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Intersection of almost complex submanifolds

Weiyi Zhang
∗

We show the intersection of a compact almost complex subvari-
ety of dimension 4 and a compact almost complex submanifold of
codimension 2 is a J-holomorphic curve. This is a generalization
of positivity of intersections for J-holomorphic curves in almost
complex 4-manifolds to higher dimensions. As an application, we
discuss pseudoholomorphic sections of a complex line bundle. We
introduce a method to produce J-holomorphic curves using the dif-
ferential geometry of almost Hermitian manifolds. When our main
result is applied to pseudoholomorphic maps, we prove the singu-
larity subset of a pseudoholomorphic map between almost complex
4-manifolds is J-holomorphic. Building on this, we show degree one
pseudoholomorphic maps between almost complex 4-manifolds are
actually birational morphisms in pseudoholomorphic category.
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1. Introduction

A pseudoholomorphic curve (to the author’s knowledge, first studied in [28])
is a smooth map from a Riemann surface into an almost complex manifold
(M,J) that satisfies the Cauchy-Riemann equation. Gromov [14] first intro-
duced this notion as a fundamental tool to study symplectic manifolds. It has
since revolutionized the field of symplectic topology and greatly influenced
many other areas such as algebraic geometry, string theory, and 4-manifolds.
The image of a J-holomorphic curve is called a J-holomorphic 1-subvariety
(or misleadingly also called a J-holomorphic curve), whose complete defini-
tion will be recalled shortly. It is the analogue of a one dimensional subvariety
in algebraic geometry.

The positivity of intersection of distinct irreducible J-holomorphic curves
is a fundamental result in the theory of J-holomorphic curves [14, 24, 27], in
particular when the ambient manifold is of dimension 4. On the other hand,
the intersection theory of complex submanifolds, or more generally complex
subvarieties, is a well established subject. In particular, it is a basic result
that the intersection of complex submanifolds is a possibly singular com-
plex subvariety. This is clear from the “mapping out” viewpoint: namely,
a complex submanifold could be expressed locally as the zero locus of ana-
lytic functions in terms of complex coordinates. This leads to the divisor-line
bundle correspondence in complex geometry, where we view the sections as
complex codimension one submanifolds in the total space of the line bundle.

Most research in the theory of J-holomorphic curves, like the Gromov-
Witten theory, take the “mapping into” viewpoint. On the other hand,
Taubes’ SW=Gr uses the “mapping out” viewpoint with a limit process,
where J-holomorphic curves are constructed as limits of the zero loci of so-
lutions of Seiberg-Witten equations. The goal of our paper is to develop the
“mapping out” approach and see how it might also help to produce deeper
understanding of the “mapping into” viewpoint.

As we have seen in the complex setting, the “mapping out” approach is
essentially the intersection theory of almost complex submanifolds. Hence,
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our study could also be extended to higher dimensional J-holomorphic sub-

varieties. However, the almost complex case is much harder since we no

longer have complex coordinates.

Before we start to introduce our results, we first define J-holomorphic

subvarieties. A J-holomorphic subvariety is a finite set of pairs {(Vi,mi), 1 ≤
i ≤ m}, where each Vi is an irreducible J-holomorphic subvariety and each

mi is a positive integer. Here an irreducible J-holomorphic subvariety is the

image of a somewhere immersed pseudoholomorphic map φ : X → M from

a compact connected smooth almost complex manifold X.

We have an equivalent description of irreducible subvarieties of dimen-

sion 2, i.e. irreducible 1-subvarieties, as in [34]. A closed set C ⊂ M with fi-

nite, nonzero 2-dimensional Hausdorff measure is said to be an irreducible J-

holomorphic 1-subvariety if it has no isolated points, and if the complement

of a finite set of points in C, called the singular points, is a connected smooth

submanifold with J-invariant tangent space. Any irreducible 1-subvariety is

the image of a J-holomorphic map φ : Σ → M from a compact connected

curve Σ where φ is an embedding off a finite set. These two definitions are

equivalent because any J-holomorphic curve u : Σ → M may be expressed

as a composition of a holomorphic branched covering b : Σ → Σ′ and a

somewhere injective J-holomorphic map u′ : Σ′ → M .

The simplest situation of the intersection of almost complex submani-

folds is when there is no “excess intersection” phenomenon, see the discussion

following Corollary 1.3. For this reason, we require one of the submanifolds

to be of codimension 2.

Question 1.1. Suppose (M2n, J) is an almost complex 2n-dimensional man-

ifold, and Z2 is a compact connected almost complex submanifold of codi-

mension 2. If the intersection Z1∩Z2 is not one of Zi, is it a J-holomorphic

subvariety of dimension dimR Z1 − 2?

The statement is apparently true if Z1 and Z2 intersect transversely, or

the intersection is known to be a smooth manifold. It is well known that if

a connected compact J-holomorphic curve is not contained in a connected

compact codimension 2 almost complex submanifold then their intersection

is a finite set, see Lemma 2.2. This is the simplest form of positivity of inter-

sections, a phenomenon first noticed by Gromov in [14]. In dimension 4, the

strongest form is known. Any intersection point of two distinct irreducible

J-holomorphic subvarieties contributes positively [27, 24].

As the next step, we are able to give an affirmative answer to Question

1.1 when dimZ1 = 4. In fact, we have the following more general form.
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Theorem 1.2. Suppose (M2n, J) is an almost complex 2n-manifold, and
Z2 is a codimension 2 compact connected almost complex submanifold. Let
(M1, J1) be a compact connected almost complex 4-manifold and u : M1 →
M a pseudoholomorphic map such that u(M1) � Z2. Then u−1(Z2) supports
a J1-holomorphic 1-subvariety in M1.

Notice we do not require our almost complex structures J or J1 to be
tamed by a symplectic form. Recall that an almost complex structure J
is said to be tamed by a symplectic form ω if the bilinear form ω(·, J ·) is
positive definite. We say J is tamed if we do not specify such a symplectic
form albeit there exists one. An almost complex structure J is compatible
with ω if J is tamed by ω and ω(v, w) = ω(Jv, Jw) for any v, w ∈ TM . We
also say J is almost Kähler if we do not specify such a symplectic form.

In the statement of Theorem 1.2, a set supporting a pseudoholomorphic
1-subvariety means it is the support |Θ| = ∪(Ci,mi)∈ΘCi of a pseudoholo-
morphic 1-subvariety Θ. In fact, we are also able to determine the homology
class of the J1-holomorphic 1-subvariety in Theorem 1.2. The homology
class eΘ =

∑
(Ci,mi)∈Θmi[Ci] is calculated by the homology class of the sub-

manifold of M1 that is obtained in a similar manner but using a (smooth)
perturbation of u that is transverse to Z2.

Notice that the image of u might not be an irreducible J-holomorphic
subvariety of dimension 4. If u(M1) is of dimension 0, then it is a point, and
u(M1) ∩ Z2 = ∅ = u−1(Z2) since u(M1) � Z2. If u(M1) is a J-holomorphic
1-subvariety, since u(M1) � Z2 and u(M1) is connected, then u(M1) ∩ Z2

is a collection of finitely many points possibly with multiplicities, i.e. a 0-
dimensional subvariety. If u(M1) is of dimension 4, u(M1) � Z2 is the image
of J1-holomorphic subvarieties u−1(Z2). While each irreducible component
of u−1(Z2) is either contracted to a point, or mapped to a J-holomorphic
curve.

We remark that if n = 2, then the statement of Theorem 1.2 still holds
even if Z2 is merely assumed to be a J-holomorphic 1-subvariety, by virtue
of the result of [27]. This is the content of Section 3.2 and is summarized
as Theorem 3.6. This generality is useful to study pseudoholomorphic maps
between almost complex 4-manifolds.

A quick corollary of Theorem 1.2 which suffices for many applications is
the following.

Corollary 1.3. Suppose (M2n, J) is an almost complex 2n-dimensional
manifold, and Z1, Z2 are compact connected almost complex submanifolds of
dimension 4 and 2n− 2 respectively. Then the intersection Z1 ∩Z2 is either
one of Zi, or supports a J-holomorphic 1-subvariety.
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In general, Z1 and Z2 might not intersect transversely. But, if Z1∩Z2 	=
Z1 or Z2, they are “dimensional transverse” in the sense that dimR Z1 +

dimR Z2 = dimR M +dimR Z1 ∩Z2. Our codimension 2 assumption on Z2 is

used to guarantee that there are no “excess intersection” besides the trivial

case. For example, projective subspaces of complex dimensions k and l in

CPn could share common projective subspaces of any dimension no less than

k+ l−n. Moreover, the intersection could have irreducible components with

unequal dimensions.

Let us briefly explain the idea of the proof of Theorem 1.2. The first

step is to show u−1(Z2) has finite 2-dimensional Hausdorff measure. To

establish this, we first introduce a generalization of unique continuation

of pseudoholomorphic curves. This prevents u−1(Z2) from being an open

subset of M1, thus reducing our argument to a small open neighborhood

of any point in M1. Then we use a dimension reduction argument. Notice

a dimension 2 and a codimension 2 almost complex submanifolds intersect

at isolated points positively. This could be used to show the 2-dimensional

Hausdorff measure of the intersection A = u−1(Z2) is finite with the help

of a local smooth foliation of J1-holomorphic disks on M1. Then the coarea

formula would imply the finiteness of 2-dimensional Hausdorff measure of

A. This part will be done in Section 2.

If in addition, roughly speaking, we know the set A intersects positively

with all local J1-holomorphic disks, then we can show A is a J1-holomorphic

subvariety. The basic strategy dated back to [16] at least, where it works in

complex analytic setting. In the pseudoholomorphic situation, this strategy

was worked out by Taubes [33]. He introduces the notion of “positive co-

homology assignment”, which plays the role of intersection number of our

set A with each local open disk. If, in addition to H2(A) < ∞, A has a

“positive cohomology assignment”, we know A is a J1-holomorphic subvari-

ety by Proposition 6.1 of [33] (see Proposition 3.2 in our paper). Then the

argument is boiled down to finding a positive cohomology assignment when

A is considered as a subset in 4-manifold M1. The idea is, instead of using

the set A directly, we assign the intersection number of the image of our test

disk in M with the submanifold Z2 in the ambient manifold M . This part

occupies Section 3.1. In Section 3.3, we calculate the homology class of the

J1-holomorphic subvariety A.

When dimRM1 > 4, up to the higher dimensional analogue of Proposi-

tion 3.2 (Question 3.9), our argument still works to show the J1-holomor-

phicity of A. This occupies Section 3.4, and the result is summarized in

Theorem 3.8.
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In the remaining sections, we discuss the applications of Theorem 1.2.
In Section 4, we study the pseudoholomorphic sections of a complex line
bundle. We study the almost complex canonical bundle Λ−

J in detail. This is
defined as the −1 eigenspace of the endomorphism of Λ2T ∗M induced by the
almost complex structure J . In this case, any almost Hermitian metric of the
base manifold (M,J) induces an almost complex structure of the total space
of the complex line bundle Λ−

J . The pseudoholomorphic sections of this bun-
dle correspond to J-anti-invariant forms with certain closedness condition.
Moreover, we partially establish the divisor-line bundle correspondence in
this section. The upshot of this section is to relate almost Hermitian geome-
try to the theory of pseudoholomorphic curves. In principle, combining with
Theorem 1.2, the study of the differential geometry of almost Hermitian
manifolds would lead to the information of the J-holomorphic subvarieties
on the base manifold, and vice versa.

In Section 5, we discuss more applications. In addition to those related
to symplectic birational geometry which are summarized in Section 5.3, we
study the pseudoholomorphic maps between almost complex manifolds. The
following result studies the structure of pseudoholomorphic maps between
closed almost complex 4-manifolds.

Theorem 1.4. Let u : (X, J) → (M,JM ) be a somewhere immersed pseu-
doholomorphic map between closed connected almost complex 4-manifolds.
Then

• the singularity subset of u supports a J-holomorphic 1-subvariety;
• other than finitely many points x ∈ M , where u−1(x) is the union of a
J-holomorphic 1-subvariety and finitely many points, the preimage of
each point is a set of finitely many points.

The singularity subset of u is where the differential dup is not of full
rank. It is a combination of Theorem 5.5 and Proposition 5.8. Every point
of X is a singularity if u is nowhere immersed.

A closer study at degree one pseudoholomorphic maps between almost
complex 4-manifolds shows that they are eventually birational morphisms
in pseudoholomorphic category. First, Zariski’s main theorem still holds for
pseudoholomorphic maps (Proposition 5.9). Moreover, we have a very con-
crete description of the exceptional set. It is summarized in the following,
which is a combination of Theorem 5.13 and Corollary 5.15.

Theorem 1.5. Let u : (X, J) → (M,JM ) be a degree one pseudoholomor-
phic map between closed connected almost complex 4-manifolds such that J
is almost Kähler. Then there exists a subset M1 ⊂ M , consisting of finitely
many points, with the following significance:
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1. The restriction u|X\u−1(M1) is a diffeomorphism.
2. At each point of M1, the preimage is an exceptional curve of the first

kind.
3. X ∼= M#kCP 2 diffeomorphically, where k is the number of irreducible

components of the J-holomorphic 1-subvariety u−1(M1).

