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Nonlinear interaction of impulsive gravitational
waves for the vacuum Einstein equations

Jonathan Luk and Igor Rodnianski

In this paper, we study the problem of the nonlinear interaction of
impulsive gravitational waves for the Einstein vacuum equations.
The problem is studied in the context of a characteristic initial
value problem with data given on two null hypersurfaces and con-
taining curvature delta singularities. We establish an existence and
uniqueness result for the spacetime arising from such data and
show that the resulting spacetime represents the interaction of two
impulsive gravitational waves germinating from the initial singular-
ities. In the spacetime, the curvature delta singularities propagate
along 3-dimensional null hypersurfaces intersecting to the future
of the data. To the past of the intersection, the spacetime can be
thought of as containing two independent, non-interacting impul-
sive gravitational waves and the intersection represents the first
instance of their nonlinear interaction. Our analysis extends to the
region past their first interaction and shows that the spacetime still
remains smooth away from the continuing propagating individual
waves. The construction of these spacetimes are motivated in part
by the celebrated explicit solutions of Khan-Penrose and Szekeres.
The approach of this paper can be applied to an even larger class
of characteristic data and in particular implies an extension of the
theorem on formation of trapped surfaces by Christodoulou and
Klainerman-Rodnianski, allowing non-trivial data on the initial in-
coming hypersurface.
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1. Introduction

1.1. Impulsive gravitational waves

In this paper, we study spacetime solutions (M, g) to the vacuum Einstein
equations

(1) Rμν = 0

representing a nonlinear interaction of two impulsive gravitational waves. In-
formally, an impulsive gravitational spacetime is a vacuum spacetime which
contains a null hypersurface supporting a curvature delta singularity. Ex-
plicit solutions with such properties have been constructed by Penrose [30],
and its origin can be traced back to the cylindrical waves of Einstein-Rosen
[9] and the plane waves of Brinkmann [6].
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Impulsive gravitational waves have been first studied within the class of
pp-waves that was discovered by Brinkmann [6], for which the metric takes
the form

g = −2dudr +H(u,X, Y )du2 + dX2 + dY 2,

and (1) implies that

(2)
∂2H

∂X2
+

∂2H

∂Y 2
= 0.

These include the special case of sandwich waves, where H is compactly
supported in u. Originally, impulsive gravitational waves have been thought
of as a limiting case of the pp-wave with the function H admitting a delta
singularity in the variable u. Precisely, explicit impulsive gravitational space-
times were discovered and studied by Penrose [30] who gave the metric in
the following double null coordinate form:

(3) g = −2dudu+ (1− uΘ(u))dx2 + (1 + uΘ(u))dy2,

where Θ is the Heaviside step function. In the Brinkmann coordinate system,
the metric has the pp-wave form and an obvious delta singularity:

(4) g = −2dudr − δ(u)(X2 − Y 2)du2 + dX2 + dY 2,

where δ(u) is the Dirac delta. Despite the presence of the delta singular-
ity for the metric in the Brinkmann coordinate system, the corresponding
spacetime is Lipschitz and it is only the Riemann curvature tensor (specif-
ically, the only non-trivial α component1 of it) that has a delta function
supported on the plane null hypersurface {u = 0}. This spacetime turns
out to possess remarkable global geometric properties [29]. In particular,
it exhibits strong focusing properties and is an example of a non-globally
hyperbolic spacetime.

In a previous paper, we initiated a comprehensive study of impulsive
gravitational spacetimes in the context of the characteristic initial value
problem. We were able to construct a large class of spacetimes which can
be thought of as representing impulsive gravitational waves parametrized by
the data given on an outgoing and an incoming hypersurface such that the
curvature on the outgoing hypersurface has a delta singularity supported
on a 2-dimensional slice. Our construction in particular provides the first
instance of an impulsive gravitational wave of compact extent and does not
require any symmetry assumptions.

1See (6) for the definition of α. In this specific example, these are the
R( ∂

∂u ,
∂

∂X , ∂
∂u ,

∂
∂X ), R( ∂

∂u ,
∂

∂X , ∂
∂u ,

∂
∂Y ) and R( ∂

∂u ,
∂
∂Y , ∂

∂u ,
∂

∂X ) components.
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1.2. Collision of impulsive gravitational waves

Returning to the explicit examples, one of the interesting features of plane

gravitational waves is that they enjoy a principle of linear superposition

provided that the direction and polarization of the waves are fixed. This is

not the case when one tries to combine two plane gravitational waves prop-

agating in different directions. Nonetheless, explicit solutions to the vacuum

Einstein equations modelling the interaction of two plane sandwich waves

have been constructed by Szekeres [38]. Khan-Penrose [16] later discovered

an explicit solution representing the collision of two plane impulsive grav-

itational waves. Further analysis of the Khan-Penrose solution was carried

out by Szekeres [39].

Figure 1: The Khan-Penrose Solution.

The Khan-Penrose solution can be represented by Figure 1. The null

hypersurfaces {u = 0} and {u = 0} have delta singularities in the Riemann

curvature tensor. In region I, where u < 0 and u < 0, the metric is flat and

takes the form

g = −2dudu+ dx2 + dy2.

In region II, where u < 0 and u > 0, the metric is also flat and takes the

form

g = −2dudu+ (1− u)dx2 + (1 + u)dy2.

Across the null hypersurface {u = 0} between regions I and II, the curvature

has a delta singularity. In fact, when u < 0, the Khan-Penrose solution

coincides with the Penrose solution (3) of one impulsive gravitational wave.

The region III, where u > 0 and u < 0, is symmetric to region II, and the
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metric takes the form

g = −2dudu+ (1− u)dx2 + (1 + u)dy2.

The intersection of the null hypersurfaces u = 0 and u = 0 represents the
interaction of the impulsive gravitational waves. Thus region IV, where u > 0
and u > 0, is interpreted as the region after the interaction. Here, the metric
takes the form

g =− 2(1− u2 − u2)
3

2√
(1− u2)(1− u2)(uu+

√
(1− u2)(1− u2))2

dudu

+ (1− u2 − u2)×
(
1− u

√
1− u2 − u

√
1− u2

1 + u
√

1− u2 + u
√
1− u2

dx2

+
1 + u

√
1− u2 + u

√
1− u2

1− u
√

1− u2 − u
√
1− u2

dy2

)
.

Even the spacetime is flat and plane symmetric in regions I, II and III,
the curvature is nonzero and the plane symmetry is destroyed in region IV,
signaling that the two plane impulsive gravitational waves have undergone
a nonlinear interaction. Nevertheless, the metric is smooth when u > 0,
u > 0 and u2 + u2 < 1. Towards u2 + u2 = 1, the spacetime has a spacelike
singularity.

As seen from (4), the Penrose solution of one impulsive gravitational
wave in particular belongs to the class of linearly polarized pp-waves, which
takes the general form

g = −2dudr −H(u)(cosα(X2 − Y 2) + 2 sinαXY )du2 + dX2 + dY 2.

The constant α is defined to be the polarization of the wave. Thus the
Khan-Penrose solution represents the interaction of two linearly polarized
impulsive gravitational waves with aligned polarization. The Khan-Penrose
construction was later generalized by Nutku-Halil [28] who wrote down ex-
plicit solutions modelling the interaction of two plane impulsive gravitational
waves with non-aligned polarization. These spacetimes have the same sin-
gularity structure as that of Khan-Penrose.

Further examples of interacting plane impulsive gravitational waves were
constructed via solving the characteristic initial value problem with data
prescribed on the boundary of region IV. This was undertaken by Szekeres
[39] and Yurtsever [41] for the case of aligned polarization via the Riemann
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method. The general case of non-aligned polarization has been studied in a
series of papers of Hauser-Ernst [13], [14], [15] by reducing it to the matrix
homogeneous Hilbert problem. The construction of even more general plane
distributional solutions for the vacuum Einstein equations that include col-
liding impulsive gravitational waves was carried out in [21], [22].

We refer the readers to [11], [12], [3], [5] and the references therein for
further description and more examples of spacetimes with colliding impulsive
gravitational waves.

The solutions of Khan-Penrose, Szekeres and Nutku-Halil as well as the
Hauser-Ernst solutions are all constructed within the class of plane symme-
try. This imposes the assumptions that the wavefronts are flat and that the
waves are of infinite extent. It has been speculated that the singular struc-
ture of the Khan-Penrose solution is an artifact of plane symmetry [40].
Concerning the assumption of plane wavefronts, Szekeres [39] wrote

The eventual singular behavior is just another aspect of Penrose’s result that
plane gravitational waves act as a perfect astigmatic lens. It is certainly
false for waves with curved fronts, but such waves may still act as imperfect
lenses providing a certain degree of focusing and amplification for each other...
Clearly a better understanding of the interaction of gravitational waves with
more realistic wavefronts is a problem of considerable importance.

A partial remedy has been suggested by Yurtsever [42], who did a heuristic
study of “almost plane waves” and their interactions, allowing waves of large
but finite extent. Our present paper considers the interaction of impulsive
gravitational waves with finite extent and with wavefronts having arbitrary
curvature. Locally, this in particular includes the case that the wavefronts
are flat. Nevertheless, even in this special case, we do not require either of
the waves to be linearly polarized.

1.3. Interaction of coherent structures

The nonlinear interaction of gravitational waves in general relativity can
be viewed in the wider context of nonlinear interaction of coherent struc-
tures such as solitons, vortices, etc. in evolutionary gauge theories, nonlinear
wave and dispersive equations. The completely integrable models KdV [10],
1-dimensional cubic Schrödinger equation [43] and Sine-Gordon equation [1]
not only admit individual solitary waves, but also exact solutions repre-
senting their superposition. In the past, these solutions have an asymptotic
form of individual propagating solitary waves. For the period after nonlin-
ear interaction, which can be described explicitly and typically results in
a phase shift, a new superposition of new individual propagating solitary
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waves emerges in the distant future. These solutions are analyzed by means
of the inverse scattering method. For the non-integrable models, our knowl-
edge is much more limited and only partial results are available. In those
cases, most of the results concerned perturbative interaction of coherent
structures in the regimes which are either close to integrable or correspond-
ing to interactions with high relative velocity or in which one of the objects
is significantly larger than the other one. In this context, we should mention
the work of Stuart on the dynamics of abelian Higgs vortices [32] and the
Yang-Mills-Higgs equation [33] and the recent breakthrough work of Martel-
Merle on the nonlinear solitary interaction for the generalized KdV equation
[25], [26].

Returning to the present work, one of the main challenges in treating
the interaction of impulsive gravitational waves is their singular nature, i.e.,
not only do we want to describe precisely how gravitational waves affect
each other during the interaction, but we also need to contend with the fact
that each impulsive gravitational wave separately is a singular object. We
should note that partially because of this challenge, no results of this kind
are available even for semilinear, let alone quasilinear, model problems. On
the other hand, model problems may not be even suitable for studying the
phenomena discovered in this work since it is precisely the special structure
of the Einstein equations that plays a crucial role in our analysis and its
conclusions.

1.4. Previous work on impulsive gravitational spacetimes

In a previous paper [24], we studied the (characteristic) initial value prob-
lem for spacetimes representing a single propagating impulsive gravitational
wave. Corresponding to such spacetimes, we considered data that have a
curvature delta singularity supported on an embedded 2-sphere S0,us

on an
outgoing null hypersurface, and is smooth on an incoming null hypersur-
face. We showed that such data give rise to a unique impulsive gravitational
spacetime satisfying the vacuum Einstein equations. Moreover, the curvature
has a delta singularity supported on a null hypersurface emanating from the
initial singularity on S0,us

and the spacetime metric remains smooth away
from this null hypersurface (see Figure 2).

1.5. Description of results in this paper

In this paper, we begin the study of the (characteristic) initial value problem
for spacetimes which represent the nonlinear interaction of two impulsive
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Figure 2: Propagation of One Impulsive Gravitational Wave.

gravitational waves. For such a problem, the initial data have delta function
singularities supported on embedded 2-spheres S0,us

and Sus,0 on the initial
null hypersurfaces H0 and H0 respectively see Figure 3). According to the
results that were obtained in [24], before the interaction of the two impulsive
gravitational waves, i.e., for u < us or u < us, a unique solution to the
vacuum Einstein equations exists, and the singularity is supported on the
null hypersurfaces emanating from the initial singularities.

Figure 3: Nonlinear Interaction of Impulsive Gravitational Waves.

Our focus here will be to understand the spacetime “beyond” the first
interaction (region IV in Figure 3). We will show that the resulting space-
time will be a solution to the vacuum Einstein equations with delta function
singularities in the curvature on the corresponding null hypersurfaces ger-
minating from the initial singularities. Surprisingly, the spacetime remains
smooth locally in region IV after the interaction of the impulsive gravita-
tional waves. Our main result for the collision of impulsive gravitational
waves is described by the following theorem:

Theorem 1. Suppose the following hold for the initial data set:

• The data on H0 are smooth except across a two sphere S0,us
, where

the traceless part of the second fundamental form of H0 has a jump
discontinuity.
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• The data on H0 are smooth except across a two sphere Sus,0, where
the traceless part of the second fundamental form of H0 has a jump
discontinuity.

Then

(a) For such initial data and ε sufficiently small, there exists a unique space-
time (M, g) endowed with a double null foliation u, u that solves the
characteristic initial value problem for the vacuum Einstein equations
in the region 0 ≤ u ≤ u∗, 0 ≤ u ≤ u∗, whenever u∗ ≤ ε or u∗ ≤ ε.

(b) Let Hus
(resp. Hus

) be the incoming (resp. outgoing) null hypersur-
face emanating from S0,us

(resp. Sus,0). Then the curvature components
αAB = R(eA, e4, eB, e4) and αAB = R(eA, e3, eB, e3) are measures with
singular atoms supported on Hus

and Hus
respectively.

(c) All other components of the curvature tensor can be defined in L2. More-
over, the solution is smooth away from Hus

∪Hus
.

Remark 1. The norms that we use allow us to choose us < ε and us < ε so
that the solution indeed represents the collision of two impulsive gravitational
waves. See the statement of Theorem 2.

Our approach relies on an extension of the renormalized energy estimates
introduced in [24]. As in [24], our concern is not just the existence of weak
solutions admitting two colliding impulsive gravitational waves, but also
their uniqueness. The uniqueness property follows from the a priori estimates
developed in this paper and leads to strong solutions of the vacuum Einstein
equations.

Parts (b) and (c) of Theorem 1 can be interpreted as results on the prop-
agation of singularity that is conormal with respect to a pair of transversally
intersecting characteristic hypersurfaces. Similar problems have been stud-
ied for general hyperbolic equations with a much weaker singularity such
that classical well-posedness theorems can be applied [4], [2]. In the case of
second order equations, it is known that no new singularities appear after the
interaction of the weak conormal singularities. In general, however, a third
order semilinear hyperbolic equation can be constructed so that new singu-
larities form after the interaction of two weak conormal singularities [31]. In
this paper, we address stronger conormal singularities such that in general,
even for semilinear hyperbolic systems, only the local propagation of one
conormal singularity has been proved [27]. For conormal singularities of this
strength, no general theorem is known to address the interaction of propa-
gating singularities even for semilinear, let alone quasilinear, equations. By
contrast, in this work, the special structure of the Einstein equations in the
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double null foliation gauge has been heavily exploited to show that even for
the stronger conormal singularities that we consider, the spacetime remains
smooth after their interaction.

In this paper, as in [24], we prove a more general theorem on the exis-
tence and uniqueness of solutions to the vacuum Einstein equations that in
particular implies Theorem 1(a). In addition to allowing non-regular charac-
teristic initial data on both H0 and H0, our main existence theorem extends
the results in [24] in two other ways. First, we consider the characteris-
tic initial value problem with initial data such that the traceless parts of
the null second fundamental forms and their angular derivatives are only
in L2 in the null directions as opposed to being in L∞ in the previous
work. Second, in [24], the constructed spacetime lies in the range of the
double null coordinates corresponding to {0 ≤ u ≤ ε} ∩ {0 ≤ u ≤ ε}.
In this paper, using some ideas in [23], we extend the domain of exis-
tence and uniqueness to a region that is not symmetric in u and u, i.e.,
in ({0 ≤ u ≤ ε} ∩ {0 ≤ u ≤ I1}) ∪ ({0 ≤ u ≤ ε} ∩ {0 ≤ u ≤ I2}), where I1
and I2 are finite but otherwise arbitrarily large (see Figure 4). We refer the
readers to Sections 1.7 and 3 for precise formulations of the existence and
uniqueness theorem.

Figure 4: Region of Existence.

One of the unexpected consequences of our approach in this paper is that
we can also apply it to the problem on the formation of trapped surfaces.
The work of Christodoulou [7] was a major breakthrough in solving the
problem of the evolutionary formation of a trapped surface and this was
later extended and simplified in [19], [18]. In all of those works, characteristic
initial data were prescribed on H0 ∩ {0 ≤ u ≤ ε} and H0 with sufficient
conditions for data on H0 ∩ {0 ≤ u ≤ ε} formulated in such a way as
to guarantee the appearance of a trapped surface in the causal future of
H0 ∩ {0 ≤ u ≤ ε} and H0 (see Figure 5).

The sufficient condition on H0 ∩ {0 ≤ u ≤ ε} required that certain
geometric quantities are large with respect to ε and thus lead to the prob-



446 Jonathan Luk and Igor Rodnianski

Figure 5: Formation of a Trapped Surface.

lem of constructing a semi-global large data solution to the Einstein equa-
tions. In all those works, to control the dynamics of the Einstein equa-
tions, the largeness of geometric quantities associated to H0 ∩ {0 ≤ u ≤ ε}
was offset by requiring the data on H0 to be the trivial Minkowski da-
ta.

Our new approach allows us to eliminate the requirement that the data
on H0 have to be trivial. It can be replaced by a condition that the data
on H0 are merely “not too large” and still guarantee the formation of a
trapped surface in the causal future of H0 ∩ {0 ≤ u ≤ ε} and H0. We refer
the readers to Section 8 for a more precise formulation of the theorem on
the formation of trapped surfaces.

1.6. A toy model

One of the most challenging aspects of the vacuum Einstein equations is
its quasilinear and tensorial nature. Nonetheless, it may be instructive to
examine a related phenomenon in a toy model of a scalar semilinear wave
equation satisfying the null condition in R

3+1

(5) �φ = −(∂tφ)
2 +

∑
i≤3

(∂xi
φ)2,

(or more generally a system �Φ = Q(Φ,Φ), where Φ : R3+1 → R
n and

Q(Φ,Φ) is a null form) with the characteristic initial data

f(u, θ) =∂uφ(u, u = 0, θ),

g(u, θ) =∂uφ(u = 0, u, θ),
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prescribed on the light cones H0 = {u := t + r = 0} and H0 = {u :=
t− r + 2 = 0} respectively and

h(θ) = φ(u = 0, u = 0, θ)

prescribed on the initial 2-sphere defined by {u = 0, u = 0}.
For this toy model, the analogue of the problem addressed in Theorem

1 is the local existence and uniqueness result for (5) in the region {0 ≤ u ≤
ε} ∪ {0 ≤ u ≤ 1} for the data

f = f1 + 1{u− ε

2
≥0}f2

and

g = g1 + 1{u− 1

2
≥0}g2,

where f1, f2, g1, g2, h are smooth functions and 1 is the indicator function.
For these data, ∂uf and ∂ug have delta singularities supported on the 2-
spheres {u = 0} ∩ {u = ε

2} and {u = 0} ∩ {u = 1
2} respectively. It turns out

that the corresponding solution is smooth away from the set {u = ε
2}∪{u =

1
2}, but yet ∂uφ (resp. ∂uφ) remains discontinuous across {u = ε

2} (resp.
{u = 1

2})2.
Theorem 1 is embedded in a more general local existence and uniqueness

result (stated precisely in Theorem 2 below). Its analogue for the above toy
model is the local existence for (5) with the data f , g and h only satisfying∑

i≤4

||Ωif ||L2(H0(0,ε)) ≤ C,

∑
i≤4

||Ωig||L2(H0(0,1))
≤ C,

and ∑
i≤4

||Ωih||L2(S0,0) ≤ C,

where Ω ∈ {x1∂x2
−x2∂x1

, x2∂x3
−x3∂x2

, x3∂x1
−x1∂x3}. The corresponding

solution exists in the region {0 ≤ u ≤ ε} ∪ {0 ≤ u ≤ 1} and obeys the
following estimates:

sup
0≤u≤1

∑
i≤3

||Ωi∂uφ||L2(Hu) ≤ C ′,

2Assuming, of course, that the initial data f2 (resp. g2) is non-zero for u = ε
2

(resp. u = 1
2 ).



448 Jonathan Luk and Igor Rodnianski

sup
0≤u≤ε

∑
i≤3

||Ωi∂uφ||L2(Hu)
≤ C ′,

sup
0≤u≤1

∑
i≤4

||Ωiφ||L2(Hu) + sup
0≤u≤ε

∑
i≤4

||Ωiφ||L2(Hu)
≤ C ′.

Even though this model hardly reflects the difficulties of the nonlinear

structure of the vacuum Einstein equations, such local existence, unique-

ness and propagation of singularity results to our knowledge are not known

for this type of equations but follow from the methods3 used in this pa-

per.

1.7. First version of the theorem

Our general approach is based on energy estimates and transport equations

in the double null foliation gauge. This gauge was used in our previous work

[24]. The general approach in the double null gauge has been carried out in

[17], [7] and [19].

The spacetime in question will be foliated by families of outgoing and

incoming null hypersurfaces Hu and Hu respectively. Their intersection is

assumed to be a 2-sphere denoted by Su,u. Define a null frame {e1, e2, e3, e4},
where e3 and e4 are null, as indicated in Figure 6, and e1, e2 are vector fields

tangent to the two spheres Su,u. e4 is tangent to Hu and e3 is tangent to

Hu.

Figure 6: The Null Frame.

Decompose the Riemann curvature tensor with respect to the null frame

3In particular, we show that in order to guarantee the existence of the solution,
it suffices to commute the equation (5) only with angular derivatives Ω.
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{e1, e2, e3, e4}:

αAB = R(eA, e4, eB, e4), αAB = R(eA, e3, eB, e3),

βA =
1

2
R(eA, e4, e3, e4), β

A
=

1

2
R(eA, e3, e3, e4),

ρ =
1

4
R(e4, e3, e4, e3), σ =

1

4
∗R(e4, e3, e4, e3),

(6)

where ∗R denotes the Hodge dual of R. In the context of the interaction

of impulsive gravitational waves, the α and α components of curvature can

only be understood as measures. In the main theorem below, we do not

require α and α to even be defined.

Define also the following Ricci coefficients with respect to the null frame:

χAB = g(DAe4, eB), χ
AB

= g(DAe3, eB),

ηA = −1

2
g(D3eA, e4), η

A
= −1

2
g(D4eA, e3),

ω = −1

4
g(D4e3, e4), ω = −1

4
g(D3e4, e3),

ζA =
1

2
g(DAe4, e3).

Let χ̂ (resp. χ̂) be the traceless part of χ (resp. χ). For the problem of the

interaction of impulsive gravitational waves, we prescribe initial data on H0

(resp. H0) such that χ̂ (resp. χ̂) has a jump discontinuity across S0,us
(resp.

Sus,0) but smooth otherwise.

As mentioned before, we prove a theorem concerning existence and

uniqueness of spacetimes for a larger class of initial data than that for the

interacting impulsive gravitational waves. The following is the main theo-

rem in this paper on existence and uniqueness of solutions to the vacuum

Einstein equations.

Theorem 2. Let θA be transported coordinates on the 2-spheres4 Su,u and γ

be the spacetime metric restricted to Su,u. Prescribe data such that5 Ω = 1.

Suppose, in every coordinate patch on H0 and H0,

det γ ≥ c,

4See definition in Section 2.2.
5For 2Ω−2 = −g(L′, L′), where L′ and L′ are defined to be null geodesic vector

fields (see Section 2.1).
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∑
i≤4

|( ∂
∂θ

)iγAB|+
∑
i≤3

|( ∂
∂θ

)iζA| ≤ C.

On H0, ∑
i≤3

∫ I1

0
|( ∂
∂θ

)iχ̂AB|2du+
∑
i≤3

|( ∂
∂θ

)itrχ| ≤ C,

and on H0,

∑
i≤3

∫ I2

0
|( ∂
∂θ

)iχ̂
AB

|2du+
∑
i≤3

|( ∂
∂θ

)itrχ| ≤ C.

Then for ε sufficiently small depending only on c, C, I1 and I2, there exists a

unique spacetime solution (M, g) that solves the characteristic initial value

problem for the vacuum Einstein equations in the region6 ({0 ≤ u ≤ ε}∩{0 ≤
u ≤ I1})∪({0 ≤ u ≤ ε}∩{0 ≤ u ≤ I2}). Associated to the spacetime a double

null coordinate system (u, u, θ1, θ2) exists, relative to which the spacetime is

in particular Lipschitz and retains higher regularity in the angular directions.

Due to the symmetry in u and u, it suffices to prove the Theorem in

0 ≤ u ≤ I, 0 ≤ u ≤ ε. In the sequel, we will focus on the proof in this region.

The other case can be treated similarly. A more precise formulation of the

theorem can be found in Section 3.

In this paper, local existence and uniqueness is proved under the as-

sumption that the spacetime is merely W 1,2. In terms of differentiability,

this is even one derivative weaker than the recently resolved L2 curvature

conjecture ([20], [34], [35], [36], [37]). Of course the W 1,2 assumption refers

to the worst possible behavior observed in our data and our result heavily

relies on the structure of the Einstein equations which allows us to efficiently

exploit the better behavior of the other components.

Theorem 2 in particular shows the existence and uniqueness of solutions

for the initial data of nonlinearly interacting impulsive gravitational waves.

An additional argument, based on the estimates in the proof of Theorem

2, will be carried out to show the regularity of the spacetime with colliding

impulsive gravitational waves, i.e., parts (b) and (c) in Theorem 1.

6The variables u and u will be defined to be null, i.e., the region {0 ≤ u ≤
ε}∩{0 ≤ u ≤ I1} is given geometrically as the spacetime region to the future of the
initial data and bounded by the hypersurfaces emanating from the initial spheres
Sε,0 and S0,I1 .
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Theorem 2 also forms the basis for the theorem on the formation of
trapped surfaces (Theorem 5).7 In particular, Theorem 2 extends the ex-
istence theorem of Christodoulou [7] to data that is not necessarily small
on H0 while allowing the data to be large on H0. Moreover, the estimates
obtained in Theorem 2 show that for a large class of data on H0 that is not
necessarily close to Minkowski space, there exists an open set of initial data
on H0 such that a trapped surface is formed in evolution.

1.8. Strategy of the proof

Without symmetry assumptions, all known proofs of existence and unique-
ness of spacetimes satisfying the Einstein equations are based on L2-type
estimates for the curvature tensor and its derivatives or the metric com-
ponents and their derivatives. One of our main challenges in [24] and this
paper is that for an impulsive gravitational wave the curvature tensor can
only be defined as a measure and is not in L2.

Let Ψ denote the curvature components and Γ denote the Ricci coeffi-
cients. In [24] where we studied the propagation of one impulsive gravita-
tional wave, the curvature component α is non-L2-integrable. Nevertheless,
we showed that the L2-type energy estimates for the components of the
Riemann curvature tensor

(7)

∫
Hu

Ψ2 +

∫
Hu

Ψ2 ≤
∫
H0

Ψ2 +

∫
H0

Ψ2 +

∫ u

0

∫ u

0

∫
Su′,u′

ΓΨΨdu′du′.

coupled together with the null transport equations for the Ricci coefficients

∇3Γ = Ψ+ ΓΓ, ∇4Γ = Ψ+ ΓΓ

can be renormalized and closed avoiding the singular curvature component
α.

In this paper, we consider spacetimes with two interacting impulsive
gravitational waves and therefore both curvature components α and α are
not L2-integrable. We thus need to extend the renormalization in [24] and
to close the energy estimates circumventing both α and α.

In the remainder of this subsection, we will explain the main ideas for
proving a priori estimates. Note that since we are working at a very low
level of regularity, a priori estimates alone do not imply the existence and

7In fact, one of the motivations for formulating Theorem 2 for a finite but arbi-
trarily long u region is for proving Theorem 5.
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uniqueness of solutions. An additional argument to go from a priori estimates
to existence and uniqueness was carried out in [24] in which we studied
the convergence of a sequence of smooth solutions of the vacuum Einstein
equations to the non-regular solution. A direct but tedious modification of
that argument can be carried out in the context of this paper, giving the
desired existence and uniqueness result. We, however, will be content to
prove a priori estimates in this paper and refer the readers to [24] for more
details.

After we explain the ideas for proving the a priori estimates, we will then
return to sketch the ideas in the proofs of the regularity for colliding impul-
sive gravitational waves (Theorem 1(b),(c)) and the formation of trapped
surfaces.

1.8.1. Renormalized energy estimates. In [24], we introduced the
renormalized energy estimates for the vacuum Einstein equations. This al-
lowed us to avoid any information of α while deriving the a priori estimates.
In this paper, since in addition to an incoming impulsive gravitational wave
there is an outgoing impulsive gravitational wave, both α and α are non-
L2-integrable. We thus need to renormalize the curvature components in a
way that avoids both α and α.

To this end, we view the vacuum Einstein equations as a coupled system
for the Ricci coefficients Γ and the curvature components Ψ, which is tra-
ditionally treated by a combination of estimates for the transport equations
for Γ coupled with the energy estimates for curvature. The renormalization
used in this paper replaces the full set of curvature components Ψ with the
new quantities {

Ψ̌ = Ψ + ΓΓ for Ψ = β, ρ, σ, β,

Ψ̌ = 0 otherwise.

We also replace the full set of transport equations for Γ with a subset which
does not involve the prohibited curvature components α, α (or rather, in-
volves only the renormalized components Ψ̌). Similarly, we consider a subset
of Bianchi equations. We then show that the reduced system can still be
closed by a combination of transport-energy type estimates.

To illustrate the renormalization, we first prove the energy estimates for
β on Hu and for (ρ, σ) on Hu by considering the following set of Bianchi
equations:

∇4ρ = div β − 1

2
χ̂ · α+ ΓΨ,
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∇4σ = −div ∗β +
1

2
χ̂ ∧ α+ ΓΨ,

∇3β = ∇ρ+∇∗σ + ΓΨ,

where Ψ denotes the regular curvature components. However, the curvature
component α still appears in the nonlinear terms in these equations. In order
to deal with this problem, we consider the equations for the renormalized
curvature components ρ̌ = ρ− 1

2 χ̂ · χ̂ and σ̌ = σ+ 1
2 χ̂∧ χ̂ instead. Using the

equation

∇4χ̂ = −α+ ΓΓ,

we notice that the equations can be rewritten as

∇4ρ̌ = div β + ΓΨ̌ + Γ∇Γ + ΓΓΓ,

∇4σ̌ = −div ∗β + ΓΨ̌ + Γ∇Γ + ΓΓΓ,

∇3β = ∇ρ̌+∇∗σ̌ + ΓΨ̌ + Γ∇Γ + ΓΓΓ.

