ν1, . . . , νm. For each point x ∈ ∂Ω, let I(x) be
the index set (1.4) of faces touching x. Then the following statements are
equivalent.

1. x has inconsistent normals: That is, there is no γ ∈ Rd satisfying

νi · γ = −1 for every i ∈ I(x).

2. If ŵ is a function on Γx which is harmonic and homogeneous of degree
one and satisfies

Dνi
ŵ = −1 on Σi for all i ∈ I(x),

then ŵ is not a linear function.
3. The tangent cone Γx to Ω is not a circumsolid.

We now proceed to the proof of Theorem 1.4:

Proof of Theorem 1.4. Under the assumptions of Theorem 1.4, we first prove
that the function v satisfying the Neumann problem (1.5) has some non-
convex superlevel sets.

Let x0 ∈ ∂Ω and Γ = Γx0
, and choose r > 0 small enough so that (7.1)

holds. We define

ṽ(x) := v(x0 + x) +
μ

2d
|x|2 for x ∈ Br(0) ∩ Γ.

Then ṽ is harmonic on Br ∩ Γ and satisfies Dν ṽ = −1 on Br ∩ ∂Γx0
. By

Lemma 9.2, there is a harmonic function ŵ on Γ which is homogenous of
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degree one and satisfies Dνŵ = −1 on ∂Γ. Then the function

w(x) := ṽ(x)− ŵ(x) for every x ∈ Br(0) ∩ Γ

is a weak solution of the Neumann problem (4.1) onBr(0)∩Γ. Proposition 5.5

applied to a suitable dilation of w gives the series expansion (5.8). Therefore,

v can be written as

(9.4) v(x0 + x) = − μ

2d
|x|2 + ŵ(x) +

∞∑
i=0

fi ψi(x) for every x ∈ Br ∩ Γ,

where ψi is the harmonic function on Γ given by

ψi(x) := sβiϕi(z) for every x = sz with s > 0 and z ∈ A.

Here A = Γ ∩ Sd−1, {ϕi}∞i=0 is an orthonormal basis of L2(A) consisting of

eigenfunctions ϕi of the Neumann-Laplacian ΔS
d−1

on A, and βi are given

by (5.9). Further, β0 = 0 (corresponding to λ0 = 0), and the remaining βi
are estimated by Theorem 9.1 and (5.9), so that βi ≥ 1 for i ≥ 1. Moreover,

there is no loss of generality in assuming that each βi > 1, since w̃(x) :=∑
i:βi=1 fiψi(x) is harmonic on Γ, of homogeneous degree one, and satisfies

Dνw̃ = 0 on ∂Γ, and so w̃ can be included in ŵ. Summarising, we can write

(9.5) v(x0 + x) = v(x0)−
μ

2d
|x|2 + ŵ(x) +

∞∑
i=1

fi ψi(x)

for every x ∈ Br ∩ Γ, where the non-vanishing terms in the sum all have

exponent βi > 1.

Before continuing the proof of Theorem 1.4, we observe that the proof

of Theorem 5.3 applies almost without change to prove the following gener-

alisation:

Theorem 9.4. Let Ω be a polyhedral domain in Rd, and B a relatively open

subset of Ω. Let w ∈ H1(B) be a weak solution of problem (5.1). For each

x0 ∈ B ∩ ∂Ω, choose r(x0) > 0 small enough so that (7.1) holds, so that by

Proposition 5.5 w is given by the expansion

w(x0 + x) =

∞∑
i=0

fi(x0)ψ
x0

i (x) for every x ∈ Br(x0)(0) ∩ Γx0
,
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where ψx0

i is the harmonic function on Γx0
given by ψx0(x)= |x|βi(x0)ϕx0

i

(
x
|x|

)
,

Ax0
= Γx0

∩ Sd−1, {ϕx0

i }∞i=0 is an orthonormal basis of L2(Ax0
) consisting

of eigenfunctions ϕx0

i of the Neumann-Laplacian ΔS
d−1

on Ax0
, and βi(x0)

are given by (5.9). If fi(x0) �= 0 only for those i with βi(x0) ≥ 2 for every
x0 ∈ B ∩ ∂Ω, then w ∈ C2(B).