Roughly, a connected J-holomorphic 1-subvariety is called an excep-
tional curve of the first kind if its configuration is equivalent to the empty
set through topological blowdowns. See Definition 5.11. In particular, it is
a connected J-holomorphic 1-subvariety whose irreducible components are
rational curves and the dual graph is a tree.

To show the second part, we first establish Grauert’s criterion for ex-
ceptional set, i.e. the intersection matrix of the irreducible components of
the exceptional set is negative definite. This is the reason that the almost
Kähler condition is added in the statement. With this assumption, we are
able to embed a neighborhood of the exceptional set into a rational surface,
which in particular has b+ = 1. However, we believe this assumption should
be removable.

1.1. Philosophy and some further directions

The philosophy of the paper is

a statement for smooth maps between smooth manifolds in terms of R.
Thom’s transversality should also have its counterpart in pseudoholomor-
phic setting without requiring the transversality or genericity, but using the
notion of pseudoholomorphic subvarieties,

in particular when such a statement is available in complex analytic setting.
Our paper explores a few, among many more, such directions guided by this
philosophy.

For instance, the corresponding statement of Corollary 1.3 in smooth
category is Thom’s transversality theorem: If two submanifolds intersect
transversely, then the intersection is a smooth manifold. Its complex coun-
terpart is the intersection theory of analytic cycles. In all the three (i.e.
smooth, holomorphic, and pseudoholomorphic) categories, this is the cor-
nerstone of all the later discussions.

When it is applied to sections of an oriented vector bundle over an
oriented manifold, we know the zero locus of a transverse section is a sub-
manifold of the base whose homology class is Poincaré dual to the Euler
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class of the vector bundle. For a holomorphic line bundle, the zero divisor of

a holomorphic section is a divisor in the first Chern class of the line bundle.

This motivates the discussion in Section 4.

Our philosophy also leads to the following variant of pseudoholomorphic

sections of the canonical line bundle. It is known that for a generic Rieman-

nian metric on a 4-manifold, a self-dual harmonic 2-form, i.e. a section of

the bundle Λ+
g which is closed as a 2-form, is symplectic off a disjoint union

of embedded circles, with the latter being the vanishing locus of the form.

The almost complex version of this is the following question in [9].

Question 1.6. For an almost complex structure J on a 4-manifold, is a

J-anti-invariant closed 2-form (i.e. a section of the complex line bundle

Λ−
J which is closed as a 2-form) almost Kähler off a J-holomorphic 1-

subvariety? Equivalently, is the zero locus of a J-anti-invariant closed 2-form

a J-holomorphic 1-subvariety?

We remark that for any almost Hermitian metric g, the bundle Λ−
J is

a rank 2 subbundle of the rank 3 real vector bundle Λ+
g . Apparently, the

answer is yes when J is integrable. This question is answered affirmatively

for an arbitrary almost complex structure in [4].

Our Theorem 1.4 has two parts. The first part is a finer version of Sard’s

theorem, which says the set of critical values has measure zero. The second

part finds its counterpart in Thom’s and Boardman’s fundamental work

on singularities of differentiable maps [35, 3]. It says for generic smooth

maps between smooth manifolds, the singularity subsets with given degen-

eracy data are submanifolds of the domain. The complex analytic version

of Theorem 1.5 stated for equidimensional map is the fact that a birational

morphism is a composition of a sequence of blowing down along exceptional

curves.

Most of our statements are for 1-subvarieties. The main reason is that the

properties of pseudoholomorphic 1-subvarieties are well studied. For higher

dimensional subvarieties, even the definition is not systematically explored.

Interestingly, some techniques used in this paper are also powerful in higher

dimensions. We will explore it in a sequel, albeit one might already find

some of such analysis in Section 5. It is an interesting iteration that would

reward us with generalizing our results to higher dimensions once higher

dimensional pseudoholomorphic subvarieties are studied.

Another interesting and peculiar phenomenon missing in the transver-

sality setting is the excess intersection of (pseudo)holomorphic submani-

folds as we have mentioned. It would have many interesting applications,
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for example, to the structures of pseudoholomorphic maps u : (X2k, JX) →
(M2n, JM ) with k < n by applying the same strategy of Theorem 5.5.

Since Thom’s transversality is such a powerful tool which is applied to
vast areas, we would expect many other pseudoholomorphic counterparts
guided by our philosophy. A notable direction is the pseudoholomorphic
version of the Thom-Mather topological stability theorem.

2. Finite 2-dimensional Hausdorff measure in dimension 4

We assume u : (M1, J1) → (M,J) is a (J1, J)-holomorphic map and A =
u−1(Z2). We denote the image Z1 := u(M1). It needs not be embedded. In
this section, we will show that the Hausdorff dimH A = 2 and the Hausdorff
measure H2(A) is finite when dimM1 = 4. This is the first step towards the
proof of Theorem 1.2. We begin with a couple of preparatory lemmas, which
work for any dimension.

Lemma 2.1. Let u : M1 → M be a continuous map with M1 compact,
Z2 a closed subset of a (not necessarily compact) manifold M . Then A =
u−1(Z2) ⊂ M1 is a compact set.

Proof. Since Z2 is a closed subset in M , we know the preimage A is closed
in M1. Since a closed subset of a compact space is compact, we know A is a
compact set.

The next lemma is the easiest case of positivity of intersections, a phe-
nomenon first noticed by Gromov in [14]. Our statement is adapted from
Exercise 2.6.1 of [25]. For a proof, see [37].

Lemma 2.2. Suppose that Q is a compact codimension two J-holomorphic
submanifold of the almost complex manifold (M,J), and let u : D → (M,J)
be a J-holomorphic curve such that u(0) ∈ Q.

1. Then the inverse image of the intersection points u−1(Q) is isolated
in D except in the case when u(D) ⊂ Q.

2. Suppose u(D) � Q. Shrinking D, if necessary, we may assume that
u(0) is the unique point where u(D) meets Q. Define the local inter-
section number u ·Q of u with Q to be the number of points of inter-
section of a generic smooth perturbation of u relative to the boundary
∂D. Then u ·Q ≥ 1 with equality if and only if u is transverse to Q at
zero.

The first part of the lemma could be extended to a generalization of
unique continuation of J-holomorphic submanifolds.
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Proposition 2.3. Let Y be a compact J-holomorphic submanifold of the
almost complex manifold (M,J), u : (X, J1) → (M,J) a (J1, J)-holomorphic
map with X connected and compact. If Y contains the image of an open
subset of X, then u(X) ⊂ Y .

Proof. If X is a J-holomorphic curve, it is the standard unique continuation
result of pseudoholomorphic curves which could be obtained by Carleman
similarity principle, Aronszajn’s result or Hartman-Wintner theorem [25,
37].

When dimR X ≥ 4, the proof could be reduced to the pseudoholomorphic
curve situation. We assume A ⊂ X is the maximal open subset contained in
u−1(Y ). The points of A could be characterized as follows: a point x ∈ A if
and only if there is an open neighborhood N (x) of it in X such that N (x)
is also contained in u−1(Y ).

If A 	= X, since u−1(Y ) is compact, the complement of u−1(Y ) in X is
also an open subset of X. We call it B. By definition, A ∪ ∂A ∪ B = X.
Moreover, the set ∂A = u−1(Y ) \ A is nowhere dense. We choose a point
x ∈ ∂A ∩ ∂B. There is such an x if B 	= ∅.

Now, by Lemma 6.1 in [36] (when dimX = 4, it follows from Lemma
6.6 of [33]), there exists an open neighborhood N ′

x ⊂ X of x, such that we
have a smooth map f0 : D × U → Nx with f0(0, U) = x. Here D ⊂ C is a
unit disk and U ⊂ Cn−1 is a unit ball of radius 1. For each κ ∈ U , the map
f0|D×κ is an embedding whose image is a J1-holomorphic disk. Moreover,
f0|(D\{0})×U is a diffeomorphism onto its image. We can thus choose some
κ such that f0|D×κ ∩A 	= ∅.

By Lemma 3.10 (when dimX = 4, it follows from Lemma 5.4 of [33]),
there exists an open neighborhood Nx ⊂ X of x, such that we have a smooth
map f : D × U → Nx with f(0, 0) = x. For each w ∈ U , the map f |D×w is
an embedding whose image is a J1-holomorphic disk. We can choose f such
that f(D× 0) = f0(D×κ). Moreover, f is a diffeomorphism onto its image.

For any w ∈ U , when B 	= ∅, we claim the disk f(D×w) cannot contain
nontrivial open subsets from two of the three disjoint sets: A, B and ∂A.
First, if f(D×w) intersects both A and B, since A and B are both open, the
intersections f(D×w)∩B and f(D×w)∩A are open subsets of f(D×w).
Since (f(D × w) ∩B) ∩ u−1(Y ) = ∅, it implies u(f(D × w)) � Y . However,
on the other hand, f(D × w) is a J1-holomorphic curve which has an open
subset f(D×w)∩A whose image under u is contained in Y . Hence, by unique
continuation of J-holomorphic curves, u(f(D×w)) ⊂ Y . This contradiction
implies B = ∅ and hence A = X.

Furthermore, if the disk f(D × w) contains a nontrivial open subset
∂A ∩ f(D × w), we will have w′ and w′′ arbitrarily close to w such that
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f(D ×w′) and f(D ×w′′) intersect A and B respectively. Hence, f(D ×w)
cannot contain any point from A or B. This completes our claim in last
paragraph. We will call the disk f(D×w) with f(D×w)∩A 	= ∅ an A-type
disk.

Now, since f(D×0) is an A-type disk, there is an ε > 0, such that when
|w| < ε, we know all the disks f(D × w) are of A-type. Hence, the image
f(D × {w : |w| < ε}) is an open subset of X contained in u−1(Y ). It implies
x is not an accumulation point of B which contradicts to our choice of x.

Hence B = ∅ and thus u(X) ⊂ Y .

Now we assume dimM1 = 4. We would study the intersections of A =
u−1(Z2) with J1-holomorphic disks by Lemma 2.2. The plan requires a 2-
dimensional family of such disks. These disks could be constructed from
perturbations of J0-holomorphic ones where J0 is the standard complex
structure of C2. Such a construction is worked out in section 5(d) of [33].

To begin, fix a point x ∈ M1, we find an open neighborhood of x such
that J1 is compatible with a non-degenerate 2-form Ω in this neighborhood.
The pair (Ω, J1) induces an almost Hermitian metric. Then we choose Gaus-
sian normal coordinates centered at x which identify a geodesic ball about
x with a ball in R4 and take x to the origin. We identify R4 = C2 such that
Ω|x = ω0 = dx1 ∧ dx2 + dx3 ∧ dx4 = i

2(dw0 ∧ dw̄0 + dw1 ∧ dw̄1). Here we use
(w0, w1) for the complex coordinates on C2. Hence we will simply say the
almost complex structure J1 is on C2. It agrees with the standard almost
complex structure J0 at the origin, but typically nowhere else.

Denote a family of holomorphic disks Dw := {(ξ, w)||ξ| < ρ}, where w ∈
D. What we get from [33], mainly Lemma 5.4 (see Lemma 3.10 for a higher
dimensional generalization using the same argument), is a diffeomorphism
f : D ×D → C2, where D ⊂ C is the disk of radius ρ, such that:

• For all w ∈ D, f(Dw) is a J1-holomorphic submanifold containing
(0, w).

• For all w ∈ D, dist((ξ, w); f(ξ, w)) ≤ z · ρ · |ξ|. Here z depends only on
Ω and J1.

• For all w ∈ D, the derivatives of order m of f are bounded by zm · ρ,
where zm depends only on Ω and J1.

We call such a diffeomorphism J-fiber-diffeomorphism. We have freedom
to choose the “direction” of these disks by rotating the Gaussian coordinate
system. Each J1-holomorphic disk can be chosen to be close to any complex
affine planes foliation of C2 with direction (a, b), at least near the complex
line (passing through the origin) with direction (b,−a).
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Proposition 2.4. Suppose (M2n, J) is an almost complex 2n-dimensional
manifold, and Z2 is a codimension 2 compact connected almost complex sub-
manifold. Let (M1, J1) be a compact connected almost complex 4-manifold
and u : M1 → M a pseudoholomorphic map such that u(M1) � Z2. Then
A = u−1(Z2) has Hausdorff dimension dimH A = 2 and the Hausdorff mea-
sure of A, H2(A), is finite.

Proof. Since M1 is compact, the Hausdorff measure will be independent of
the choice of Hermitian metric. In fact, we will measure the set A locally
by the metric induced from the local coordinate we choose above. For any
point x ∈ A ⊂ M1, we can find a diffeomorphism fx onto an open subset
of M1 as above. The union of the images fx(Dx ×Dx) covers the set A. By
Lemma 2.1, A is compact. Hence we can choose only finitely many xi such
that these fxi(Dxi ×Dxi) covers the set A. We could assume all these Dxi

have radius ρ. To show the 2-dimensional Hausdorff measure H2(A) < ∞,
we only need to show it for A ∩ fxi(D ×D) of each xi.