We now have a set of renormalized Bianchi equations that does not contain
α. Using these equations, we derive the renormalized energy estimate∫

Hu

Ψ̌2 +

∫
Hu

Ψ̌2 ≤
∫
H0

Ψ̌2 +

∫
H0

Ψ̌2

+

∫ u

0

∫ u

0

∫
Su′,u′

(
ΓΨ̌Ψ̌ + Γ∇ΓΨ̌ + ΓΓΓΨ̌

)
du′du′,

in which α does not appear in the error term.
It turns out that the same renormalization ρ̌ and σ̌ that was used to

avoid α also can also be applied to circumvent α. For example, α enters as
source terms in the following Bianchi equations,

∇3ρ = −div β − 1

2
χ̂ · α+ ΓΨ,

∇3σ = −div ∗β − 1

2
χ̂ ∧ α+ ΓΨ.

Using the equation

∇3χ̂ = −α+ ΓΓ,

we see that α does not appear in the equations for ∇3ρ̌ and ∇3σ̌.
As a consequence, we obtain a set of L2 curvature estimates which do not

explicitly couple to the singular curvature components α and α. However,
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we say explicitly that a priori it is not obvious for the Ricci coefficients Γ
appearing in the nonlinear error for the energy estimates to be bounded
independent of α and α.

1.8.2. Mixed norm estimates for the Ricci coefficients. In order to
close the estimates, it is necessary to obtain control of the Ricci coefficients
via the transport equations

(8) ∇3Γ = Ψ̌ + ΓΓ, ∇4Γ = Ψ̌ + ΓΓ.

In [24], we showed that Γ can be estimated in L∞ by considering a sub-
set of the transport equations that do not involve the singular curvature
component α (and involve only the renormalized curvature components Ψ̌).

In the setting of this paper, in addition to proving bounds on Γ without
any information on both singular curvature components α and α, an extra
challenge is that unlike in [24], not all Ricci coefficients are bounded in the
initial data. In fact, for the class of initial data considered in this paper, χ̂
(resp. χ̂) is only assumed to be in L2

uH
3(S) (resp. L2

uH
3(S)), where H3(S)

refers to the L2 norm of the third angular derivatives on the 2-spheres. There-
fore, (8) at best implies that χ̂ (resp. χ̂) can be estimated in L2

uL
∞
u L∞(S)

(resp. L2
uL

∞
u L∞(S)), where the L∞ norms on the sphere and along the u

(resp. u) direction are taken first, before the L2 norm in u (resp. u) is taken.
Because of the weaker assumption on the Ricci coefficients in the initial

data, we only prove estimates for the Ricci coefficients in mixed norms. In
fact, we prove different mixed norm bounds for different Ricci coefficients.
Using a schematic notation ψ ∈ {trχ, trχ, η, η}, ψH ∈ {χ̂, ω} and ψH ∈
{χ̂, ω}, we only control ψ in L∞

u L∞
u L∞(S), ψH in L2

uL
∞
u L∞(S) and ψH in

L2
uL

∞
u L∞(S).
It is a remarkable fact that the Einstein equations possess a structure

such that these mixed norm bounds are sufficient to close all the estimates
for the Ricci coefficients using the transport equations, as well as the energy
estimates for the curvature components.

As an example, in order to estimate ψ in L∞
u L∞

u L∞(S), we use the
transport equation

∇3ψ = β + ρ̌+∇ψ + (ψ + ψH)(ψ + ψH).

Notice that the term ψH does not appear as the source of this equation.
Therefore, with the control of the Ricci coefficients in the mixed norms, all
terms on the right hand side can be bounded after integrating in the e3 (i.e.
u) direction to obtain the desired bound for ψ.
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On the other hand, the transport equation for ψH contains both ψH and
ψH in the inhomogeneous term:

∇3ψH = ψHψH + ...

Integrating this equation, we get

(9) ||ψH ||L∞(Su,u)) ≤ ||(ψH)0||L∞(Su,0) + ||ψH ||L2
uL

∞(S)||ψH ||L∞
u L∞(S) + ....

The initial data term ||(ψH)0||L∞(S0,u) and the factor ||ψH ||L∞
u L∞(S) in the

second term are not bounded uniformly in u. Nevertheless, since we are only
aiming to prove estimates for ψH in L2

uL
∞
u L∞(S), we can take the L2

u norm
in (9) and every term on the right hand side is controlled by the mixed
norms. This allows us to prove the mixed norm estimates for all the Ricci
coefficients.

Even more remarkable is that the bounds we obtain for the Ricci coeffi-
cients in mixed norms are also sufficient to close the energy estimates for the
renormalized curvature components. Schematically, the renormalized energy
estimates read as follows:

||(β, ρ̌, σ̌)||L∞
u L2

uL
2(S) + ||(ρ̌, σ̌, β)||L∞

u L2
uL

2(S)

≤ Initial Data + ||ΓΨ̌2||L1
uL

1
uL

1(S) + ||Γ5||L1
uL

1
uL

1(S) + ...

The error terms on the right hand side have to be controlled by the L2

curvature bounds on the left hand side together with the estimates for the
Ricci coefficients in the mixed norms. As an example, an error term ψH ρ̌ρ̌
can be controlled after applying Cauchy-Schwarz as follows:

||ψH ρ̌ρ̌||L1
uL

1
uL

1(S) ≤ ||ρ̌||2L∞
u L2

uL
2(S)||ψH ||L2

uL
∞
u L∞(S).

Here, it is important to note that using the mixed norms for ψH , we can
estimate in L∞ first, before taking the L2 norm. On the other hand, an error
term of the type ψHββ cannot be controlled in L1

uL
1
uL

1(S) since each of the

three factors can only be bounded after taking the L2
u norm. Miraculously,

such terms never arise as error terms in the energy estimates!
A similar structure also arises in the error terms of the form

||Γ5||L1
uL

1
uL

1(S).

For this term, ψH (or ψH) appears at most twice, allowing us to estimate
each of them in L2

u (or L2
u).
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In order to close all the estimates, we need to prove mixed norm estimates
for higher derivatives of the Ricci coefficients and energy estimates for higher
derivatives of the curvature components. This is achieved using only angular
covariant derivatives ∇ as commutators. For such estimates, the singular
curvature components α and α never arise in the nonlinear error terms (see
Proposition 11 in Section 4.4). Moreover, there is a structure similar to that
described above for the higher order estimates that allows us to close merely
with the mixed norm bounds.

1.8.3. Estimates in an arbitrarily long u interval. In our main the-
orem, we prove existence, uniqueness and a priori estimates in a region such
that only the u interval is assumed to be short, while the u interval can be
arbitrarily long (but finite). This poses an extra challenge since when we
control the nonlinear error terms integrated over the u interval, we do not
gain a smallness constant.

This difficulty already arises in the problem of existence in such a region
with smooth initial data. This was studied in [23]8. It was noticed that both
in carrying out the Ricci coefficient estimates and the energy estimates for
the curvature components, the structure of the Einstein equations allows us
to prove that whenever a smallness constant is absent, the estimate is in
fact linear.

To achieve the bounds of the Ricci coefficients, the following structure
of the null structure equations was used. Let

Γ1 ∈ {trχ, χ̂, trχ, χ̂, η, ω}, Γ2 = η, Γ3 = ω.

They satisfy the following transport equations:

∇4Γ1 =Ψ+ (Γ1 + Γ2 + Γ3)(Γ1 + Γ2 + Γ3),

∇3Γ2 =Ψ+ (Γ1 + Γ2)Γ1,

∇3Γ3 =Ψ+ (Γ1 + Γ2 + Γ3)(Γ1 + Γ2).

(10)

We prove the bounds for Γ1, Γ2, Γ3 in the setting of a bootstrap argu-
ment in which the control for the curvature components Ψ is assumed. The
estimates for Γ1 can easily be obtained since integrating in the e4 (i.e., u)
direction gives a smallness constant. For Γ2, the integration is in the e3 (i.e.,
u) direction and does not have a smallness constant. Nevertheless, using the

8In [23], the a priori estimates were proved in the case where the u interval is
assumed to be short and the u interval is allowed to be arbitrarily long. We outline
the main ideas of [23] assuming instead the setting in this paper.
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bounds for Γ1 that have already been obtained, the error term is linear in
Γ2! This can thus be dealt with using Gronwall’s inequality. Finally, the
equation for Γ3 is also linear in Γ3. Therefore, using the estimates already
derived for Γ1 and Γ2 together with Gronwall’s inequality, the equation for
Γ3 can be applied to get the desired control for Γ3.

In the energy estimates for the curvature components, there is likewise
a term without a smallness constant. Nevertheless, it was noted in [23] that
the only term not accompanied by a smallness constant is also linear. Thus,
as in the case in controlling the Ricci coefficient, the energy estimates can
be closed using Gronwall’s inequality.

Returning to the setting of this paper, this challenge of having an arbi-
trarily long u interval is coupled to the difficulty that the curvature com-
ponents α and α are singular and that the Ricci coefficients χ̂, χ̂, ω, ω can
only be estimated in appropriate mixed norms. As a result, unlike in [23],
we cannot use the ∇4 equations for χ̂ and trχ to gain a smallness constant.
The ∇4χ̂ equation is unavailable because α appears as the source of this
equation, and in this paper, due to the singularity of α, one of our goals is
to prove all estimates without any information on α. The ∇4trχ equation,
while can be used, has |χ̂|2 as a source term. Since χ̂ can only be estimated
in L2

u using the mixed norm bounds, the integration in the u direction does
not give a smallness constant.

Nevertheless, a different structure can be exploited to overcome this
challenge. We group the Ricci coefficients into Γ1, Γ2, Γ3 and Γ4 according
to the equations and estimates that they satisfy. Let

Γ1 ∈ {trχ, χ̂, η, ω}, Γ2 = η, Γ3 ∈ {χ̂, ω}, Γ4 = trχ.

They satisfy the following transport equations:

∇4Γ1 = Ψ̌ + (Γ1 + Γ2 + Γ3 + Γ4)(Γ1 + Γ2 + Γ3 + Γ4),

∇3Γ2 = Ψ̌ + (Γ1 + Γ2)Γ1,

∇3Γ3 = Ψ̌ + (Γ1 + Γ2 + Γ3 + Γ4)(Γ1 + Γ2),

∇4Γ4 = (Γ3 + Γ4)(Γ3 + Γ4).

Notice that Γ3 corresponds to the Ricci coefficients ψH and can only be
estimated in L2

uL
∞
u L∞(S).

As before, the control of Ψ̌ is assumed in a bootstrap setting. The equa-
tions for Γ1 and Γ2 have similar structures as (10). Thus, we first estimate
Γ1, using the smallness constant provided by the integration in the e4 (i.e.,
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u) direction. We then control Γ2 noting that with the bounds already ob-
tained for Γ1, the error term is linear in Γ2. The equation for Γ3 is similar
to (10), except for an extra term containing Γ4, which has not been esti-
mated. Nevertheless, Γ3 are the terms χ̂ and ω which are only estimated in
L2
uL

∞
u L∞(S). Thus the error term containing Γ4 only has to be controlled

after taking the L2
u norm. This provides an extra smallness constant. Finally,

while Γ4 satisfies an equation in the e4 (i.e., u) direction, Γ3Γ3 appears as a
source. Recall that since Γ3 can only be controlled in L2

uL
∞
u L∞(S), this error

term is only bounded in L1
uL

∞
u L∞(S). In other words, integrating this equa-

tion does not give a smallness constant. Nevertheless, we can use the control
for Γ3 derived in the previous step! Thus we obtain the desired bounds for
all the Ricci coefficients.

In a similar fashion, the energy estimates also have to be carried out in
two steps. Recall from (7) that in establishing the energy estimates, we need
to control the error terms

||ΓΨ̌Ψ̌||L1
uL

1
uL

1(S),

where Ψ̌ are the renormalized curvature components. The most difficult error
terms are those containing β. This is because β can only be controlled in
L2(H). In order to control the error terms, the L2(H) norm of β has to be
integrated over the long u-interval and the estimates do not have a smallness
constant. To deal with this problem, we first control β in L2(H) and (ρ̌, σ̌)
in L2(H). While deriving these bounds, all the error terms are accompanied

by a smallness constant ε
1

2 . We estimate β after we obtain these bounds.
The error terms that contain β are9

||χββ||L1
uL

1
uL

1(S)

and

||χββ||L1
uL

1
uL

1(S).

Since the β has been controlled first, the first error term is sublinear. For
the second term, it can be shown that the estimates for χ are independent
of the bounds on the curvature and this term is therefore a linear term. It
can thus be dealt with using Gronwall’s inequality.

9To be more precise, the term that actually appears is ||χβ∇χ||L1
uL

1
uL

1(S) instead

of ||χββ||L1
uL

1
uL

1(S). We note that using elliptic estimates, the control for ∇χ can
be retrieved from the bound for β. We omit the technical details here and refer the
readers to the content of the paper for details.
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1.8.4. Signature. In the proof of the a priori estimates, the structure of
the Einstein equations plays a crucial role. It is thus useful to understand
the structure of the equations in a more systematic fashion. Here, inspired
by the work of Klainerman-Rodnianski [19] on the formation of trapped
surfaces, we introduce a notion of signature that allows us to explain and
tract that certain undesirable terms do not appear in a particular equation.
Such a notion of signature is intimately tied to the scaling properties of the
Einstein equations.

1.8.5. Nonlinear interaction of impulsive gravitational waves. As
mentioned above, Theorem 2 implies the existence and uniqueness of solu-
tions to the vacuum Einstein equations with characteristic initial data as
in Theorem 1. In the setting of the nonlinear interaction of impulsive grav-
itational waves in Theorem 1, however, the initial data are more regular
than the general initial data allowed in the assumptions of Theorem 2. In
particular, on each of the initial null hypersurfaces, the initial data are only
singular on an embedded 2-sphere. This allows us to prove that the space-
time is smooth away from the null hypersurfaces emanating from the initial
singularities. Moreover, α and α can be defined as measures with singular
atoms supported on these null hypersurfaces.

We first note that standard local well-posedness theory and the results
of [24] imply that the spacetime is smooth in {0 ≤ u < us} ∪ {0 ≤ u < us}.
Thus in order to show that the spacetime is smooth away from the null
hypersurfaces {u = us} and {u = us}, we only need to demonstrate the
regularity of the spacetime in {u > us} ∩ {u > us}.

It turns out that using the a priori estimates derived in the proof of
Theorem 2, this can be shown by directly integrating the null structure
equations. For example, while ∇4χ̂ has a delta singularity across u = us, we
can prove that it is bounded for u > us. To this end, we consider

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η.

Commute the equation with the ∇4 derivative and substituting appropriate
null structure equations, we get

∇3∇4χ̂+
1

2
trχ∇4χ̂− 2ω∇4χ̂ = ...

where ... denotes terms that have already been estimated in the proof the
Theorem 2. Thus by integrating this equation, we conclude that∇4χ̂ inherits
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the regularity of the initial data and is bounded as long as u �= us. This
procedure can be carried out for all higher derivatives to show that the
spacetime is smooth in the region {u > us} ∩ {u > us}.

A surprising feature of this proof of smoothness of the resulting space-
time is that it does not require α and α to have delta singularities supported
on the corresponding 2-spheres. In fact, if the initial data satisfy the assump-
tions of Theorem 2 and are more regular for u > ũ on H0 and u > ũ on H0,
then the spacetime can be proved to be more regular in {u > ũ} ∩ {u > ũ}!

Returning to the interacting impulsive gravitational waves, we show that
α and α can be defined as measures with delta singularities supported on
Hus

and Hus
respectively. To see this, consider the equations

α = −∇4χ̂− trχχ̂− 2ωχ̂,

and

α = −∇3χ̂− trχ χ̂− 2ωχ̂.

We can prove that χ̂ (resp. χ̂) is smooth except across u = us (resp. u = us)
where it has a jump discontinuity. This implies that α and α are well-defined
as measures and they have delta singularities supported on Hus

and Hus

respectively.

1.8.6. Formation of trapped surfaces. Using the existence and unique-
ness result in Theorem 2, we construct a large class of spacetimes such that
the initial data do not contain a trapped surface, and a trapped surface is
formed in evolution. In particular, unlike in [7], [19] and [18], our construc-
tion does not require the initial data on H0 to be close to that of Minkowski
space.

The challenge in this problem lies in the fact that in order to have a
trapped surface, certain geometric quantities are necessarily large. Recall
that in the setting of Christodoulou [7] (see Figure 7), characteristic initial
data were prescribed on H0 and a short region of H0, where 0 ≤ u ≤ ε.

In view of the equation

(11) ∇4trχ = −1

2
(trχ)2 − |χ̂|2,

in order that for some u, trχ becomes negative after integrating in a u
length of ε, χ̂ has to be of size ∼ ε−

1

2 and consequently α has to be of
size ∼ ε−

3

2 . In the work of Christodoulou [7], and the later extensions of
Klainerman-Rodnianski [19], [18], this largeness of the geometric quantities
is compensated by requiring smallness of initial data on H0.
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Figure 7: Formation of a Trapped Surface.

To go beyond the requirement of Minkowski data on H0, we notice that
while the L∞

u L∞(S) norm of χ̂ is large in terms of ε, its L2
uL

∞(S) is merely
of size ∼ 1 with respect to ε. Therefore, Theorem 2 implies the existence and
uniqueness of a spacetime solution for this type of initial data, even without
any smallness assumptions on H0. Note in particular that the assumptions
of Theorem 2 do not require any control of α for the initial data. It thus
remains to show that one can find initial data which do not contain a trapped
surface and such that a trapped surface is formed in evolution.

With the initial data that he imposed, Christodoulou identified a mech-
anism for the formation of a trapped surface [7]. Recalling (11), for ε suffi-
ciently small, if at u = 0,

(12) trχ(u = 0, u = 0, ϑ) >

∫ ε

0
|χ̂|2(u = 0, ϑ)du,

and at u = u∗,

(13) trχ(u = u∗, u = 0, ϑ) <

∫ ε

0
|χ̂|2(u = u∗, ϑ)du,

then the initial data are free of trapped surfaces and the 2-sphere given
by {u = ε, u = u∗} is a trapped surface, i.e., a trapped surface forms in
evolution.

To achieve (12) and (13), consider the equations

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η,

and

∇3trχ+
1

2
trχtrχ = 2ωtrχ+ 2ρ− χ̂ · χ̂+ 2div η + 2|η|2.
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Assuming the right hand side of these equations to be error terms, we get

(14) ∇3|χ̂|2 + trχ|χ̂|2 ≈ 0

and

(15) ∇3trχ+
1

2
trχtrχ ≈ 0,

which imply

|χ̂|2(u, u, ϑ) ≈ |χ̂|2(u = 0, u, ϑ) exp(−
∫ u

0
trχ(u′, u, ϑ)du′)

and
(16)

trχ(u, u = 0, ϑ) ≈ trχ(u = 0, u = 0, ϑ) exp(−1

2

∫ u

0
trχ(u′, u = 0, ϑ)du′).

Christodoulou showed that in the setting of [7],

(17) trχ(u, u, ϑ) ≈ trχ(u, u = 0, ϑ),

which implies that

(18) |χ̂|2(u, u, ϑ) ≈ |χ̂|2(u = 0, u, ϑ) exp(−
∫ u

0
trχ(u′, u = 0, ϑ)du′).

Comparing (16) and (18), since trχ < 0, |χ̂|2 has a larger amplification factor
than trχ. Therefore, there is an open set of initial data such that a trapped
surface is formed in evolution.

In our setting where we remove the smallness assumptions on the data
on H0, the estimates derived in Theorem 4 imply that (14) and (17) hold.
Nevertheless, the approximation (15) is not necessarily valid. Instead, we
impose a condition (62) on H0 in Theorem 5 in order to guarantee that a
trapped surface is formed in evolution. This condition guarantees that there
is a choice of initial data on H0 such that (12) and (13) hold in the resulting
spacetime.

2. Setting, equations and notations

Our setting is the characteristic initial value problem with data given on the
two characteristic hypersurfaces H0 and H0 intersecting at the sphere S0,0.
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Figure 8: The Basic Setup.

The spacetime will be a solution to the Einstein equations constructed in a
neighborhood of H0 and H0 containing S0,0.

While we consider spacetimes with Riemann curvature tensors that are
merely measures, it suffices to obtain a priori estimates for smooth approxi-
mations of them. Once the a priori estimates are obtained, we can follow the
limiting argument as in the case of one propagating impulsive gravitational
wave [24] to obtain existence, uniqueness and regularity of the solutions. We
refer the readers to [24] for details. In this paper, we will therefore focus on
the proof of a priori estimates (see Theorem 4). To that end, we assume that
we are given a smooth solution to the Einstein equations in a neighborhood
of H0 and H0. In particular, the double null foliation and the coordinate
system introduced below are well-defined.

2.1. Double null foliation

For a spacetime in a neighborhood of S0,0, we define a double null foliation
as follows: Let u and u be solutions to the eikonal equation

(g−1)μν∂μu∂νu = 0, (g−1)μν∂μu∂νu = 0,

satisfying the initial conditions u = 0 on H0 and u = 0 on H0. Let

L′μ = −2(g−1)μν∂νu, L′μ = −2(g−1)μν∂νu.

These are null and geodesic vector fields. Let

2Ω−2 = −g(L′, L′).

Define

e3 = ΩL′, e4 = ΩL′
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to be the normalized null pair such that

g(e3, e4) = −2

and

L = Ω2L′, L = Ω2L′

to be the so-called equivariant vector fields.
In the sequel, we will consider spacetime solutions to the vacuum Ein-

stein equations in the gauge such that

Ω = 1, on H0 and H0.

We denote the level sets of u as Hu and the level sets of u and Hu. By
virtue of the eikonal equations, Hu and Hu are null hypersurfaces. The sets
defined by the intersections of the hypersurfacesHu andHu are topologically
2-spheres, which we denote by Su,u. Notice that the integral flows of L and
L respect the foliation Su,u.

2.2. The coordinate system

On a spacetime in a neighborhood of S0,0, we define a coordinate system
(u, u, θ1, θ2) as follows: On the sphere S0,0, define a coordinate system (θ1, θ2)
such that on each coordinate patch the metric γ is smooth, bounded and
positive definite. Then we define the coordinates on the initial hypersurfaces
H0 and H0 by requiring θA to be constant along the integral curves of L
and L respectively. We now define the coordinate system in the spacetime
in a neighborhood of S0,0 by letting u and u to be solutions to the eikonal
equations:

(g−1)μν∂μu∂νu = 0, (g−1)μν∂μu∂νu = 0,

and define θ1, θ2 by

L/ Lθ
A = 0,

where L/ L denotes the restriction of the Lie derivative to TSu,u (See [7],
Chapter 1). Relative to the coordinate system (u, u, θ1, θ2), the null pair e3
and e4 can be expressed as

e3 = Ω−1

(
∂

∂u
+ bA

∂

∂θA

)
, e4 = Ω−1 ∂

∂u
,

for some bA such that bA = 0 on H0, while the metric g takes the form

g = −2Ω2(du⊗ du+ du⊗ du) + γAB(dθ
A − bAdu)⊗ (dθB − bBdu).
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2.3. Equations

As indicated in the introduction, we will recast the Einstein equations as a
system for Ricci coefficients and curvature components associated to a null
frame e3, e4 defined above and an orthonormal frame e1, e2 tangent to the
2-spheres Su,u. Using the indices A,B to denote 1, 2, we recall the definition
of the Ricci coefficients relative to the null fame:

χAB = g(DAe4, eB), χ
AB

= g(DAe3, eB),

ηA = −1

2
g(D3eA, e4), η

A
= −1

2
g(D4eA, e3),

ω = −1

4
g(D4e3, e4), ω = −1

4
g(D3e4, e3),

ζA =
1

2
g(DAe4, e3)

(19)

where DA = De(A)
. We also recall the definition of the null curvature com-

ponents,

αAB = R(eA, e4, eB, e4), αAB = R(eA, e3, eB, e3),

βA =
1

2
R(eA, e4, e3, e4), β

A
=

1

2
R(eA, e3, e3, e4),

ρ =
1

4
R(e4, e3, e4, e3), σ =

1

4
∗R(e4, e3, e4, e3).

(20)

Here ∗R denotes the Hodge dual of R. We denote by∇ the induced covariant
derivative operator on Su,u and by ∇3, ∇4 the projections to Su,u of the
covariant derivatives D3, D4 (see precise definitions in [17]).

Observe that,

ω = −1

2
∇4(log Ω), ω = −1

2
∇3(log Ω),

ηA = ζA +∇A(log Ω), η
A
= −ζA +∇A(log Ω).

(21)

Define the following contractions of the tensor product φ(1) and φ(2) with
respect to the metric γ:

φ(1) · φ(2) := (γ−1)AC(γ−1)BDφ
(1)
ABφ

(2)
CD for symmetric 2-tensors φ

(1)
AB, φ

(2)
AB,

φ(1) · φ(2) := (γ−1)ABφ
(1)
A φ

(2)
B for 1-forms φ

(1)
A , φ

(2)
A ,

(φ(1) · φ(2))A := (γ−1)BCφ
(1)
ABφ

(2)
C for a symmetric 2-tensor φ

(1)
AB

and a 1-form φ
(2)
A ,
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(φ(1)⊗̂φ(2))AB := φ
(1)
A φ

(2)
B +φ

(1)
B φ

(2)
A −γAB(φ

(1)·φ(2)) for one forms φ
(1)
A , φ

(2)
A ,

φ(1) ∧ φ(2) := ε/AB(γ−1)CDφ
(1)
ACφ

(2)
BD for symmetric two tensors φ

(1)
AB, φ

(2)
AB,

where ε/ is the volume form associated to the metric γ. Define ∗ of 1-forms
and symmetric 2-tensors respectively as follows (note that on 1-forms this
is the Hodge dual on Su,u):

∗φA :=γACε/
CBφB,

∗φAB := γBDε/
DCφAC .

Define the operator ∇⊗̂ on a 1-form φA by

(∇⊗̂φ)AB := ∇AφB +∇BφA − γABdiv φ.

For totally symmetric tensors, the div and curl operators are defined by
the formulas

(div φ)A1...Ar
:= (γ−1)BC∇CφBA1...Ar

,

(curl φ)A1...Ar
:= ε/BC∇BφCA1...Ar

.

Define also the trace of totally symmetric tensors to be

(trφ)A1...Ar−1
:= (γ−1)BCφBCA1...Ar−1

.

We separate the trace and traceless part of χ and χ. Let χ̂ and χ̂ be the
traceless parts of χ and χ respectively. Then χ and χ satisfy the following
null structure equations:

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ωtrχ,

∇4χ̂+ trχχ̂ = −2ωχ̂− α,

∇3trχ+
1

2
(trχ)2 = −2ωtrχ− |χ̂|2,

∇3χ̂+ trχ χ̂ = −2ωχ̂− α,

∇4trχ+
1

2
trχtrχ = 2ωtrχ+ 2ρ− χ̂ · χ̂+ 2div η + 2|η|2,

∇4χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η,

∇3trχ+
1

2
trχtrχ = 2ωtrχ+ 2ρ− χ̂ · χ̂+ 2div η + 2|η|2,

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η.

(22)
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The other Ricci coefficients satisfy the following null structure equations:

∇4η = −χ · (η − η)− β,

∇3η = −χ · (η − η) + β,

∇4ω = 2ωω − η · η +
1

2
|η|2 + 1

2
ρ,

∇3ω = 2ωω − η · η +
1

2
|η|2 + 1

2
ρ.

(23)

The Ricci coefficients also satisfy the following constraint equations

div χ̂ =
1

2
∇trχ− 1

2
(η − η) · (χ̂− 1

2
trχ)− β,

div χ̂ =
1

2
∇trχ+

1

2
(η − η) · (χ̂− 1

2
trχ) + β,

curl η = −curl η = σ +
1

2
χ̂ ∧ χ̂,

K = −ρ+
1

2
χ̂ · χ̂− 1

4
trχtrχ.

(24)

with K the Gauss curvature of the spheres Su,u. The null curvature compo-
nents satisfy the following null Bianchi equations:

∇3α+
1

2
trχα = ∇⊗̂β + 4ωα− 3(χ̂ρ+∗ χ̂σ) + (ζ + 4η)⊗̂β,

∇4β + 2trχβ = div α− 2ωβ + (2ζ + η) · α,
∇3β + trχβ = ∇ρ+ 2ωβ +∗ ∇σ + 2χ̂ · β + 3(ηρ+∗ ησ),

∇4σ +
3

2
trχσ = −div ∗β +

1

2
χ̂ ∧ α− ζ ∧ β − 2η ∧ β,

∇3σ +
3

2
trχσ = −div ∗β − 1

2
χ̂ ∧ α+ ζ ∧ β − 2η ∧ β,

∇4ρ+
3

2
trχρ = div β − 1

2
χ̂ · α+ ζ · β + 2η · β,

∇3ρ+
3

2
trχρ = −div β − 1

2
χ̂ · α+ ζ · β − 2η · β,

∇4β + trχβ = −∇ρ+∗ ∇σ + 2ωβ + 2χ̂ · β − 3(ηρ−∗ ησ),

∇3β + 2trχβ = −div α− 2ωβ − (−2ζ + η) · α,

∇4α+
1

2
trχα = −∇⊗̂β + 4ωα− 3(χ̂ρ−∗ χ̂σ) + (ζ − 4η)⊗̂β.

(25)

We now define the renormalized curvature components and rewrite the
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Bianchi equations in terms of them. Let

ρ̌ = ρ− 1

2
χ̂ · χ̂, σ̌ = σ +

1

2
χ̂ ∧ χ̂.