Continuation of the Proof of Theorem 1.4.

The case of inconsistent normals: In the case where Ω has a bound-
ary point x0 where the normal vectors are inconsistent, we have by Proposi-
tion 9.3 that ŵ is not a linear function. It follows that ŵ does not have convex
superlevel sets: Choosing any point z ∈ A where ŵ(z) �= 0 and D2ŵ|z �= 0,
we have that z is a null eigenvector ofD2ŵ (since ŵ is homogeneous of degree
one), and that the trace of D2ŵ|z on the orthogonal subspace (Rz)⊥ is zero
(since ŵ is harmonic). It follows that D2ŵ|z has an eigenvector ξ ∈ (Rz)⊥

with positive eigenvalue, so that D2ŵ|z(ξ, ξ) > 0.

Now let η = ξ − Dŵ|z(ξ)
ŵ(z) z. Then we have

Dŵ|z(η) = Dŵ|z(ξ)−
Dŵ|z(ξ)
ŵ(ξ)

Dŵ|z(z) = 0,

since Dŵ|z(z) = ŵ(z) by the homogeneity of ŵ. Also, we have

D2ŵ|z(η, η) = D2ŵ|z(ξ, ξ) > 0,

since z is a null eigenvector of D2ŵ|z. It follows that the superlevel set
S = {x | ŵ(x) > ŵ(z)} is not convex near z, since for small s �= 0 we have
ŵ(z± sη) > ŵ(z) and hence z± sη ∈ S, but z /∈ S. Since ŵ is homogeneous,
the superlevel sets Sλ = {x | ŵ(x) > λŵ(z)} are also non-convex near λz,
for any λ > 0.

Now we conclude that v also has some non-convex superlevel sets: By
the non-convexity and openness of S, there exist points x1 and x2 in Γ such
that x1, x2 ∈ S but x1+x2

2 /∈ S. It follows that there exists ε > 0 such that
ŵ(xi) > ŵ(z) + ε for i = 1, 2, but ŵ

(
x1+x2

2

)
< ŵ(z) − ε. Now we use the

expression (9.4) to write

v(x0 + λxj) = v(x0) + λŵ(xj)−
μ

2d
λ2|xj |2 +

∑
i>1

fiλ
βi

ψi(xj)

= v(x0) + λ

(
ŵ(xj)−

μλ

2d
|xj |2 +

∑
i>1

λβi−1ψi(xj)

)
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> v(x0) + λ (ŵ(xj)− ε)

> v(x0) + λŵ(z)

for j = 1, 2, for λ > 0 sufficiently small. Here we used the fact that the sum∑
i>1 λ

βi−1ψi(xj) converges to zero as λ approaches zero, which follows as
in the proof of Lemma 5.6. Similarly, we have

v

(
x0 + λ

x1 + x2
2

)
< v(x0) + λŵ(z)

for λ > 0 sufficiently small. This proves that the superlevel set {x | v(x) >
v(x0) + λŵ(z)} is not convex.

The case of consistent normals: Now we consider the case where
the normals are consistent at every point. By Proposition 9.3 this implies
that for every x0, the function ŵ on Γx0

provided by Lemma 9.2 is linear. If
for every x0 the non-zero terms in the expansion of the Neumann harmonic
function w(x) =

∑∞
i=1 fiψi(x) had exponent βi ≥ 2 for every x0, then by

Proposition 9.4 w is C2 near x0 and hence (9.5) implies that v is also C2

near x0.
However, if we assume that Ω is not a product of circumsolids, then

by Corollary 8.3, we have that v is not C2 and so there must be some
x0 ∈ ∂Ω such that the first nontrivial term in the sum in (9.5) has exponent
βi between 1 and 2: Precisely, we can assume (by choosing a new basis for
the corresponding eigenspace if necessary) that

v(x0 + x) = v(x0)−
μ

2d
|x|2 + f1ψ1(x) +

∞∑
i>1

fi ψi(x) + ŵ(x)

for every x ∈ Br ∩ Γ, where f1 > 0, 1 < β1 < 2, and βi > β1 for i > 1. Since
ψi is homogeneous of order βi and ŵ(x) = x · γ, we have