Now we will show H2(A∩fx(D×D)) < ∞ for any x ∈ A. We will simply
write f instead of fx. Since for each w ∈ D, f(Dw) is a J1-holomorphic disk
inM1, we know it intersects u−1(Z2) at finitely many points if it is not totally
contained in u−1(Z2) by Lemma 2.2. Furthermore, we claim that there are
only finitely many w ∈ D̄ such that f(Dw) is contained in u−1(Z2).

If it is not the case, we could assume without loss of generality that 0 is
an accumulation point of these w. Now we construct J-fiber-diffeomorphism
in another direction. The goal is to foliate a neighborhood of x by J-
holomorphic disks transverse to f(D0). As above, we take coordinates cen-
tered at x such that x is the origin and (0, w′) is identified with f(D0). Then
we choose a J-fiber-diffeomorphism f ′ : D′ ×D′ → C2, where D′ ⊂ C is the
disk of radius ρ′ < ρ, such that

• For all w′ ∈ D′, f ′(D′
w′) is a J1-holomorphic submanifold containing

(0, w′).
• For all w′ ∈ D′, dist((ξ′, w′); f ′(ξ′, w′)) ≤ z · ρ′ · |ξ′|. Here z depends
only on Ω and J1.

• For all w′ ∈ D′, the derivatives of order m of f ′ are bounded by zm ·ρ′,
where zm depends only on Ω and J1.

In particular, all the disks f ′(D′
w′) are transverse to f(D0) = f ′(0×D′) =

0×D′. As being transverse is an open condition, f ′(D′
w′) are transverse to

f(Dw) for all |w| ≤ ε. Hence the intersection points of f ′(D′
w′) and u−1(Z2)

are not isolated. By Lemma 2.2, the whole disks f ′(D′
w′) ⊂ u−1(Z2). In

turn, we have f ′(D′ × D′) ⊂ u−1(Z2). Since f ′(D′ × D′) covers an open
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neighborhood of x in M1, we know u(M1) ⊂ Z2 by Proposition 2.3. This
contradicts to the assumption of our proposition. Hence, we have established
our claim that there are only finitely many w ∈ D̄ such that f(Dw) is
contained in u−1(Z2).

Moreover, we can actually choose our diffeomorphism f such that none
of the J1-holomorphic disks f(Dw) is contained in u−1(Z2). We first show
that, for any point x ∈ M1, there are only finitely many complex direc-
tions of TxM1 such that there are J1-holomorphic curves tangent to it and
contained in u−1(Z2). Suppose there are infinitely many. Since the complex
directions of TxM1 are parametrized by CP 1, we know there is at least one
direction, v, which is accumulative. By the perturbative nature of J-fiber-
diffeomorphism, we can choose the local Gaussian coordinates such that
f(D0) is transverse to v. Hence, for |w| < ε, f(Dw) are transverse to v as
well. In particular, the intersection numbers of u(f(Dw)) and Z2 are infinite
which contradicts Lemma 2.2 and Proposition 2.3. To summarize, we have
proven that there are only finitely many complex directions of TxM1 such
that there are J1-holomorphic curves in u−1(Z2) tangent to it.

Hence, fixing x, we can choose a complex direction such that there is no
J-holomorphic curve in u−1(Z2) tangent to it. By the perturbative nature
of J-fiber-diffeomorphisms, we can choose the local Gaussian coordinates
and diffeomorphism f such that no f(Dw) is contained in Z2 when |w| is
sufficiently small.

Now we estimate the Hausdorff measure of the set A ∩ f(D̄ × D̄). The
intersection A ∩ f(D̄ × D̄) is also compact. Furthermore, since f is a dif-
feomorphism, we can choose D smaller if necessary such that the distortion
of f at the larger open domain 2D × 2D is bounded by a positive con-
stant C. By our choice of the local coordinates and the diffeomorphism f ,
A ∩ f(D̄w) is a set of finitely many points for each w ∈ D̄. Look at the
function g : D̄ → N ∪ {0} from the base disk D̄ to non-negative integers
whose value g(w) is the intersection number of u ◦ f(D̄w) and Z2. This is an
upper semi-continuous function. Hence, it achieves maximal value at some
point w ∈ D̄, say N . Since each intersection point contributes positively by
Lemma 2.2, we know A ∩ f(D̄w) contains at most N points for all w ∈ D̄.
Since A ∩ f(D̄× D̄) is compact, we cover it by finitely many balls of radius
ε. By Vitali covering lemma, we can choose a subset of these balls which are
disjoint to each others, say there are L such balls, such that the union of the
L concentric balls with radius 3ε covers the set A ∩ f(D̄ × D̄). Each ε-ball
intersects f(2Dw) at an open set of area no greater than πC2ε2. By coarea
formula, we have

N · πC2ε2 · πC2(2ρ)2 > L
1

2
π2ε4.
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In other words, there are no more than C ′ · ε−2 many balls with radius 3ε
covering A ∩ f(D̄× D̄). Thus the 2-dimensional Hausdorff measure H2(A∩
f(D̄ × D̄)) < ∞, which in turn implies H2(A) < ∞.

3. J-holomorphic intersection subvariety

In this section, we will first finish the proof of Theorem 1.2 and then calculate
the homology class of the intersection subvariety. We will also discuss two
generalizations of Theorem 1.2. One is Theorem 3.6, which is a combination
of [27] and our Theorem 1.2. The other is the higher dimensional version,
Theorem 3.8.

3.1. Positive cohomology assignment

In this subsection, we will prove Theorem 1.2 using the notion of positive
cohomology assignment, which is introduced in [33]. We assume (X, J) is an
almost complex manifold, and C ⊂ X is merely a subset at this moment.
Let D ⊂ C be the standard unit disk. A map σ : D → X is called admissible
if C intersects the closure of σ(D) inside σ(D). Next we recall the notion
of a positive cohomology assignment to C, which is extracted from section
6.1(a) of [33].

Definition 3.1. A positive cohomology assignment to the set C is an assign-
ment of an integer, I(σ), to each admissible map σ : D → X. Furthermore,
the following criteria have to be met:

1. If σ : D → X \ C, then I(σ) = 0.
2. If σ0, σ1 : D → X are admissible and homotopic via an admissible

homotopy (a homotopy h : [0, 1] × D → X where C intersects the
closure of Image(h) inside Image(h)), then I(σ0) = I(σ1).

3. Let σ : D → X be admissible and let θ : D → D be a proper, degree k
map. Then I(σ ◦ θ) = k · I(σ).

4. Suppose that σ : D → X is admissible and that σ−1(C) is contained in
a disjoint union ∪iDi ⊂ D where each Di = θi(D) with θi : Di → D
being an orientation preserving embedding. Then I(σ) =

∑
i I(σ ◦ θi).

5. If σ : D → X is admissible and a J-holomorphic embedding with
σ−1(C) 	= ∅, then I(σ) > 0.

The following is Proposition 6.1 of [33].

Proposition 3.2. Let (X, J) be a 4-dimensional almost complex manifold
and let C ⊂ X be a closed set with finite 2-dimensional Hausdorff mea-
sure and a positive cohomology assignment. Then C supports a compact
J-holomorphic 1-subvariety.
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Taubes’ proof of Proposition 3.2 could be understood as consisting of
the following two steps. First, he proves that, under the assumptions, the
set C gives an almost complex integral 2-cycle (see [30]):

1. Rectifiability: There exists an at most countable union of disjoint ori-
ented C1 2-submanifolds C = ∪iNi and an integer multiplicity θ ∈
L1
loc(C) such that for any smooth compactly supported 2-form ψ one

has

C(ψ) =
∑
i

∫
Ni

θψ.

2. Closedness: ∂C = 0, i.e. ∀α ∈ D1(M), C(dα) = 0.
3. Almost complex: For H2 almost every point x ∈ C, the approximate

tangent plane Tx to the rectifiable set C is invariant under the almost
complex structure J , i.e. J(Tx) = Tx.

In fact, this step is eventually Lemma 6.10 of [33], which shows that an
open dense subset of C has the structure of a Lipschitz submanifold of X.

The second step is to show that any integral 2-dimensional almost com-
plex cycle C could be realized by a J-holomorphic subvariety Θ = {(Ci,mi)}
in the sense that C(ψ) =

∑
imi

∫
Ci

ψ. The latter result is generalized in [30]
to any 2p-dimensional almost complex manifold (M,J) satisfying the locally
symplectic property. It could also be derived from Almgren’s big regularity
paper [1] and S. Chang’s PhD thesis [5]. Recall we say (X, J) has the locally
symplectic property if in a neighborhood of each point x ∈ X, there exists
a symplectic form compatible with J . It was shown in [17, 29]1 that any
4-dimensional almost complex manifold (X, J) has the locally symplectic
property. However, a general higher dimensional almost complex manifold
is not locally symplectic.

Let us return to the setting of Theorem 1.2. Suppose (M2n, J) is an
almost complex 2n-dimensional manifold, and Z2 is a codimension 2 compact
connected almost complex submanifold. Let M1 be a compact connected
almost complex 4-manifold and u : M1 → M a pseudoholomorphic map
such that u(M1) � Z2. In Proposition 2.4, we have shown that A = u−1(Z2)
is a closed set with finite 2-dimensional Hausdorff measure. To show it is
a J-holomorphic 1-subvariety, we only need to show that it has a positive
cohomology assignment with X = M1.

1This result was first noticed in [29] Lemma A.1. However, the proof is incomplete
since it relies on a wrong claim of Peter J. Olver. A complete proof is given in [17].
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For any admissible map σ : D → M1 with respect to A = u−1(Z2), we
assign an integer IC(σ) as follows. When σ : D → M1 is admissible, its
composition with the pseudoholomorphic map u : M1 → M , u◦σ : D → M ,
is also admissible with respect to Z2 ⊂ M . There exists an arbitrarily small
perturbation of u ◦ σ which produces a map σ′ homotopic to u ◦ σ through
admissible maps such that σ′ is transverse to Z2. This is called an admissible
perturbation. Remark that we have to perturb the composition u◦σ instead
of just σ to achieve transversality. The set T of intersection points of σ′(D)
with Z2 is a finite set of signed points. We define IC(σ) to be the sum of
these signs. By general intersection theory of submanifolds, see e.g. [15], the
intersection number IC(σ) is independent of the choice of the admissible
perturbation.

Proposition 3.3. The assignment IC(σ) to an admissible map σ : D → M1

defines a positive cohomology assignment to A = u−1(Z2).

Proof. In our situation, Definition 3.1(1) means if u ◦ σ(D) ∩ Z2 = ∅, then
IC(σ) = 0. This is clear from our definition.

Assertion (2) of Definition 3.1 follows from the following so-called Bound-
ary Theorem [15].

Theorem 3.4. Suppose X is the boundary of some compact manifold W
and g : X → M is a smooth map. If g extends to all of W , then the inter-
section number of g and Z is zero for any closed submanifold Z in M of
complementary dimension.

Here we have X = S2 and W = D × [0, 1], g = ∂h and Z = Z2.
Moreover, our admissible maps are understood as their composition with
the map of u : M1 → M . Since Z2 intersects the closure of Image(h) inside
Image(h), we know the intersection number of g and Z2 is IC(σ0)−IC(σ1).
By Boundary Theorem, it is zero.

To show assertion (3), we first choose an admissible map σ′ (with respect
to Z2) transverse to Z2 which is perturbed from u ◦ σ. Hence σ′−1(Z2) is a
finite set of signed points in D. Since the degree of a map f : X → Y is just
the intersection number of f and any point y ∈ Y , we know IC(σ′ ◦ θ) is
the sum of the signed points in σ′−1(Z2) multiplied by deg θ = k. That is
IC(σ ◦ θ) = k · IC(σ).

For assertion (4), since σ|D−∪iDi
∩A = ∅, we can choose the admissible

perturbation σ′ of u◦σ within ∪iDi. The intersection number IC(σ) which is
calculated as the sum of signs of intersection points of σ′ is thus

∑
i IC(σ◦θi).

When σ is J-holomorphic, the composition u ◦ σ : D → M is a J-
holomorphic map. If it is non-constant, although it is not an embedding
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in general, we know u ◦ σ is an admissible map with respect to Z2 since
σ(∂D) ∩ A = ∅ if and only if u ◦ σ(∂D) ∩ Z2 = ∅. Hence, the statement
of assertion (5) for this case follows from the positivity of intersections of a
J-holomorphic curve and an almost complex divisor, i.e. Lemma 2.2. If u◦σ
is a constant map, and since we assume σ−1(A) 	= ∅, which is equivalent to
(u ◦ σ)−1(Z2) 	= ∅, we know the constant map u ◦ σ maps to a point in Z2.
Hence, we have σ(D) ⊂ A, which contradicts to the assumption that σ is
admissible. Hence, Definition 3.1(5) also follows.