The Bianchi equations expressed in terms of ρ̌ and σ̌ instead of ρ and σ are
as follows:

∇3β + trχβ =∇ρ̌+∗ ∇σ̌ + 2ωβ + 2χ̂ · β + 3(ηρ̌+∗ ησ̌)

+
1

2
(∇(χ̂ · χ̂) +∗ ∇(χ̂ ∧ χ̂)) +

3

2
(ηχ̂ · χ̂+∗ ηχ̂ ∧ χ̂),

∇4σ̌ +
3

2
trχσ̌ =− div ∗β − ζ ∧ β − 2η ∧ β − 1

2
χ̂ ∧ (∇⊗̂η)− 1

2
χ̂ ∧ (η⊗̂η),

∇4ρ̌+
3

2
trχρ̌ =div β + ζ · β + 2η · β − 1

2
χ̂ · ∇⊗̂η − 1

2
χ̂ · (η⊗̂η) +

1

4
trχ|χ̂|2,

∇3σ̌ +
3

2
trχσ̌ =− div ∗β + ζ ∧ β − 2η ∧ β +

1

2
χ̂ ∧ (∇⊗̂η) +

1

2
χ̂ ∧ (η⊗̂η),

∇3ρ̌+
3

2
trχρ̌ =− div β + ζ · β − 2η · β − 1

2
χ̂ · ∇⊗̂η − 1

2
χ̂ · (η⊗̂η)

+
1

4
trχ|χ̂|2,

∇4β + trχβ =−∇ρ̌+∗ ∇σ̌ + 2ωβ + 2χ̂ · β − 3(ηρ̌−∗ ησ̌)

− 1

2
(∇(χ̂ · χ̂)−∗ ∇(χ̂ ∧ χ̂))− 3

2
(ηχ̂ · χ̂−∗ ηχ̂ ∧ χ̂).

(26)

Notice that we have obtained a system for the renormalized curvature com-
ponents in which the singular curvature components α and α do not appear.

In the sequel, we will use capital Latin letters A ∈ {1, 2} for indices on
the spheres Su,u and Greek letters μ ∈ {1, 2, 3, 4} for indices in the whole
spacetime.

2.4. Signature

In this subsection, we introduce the concept of signature. This will allow us
to easily show that some undesirable terms are absent in various equations.

To every null curvature component α, β, ρ, σ, β, α, null Ricci coefficients
χ, ζ, η, η, ω, ω, and the metric components γ,Ω, we assign a signature ac-
cording to the following rule:

sgn(φ) = 1 ·N4(φ) + (−1) ·N3(φ),
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where N4(φ), N3(φ) denote the number of times e4, respectively e3, which
appears in the definition of φ. Thus,

sgn(β) = 1, sgn(ρ, σ) = 0, sgn(β) = −1.

Also,

sgn(χ) = sgn(ω) = 1, sgn(ζ, η, η) = sgn(γ,Ω) = 0,

sgn(χ) = sgn(ω) = −1.

We use the notation Ψ(s) and Γ(s) to denote the renormalized curva-
ture component and Ricci coefficient respectively with signature s. Then all
the equations conserve signature in the following sense: The null structure
equations are all in the form

∇4Γ
(s) = Ψ(s+1) +

∑
s1+s2=s+1

Γ(s1) · Γ(s2),

∇3Γ
(s) = Ψ(s−1) +

∑
s1+s2=s−1

Γ(s1) · Γ(s2).

and the null Bianchi equations are of the form

∇4Ψ
(s) = ∇Ψ(s+1) +

∑
s1+s2=s+1

(Γ(s1) ·Ψ(s2) + Γ(s1) · ∇Γ(s2)),

∇3Ψ
(s) = ∇Ψ(s−1) +

∑
s1+s2=s−1

(Γ(s1) ·Ψ(s2) + Γ(s1) · ∇Γ(s2)).

2.5. Schematic notation

We introduce a schematic notation as follow: Let φ denote an arbitrary
tensorfield. For the Ricci coefficients, we use the notation

(27) ψ ∈ {trχ, trχ, η, η}, ψH ∈ {χ̂, ω}, ψH ∈ {χ̂, ω}.

Notice that ψH has signature 1 and ψH has signature −1. Unless otherwise
stated, we will not use the schematic notation for the renormalized curvature
components but will write them explicitly.
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We will simply write ψψ (or ψψH , ψβ, etc.) to denote arbitrary contrac-
tions with respect to the metric γ. ∇ will be used to denote an arbitrary
angular covariant derivative. The use of the schematic notation is reserved
for the cases when the precise nature of the contraction is not important to
the argument. Moreover, when using this schematic notation, we will neglect
all constant factors.

We will use brackets to denote terms with any one of the components in
the brackets. For example, ψ(ρ̌, σ̌) is used to denote either ψρ̌ or ψσ̌.

The expression ∇iψj will be used to denote angular derivatives of prod-
ucts of Ricci coefficients. More precisely, ∇iψj denotes the sum of all terms
which are products of j factors, with each factor being ∇ikψ and that the
sum of all ik’s being i, i.e.,

∇iψj =
∑

i1+i2+...+ij

∇i1ψ∇i2ψ...∇ijψ︸ ︷︷ ︸
j factors

.

Using these notations, we write all the equations from Section 2.3 in the
schematic form. The structure of the equations can be read off directly from
Section 2.3. On the other hand, we notice that the structure for most of the
equations also follows from signature considerations as indicated in Section
1.8.4. We will later point out places where we need to use an additional
structure of the equations that goes beyond signature considerations.

We first write down the null structure equations (22) and (23) in schemat-
ic form. Here, we do not write down the two equations that involve the
singular curvature components α or α.

∇4trχ = χ̂χ̂+ ψ(ψ + ψH),

∇3trχ = χ̂ χ̂+ ψ(ψ + ψH),

∇4trχ = ρ̌+∇η + ψ(ψ + ψH),

∇3trχ = ρ̌+∇η + ψ(ψ + ψH),

∇4η = β + ψ(ψ + ψH),

∇3η = β + (η + η)(trχ+ ψH),

∇4χ̂ = ρ̌+∇η + ψ(ψ + ψH) + ψH(trχ+ ψH),

∇3χ̂ = ρ̌+∇η + ψ(ψ + ψH) + ψH(trχ+ ψH).

(28)

Except for the equation ∇4trχ and ∇3trχ, the structure of the nonlinear
terms in the other equations follow from signature considerations.10 We now

10Notice that we have written a more precise version of schematic equation for
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write the constraint equations (24) in schematic form:

div χ̂ =
1

2
∇trχ+ ψ(trχ+ χ̂)− β,

div χ̂ =
1

2
∇trχ+ ψ(trχ+ χ̂) + β,

curl η = −curl η = σ̌,

K = −ρ̌+ ψψ.

(29)

We now write down the Bianchi equations (26) in schematic form, substi-
tuting the Codazzi equations in (29) for some β and β. In these equations,
the left hand side is written with exact constants while the right hand side
is written only schematically.

∇3β −∇ρ̌−∗ ∇σ̌ =ψ(ρ̌, σ̌) + ψi1∇i2(ψH + trχ)∇i3(ψH + trχ),

∇4σ̌ + div ∗β =ψσ̌ +
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψH + ψχ̂χ̂,

∇4ρ̌+ div β =ψρ̌+
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψH + ψχ̂χ̂,

∇3σ̌ + div ∗β =ψσ̌ +
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψH + ψχ̂ χ̂,

∇3ρ̌+ div β =ψρ̌+
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψH + ψχ̂ χ̂,

∇4β +∇ρ̌−∗ ∇σ̌ =ψ(ρ̌, σ̌) + ψi1∇i2(ψH + trχ)∇i3(ψH + trχ).

It is important in the sequel that in the equations for ∇4(ρ̌, σ̌) (resp.
∇3(ρ̌, σ̌)), ψH (resp. ψH) does not appear. This does not follow from sig-
nature considerations alone since in principle the conservation of signature
would allow a term ψHψHψH (resp. ψHψHψH). The fact that these terms
do not appear can be observed directly in the equation (26).

2.6. Integration

Let U be a coordinate patch on S0,0 and define Uu,0 to be a coordinate
patch on Su,0 given by the one-parameter diffeomorphism generated by L.

∇3η compared to ∇4η. This will be useful in the proof since when integrating in
the u direction using the ∇3 equation, we will not have a smallness in the length
scale and we need to use the extra structure of the equation.
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Define Uu,u to be the image of Uu,0 under the one-parameter diffeomorphism
generated by L. Define alsoDU =

⋃
0≤u≤I,0≤u≤ε Uu,u. Let {pU} be a partition

of unity such that pU is supported in DU . Given a function φ, the integration
on Su,u is given by the formula:∫

Su,u

φ :=
∑
U

∫ ∞

−∞

∫ ∞

−∞
φpU

√
det γdθ1dθ2.

Let Du′,u′ by the region 0 ≤ u ≤ u′, 0 ≤ u ≤ u′. The integration on Du,u is
given by the formula∫

Du,u

φ :=
∑
U

∫ u

0

∫ u

0

∫ ∞

−∞

∫ ∞

−∞
φpU

√
− det gdθ1dθ2dudu

=2
∑
U

∫ u

0

∫ u

0

∫ ∞

−∞

∫ ∞

−∞
φpUΩ

2
√

det γdθ1dθ2dudu.

Since there are no canonical volume forms on Hu and Hu, we define inte-
gration by ∫

Hu

φ :=
∑
U

∫ ε

0

∫ ∞

−∞

∫ ∞

−∞
φ2pUΩ

√
det γdθ1dθ2du,

and ∫
Hu

φ :=
∑
U

∫ ε

0

∫ ∞

−∞

∫ ∞

−∞
φ2pUΩ

√
det γdθ1dθ2du.

With these notions of integration, we can define the norms that we will
use. Let φ be an arbitrary tensorfield. For 1 ≤ p < ∞, define

||φ||pLp(Su,u)
:=

∫
Su,u

〈φ, φ〉p/2γ ,

||φ||pLp(Hu)
:=

∫
Hu

〈φ, φ〉p/2γ ,

||φ||pLp(Hu)
:=

∫
Hu

〈φ, φ〉p/2γ .

Define also the L∞ norm by

||φ||L∞(Su,u) := sup
θ∈Su,u

〈φ, φ〉1/2γ (θ).
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We will also use mixed norms defined by

||φ||L2
uL

∞
u Lp(S) =

(∫ u∗

0
( sup
u∈[0,u∗]

||φ||Lp(Su,u))
2du

) 1

2

,

||φ||L2
uL

∞
u Lp(S) =

(∫ u∗

0
( sup
u∈[0,ε]

||∇iφ||Lp(Su,u))
2du

) 1

2

.

Note that L∞Lp is taken before taking L2. In the sequel, we will frequently
use

|| · ||L∞
u L2

uL
p(S) ≤ || · ||L2

uL
∞
u Lp(S).

With the above definition, ||φ||L2
uL

2(Su,u) and ||φ||L2(Hu)
differ by a factor

of Ω. Nevertheless, in view of Proposition 1, these norms are equivalent up
to a factor of 2.

2.7. Norms

We now define the norms that we will work with. Let

R =
∑
i≤2

⎛⎝ ∑
Ψ∈{β,ρ̌,σ̌}

sup
u

||∇iΨ||L2(Hu) +
∑

Ψ∈{ρ̌,σ̌,β}
sup
u

||∇iΨ||L2(Hu)

⎞⎠ ,

R(S) =
∑
i≤1

(sup
u,u

||∇i(ρ̌, σ̌,K)||L2(Su,u) + ||∇iβ||L2
uL

∞
u L3(S)),

Oi,p =sup
u,u

||∇i(trχ, η, η, trχ)||Lp(Su,u) + ||∇i(χ̂, ω)||L2
uL

∞
u Lp(S)

+ ||∇i(χ̂, ω)||L2
uL

∞
u Lp(S),

Õ3,2 =||∇3(trχ, trχ)||L∞
u L∞

u L2(S) + ||∇3(η, η)||L∞
u L2

uL
2(S)

+ ||∇3(η, η)||L∞
u L2

uL
2(S) + ||∇3(χ̂, ω, ω†)||L∞

u L2
uL

2(S)

+ ||∇3(χ̂, ω, ω†)||L∞
u L2

uL
2(S),

where ω† and ω† are defined to be the solutions to

∇3ω
† =

1

2
σ̌, ∇4ω

† =
1

2
σ̌
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with zero data11 and μ, μ, κ, κ are defined by

μ := −div η − ρ̌, μ := −div η − ρ̌,

κ := ∇ω +∗ ∇ω† − 1

2
β, κ := −∇ω +∗ ∇ω† − 1

2
β.

Moreover, we will use the notation Oi,p[trχ] (and R(S)[β], etc) to denote

the part of the O norm that depends on trχ, i.e., supu,u ‖∇itrχ‖Lp(Su,u).

Recall from (27) that we use the schematic notation ψ ∈ {trχ, η, η, trχ},
ψH ∈ {χ̂, ω} and ψH ∈ {χ̂, ω}. The choice of this notation is due to the fact

that they obey different estimates.

For the norms of the third derivatives of the Ricci coefficients, i.e., the

Õ3,2 norms, notice that ∇3trχ and ∇3trχ obey the same type of estimates

as for lower order derivatives. ∇3(η, η) can no longer be controlled on a

2-sphere, but it obeys estimates on either null hypersurface. ∇3ψH (resp.

∇3ψH) satisfies similar estimates as before, but at this level of derivatives,

we have to take L2
u (resp. L2

u) before L∞
u (resp. L∞

u ).

We write

O := O0,∞ +
∑
i≤1

Oi,4 +
∑
i≤2

Oi,2.

3. Statement of main theorem

With the notations introduced in the previous section, we formulate a more

precise version of Theorem 2, which we call Theorem 3. As noted before,

since the proof for the existence and uniqueness of solutions in {0 ≤ u ≤
ε} ∩ {0 ≤ u ≤ I1} is the same as that in {0 ≤ u ≤ ε} ∩ {0 ≤ u ≤ I2}, we will

focus on the latter case.

Theorem 3. Suppose the initial data set for the characteristic initial value

problem is given on H0 for 0 ≤ u ≤ u∗ and on H0 for 0 ≤ u ≤ u∗ ≤ I such

that

c ≤ | det γ �Su,0
|, | det γ �S0,u

| ≤ C,

∑
i≤3

(
|( ∂
∂θ

)iγ �Su,0
|+ |( ∂

∂θ
)iγ �S0,u

|
)

≤ C,

11I.e., ω† = 0 on H0 and ω† = 0 on H0.
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O0 :=
∑
i≤3

(||∇iψ||L∞
u L2(Su,0) + ||∇iψ||L∞

u L2(S0,u)

+ ||∇iψH ||L2(H0) + ||∇iψH ||L2(H0)
) ≤ C,

R0 :=
∑
i≤2

(||∇iβ||L2(H0) + ||∇iβ||L2(H0)

+
∑

Ψ∈{ρ̌,σ̌}
(||∇iΨ||L∞

u L2(Su,0) + ||∇iΨ||L∞
u L2(S0,u))) ≤ C.

Then there exists ε > 0 sufficiently small depending only on C, c and I such
that if u∗ ≤ ε, there exists a spacetime (M, g) that solves the characteristic
initial value problem to the vacuum Einstein equations in the region 0 ≤ u ≤
u∗, 0 ≤ u ≤ u∗. Geometrically, this is the region to the future of the initial
hypersurfaces H0 and H0 which is bounded in the future by the incoming
null hypersurface emanating from S0,u∗

and the outgoing null hypersurface
emanating from Su∗,0. Associated to the spacetime (M, g), there exists a
system of null coordinates (u, u, θ1, θ2) in which the metric is continuous
and takes the form

g = −2Ω2(du⊗ du+ du⊗ du) + γAB(dθ
A − bAdu)⊗ (dθB − bBdu).

In addition, given a sequence of smooth initial data sets such that the met-
rics γn approaches γ in L∞

u W 3,∞(Su,0) ∩ L∞
u W 3,∞(S0,u), the Ricci coeffi-

cients (ψ,ψH , ψH)n approaches (ψ,ψH , ψH) in the norm12 given by O0 and
the renormalized curvature components (β, ρ̌, σ̌, β)n approaches (β, ρ̌, σ̌, β) in
the norm R0, this sequence of initial data gives rise to a sequence of smooth
spacetimes which approaches (M, g) in C0. (M, g) is also the unique space-
time solving the characteristic initial value problem among all such C0 limits
of smooth solutions. Moreover13,

∂

∂θ
g ∈ C0

uC
0
uL

4(S),

∂2

∂θ2
g ∈ C0

uC
0
uL

2(S),

∂2

∂θ∂u
g,

∂2

∂u2
bA ∈ L2

uL
∞
u L4(S).

12Here, we take the norms and the connection coefficients on the spheres S0,u

and Su,0 to be defined with respect to γ.
13Here, we use g to denote any components of the metric in double null coordi-

nates, i.e., the components, bA, γAB and Ω.
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∂

∂u
g ∈ L2

uL
∞
u L∞(S),

∂

∂u
((γ−1)AB ∂

∂u
(γ)AB) ∈ L1

uL
∞
u L∞(S),

∂2

∂θ∂u
g,

∂2

∂u2
bA ∈ L2

uL
∞
u L4(S).

∂

∂u
g ∈ L2

uL
∞
u L∞(S),

∂

∂u
((γ−1)AB ∂

∂u
(γ)AB) ∈ L1

uL
∞
u L∞(S),

∂2

∂u∂u
g ∈ L2

uL
2
uL

4(S).

In the (u, u, θ1, θ2) coordinates, the vacuum Einstein equations are satisfied
in L1

uL
1
uL

1(S). Furthermore, the higher angular14 differentiability in the data
results in higher angular differentiability of (M, g).

In the remainder of this paper, we will prove the a priori estimates
needed to establish Theorem 3 (see Theorem 4). The existence, uniqueness
and regularity statements in Theorem 3 follow from the a priori estimates
and an approximation argument as in [24]. Moreover, as in [24], it suffices
to prove a priori estimates for smooth solutions. We refer the readers to [24]
for details. In the subsequent sections, we will prove the following theorem
on the a priori estimates:

Theorem 4. Suppose a smooth initial data set for the characteristic initial
value problem is given on H0 for 0 ≤ u ≤ u∗ and on H0 for 0 ≤ u ≤ u∗
such that

c ≤ | det γ �Su,0
| ≤ C,

∑
i≤3

|( ∂
∂θ

)iγ �Su,0
| ≤ C,

O0 :=
∑
i≤3

(||∇iψ||L∞
u L2(Su,0) + ||∇iψ||L∞

u L2(S0,u)

+ ||∇iψH ||L2(H0) + ||∇iψH ||L2(H0)
) ≤ C,

R0 :=
∑
i≤2

(||∇iβ||L2(H0) + ||∇iβ||L2(H0)

+
∑

Ψ∈{ρ̌,σ̌}
(||∇iΨ||L∞

u L2(Su,0) + ||∇iΨ||L∞
u L2(S0,u))) ≤ C.

14I.e., in the ∂
∂θA directions.
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Then, there exists ε depending only on C, c and I such that if u∗ ≤ I and

u∗ ≤ ε, a smooth solution to the vacuum Einstein equations in the region

0 ≤ u ≤ u∗, 0 ≤ u ≤ u∗ has the following norms bounded above by a constant

C ′ depending only on C, c and I:

O, Õ3,2,R < C ′.

3.1. Structure of the proof

We briefly outline the proof of Theorem 4:

STEP 0: Assuming that O0,∞ and O1,4 are controlled, we prove the bounds

on the metric components, from which we derive preliminary estimates such

as the Sobolev embedding theorem and the estimates for transport equa-

tions. (Section 4).

STEP 1: Assuming R < ∞, R(S) < ∞ and Õ3,2 < ∞, we prove that

O ≤ C(O0,R(S)). (Sections 5.1, 5.2)

STEP 2: Assuming R < ∞ and Õ3,2 < ∞, we show that R(S) ≤ C(R0).

(Section 5.3) Together with Step 1 this implies O ≤ C(O0,R0).

STEP 3: Assuming R < ∞, we establish that Õ3,2 ≤ C(O0)(1 + R), i.e.,

Õ3,2 grows at most linearly with R, with a constant depending only on the

initial data. (Section 5.4)

STEP 4: Using the previous steps, we obtain the estimate R ≤ C(O0,R0),

thus finishing the proof of Theorem 4. (Section 6)

4. The preliminary estimates

All estimates in this section will be proved under the following bootstrap

assumption:

(A1) O0,∞ +
∑
i≤1

Oi,4 ≤ Δ0

where Δ0 is a positive constant to be chosen later.
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4.1. Estimates for metric components

We first show that we can control Ω under the bootstrap assumption (A1):

Proposition 1. There exists ε0 = ε0(Δ0) such that for every ε ≤ ε0,

1

2
≤ Ω ≤ 2.

Proof. Consider the equation

(30) ω = −1

2
∇4 log Ω =

1

2
Ω∇4Ω

−1 =
1

2

∂

∂u
Ω−1.

Notice that both ω and Ω are scalars and therefore the L∞ norm is inde-
pendent of the metric. We can integrate equation (30) using the fact that
Ω−1 = 1 on H0 to obtain

||Ω−1 − 1||L∞(Su,u) ≤ C

∫ u

0
||ω||L∞(Su,u′ )du

′ ≤ Cε
1

2 ||ω||L∞
u L2

uL
∞(S) ≤ CΔ0ε

1

2 .

This implies both the upper and lower bounds for Ω for sufficiently small
ε.

We then show that we can control γ under the bootstrap assumption
(A1):

Proposition 2. Consider a coordinate patch U on S0,0. Recall that Uu,0

is defined to be a coordinate patch on Su,0 given by the one-parameter dif-
feomorphism generated by L and Uu,u is defined to be to be the image of
Uu,0 under the one-parameter diffeomorphism generated by L. Recall also
that DU =

⋃
0≤u≤I,0≤u≤ε Uu,u. For ε small enough depending on initial data

and Δ0, there exists C and c depending only on initial data such that the
following pointwise bounds for γ hold in DU :

c ≤ det γ ≤ C.

Moreover, in DU ,

|γAB|, |(γ−1)AB| ≤ C.

Proof. The first variation formula states that

L/ Lγ = 2Ωχ.
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In coordinates, this means

∂

∂u
γAB = 2ΩχAB.

From this we derive that

∂

∂u
log(det γ) = Ωtrχ.

Define γ0(u, u, θ
1, θ2) = γ(u, 0, θ1, θ2). Then

(31) | det γ − det(γ0)| ≤ C

∫ u

0
|trχ|du′ ≤ CΔ0ε.

This implies that the det γ is bounded above and below. Let Λ be the larger
eigenvalue of γ. Clearly,

(32) Λ ≤ C sup
A,B=1,2

γAB,

and ∑
A,B=1,2

|χAB | ≤ CΛ||χ||L∞(Su,u).

Then

|γAB − (γ0)AB| ≤ C

∫ u

0
|χAB|du′ ≤ CΛΔ0ε

1

2 .

Using the upper bound (32), we thus obtain the upper bound for |γAB|. The
upper bound for |(γ−1)AB| follows from the upper bound for |γAB| and the
lower bound for det γ.

A consequence of the previous proposition is an estimate on the surface
area of the two sphere Su,u.

Proposition 3.

sup
u,u

|Area(Su,u)−Area(Su,0)| ≤ CΔ0ε.

Proof. This follows from (31).

With the estimate on the volume form, we can now show that the Lp

norms defined with respect to the metric and the Lp norms defined with
respect to the coordinate system are equivalent.
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Proposition 4. Given a covariant tensor φA1...Ar
on Su,u, we have∫

Su,u

< φ, φ >p/2
γ ∼

r∑
i=1

∑
Ai=1,2

∫∫
|φA1...Ar

|p
√

det γdθ1dθ2.

We can also bound b under the bootstrap assumption, thus controlling
the full spacetime metric:

Proposition 5. In the coordinate system (u, u, θ1, θ2),

|bA| ≤ CΔ0ε.

Proof. bA satisfies the equation

(33)
∂bA

∂u
= −4Ω2ζA.

This can be derived from

[L,L] =
∂bA

∂u

∂

∂θA
.

Now, integrating (33) and using Proposition 4 gives the result.

4.2. Estimates for transport equations

The estimates for the Ricci coefficients and the null curvature components
are derived from the null structure equations and the null Bianchi equations
respectively. In order to use the equations, we need a way to obtain esti-
mates from the covariant null transport equations. Such estimates require
the boundedness of trχ and trχ, which is consistent with our bootstrap as-
sumption (A1). Below, we state two Propositions which provide Lp estimates
for general quantities satisfying transport equations either in the e3 or e4
direction.

Proposition 6. There exists ε0 = ε0(Δ0) such that for all ε ≤ ε0 and for
every 2 ≤ p < ∞, we have

||φ||Lp(Su,u) ≤ C(||φ||Lp(Su,u′ ) +

∫ u

u′
||∇4φ||Lp(Su,u′′ )du

′′),

||φ||Lp(Su,u) ≤ C(||φ||Lp(Su′,u) +

∫ u

u′
||∇3φ||Lp(Su′′,u)du

′′).
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Proof. The following identity holds for any scalar f :

d

du

∫
Su,u

f =

∫
Su,u

(
df

du
+Ωtrχf

)
=

∫
Su,u

Ω (e4(f) + trχf) .

Similarly, we have

d

du

∫
Su,u

f =

∫
Su,u

Ω
(
e3(f) + trχf

)
.

Hence, taking f = |φ|pγ , we have

||φ||pLp(Su,u)
=||φ||pLp(Su,u′ )

+

∫ u

u′

∫
Su,u′′

p|φ|p−2Ω

(
< φ,∇4φ >γ +

1

p
trχ|φ|2γ

)
du′′,

||φ||pLp(Su,u)
=||φ||pLp(Su′,u)

+

∫ u

u′

∫
Su′′,u

p|φ|p−2Ω

(
< φ,∇3φ >γ +

1

p
trχ|φ|2γ

)
du′′.

(34)

By the L∞ bounds for Ω and trχ (trχ) which are provided by Proposition

1 and the bootstrap assumption (A1) respectively, we can control the last

term in each of these equations using Gronwall’s inequality to get

||φ||pLp(Su,u)

≤ C

(
||φ||pLp(Su,u′ )

+

∫ u

u′

∫
Su,u′′

|φ|p−1|∇4φ|du′′
)
,

||φ||pLp(Su,u)

≤ C

(
||φ||pLp(Su′,u)

+

∫ u

u′

∫
Su′′,u

|φ|p−1|∇3φ|du′′
)
.

(35)

Notice that (35) allows us to in fact control supu′≤u′′≤u ||φ||pLp(Su,u′′ )
and

supu′≤u′′≤u ||φ||pLp(Su′′,u)
respectively. Therefore, using Hölder’s inequality on
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the 2-spheres, we get

sup
u′≤u′′≤u

||φ||pLp(Su,u′′ )

≤C sup
u′≤u′′≤u

||φ||p−1
Lp(Su,u′′ )

(
||φ||Lp(Su,u′ ) +

∫ u

u′
‖∇4φ‖Lp(Su,u′′ )du

′′
)
,

sup
u′≤u′′≤u

||φ||pLp(Su′′,u)

≤C sup
u′≤u′′≤u

||φ||p−1
Lp(Su′′,u)

(
||φ||Lp(Su′,u) +

∫ u

u′

∫
Su′′,u

‖∇3φ‖Lp(Su′′,u)du
′′
)
.

Dividing by supu′≤u′′≤u ||φ||p−1
Lp(Su,u′′ )

and supu′≤u′′≤u ||φ||p−1
Lp(Su′′,u)

respectively

gives the desired conclusion.

The above estimates also hold for p = ∞:

Proposition 7. There exists ε0 = ε0(Δ0) such that for all ε ≤ ε0, we have

||φ||L∞(Su,u) ≤ C

(
||φ||L∞(Su,u′ ) +

∫ u

u′
||∇4φ||L∞(Su,u′′ )du

′′
)
,

||φ||L∞(Su,u) ≤ C

(
||φ||L∞(Su′,u) +

∫ u

u′
||∇3φ||L∞(Su′′,u)du

′′
)
.

Proof. This follows simply from integrating along the integral curves of L

and L, and the estimate on Ω in Proposition 1.

4.3. Sobolev embedding

Using the estimates for the metric γ in Proposition 2, Sobolev embedding

theorems in our setting follows from the standard Sobolev embedding theo-

rems (see [24]):

Proposition 8. There exists ε0 = ε0(Δ0) such that as long as ε ≤ ε0, we

have

||φ||L4(Su,u) ≤ C

1∑
i=0

||∇iφ||L2(Su,u).

Similarly, we can also prove the Sobolev embedding theorem for the L∞

norm:
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Proposition 9. There exists ε0 = ε0(Δ0) such that as long as ε ≤ ε0, we
have

||φ||L∞(Su,u) ≤ C
(
||φ||L2(Su,u) + ||∇φ||L3(Su,u)

)
.

As a consequence, since the area of Su,u is uniformly bounded, we have

||φ||L∞(Su,u) ≤ C
(
||φ||L2(Su,u) + ||∇φ||L4(Su,u)

)
and

||φ||L∞(Su,u) ≤ C

2∑
i=0

||∇iφ||L2(Su,u).

Besides the Sobolev embedding theorem on the 2-spheres, we also have a
co-dimensional 1 trace estimate that controls the L3(S) norm by the L2(H)
norm with a small constant.

Proposition 10.

||φ||L3(Su,u) ≤C
(
||φ||L3(Su,u′ ) + ε

1

4 ||∇φ||L2
uL

2(S) + ε
1

8 ||∇4φ||L2
uL

2(S)

)
.

Proof. It follows from the standard Sobolev embedding theorem and the
lower and upper bounds of the volume form that

(36) ||φ||L4(S) ≤ C(||φ||
3

4

L3(S)||∇φ||
1

4

L2(S) + ||φ||L3(S)).

Using (34) and (36), we have

||φ||3L3(Su,u)

=||φ||3L3(Su,u′ ) +

∫ u

u′

∫
Su,u′′

3Ω|φ|γ
(
< φ,∇4φ >γ +

1

3
trχ|φ|2γ

)
du′′

≤||φ||3L3(Su,u′ ) + C||φ||2L4(H)||∇4φ||L2(H) +

∫ u

0
CΔ0||φ||3L3(Su,u′ )du

′

≤||φ||3L3(Su,u′ ) + C(||φ||
3

2

L∞
u L3(S)||∇φ||

1

2

L1
uL

2(S) + ||φ||2L4
uL

3(S))||∇4φ||L2(H)

+

∫ u

0
CΔ0||φ||3L3(Su,u′ )du

′

≤||φ||3L3(Su,u′ ) + C(||φ||
3

2

L∞
u L3(S)||∇φ||

1

2

L1
uL

2(S) + ε
1

2 ||φ||2L∞
u L3(S))||∇4φ||L2(H)

+

∫ u

0
CΔ0||φ||3L3(Su,u′ )du

′.
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Using Hölder’s inequality and absorbing the term ||φ||3L∞
u L3(S) to the left

hand side, we have

||φ||3L3(Su,u)

≤C
(
||φ||3L3(Su,u′ ) + ||∇φ||L1

uL
2(S)||∇4φ||2L2

uL
2(S) + ε

3

2 ||∇4φ||3L2
uL

2(S)

+

∫ u

0
CΔ0||φ||3L3(Su,u′ )du

′
)

≤C
(
||φ||3L3(Su,u′ ) + ε

3

4 ||∇φ||3L2
uL

2(S) + ε
3

8 ||∇4φ||3L2
uL

2(S) + ε
3

2 ||∇4φ||3L2
uL

2(S)

+

∫ u

0
CΔ0||φ||3L3(Su,u′ )du

′
)
,

where we have gained a smallness constant by changing L1
u to L2

u for ∇φ
in the last line. By Gronwall’s inequality, and using the fact that u ≤ ε, we
have

||φ||3L3(Su,u)
≤C

(
||φ||3L3(Su,u′ ) + ε

3

4 ||∇φ||3L2
uL

2(S) + ε
3

8 ||∇4φ||3L2
uL

2(S)

)
.