Dv|x0+λx(ξ) = γ · ξ − μλ

d
x · ξ +

∞∑
i≥1

fi λ
βi−1Dψi

∣∣
x
(ξ)(9.6)

D2v|x0+λx(ξ, η) = −μ

d
ξ · η + f1λ

β1−2D2ψ1|x(ξ, η)+

+

∞∑
i>1

fi λ
βi−2D2ψi

∣∣
x
(ξ, η)

(9.7)

for every x ∈ Br(0) ∩ Γ, λ ∈ (0, 1), and ξ, η ∈ Rd.
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To see that v has a non-convex superlevel set, it suffices to show that
there exists x with x0 + x ∈ Ω, and ξ ∈ Rd, such that

Dv|x0+x(ξ) = 0 and D2v|x0+x(ξ, ξ) > 0.

We note that as λ approaches zero, the right-hand side of (9.6) is dominated
by the first term since the remaining terms are homogeneous of positive
degree in λ, while the right-hand side of (9.7) is dominated by the first
non-trivial term in the sum since this is homogeneous of degree β1 − 2 < 0
in λ.

This motivates the following lemma:

Lemma 9.5. Suppose that the restriction of ψ1 to the hyperplanar section
L := {x ∈ Γ | γ ·x = |γ|} of Γ = Γx0

is not concave. Then v has a non-convex
superlevel set.

Proof. Since the restriction of ψ1 to L is not concave, there exists x ∈ L and
ξ0 ⊥ γ such that D2ψ1|x(ξ0, ξ0) > 0. The expression (9.6) then implies

Dv|x0+λx(ξ0) = O(λβ1−1), and Dv|x0+λx(x) = |γ|+O(λβ1−1),

for λ → 0+, from which it follows that Dv|x0+λx(ξ0 + c(λ)x) = 0 for some
c(λ) = O(λβ1−1) as λ → 0+. Then we have by (9.7) that

D2v|x0+λx(ξ0 + c(λ)x, ξ0 + c(λ)x) = λβ1−2
(
f1D

2ψ1|x(ξ0, ξ0) +O(λσ)
)
,

where σ = min{β1 − 1, 2− β2, β2 − β1}. Thus and since D2ψ1|x(ξ0, ξ0) > 0,
we have that D2v|x0+λx(ξ0 + c(λ)x, ξ0 + c(λ)x) > 0 for λ > 0 sufficiently
small, proving that v has a non-convex superlevel set.

Remark 9.6. We are unable to establish the hypothesis of Lemma 9.5 for
dimensions d ≥ 3, but note here that this would be sufficient to prove that v
has a non-convex superlevel set whenever Ω is not a product of circumsolids,
substantially strengthening the result of Theorem 1.4.

The case d = 2: We can establish the hypothesis of Lemma 9.5 in the
case d = 2, as follows: In this case the tangent cone Γx0

at any boundary
point x0 ∈ ∂Ω is a sector with opening angle θ0 ≤ π. The case θ0 = π
cannot arise, since in that case the homogeneous Neumann harmonic func-
tions on the half-plane Γx0

are spherical harmonics with integer degree of
homogeneity, so one cannot have β1 ∈ (1, 2). Therefore θ0 ∈ (0, π).

Let γ be the inward-pointing bisector of this sector of length 1/ sin
(
θ0
2

)
.