Now we are ready to prove our first main result.

Proof. (of Theorem 1.2) By Lemma 2.1 and Proposition 2.4, A = u−1(Z2)
is a closed set with finite 2-dimensional Hausdorff measure. By Proposition
3.3, A could be endowed with a positive cohomology assignment, IC(σ), for
each admissible map σ : D → M1. Hence, by Proposition 3.2, the preimage
A = u−1(Z2) supports a J1-holomorphic 1-subvariety Θ.

3.2. When Z2 is a 1-subvariety in an almost complex 4-manifold

When (M,J) is an almost complex 4-manifold, the statement of Theorem 1.2
still holds even if Z2 is merely assumed to be a J-holomorphic 1-subvariety.
Eventually, what we need is a slightly more general intersection theory work-
ing for continuous maps and a version of Lemma 2.2 and Proposition 2.3.
These are available in section 7 of [27].

Let Σi be compact oriented surfaces (with or without boundary), and
let ui : Σi → M be continuous maps such that u1(∂Σ1) ∩ u2(Σ2) = ∅ =
u2(∂Σ2) ∩ u1(Σ1). Then by a generic smooth perturbation of ui relative to
the boundary ∂Σi, we get maps vi such that if v1(p1) = v2(p2), then vi is
immersed at pi and the maps are transverse there, i.e.

(1) Tvi(pi) = v1∗(Tp1
Σ1)⊕ v2∗(Tp2

Σ2).

Hence, the set of intersections of v1 and v2 is a finite set T (v1, v2) of signed
points (p1, p2) such that v1(p1) = v2(p2) where the sign δ(p1, p2) is 1 if the
left and right sides of (1) have the same orientation and −1 if not. The
intersection number u1 · u2 is the sum of these signs. It is independent of
the choice of the vi, and thus is a homotopy invariant of ui relative to the
boundaries.

This intersection form can be localized as follows. Suppose (p1, p2) is an
isolated point of T (u1, u2). Then there is some neighborhood U of P = ui(pi)
such that if Wi is the connected component of u−1

i (U) containing pi, then
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T (u1|W1
, u2|W2

) contains only the point (p1, p2). The intersection number
u1|W1

· u2|W2
is independent of the choice of such U , and is thus a local

invariant δu1,u2
(p1, p2). Furthermore, if T (u1, u2) is finite, then u1 · u2 =∑

u1(p1)=u2(p2)
δu1,u2

(p1, p2).
What we need to replace Lemma 2.2 and Proposition 2.3 is the following,

which is Theorem 7.1 of [27].

Theorem 3.5. Let ui : Σi → M be maps that are J-holomorphic in a
neighborhood of pi ∈ Σi, where u1(p1) = u2(p2). Suppose also that there
are no neighborhoods Di of pi such that u1(D1) = u2(D2). Then (p1, p2)
is an isolated intersection point of T (u1, u2), and the intersection number
δu1,u2

(p1, p2) is greater than or equal to 1, and strictly greater than 1 unless
u1 and u2 are transverse immersions at p1 and p2.

With Theorem 3.5 in hand, our argument for Theorem 2.4 extends to the
case when (M,J) is an almost complex 4-manifold and Z2 is a J-holomorphic
1-subvariety. In fact, the argument shows that the preimage under u of each
irreducible component of Z2 has finite 2-dimensional Hausdorff measure.

For the second part, IC(σ) is also well defined for any admissible map
σ : D → M1 with respect to A = u−1(Z2) by our discussion of intersection
theory above. Moreover, Proposition 3.3 still holds since Theorem 3.4 also
holds when Z is the image of a closed manifold of complementary dimension.
Hence Theorem 1.2 holds in our setting.

Theorem 3.6. Suppose (M4, J) is an almost complex 4-manifold, and Z2

is a J-holomorphic 1-subvariety. Let (M1, J1) be a closed connected almost
complex 4-manifold and u : M1 → M a pseudoholomorphic map such that
u(M1) � Z2. Then u−1(Z2) supports a J1-holomorphic 1-subvariety in M1.

3.3. The homology class

We can also determine the homology class of the J-holomorphic 1-subvariety
A ⊂ M1 (and its image u(A) ⊂ M) by intersection pairing. The homology
class is in fact determined by the positive cohomology assignment associated
to A. First, given a J-holomorphic 1-subvariety Θ = {(Ci,mi)}, there is a
positive cohomology assignment for its support C = |Θ| = ∪Ci. Let Ci =
φi(Σi) where each Σi is a compact connected complex curve and φi : Σi → X
is a J-holomorphic map embedding off a finite set. When σ : D → X
is admissible, there is an arbitrarily small perturbation, σ′, of σ which is
homotopic to σ through admissible maps and it is transverse to each φi.
Each fiber product Ti := {(x, y) ∈ D × Σi|σ′(x) = φi(y)} is a finite set of
signed points of D×Σ. We associate a weight mi to each signed point in Ti.
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The weighted sum of these signs in ∪Ti is a positive cohomology assignment,
denoted by ISΘ.

Conversely, once a positive cohomology assignment I is given as in
Proposition 3.2 and C = ∪Ci, we can associate the positive weight mi to Ci

as I(σ) where σ is a J-holomorphic disk intersecting transversely to Ci at
a smooth point. For the subvariety Θ = {(Ci,mi)} obtained in this way, we
have I = ISΘ.

In our situation, the above construction gives rise to a J-holomorphic
1-subvariety Θ of M1 such that |Θ| = A = u−1(Z2) and ISΘ(σ) = IC(σ).
This subvariety will be called an intersection subvariety associated to u later.
Since any homology class ξ ∈ H2(M1,Z) is representable by an embedded
submanifold, the above claim just implies ξ ·eΘ = u∗(ξ)·[Z2] as integers. Here
u∗(ξ) denotes the induced class in Borel-Moore homology HBM

2 (M) and
the latter product is understood as the intersection paring in Borel-Moore
homology. The homology class eΘ is determined by the intersection pairing
with all the classes in H2(M1,Z). Since the latter product is determined only
by the homology class of Z2 and the homotopy class of the map u, we know
eΘ is the same as the homology class of the submanifold that is obtained by
a perturbation of u which is transverse to Z2.

There are two important special cases. In the first, we assume the am-
bient manifold M is closed.

Proposition 3.7. When M2n is a closed almost complex manifold, and
Z1, Z2 are compact connected complex submanifolds of dimension 4 and 2n−
2 respectively. Then the intersection Z1 ∩Z2 is either one of Zi, or supports
a J-holomorphic 1-subvariety of class PD−1

Z1
(ι∗Z1

(PDM [Z1] ∪ PDM [Z2])) in

Z1 (and PD−1
M (PDM [Z1] ∪ PDM [Z2]) in M).

This is just a refined version of Corollary 1.3 in the introduction when
M is closed. The map ιZi

: Zi → M is the inclusion.

Proof. For the first statement, we apply Theorem 1.2 to the embedding
u : M1 → M , such that Z1 = u(M1).

The homology class is calculated by deforming Z2 to Z ′
2 such that

Z1 � Z ′
2. We denote the intersection subvariety of Z1 and Z2 by Θ. By

the above discussion, eΘ = [Z1 ∩ Z2]. The homology of the latter in M is
PD−1

M (PDM [Z1]∪PDM [Z2]) following from standard intersection theory of
submanifolds.

For the homology in Z1, it is determined by intersection pairing with all
classes in H2(Z1,Z). For any a ∈ H2(Z1,Z),

PDZ1
(a)∪ι∗Z1

(PDM [Z1]∪PDM [Z2]) = PDM ((ιZ1
)∗a)∪PDM [Z1]∪PDM [Z2].
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Hence the conclusion follows.

In particular, when one of the [Zi] equals zero, then the homology class
of the intersection subvariety is zero. On the other hand, when J is tamed
by a symplectic form in M , then the homology class (in M or Z1) of the
intersection subvariety is non-trivial.

The other important special case of Theorem 1.2 is the application to
complex line bundles over a 4-dimensional almost complex manifold. This is
contained in Section 4.

In the following, we show that Proposition 3.7 could also be stated for
our general settings of Theorem 1.2, although this calculation will not be
used later in this paper. Again, we only need to calculate the homology class
of intersection when u is transverse to Z2.

In general, our ambient manifold M is not assumed to be compact.
Hence, our discussion will be under the Borel-Moore homology framework.
For an overview, see [11]. Borel-Moore homology could be defined using
singular cohomology. If a space X is embedded as a closed subspace of Rn,
then

HBM
i (X,Z) = Hn−i(Rn,Rn \X).

Each Borel-Moore i-cycle C (and in turn its homology class) deter-
mines a linear map H i

c(X,Z) → Z. If M is an oriented, connected, real
n-manifold, thenHBM

n (M,Z) is freely generated by a fundamental class [M ].
The Poincaré dual of the cycle C is the cohomology class ηMC ∈ Hm−k(M,Z)
uniquely determined by the equality

∫
M

a ∧ ηMC = C(a), ∀a ∈ Hk
c (M,Z).

A closed oriented submanifold Z ⊂ M of dimension k defines a k-
dimensional BM cycle [Z]

[Z](a) :=

∫
Z
a, ∀a ∈ Hk

c (M).

The Poincaré dual is the cohomology class ηMS ∈ Hm−k(M) which is uniquely
determined by ∫

M
a ∧ ηMZ =

∫
Z
a, ∀a ∈ Hk

c (M).

When M is a closed manifold, ηMS is just the usual Poincaré dual class
in singular cohomology. If M is the total space of an oriented vector bundle
E over S, then ηMS is the Thom class of E.
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Suppose we have an oriented closed submanifold Z2 ⊂ M , and a smooth
map u : M1 → M where M1 is a compact manifold. If u � Z2, we have
ηMu(M1)∩Z2

= ηMu∗([M1])
∪ ηMZ2

, and ηM1

u−1(Z2)
= u∗(ηMu∗([M1])

∪ ηMZ2
).

3.4. Higher dimensions

Our argument for Theorem 1.2 could also be applied to other cases with no
excess intersection phenomenon, i.e. when Z2 is a codimension 2 compact
connected almost complex submanifold in (M,J) and u : M1 → M is a
pseudoholomorphic map such that u(M1) � Z2 and dimR M1 > 4. We are
able to prove the following

Theorem 3.8. Suppose (M2n, J) is an almost complex 2n-dimensional man-
ifold, and Z2 is a codimension 2 compact connected almost complex sub-
manifold. Let (M1, J1) be a compact connected almost complex manifold
of dimension 2k < 2n and u : M1 → M a pseudoholomorphic map such
that u(M1) � Z2. Then u−1(Z2) ⊂ M1 is a closed set with finite (2k − 2)-
dimensional Hausdorff measure and a positive cohomology assignment.

The following question asks for a generalization of Proposition 3.2.

Question 3.9. Let (X, J) be a 2k-dimensional almost complex manifold
and let C ⊂ X be a closed set with finite (2k − 2)-dimensional Hausdorff
measure and a positive cohomology assignment. Does C support a compact
J-holomorphic subvariety of complex dimension k − 1?

If the answer to Question 3.9 is affirmative, then we know the set u−1(Z2)
in Theorem 3.8 is a J1-holomorphic subvariety.

The proof of Theorem 3.8 is almost identical to that of Theorem 1.2.
However, we need the following lemma, whose proof closely follows from
arguments in section 5 of [33]. A similar result can be found in [36]. For
completeness, we include its proof.

Lemma 3.10. Let J1 be an almost complex structure on Cn which agrees
with the standard almost complex structure J0 at the origin. Choose an al-
most Hermitian metric g compatible with J1. There exists a constant ρ0
with the following property. Let ρ < ρ0 and let U be the ball of radius ρ
in Cn−1 and D ⊂ C the disk of radius ρ. Then there is a diffeomorphism
f : D × U → Cn, and constants L,Lm depending only on g and J1, such
that

• For all w ∈ U , f(Dw) is a J1-holomorphic submanifold containing
(0, w).
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• For all w ∈ U , dist((ξ, w); f(ξ, w)) ≤ L · ρ · |ξ|.
• For all w ∈ U , the derivatives of order m of f are bounded by Lm · ρ.
• For any κ ∈ CPn−1, we can choose f(D0) such that it is tangent at
the origin to the line lκ ⊂ Cn determined by κ.

Proof. We search for J1-holomorphic disks which are perturbations of a J0-
holomorphic disk (ξ, w1+κ1ξ, · · ·, wn−1+κn−1ξ) where w = (w1, · · ·, wn−1)∈
Dn−1 and κ = [1 : κ1 : · · · : κn−1]. These disks could be expressed as

qw,κ(ξ) = (ξ, w1 + κ1ξ + τ1(w, κ, ξ), · · · , wn−1 + κn−1ξ + τn−1(w, κ, ξ)),

whose J1-holomorphic equations are

∂τi
∂ξ̄

= Qi(w, κ, τi(w, κ, ξ), · · · , τn−1(w, κ, ξ)),

such that

(2) ||Qi||Ck ≤ Ck||J1 − J0||Ck(Dn).