4.4. Commutation formulae

We have the following formulae from [17]:

Proposition 11. The commutator [∇4,∇] acting on a (0, r) S-tensor is
given by

[∇4,∇B]φA1...Ar

=[D4, DB]φA1...Ar
+ (∇B log Ω)∇4φA1...Ar

− (γ−1)CDχBD∇CφA1...Ar

−
r∑

i=1

(γ−1)CDχBDηAi
φA1...ÂiC...Ar

+

r∑
i=1

(γ−1)CDχAiBηDφA1...ÂiC...Ar
.

Similarly, the commutator [∇3,∇] acting on a (0, r) S-tensor is given by

[∇3,∇B]φA1...Ar

=[D3, DB]φA1...Ar
+ (∇B log Ω)∇3φA1...Ar

− (γ−1)CDχ
BD

∇CφA1...Ar

−
r∑

i=1

(γ−1)CDχ
BD

ηAi
φA1...ÂiC...Ar

+

r∑
i=1

(γ−1)CDχ
AiB

ηDφA1...ÂiC...Ar
.

By induction, we get the following schematic formula for repeated com-
mutations (see [24]):
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Proposition 12. Suppose ∇4φ = F0 where φ and F0 are (0, r) S-tensors.
Let ∇4∇iφ = Fi where Fi is a (0, r+ i) S-tensor. Then Fi is given schemat-
ically by

Fi ∼
∑

i1+i2+i3=i

∇i1(η + η)i2∇i3F0 +
∑

i1+i2+i3+i4=i

∇i1(η + η)i2∇i3χ∇i4φ

+
∑

i1+i2+i3+i4=i−1

∇i1(η + η)i2∇i3β∇i4φ.

where by ∇i1(η + η)i2 we mean the sum of all terms which is a product of

i2 factors, each factor being ∇j(η + η) for some j and that the sum of all

j’s is i1, i.e., ∇i1(η + η)i2 =
∑

j1+...+ji2=i1

∇j1(η + η)...∇ji2 (η + η). Similarly,

suppose ∇3φ = G0 where φ and G0 are (0, r) S-tensors. Let ∇3∇iφ = Gi

where Gi is a (0, ri) S-tensor. Then Gi is given schematically by

Gi ∼
∑

i1+i2+i3=i

∇i1(η + η)i2∇i3G0 +
∑

i1+i2+i3+i4=i

∇i1(η + η)i2∇i3χ∇i4φ

+
∑

i1+i2+i3+i4=i−1

∇i1(η + η)i2∇i3β∇i4φ.

The following further simplified version is useful for our estimates in the
next section:

Proposition 13. Suppose ∇4φ = F0 where φ and F0 are (0, r) S-tensors.
Let ∇4∇iφ = Fi where Fi is a (0, r+ i) S-tensor. Then Fi is given schemat-
ically by

Fi ∼
∑

i1+i2+i3=i

∇i1ψi2∇i3F0 +
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3χ∇i4φ.

Similarly, suppose ∇3φ = G0 where φ and G0 are (0, r) S-tensors. Let
∇3∇iφ = Gi where Gi is a (0, ri) S-tensor. Then Gi is given schematically
by

Gi ∼
∑

i1+i2+i3=i

∇i1ψi2∇i3G0 +
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3χ∇i4φ.

Proof. We replace β and β using the Codazzi equations, which schematically
looks like

β = ∇χ+ ψχ,

β = ∇χ+ ψχ.
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4.5. General elliptic estimates for Hodge systems

We recall the definition of the divergence and curl of a symmetric covariant
tensor of an arbitrary rank:

(div φ)A1...Ar
= ∇BφBA1...Ar

,

(curl φ)A1...Ar
= ε/BC∇BφCA1...Ar

,

where ε/ is the volume form associated to the metric γ. Recall also that the
trace is defined to be

(trφ)A1...Ar−1
= (γ−1)BCφBCA1...Ar−1

.

The following elliptic estimate is standard (See for example [8] or [7]):

Proposition 14. Let φ be a totally symmetric r + 1 covariant tensorfield
on a 2-sphere (S2, γ) satisfying

div φ = f, curl φ = g, trφ = h.

Suppose also that ∑
i≤1

||∇iK||L2(S) < ∞.

Then for i ≤ 3,

||∇iφ||L2(S) ≤C(
∑
k≤1

||∇kK||L2(S))

× (

i−1∑
j=0

(||∇jf ||L2(S) + ||∇jg||L2(S) + ||∇jh||L2(S) + ||φ||L2(S))).

For the special case that φ a symmetric traceless 2-tensor, we only need
to know its divergence:

Proposition 15. Suppose φ is a symmetric traceless 2-tensor satisfying

div φ = f.

Suppose moreover that ∑
i≤1

||∇iK||L2(S) < ∞.
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Then, for i ≤ 3,

||∇iφ||L2(S) ≤ C(
∑
k≤1

||∇kK||L2(S))(

i−1∑
j=0

(||∇jf ||L2(S) + ||φ||L2(S))).

Proof. In view of Proposition 14, this Proposition follows from

curl φ =∗ f.

This is a direct computation using the fact that φ is both symmetric and
traceless.

5. Estimates for the Ricci coefficients

We continue to work under the bootstrap assumptions (A1). In this section,
we show that assuming the curvature norm R is bounded, then so are the
Ricci coefficient norms O, Õ3,2 and the curvature norm R(S) on the spheres.
In particular, our bootstrap assumption (A1) and all the estimates in the
last section are verified as long as R is controlled.

5.1. L4(S) estimates for first derivatives of Ricci coefficients

Proposition 16. Assume

R < ∞, Õ3,2 < ∞, O2,2 < ∞.

Then there exists ε0 = ε0(R, Õ3,2,O2,2,Δ0) such that whenever ε ≤ ε0,∑
i≤1

Oi,4[trχ, η] ≤ C(O0).

In particular, C(O0) is independent of Δ0.

Proof. Using the null structure equations, we have a schematic equation of
the type

∇4(trχ, η) = β + ρ̌+∇η + ψψ + ψHψ.

It is important to note that β, ψH do not appear in the source terms. In
other words, only the terms that can be controlled on the outgoing hyper-
surface Hu enter the equation. By Proposition 13, we have the following null
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structure equations commuted with angular derivatives:

∇4∇i(trχ, η) =
∑

i1+i2+i3=i

∇i1ψi2∇i3(β + ρ̌+∇η)

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3ψ∇i4(ψ + ψH).

By Proposition 6, in order to estimate ||∇i(trχ, η)||L∞
u L∞

u L4(S), it suffices to

estimate the initial data and the || · ||L∞
u L1

uL
4(S) norm of the right hand side.

We now estimate each of the terms in the equations. For the curvature terms,
we have

||
∑

i1+i2≤1

ψi1∇i2(β, ρ̌)||L∞
u L1

uL
4(S)

≤C(
∑
i1≤1

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤1

||∇i2(β, ρ̌)||L∞
u L1

uL
4(S))

≤C(1 + Δ0)ε
1

2

∑
i≤2

||∇i(β, ρ̌)||L∞
u L2

uL
2(S)

≤C(1 + Δ0)ε
1

2R.

The term with ∇η instead of (β, ρ̌) can be bounded analogously, except for

using the O and Õ3,2 norms together instead of the R norm:

||
∑

i1+i2≤1

ψi1∇i2+1η||L∞
u L1

uL
4(S)

≤C(
∑
i1≤1

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2η||L∞
u L1

uL
4(S))

≤C(1 + Δ0)ε
1

2 (
∑
i≤1

||∇iη||L∞
u L∞

u L4(S) +
∑

2≤i≤3

||∇iη||L∞
u L2

uL
2(S))

≤C(1 + Δ0)ε
1

2 (
∑
i≤1

Oi,4 +O2,2 + Õ3,2)

≤C(1 + Δ0)ε
1

2 (Δ0 +O2,2 + Õ3,2).

We now move on to the lower order terms:

||
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψ||L∞
u L1

uL
4(S)

≤ C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤1

||∇i2ψ||L∞
u L1

uL
4(S))

≤ CΔ0(1 + Δ0)
2ε.
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Finally, we bound the lower order terms that contain ψH :

||
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψH ||L∞
u L1

uL
4(S)

≤C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤1

||∇i2ψH ||L∞
u L1

uL
4(S))

+ C(
∑
i1≤1

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤1

||∇i2ψ||L∞
u L2

uL
4(S))(||ψH ||L∞

u L2
uL

∞(S))

≤C(1 + Δ0)
2ε

1

2 (
∑
i≤1

||∇iψH ||L∞
u L2

uL
4(S) +

∑
i≤1

||∇iψ||L∞
u L∞

u L4(S))

≤CΔ0(1 + Δ0)
2ε

1

2 .

Hence, by Proposition 6, we have∑
i≤1

Oi,4[trχ, η] ≤O0 + C(1 + Δ0)
2ε

1

2 (R+O2,2 + Õ3,2 +Δ0).

The proposition follows from choosing ε to be sufficiently small, depending

on R, Õ3,2,O2,2,Δ0.

We now estimate the terms that we denote by ψH , i.e., χ̂ and ω. Both of

them obey a ∇4 equation. However, a new difficulty compared Proposition

16 arises since the initial data for χ̂ and ω are not in L∞
u . Thus they can

only be estimated after taking the L2
u norm.

Proposition 17. Assume

R < ∞, Õ3,2 < ∞, O2,2 < ∞.

Then there exists ε0 = ε0(R, Õ3,2,O2,2,Δ0) such that whenever ε ≤ ε0,∑
i≤1

Oi,4[χ̂, ω] ≤ C(O0).

In particular, this estimate is independent of Δ0.

Proof. Using the null structure equations, for each ψH ∈ {χ̂, ω}, we have an
equation of the type

∇4ψH = ρ̌+∇η + (ψ + ψH)(ψ + ψH).
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We also use the null structure equations commuted with angular derivatives:

∇4∇iψH =
∑

i1+i2+i3=i

∇i1ψi2∇i3(ρ̌+∇η)

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3(ψ + ψH)∇i4(ψ + ψH).

From the proof of Proposition 16, we have

||
∑

i1+i2+i3≤1

∇i1ψi2∇i3 ρ̌||L∞
u L1

uL
4(S) ≤C(1 + Δ0)ε

1

2R,

and

||
∑

i1+i2≤1

ψi1∇i2+1η||L∞
u L1

uL
4(S) ≤C(1 + Δ0)ε

1

2 (Δ0 +O2,2 + Õ3,2),

and

||
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψ||L∞
u L1

uL
4(S) ≤CΔ0(1 + Δ0)

2ε,

and

||
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψH ||L∞
u L1

uL
4(S) ≤CΔ0(1 + Δ0)

2ε
1

2 .

The two new terms that did not appear in the proof of Proposition 16 are∑
i1+i2+i3+i4≤1

∇i1ψi2∇i3ψH∇i4ψH , and
∑

i1+i2+i3+i4≤1

∇i1ψi2∇i3ψ∇i4ψH .

Both of these terms cannot be controlled in the L∞
u L1

uL
4(S) norm. Instead,

for each fixed u, we bound the first term in the L1
uL

4(S) norm:

||
∑

i1+i2+i3+i4≤1

∇i1ψi2∇i3ψH∇i4ψH ||L1
uL

4(S)

≤C(1 + ||ψ||L∞
u L∞(S))(||ψH ||L∞

u L∞(S))(
∑
i≤1

||∇iψH ||L1
uL

4(S))

+ C(1 + ||ψ||L∞
u L∞(S))(

∑
i≤1

||∇iψH ||L∞
u L4(S))(||ψH ||L1

uL
∞(S))
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≤C(1 + Δ0)
2ε

1

2 (||ψH ||L2
uL

∞(S) +
∑
i≤1

||∇iψH ||L2
uL

4(S))(
∑
i≤1

||∇iψH ||L∞
u L4(S))

≤C(1 + Δ0)
2ε

1

2 (
∑
i≤1

||∇iψH ||L2
uL

4(S) +
∑
i≤1

||∇iψH ||L∞
u L4(S)).

by Sobolev embedding in Proposition 8

≤C(1 + Δ0)
2ε

1

2 (Δ0 +
∑
i≤1

||∇iψH ||L∞
u L4(S)).

According to the definition of theOi,4 norm, ψ obeys stronger estimates than

ψH . Therefore, we can control the remaining term in the same manner:

||
∑

i1+i2+i3+i4≤1

∇i1ψi2∇i3ψ∇i4ψH ||L1
uL

4(S)

≤C(1 + Δ0)
2ε

1

2 (Δ0 +
∑
i≤1

||∇iψH ||L∞
u L4(S)).

Therefore, by Proposition 6, for all u ∈ [0, u∗],∑
i≤1

||∇iψH ||L4(Su,u)

≤C(
∑
i≤1

||∇iψH ||L4(Su,0)

+ (1 +Δ0)
2ε

1

2 (R+O2,2 + Õ3,2 +Δ0 +
∑
i≤1

||∇iψH ||L∞
u L4(S))).

Clearly the right hand side is independent of u. Thus we can take supremum

in u on the left hand side. Then, we take the L2
u norm to obtain∑

i≤1

||∇iψH ||L2
uL

∞
u L4(S)

≤C(
∑
i≤1

||∇iψH ||L2
uL

4(Su,0) + (1 +Δ0)
2ε

1

2 (R+ Õ3,2 +Δ0

+
∑
i≤1

||∇iψH ||L2
uL

∞
u L4(S)))

≤C(O0 + (1 +Δ0)
2ε

1

2 (R+O2,2 + Õ3,2 +Δ0))

since by (A1)
∑

i≤1 ||∇iψH ||L2
uL

∞
u L4(S) is controlled by Δ0. The left hand
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side is precisely what we need to control for the
∑
i≤1

Oi,4[χ̂, ω] norm. Thus

∑
i≤1

Oi,4[χ̂, ω] ≤ C(O0 + (1 +Δ0)
2ε

1

2 (R+O2,2 + Õ3,2 +Δ0)).

We conclude the proof by choosing ε to be sufficiently small.

We now turn to the Ricci coefficients η, χ̂, ω. To estimate these Ricci
coefficients, we use the ∇3 equations. Unlike in the proofs of Propositions 16
and 17 where a smallness constant can be gained from the shortness of the u
interval, when integrating the ∇3 equation, the u interval is arbitrarily long.
Instead, we show that the inhomogeneous terms are at worst linear in the
unknown and the desired bounds can be obtained via Gronwall’s inequality.
Notice that χ̂ satisfies a ∇4 equation with α as a source term. We avoid
this equation because α is singular. We begin with the estimates for η. As
we will see below, we cannot directly estimate the L4(S) norms of η and its
derivatives, but have to first estimate the L∞(S) norm of η:

Proposition 18. Assume

R < ∞, Õ3,2 < ∞, O2,2 < ∞.

Then there exists ε0 = ε0(R, Õ3,2,O2,2,Δ0) such that whenever ε ≤ ε0,

O0,∞[η] ≤ C(O0,R(S)[β]).

In particular, this estimate is independent of Δ0.

Proof. η satisfies a ∇3 equation. As remarked above, integrating in the u
direction does not give a small constant as in integrating in the u direc-
tion. We therefore need to exploit the structure of the equation. We have,
schematically

∇3η = (ψH + trχ)(η + η) + β.

We notice that the quadratic term η2 does not appear. Moreover, trχ, χ̂ and
ω do not enter the equation. In other words, all Ricci coefficients except η
in this equation have been estimated in the previous propositions by C(O0).
We now bound each of the terms. Firstly, the term with curvature can be
controlled using Hölder’s inequality and the Sobolev embedding theorem in
Proposition 9 by R(S):

||β||L∞
u L1

uL
∞(S) ≤ C

∑
i≤1

||∇iβ||L∞
u L1

uL
3(S) ≤ CI

1

2R(S)[β].
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Here, and below, we will simplify the notation by absorbing powers of I into
the constant C. We therefore simply write

||β||L∞
u L1

uL
∞(S) ≤ CI

1

2R(S)[β].

Then, we estimate the terms quadratic in the Ricci coefficients, which do
not involve η:

||(ψH + trχ)η||L∞
u L1

uL
∞(S)

≤C||ψH + trχ||L∞
u L2

uL
∞(S)||η||L∞

u L∞
u L∞(S)

≤C(O0),

by Propositions 16 and 17 and the Sobolev embedding theorem in Proposi-
tion 9. Finally, we estimate the term (ψH + trχ)η. Fix u. Then

||(ψH + trχ)η||L1
uL

∞(S)

≤C

∫ u

0
||ψH + trχ||L∞(Su′,u)||η||L∞(Su′,u)du

′.

Therefore, by Proposition 6, we have, for every u,

||η||L∞
u L∞(S) ≤ C(O0)+CR(S)[β]+C

∫ u

0
||ψH+trχ||L∞(Su′,u)||η||L∞(Su′,u)du

′.

By Gronwall’s inequality, we have, for every u,

||η||L∞
u L∞(S) ≤ C(O0,R(S)[β]) exp(C

∫ I

0
||ψH + trχ||L∞(Su′,u)du

′).

Using the Cauchy-Schwarz inequality, the Sobolev embedding theorem in
Proposition 9, as well as the estimates for the Ricci coefficients trχ and ψH

derived in Propositions 16 and 17, we have

||η||L∞
u L∞(S) ≤ C(O0,R(S)[β]),

as desired.

Using the L∞ estimate of η, we now control ∇η in L2:

Proposition 19. Assume

R < ∞, Õ3,2 < ∞, O2,2 < ∞.
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Then there exists ε0 = ε0(R, Õ3,2,O2,2,Δ0) such that whenever ε ≤ ε0,

O1,2[η] ≤ C(O0,R(S)[β]).

In particular, this estimate is independent of Δ0.

Proof. Recall that we have, schematically,

∇3η = (ψH + trχ)(η + η) + β.

Commuting with angular derivatives, we get
(37)

∇3∇η =
∑

i1+i2=1

(η + η)i1∇i2β +
∑

i1+i2+i3=1

(η + η)i1∇i2(η + η)∇i3(ψH + trχ).

We notice that in (37), when two η’s appear in a term, neither of them has
a derivative. Fix u. We now estimate each of the terms. Firstly, the term
with curvature:

||
∑

i1+i2≤1

(η + η)i1∇i2β||L1
uL

2(S)

≤C(1 + ||(η, η)||L∞
u L∞(S))(

∑
i≤1

||∇iβ||L1
uL

2(S))

≤C(O0,R(S)[β])
∑
i≤1

||∇iβ||L2
uL

2(S)

≤C(O0,R(S)[β]),

since ∇β can be controlled in L2(Hu) by R(S)[β]. We then estimate the
nonlinear term in the Ricci coefficients:

||
∑

i1+i2+i3≤1

(η + η)i1∇i2(η + η)∇i3(ψH + trχ)||L1
uL

2(S)

≤C(1 + ||(η, η)||L∞
u L∞(S))

2(
∑
i≤1

||∇i(ψH , trχ)||L1
uL

2(S))

+ C

∫ u

0
||∇(η, η)||L2(Su′,u)||(ψH , trχ)||L∞(Su′,u)du

′

≤C(O0,R(S)[β]) + C

∫ u

0
||∇η||L2(Su′,u)||(ψH , trχ)||L∞(Su′,u)du

′,

where the first term is bounded using Propositions 16, 17 and 18. Therefore,
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by Proposition 6, we have, for every u,∑
i≤1

||∇iη||L∞
u L2(Su,u)

≤C(O0,R(S)[β]) + C

∫ u

0
||∇η||L2(Su′,u)||(ψH , trχ)||L∞(Su′,u)du

′.

By Gronwall’s inequality, we have∑
i≤1

||∇iη||L∞
u L2(Su,u)

≤C(O0,R(S)[β]) exp(

∫ u

0
||(ψH , trχ)||L∞(Su′,u)du

′).

The right hand side satisfies the desired bound by Propositions 16 and 17.

Recall that by Proposition 18 we now have a bound on O0,∞[η] indepen-

dent of Δ0. This allows us to prove the O1,4[η] estimates. However, unlike

the L∞(S) estimates for η and L2(S) estimates for ∇η, the L4(S) control

that we prove at this point for ∇η grows linearly in R. This bound will be

improved in the next subsection.

Proposition 20. Assume

R < ∞, Õ3,2 < ∞, O2,2 < ∞.

Then there exists ε0 = ε0(R, Õ3,2,O2,2,Δ0) such that whenever ε ≤ ε0,

O1,4[η] ≤ C(O0,R(S))(1 +R).

This estimate is linear in the R norm and is independent of Δ0.

Proof. Recall that we have,

∇3∇η =
∑

i1+i2=1

(η + η)i1∇i2β +
∑

i1+i2+i3=1

(η + η)i1∇i2(η + η)∇i3(ψH + trχ).

As in the proof of Proposition 19, we notice that in this equation, when

two η’s appear in a term, neither of them has a derivative. Fix u. Now, we
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estimate each of the terms. Firstly, the term with curvature:

||
∑

i1+i2≤1

(η + η)i1∇i2β||L1
uL

4(S)

≤C(1 + ||(η, η)||L∞
u L∞(S))(

∑
i≤1

||∇iβ||L1
uL

4(S))

≤C(O0,R(S))
∑
i≤2

||∇iβ||L2
uL

2(S)

≤C(O0,R(S))R.

We then control the nonlinear term in the Ricci coefficients:

||
∑

i1+i2+i3≤1

(η + η)i1∇i2(η + η)∇i3(ψH + trχ)||L1
uL

4(S)

≤C(1 + ||(η, η)||L∞
u L∞(S))

2(
∑
i≤1

||∇i(ψH , trχ)||L1
uL

4(S))

+ C

∫ u

0
||∇(η, η)||L4(Su′,u)||(ψH , trχ)||L∞(Su′,u)du

′

≤C(O0,R(S)) + C

∫ u

0
||∇η||L4(Su′,u)||(ψH , trχ)||L∞(Su′,u)du

′.

Therefore, by Proposition 6, we have, for every u,

||∇η||L∞
u L4(S)

≤C(O0,R(S))(1 +R) + C

∫ u

0
||∇η||L4(Su′,u)||(ψH , trχ)||L∞(Su′,u)du

′.

By Gronwall’s inequality, we have

||∇η||L∞
u L4(S)

≤C(O0,R(S))(1 +R) exp(

∫ u

0
||(ψH , trχ)||L∞(Su′,u)du

′).

The right hand side satisfies the desired bound by Propositions 16 and 17.

We now estimate the
∑
i≤1

Oi,4 norm of ψH .

Proposition 21. Assume

R < ∞, Õ3,2 < ∞, O2,2 < ∞.
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Then there exists ε0 = ε0(R, Õ3,2,O2,2,Δ0) such that whenever ε ≤ ε0,∑
i≤1

Oi,4[χ̂, ω] ≤ C(O0,R(S)[β]).

In particular, this estimate is independent of Δ0.

Proof. Consider the following equations for ψH ∈ {χ̂, ω}:

∇3ψH = ∇η + ρ̌+ ψH(trχ+ ψH) + ψ(ψ + ψH).

As before, we commute the equations with angular derivatives:

∇3∇ψH

=
∑

i1+i2=1

(η + η)i1∇i2(ρ̌+∇η)

+
∑

i1+i2+i3+i4=1

(η + η)i1(∇i2ψH∇i3(trχ+ ψH) +∇i2ψ∇i3(ψ + ψH)).

We bound each of the terms in L1
uL

4(S). First, we look at the curvature
term:

||
∑

i1+i2≤1

(η + η)i1∇i2 ρ̌||L1
uL

4(S)

≤C(1 + ||(η, η)||L∞
u L∞(S))(

∑
i≤1

||∇iρ̌||L∞
u L1

uL
4(S))

≤C(Δ0)
∑
i≤2

||∇iρ̌||L2
uL

2(S)

≤C(Δ0,R).

The term containing ∇2η can be estimated analogously:

||
∑

i1+i2≤1

(η + η)i1∇i2+1η||L1
uL

4(S)

≤C(1 + ||(η, η)||L∞
u L∞(S))(

∑
i≤1

||∇i+1η||L∞
u L1

uL
4(S))

≤C(Δ0)
∑
i≤2

||∇i+1η||L2
uL

2(S)

≤C(Δ0, Õ3,2[η],O2,2[η]).
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Then, we control the terms containing ψH :

||
∑

i1+i2+i3≤1

(η + η)i1∇i2ψH∇i3(ψH + trχ)||L1
uL

4(S)

≤C||(η, η)||L∞
u L∞(S)

∫ u

0
||ψH ||L∞(Su′,u)

∑
i≤1

||∇i(ψH , trχ)||L4(Su′,u)du
′

+ C||(η, η)||L∞
u L∞(S)

∫ u

0

∑
i≤1

||∇iψH ||L4(Su′,u)||(ψH , trχ)||L∞(Su′,u)du
′

≤C(O0,R(S)[β])

∫ u

0

∑
i1≤1

||∇i1ψH ||L4(Su′,u)

∑
i2≤1

||∇i2(ψH , trχ)||L4(Su′,u)du
′.

In the above, we noticed that η and η obey estimates from Propositions 16
and 19 that depend only on O0 and R(S)[β]. For the terms not containing
ψH , we can bound directly using the bootstrap assumption (A1),

||
∑

i1+i2+i3≤1

(η + η)i1∇i2ψ∇i3(ψ + ψH)||L1
uL

4(S)

≤C(
∑
i1≤1

||(η, η)||i1L∞
u L∞(S))

∑
i2≤1

||∇i2ψ||L∞
u L4(S)

∑
i3≤1

||∇i3(ψ + ψH)||L1
uL

4(S)

≤C(Δ0).

Therefore, by Proposition 6,∑
i≤1

||∇iψH ||L4(Su,u)

≤C
∑
i≤1

||∇iψH ||L4(S0,u) + C(R, Õ3,2[η],O2,2[η],Δ0)

+ C(O0,R(S)[β])

∫ u

0

∑
i1≤1

||∇i1ψH ||L4(Su′,u)

∑
i2≤1

||∇i2(ψH , trχ)||L4(Su′,u)du
′.

By Gronwall’s inequality, we have∑
i≤1

||∇iψH ||L4(Su,u)

≤C(
∑
i≤1

||∇iψH ||L4(S0,u) + C(R, Õ3,2[η],O2,2[η],Δ0))

× exp(

∫ u

0
C(O0,R(S)[β])

∑
i≤1

||∇i(ψH , trχ)||L4(Su′,u)du
′).
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By Propositions 16 and 17, we have

exp(

∫ u

0
C(O0,R(S)[β])

∑
i≤1

||∇i(ψH , trχ)||L4(Su′,u)du
′ ≤ C(O0,R(S)[β]).

Therefore, we have, for any u, u,∑
i≤1

||∇iψH ||L4(Su,u)

≤C(O0,R(S)[β])(
∑
i≤1

||∇iψH ||L4(S0,u) + C(R, Õ3,2[η],O2,2[η],Δ0)).

Clearly the right hand side is independent of u. We first take supremum in
u and then take the L2

u norm to obtain∑
i≤1

||∇iψH ||L2
uL

∞
u L4(S)

≤C(O0,R(S)[β])(

1∑
i=0

||∇iψH ||L2
uL

4(S0,u) + ε
1

2C(R, Õ3,2[η],O2,2[η],Δ0)).

By choosing ε sufficiently small depending on R, Õ3,2,O2,2,Δ0, we have∑
i≤1

||∇iψH ||L2
uL

∞
u L4(S) ≤ C(O0,R(S)[β]).

We then estimate the
∑
i≤1

Oi,4 norm of trχ. Although trχ satisfies a ∇4

equation, the term χ̂χ̂ appears on the right hand side and each of the χ̂
factor has to be estimated in L2

u. Therefore, the bound for this term does
not have a smallness constant.

Proposition 22. Assume

R < ∞, Õ3,2 < ∞, O2,2 < ∞.

Then there exists ε0 = ε0(R, Õ3,2,O2,2,Δ0) such that whenever ε ≤ ε0,∑
i≤1

Oi,4[trχ] ≤ C(O0,R(S)[β]).

In particular, this estimate is independent of Δ0.
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Proof. Using the null structure equations, we have an equation of the type

∇4trχ = ψψ + ψHψ + χ̂χ̂.

We also have the null structure equations commuted with angular deriva-
tives:

∇4∇itrχ =
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3ψ∇i4(ψ + ψH)

+
∑

i1+i2+i3+i4=i

∇i1(η, η)i2∇i3χ̂∇i4χ̂.

By Proposition 6, in order to estimate ||∇iψ||L∞
u L∞

u L4(S), it suffices to esti-

mate the initial data and the || · ||L∞
u L1

uL
4(S) norm of the right hand side.

Notice that all terms except the one with χ̂χ̂ have appeared in the Propo-
sition 16. We estimate those terms in the same manner. Hence,

||
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψ||L∞
u L1

uL
4(S) ≤CΔ0(1 + Δ0)

2ε,

and

||
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψH ||L∞
u L1

uL
4(S) ≤CΔ0(1 + Δ0)

2ε
1

2 .

For the term with χ̂χ̂, using the estimates obtained in Propositions 19 and
21, we have

||
∑

i1+i2+i3≤1

(η, η)i1∇i2χ̂∇i3χ̂||L∞
u L1

uL
4(S)

≤C(
∑
i1≤2

||(η, η)||i1L∞
u L∞

u L∞(S))(||χ̂||L∞
u L2

uL
∞(S))(

∑
i2≤1

||∇i2χ̂||L∞
u L2

uL
4(S))

≤C(O0,R(S)[β]).

Hence, ∑
i≤1

Oi,4[trχ] ≤C(O0,R(S)[β]) + CΔ0(1 + Δ0)
2ε

1

2 .