Then we have νi · γ = −1 for i = 1, 2, where ν1 and ν2 are the outer unit
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normal vectors to the two faces of Ω which meet at x0. The homogenous
degree one harmonic function of Lemma 9.2 is then given by ŵ(x) = γ ·x. In
particular ŵ is linear, so we are in the situation where all boundary points
have consistent normals. The corresponding eigenfunctions are given by

ψi(r (cos θ) e1 + r (sin θ) e2) =

⎧⎨⎩r
iπ

θ0 cos
(
iπ
θ0
θ
)
, i even;

r
iπ

θ0 sin
(
iπ
θ0
θ
)
, i odd,

for every θ ∈
(
− θ0

2 ,
θ0
2

)
. For every non-negative integer i, ψi has degree of

homogeneity βi =
iπ
θ0
. Here, e1 =

γ
|γ| , and e2 is a unit vector orthogonal to γ.

Γ

(0, 0)

γ
Rγ

S1

A
L

Figure 9: The case d = 2.

The only possibilities which can give rise to 1 < βi < 2 are where
θ0 ∈ (π/2, π) and i = 1. In this case ψ1 is odd in θ, and hence is an odd
function when restricted to the line L (see Figure 9). Since an odd concave
function is necessarily a multiple of the identity function, the only possibility
in which ψ1 has a concave restriction to L is when

ψ1(e1 + ye2) = cy,

which implies by homogeneity that

ψ1(xe1 + ye2) = cxβ1−1y.
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However a direct computation shows that this is harmonic only in the cases
β1 = 1 or β1 = 2, which are impossible. This proves Lemma 9.5 for the
case d = 2, so we have established that v has a non-convex superlevel set
whenever Ω is not a product of circumsolids. We note that for d = 2 this
applies except when Ω is either a circumsolid or a rectangle.

Now we complete the proof of Theorem 1.4, by proving that the Robin
eigenfunction uα also has some non-convex superlevel sets for sufficiently
small α > 0:

By Proposition 3.1, for all sufficiently small α > 0, the first Robin eigen-
function uα is given by

(9.8) uα = 1+ αv + fα

where fα is o(α) in C0,β(Ω) for some β ∈ (0, 1).

We have proved that v has some non-convex superlevel sets, which means
that there exist points x1 and x2 in Ω, a number c ∈ R, and ε > 0 such that
v(xi) > c+ ε for i = 1, 2, but v

(
x1+x2

2

)
< c− ε. But then we have by (9.8)

for α sufficiently small that

uα(xi) = 1 + αv(xi) + o(α) > 1 + αc+ αε+ o(α) > 1 + αc

for i = 1, 2, while

uα

(
x1 + x2

2

)
= 1 + αv

(
x1 + x2

2

)
+ o(α) < 1 + αc− αε+ o(α) < 1 + αc.

It follows that the superlevel set {x |uα(x) > 1 + αc} is not convex for
sufficiently small α > 0.

It remains to give the proof of Corollary 1.5.

Proof of Corollary 1.5. It suffices to show the following: If Ω is a convex
domain for which the Robin ground state uα(Ω) is not log-convex (or has
a non-convex superlevel set) for some α, and {Ωn} is a sequence of convex
domains which approach Ω in Hausdorff distance, then the Robin eigenfunc-
tion uα,n of Ωn is not log-concave (respectively, has a non-convex superlevel
set) for sufficiently large n.

We apply Proposition 3.2, which applies since the volume and perimeter
of convex sets are continuous with respect to Hausdorff distance. In particu-
lar, by (3.2) the eigenfunctions un,α converge uniformly to uα on any subset
which is contained in Ωn for all large n.
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Under the assumption that uα is not log-concave on Ω, there exist points
x1 and x2 in Ω such that 1

2(log uα(x1) + log uα(x2)) > log uα
(
x1+x2

2

)
, or

equivalently uα(x1)uα(x2) > uα
(
x1+x2

2

)2
. For sufficiently large n the points

x1, x2 and x1+x2

2 are all contained in Ωn, and hence we have

uα,n(x1)uα,n(x2)− uα,n

(
x1 + x2

2

)2

→ uα(x1)uα(x2)− uα

(
x1 + x2

2

)2

> 0

as n → ∞, and hence the left-hand side is positive for sufficiently large n,
proving that uα,n is not log-concave for n large.