Now introduce a cutoff function χρ : C → [0, 1] which equals 1 for |ξ| < ρ
and 0 for |ξ| > 3ρ

2 , and search for a solution to

∂τi
∂ξ̄

= χρQi, i = 1, · · · , n− 1.

The search is on the class of (n − 1)-tuples of C2, 1
2 functions τi restricting

to the circle of radius 4ρ around zero in the span of functions {eikθ|k < 0},
obeying

τi(ξ) =
1

π

∫
χρQi(w, κ, τi(c, κ, ξ))

ξ − η
d2η, i = 1, · · · , n− 1.

This class of functions is a Banach space using the following norm for τ =
(τ1, · · · , τn−1) (it is the (n − 1)-fold direct sum of the norm used on page
886 of [33])

||τ || =
n−1∑
i=1

sup
t,s∈C

(|τi|+ ρ · |dτi|+ ρ2 · |∇dτi|+ ρ
5

2 · |∇d(τi)t −∇d(τi)s|
|t− s| 12

).

Applying the contractive mapping theorem to this Banach space, thanks to
inequality (2), as in Lemma 5.5 of [33] the solution varies smoothly in each
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of ξ, c and κ, and satisfies the bounds

| ∂τ
∂wi

| < Cρ, | ∂τ
∂κi

| < Cρ2, ||τ ||C0 < C(ρ2 + ρ(|w|+ |κ|)),

||τ ||C1 < C(ρ+ |w|+ |κ|).
Then the lemma follows from the above discussion for a constant κ.

Indeed, there exists ε > 0 with the property that when |w| < ε, there is a
unique small solution τw for the given constant κ. The corresponding map
qw := qw,κ is then pseudoholomorphic. As the pair (ξ, w) ∈ C × Cn−1 vary,
f(ξ, w) := qw(ξ) defines a map from a neighborhood of the origin in Cn to
Cn. The implicit function theorem asserts that f is a diffeomorphism on
some neighborhood of 0 ∈ Cn if its differential at 0 is invertible. This will
be the case if |∂τw∂w | < 1 at (ξ, w) = 0. The latter inequality is insured when
ρ is small.

The above argument is for the affine plane [1 : κ1 : · · · : κn−1], but
certainly it works also for other affine planes [κ1 : · · · : 1 : · · · : κn−1].

Then Theorem 3.8 follows from the same argument as for Theorem 1.2.

Proof. (of Theorem 3.8). By Lemma 2.1, A = u−1(Z2) is a closed set.
To show the (2k − 2)-dimensional Hausdorff measure H2k−2(A) is fi-

nite, we follow the argument of Proposition 2.4, but instead using Lemma
3.10. First, for any point x ∈ M1, the complex directions of TxM1 are
parametrized by CP k−1. We choose a Gaussian normal coordinate such that
a neighborhood of x in M1 is identified with a neighborhood of the origin
in Ck and we are in the situation of Lemma 3.10. Now we want to find a
suitable complex direction κ, such that none of the J1-holomorphic disks
f(Dw) in Lemma 3.10 are contained in u−1(Z2).

If we take w = 0 and vary κ in the proof of Lemma 3.10, our construction
would provide a smooth map f0 : D × U0 → Ck, such that each f0|Dκ

, κ ∈
U0 ⊂ CP k−1, is an embedding whose image is a J1-holomorphic disk which is
tangent at the origin to the line lκ ⊂ Ck determined by κ. Moreover, f0 maps
the zero section {0} × U0 to 0 ∈ Cn and f0|(D\{0})×U0

is a diffeomorphism
onto its image by implicit function theorem. This is essentially Lemma 6.1
in [36].

Now, for some κ ∈ U , f0(Dκ) are not in u−1(Z2), otherwise the open set
f0(D × U0) is contained in u−1(Z2), which contradicts our assumption that
u(M1) � Z2 by Proposition 2.3. Moreover, for this κ, f0(Dκ) ∩ u−1(Z2) is a
finite set by Lemma 2.2. Then we choose this κ to construct our f in Lemma
3.10. For ρ small enough, it gives a diffeomorphism f : D × U → Ck such
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that for each w ∈ U , f(Dw) intersects u
−1(Z2) only at finitely many points.

Thus by the same coarea formula argument as in Proposition 2.4, we know
H2k−2(A) < ∞.

Finally, the construction IC(σ) of Proposition 3.3 again defines a posi-
tive cohomology assignment to A = u−1(Z2).

4. Pseudoholomorphic sections of complex line bundles

Let (M,J) be an almost complex manifold and π : E → M a complex vector
bundle over it. In most of our discussions in this section, dimRM = 4 and E
is a complex line bundle. If the total space of E is endowed with an almost
complex structure J , a (J,J )-holomorphic (or pseudoholomorphic) section
of the bundle E is a smooth map s : M → E such that π ◦ s = idM and
J ds = dsJ . Equivalently, s is a smooth section of E such that the image
s(M) is a J -holomorphic submanifold.

We know the set of equivalence classes of complex line bundles over
M is the same as H2(M,Z). And the total space of the bundle could be
associated with different almost complex structures. See the later discussion
for the canonical bundle. If J is a complex structure and E is a holomorphic
line bundle, then the zero locus of any holomorphic section is a divisor.
Moreover, for every divisor D ⊂ M , there is a holomorphic line bundle E
over M and a holomorphic section s such that s−1(0) = D. The following is
what we know for almost complex 4-manifolds.

Proposition 4.1. Suppose (M,J) is a closed almost complex 4-manifold.
Then the zero locus of any nontrivial pseudoholomorphic section of any com-
plex line bundle E with any almost complex structure on the total space ex-
tending J supports a J-holomorphic subvariety in (M,J) in class PD(c1(E)).
The subvariety is uniquely determined.

We call such a subvariety the zero divisor of the section s.

Proof. Suppose the total space of the complex line bundle E admits an
almost complex structure J such that J |M = J . The images of the zero
section 0(M) and nontrivial section s(M) are both J -holomorphic subman-
ifolds. Hence, by Theorem 1.2, their intersection which is the zero locus
|s−1(0)| supports a J-holomorphic subvariety of M . As explained in section
3.3, such a J-holomorphic subvariety could be chosen in the homology class
of the zero locus of a smooth transverse section. This homology class is
Poincaré dual to c1(E).

Moreover, this subvariety is uniquely determined as argued in Section
3.3. That is because the positive cohomology assignment given by the sec-
tions s(M) and 0(M) determines the subvariety supported on |s−1(0)|.
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Corollary 4.2. If (M4, J) does not have J-holomorphic subvarieties in a
class a ∈ H2(M,Z), then any complex line bundle whose Chern class is
PD(a) does not admit nontrivial pseudoholomorphic sections for any almost
complex structure on the total space whose restriction to M is J .

Proof. By Proposition 4.1, there is a J-holomorphic subvariety representing
the homology class PD(c1(E)) when there is a nontrivial pseudoholomorphic
section.

A generic tamed almost complex structure on a 4-torus or a K3 sur-
face does not have any pseudoholomorphic curves. In fact, a generic almost
complex structure on a 4-manifold (M,J) does not admit any non-constant
pseudoholomorphic function even locally. Hence, a generic pseudoholomor-
phic 1-subvariety is not the zero locus of any complex line bundle over M .
Since pseudoholomorphic 1-subvarieties in a 4-dimensional (tamed) almost
complex manifold (M,J) are the generalization of the notion of Weil divi-
sor, it just says that, in general, a Weil divisor is not a Cartier divisor in an
almost complex manifold.

In the following, we study in detail a particularly interesting line bundle,
the canonical bundle. When the base dimension is 4, the suitable general-
ization of canonical bundle to the almost complex setting is the bundle
of J-anti-invariant 2-forms Λ−

J . We recall the definition. The almost com-
plex structure acts on the bundle of real 2-forms Λ2 as an involution, by
α(·, ·) → α(J ·, J ·). This involution induces the splitting into J-invariant,
respectively, J-anti-invariant 2-forms

Λ2 = Λ+
J ⊕ Λ−

J

corresponding to the eigenspaces of eigenvalues ±1 respectively.

The bundle Λ−
J has (real) rank 2. It inherits a complex structure, also

denoted by J , given by Jφ(X,Y ) = −φ(JX, Y ). Hence Λ−
J is a complex line

bundle over M . Moreover, we can calculate its Chern class.

Proposition 4.3. The first Chern class of the complex line bundle Λ−
J over

(M4, J) is the canonical class KJ of the almost manifold (M,J).

Proof. The conclusion should be well known. We offer a proof by Chern-Weil
theory. The calculation is useful for later discussions.

Let g be a Riemannian metric compatible with J , i.e. g(JX, JY ) =
g(X,Y ). We call the triple (M,J, g) an almost Hermitian manifold. Denote
the complexified tangent space by TCM = TM ⊗ C. The complexified tan-
gent space can be decomposed by as TCM = T ′M ⊕ T ′′M where T ′M and
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T ′′M are the eigenspaces of J corresponding to eigenvalues
√
−1 and −

√
−1

respectively. Choose a local unitary frame {e1, e2} for T ′M with respect to
the Hermitian inner product induced from g.

We choose an almost Hermitian connection ∇ on (M,J, g), i.e. ∇J =
∇g = 0, which exists on every almost Hermitian manifold. There is a matrix
of complex valued 1-forms {θji }, called the connection 1-forms, such that

∇ei = θji ej . The curvature Ω = {Ωj
i} is defined by

Ωj
i = dθji + θjk ∧ θki .

By Chern-Weil theory c1(TM, J) = [
√
−1
2π tr(Ω)]. In local coordinates,

tr(Ω) = dθ11 − θ12 ∧ θ21 + dθ22 − θ21 ∧ θ12 = dθ11 + dθ22.

On the other hand, the almost Hermitian connection ∇ induces a con-
nection on Λ−

J , which will also be denoted by ∇. Again, we consider the
complexification of Λ−

J and look at its eigenspace corresponding to the eigen-
value

√
−1 with respect to the induced involution J : Λ−

J → Λ−
J , φ �→ Jφ.

The complexified bundle of the dual of Λ−
J has local generator e1 ∧ e2. We

have

∇(e1 ∧ e2) = (θ11 + θ22)e1 ∧ e2.

Hence the curvature is

d(θ11 + θ22) + (θ11 + θ22) ∧ (θ11 + θ22) = d(θ11 + θ22).

This is identical to tr(Ω). This implies the first Chern class of the dual
bundle of Λ−

J is c1(TM, J). Hence, the first Chern class of Λ−
J is KJ =

−c1(TM, J).

The following material partially arises from discussions with Tedi
Draghici. As in the above proof, an almost Hermitian connection ∇ on
(M,J) induces a connection on Λ−

J . This in turn gives a decomposition
of the tangent bundle of total space Λ−

J

TΛ−
J = H⊕ V .

If π : Λ−
J → M denotes the projection, V = ker(dπ) is identified with the

fiber of the bundle and, restricted to H, dπ is an isomorphism between
H and TM which enables us to identify these spaces. From J and ∇, we
also get an almost complex structure, J∇ on the total tangent space of the
bundle, where J∇ = J on H = TM and J∇ = −J on V. For all such J∇,
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the first Chern class c1(TΛ
−
J ,J∇) of the total space is 0. Hence the total

space of Λ−
J is an open almost complex Calabi-Yau 6-manifold. Moreover

if M is symplectic, then the total space Λ−
J admits a symplectic form. It

follows from a general fact that the total space of any complex line bundle
L over a symplectic manifold (M,ω) is symplectic, following Thurston’s
construction as in [13]. In fact, it directly follows from Theorem 2.1 in [13]
by first compactifying L to a CP 1 bundle and noticing an S2 fiber cannot be
nullhomologous by adjunction formula. We can choose the symplectic form
such that it tames J . Hence, the total space of Λ−

J is an open symplectic
Calabi-Yau 6-manifold.

A section ψ ∈ Γ(Λ−
J ) is (J,J∇)-holomorphic if

J∇ ◦Dψ = Dψ ◦ J,

where Dψ : TM → TΛ−
J is the differential of ψ as a section. It should not be

confused with taking the exterior derivative when ψ is treated as a 2-form.
Since π ◦ ψ = idM , with the identifications above, the condition that ψ

is (J,J∇)-holomorphic is equivalent to

(3) (∇JXψ)(JY, Z) + (∇Xψ)(Y, Z) = 0, ∀X,Y, Z ∈ TM .

It is obvious that ψ is (J,J∇)-holomorphic if and only if Jψ is (J,J∇)-
holomorphic since ∇J = 0. Notice that (3) implies that our J∇ is a “bundle
almost complex structure” in the sense of [6]. For a complex vector bundle
(E,J ) over (M,J), in addition to requiring the bundle projection is (J , J)-
holomorphic and J inducing the standard complex structure on the fibers,
a bundle almost complex structure also requires that the fiberwise addition
α : E ×M E → E and the fiberwise multiplication by a complex number
μ : C× E → E are both pseudoholomorphic.