The proposition follows by choosing ε to be sufficiently small depending on
Δ0.
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Clearly Propositions 16, 17, 20, 21, 22 imply the following estimate for
the L4 norms of the Ricci coefficients:

Proposition 23.

R < ∞, R(S) < ∞, Õ3,2 < ∞, O2,2 < ∞.

There exists ε0 = ε0(O0,R,R(S), Õ3,2,O2,2) such that for all ε ≤ ε0, we
have ∑

i≤1

Oi,4[trχ, η, χ̂, ω] ≤ C(O0),

∑
i≤1

Oi,4[trχ, χ̂, ω] ≤ C(O0,R(S)[β]),

and ∑
i≤1

Oi,4[η] ≤ C(O0,R(S),R).

Together with Sobolev embedding in Proposition 9, the bootstrap assumptions
(A1) can be improved under the assumptions on R,R(S), Õ3,2 and O2,2.

Proof. Let Δ0 � max{C(O0), C(O0,R(S)[β]), C(O0,R(S),R)}, where the
right hand side is the maximum of the constants in Propositions 16, 17, 20,
21, 22. Then, take ε0 sufficiently small so that the conclusions of Proposi-
tions 16, 17, 20, 21, 22 hold. Then by the Sobolev embedding theorem from
Proposition 9, we have improved (A1). Since the choice of Δ0 depends only
on O0,R,R(S), the choice of ε0 depends only on O0,R,R(S), Õ3,2,O2,2.

5.2. L2(S) estimates for second derivatives of Ricci coefficients

We now estimate the O2,2 norm. We make the bootstrap assumption:

(A2) O2,2 ≤ Δ1,

where Δ1 is a positive constant to be chosen later.

The proof of the estimates for the O2,2 norm is very similar to that for

the
∑
i≤1

Oi,4 norms, except that we now need to use the L4 control that was

obtained in the previous subsection. From now on, we will assume ε ≤ ε0 as
in Proposition 23, where ε0 depends on O0,R, Õ3,2, R(S) and also on Δ1.

We first prove the estimates for ∇2trχ and ∇2η:
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Proposition 24. Assume

R < ∞, Õ3,2 < ∞, R(S) < ∞.

Then there exists ε0 = ε0(O0,R, Õ3,2,R(S),Δ1) such that whenever ε ≤ ε0,

O2,2[trχ, η] ≤ C(O0).

In particular, this estimate is independent of Δ1.

Proof. Using the null structure equations, we have

∇4(trχ, η) = β + ρ̌+∇η + ψψ + ψHψ.

We use the null structure equations commuted with angular derivatives:

∇4∇i(trχ, η) =
∑

i1+i2+i3=i

∇i1ψi2∇i3(β + ρ̌+∇η)

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3ψ∇i4(ψ + ψH).

By Proposition 6, in order to estimate ||∇i(trχ, η)||L∞
u L∞

u L2(S), it suffices to

bound the initial data and the || · ||L∞
u L1

uL
2(S) of the right hand side. We now

estimate each of the terms in the equation. We first control the curvature
term. As mentioned in the beginning of this subsection, the bounds are
derived similarly as that for the L4 norms, except we now need to use the
L4(S) estimates proved above for ∇ψ.

||
∑

i1+i2+i3≤2

∇i1ψi2∇i3(β, ρ̌)||L∞
u L1

uL
2(S)

≤C(
∑
i1≤3

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2(β, ρ̌)||L∞
u L1

uL
2(S))

+ C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2ψ||L∞
u L∞

u L2(S))

× (
∑
i3≤1

||∇i3(β, ρ̌)||L∞
u L1

uL
4(S))

≤Cε
1

2 (
∑
i1≤3

∑
i2≤2

||∇i2ψ||i1L∞
u L∞

u L2(S))(
∑
i3≤2

||∇i3(β, ρ̌)||L∞
u L2

uL
2(S))

≤C(O0,R(S),Δ1,R)ε
1

2 .
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The term with ∇η instead of curvature can be estimated analogously, except

for using the O2,2 and Õ3,2 norms instead of the R norm. Moreover, recall

that the
∑
i≤1

Oi,4[η] bounds that we have derived depend on R. Hence the

estimate below also depends on R.

||
∑

i1+i2+i3≤3

∇i1ψi2∇i3+1η||L∞
u L1

uL
2(S)

≤C(
∑
i1≤3

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2+1η||L∞
u L1

uL
2(S))

+ C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2ψ||L∞
u L∞

u L2(S))(
∑
i3≤1

||∇i3+1η||L∞
u L1

uL
4(S))

≤C(
∑
i1≤3

∑
i2≤2

||∇i2ψ||i1L∞
u L∞

u L2(S))(
∑
i≤3

||∇iη||L∞
u L2

uL
2(S))

≤C(O0,R(S),Δ1, Õ3,2,R)ε
1

2 .

We now move on to the lower order terms. We first control the lower order
terms that contain ψH :

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4ψH ||L∞
u L1

uL
2(S)

≤Cε
1

2 (
∑
i1≤3

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2ψH ||L∞
u L2

uL
2(S))

+ Cε
1

2 (
∑
i1≤1

||∇i1ψ||L∞
u L∞

u L4(S))(
∑
i2≤1

||∇i2ψH ||L∞
u L2

uL
4(S))

+ Cε
1

2 (
∑
i1≤1

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2ψ||L∞
u L2

uL
2(S))(||ψH ||L∞

u L2
uL

∞(S))

≤C(O0,R(S),R)ε
1

2 (
∑
i≤2

||∇iψH ||L∞
u L2

uL
2(S) +

∑
i≤2

||∇iψ||L∞
u L∞

u L2(S))

≤C(O0,R(S),R,Δ1)ε
1

2 .

The remaining lower order terms can be estimated in the same way since
the norms for ψ are stronger than those for ψH

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4ψ||L∞
u L1

uL
2(S) ≤C(O0,R(S),R,Δ1)ε

1

2 .

The conclusion thus follows from the above estimates and Proposition 6,
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after choosing ε to be sufficiently small depending on O0,R(S),Δ1, Õ3,2,R.

We then estimate ∇2ψH . We again recall the notation that ψH ∈ {χ̂, ω}.
Proposition 25. Assume

R < ∞, Õ3,2 < ∞, R(S) < ∞.

Then there exists ε0 = ε0(O0,R, Õ3,2,R(S),Δ1) such that whenever ε ≤ ε0,

O2,2[χ̂, ω] ≤ C(O0).

In particular, this estimate is independent of Δ1.

Proof. Using the null structure equations, for each ψH ∈ {χ̂, ω}, we have an
equation of the type

∇4ψH = ρ̌+∇η + (ψ + ψH)(ψ + ψH).

We also use the null structure equations commuted with angular derivatives:

∇4∇iψH =
∑

i1+i2+i3=i

∇i1ψi2∇i3(ρ̌+∇η)

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3(ψ + ψH)∇i4(ψ + ψH).

From the proof of Proposition 24, we have

||
∑

i1+i2+i3≤2

∇i1ψi2∇i3 ρ̌||L∞
u L1

uL
2(S) ≤ C(O0,R(S),Δ1,R)ε

1

2 ,

and

||
∑

i1+i2+i3≤2

∇i1ψi2∇i3+1η||L∞
u L1

uL
2(S) ≤ C(O0,R(S),Δ1, Õ3,2,R)ε

1

2 ,

and

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4ψH ||L∞
u L1

uL
2(S) ≤ C(O0,R(S),R,Δ1)ε

1

2 ,

and

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4ψ||L∞
u L1

uL
2(S) ≤C(O0,R(S),R,Δ1)ε

1

2 .
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It remains to estimate∑
i1+i2+i3+i4≤2

∇i1ψi2∇i3ψH∇i4ψH ,
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψH∇i4ψ.

For the first term, as in the proof of Proposition 17, we first fix u and bound

the L1
uL

2(S) norm for each fixed u.

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψH∇i4ψH ||L1
uL

2(S)

≤Cε
1

2 (1 + ||ψ||L∞
u L∞(S))

2(||ψH ||L∞
u L∞(S))(

∑
i≤2

||∇iψH ||L2
uL

2(S))

+ Cε
1

2 ||∇ψH ||L∞
u L4(S)||∇ψH ||L2

uL
4(S)

+ Cε
1

2 ||∇ψ||L∞
u L2(S)||ψH ||L∞

u L∞(S)||ψH ||L2
uL

∞(S)

+ Cε
1

2 (1 + ||ψ||L∞
u L∞(S))(

∑
i≤2

||∇iψH ||L∞
u L2(S))(||ψH ||L2

uL
∞(S))

≤C(O0,R(S))ε
1

2 (
∑
i≤2

||∇iψH ||L∞
u L2(S))(1 + ||∇2ψH ||L2

uL
2(S))

≤C(O0,R(S))ε
1

2 (
∑
i≤2

||∇iψH ||L∞
u L2(S))(1 + Δ1).

Finally, we have the term
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψH∇i4ψ. As before, we

have, for each fixed u,

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψH∇i4ψ||L1
uL

2(S)

≤C(O0)ε
1

2 (
∑
i≤2

||∇iψH ||L∞
u L2(S))(1 + ||∇2ψ||L2

uL
2(S))

≤C(O0)ε
1

2 (
∑
i≤2

||∇iψH ||L∞
u L2(S))(1 + ε

1

2Δ1).

Putting all these together, and using Proposition 6, we have, for each u

||∇2(χ̂, ω)||L∞
u L2(S) ≤C(O0) + C(O0,R(S),Δ1, Õ3,2,R)ε

1

2

+ C(O0,R(S),Δ1)ε
1

2 (
∑
i≤2

||∇iψH ||L∞
u L2(S)).
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Taking the L2 norm in u and using
∑
i≤2

||∇iψH ||L2
uL

∞
u L2(S) ≤ C(O0,R(S),Δ1)

from the bootstrap assumption (A2), we get

||∇2(χ̂, ω)||L2
uL

∞
u L2(S) ≤ C(O0) + C(O0,R(S),Δ1, Õ3,2,R)ε

1

2 .

The conclusion follows from choosing ε sufficiently small depending on O0,
R(S), Δ1, Õ3,2, R.

We now prove the estimates for ∇2ψH . We recall our notation that
ψH ∈ {χ̂, ω}.
Proposition 26. Assume

R < ∞, Õ3,2 < ∞, R(S) < ∞.

Then there exists ε0 = ε0(O0,R, Õ3,2,R(S),Δ1) such that whenever ε ≤ ε0,

O2,2[χ̂, ω] ≤ C(O0,R(S)).

In particular, this estimate is independent of Δ1.

Proof. Consider the following equations for ψH ∈ {χ̂, ω}:

∇3ψH = ρ̌+∇η + ψψ + ψHψ + ψH(trχ+ ψH).

As before, we commute the equations with angular derivatives:

∇3∇2ψH

=
∑

i1+i2+i3=2

∇i1ψi2∇i3(ρ̌+∇η)

+
∑

i1+i2+i3+i4=2

∇i1ψi2(∇i3ψH∇i4(trχ+ ψH) +∇i3ψ∇i4(ψ + ψH)).

We first consider the term involving the curvature component ρ̌:

||
∑

i1+i2+i3≤2

∇i1ψi2∇i3 ρ̌||L1
uL

2(S)

≤C(1 +
∑
i1≤1

∑
i2≤2

||∇i1ψ||i2L∞
u L4(S))(

∑
i3≤2

||∇i3 ρ̌||L1
uL

2(S))

≤C(O0,R(S),R)
∑
i≤2

||∇iρ̌||L2
uL

2(S)

≤C(O0,R(S),R).
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The term containing ∇3η can be estimated in a similar fashion:

||
∑

i1+i2+i3≤2

∇i1ψi2∇i3+1η||L1
uL

2(S)

≤C(1 +
∑
i1≤1

∑
i2≤2

||∇i1ψ||i2L∞
u L4(S))(

∑
i3≤2

||∇i3+1η||L1
uL

2(S))

≤C(O0,R(S),R)
∑
i≤3

||∇iη||L2
uL

2(S)

≤C(O0,R(S),R, Õ3,2[η],Δ1).

We now move to lower order terms. First, we control the terms in which

both ψH and ψH appear:

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψH∇i4ψH ||L1
uL

2(S)

≤C(
∑
i1≤2

||ψ||i1L∞
u L∞(S))(||ψH ||L∞

u L∞(S))(
∑
i2≤2

||∇i2ψH ||L1
uL

2(S))

+ C(
∑
i1≤2

||ψ||i1L∞
u L∞(S))(

∑
i2≤1

||∇i2ψH ||L∞
u L4(S))(

∑
i3≤1

||∇i3ψH ||L1
uL

4(S))

+ C

∫ u

0
||∇2ψH ||L2(Su′,u)||ψH ||L∞(Su′,u)du

′

+ C||∇ψ||L∞
u L2(S)||ψH ||L∞

u L∞(S)||ψH ||L1
uL

∞(S)

≤C(O0,R(S))(
∑
i≤1

||∇iψH ||L∞
u L4(S))

+ C

∫ u

0
||∇2ψH ||L2(Su′,u)||ψH ||L∞(Su′,u)du

′,

by Propositions 23 and 25. The term with ψH and trχ can be bounded in a

similar fashion:

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψH∇i4trχ||L1
uL

2(S)

≤C(O0,R(S))(
∑
i≤1

||∇iψH ||L∞
u L4(S))

+ C

∫ u

0
||∇2ψH ||L2(Su′,u)||trχ||L∞(Su′,u)du

′,
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by Propositions 23 and 24. Then, we estimate the term with ψ and ψH .

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4ψH ||L1
uL

2(S)

≤C(
∑
i1≤2

||ψ||i1L∞
u L∞(S))(||ψ||L∞

u L∞(S))(
∑
i2≤2

||∇i2ψH ||L1
uL

2(S))

+ C(
∑
i1≤2

||ψ||i1L∞
u L∞(S))(

∑
i2≤1

||∇i2ψ||L∞
u L4(S))(

∑
i3≤1

||∇i3ψH ||L1
uL

4(S))

+ C||∇2ψ||L∞
u L2(S)||ψH ||L1

uL
∞(S)

≤C(O0,R(S),R,Δ1),

by Propositions 23, 24, 25 and the bootstrap assumption (A2). The term

with only ψ can also be controlled similarly:

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4ψ||L1
uL

2(S)

≤C(
∑
i1≤2

||ψ||i1L∞
u L∞(S))(||ψ||L∞

u L∞(S))(
∑
i2≤2

||∇i2ψ||L∞
u L2(S))

+ C(
∑
i1≤2

||ψ||i1L∞
u L∞(S))(

∑
i2≤1

||∇i2ψ||L∞
u L4(S))(

∑
i3≤1

||∇i3ψ||L∞
u L4(S))

≤C(O0,R(S),R,Δ1),

by Propositions 23, 24 and the bootstrap assumption (A2). Therefore, by

Proposition 6, for fixed u, u,

||∇2ψH ||L2(Su,u)

≤C||∇2ψH ||L2(S0,u) + C(O0,R(S),R, Õ3,2[η],Δ1)

+ C(O0,R(S))(
∑
i≤1

||∇iψH ||L∞
u L4(S))

+ C

∫ u

0
||∇2ψH ||L2(Su′,u)||(trχ, ψH)||L∞(Su′,u)du

′.

By Gronwall’s inequality,

||∇2ψH ||L2(Su,u)

≤
(
C||∇2ψH ||L2(S0,u) + C(O0,R(S),R, Õ3,2[η],Δ1)
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+ C(O0,R(S))(
∑
i≤1

||∇iψH ||L∞
u L4(S))

)
× exp(||(trχ, ψH)||L1

uL
∞(S)).

By Propositions 24 and 25, the norm inside the exponential function is
bounded by C(O0,R(S)). Thus, we have, for each fixed u

||∇2ψH ||L∞
u L2(S)

≤C(O0,R(S))
(
||∇2ψH ||L2(S0,u) + C(O0,R(S),R, Õ3,2[η],Δ1)

+ C(O0,R(S))(
∑
i≤1

||∇iψH ||L∞
u L4(S))

)
.

We can now take the L2 norm in u to get

||∇2ψH ||L2
uL

∞
u L2(S)

≤C(O0,R(S))
(
||∇2ψH ||L2

uL
2(S0,u) + C(O0,R(S),R, Õ3,2[η],Δ1)ε

1

2

+ C(O0,R(S))(
∑
i≤1

||∇iψH ||L2
uL

∞
u L4(S))

)
≤C(O0,R(S))(1 + C(O0,R(S),R, Õ3,2,Δ1)ε

1

2 ),

using Proposition 23. Choosing ε sufficiently small, we have

||∇2ψH ||L2
uL

∞
u L2(S) ≤ C(O0,R(S)).

We now estimate ∇2trχ:

Proposition 27. Assume

R < ∞, Õ3,2 < ∞, R(S) < ∞.

Then there exists ε0 = ε0(O0,R, Õ3,2,R(S),Δ1) such that whenever ε ≤ ε0,

O2,2[trχ] ≤ C(O0,R(S)).

In particular, this estimate is independent of Δ1.

Proof. Using the null structure equations, we have

∇4trχ = ψψ + ψHψ + χ̂χ̂.
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We also have the null structure equations commuted with angular deriva-
tives:

∇4∇itrχ =
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3ψ∇i4(ψ + ψH)

+
∑

i1+i2+i3+i4=i

∇i1ψi2∇i3χ̂∇i4χ̂.

By Proposition 6, in order to estimate ||∇itrχ||L∞
u L∞

u L2(S), it suffices to es-

timate the initial data and the || · ||L∞
u L1

uL
2(S) of the right hand side. From

the proof of Proposition 24, we have

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4ψH ||L∞
u L1

uL
2(S) ≤ C(O0,R(S),R,Δ1)ε

1

2 .

and

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4ψ||L∞
u L1

uL
2(S) ≤ C(O0,R(S),R,Δ1)ε

1

2 .

The only new term compared which did not appear in the proof of Propo-
sition 24 is the term involving χ̂χ̂:

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3χ̂∇i4χ̂||L∞
u L1

uL
2(S)

≤C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2 χ̂||L∞
u L2

uL
2(S))(||χ̂||L∞

u L2
uL

∞(S))

+ C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤1

||∇i2χ̂||L∞
u L2

uL
4(S))(||∇χ̂||L∞

u L2
uL

4(S))

+ C(
∑
i1≤1

||∇i1ψ||L∞
u L∞

u L2(S))(||χ̂||2L2
uL

∞
u L∞(S))

≤C(O0,R(S)),

using Propositions 18, 19, 23 and 26. The conclusion thus follows from the
above bounds and Proposition 6 by choosing ε appropriately small.

We now prove the L2(S) control for ∇2η, thus obtaining all the O2,2

estimates. As in Proposition 20 where the L4(S) estimates for ∇η were
derived, we need to integrate in the ∇3 direction and will not be able to gain
a smallness constant. In order to get a bound independent of R, instead of
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controlling ∇2η directly, we first estimate ∇μ, where μ = −div η − ρ̌. We

then obtain the desired bounds for ∇2η by elliptic estimates. This allows

us to take only one derivative of the curvature components which can be

controlled using the R(S) norm instead of the R norm.

Proposition 28. Assume

R < ∞, Õ3,2 < ∞, R(S) < ∞.

Then there exists ε0 = ε0(O0,R, Õ3,2,R(S),Δ1) such that whenever ε ≤ ε0,

O2,2[η] ≤ C(O0,R(S)).

In particular, this estimate is independent of Δ1.

Proof. Recall that

μ = −div η − ρ̌.

We have the following equation:

∇3μ = ψ(ρ̌, σ̌, β) + ψ∇(ψ + ψH) + ψH∇ψ + ψψ(trχ+ ψH) + ψχ̂χ̂,

The mass aspect function μ is constructed so that there is no first derivative

of curvature components in the equation. Moreover, the equation does not

contain ψH . This cannot be derived from signature considerations alone, but

requires the exact form of the ∇3ρ̌ equation as shown in Section 2.5.

After commuting with angular derivatives and substituting the Codazzi

equation

β =
∑

i1+i2=1

ψi1∇i2(trχ+ ψH),

we get

∇3∇μ

=
∑

i1+i2+i3=1

ψi1∇i2ψ∇i3(ρ̌, σ̌) +
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3ψ∇i4(trχ+ ψH)

+
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3χ̂∇i4χ̂.
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Fix u. We now estimate each of the terms. Firstly, the term with curvature:

||
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3(ρ̌, σ̌)||L1
uL

2(S)

≤C(1 +
∑
i1≤1

∑
i2≤2

||∇i1ψ||i2L∞
u L2(S))(

∑
i3≤1

||∇i3(ρ̌, σ̌)||L∞
u L1

uL
2(S))

≤C(O0,R(S))

by Propositions 19, 23 and the definition of R(S). We then estimate the

nonlinear Ricci coefficient terms with at most one ψH :

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4(trχ+ ψH)||L1
uL

2(S)

≤C(1 +
∑
i1≤1

∑
i2≤2

||∇i1ψ||i2L∞
u L2(S))(

∑
i≤1

||∇i(ψH , trχ)||L1
uL

4(S))

+ C||ψ||L∞
u L∞(S)||∇2(ψH , trχ)||L1

uL
2(S)

+ C||∇2(η, trχ, trχ)||L∞
u L2(S)||(ψH , trχ)||L1

uL
∞(S)

+ C

∫ u

0
||∇2η||L4(Su′,u)||(ψH , trχ)||L∞(Su′,u)du

′

≤C(O0,R(S)) + C

∫ u

0
||∇2η||L2(Su′,u)||(ψH , trχ)||L∞(Su′,u)du

′

by Propositions 18, 19, 23, 24 and 25. We control the nonlinear term with

two χ̂:

||
∑

i1+i2+i3+i4≤1

ψi1∇i2ψ∇i3χ̂∇i4χ̂||L1
uL

2(S)

≤C(1 +
∑
i1≤1

∑
i2≤2

||∇i1ψ||i2L∞
u L2(S))(

∑
i3≤1

||∇i3χ̂||L2
uL

2(S))(||χ̂||L2
uL

∞(S))

≤C(O0,R(S))

by Propositions 18, 19 and 27. Therefore, by Proposition 6, we have, for

every u,

||∇μ||L∞
u L2(S)

≤C(O0,R(S)) + C

∫ u

0
||∇2η||L2(Su′,u)||(ψH , trχ)||L∞(Su′,u)du

′.
(38)
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We now use the div-curl system

div η =− μ− ρ̌,

curl η =− σ̌

together with the elliptic estimates in Proposition 14 to get the bound

||∇2η||L∞
u L∞

u L2(S)

≤C(
∑
i1≤1

||∇i1K||L∞
u L∞

u L2(S))

× (
∑
i2≤1

||∇i2μ||L∞
u L∞

u L2(S)

+
∑
i3≤1

||∇i3(ρ̌, σ̌)||L∞
u L∞

u L2(S) + ||η||L∞
u L∞

u L2(S)).

Since the R(S) norm controls ∇iK and ∇i(ρ̌, σ̌) in L∞
u L∞

u L2(S) for i ≤ 1,
we have

||∇2η||L∞
u L∞

u L2(S)

≤C(O0,R(S))(1 +
∑
i2≤1

||∇i2μ||L∞
u L∞

u L2(S) + ||η||L∞
u L∞

u L2(S)).
(39)

This, together with (38) and Propositions 19, 23, implies that

||∇μ||L∞
u L2(S)

≤C(O0,R(S))

+ C(O0,R(S))

∫ u

0
(1 + ||∇μ||L2(Su′,u))||(ψH , trχ)||L∞(Su′,u)du

′.

By Gronwall’s inequality and Proposition 23, we have

||∇μ||L∞
u L2(S)

≤C(O0,R(S)) exp(

∫ u

0
||(ψH , trχ)||L∞(Su′,u)du

′).

By Proposition 23,

exp(

∫ u

0
||(ψH , trχ)||L∞(Su′,u)du

′) ≤ C(O0,R(S)).
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Thus

||∇μ||L∞
u L2(S) ≤ C(O0,R(S)).

By (39) and Proposition 23, this implies

||∇2η||L∞
u L∞

u L2(S) ≤ C(O0,R(S)),

as claimed.

Using the Sobolev embedding theorem given by Theorem 8, we improve
the estimates in Proposition 20:

Proposition 29. ∑
i≤1

Oi,4[η] ≤ C(O0,R(S)).

Putting all the estimates in this subsection together, we obtain

Proposition 30. Assume

R < ∞, Õ3,2 < ∞, R(S) < ∞.

Then there exists ε0 = ε0(O0,R, Õ3,2,R(S)) such that whenever ε ≤ ε0,

O2,2 ≤ C(O0,R(S)).

Proof. Let

Δ1 � C(O0,R(S)),

where C(O0,R(S)) is taken to be the maximum of the bounds in Proposi-
tions 24, 25, 26, 27 and 28. Then Propositions 24, 25, 26, 27 and 28 together
show that the bootstrap assumption (A2) can be improved under appropri-
ate choice of ε. Since the choice of Δ1 depends only on O0 and R(S), we
conclude that ε can be chosen to depend only on O0,R, Õ3,2,R(S).

5.3. Lp(S) estimates for curvature components

In this subsection, we estimate the R(S) norm. For this purpose, we make
the bootstrap assumption

(A3) R(S) ≤ Δ2,

where Δ2 is a positive constant to be chosen later.
We first prove the bounds on β.
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Proposition 31. Assume

R < ∞, Õ3,2 < ∞.

Then there exists ε0 = ε0(O0,R, Õ3,2,Δ2) such that whenever ε ≤ ε0,∑
i≤1

||∇iβ||L2
uL

∞
u L3(S) ≤ C(R0).

Proof. Recall the ∇4 Bianchi equation for β

∇4β =
∑

i1+i2=1

ψi1∇i2(ρ̌, σ̌) +
∑

i1+i2+i3=1

ψi1∇i2(ψ + ψH)∇i3(ψ + ψH).

From this we get the estimates for β in L2
uL

∞
u L3(S). To see this, by Propo-

sition 6, we need to estimate

||
∑

i1+i2=1

ψi1∇i2(ρ̌, σ̌) +
∑

i1+i2+i3=1

ψi1∇i2(ψ + ψH)∇i3(ψ + ψH)||L2
uL

1
uL

3(S).

We have, by Propositions 10 and 30,

||
∑

i1+i2=1

ψi1∇i2(ρ̌, σ̌)||L2
uL

1
uL

3(S)

≤ε
1

2 (1 + ||ψ||L∞
u L∞

u L∞(S))(
∑
i≤2

||∇i(ρ̌, σ̌)||L2
uL

2
uL

2(S))

≤C(O0,Δ2)ε
1

2R

and by Propositions 18, 23 and 29,

||
∑

i1+i2+i3=1

ψi1∇i2(ψ + ψH)∇i3(ψ + ψH)||L2
uL

1
uL

3(S)

≤Cε
1

2 (1 + ||ψ||L∞
u L∞

u L∞(S))

× (
∑
i1≤1

||∇i1(ψ + ψH)||L2
uL

∞
u L4(S))(

∑
i2≤1

||∇i2(ψ + ψH)||L2
uL

∞
u L4(S))

≤C(O0,Δ2)ε
1

2 .

Therefore,

||β||L2
uL

∞
u L3(S) ≤ C(R0) + C(O0,Δ2,R)ε

1

2 ,
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which implies

||β||L2
uL

∞
u L3(S) ≤ C(R0)

for ε sufficiently small depending on O0, Δ2 and R. We now estimate ∇β.

Commuting the ∇4β equation with angular derivatives, we have

∇4∇β =
∑

i1+i2+i3=2

∇i1ψi2∇i3(ρ̌, σ̌)

+
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3(ψ + ψH)∇i4(ψ + ψH).

After taking the L2
u norm, Proposition 10 implies that

||∇β||L2
uL

∞
u L3(S)

≤C
(
||∇β||L2

uL
3(Su,0) + ε

1

4 ||∇2β||L2
uL

2
uL

2(S) + ε
1

8 ||∇4∇β||L2
uL

2
uL

2(S)

)
.

(40)

The initial data is bounded by the initial data norm

||∇β||L2
uL

3(Su,0) ≤ CR0.

Then, we note that by the definition of the norm R,

||∇2β||L2
uL

2
uL

2(S) ≤ CR.

We estimate each term in the right of side of the equation for ∇4∇β in

L2
uL

2
uL

2(S). First, we control the curvature term:

||
∑

i1+i2+i3≤2

∇i1ψi2∇i3(ρ̌, σ̌)||L2
uL

2
uL

2(S)

≤C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2(ρ̌, σ̌)||L2
uL

2
uL

2(S))

+ C||∇ψ||L∞
u L∞

u L4(S)||(ρ̌, σ̌)||L2
uL

2
uL

4(S)

≤C(O0,Δ2)R,

using Propositions 23 and 29. Then we bound the term with ψH and ψH .
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Using Propositions 23, 29 and 30,

||
∑

i1+i2+i3≤2

∇i1ψi2∇i3ψH∇i4ψH ||L2
uL

2
uL

2(S)

≤C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2ψH ||L∞
u L2

uL
2(S))

× (
∑
i3≤1

||∇i3ψH ||L2
uL

∞
u L4(S))

+ C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤1

||∇i2ψH ||L2
uL

∞
u L4(S))

× (
∑
i3≤2

||∇i3ψH ||L∞
u L2

uL
2(S))

+ C||∇ψ||L∞
u L∞

u L2(S)||ψH ||L2
uL

∞
u L∞(S)||ψH ||L2

uL
∞
u L∞(S)

≤C(O0,Δ2,R).

Since ψ satisfies stronger estimates than either ψH or ψH , we have

||
∑

i1+i2+i3≤2

∇i1ψi2∇i3(ψ + ψH)∇i4(ψ + ψH)||L2
uL

2
uL

2(S)

≤C(O0,Δ2,R).

Putting the bounds together, we have

||∇4∇β||L2
uL

2
uL

2(S) ≤ C(O0,Δ2,R).

Thus, (40) implies that

||∇β||L2
uL

∞
u L3(S) ≤C

(
R0 + ε

1

4R+ ε
1

8C(O0,Δ2,R)
)
.

The proposition follows from choosing ε sufficiently small depending on

O0,R, Õ3,2,Δ2.

Since we have proved the estimate of R(S)[β] independent of the R
norm, we get the following improved bounds on the Ricci coefficients:

Proposition 32. Assume

R < ∞, Õ3,2 < ∞.
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Then there exists ε0 = ε0(O0,R0,R, Õ3,2,Δ2) such that whenever ε ≤ ε0,

O0,∞[η] ≤ C(O0,R0),

O1,2[η] ≤ C(O0,R0),∑
i≤1

Oi,4[χ̂, ω, trχ] ≤ C(O0,R0).