Similarly, under the assumption that uα has a non-convex superlevel
set, there exist points x1, x2 in Ω and c ∈ R such that uα(xi) > c for
i = 1, 2, while uα

(
x1+x2

2

)
< c. As before the convergence of uα,n to uα at

the points x1, x1 and x1+x2

2 guarantees that uα,n(xi) > c for i = 1, 2 and
uα,n

(
x1+x2

2

)
< c for n sufficiently large, proving that uα,n has a non-convex

superlevel set.

10. Discussion and conjectures

We conclude this paper by formulating some observations and conjectures.

We recall that the Dirichlet eigenvalue problem corresponds to the lim-
iting case α → +∞ in which it is well-known (cf [6]) that the first eigen-
function is log-concave. Thus, our first conjecture is naturally:

1. Conjecture. For a given bounded convex domain Ω, there is an
α0 > 0 such that for all α ≥ α0, the first Robin eigenfunction uα is
log-concave.

Furthermore, it would be interesting to know whether the threshold α0

depends on the dimension d ≥ 2 and whether it can be independent of the
domain Ω.

Let Ω be a convex polyhedral domain that is not the product of circum-
solids. In order to prove in dimensions d ≥ 3 that the first Robin eigen-
function uα has non-convex superlevel sets without imposing the stronger
hypothesis Ω has inconsistent normals at some boundary point, our proof
of Theorem 1.4 shows that one needs to study the second case when the
harmonic function ŵ given by Lemma 9.2 is linear. The linear case in dimen-
sion d = 2 is much simpler to treat than the (d− 1)-dimensional hyperplane
H := {x ∈ Rd |x · γ = |γ|} reduces to a line segment L. Nevertheless, we are
convinced that the following conjecture holds.
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2. Conjecture. If Ω is a convex polyhedron in Rd for d ≥ 3 which
is not a product of circumsolids, then for sufficiently small α > 0, the
first Robin eigenfunction uα has non-convex superlevel sets.

Our argument shows that it would be sufficient to establish Lemma

9.5 whenever Γ is a polyhedral convex cone which is a circumsolid about

the point γ, and ψ1 is a homogeneous harmonic function with Neumann

boundary conditions on Γ with degree of homogeneity between 1 and 2 (see

Remark 9.6).

Our initial motivation for the work undertaken in this paper was to es-

tablish the fundamental gap conjecture for Robin eigenvalues:

Let Ω be a bounded convex domain in Rd of diameter D, V be a weakly
convex potential, and for α > 0, let λi(α) be the Robin eigenvalues on
the interval (−D

2 ,
D
2 ). Then for α > 0, the Robin eigenvalues λVi (α) of

the Schrödinger operator −Δ+ V satisfy

λV1 (α)− λV0 (α) ≥ λ1(α)− λ0(α).

In the Dirichlet case this conjecture was first observed by van den Berg

[23] and then later independently suggested by Ashbaugh and Benguria [5],

and Yau [24]. The complete proof of the fundamental gap conjecture in this

case was given in [1]. Theorem 2.1 is a first attempt to prove the fundamen-

tal gap conjecture for Robin eigenvalues, but provides non-optimal lower

bounds. But due to our main Theorem 1.3, it is clear that this conjecture

can only be proved by methods avoiding the log-concavity of the first Robin

eigenfunction. To the best of our knowledge, only Lavine’s work [17] pro-

vides a proof of the fundamental gap conjecture which does not use the

log-concavity of the first eigenfunction. That paper concerns the Dirichlet

and Neumann case on a bounded interval. With this in mind, we conclude

with the following question:

Open problem. How can one prove the fundamental gap conjecture
for Robin eigenvalues without using the log-concavity of the first eigen-
function?

In the recent work [3], we adapted Lavine’s method on a bounded interval

to show that the fundamental gap conjecture for Robin eigenvalues of the

linear Schrödinger operator holds. In dimension d ≥ 2 the above problem

still remains open.
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