Different almost Hermitian connections ∇ give rise to different almost
complex structures on Λ−

J . Some of them might admit pseudoholomorphic
sections. For a tamed J there is always a J-holomorphic subvariety in the
class KJ if b+ > 1 [33]. However, in general it is not the zero divisor of a
pseudoholomorphic section of the complex line bundle Λ−

J with the almost
complex structure J∇ induced by an almost Hermitian connection ∇.

If we take ∇ to be the Chern connection (sometimes referred to as the
second canonical connection), i.e. the unique almost Hermitian connection
whose (1, 1) part of the torsion vanishes, Tedi Draghici observed that ψ
is (J,J∇)-holomorphic if and only if ∂̄(ψ + iJψ) = 0 where ∂̄(ψ + iJψ)
denotes the projection on Λ2,1

J of the differential d(ψ + iJψ). Notice that
d(ψ + iJψ) = 0 if and only if J is integrable.
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On the other hand, it was conjectured in [9] that the zero set of a closed
J-anti-invariant form α is J-holomorphic for any almost complex structure,
see Question 1.6 in our introduction. However, this conjecture does not follow
from our current framework, since it would imply the form Jα is also closed,
which would imply the integrability of J . This conjecture is confirmed in [4].
It applies the general strategy of proving Theorem 1.2, but uses a different
analysis for the local model.

Finally, we would like to know whether the divisor determines the pseu-
doholomorphic section up to scaling.

Proposition 4.4. Suppose J is tamed. For a given almost Hermitian con-
nection ∇ on Λ−

J , all the pseudoholomorphic sections of the bundle Λ−
J with

the same zero divisor are linearly parametrized by C.

Proof. Any smooth section of the bundle Λ−
J is a J-anti-invariant form. If ψ

is a form such that the corresponding section of Λ−
J is (J,J∇)-holomorphic,

then (a + bJ)ψ, a, b ∈ R, are also pseudoholomophic sections by Equation
(3) and has the same zero divisor as ψ.

There are no more pseudoholomorphic sections with divisor ψ−1(0). If
there is any, say φ, then at some point x ∈ M which is not in |ψ−1(0)|, φ|x =
(a + bJ)ψ|x for some constant a + ib ∈ C. In other words, the intersection
of J∇-holomorphic subvarieties corresponding to φ and (a+ bJ)ψ contains
ψ−1(0) ∪ {x}. In particular, the homology class of intersection is different
from KJ since any J-holomorphic subvariety has non-trivial homology when
J is tamed. This contradicts to Theorem 1.2 since all the sections have the
same normal bundle which is Λ−

J and their intersections have homology class
KJ = [ψ−1(0)].

Proposition 4.4 also works for any complex line bundle E over M with
bundle almost complex structure in the sense of [6].

In particular, the above discussion of (J,J )-holomorphic sections of
Λ−
J could be applied to a similar study of the tensor complex line bun-

dle (Λ−
J )

⊗CN . This would lead to several potential applications. For exam-
ple, we can study the growth rate of certain (J,J∇)-holomorphic sections
of (Λ−

J )
⊗CN . Here, for each positive integer N , we record the maximal di-

mension of such sections for any almost complex structure J tamed by the
symplectic form ω and any ∇. This method may generalize the definition of
Kodaira dimension to symplectic manifolds. So far, such definition is known
only for symplectic manifolds of dimensions no greater than 4.

In summary, the current section describes a way to find J-holomorphic
curves through almost Hermitian connections. Given a complex line bundle
E over an almost complex 4-manifold M , any almost Hermitian connection
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of E would induce an almost complex structure on the total space. Then the
zero divisor of any pseudoholomorphic section is a J-holomorphic subvariety
of M in class c1(E). Of particular interest is the bundle Λ−

J , which is a gen-
eralization of the canonical bundle in almost complex setting. To produce
J-holomorphic subvarieties in class KJ , we look at the pseudoholomorphic
sections for almost complex structures on Λ−

J induced by almost Hermitian
connections on M . Then each such section is a J-anti-invariant form satis-
fying certain “closedness” condition. The zero divisor of each such form is a
J-holomorphic subvariety in class KJ . Notice, there is no tameness require-
ment for our almost complex structure J , while tameness of J is essential in
[33] to guarantee a J-holomorphic subvariety in class KJ .

Remark 4.5. The bundle Λ−
J is the bundle of real part of (2, 0) forms [22],

i.e. Λ−
J = (Λ2,0

J (M)C ⊕ Λ0,2
J (M)C) ∩ Λ2(M). From this viewpoint, the cor-

responding canonical line bundle for an almost complex 2n-manifold is the
bundle of real part of (n, 0) forms. Except lacking of the corresponding state-
ment of Theorem 1.2, most results in this section still work for this complex
line bundle. In particular, its first Chern class is KJ .

5. Pseudoholomorphic maps and symplectic birational
geometry

In this section, we discuss applications of our results to pseudoholomorphic
maps and symplectic birational geometry.

5.1. Pseudoholomorphic maps

As we remarked in the introduction, the image of pseudoholomorphic map
u in Theorem 1.2 might not be of dimension 4. This leads to the first appli-
cation.

Proposition 5.1. Let f : X → S be a pseudoholomorphic map from a closed
almost complex 4-manifold (X, J) to a closed Riemann surface S. Then for
any x ∈ S, the preimage f−1(x) is a J-holomorphic 1-subvariety of (X, J).

Proof. Apply Theorem 1.2 to M = S and Z2 = {x}, we know f−1(x) is a
J-holomorphic 1-subvariety in (X, J).

In the following, we will mainly study equi-dimensional pseudoholomor-
phic maps. The study of such a map is discussed in section 5 of [39]. We
start with a direct geometric method. The advantage of this approach is
that we do not require any tameness of the almost complex structure of the
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domain. The second approach relies on a more delicate study of the singu-

larity subset. Exploring it, we will answer Question 5.4 of [39], see Theorem

5.13.

We start with the following simple well-known lemma. For readers’ con-

venience, we include its proof.

Lemma 5.2. Let u : (X, J) → (M,JM ) be a pseudoholomorphic map be-

tween closed connected almost complex 2n-manifolds. Then the following are

equivalent:

1. u is somewhere immersed.

2. deg u 	= 0.

3. deg u > 0.

4. u is surjective.

Proof. For any point x ∈ X, det(dux)R = | det(dux)C|2 ≥ 0 since u is pseu-

doholomorphic. Meanwhile, for any regular value y ∈ M of the map u, the

topological degree of the map u is defined as

deg u :=
∑

x∈u−1(y)

sign(det(dux)R).

Hence, it is clear that (2) ⇐⇒ (3).

If deg u = 0, by Sard’s theorem, a generic point of M is a regular value.

By the definition of topological degree, for any regular value y, u−1(y) is an

empty set which implies u is not surjective. This shows (4) =⇒ (2).

It is a simple fact that a map f : Xn → Y n of nonzero degree be-

tween closed orientable manifolds is surjective. Otherwise, if y /∈ im(f), the

factorization Hn(X) → Hn(Y \ {x}) → Hn(Y ) shows deg f = 0. Hence

(2) =⇒ (4).

If u is immersed at x, since being immersed is an open condition, it is a

local diffeomorphism on an open neighborhood Ux of x. By Sard’s theorem,

a generic point of M is a regular value, hence there is a regular value y =

u(x′) for some x′ ∈ Ux. Moreover, deg u ≥ sign(det(dux′)R) > 0. Hence

(1) =⇒ (3).

Finally, deg u 	= 0 implies u is immersed at regular points. This is

(2) =⇒ (1).

Later, we will state the equivalent conditions (1)-(3) alternatively.

We are ready for our first approach. We only state and prove the result

for the simplest target space, the projective plane.
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Proposition 5.3. Let u : X → CP 2 be a non-constant pseudoholomorphic

map from a closed connected almost complex 4-manifold (X, J) to CP 2 with

a tamed almost complex structure. Then u−1(x) is the union of a (possi-

bly empty) J-holomorphic 1-subvariety of (X, J) and a set of finitely many

points for any x ∈ CP 2.

Proof. For any x ∈ CP 2, we find two distinct rational curves Sx and S′
x

in class H which pass through x. By the positivity of local intersections of

pseudoholomorphic curves, Sx and S′
x only intersect at x and they are not

tangent to each other. We can assume u(X) � Sx ∪ S′
x.

By Lemma 5.2, deg u 	= 0 if and only if u is surjective. In fact, a generic

point is not in the image of u when deg u = 0. We choose y /∈ u(X) when

deg u = 0 or any y ∈ CP 2 when deg u 	= 0, and choose Sx to be the unique

smooth rational J-holomorphic curve in the line class H ∈ H2(CP 2,Z)
passing through x and y. The existence is guaranteed by Taubes’ SW=Gr

[33, 20] where the Gromov-Taubes invariant of H is 1 and its Seiberg-Witten

dimension is H · H + 1 = 2. We know it is irreducible because H has the

minimal symplectic energy and smooth because of adjunction formula. Then

we choose another point y′ (y′ /∈ u(X)∪Sx if deg u = 0) and choose S′
x to be

the smooth rational J-holomorphic curve in the line class H ∈ H2(CP 2,Z)
passing through x and y′.

By Theorem 1.2, u−1(Sx) and u−1(S′
x) are both J-holomorphic subvari-

eties. Hence, their intersection u−1(Sx)∩u−1(S′
x) = u−1(x) is the union of a

(possibly empty) J-holomorphic 1-subvariety of (X, J) and a set of finitely

many points.

The statement of Proposition 5.3 is also true when CP 2 is replaced

by any symplectic 4-manifold of b+ = 1 with any tamed almost complex

structure by applying results of [19]. For this generality, we need to use

Theorem 3.6 where Z2 is merely a J-holomorphic 1-subvariety.

Most almost complex manifolds do not admit non-constant pseudoholo-

morphic maps to CP 2. The existence of such a map would require X to con-

tain many J-holomorphic curves, which is comparable to the requirement

of the algebraic dimension a(X) > 0 in the complex setting. As we can see

from Proposition 5.3, such an X is covered by J-holomorphic subvarieties.

Corollary 5.4. Suppose there is a non-constant pseudoholomorphic map

u : X → CP 2 from a closed connected almost complex 4-manifold (X, J) to

CP 2 with a tamed almost complex structure. Then there is a J-holomorphic

subvariety passing through any point of X.
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Proof. Choose any point x ∈ X. If deg u > 0, we choose a rational curve Sx

in class H passing through u(x). If deg u = 0, we choose this rational curve
Sx such that u(X) � Sx. Then preimage u−1(Sx) is a J-holomorphic curve
passing through x by Theorem 1.2.

In particular, a K3 or T 4 with a generic tamed almost complex struc-
ture does not admit any pseudoholomorphic map to CP 2 endowed with any
tamed almost complex structure.

For our second approach to pseudoholomorphic maps between almost
complex 4-manifolds, we start with studying the singularity subset of a pseu-
doholomorphic map. For a pseudoholomorphic map u : (X, J) → (M,JM ),
the singularity subset of u is defined to be the points p ∈ X such that the
differential dup : TpX → Tu(p)M is not of full rank.

Theorem 5.5. Let u : (X, J) → (M,JM ) be a somewhere immersed pseu-
doholomorphic map between closed almost complex 4-manifolds. Then the
singularity subset Su of u supports a J-holomorphic 1-subvariety.

Proof. We first look at the manifold J1(X,M) of 1-jets of pseudoholomor-
phic mappings from (X, J) to (M,JM ). It is identified with the total space
of the complex vector bundle E over X×M , whose fiber is the complex vec-
tor space of all complex linear maps L : TxX → TmM regarding the almost
complex structures J |x and JM |m, for each x ∈ X and m = u(x) ∈ M .
Therefore E is a complex vector bundle of rank 4 in our situation. By
[12], there is a canonical almost complex structure J on J1(X,M) such
that for any pseudoholomorphic map u : (X, J) → (M,JM ), the canoni-
cal lift uE(x) = (x, u(x), (dux)C) is a pseudoholomorphic map from (X, J)
to (J1(X,M),J ). The conclusion could also be derived from the canonical
almost complex structure on the total space of the tangent bundle of an al-
most complex manifold ([38], see Theorem 3.2 in [18]), which would in turn
give a canonical almost complex structure on E .2

By taking the fiberwise complex determinant of the bundle E , i.e., re-
placing the fibers of E , the complex linear maps L : TxX → TmM , by the
induced maps detL : Λ2

C
TxX → Λ2

C
TmM , we get a complex line bundle L. Its

total space inherits the canonical almost complex structure from J1(X,M).
Its zero section X ×M ×{0} is a codimension two J -holomorphic subman-
ifold. The map u induces a map uL(x) = (x, u(x), det(dux)C) from X to L.