Proof. This follows from substituting the bound for R(S)[β] from Proposi-

tion 31 into the estimates from Propositions 18, 19, 21 and 22.

Using this improvement, we prove the R(S) estimates for ρ̌ and σ̌.

Proposition 33. Assume

R < ∞, Õ3,2 < ∞.

Then there exists ε0 = ε0(O0,R0,R, Õ3,2,Δ2) such that whenever ε ≤ ε0,∑
i≤1

||∇i(ρ̌, σ̌)||L∞
u L∞

u L2(S) ≤ C(O0,R0).

Proof. Consider the ∇4 equations for ρ̌ and σ̌:

∇4(ρ̌, σ̌) =∇β + ψ(β, ρ̌, σ̌) + ψ∇(ψ + ψH) + ψψ(ψ + ψH) + ψχ̂χ̂.

After commuting with angular derivatives, we get

∇4∇(ρ̌, σ̌) =
∑

i1+i2=2

∇i1ψi2∇i3(β, ρ̌, σ̌) +
∑

i1+i2+i3=1

ψi1∇i2ψH∇i3(ρ̌, σ̌)

+
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3ψ∇i4(ψ + ψH)

+
∑

i1+i2+i3+i4=1

ψi1∇i2ψ∇i3χ̂∇i4χ̂.

By Proposition 6, in order to estimate ∇i(ρ̌, σ̌) in L∞
u L∞

u L2(S), we need

to estimate ∇4∇i(ρ̌, σ̌) in L∞
u L1

uL
2(S). The first term with curvature can
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be estimated by

||
∑

i1+i2≤2

∇i1ψi2∇i3(β, ρ̌, σ̌)||L1
uL

2(S)

≤Cε
1

2 (
∑
i1≤2

||ψ||i1L∞
u L∞(S))(

∑
i2≤2

||∇i2(β, ρ̌, σ̌)||L2
uL

2(S))

+ Cε
1

2 ||∇ψ||L∞
u L4(S)||(β, ρ̌, σ̌)||L2

uL
4(S)

≤C(O0,R(S),R)ε
1

2R

by Proposition 23. The second term with curvature can be estimated by

||
∑

i1+i2+i3=1

ψi1∇i2ψH∇i3(ρ̌, σ̌)||L1
uL

2(S)

≤Cε
1

2 (
∑
i1≤1

||ψ||i1L∞
u L2(S))(

∑
i2≤2

||∇i2ψH ||L2
uL

2(S))(
∑
i3≤1

||∇i3(ρ̌, σ̌)||L∞
u L2(S))

≤C(O0,R(S),R)ε
1

2

by Proposition 30. The nonlinear Ricci coefficient term with at most one ψH

can be controlled by

||
∑

i1+i2+i3≤2

∇i1ψi2∇i3ψ∇i4(ψ + ψH)||L1
uL

2(S)

≤ε
1

2 ||
∑

i1+i2+i3≤2

∇i1ψi2∇i3ψ∇i4(ψ + ψH)||L2
uL

2(S)

≤Cε
1

2 (
∑
i1≤3

||ψ||i1L∞
u L∞(S))(

∑
i2≤2

||∇i2(ψ,ψH)||L2
uL

2(S))

+ Cε
1

2 ||∇2ψ||L∞
u L2(S)||(ψ,ψH)||L2

uL
2(S)

+ Cε
1

2 ||∇ψ||L∞
u L4(S)||∇(ψ,ψH)||L2

uL
4(S)

≤C(O0,R(S),R)ε
1

2

by Propositions 23 and 30. The remaining term containing χ̂χ̂ can be esti-
mated using Proposition 32:

||
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3χ̂∇i4χ̂||L1
uL

2(S)

≤C(
∑
i1≤2

||ψ||i1L∞
u L∞(S))(||χ̂||L2

uL
∞(S))(

∑
i2≤1

||∇i2ψH ||L2
uL

2(S))
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+ C||ψ||L∞
u L∞(S)||∇ψ||L∞

u L2(S)(||ψH ||L2
uL

∞(S))
2

≤C(O0,R0).

Therefore, by Proposition 6∑
i≤1

||∇i(ρ̌, σ̌)||L2(Su,u) ≤C(O0,R0) + ε
1

2C(O0,R0,R(S),R).

By the bootstrap assumption (A3) onR(S), we can choose ε small depending
on O0, R0, R, Õ3,2 and Δ2 to conclude the proposition.

Finally, we prove the bounds for the Gauss curvature. This will be used
in the next subsection to carry out elliptic estimates.

Proposition 34. Assume

R < ∞, Õ3,2 < ∞.

Then there exists ε0 = ε0(O0,R0,R, Õ3,2,Δ2) such that whenever ε ≤ ε0,∑
i≤1

||∇iK||L∞
u L∞

u L2(S) ≤ C(O0,R0).

Proof. Consider the Gauss equation:

K = −ρ̌+ ψψ.

We estimate each term on the right hand side. By Proposition 33,

||ρ̌||L∞
u L∞

u L2(S) ≤ C(O0,R0).

By Propositions 23 and 32,

||ψψ||L∞
u L∞

u L2(S) ≤ ||ψ||2L∞
u L∞

u L4(S) ≤ C(O0,R0).

We can thus close the bootstrap assumption (A3) to prove the following
estimates for R(S), under the assumption that R and Õ3,2 are bounded.

Proposition 35. Assume

R < ∞, Õ3,2 < ∞.

Then there exists ε0 = ε0(O0,R0,R, Õ3,2) such that whenever ε ≤ ε0,

R(S) ≤ C(O0,R0).
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Proof. Let

Δ2 � C(O0,R0),

where C(O0,R0) is taken to be the maximum of the bounds in Propositions
31, 33 and 34. Hence, the choice of Δ2 depends only on O0 and R0. Thus, by
Propositions 31, 33 and 34, the bootstrap assumption (A3) can be improved
by choosing ε sufficiently small depending on O0,R0,R and Õ3,2.

Using Proposition 35, we improve our estimates on the Ricci coefficients
in Propositions 23 and 30 to get the following:

Proposition 36. Assume

R < ∞, Õ3,2 < ∞.

Then there exists ε0 = ε0(O0,R0,R, Õ3,2) such that whenever ε ≤ ε0,∑
i≤2

Oi,2 ≤ C(O0,R0).

5.4. Elliptic estimates for third derivatives of the Ricci
coefficients

We now estimate the third angular derivatives of the Ricci coefficients. In-
troduce the bootstrap assumption:

(A4) Õ3,2 ≤ Δ3.

The bounds for the third derivative of the Ricci coefficients cannot be
achieved by the transport equations alone since there will be a loss of deriva-
tives. We can however combine the transport equation bounds with the esti-
mates derived from the Hodge systems as in [17], [7], [19]. We first derive the
control for some chosen combination of ∇3(ψ,ψH , ψH) +∇2(β, ρ̌, σ̌) by the
transport equations. Then we show that the estimates for the third deriva-
tives of all the Ricci coefficients can be proved via elliptic estimates. We
begin with the bounds for ∇3trχ and ∇3χ̂:

Proposition 37. Assume

R < ∞.

Then there exists ε0 = ε0(O0,R0,R,Δ3) such that whenever ε ≤ ε0,

Õ3,2[trχ, χ̂] ≤ C(O0)(1 +R[β]).
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Proof. Consider the following equation:

∇4trχ = χ̂χ̂+ trχ(ψ + ψH),

After commuting with angular derivatives, we have

∇4∇3trχ =
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3trχ∇i4(ψ + ψH)

+
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3χ̂∇i4χ̂.

We estimate term by term. First, we bound the term with trχ and ψH .

Integrating in the u direction, applying the Sobolev embedding Theorem in

Propositions 8 and 9 and using Proposition 36, we get

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3trχ∇i4ψH ||L1
uL

2(S)

≤ Cε
1

2 (
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L2(S))(

∑
i3≤1

||∇i3trχ||L∞
u L4(S))

× (
∑
i4≤3

||∇i4ψH ||L2
uL

2(S))

+ Cε
1

2 (
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L2(S))(

∑
i3≤3

||∇i3trχ||L∞
u L2(S))

× (
∑
i4≤1

||∇i4ψH ||L2
uL

4(S))

≤ C(O0,R0)ε
1

2 (1 + Δ3).

Since ψ satisfies stronger estimates than ψH , we have the same bounds for

the term with trχ and ψ:

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3trχ∇i4ψ||L1
uL

2(S)

≤C(O0,R0)ε
1

2 (1 + Δ3).

Finally, we consider the term with χ̂χ̂:

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3χ̂∇i4χ̂||L1
uL

2(S)(41)

≤ C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L2(S))

∫ u

0
(
∑
i3≤2

||∇i3 χ̂||L2(Su,u′ ))
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× (
∑
i4≤3

||∇i4χ̂||L2(Su,u′ ))du
′

≤ C(O0,R0)(1 +

∫ u

0
(
∑
i≤2

||∇iχ̂||L2(Su,u′ ))(||∇3χ̂||L2(Su,u′ ))du
′).

We now use the Codazzi equation

div χ̂ =
1

2
∇trχ− β + ψ(ψ + ψH)

and apply elliptic estimates in Proposition 15 to get

||∇3χ̂||L2(S)

≤C(O0,R0)(
∑
i≤3

||∇itrχ||L2(S) +
∑
i≤2

||∇iβ||L2(S)

+
∑

i1+i2≤2

||∇i1ψ∇i2(ψ + ψH)||L2(S) + ||χ̂||L2(S)).

(42)

Notice that we can apply elliptic estimates using Proposition 15 since we
have bounds for the Gauss curvature by Proposition 34. Therefore,∫ u

0
(
∑
i≤2

||∇iχ̂||L2(Su,u′ ))(||∇3χ̂||L2(Su,u′ ))du
′

≤C(O0,R0)(1 +

∫ u

0
(
∑
i≤2

||∇iχ̂||L2(Su,u′ ))(||∇3trχ||L2(Su,u′ ))du
′ +R[β]).

Gathering all the estimates, we get

||∇3trχ||L2(Su,u)

≤C(O0,R0)(1 + ε
1

2Δ3

+

∫ u

0
(
∑
i2≤2

||∇i2 χ̂||L2(Su,u′ ))(||∇3trχ||L2(Su,u′ ))du
′ +R[β]).

Gronwall’s inequality implies that

||∇3trχ||L2(Su,u)

≤ C(O0,R0)(1 + ε
1

2Δ3 +R[β]) exp(

∫ u

0
(
∑
i≤2

||∇iχ̂||L2(Su,u′ ))du
′)
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≤ C(O0,R0)(1 + ε
1

2Δ3 +R[β]) exp(ε
1

2

∑
i≤2

||∇iχ̂||L∞
u L2

uL
2(S)))

≤ C(O0,R0)(1 + ε
1

2Δ3 +R[β]).

By choosing ε sufficiently small depending on O0,R0 and Δ3,

||∇3trχ||L2(Su,u) ≤ C(O0,R0)(1 +R[β]).

This, together with (42), implies that

||∇3χ̂||L∞
u L2

uL
2(S) ≤ C(O0)(1 +R[β]).

We now prove estimates for ∇3η. To do so, we first prove bounds for

second derivatives of μ = −div η − ρ̌ and recover the control for ∇3η via

elliptic estimates.

Proposition 38. Assume

R < ∞.

Then there exists ε0 = ε0(O0,R0,R,Δ3) such that whenever ε ≤ ε0,

Õ3,2[μ, η] ≤ C(O0)(1 + ε
1

2 Õ3,2 +R).

Proof. Recall that

μ = −div η − ρ̌

and μ satisfies the following equations:

∇4μ = ψ(β, ρ̌, σ̌) + ψ∇(ψ + ψH) + ψH∇ψ + ψψ(ψ + ψH) + ψχ̂χ̂.

It is important to note that β, ψH are absent in this equation. This can-

not be derived from signature considerations alone, but requires an exact

cancellation in the equation for ∇4ρ̌ as indicated in Section 2.5.

After commuting with angular derivatives, and substituting the Codazzi

equation

β =
∑

i1+i2=1

ψi1∇i2(ψ + ψH),
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we get

∇4∇2μ

=
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3ψ∇i4(ρ̌, σ̌) +
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3ψ∇i4(ψ + ψH)

+
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3χ̂∇i4χ̂.

The term with curvature can be estimated using Proposition 36 by

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4(ρ̌, σ̌)||L∞
u L1

uL
2(S)

≤C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))(
∑
i3≤2

||∇i3(ρ̌, σ̌)||L∞
u L1

uL
2(S))

≤C(O0,R0)ε
1

2

∑
i≤2

||∇i(ρ̌, σ̌)||L∞
u L2

uL
2(S)

≤C(O0,R0)ε
1

2R.

We next consider the term with two χ̂’s. By (41) in the proof of Proposition

37, we have

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3χ̂∇i4χ̂||L∞
u L1

uL
2(S) ≤C(O0,R0)(1 + Õ3,2[χ̂]).

Applying Proposition 37, we get

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3χ̂∇i4χ̂||L∞
u L1

uL
2(S) ≤ C(O0,R0)(1 +R).

We then move to the remaining terms with at most one ψH . First, we look

at the terms that do not contain ψH∇3ψ. These are the terms∑
i1+i2+i3+i4=3,i3≤2

∇i1ψi2∇i3ψ∇i4ψH ,

and ∑
i1+i2+i3+i4=3

∇i1ψi2∇i3ψ∇i4ψ.
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The first term can be estimated using Proposition 36 by

||
∑

i1+i2+i3+i4=3,i3≤2

∇i1ψi2∇i3ψ∇i4ψH ||L∞
u L1

uL
2(S)

≤Cε
1

2 (
∑
i1≤1

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L4(S))(
∑
i3≤1

||∇i3ψ||L∞
u L∞

u L4(S))

× (
∑
i4≤3

||∇i4(ψ,ψH)||L∞
u L2

uL
2(S))

+ Cε
1

2 (
∑
i1≤3

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2ψ||L∞
u L∞

u L2(S))||(ψ,ψH)||L∞
u L2

uL
∞(S)

≤C(O0,R0)ε
1

2 (1 + Δ3).

(43)

The second term can be controlled using Proposition 36 by

||
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3ψ∇i4ψ||L∞
u L1

uL
2(S)

≤Cε
1

2 (
∑
i1≤1

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L4(S))(
∑
i3≤1

||∇i3ψ||L∞
u L∞

u L4(S))

× (
∑
i4≤3

||∇i4ψ||L∞
u L2

uL
2(S))

≤C(O0,R0)ε
1

2 (1 + Δ3).

We now bound the terms ψH∇3ψ. If ψ ∈ {trχ, trχ}, we can estimate in a

similar fashion as (43), since we have L∞
u L∞

u L2(S) estimates for∇3(trχ, trχ):

||ψH∇3(trχ, trχ)||L∞
u L1

uL
2(S) ≤C(O0,R0)ε

1

2Δ3.

The remaining terms are of the form ψH∇3(η, η). The difficulty in estimating

these terms is the fact that using the Õ3,2 norm, ∇3η and ∇3η can only be

estimated in L2(H) but not L2(S). Thus we need to estimate both ∇3(η, η)

and ψH in L2
u and will not have an extra smallness constant ε

1

2 . Therefore,

instead of bounding ∇3(η, η) with the Õ3,2 norm, we apply elliptic estimates

and control ∇2μ in L∞
u L∞

u L2(S).

By the div-curl systems

div η = −μ− ρ̌, curl η = σ̌,
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div η = −μ− ρ̌, curl η = −σ̌,

and the elliptic estimates given by Propositions 14 and 34, we have

(44) ||∇3η||L2(S) ≤ C(
∑
i≤2

||∇iμ||L2(S) +
∑
i≤2

||∇i(ρ̌, σ̌)||L2(S) + ||η||L2(S)),

||∇3η||L2(S) ≤ C(
∑
i≤2

||∇iμ||L2(S) +
∑
i≤2

||∇i(ρ̌, σ̌)||L2(S) + ||η||L2(S)).

This implies

||ψH∇3(η, η)||L1
uL

2(S)

≤C||ψH ||L2
uL

∞(S)||∇3(η, η)||L2
uL

2(S)

≤C(O0,R0)(1

+ ||ψH ||L2
uL

∞(S)(
∑
i≤2

ε
1

2 ||∇i(μ, μ)||L∞L2(S) +
∑
i≤2

||∇i(ρ̌, σ̌)||L2
uL

2(S)))

≤C(O0,R0)(1 + ε
1

2Δ3 +R).

Hence, gathering all the above estimates, by Proposition 6, we have

||∇3μ||L∞
u L∞

u L2(S) ≤ C(O0,R0)(1 + ε
1

2Δ3 +R).

By choosing ε sufficiently small depending on Δ3, we have

||∇3μ||L∞
u L∞

u L2(S) ≤ C(O0,R0)(1 +R).

Therefore, by (44), we have

||∇3η||L∞
u L2

uL
2(S) ≤ C(O0,R0)(1 +R),

and

||∇3η||L∞
u L2

uL
2(S) ≤ C(O0,R0)(1 +R).

We now estimate ∇3ω:

Proposition 39. Assume

R < ∞.

Then there exists ε0 = ε0(O0,R0,R,Δ3) such that whenever ε ≤ ε0,

Õ3,2[κ, ω, ω
†] ≤ C(O0,R0)(1 +R[β]).
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Proof. Recall that ω† is defined to be the solution to

∇4ω
† =

1

2
σ̌

with zero initial data, i.e., ω† = 0 on H0 and κ is defined by

κ := −∇ω +∗ ∇ω† − 1

2
β.

By the definition of ω†, it is easy to see that using Propositions 6 and 36,∑
i≤2

||∇iω†||L2
uL

∞
u L2(S) ≤ C(O0,R0).

In other words, ω† satisfies the same bounds as ψH . In the remainder of the
proof of this Proposition, we therefore also use ψH to denote ω†.

Consider the following equation for κ:

∇4κ = ψ(ρ̌+ σ̌) +
∑

i1+i2+i3=1

ψi1∇i2(ψ + ψH)∇i3(ψ + ψH).

After commuting with angular derivatives, we get

∇4∇2κ =
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3ψ∇i4(ρ̌+ σ̌)

+
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3(ψ + ψH)∇i4(ψ + ψH).

We estimate κ in L2
uL

∞
u L2(S). By Proposition 6, for each u, to bound ∇2κ in

L∞
u L2(S), we need to estimate the right hand side in L1

uL
2(S). After taking

the L2 norm in u, we thus need to control the right hand side in L2
uL

1
uL

2(S).
The term involving curvature has already been estimated in Proposition 38
and can be controlled by

||
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3ψ∇i4(ρ̌+ σ̌)||L1
uL

2(S) ≤ C(O0,R0)ε
1

2R.

Thus,

||
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3ψ∇i4(ρ̌+ σ̌)||L2
uL

1
uL

2(S) ≤ C(O0,R0)ε
1

2R.
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For the other terms, it suffices to consider∑
i1+i2+i3+i4=3

∇i1ψi2∇i3ψH∇i4ψH

since ψ satisfies stronger estimates that either ψH or ψH . To this end, we
have

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψH∇i4ψH ||L2
uL

1
uL

2(S)

≤Cε
1

2 ||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψH∇i4ψH ||L2
uL

2
uL

2(S)

≤Cε
1

2 (
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))(
∑
i3≤3

||∇i3ψH ||L∞
u L2

uL
2(S))

× (
∑
i4≤1

||∇i4ψH ||L2
uL

∞
u L4(S))

+ Cε
1

2 (
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))(
∑
i3≤1

||∇i3ψH ||L2
uL

∞
u L4(S))

× (
∑
i4≤3

||∇i4ψH ||L∞
u L2

uL
2(S))

≤C(O0,R0)ε
1

2 (1 + Δ3)

by Propositions 36. Therefore, by Proposition 6,

||∇2κ||L2
uL

∞
u L2(S) ≤C(O0,R0)(1 + ε

1

2 (R+Δ3)).

By choosing ε sufficiently small depending on R and Δ3, we have

||∇2κ||L2
uL

∞
u L2(S) ≤ C(O0,R0).

Consider the div-curl system

div ∇ω = −div κ− 1

2
div β,

curl ∇ω = 0,

div ∇ω† = −curl κ− 1

2
curl β,

curl ∇ω† = 0.
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By elliptic estimates given by Propositions 14 and 34, we have

||∇3(ω, ω†)||L∞
u L2

uL
2(S) ≤ C(O0,R0)(1 +R[β]).

In the remainder of this subsection, we consider the third derivatives of

the Ricci coefficients that are estimated by integrating in the u direction.

We need to use the fact that the estimates derived in Propositions 37, 38,

39 are independent of Δ3. We now estimate ∇3trχ and ∇3χ̂:

Proposition 40. Assume

R < ∞.

Then there exists ε0 = ε0(O0,R0,R,Δ3) such that whenever ε ≤ ε0,

Õ3,2[trχ, χ̂] ≤ C(O0,R0)(1 +R[β]).

Proof. Consider the following equation:

∇3trχ = χ̂χ̂+ trχ(trχ+ ψH).

After commuting with angular derivatives, we have

∇3∇3trχ =
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3trχ∇i4(trχ+ ψH)

+
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3χ̂∇i4χ̂.

Fix u. We estimate term by term. First, by Proposition 36,

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3trχ∇i4trχ||L1
uL

2(S)

≤C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))

×
∫ u

0
(
∑
i3≤1

||∇i3trχ||L4(Su′,u))(
∑
i4≤3

||∇i4trχ||L2(Su′,u))du
′

≤C(O0,R0)(1 +

∫ u

0
(
∑
i≤1

||∇itrχ||L4(Su′,u))||∇
3trχ||L2(Su′,u)du

′).

Then we bound the terms with one ψH . We separate the cases where ψH = ω
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and ψH = χ̂. First, for ψH = ω:

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3trχ∇i4ω||L1
uL

2(S)

≤C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))(
∑
i3≤1

||∇i3trχ||L∞
u L∞

u L4(S))

× (
∑
i4≤3

||∇i4ω||L∞
u L2

uL
2(S))

+ C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))

×
∫ u

0
(
∑
i3≤1

||∇i3ω||L4(Su′,u))(
∑
i4≤3

||∇i4trχ||L2(Su′,u))du
′

≤C(O0,R0)(1 +R[β] +

∫ u

0
(
∑
i≤1

||∇iω||L4(Su′,u))||∇
3trχ||L2(Su′,u)du

′),

where we have used Propositions 36 and 39. Then, we consider the term

with one ψH , where ψH = χ̂:

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3trχ∇i4χ̂||L1
uL

2(S)

≤C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))

×
∫ u

0
(
∑
i3≤1

||∇i3χ̂||L4(Su′,u))(
∑
i4≤3

||∇i4trχ||L2(Su′,u))du
′

+ C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))

×
∫ u

0
(
∑
i3≤1

||∇i3trχ||L4(Su′,u))(
∑
i4≤3

||∇i4χ̂||L2(Su′,u))du
′

≤C(O0,R0)(1 +

∫ u

0
(
∑
i≤1

||∇iχ̂||L4(Su′,u))(||∇
3trχ||L2(Su′,u))du

′)

+ C(O0,R0)

∫ u

0
(
∑
i≤1

||∇itrχ||L4(Su′,u))(||∇
3χ̂||L2(Su′,u))du

′,

(45)

using Proposition 36. In order to control this, we need to use the Codazzi
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equation

div χ̂ =
1

2
∇trχ+ β + ψ(ψ + ψH)

and apply elliptic estimates using Propositions 15 and 34 to get

||∇3χ̂||L2(S)

≤C(O0,R0)(
∑
i≤3

||∇itrχ||L2(S) +
∑
i≤2

||∇iβ||L2(S)

+
∑

i1+i2≤2

||∇i1ψ∇i2(ψ + ψH)||L2(S) + ||χ̂||L2(S)).

(46)

Using (46), we can bound the second term in (45):

∫ u

0
(
∑
i≤1

||∇itrχ||L4(Su′,u))(||∇
3χ̂||L2(Su′,u))du

′

≤C

∫ u

0
(
∑
i≤1

||∇itrχ||L4(Su′,u))(||∇
3trχ||L2(Su′,u))du

′

+ C(
∑
i1≤1

||∇i1trχ||L∞
u L4(S))(

∑
i2≤2

||∇i2β||L2
uL

2(S))

+ C(
∑
i1≤1

||∇i1trχ||L∞
u L4(S))

× (
∑

i2+i3≤2

||∇i2ψ∇i3(ψ + ψH)||L2
uL

2(S) + ||χ̂||L2
uL

2(S))

≤C(O0,R0)(1 +R[β] +

∫ u

0
(
∑
i1≤1

||∇i1trχ||L4(Su′,u))(||∇
3trχ||L2(Su′,u))du

′).

This, together with (45), implies that

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3trχ∇i4χ̂||L1
uL

2(S)

≤C(O0,R0)(1+R[β] +

∫ u

0
(
∑
i≤1

||∇i(trχ, χ̂)||L4(Su′,u))(||∇
3trχ||L2(Su′,u))du

′).

Finally, we estimate the term with two ψH ’s. We note that the only such
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term is of the form χ̂χ̂. We control this term using (46):

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3χ̂∇i4χ̂||L1
uL

2(S)

≤C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))

×
∫ u

0
(
∑
i3≤1

||∇i3χ̂||L4(Su′,u))(
∑
i4≤3

||∇i4χ̂||L2(Su′,u))du
′

≤C(O0,R0) + C

∫ u

0
(
∑
i≤1

||∇iχ̂||L4(Su′,u))(||∇
3trχ||L2(Su′,u))du

′

+ C(
∑
i1≤1

||∇i1χ̂||L2
uL

4(S))(
∑
i2≤2

||∇i2β||L2
uL

2(S))

+ C(
∑
i1≤1

||∇i1χ̂||L2
uL

4(S))

× (
∑

i2+i3≤2

||∇i2ψ∇i3(ψ + ψH)||L2
uL

2(S) + ||χ̂||L2
uL

2(S))

≤C(O0,R0)(1 +R[β] +

∫ u

0
(
∑
i≤1

||∇iχ̂||L4(Su′,u))(||∇
3trχ||L2(Su′,u))du

′).

Therefore, by Proposition 6, we have

||∇3trχ||L∞
u L2(S)

≤C(O0,R0)(1+R[β] +

∫ u

0
(
∑
i≤1

||∇i(ψ,ψH)||L4(Su′,u))(||∇
3trχ||L2(Su′,u))du

′).

By Gronwall’s inequality, we have

||∇3trχ||L∞
u L2(S)

≤C(O0,R0)(1 +R[β]) exp(

∫ u

0
(
∑
i≤1

||∇i(ψ,ψH)||L4(Su′,u))du
′)

≤C(O0,R0)(1 +R[β]) exp(C(O0,R0))

≤C(O0,R0)(1 +R[β]).

By (46), this implies

||∇3χ̂||L∞
u L2

uL
2(S) ≤ C(O0,R0)(1 +R[β]).
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We now control ∇3η.

Proposition 41. Assume

R < ∞.

Then there exists ε0 = ε0(O0,R0,R,Δ3) such that whenever ε ≤ ε0,

Õ3,2[μ, η] ≤ C(O0)(1 +R).

Proof. Recall that

μ = −div η − ρ̌.

We have the following equation:

∇3μ = ψ(ρ̌, σ̌, β) + ψ∇(ψ + ψH) + ψH∇ψ + ψψ(ψ + ψH) + ψχ̂χ̂.

After commuting with angular derivatives, we get

∇3∇2μ

=
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3ψ∇i4(ρ̌, σ̌) +
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3ψ∇i4(ψ + ψH)

+
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3χ̂∇i4χ̂.

We estimate every term in the above expression. First, we bound the term
with curvature:

||
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3ψ∇i4(ρ̌, σ̌)||L∞
u L1

uL
2(S)

≤C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2(ρ̌, σ̌)||L∞
u L1

uL
2(S))

+ C(
∑
i1≤2

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤1

||∇i2ψ||L∞
u L∞

u L4(S))

× (
∑
i3≤1

||∇i3(ρ̌, σ̌)||L∞
u L1

uL
4(S))

≤C(O0,R0)
∑
i≤2

||∇i(ρ̌, σ̌)||L∞
u L2

uL
2(S)

≤C(O0,R0)R.

We now move on to the terms with the Ricci coefficients. Notice that by
Propositions 37, 38 40, all the terms of the form ∇3ψ except ∇3η have been
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estimated. Thus, by Propositions 36, 37, 38 and 40,

||
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3(ψ + ψH)∇i4(ψ + ψH)||L1
uL

2(S)

≤C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))(
∑
i3≤2

||∇i3(ψ,ψH)||L∞
u L2

uL
2(S))

× (
∑
i4≤3

||∇i4(trχ, trχ, η, ψH)||L∞
u L2

uL
2(S))

+ C

∫ u

0
(
∑
i≤1

||∇i(ψ,ψH)||L4(Su′,u)||∇
3η||L2(Su′,u)du

′

≤C(O0,R0)(1 +R) + C

∫ u

0
(
∑
i≤1

||∇i(ψ,ψH)||L4(Su′,u)||∇
3η||L2(Su′,u)du

′.

We control the last term using the div-curl system

div η = −μ− ρ̌, curl η = −σ̌.

Applying elliptic estimates using Propositions 14 and 34, we get
(47)

||∇3η||L2(S) ≤ C(O0,R0)(
∑
i≤2

||∇iμ||L2(S) +
∑
i≤2

||∇i(ρ̌, σ̌)||L2(S) + ||η||L2(S)).

Thus, we have∫ u

0
(
∑
i≤1

||∇i(ψ,ψH)||L4(Su′,u)||∇
3η||L2(Su′,u)du

′

≤C(O0,R0)(1 +R+

∫ u

0
(
∑
i≤1

||∇i(ψ,ψH)||L4(Su′,u))||∇
2μ||L2(Su′,u)du

′).

Hence, by Proposition 6, we have

||∇2μ||L∞
u L2(S)

≤C(O0,R0)(1 +R+

∫ u

0
(
∑
i≤1

||∇i(ψ,ψH)||L4(Su′,u))||∇
2μ||L2(Su′,u)du

′).

By Gronwall’s inequality, we have

||∇2μ||L∞
u L2(S) ≤ C(O0,R0)(1 +R) exp(

∫ u

0

∑
i≤1

||∇i(ψ,ψH)||L4(Su′,u)du
′).



536 Jonathan Luk and Igor Rodnianski

By Proposition 36,
∑
i≤1

||∇i(ψ,ψH)||L4(Su,u) is controlled by C(O0,R0).

Therefore,

||∇2μ||L∞
u L2(S) ≤ C(O0,R0)(1 +R).

The desired estimates for ∇3η thus follow from (47) and taking the L2 norm
in either the u or the u direction.

We finally prove estimates for ∇3ω.

Proposition 42. Assume

R < ∞.

Then there exists ε0 = ε0(O0,R0,R,Δ3) such that whenever ε ≤ ε0,

Õ3,2[κ, ω, ω
†] ≤ C(O0)(1 +R[β]).

Proof. Recall that ω† is defined to be the solution to

∇3ω
† =

1

2
σ̌,

with zero initial data, i.e., ω† = 0 on H0 and κ is defined to be

κ := ∇ω +∗ ∇ω† − 1

2
β.

By the definition of ω†, it is easy to see that using Propositions 6 and 36,∑
i≤2

||∇iω†||L2
uL

∞
u L2(S) ≤ C(O0,R0).

In other words, ω† satisfies the same estimates as ψH . In the remainder of the
proof of this Proposition, we therefore also use ψH to denote ω†. Consider
the following equations:

∇3κ = ψ(ρ̌+ σ̌) +
∑

i1+i2+i3=1

ψi1∇i2(ψ + ψH)∇i3(ψ + ψH).

Commuting with angular derivatives, we get

∇3∇2κ =
∑

i1+i2+i3+i4=2

∇i1ψi2∇i3ψ∇i4(ρ̌+ σ̌)

+
∑

i1+i2+i3+i4=3

∇i1ψi2∇i3(ψ + ψH)∇i4(ψ + ψH).
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Fix u. The term involving curvature has already been bounded in Proposi-
tion 41 and can be controlled by

||
∑

i1+i2+i3+i4≤2

∇i1ψi2∇i3ψ∇i4(ρ̌+ σ̌)||L1
uL

2(S) ≤ C(O0,R0)R.

For the terms with only Ricci coefficients, notice that the third derivatives
of all the Ricci coefficients except ω and ω† have been estimated. Thus using
Propositions 36, 37, 38, 39, 40 and 41, we have

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3(ψ,ψH)∇i4(ψ,ψH)||L1
uL

2(S)

≤C(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L2(S))(

∑
i3≤2

||∇i3(ψ,ψH)||L2
uL

2(S))

× (
∑
i4≤3

||∇i4(ψ,ψH)||L2
uL

2(S))

+ C(||∇3χ̂||L2
uL

2(S))(
∑
i≤2

||∇i(ψ,ψH)||L2
uL

2(S))

+ C

∫ u

0
||∇3(ω, ω†)||L4(Su′,u)(

∑
i≤1

||∇i(ψ,ψH)||L∞(Su′,u))du
′

≤C(O0,R0)(1 +
∑
i1≤2

||∇i1ψH ||L2
uL

2(S) + ||∇3χ̂||L2
uL

2(S)

+

∫ u

0
||∇3(ω, ω†)||L2(Su′,u)(

∑
i2≤1

||∇i2(ψ,ψH)||L4(Su′,u)du
′).

Therefore, by Proposition 6,

||∇2κ||L∞
u L2(S)

≤C(O0,R0)(1 +R+
∑
i1≤2

||∇i1ψH ||L2
uL

2(S) + ||∇3χ̂||L2
uL

2(S)

+

∫ u

0
||∇3(ω, ω†)||L2(Su′,u)(

∑
i2≤1

||∇i2(ψ,ψH)||L4(Su′,u)du
′).

(48)

By the following div-curl system:

div ∇ω = div κ+
1

2
div β,
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curl ∇ω = 0,

div ∇ω† = curl κ+
1

2
curl β,

curl ∇ω† = 0,

we have, using Propositions 14 and 34,

(49) ||∇3(ω, ω†)||L2(S) ≤ C(||∇2κ||L2(S) + ||∇2β||L2(S) + ||∇(ω, ω†)||L2(S)).

Applying this to the estimates for ∇3κ in (48) and using Proposition 36, we
get

||∇2κ||L∞
u L2(S)

≤C(O0,R0)(1 +R+
∑
i1≤2

||∇i1ψH ||L2
uL

2(S) + ||∇3χ̂||L2
uL

2(S)

+

∫ u

0
||∇2κ||L2(Su′,u)(

∑
i2≤1

||∇i2(ψ,ψH)||L4(Su′,u)du
′).

By Gronwall’s inequality, and using Proposition 36,

||∇2κ||L∞
u L2(S)

≤C(O0,R0)(1 +R+
∑
i≤2

||∇iψH ||L2
uL

2(S) + ||∇3χ̂||L2
uL

2(S))

× exp(

∫ u

0
||ψH ||L∞(Su′,u)du

′)

≤C(O0,R0)(1 +R+
∑
i≤2

||∇iψH ||L2
uL

2(S) + ||∇3χ̂||L2
uL

2(S)).

Now, taking the L2 norm in u, we get

||∇2κ||L2
uL

∞
u L2(S)

≤C(O0)(1 + ε
1

2R+
∑
i≤2

||∇iψH ||L2
uL

2
uL

2(S) + ||∇3χ̂||L2
uL

2
uL

2(S))

≤C(O0,R0)(1 + ε
1

2R+R[β]),

where in the last line we have used Propositions 36 and 37. By choosing ε
sufficiently small, we have

||∇2κ||L2
uL

∞
u L2(S) ≤C(O0,R0)(1 +R[β]).
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Therefore, by (49), we have

||∇3(ω, ω†)||L∞
u L2

uL
2(S) ≤ C(O0,R0)(1 +R[β]).

Putting these all together gives

Proposition 43. Assume

R < ∞.

Then there exists ε0 = ε0(O0,R0,R) such that whenever ε ≤ ε0,

Õ3,2[trχ, χ̂, κ, ω, ω
†] ≤ C(O0,R0)(1 +R[β]),

Õ3,2[trχ, χ̂, κ, ω, ω
†] ≤ C(O0,R0)(1 +R[β]),

and

Õ3,2[μ, μ, η, η] ≤ C(O0,R0)(1 +R).

Proof. Let

Δ3 � C(O0,R0)(1 +R),

where C(O0,R0)(1 + R) is taken to be the maximum of the bounds in
Propositions 37, 38, 39, 40, 41, 42. Hence, the choice of Δ3 depends only on
O0, R0 and R. Thus, by Propositions 37, 38, 39, 40, 41, 42, the bootstrap
assumption (A4) can be improved by choosing ε sufficiently small depending
on O0,R0 and R.

6. Estimates for curvature

In this section, we derive and prove the energy estimates for the curvature
components and their first two derivatives and conclude that R is controlled
by a constant depending only on the size of the initial data. By the propo-
sitions in the previous sections, this shows that all the O norms can be
bounded by a constant depending only on the size of the initial data, thus
proving Theorem 4. In order to derive the energy estimates, we need the
following integration by parts formula, which can be proved by a direct
computation:

Proposition 44. Suppose φ1 and φ2 are r tensorfields, then∫
Du,u

φ1∇4φ2 +

∫
Du,u

φ2∇4φ1

=

∫
Hu(0,u)

φ1φ2 −
∫
H0(0,u)

φ1φ2 +

∫
Du,u

(2ω − trχ)φ1φ2,
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and ∫
Du,u

φ1∇3φ2 +

∫
Du,u

φ2∇3φ1

=

∫
Hu(0,u)

φ1φ2 −
∫
H0(0,u)

φ1φ2 +

∫
Du,u

(2ω − trχ)φ1φ2.

Proposition 45. Suppose we have an r tensorfield (1)φ and an r − 1 ten-

sorfield (2)φ.∫
Du,u

(1)φA1A2...Ar∇Ar

(2)φA1...Ar−1
+

∫
Du,u

∇Ar (1)φA1A2...Ar

(2)φA1...Ar−1

=−
∫
Du,u

(η + η)(1)φ(2)φ.

Using these we derive energy estimates for ρ̌, σ̌ in L2(Hu) and for β in

L2(Hu).

Proposition 46. The following L2 estimates for the curvature components

hold:∑
i≤2

(||∇i(ρ̌, σ̌)||2L∞
u L2

uL
2(S) + ||∇iβ||2L∞

u L2
uL

2(S))

≤
∑
i≤2

(||∇i(ρ̌, σ̌)||2L2
uL

2(S0,u)
+ ||∇iβ||2L2

uL
2(Su,0)

)

+ ||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3≤2

ψi1∇i2(ψ + ψH)∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψ∇i4(ψ + ψH))||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3+i4≤2

ψi1∇i2ψ∇i3χ̂∇i4χ̂)||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3≤2

ψi1∇i2ψ∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3≤1

ψi1∇i2 ρ̌∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3(trχ+ψH)∇i4(trχ+ψH))||L1
uL

1
uL

1(S).
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Proof. Consider the following schematic Bianchi equations:

∇3σ̌ + div ∗β =ψσ̌ +
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψH + ψχ̂χ̂,

∇3ρ̌+ div β =ψρ̌+
∑

i1+i2+i3≤1

ψi1∇i2ψ∇i3ψH + ψχ̂χ̂,

∇4β +∇ρ̌−∗ ∇σ̌ =ψ(ρ̌, σ̌) +
∑

i1+i2+i3≤1

ψi1∇i2(ψH + trχ)∇i3(ψH + trχ),

Commuting these equations with angular derivatives for i ≤ 2, we get the
equation for ∇3∇iσ̌,

∇3∇iσ̌ + div ∗∇iβ = F1,

where F1 denotes the terms

F1 :=
∑

i1+i2+i3≤2

ψi1∇i2(ψ + ψH)∇i3(ρ̌, σ̌)

+
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψ∇i4(ψ + ψH)

+
∑

i1+i2+i3+i4≤2

ψi1∇i2ψ∇i3χ̂∇i4χ̂.

Notice that in the derivation of the ∇3∇iσ̌ equation, there are terms arising
from the commutator [∇i, div ]. These can be expressed in terms of the
Gauss curvature, which can be substituted by −ρ̌ − 1

2trχtrχ and rewritten

as the terms in the above expression. The equation for ∇3∇iρ̌ has a similar
structure:

∇3∇iρ̌+ div ∇iβ = F1.

We have the following equation for ∇4∇iβ:

∇4∇iβ +∇∇iρ̌−∗ ∇∇iσ̌ = F2,

where F2 denotes the terms of the form

F2 :=
∑

i1+i2+i3≤2

ψi1∇i2ψ∇i3(ρ̌, σ̌) +
∑

i1+i2+i3≤1

ψi1∇i2 ρ̌∇i3(ρ̌, σ̌)

+
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3(ψH + trχ)∇i4(ψH + trχ).
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Applying Proposition 45 yields the following identity on the derivatives of
the curvature.∫

〈∇iβ,∇4∇iβ〉γ

=

∫
〈∇iβ,−∇∇iρ+∗ ∇∇iσ〉γ + 〈∇iβ, F2〉γ

=

∫
〈div ∇iβ,∇iρ̌〉γ + 〈div ∗∇iβ,∇iσ̌〉γ + 〈∇iβ, F2〉γ

=

∫
−〈∇3∇iρ̌,∇iρ̌〉γ − 〈∇3∇iσ̌,∇iσ̌〉γ + 〈∇iβ, F2〉γ + 〈∇i(ρ̌, σ̌), F1〉γ .

Using Proposition 44, we have∫
〈∇iβ,∇4∇iβ〉γ

=
1

2
(

∫
Hu

|∇iβ|2 −
∫
H0

|∇iβ|2) + ||(ω − 1

2
trχ)|∇iβ|2||L1

uL
1
uL

1(S).

Substituting the Codazzi equation

β =
∑

i1+i2=1

ψi1∇i2(ψ + ψH)

for one of the β’s, we note that the last term

||(ω − 1

2
trχ)|∇iβ|2||L1

uL
1
uL

1(S)

is of the form of one of the terms stated in the Proposition. We call such
terms acceptable. Also by using Proposition 44, we have∫

〈∇i(ρ̌, σ̌),∇3∇i(ρ̌, σ̌)〉γ

=
1

2
(

∫
Hu

|∇i(ρ̌, σ̌)|2 −
∫
H0

|∇i(ρ̌, σ̌)|2) + ||(ω − 1

2
trχ)|∇i(ρ̌, σ̌)|2||L1

uL
1
uL

1(S).

The last term

||(ω − 1

2
trχ)|∇i(ρ̌, σ̌)|2||L1

uL
1
uL

1(S)

is also acceptable. We thus have
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Hu

|∇iβ|2γ +
∫
Hu

|∇i(ρ̌, σ̌)|2γ

≤
∫
Hu′

|∇iβ|2γ +
∫
Hu′

|∇i(ρ̌, σ̌)|2γ + |〈∇iβ, F2〉γ |+ |〈∇i(ρ̌, σ̌), F1〉γ |

+ acceptable terms.

We conclude the proposition by noting that the structure for F1 and F2

implies that

|〈∇iβ, F2〉γ |
and

|〈∇i(ρ̌, σ̌), F1〉γ |
are also acceptable.

To close the energy estimates, we also need to control β in L2(H) and
(ρ̌, σ̌) in L2(H). It is not difficult to see that due to the structure of the
Einstein equations, Proposition 46 also holds when all the barred and un-
barred quantities are exchanged. The proof is exactly analogous to that of
Proposition 46 and will be omitted.

Proposition 47. The following L2 estimates for the curvature components
hold:∑

i≤2

(||∇i(ρ̌, σ̌)||2L∞
u L2

uL
2(S) + ||∇iβ||2L∞

u L2
uL

2(S))

≤
∑
i≤2

(||∇i(ρ̌, σ̌)||2L2
uL

2(Su,0)
+ ||∇iβ||2L2

uL
2(S0,u)

)

+ ||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3≤2

ψi1∇i2(ψ + ψH)∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψ∇i4(ψ + ψH))||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3+i4≤2

ψi1∇i2ψ∇i3χ̂∇i4χ̂)||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3≤2

ψi1∇i2ψ∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3≤1

ψi1∇i2 ρ̌∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S)

+ ||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3(trχ+ψH)∇i4(trχ+ψH))||L1
uL

1
uL

1(S).
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We now control all the error terms in the energy estimates. Introduce
the bootstrap assumption:

(A5) R ≤ Δ4,

where Δ4 is a positive constant to be chosen later. First we estimate ρ̌ and
σ̌ in L2(Hu) and β in L2(Hu).

Proposition 48. There exist ε0 = ε0(O0,R0,Δ4) such that whenever ε ≤
ε0, ∑

i≤2

(||∇i(ρ̌, σ̌)||L∞
u L2

uL
2(S) + ||∇iβ||L∞

u L2
uL

2(S)) ≤ C(O0,R0).

Proof. We control the six terms in Proposition 46. We first estimate the
term βψHψH , i.e., the last term in the expression in Proposition 46. As we
will see, this is the most difficult term because all three factors can only be
controlled after taking the L2 norm along one of the null variables.

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψH∇i4ψH)||L1
uL

1
uL

1(S)

≤ε
1

2 (
∑
i≤2

||∇iβ||L∞
u L2

uL
2(S))(

∑
i1+i2+i3+i4≤3

||∇i1ψi2∇i3ψH∇i4ψH ||L2
uL

2
uL

2(S)).

Since we have a small constant ε
1

2 , we only need to bound the remaining
contribution by a constant depending on O0, R0 and Δ4. The first factor is
bounded by Δ4 by the definition of the norm R and the bootstrap assump-
tion (A5). We now look at the second factor.

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψH∇i4ψH ||L2
uL

2
uL

2(S)

≤C(
∑
i1≤3

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤3

||∇i2ψH ||L∞
u L2

uL
2(S))||ψH ||L2

uL
∞
u L∞(S)

+ C(
∑
i1≤3

||ψ||i1L∞
u L∞

u L∞(S))||ψH ||L2
uL

∞
u L∞(S)(

∑
i2≤3

||∇i2ψH ||L∞
u L2

uL
2(S))

+ C(
∑
i1≤3

||ψ||i1L∞
u L∞

u L∞(S))(
∑
i2≤2

||∇i2ψH ||L∞
u L2

uL
4(S))(

∑
i3≤2

||∇i3ψH ||L2
uL

∞
u L4(S))

+ C(
∑
i1≤1

||ψ||i1L∞
u L∞

u L∞(S))||ψH ||L∞
u L2

uL
∞(S)||ψH ||L2

uL
∞
u L∞(S)

× (
∑
i2≤2

||∇i2ψ||L∞
u L∞

u L2(S))
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+ C(
∑
i1≤1

||∇i1ψH ||L∞
u L2

uL
4(S))||ψH ||L2

uL
∞
u L∞(S)(

∑
i2≤1

||∇i2ψ||L∞
u L∞

u L4(S))

+ C||ψH ||L∞
u L2

uL
∞(S)(

∑
i1≤1

||∇i4ψH ||L2
uL

∞
u L4(S))(

∑
i2≤1

||∇i2ψ||L∞
u L∞

u L4(S)).

By Propositions 36 and 43, we have

||
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψH∇i4ψH ||L2
uL

2
uL

2(S) ≤ C(O0,R0,Δ4).

Thus

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψH∇i4ψH)||L1
uL

1
uL

1(S) ≤ C(O0,R0,Δ4)ε
1

2 .

We next consider the following four terms from Proposition 46:

||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3≤2

ψi1∇i2(ψ + ψH)∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S),

||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψ∇i4(ψ + ψH))||L1
uL

1
uL

1(S),

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3≤2

ψi1∇i2ψ∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S),

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3≤1

ψi1∇i2 ρ̌∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S).

Since ψ satisfies stronger estimates than either ψH or ψH ; and ρ̌, σ̌ satisfy

strong estimates than either∇ψH or∇ψH , we can bound these terms exactly

the way as above by C(O0,R0,Δ4)ε
1

2 .

We are thus left with the term

||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3+i4≤2

ψi1∇i2ψ∇i3χ̂∇i4χ̂)||L1
uL

1
uL

1(S).

Since χ̂ can only be controlled after taking the L2 norm in u, we must bound

the curvature term ∇i(ρ̌, σ̌) in L2(H). Nevertheless, we get a smallness con-
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stant in this estimate:

||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3+i4≤2

ψi1∇i2ψ∇i3χ̂∇i4χ̂)||L1
uL

1
uL

1(S)

≤(
∑
i≤2

||∇i(ρ̌, σ̌)||L∞
u L2

uL
2(S))(

∑
i1+i2+i3+i4≤2

||ψi1∇i2ψ∇i3χ̂∇i4χ̂||L1
uL

2
uL

2(S))

≤Cε
1

2R(
∑
i1≤2

∑
i2≤3

||∇i1ψ||i2L∞
u L∞

u L2(S))(
∑
i3≤2

||∇i3χ̂||2L2
uL

∞
u L2(S))

≤C(O0,R0)ε
1

2Δ4.

Therefore,∑
i≤2

(||∇i(ρ̌, σ̌)||2L∞
u L2

uL
2(S) + ||∇iβ||2L∞

u L2
uL

2(S)) ≤ R2
0 + ε

1

2C(O0,R0,Δ4).

Thus the conclusion follows by choosing ε to be sufficiently small depending
on O0,R0 and Δ4.

We now estimate the remaining components of curvature:

Proposition 49. There exist ε0 = ε0(O0,R0,Δ4) such that whenever ε ≤
ε0, ∑

i≤2

(||∇iβ||L∞
u L2

uL
2(S) + ||∇i(ρ̌, σ̌)||L∞

u L2
uL

2(S)) ≤ C(O0,R0).

Proof. In order to prove this estimate, we heavily rely on the bounds that we
have already derived in Proposition 48 for ∇i(ρ̌, σ̌) and ∇iβ. In particular,
we need to use the fact that those estimates are independent of Δ4. In
order to effectively distinguish the norms for the different components of
curvature, we introduce the following notation:

Ru[β] :=
∑
i≤2

sup
0≤u′≤u

||∇iβ||L2
uL

2(Su′,u),

Ru[ρ̌, σ̌] :=
∑
i≤2

sup
0≤u′≤u

||∇i(ρ̌, σ̌)||L2
uL

2(Su,u′ ),

Ru[ρ̌, σ̌] :=
∑
i≤2

sup
0≤u′≤u

||∇i(ρ̌, σ̌)||L2
uL

2(Su′,u),

Ru[β] :=
∑
i≤2

sup
0≤u′≤u

||∇iβ||L2
uL

2(Su,u′ ).
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We now proceed to proving the proposition by controlling the six error terms
in Proposition 47. We start with the first, second, fourth and fifth terms:

||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3≤2

ψi1∇i2(ψ + ψH)∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S)

and

||(
∑
i≤2

∇i(ρ̌, σ̌))(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3ψ∇i4(ψ + ψH))||L1
uL

1
uL

1(S)

and

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3≤2

ψi1∇i2ψ∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S)

and

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3≤1

ψi1∇i2 ρ̌∇i3(ρ̌, σ̌))||L1
uL

1
uL

1(S).

In these terms β or ψH appears at most once. Therefore, after applying
Cauchy-Schwarz in u and putting β or ψH in L2

u, there is still an extra

smallness constant ε
1

2 . These terms can be estimated in a similar fashion
as in Proposition 48 by C(O0,R0,Δ4)ε

1

2 . We then look at the last term in
Proposition 47:
(50)

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3(trχ+ ψH)∇i4(trχ+ ψH))||L1
uL

1
uL

1(S).

Among these terms, there are two possibilities: the case where (trχ, ψH) has
at least 2 derivatives and the case where (trχ, ψH) has at most 1 derivative.
For the term where (trχ, ψH) has at least 2 derivatives, we have

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3+i4≤3,2≤i3≤3

∇i1ψi2∇i3(trχ, ψH)∇i4(trχ, ψH))||L1
uL

1
uL

1(S)

≤
∫ u

0
(
∑
i≤2

||∇iβ||L2
uL

2(Su′,u))(
∑
i1≤1

||ψ||i1L∞
u L∞

u L∞(S))

×(
∑

2≤i2≤3

||∇i2(trχ, ψH)||L2
uL

2(Su′,u))(
∑
i3≤1

||∇i3(trχ, ψH)||L∞
u L4(Su′,u))du

′

≤
∫ u

0
C(O0,R0)(1 +Ru′ [β]2)(

∑
i≤1

||∇i(trχ, ψH)||L∞
u L4(Su′,u))du

′
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by Propositions 36 and 43. Notice that in the first inequality above, we have

also used the Sobolev embedding theorems in Propositions 8 and 9. For the

term where (trχ, ψH) has at most one derivative, notice that the estimate

for ∇2(trχ, ψH) in L2 in Proposition 36 depends only on initial data and the

bound for ∇3(trχ, ψH) in Proposition 43 depends only on initial data and

Ru[β]. Thus,

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3+i4≤3,i3≤1

∇i1ψi2∇i3(trχ, ψH)∇i4(trχ, ψH))||L1
uL

1
uL

1(S)

≤C(
∑
i1≤2

||∇iβ||L2
uL

2
uL

2(S))(
∑
i2≤2

∑
i3≤3

||∇i3ψ||i2L∞
u L∞

u L2(S))

× (
∑
i4≤2

||∇i4(trχ, ψH)||L2
uL

∞
u L2(S))(

∑
i5≤3

||∇i5(trχ, ψH)||L∞
u L2

uL
2(S))

≤C(O0,R0)(1 +Ru[β])(1 +Ru[β]).

Therefore, (50) can be estimated by

||(
∑
i≤2

∇iβ)(
∑

i1+i2+i3+i4≤3

∇i1ψi2∇i3(trχ+ ψH)∇i4(trχ+ ψH))||L1
uL

1
uL

1(S)

≤
∫ u

0
C(O0,R0)(1 +Ru′ [β]2)(

∑
i≤1

||∇i(trχ, ψH)||L∞
u L4(Su′,u))du

′

+ C(O0,R0)(1 +Ru[β])(1 +Ru[β]).

(51)

We note explicitly that it is important that we do not allow all terms of the

type ψHψHψ but only allow ψHψHtrχ since by Proposition 43, Õ3,2[trχ]

can be controlled by a constant depending on initial data and Ru[β], but

the bound for Õ3,2[η, η] depends on R. As we will see below, it is important

that one of the factors in the last term in the estimate (50) depends only on

Ru[β] rather than R, since Ru[β] has already been previously controlled in

Proposition 48 by a constant depending only on the initial data.

Returning to estimating the error terms in Proposition 47, we are thus

only left with the term

||(
∑
i1≤2

∇i1(ρ̌, σ̌))(
∑

i2+i3+i4+i5+i6≤2

∇i2ψi3∇i4ψ∇i5ψH∇i6ψH)||L1
uL

1
uL

1(S),

i.e., the third of the six error terms in Proposition 47. Since ψH does not
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enter with three derivatives, it can be estimated using Proposition 36 by

||(
∑
i1≤2

∇i1(ρ̌, σ̌))(
∑

i2+i3+i4+i5+i6≤2

∇i2ψi3∇i4ψ∇i5ψH∇i6ψH)||L1
uL

1
uL

1(S)

≤(
∑
i1≤2

||∇i1(ρ̌, σ̌)||L∞
u L2

uL
2(S))

× (
∑

i2+i3+i4+i5+i6≤2

||∇i2ψi3∇i4ψ∇i5ψH∇i6ψH ||L1
uL

2
uL

2(S))

≤(
∑
i1≤2

||∇i1(ρ̌, σ̌)||L∞
u L2

uL
2(S))(

∑
i2≤2

∑
i3≤3

||∇i2ψ||i3L∞
u L∞

u L2(S))

× (
∑
i4≤2

||∇i4ψH ||2L2
uL

∞
u L2(S))

≤C(O0,R0)Ru[ρ̌, σ̌].

Therefore, we have

Ru[β]
2 +Ru[ρ̌, σ̌]

2

≤C(O0,R0)(1+ ε
1

2C(O0,R0,Δ4)+

∫ u

0
(Ru′ [β])2(

∑
i≤1

||∇iψH ||L∞
u L4(Su′,u))du

′)

+ C(O0,R0)(Ru[ρ̌, σ̌] + (1 +Ru[β])(1 +Ru[β])).

Applying Cauchy-Schwarz on the last two terms and absorbing 1
2(Ru[β]

2 +

Ru[ρ̌, σ̌]
2) to the left hand side, we have

Ru[β]
2 +Ru[ρ̌, σ̌]

2

≤C(O0,R0)(1 + ε
1

2C(O0,R0,Δ4)

+

∫ u

0
(Ru′ [β])2(

∑
i≤1

||∇iψH ||L∞
u L4(Su′,u))du

′ +Ru[β]
2).

Gronwall’s inequality implies

Ru[β]
2 +Ru[ρ̌, σ̌]

2

≤C(O0,R0)(1 + ε
1

2C(O0,R0,Δ4)

+Ru[β]
2) exp(

∫ u

0
(
∑
i≤1

||∇iψH ||L∞
u L4(Su′,u))du

′).
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By Proposition 36,

exp(

∫ u

0
(
∑
i≤1

||∇iψH ||L∞
u L4(Su′,u))du

′) ≤ C(O0,R0).

By Proposition 48,

Ru[β]
2 ≤ C(O0,R0).

Therefore,

Ru[β]
2 +Ru[ρ̌, σ̌]

2 ≤ C(O0,R0)(1 + ε
1

2C(O0,R0,Δ4)).

Taking ε sufficiently small depending on O0, R0 and Δ4, we conclude that

Ru[β]
2 +Ru[ρ̌, σ̌]

2 ≤ C(O0,R0).

Propositions 48 and 49 together imply

Proposition 50. There exists ε0 = (O0,R0) such that whenever ε ≤ ε0,

R ≤ C(O0,R0).

Proof. Let

Δ4 � C(O0,R0),

where C(O0,R0) is taken to be the maximum of the bounds in Propositions
48, and 49. Hence, the choice of Δ4 depends only on O0 and R0. Thus, by
Propositions 48, and 49, the bootstrap assumption (A5) can be improved
by choosing ε sufficiently small depending on O0 and R0.

This concludes the proof of Theorem 4.

7. Nonlinear interaction of impulsive gravitational waves

In this section, we return to the special case of the nonlinear interaction
of impulsive gravitational waves, thus proving Theorem 1. Recall in that
setting we prescribe characteristic initial data such that on H0(0, u∗) (resp.
H0(0, u∗)), χ̂ (resp. χ̂) is smooth except on a 2-sphere S0,us

(resp. Sus,0)
where it has a jump discontinuity. Thus the curvature in the data has delta
singularities supported on S0,us

and Sus,0.
Such an initial data set can be constructed by solving a system of ODEs

in a way similar to the construction of the initial data with one gravita-
tional impulsive wave in [24]. Moreover, one can find a sequence of smooth
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characteristic data that converges to the data for the colliding impulsive
gravitational waves. We refer the readers to [24] for more details.

With the given initial data, Theorem 3 implies that a unique spacetime
solution (M, g) to the Einstein equations exists in 0 ≤ u ≤ u∗ and 0 ≤
u ≤ u∗. Moreover, using the a priori estimates established in Theorem 4, we
can show that the sequence of smooth data described above gives rise to a
sequence of smooth spacetimes that converges to (M, g).

In this section, we prove that in addition to the a priori estimates proved
in Theorem 4, the colliding impulsive gravitational spacetime (M, g) pos-
sesses extra regularity properties as described in parts (b), (c) of Theorem
1. We give an outline of the remainder of the section:

Section 7.1: We show the first part of Theorem 1(c), i.e., that β, ρ, σ, β
can be defined in L2

uL
2
uL

2(S). This follows directly from the estimates in the
proof of Theorem 3.

Section 7.2: We prove the second part of Theorem 1(c), showing that
the solution is smooth away from Hus

∪Hus
.

Section 7.3: We establish Theorem 1(b). We define α and α in the
colliding impulsive gravitational spacetime and show that they are measures
with singular atoms supported onHus

and Hus
respectively. This shows that

the singularities indeed propagate along the null hypersurfaces Hus
and Hus

.

7.1. Control of the regular curvature components

Proposition 51. All the curvature components except α and α are in
L2
uL

2
uL

2(S).

Proof. It follows directly from the proof of Theorem 3 that β, ρ̌, σ̌, β ∈
L2
uL

2
uL

2(S). It remains to show that ρ, σ are in L2
uL

2
uL

2(S). Recalling the

definition of ρ̌ and σ̌, it suffices to show that χ̂χ̂ is in L2
uL

2
uL

2(S). This
follows from

||χ̂χ̂||L2
uL

2
uL

2(S) ≤ ||χ̂||L∞
u L2

uL
4(S)||χ̂||L2

uL
∞
u L4(S).