2These two canonical almost complex structures on J1(X,M) are different. As
discussed in [18], the one in [12], for the tangent bundle case, does not have the
deformation property (d) in Theorem 3.2 of [18], although we do not need this
property here.
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It is a pseudoholomorphic map by the calculation of Proposition A.2.10 of
[12]. The intersection uL(X) ∩ (X ×M × {0}) inside L is the set of points
(x, u(x), 0) where u is not immersed at x. In particular, u−1

L (X ×M × {0})
is the singularity subset Su.

Apply Theorem 1.2 to Z2 = X ×M × {0} and the ambient space L for
the pseudoholomorphic map uL. Since u is somewhere immersed, we know
uL(X) � Z2. Hence, the singularity subset of u, Su = u−1

L (X ×M × {0}),
supports a J-holomorphic 1-subvariety.

The following is a quick corollary.

Corollary 5.6. Let u : (X, J) → (M,JM ) be a degree non-zero pseudo-
holomorphic map between closed almost complex 4-manifolds. If X is simply
connected with no J-holomorphic curves, e.g. a generic K3 surface, then u
is a diffeomorphism. If X has no J-holomorphic curves, e.g. a generic T 4,
then u is a covering map.

Proof. By Theorem 5.5 and the assumption that X has no J-holomorphic
curves, the singularity subset Su = ∅. Hence u is a local diffeomorphism onto
M . Since X is compact, u is a covering map. Moreover, when X is simply
connected, a covering map has to be a diffeomorphism.

The following lemma describes the structure of a somewhere immersed
pseudoholomorphic map.

Lemma 5.7. For a somewhere immersed pseudoholomorphic map u :
(X, J) → (M,JM ) between closed almost complex 4-manifolds, the points
of X are divided into three groups:

1. the regular points X \ Su, where u is a local diffeomorphism and the
preimage of any point in u(X \Su) has at most deg u points in X \Su;

2. a subset of singular points S ′
u ⊂ Su, consisting of all the irreducible

components of Su contracted by u;
3. points in Su \ S ′

u, where the preimage of each point in u(Su \ S ′
u) has

finitely many points for u|Su\S′
u
.

Proof. Since the singularity subset Su is J-holomorphic and u is pseudoholo-
morphic, its image u(Su) is JM -holomorphic. Other than this codimension
two subset, X \ Su are regular points. Thus the restriction u|X\Su

is a local
diffeomorphism. For any point in M \ u(Su), the preimage contains degree
deg u > 0 many points. Since near any point in X \ (Su ∪ u−1(M \ u(Su))),
u is also a local diffeomorphism, the points in u(X \ Su) \ (M \ u(Su)) has
at most deg u points in X \ Su.
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Restricting to each irreducible component of the singularity set, Su, the

image of u is either a point or a JM -pseudoholomorphic 1-subvariety. The

union of the irreducible components contracted by u constitutes of the subset

S ′
u ⊂ Su.

The closure of each irreducible component C of Su\S ′
u, forgetting multi-

plicities, maps to JM -holomorphic 1-subvarieties. Choose a model Riemman

surface Σ for C. It gives a non-trivial pseudoholomorphic curve in M . In

particular, the preimage of any point in the image is a set of finitely many

points in Σ.

Hence, we have a more general version of Proposition 5.3 for somewhere

immersed pseudoholomorphic maps.

Proposition 5.8. Let u : (X, J) → (M,JM ) be a somewhere immersed

pseudoholomorphic map between closed connected almost complex 4-mani-

folds. Then other than finitely many points x ∈ M , where u−1(x) is the union

of a J-holomorphic 1-subvariety and finitely many points, the preimage of

each point is a set of finitely many points.

Proof. The singularity subset Su is a (compact) J-holomorphic 1-subvariety.

Hence, only finitely many irreducible J-holomorphic subvarieties, which are

some irreducible components of Su, will be contracted by u. The images

are finitely many points in M . We denote the union of these irreducible

J-holomorphic subvarieties by S ′
u. On M \ S ′

u, the preimage of any point

x ∈ u(M \ S ′
u) under the map u is a set of finitely many points by Lemma

5.7.

5.2. Degree one pseudoholomorphic maps

It is particularly interesting when applying the above results to a degree one

pseudoholomorphic map u : (X4, J) → (M4, JM ). Such a map has partic-

ularly nice structure which is essentially a birational morphism in pseudo-

holomorphic category.

First, we have a version of Zariski’s main theorem for degree one pseu-

doholomorphic maps between almost complex 4-manifolds.

Proposition 5.9. Let u : (X, J) → (M,JM ) be a degree one pseudoholo-

morphic map between closed connected almost complex 4-manifolds. Then

other than finitely many points m ∈ M1 ⊂ M , where u−1(m) is a connected

J-holomorphic 1-subvariety, u|X\u−1(M1) is a diffeomorphism.
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Proof. Each component of the J-holomorphic 1-subvariety Su is either con-
tracted to a point or mapped onto a JM -holomorphic 1-subvariety, as in
Lemma 5.7.

We can decompose M into three parts. The first part, M1, contains
points whose preimages contain (non-trivial) J-holomorphic 1-subvarieties.
There are only finitely many such points. The second part, M2, consists
of points in u(Su), but not in the first part. The closure of second part
is a (compact) JM -holomorphic 1-subvariety. The third part, M3, is the
complement of the first two parts. It is an open subset of M where u is a
diffeomorphism since deg u = 1.

We now show that, for any m ∈ M2, u
−1(m) is a single point. Suppose

there are two points x, y ∈ X such that u(x) = u(y) = m. Take an open
neighborhood Nm ⊂ M of m, such that it does not contain any point in M1.
Then Nm ∩ M3 is a complement of a relative compact set of codimension
two. For any disjoint open neighborhoods Nx,Ny ⊂ X of x, y, such that
u(Nx), u(Ny) ⊃ Nm, we know they overlap at a non-empty open subset
u−1(Nm ∩M3). This contradicts the fact that X is Hausdorff.

Finally, by a similar argument, we can show that, for any m ∈ M1,
u−1(m) is a connected J-holomorphic 1-subvariety. Suppose, other than a
connected J-holomorphic 1-subvariety C, there is an isolated point x ∈ X
or another connected J-holomorphic 1-subvariety C ′ disconnected from C
in u−1(m). We then similarly choose open neighborhood Nm ⊂ M of m and
disjoint neighborhoods Nx (or NC′) and NC ⊂ X of x (or C ′) and C. Again,
u−1(Nm ∩ M3) would be a common open subset of both Nx (or NC′) and
NC , contradicting the fact that X is Hausdorff.

To summarize, for the finitely many points in M1, u−1(m) is a con-
nected J-holomorphic 1-subvariety. For any point in M \ M1 = M2 ∪ M3,
the preimage under u is a single point.

Since Su = u−1(M1 ∪M2), now we want to show M2 = ∅, which would
then imply u|X\u−1(M1) is a diffeomorphism. As shown above, u|u−1(M2) is a
degree one pseudoholomorhic map, which is non-singular except at possibly
finitely many points. Denote these nonsingular points byM ′

2. The differential
du is non-vanishing at the tangent direction of TM ′

2. Then for any point
p ∈ M ′

2, and any complex direction v ∈ TpM which is not tangent to M2, we
choose an embedded JM -holomorphic disk Dv tangent to v and such that
Dv ∩ (M1 ∪M2) = {p}. The preimage D′

v := u−1(Dv) is also homeomorphic
to a disk. Moreover, u|D′

v
: D′

v → Dv is a degree one map and holomorphic
on D′

v \ u−1(p). Since the differential is bounded on D′
v, by the removable

singularity theorem, u|D′
v
: D′

v → Dv is a holomorphic map. Since Dv is
embedded, the differential du(v) 	= 0. It implies u is also diffeomorphic at
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M ′
2. Hence M ′

2 = ∅ and there are only finitely many points in M2 = M2\M ′
2.

Since the closure of M2 is a compact JM -holomorphic 1-subvariety, the only
possibility is M2 = ∅.

We thus complete the proof of Zariski’s main theorem for degree one
pseudoholomorphic maps between closed almost complex 4-manifolds.

We will continue the notation Mi ⊂ M, i = 1, 2, 3, defined in the above
proof in the following. By the above discussion, it is clear that any degree one
pseudoholomorphic map u : (X, J) → (M,JM ) is a composition of #{M1}
many pseudoholomorphic maps such that each of them has only one point
whose preimage is not a point. Let us study the preimage of M1.

Proposition 5.10. Let u : (X, J) → (M,JM ) be a degree one pseudoholo-
morphic map between closed almost complex 4-manifolds. Then the funda-
mental group of the J-holomorphic 1-subvariety u−1(M1) is trivial. Equiva-
lently, each irreducible component of the J-holomorphic 1-subvariety u−1(M1)
is a smooth rational curve and there are no cycles enclosed by different ir-
reducible components.

Proof. For any pointm ∈ M1, denote the J-holomorphic 1-subvariety u−1(m)
by Cm. The configuration of Cm might have triple intersections or tangent
points of different irreducible components, or singular points of some ir-
reducible components. We first topologically blow up the configuration of
Cm at these points. We denote the new surface configuration by C ′

m. For
any tubular neighborhoods A1 of Cm and A2 of C ′

m, the following pairs
are homeomorphic A1 \ Cm

∼= A2 \ C ′
m and ∂A1

∼= ∂A2. The statement
of our proposition follows if we can show H1(C ′

m) = 0 for the new surface
configuration.

For any open ball Bδ around m such that Bδ ∩ M1 = {m}, let Kδ =
u−1(Bδ). Denote by K ′

δ the image of Kδ after topological blowup. We have
π1(K

′
δ \ C ′

m) = π1(Kδ \ Cm) = π1(Bδ \ {m}) = 1. There exists a tubular
neighborhood A′ of C ′

m, such that A′ ⊂ K ′
δ ⊂ A where A is obtained from A′

by multiplying the normal distance by a fixed positive number r > 1. Thus
any path in A\C ′

m is homotopic to a path in A′\C ′
m which is nullhomotopic

in A \ C ′
m because π1(K

′
δ \ C ′

m) = 1. This implies π1(∂A) = 1 and it is
independent of the choice of the neighborhood. Hence we say the “boundary
fundamental group” of C ′

m is trivial.

The tubular neighborhood A deformation retracts to C ′
m. Thus Hi(A) =

Hi(C
′
m). We have the exact sequence

H1(A, ∂A) → H1(A) → H1(∂A) = 0.
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By Poincaré duality H1(A, ∂A) = H3(A) = 0. Hence H1(C ′
m) = H1(A) = 0

and all the conclusions follow.

The topological blowdown is the reverse action of the topological blowup.
It contracts a smooth sphere of self-intersection −1. The topological blowup
and blowdown for surface configurations can actually be performed holomor-
phically, at least locally, for pseudoholomorphic 1-subvarieties (see Theorem
3 in [32] and the proof of Theorem 5.13). Later, we say a surface config-
uration (resp. a pseudoholomorphic 1-subvariety) is equivalent to another
if they are related by topological (resp. locally holomorphic) blowups and
blowdowns.

To describe a finer structure of a pseudoholomorphic exceptional subset,
we introduce the following definition, see [2, 10].

Definition 5.11. An exceptional curve of the first kind in a complex surface
X is a divisor E for which there is a birational map π : X → M to a smooth
complex surface M and a point m ∈ M such that π−1(m) = E.

Let X be a 4-manifold, and Θ the image of a continuous map from a
nodal Riemann surface of genus zero. We say that Θ is an exceptional curve
of the first kind if there exists a neighborhood (N, J) of Θ where J is an
integrable complex structure, an open neighborhood N ′ of 0 ∈ C2, and a
holomorphic birational map π : N → N ′, such that Θ is a J-holomorphic
1-subvariety and π−1(0) = Θ.

The exceptional curves of the first kind are treated systematically in [2].
Any such curve could be obtained by a sequence of blowups at points. It
implies that any two irreducible components intersect at most once trans-
versely and have no triple intersections. There is at least one −1-sphere
amongst the irreducible components. The following should be well known.

Lemma 5.12. Blowing down a −1-sphere from an exceptional curve of the
first kind gives another exceptional curve of the first kind.

Proof. Essentially, we only need to show that we can continue the blowdown
process until no curves are left, whatever the order of blowdowns we choose.
We call the starting exceptional curve of the first kind Θ = {(Ci,mi)}ni=1.

Since an exceptional curve of the first kind is obtained from consecu-
tive blowups, the cohomology class of the corresponding pseudoholomorphic
subvariety is a −1-rational curve class E1. In fact, this process is equivalent
to the following choices of homology classes: there are n second cohomol-
ogy classes E1, · · · , En which can be represented by embedded symplectic
spheres with E2

i = −1, i = 1, · · · , n, and Ei · Ej = 0 for i 	= j, such that
[Ci] = Ei −

∑
j>imijEj . Here (mij)

n
i,j=1 is a strict upper triangular square
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matrix whose entries are 0 or 1. The connectedness of Θ is equivalent to
saying that there does not exist j such that mij = mji = 0, ∀i = 1, · · · , n.
Moreover, we have

∑
mi[Ci] = E1. The inverse of the original blowup pro-

cess to get Θ is to blow down Cn, · · · , C1 consecutively.
We can also start blowing down from some Cl where mlj = 0 for ∀j > l.

After that, we can relabel Ci, Ei from 1 to n−1 without changing the original
order. The new matrix (m′

ij)
n−1
i,j=1 is obtained from (mij)

n
i,j=1 by deleting lth-

row and column. Hence, the new subvariety obtained from blowing down Cl

is still an exceptional curve of the first kind.

We end the digression.
The following theorem shows that a degree 1 map is a suitable alterna-

tive of a blowdown morphism in the pseudoholomorphic setting. It gives an
affirmative answer to Question 5.4 of [39].

Theorem 5.13. Let u : (X, J) → (M,JM ) be a degree one pseudoholomor-
phic map between closed almost complex 4-manifolds such that J is com-
patible with a symplectic structure ω on X. Then other than finitely many
points M1 ⊂ M , u|X\u−1(M1) is a diffeomorphism. At each point of M1, the
preimage supports an exceptional curve of the first kind.

Proof. Other than the last conclusion, the statements follow from Proposi-
tions 5.9 and 5.10.

For any point m ∈ M1, we still denote the J-holomorphic 1-subvariety
u−1(m) by Cm. We denote the intersection matrix for Cm by QCm

. It is a
symmetric square matrix whose size is the number of irreducible components
of Cm. We want to show that this matrix QCm

is negative definite, as a
generalization of Grauert’s criterion for exceptional sets of analytic maps.

We use a gluing result of McCarthy-Wolfson [26]. Let Y be (2n − 1)-
dimensional submanifold of a 2n-dimensional symplectic manifold (X,ωX).
Suppose Y admits a fixed point free S1 action. The manifold Y is called
ωX -compatible if the orbits of the action lie in the null direction of ωX |Y .
If Y is a separating hypersurface, let X− be the piece for which Y is the
ωX -convex boundary and X+ be the other piece. Then we have the following
gluing result. We only state it for dimY = 3, since it is what we need in the
proof.

Theorem 5.14 (McCarthy andWolfson). Let Y be a Seifert 3-manifold, i.e.
a compact manifold with a fixed point free S1 action. Let (Xi, ωi), i = 1, 2, be
symplectic 4-manifolds, and suppose that there are ωi-compatible embeddings
ji : Y → (Xi, ωi) such that ji(Y ) is a separating hypersurface in Xi. Then
there is a symplectic structure ω on X̃ = X−

1 ∪Y X+
2 . Moreover, there are
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neighborhoods Ni(Y ) of Y in Xi such that ω = ω2 on X+
2 \ N2(Y ) and

ω = cω1 on X−
1 \N1(Y ) for some positive constant c.

We choose an open ball neighborhood Nm of m ∈ M1 such that the
boundary is JM -convex and Nm ∩M1 = {m}. We can choose Nm such that
it is contained in a neighborhood of m such that there exists a symplectic
form compatible with JM . The induced contact structure on ∂Nm is the
unique tight contact structure on S3. This is our Y whose fixed point free
S1-action is induced by Reeb orbits. Hence, Nm could be capped (by a
concave neighborhood of +1-sphere) to a symplectic CP 2. This is our X2.

We take X1 to be our X with the J-compatible symplectic form ωX .
The preimage u−1(∂Nm) is diffeomorphic to S3. Moreover, since u is pseu-
doholomorphic and u|u−1(∂Nm) is a diffeomorphism, the J-lines provide a
contact structure on u−1(∂Nm) which is contactomorphic to the one on
∂Nm induced by JM -lines. Hence, we can apply Theorem 5.14 to obtain a
symplectic manifold X̃ = X−

1 ∪Y X+
2 .

Since X+
2 contains a symplectic sphere S of self-intersection 1, the sym-

plectic 4-manifold X̃ is diffeomorphic to CP 2#kCP 2, i.e. a rational 4-
manifold [23]. In particular, b+(X̃) = 1. Since Cm is disjoint from S, we
have QCm∪S = QCm

⊕ (1) as a sub matrix of the intersection matrix of X̃.
It implies the matrix QCm

corresponding to Cm is negative definite.

Hence, we can apply Proposition 4.4 of [21] (its proof eventually follows
from [31]). We first topologically blow up our configuration Cm such that
every intersection of the new configuration C ′

m is transverse and there is no
triple intersection. We can actually realize this step by complex blowups. By
Theorem 3 of [32], there exists another (tamed) almost complex structure J ′

on X for which Cm is J ′-holomorphic and J ′ is integrable on a neighborhood
of Cm. Then we can apply the above topological blowups in a complex way
for this almost complex structure J ′.

After blowups, QC′
m
is still negative definite. For a surface configuration

C with each intersection transverse and having no triple intersections, one
can associate a weighted finite graph ΓC whose vertices represent the surfaces
and each edge joining two vertices represents an intersection between the two
surfaces corresponding to the two vertices. Moreover, each vertex is weighted
by its genus and its self-intersection number.

Applying Proposition 4.4 of [21] to the graph ΓC′
m
, it implies ΓC′

m
is

equivalent to a graph of type (N) as listed in [21]. The type (N) graphs have
three kinds. The graph (N1) is the empty graph. Its boundary fundamen-
tal group is trivial. The type (N2) graphs are linear graphs. The boundary
fundamental groups are non-trivial cyclic groups. The type (N3) graphs are
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star shapes with one branching point and three branches. The boundary
fundamental groups are non-cyclic finite groups. Since boundary fundamen-
tal groups of types (N2) and (N3) are non trivial, we know the underlying
graph ΓC′

m
is equivalent to the empty graph, i.e. type (N1). In fact, it is

equivalent to saying that C ′
m is an exceptional curve of the first kind with

the multiplicities induced by the process of blowups.
The J ′-holomorphic (and also J-holomorphic) subvariety Cm is obtained

from C ′
m by a sequence of complex blowdowns. By Lemma 5.12, Cm is also an

exceptional curve of the first kind. In particular, it implies every intersection
of Cm is transverse and there is no triple intersection.

This completes our proof.

Corollary 5.15. Let u : (X, J) → (M,JM ) be a degree one pseudoholomor-
phic map between closed almost complex 4-manifolds such that J is compat-
ible with a symplectic structure ω on X. Then X = M#kCP 2 diffeomorphi-
cally, where k is the number of irreducible components of the J-holomorphic
1-subvariety u−1(M1).

Proof. It clearly follows from Theorem 5.13. Moreover, from the proof of
Lemma 5.12, for the exceptional curve of the first kind Cm = u−1(m),
∀m ∈ M1, with n(m) irreducible components, we have n(m) cohomology
classes Em

1 , · · · , Em
n(m) in H2(X,Z) which can be represented by embedded

symplectic spheres with (Em
i )2 = −1, i = 1, · · · , n(m), and Em

i · Em
j = 0

for i 	= j, such that the cohomology class of each irreducible component is
Em

i −
∑

j>imijE
m
j .

Hence, each CP 2 corresponds to such an Em
j , and

H2(X,Z) = u∗(H2(M,Z))
⊕

m∈M1

(

n(m)⊕
i=1

ZEm
i ),

with k =
∑

m∈M1
n(m).

5.3. Symplectic birational geometry in dimension 6

We could also use our results, mainly Corollary 1.3, to study symplectic
birational geometry in dimension 6. We assume our ambient manifold M is
closed.

Proposition 5.16. Let Z1, Z2 be two embedded symplectic 4-manifolds in
a 6-dimensional symplectic manifold (M,ω). If PD[Z1]∪ PD[Z2]∪ [ω] ≤ 0,
then Z1 and Z2 are J-holomorphic simultaneously if and only if Z1 and Z2

are disjoint (in which case we have [Z1] · [Z2] = 0).
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Proof. First when Z1 and Z2 are disjoint, Z1 ∪ Z2 is an embedded sym-

plectic submanifold in (M,ω). Hence we can realize it as a J-holomorphic

submanifold for some J tamed by ω. And we have [Z1] · [Z2] = 0.

On the other hand, if Z1 and Z2 are J-holomorphic simultaneously. Then

by Corollary 1.3, we know the intersection Z1 ∩ Z2 is a J-holomorphic 1-

subvariety in class [Z1] · [Z2]. Since J is tamed, we must have PD[Z1] ∪
PD[Z2] ∪ [ω] ≥ 0. The equality holds if and only if [Z1] · [Z2] = 0, which

implies Z1 and Z2 are disjoint.

Conversely, two J-holomorphic submanifolds Z4
1 , Z

4
2 in (M6, J) with J |Z1

tamed and [Z1] · [Z2] = 0 cannot intersect. Otherwise, the intersection is a

J-holomorphic subvariety in Z1, by Corollary 1.3, whose homology class is

non-trivial since J |Z1
is tamed.

If a smooth J-holomorphic curve in a 4-dimensional almost complex

manifold has negative self-intersection, then there is no other J-holomorphic

curve in the same homology class. This follows from positivity of intersec-

tions. What follows is a generalization of this fact in dimension 6.

Proposition 5.17. If (Z4, ω) is a 4-dimensional symplectic manifold em-

bedded in (M6, J) as a J-holomorphic submanifold such that J |Z is tamed

by ω, and c1(NM (Z)) · [ω] < 0, then there is no other almost complex sub-

manifold in (M,J) which is homologous to Z.

Proof. If there is another such one Z ′, then the homology class of their inter-

section Z ∩Z ′ in H2(Z,Z) could be calculated by looking at the intersection

of a submanifold Z ′′ ⊂ M such that Z � Z ′′ and [Z ′] = [Z ′′]. Since all such

Z ′′ intersect Z in a manifold with the same homology class in H2(Z,Z), we
could choose Z ′′ to be a smooth perturbation of Z in a small neighborhood,

which is identified with its normal bundle NM (Z), such that Z � Z ′′. The
intersection V = Z ∩ Z ′′ is a submanifold of Z. Hence the homology class

of V in H2(Z,Z) is Poincaré dual to c1(NM (Z)). Combining with Corollary

1.3, this implies the intersection Z ∩ Z ′ is a J-holomorphic subvariety of Z

whose homology class is the Poincaré dual of c1(NM (Z)). Since J is tamed

by ω, we have c1(NM (Z)) · [ω] ≥ 0 which contradicts our assumption.

In a non minimal symplectic 4-manifold (M,ω), i.e. when M contains

a smooth sphere of self-intersection −1, there are infinitely many embedded

symplectic spheres in any exceptional class E. However, there is at most one

smooth J-holomorphic curve in class E if we fix an almost complex structure

J tamed by ω. This is also true in dimension 6.
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Definition 5.18. An almost complex submanifold D ⊂ (M6, J) is called a
smooth blow-up divisor if it is either CP 2 or a CP 1 bundle over a Riemann
surface Σg, whose normal line bundle NM (D) is O(−1) along CP 1 ⊂ CP 2

or the fibers of CP 1 bundles over Σg. It is further called an almost complex
blow-up divisor, if each fiber is a smooth J-holomorphic curve.

Since D is diffeomorphic to CP 2 or a CP 1 bundle over Σg, we assume
the homology class of CP 1 ⊂ CP 2 or the fibers of the latter case to be F .

Any complex or symplectic divisor arising from a complex or symplectic
blow-up is a smooth blow-up divisor. We remark that even if there is a
symplectic divisor D in a symplectic manifold which is an almost complex
blow-up divisor for some tamed J , it might not have a symplectic structure
on the blown down manifold which is compatible with the almost complex
structure. Think about a Moishezon manifold.

Proposition 5.19. Let an almost complex submanifold D ⊂ (M6, J) be a
smooth blow-up divisor. Suppose there is an irreducible curve inside D in the
class F . Then there is no other almost complex submanifold of M in class
[D].

Proof. As in the proof of Proposition 5.17, if there is another such divisor
D′, then the homology class of the intersection D ∩ D′ is Poincaré dual
to c1(NM (D)) ∈ H2(D,Z). However, since D is a smooth blow-up divisor,
c1(NM (D)) · F = −1. There is no J |D-holomorphic subvariety in such a
class c1(NM (D)) since F pairs non-negatively with any J |D-holomorphic
subvariety, which is because F is represented by a smooth J |D-holomorphic
curve of non-negative self-intersection in D. This contradiction implies there
is no other almost complex submanifold of M in class [D].

The argument for Proposition 5.19 works in more general setting, e.g.
we still have uniqueness when NM (D) is O(−k), k > 0, along CP 1 ⊂ CP 2 or
the fibers of CP 1 bundles over Σg. Under these assumptions, it is known that
there is a contraction in the complex analytic setting, i.e. a proper surjective
holomorphic mapping f : M → N onto a complex analytic variety N , such
that f |D : D → B is the fibration of the ruled surface where B is either a
point or Σg, and f : M \D → N \B is an isomorphism.
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