7.2. Smoothness of spacetime away from the two singular
hypersurfaces

In this subsection, we prove that in the case of two colliding impulsive grav-
itational waves, the spacetime is smooth away from the null hypersurfaces
Hus

and Hus
. For u < us or u < us, this follows from the result of [24]. We

will therefore only prove the statement for {u > us} ∩ {u > us}.
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Proposition 52. The unique solution to the vacuum Einstein equations
for the initial data of colliding impulsive gravitational is smooth in {u >
us} ∩ {u > us}
Proof. We establish estimates for all derivatives of all the Ricci coefficients.
We prove by induction on j, k that ∇i∇j

3∇k
4(ψ,ψH , ψH) and ∇i∇j

3∇k
4ρ are

in L∞
u L∞

u L2(S) for all i, j, k. This then implies that all the Ricci coefficients

and curvature components15 are in C∞.
1. Base case: j = k = 0
1(a). Estimates for ψ and ρ̌

For i ≤ 2, ∇iψ is in L∞
u L∞

u L2(S) by Theorem 4. Using exactly the same
arguments but allowing more angular derivatives in the initial data, it is
easy to show that ∇iψ is in L∞

u L∞
u L2(S) for all i.

Similarly, an adaptation of the arguments in Theorem 4 imply that ∇iρ̌
are in L∞

u L∞
u L2(S) for all i.

1(b). Estimates for ψH , ψH and ρ
The a priori estimates given by Theorem 4 only imply that for i ≤ 2,

(52) ∇iψH ∈ L2
uL

∞
u L2(S) and ∇iψH ∈ L2

uL
∞
u L2(S).

Applying a simple modification to the proof of Theorem 4 with more angular
derivatives in the initial data, it is easy to show that (52) holds for all i ≥ 0.
In order to improve this to a bound in L∞

u L∞
u L2(S), we need to use the fact

that we are away from the hypersurfaces Hus
and Hus

.
We first prove estimates for χ̂. Consider the equation

(53) ∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η.

Since we know that the initial data on H0 ∩ {u > us} are smooth, ∇iχ̂
is in L∞

u L2(S0,u). Using the control that has already been obtained and

Gronwall’s inequality, we integrate (53) to show that ∇iχ̂ is in L∞
u L∞

u L2(S)
for u > us for all i.

Similarly, using

∇4χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η,

we show that ∇iχ̂ is in L∞
u L∞

u L2(S) for u > us for all i.

15Notice that all curvature components except for ρ can be expressed as a com-
bination of the Ricci coefficients and their first derivatives by virtue of the null
structure equations and elliptic equations (22), (23) and (24).
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The estimates for ρ̌ together with the bounds for χ̂ and χ̂ imply that

∇iρ is in L∞
u L∞

u L2(S). Now using

∇3ω = 2ωω − η · η +
1

2
|η|2 + 1

2
ρ,

and

∇4ω = 2ωω − η · η +
1

2
|η|2 + 1

2
ρ,

we show that ∇iω and ∇iω are in L∞
u L∞

u L2(S) for all i.

2. Induction Step

We now proceed to the induction step. Assume ∇i∇j
3∇k

4(ψ,ψH , ψH) and

∇i∇j
3∇k

4ρ are in L∞
u L∞

u L2(S) for all i, for all j ≤ J and for all k ≤ K in the

region {u > us}∩{u > us}. We will show below that ∇i∇J+1
3 ∇k

4(ψ,ψH , ψH)
and ∇i∇J+1

3 ∇k
4ρ are in L∞

u L∞
u L2(S) for all i and for all k ≤ K in {u >

us}∩{u > us}. A similar argument then shows that ∇i∇j
3∇K+1

4 (ψ,ψH , ψH)

and ∇i∇j
3∇K+1

4 ρ are in L∞
u L∞

u L2(S) for all i and for all j ≤ J in {u >
us}∩{u > us}. This completes the induction step and proves the proposition.

We first estimate ∇i∇J+1
3 ∇k

4 ρ̌. Notice that by signature considerations
(see Section 2.4), we have the following schematic expression for the com-
mutator [∇3,∇4]:
(54)
[∇3,∇4]φ = (ψ,ψH)∇4φ+ (ψ,ψH)∇3φ+ψ∇φ+ (ρ, σ)φ+ (ψ,ψH)(ψ,ψH)φ.

Using the Bianchi equation for ∇3ρ̌, commuting k ≤ K times with ∇4 and
differentiating J times with ∇3 and i times with ∇, we obtain

∇i∇J+1
3 ∇k

4 ρ̌ = ...,

where ... on the right hand side denotes terms that have at most J ∇3 deriva-
tives on ρ̌ or (ψ,ψH , ψH). They are therefore bounded16 in L∞

u L∞
u L2(S) by

the induction hypothesis. Hence we obtain

(55) ||∇i∇J+1
3 ∇k

4 ρ̌||L∞
u L∞

u L2(S) ≤ Ci,k

for every i and every k ≤ K in the region {u > us} ∩ {u > us}.
16Note that the terms on the right hand side may have more than i angular

derivatives. Nevertheless, the induction hypothesis allows us to control an arbitrary
number of angular derivatives.
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To proceed, we will consider separately the cases where ψ satisfies a ∇3ψ
equation and where ψ satisfies a∇4ψ equation. We introduce a notation such
that we denote the ψ’s in the first case by ψ3 and those in the second case
by ψ4. More precisely, we use the notation

ψ3 ∈ {η, trχ, trχ}, ψ4 ∈ {η, trχ, trχ}.

For ψH and ψ3, we commute the equations k ≤ K times with ∇4 and
then differentiate the equation J times by ∇3 and i times with ∇. As a
consequence, we obtain

∇i∇J+1
3 ∇k

4(ψ3, ψH) = ...

where ... on the right hand side represents terms that have at most J ∇3’s.
As in the estimates for ∇i∇J+1

3 ∇k
4 ρ̌, these terms can therefore be controlled

in L∞
u L∞

u L2(S) by the induction hypothesis. Thus we can estimate these
terms directly to show that

(56) ||∇i∇J+1
3 ∇k

4(ψ3, ψH)||L∞
u L∞

u L2(S) ≤ Ci,k

for all i and all k ≤ K in the region {u > us} ∩ {u > us}.
For ψH and ψ4, we commute the equations i times with ∇, J + 1 times

with ∇3 and k ≤ K times with ∇4. Here, we use both the schematic com-
mutation formula for [∇4,∇i] in Proposition 13 and also the schematic ex-
pression for [∇3,∇4]. Then we have

∇4(∇i∇J+1
3 ∇k

4(ψ4, ψH))

=
∑

i1+i2+i3=i
k1+k2+k3=k

∇i1∇k1

4 (ψ,ψH , ψH)i2+k2+1∇i3∇J+1
3 ∇k3

4 (ψ,ψH)

+
∑

i1+i2+i3=i
k1+k2+k3=k

∇i1∇k1

4 (ψ,ψH , ψH)i2+k2∇i3∇J+1
3 ∇k3

4 ρ̌+ ...

where ... are again terms that can be bounded in L∞
u L∞

u L2(S) using the
induction hypothesis. Notice that the second term on the right hand side
can be estimated by (55). Moreover, by assumption, the initial data on
H0 for ∇i∇J+1

3 ∇k
4(ψ4, ψH) are bounded in L∞

u L2(S) for u > us Thus, by
Gronwall’s inequality, we obtain

(57) ||∇i∇J+1
3 ∇k

4(ψ4, ψH)||L∞
u L∞

u L2(S) ≤ Ci,k
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for all i and all k ≤ K in {u > us}∩ {u > us}. Finally, combining (55), (56)
and (57), and using the formula ρ̌ = ρ− 1

2 χ̂ · χ̂, we obtain

(58) ||∇i∇J+1
3 ∇k

4ρ||L∞
u L∞

u L2(S) ≤ Ci,k

for every i and every k ≤ K in {u > us} ∩ {u > us}. (56), (57) and (58) to-
gether imply that in the region {u > us}∩{u > us}, ∇i∇J+1

3 ∇k
4(ψ,ψH , ψH)

and ∇i∇J+1
3 ∇k

4ρ are in L∞
u L∞

u L2(S) for all i and for all k ≤ K, as de-
sired.

7.3. Propagation of singularities

We first show that α and α can be defined as measures. We take the null
structure equations

(59) α = −∇4χ̂− trχχ̂− 2ωχ̂,

α = −∇3χ̂− trχχ̂− 2ωχ̂

as the definitions of α and α. In view of the fact χ̂ and χ̂ are not differentiable,
α and α cannot be defined as functions. Nevertheless, we will show that they
can be defined as measures. By (59), if α is smooth, for each component of
α with respect to the coordinate vector fields, we have∫ u

0
α(u, u′, ϑ)du′ =

∫ u

0
(Ω−1 ∂

∂u
χ̂+ trχχ̂+ 2ωχ̂)(u, u′, ϑ)du′.

Integrating by parts and using

∂

∂u
Ω−1 = 2ω,

we derive∫ u

0
α(u, u′, ϑ)du′

=(Ω−1χ̂)(u, u, ϑ)− (Ω−1χ̂)(u, u = 0, ϑ) +

∫ u

0
(trχχ̂)(u, u′, ϑ)du′.

Returning to the setting of colliding impulsive gravitational wave, for every
u �= us, the right hand side is well-defined. For each u, ϑ ∈ S

2, we define α
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as a measure such that

α([0, u)) = (Ω−1χ̂)(u, u, ϑ)− (Ω−1χ̂)(u, u = 0, ϑ) +

∫ u

0
(trχχ̂)(u, u′, ϑ)du′,

for u �= us. By continuity, we have

α([0, us)) = lim
u→u−

s

(Ω−1χ̂)(u, u, ϑ)− (Ω−1χ̂)(u, u = 0, ϑ)

+

∫ us

0
(trχχ̂)(u, u′, ϑ)du′.

This defines α as a measure. Similarly, for each u, ϑ ∈ S
2, we define α to be

a measure by

α([0, u)) =(Ω−1χ̂)(u, u, ϑ)− (Ω−1χ̂)(u = 0, u, ϑ)

+

∫ u

0
(Ω−1bA

∂

∂θA
χ̂+ trχχ̂)(u′, u, ϑ)du′,

for u �= us. By continuity,

α([0, us)) = lim
u→u−

s

(Ω−1χ̂)(u, u, ϑ)− (Ω−1χ̂)(u = 0, u, ϑ)

+

∫ us

0
(Ω−1bA

∂

∂θA
χ̂+ trχχ̂)(u′, u, ϑ)du′.

Remark 2. If we take a sequence of smooth initial data converging to
the data for nonlinearly interacting impulsive gravitational waves, it can be
shown that in the spacetimes (Mn, gn) arising from these data are smooth
and αn → α, αn → α weakly, where α and α are as defined above. We refer
the readers to [24] for details in the case of one impulsive gravitational wave.

Proposition 53. χ̂ is discontinuous across u = us. Similarly, χ̂ is discon-
tinuous across u = us.

Proof. We focus on the proof for χ̂. The proof for χ̂ is similar. Consider the
equation.

(60) ∇3χ̂+
1

2
trχχ̂− 2ωχ̂ = ∇⊗̂η − 1

2
trχχ̂+ η⊗̂η.

For the initial data, χ̂(ũ0, u, θ) is smooth for u �= us and has a jump disconti-
nuity for u = us. On the other hand, the right hand side is continuous by the
bounds that we have obtained. Moreover, the vector field e3, the connection



Nonlinear interaction of impulsive gravitational waves 557

∇3, as well as the connection coefficients trχ and ω are also continuous. The
conclusion thus follows from integrating (60).

Finally, we show that α (resp. α) has a delta singularity on the incoming
null hypersurface Hus

(resp. outgoing hypersurface Hus
).

Proposition 54. α can be decomposed into

α = δ(us)αs + αr,

where δ(us) is the scalar delta function supported on the null hypersurface
Hus

, αs = αs(u, ϑ) �= 0 belongs to L2
uL

2(S) and αr belongs to L∞
u L∞

u L2(S).
Similarly, α can be decomposed into

α = δ(us)αs + αr,

where δ(us) is the scalar delta function supported on the null hypersurface
Hus

, αs = αs(u, ϑ) �= 0 belongs to L2
uL

2(S) and αr belongs to L∞
u L∞

u L2(S).

Proof. We prove the proposition for α. The statement for α can be proved
in a similar fashion. Define

αs(u, ϑ) := lim
u→u+

s

Ω−1χ̂(u, u, ϑ)− lim
u→u−

s

Ω−1χ̂(u, u, ϑ),

and

αr := α− δ(us)αs.

We now show that αs and αr have the desired property. By Theorem 4, αs

belongs to L2
uL

2(S). That αs �= 0 follows from the fact that χ̂ has a jump
discontinuity across u = us, which is proved in Proposition 53.

It remains to show that αr belongs to L∞
u L∞

u L2(S). To show this, we
consider the measure of the half open interval [0, u) with respect to the
measure αr(u, ϑ):

(αr(u, ϑ))([0, u))

=(Ω−1χ̂)(u, u, ϑ)− lim
ũ→u+

s

(Ω−1χ̂)(u, ũ, ϑ) + lim
ũ→u−

s

(Ω−1χ̂)(u, ũ, ϑ)

− (Ω−1χ̂)(u, u = 0, ϑ) +

∫ u

0
(trχχ̂)(u, ũ, ϑ)dũ

= lim
ũ→u−

s

∫ ũ

0

∂

∂u
(Ω−1χ̂)(u, ũ′, ϑ)dũ′ + lim

ũ→u+
s

∫ u

ũ

∂

∂u
(Ω−1χ̂)(u, ũ′, ϑ)dũ′

+

∫ u

0
(trχχ̂)(u, ũ, ϑ)dũ.
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By Proposition 52, ∂
∂u(Ω

−1χ̂)(u, u, ϑ) is in L∞
u L∞

u L2(S) away from the hy-

persurface Hus
. Thus (αr(u, ϑ))([0, u)) can be expressed as an integral over

[0, u) whose integrand belongs to L∞
u L∞

u L2(S), as desired.

8. Formation of trapped surfaces

We also apply the existence and uniqueness result in Theorem 3 to the
problem the formation of trapped surfaces. In [7], Christodoulou proved
that trapped surfaces can form in evolution. This was later simplified and
generalized by Klainerman and Rodnianski [19], [18]. These are also the
first large data results for the long time dynamics of the Einstein equations
without symmetry assumptions.

In all the previous works, the setting is a characteristic initial value
problem such that the data on the incoming null hypersurface are that of
Minkowski spacetime. The data on the outgoing null hypersurface, termed
a “short pulse” by Christodoulou, are large, but are only prescribed on a
region with a short characteristic length. The large data on the outgoing
hypersurface and the small data on the incoming hypersurface together give
rise to a hierarchy of large and small quantities, which was shown to be
propagated by the evolution equations.

In particular, in order to guarantee the formation of a trapped surface,
the initial norm of χ̂ is large on H0, and is of size

||χ̂||L∞
u L∞(S) ∼ ε−

1

2 ,

where ε is the short characteristic length in the u direction. Moreover, α has
initial norm of size

||α||L∞
u L∞(S) ∼ ε−

3

2 .

It was precisely to offset the largeness of χ̂ and α (and their derivatives)
that the data on H0 were required to be small.

However, when viewed in the weaker topology L2
uL

∞(S), the initial size
for χ̂ in [7] is bounded by a constant independent of ε:

||χ̂||L2
uL

∞(S) ∼ 1.

Our main existence result applies for initial data such that χ̂ and its angular
derivatives are only in L2

uL
∞(S) without any requiring any smallness for

the data on H0. In particular, no assumptions on α and its derivatives
are imposed. Using this theorem, we obtain the following extension to the
theorem in [7], [19]:
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Theorem 5. Suppose the characteristic initial data are smooth on H0 for
0 ≤ u ≤ u∗ and satisfy the following two inequalities:

(61) trχ(u∗, ϑ) < 0

and

trχ(u = 0, u = 0, ϑ)

+

∫ u∗

0
exp(

1

2

∫ u′

0
trχ(u′′, u = 0, ϑ)du′′)

× (−2K + 2div ζ + 2|ζ|2)(u′, u = 0, ϑ)du′

< exp(−1

2

∫ u∗

0
trχ(u′, u = 0, ϑ)du′)trχ(u = 0, u = 0, ϑ)

(62)

for every ϑ ∈ S
2. Then there exists an open set of smooth initial data on H0

such that the initial data do not contain a trapped surface while a trapped
surface is formed in evolution.

More precisely, for every constant C, there exists ε > 0 sufficiently small
such that if the characteristic initial data on H0 ∩ {0 ≤ u ≤ ε} are smooth
and satisfy

(63)
∑
i≤5

||∇iχ̂||L2
uL

2(S) ≤ C

and the following two inequalities17 are verified for every ϑ ∈ S
2,∫ ε

0
|χ̂|2(u = 0, u, ϑ)du

> exp(
1

2

∫ u∗

0
trχ(u′, u = 0, ϑ)du′)

×
(
trχ(u = 0, u = 0, ϑ)

+

∫ u∗

0
exp(

1

2

∫ u′

0
trχ(u′′, u = 0, ϑ)du′′)

× (−2K + 2div ζ + 2|ζ|2)(u′, u = 0, ϑ)du′
)
,

(64)

and

(65)

∫ ε

0
|χ̂|2(u = 0, u, ϑ)du < trχ(u = 0, u = 0, ϑ),

17Of course, the condition (62) is necessary precisely so that (64) and (65) can
be verified simultaneously.
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then there exists a unique spacetime (M, g) that solves the characteristic

initial value problem for the vacuum Einstein equations in the region 0 ≤
u ≤ u∗, 0 ≤ u ≤ ε. Moreover, H0 ∩ {0 ≤ u ≤ ε} does not contain a trapped

surface and Su∗,ε is a trapped surface.

Remark 3. (61) and (62) hold in particular on a regular null cone with

smooth Ricci coefficients such that

||trχ− 2

r
, trχ+

2

r
, ζ,∇ζ,K||L∞

u L∞(Su,0) ≤ C,

where r is a positive smooth function, C−1 ≤ | drdu | ≤ C and r → 0 as u → u0.

We will call r = 0 the vertex of the cone. It is easy to see that (61) and (62)

hold sufficiently close to the vertex, i.e., when u∗ is chosen to be sufficiently

close to u0. Notice in particular that we have

trχ(u∗, ϑ) → −∞

and ∫ u∗

0
trχ(u′, u = 0, ϑ)du′ → −∞

as u∗ → u0.

In particular, this implies the celebrated theorem of Christodoulou18:

Corollary 55 (Christodoulou). If the characteristic initial data on H0 is

that of the truncated backward light cone19

{u = t+ r = 0, 0 ≤ u ≤ 1}

in Minkowski space, then for ε sufficiently small, if the data on H0 satisfy

(63), (64) and (65), then there exists a unique spacetime (M, g) endowed

with a double null foliation u, u and solves the characteristic initial value

problem for the vacuum Einstein equations in the region 0 ≤ u ≤ 1, 0 ≤ u ≤
ε. Moreover, H0 ∩ {0 ≤ u ≤ ε} does not contain a trapped surface and S1,ε

is a trapped surface.

18The original theorem of Christodoulou in [7] constructs a spacetime from past
null infinity. Here, we retrieve only the theorem in a finite region. Nevertheless, the
infinite problem can be treated as in [7] once the finite problem is understood.

19Here, we adapt the notation that u = t− r−2, u = t+ r. Therefore, 0 ≤ u ≤ 1
corresponds to the t-range −2 ≤ t ≤ −1.
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We now begin the proof of Theorem 5. We need the following series of
propositions. First, it is easy to see using the null structure equations and
Bianchi equations on H0 that the assumptions for Theorem 3 are satisfied.

Proposition 56. Given the assumptions for Theorem 5, the initial data
satisfy the assumptions of Theorem 3. Therefore, using the conclusion of
Theorem 3, there exists a unique spacetime (M, g)that solves the character-
istic initial value problem for the vacuum Einstein equations in the region
0 ≤ u ≤ u∗, 0 ≤ u ≤ ε. Moreover, all the estimates in Theorem 4 hold.

Proof. Since the initial data on H0 is smooth, there exists c and C such that

c ≤ | det γ �Su,0
| ≤ C,

∑
i≤3

|( ∂
∂θ

)iγ �Su,0
| ≤ C,

∑
i≤3

(
||∇iψ||L∞

u L2(Su,0) + ||∇iψH ||L2(H0)

)
≤ C,

∑
i≤2

⎛⎝||∇iβ||L2(H0)
+

∑
Ψ∈{ρ̌,σ̌}

||∇iΨ||L∞
u L2(Su,0)

⎞⎠ ≤ C.

By (63), χ̂ satisfies the bounds in the assumptions of Theorem 3. By the
null structure equations and the Bianchi equations, for ε sufficiently, all
the norms for the initial data on H0 in the assumptions of Theorem 3 are
controlled by a constant independent of ε.

We now use the a priori estimates derived in Theorem 4 together with
(64) and (65) to show that the initial data do not contain a trapped surface
and that a trapped surface is formed dynamically. We first show that there
are no trapped surfaces on H0:

Proposition 57. There exists ε sufficiently small such that for all ϑ,

trχ(u = 0, u, ϑ) > 0 for all u ∈ [0, ε].

Proof. On H0, since Ω = 1, trχ satisfies the equation

∂

∂u
trχ = −1

2
(trχ)2 − |χ̂|2.

Integrating the equation for trχ, we have

trχ(u = 0, u, ϑ) = trχ(u = 0, u = 0, ϑ)−
∫ u

0
(
1

2
(trχ)2 + |χ̂|2)(u′, ϑ)du′.
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Hence

trχ(u = 0, u, ϑ) ≥ trχ(u = 0, u = 0, ϑ)−
∫ ε

0
|χ̂|2(u′, ϑ)du′ − Cε.

(65) implies that for every ϑ,

trχ(u = 0, u = 0, ϑ) >

∫ ε

0
|χ̂|2(u′, ϑ)du′.

Therefore, for ε sufficiently small,

trχ(u = 0, u, ϑ) > 0,

for all u ∈ [0, ε]

We now prove that Su∗,ε is a trapped surface. First, we show that trχ < 0
everywhere on Su∗,ε.

Proposition 58. For ε sufficiently small, we have

trχ(u = u∗, u = ε, ϑ) < 0

for every ϑ.

Proof. Consider the equation

∇4trχ = −1

2
trχtrχ+ 2ωtrχ+ 2ρ̌+ 2div η + 2|η|2.

Writing ∇4 = Ω−1 ∂
∂u and integrating, it is easy to see that by the estimates

in Theorem 4, we have

(66) |trχ(u, u, ϑ)du′ − trχ(u, u = 0, ϑ)| ≤ Cε
1

2 for all u for all ϑ ∈ S
2.

The conclusion of the proposition thus follows from (61).

We then prove in the following sequence of propositions that we moreover
have trχ < 0 everywhere on Su∗,ε. As a first step, we solve for trχ on Su,0

on the initial hypersurface H0.

Proposition 59. On the initial hypersurface H0, trχ(u, u = 0, ϑ) is given
by

trχ(u, u = 0, ϑ) = exp(−1

2

∫ u

0
trχdu′)

(
trχ(u = 0, u = 0, ϑ)

+

∫ u

0
exp(

1

2

∫ u′

0
trχdu′′)(−2K + 2div ζ + 2|ζ|2)du′

)
.
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Proof. On H0, since Ω = 1, we have

∂

∂u
trχ+

1

2
trχtrχ = 2ρ̌+ 2div ζ + 2|ζ|2.

Substituting the Gauss equation

K = −ρ̌− 1

4
trχtrχ,

we have
∂

∂u
trχ+

1

2
trχtrχ = −2K + 2div ζ + 2|ζ|2.

The conclusion follows easily.

We compare
∫ u∗
0 trχ(u′, u, ϑ)du′ and

∫ u∗
0 trχ(u′, u = 0, ϑ)du′ in the fol-

lowing proposition:

Proposition 60. For every u ∈ [0, ε], we have

|
∫ u∗

0
trχ(u′, u, ϑ)du′ −

∫ u∗

0
trχ(u′, u = 0, ϑ)du′| ≤ Cε

1

2 .

Proof. The proposition follows directly from integrating in u the equation
(66) in the proof of Proposition 58.

Using Proposition 60, we compute
∫ ε
0 |χ̂|2γdu for every u and every ϑ ∈ S

2:

Proposition 61. For every ϑ in Su,ε, the integral of |χ̂|2γ along the integral
curve of L through (u, ϑ) satisfies∫ ε

0
|χ̂|2γ(u, u, ϑ)du

≥ exp(−
∫ u

0
trχ(u′, u = 0, ϑ)du′)

∫ ε

0
|χ̂|2γ(u = 0, u, ϑ)du− Cε

1

2 .

Proof. Fix ϑ. Consider the null structure equation

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η.

Contracting this two tensor with χ̂ using the metric, we have

1

2
∇3|χ̂|2γ +

1

2
trχ|χ̂|2γ − 2ω|χ̂|2γ = χ̂(∇⊗̂η − 1

2
trχχ̂+ η⊗̂η).
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In coordinates, we have

1

2Ω
(
∂

∂u
+ bA

∂

∂θA
)|χ̂|2γ +

1

2
trχ|χ̂|2γ − 2ω|χ̂|2γ = χ̂(∇⊗̂η − 1

2
trχχ̂+ η⊗̂η).

Using

ω = −1

2
∇3(log Ω),

we get

Ω2 exp(−
∫ u

0
Ωtrχdu′)

∂

∂u

(
exp(

∫ u

0
Ωtrχdu′)Ω−2|χ̂|2γ

)
=− bA

∂

∂θA
|χ̂|2γ − bA

∂Ω

∂θA
+ 2Ωχ̂ · (∇⊗̂η − 2Ω

1

2
trχχ̂+ 2Ωη⊗̂η).

(67)

Let

F =Ω−2 exp(

∫ u

0
Ωtrχdu′)

× (−bA
∂

∂θA
|χ̂|2γ − bA

∂Ω

∂θA
+ 2Ωχ̂ · (∇⊗̂η − 2Ω

1

2
trχχ̂+ 2Ωη⊗̂η)).

By (67), we have

exp(

∫ u

0
Ω(u′, u)trχ(u′, u)du′)Ω−2(u, u)|χ̂|2γ(u, u)

≥|χ̂|2γ(u = 0, u)− C||F (u)||L1
uL

∞(S).

Using the equation

∂bA

∂u
= −4Ω2ζA,

the estimates for Ω and ζ and the fact that bA = 0 on H0, we have a uniform
upper bound for b:

‖b‖L∞
u L∞

u L∞(S) ≤ Cε.

Thus, together with the estimates derived in Theorem 4, we have

(68) ||F ||L2
uL

2
uL

∞(S) ≤ Cε
1

2 .

On the other hand, the proof of Proposition 1 implies that

||Ω− 1||L∞
u L∞

u L∞(S) ≤ Cε
1

2 .



Nonlinear interaction of impulsive gravitational waves 565

This, together with Proposition 60, gives

|
Ω−2(u, u) exp(

∫ u
0 Ω(u′, u)trχ(u′, u)du′)

exp(
∫ u
0 Ω(u′, u = 0)trχ(u′, u = 0)du′)

− 1| ≤ Cε
1

2 .

Therefore,

exp(

∫ u

0
trχ(u′, u = 0)du′)|χ̂|2γ(u, u)

≥|χ̂|2γ(u = 0, u)− Cε
1

2 |χ̂|2γ(u, u)− C||F (u)||L1
uL

∞(S).

Taking the L2
u norm, we get

exp(

∫ u

0
trχ(u′, u = 0)du′)

∫ ε

0
|χ̂|2γ(u, u)du

≥
∫ ε

0
|χ̂|2γ(u = 0, u)du− Cε

1

2

∫ ε

0
|χ̂|2γ(u, u)du− C||F (u)||L2

uL
1
uL

∞(S)

≥
∫ ε

0
|χ̂|2γ(u = 0, u)du− Cε

1

2 ,

where in the last step we have used (68) and the bound for ‖χ̂‖L∞
u L2

uL
∞(S)

derived in the proof of Theorem 4.

This allows us to conclude the formation of trapped surfaces:

Proposition 62. Given the assumptions of Theorem 5, for ε sufficiently
small, trχ < 0 pointwise on Su∗,ε. Together with Proposition 58, this implies
that Su∗,ε is a trapped surface.

Proof. By Proposition 59, we have

trχ(u∗, u = 0, ϑ)

= exp(−1

2

∫ u∗

0
trχdu′)

(
trχ(u = 0, u = 0, ϑ)

+

∫ u∗

0
exp(

1

2

∫ u′

0
trχdu′′)(−2K + 2div ζ + 2|ζ|2)du′

)
.

(69)

By Proposition 61,∫ ε

0
|χ̂|2γ(u∗, u, ϑ)du

≥ exp(−
∫ u∗

0
trχ(u′, u = 0, ϑ)du′)

∫ ε

0
|χ̂|2γ(u = 0, u, ϑ)du− Cε

1

2 .

(70)
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Using the equation

∇4trχ = −1

2
(trχ)2 − |χ̂|2 − 2ωtrχ,

which can be written in coordinates as

Ω−1 ∂

∂u
trχ = −1

2
(trχ)2 − |χ̂|2 − 2ωtrχ,

we have

trχ(u∗, u = ε, ϑ) ≤ trχ(u∗, u = 0, ϑ)−
∫ ε

0
|χ̂|2(u∗, u, ϑ)du+ Cε

1

2 .

Therefore, using (69) and (70), we have

trχ(u∗, u = ε, ϑ)

≤ exp(−1

2

∫ u∗

0
trχ(u′, u = 0, ϑ)du′)

×
(
trχ(u = 0, u = 0, ϑ)

+

∫ u∗

0
exp(

1

2

∫ u′

0
trχdu′′)(−2K + 2div ζ + 2|ζ|2)du′

)
− exp(−

∫ u∗

0
trχ(u′, u = 0, ϑ)du′)

∫ ε

0
|χ̂|2γ(u = 0, u, ϑ)du+ Cε

1

2 .

Since by (64), for all ϑ,

trχ(u = 0, u = 0, ϑ)

+

∫ u∗

0
exp(

1

2

∫ u′

0
trχdu′′)(−2K + 2div ζ + 2|ζ|2)du′

< exp(−1

2

∫ u∗

0
trχ(u′, u = 0, ϑ)du′)

∫ ε

0
|χ̂|2γ(u = 0, u, ϑ)du,

ε can be chosen sufficiently small so that

trχ(u∗, u = ε, ϑ) < 0 for every ϑ.
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