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Laurent phenomenon algebras

Thomas Lam
∗
and Pavlo Pylyavskyy

†

We generalize Fomin and Zelevinsky’s cluster algebras by allow-
ing exchange polynomials to be arbitrary irreducible polynomials,
rather than binomials.

1. Introduction

In their paper [CA1] Fomin and Zelevinsky introduced a remarkable alge-
braic object called cluster algebras. The original motivation was to provide
a combinatorial model for studying total positivity and Lusztig’s canoni-
cal bases for semisimple Lie groups. It was quickly realized however that
cluster algebras are rather ubiquitous in mathematics, appearing for exam-
ple in the representation theory of quivers and finite-dimensional algebras,
Poisson geometry, Teichmüller theory, integrable systems, and the study of
Donaldson-Thomas invariants.

The core idea of cluster algebras is that the generators of a commutative
algebra, called cluster variables, are grouped into sets called clusters. A
seed consists of a cluster together with a polynomial, called the exchange
polynomial, associated with each cluster variable. The exchange polynomial
must be a polynomial in the other variables of this cluster, and is always a
binomial. One can then apply a mutation procedure to a variable in a cluster,
exchanging it for a different variable according to the following rule:

old variable× new variable = exchange binomial.

The exchange polynomials are also mutated, producing a mutated seed from
the old seed. One key remarkable property of such systems then is the Lau-
rent phenomenon, which says that any cluster variable is a Laurent polyno-
mial when written as a rational function in any other cluster.

From the onset of the theory it was known that the Laurent phenomenon
holds in a more general setting, where the exchange polynomials are not
necessarily binomials: Fomin and Zelevinsky [FZ1] established the Laurent
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phenomenon for a number of families of combinatorial recurrences, including
the Somos sequences, the cube recurrence, and the Gale-Robinson sequence.
However, the work of [FZ1] depended on already knowing the global pattern
of exchange polynomials, the Laurentness with respect to which one is trying
to establish. What [FZ1] does not provide is a rule on how to derive the global
exchange pattern from knowing only the local one in an initial seed, which
is what is achieved for cluster algebras.

In this work, we propose a method to propagate arbitrary (irreducible)
exchange polynomials. We then prove that the Laurent phenomenon always
holds, and we call our new algebras Laurent phenomenon algebras, or LP
algebras. The new paradigm of mutation that we offer is as follows:

old variable× new variable = exchange Laurent polynomial.

Here the Laurent polynomial on the right hand side is equal to the exchange
polynomial of the variable divided by a monomial in the rest of the vari-
ables in the same cluster. The exchange polynomials of a seed determine its
exchange Laurent polynomials.

Let us list some features of cluster algebras which extend, or conjec-
turally extend to LP algebras:

(1) The Laurent phenomenon (Theorem 5.1) holds for LP algebras (cf.
[CA1]).

(2) There is a rich theory of finite types, and the associated cluster com-
plexes appear to be polytopal complexes with rich combinatorics; see
Sections 6 and 7 (cf. [CA2, CFZ, FZ2]). In [LP2] we study LP alge-
bras with a linear seed, and in particular we show that the number of
finite types of LP algebras grows exponentially with rank.

(3) The cluster monomials appear to be linearly independent, and for
finite type LP algebras appear to form linear bases (cf. [CK]).

(4) For a suitable initial seed, the cluster variables appear to be Laurent
polynomials with positive coefficients; see Section 6 and [LP2].

(5) There are interesting examples of LP algebras of finite mutation type;
see Section 7 (cf. [FST]).

(6) The coefficients of exchange polynomials satisfy interesting dynamics
under mutation; see Section 6 (cf. [CA4]).

(7) Beautiful combinatorial recurrences occur as exchange relations of LP
algebras, including the Gale-Robinson sequence and cube recurrence;
see Section 7 (cf. [FZ1, FZ2, Pro]).

(8) LP algebras appear naturally as coordinate rings of Lie groups or
certain varieties naturally associated to Lie groups (cf. [CA3]).
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Let us elaborate on the last point. The initial motivating examples of
cluster algebras were the coordinate rings of double Bruhat cells of semisim-
ple Lie groups [CA3]. In [LP1] we constructed a family of electrical Lie groups
naturally associated with electrical networks in a disk. The positive parts of
these electrical Lie groups come with a decomposition into cells analogous
to the Bruhat decomposition of the totally positive part of the unipotent
subgroup of a semisimple group. The dynamics of parametrizations of these
cells is controlled by electrical LP algebras in the same way the dynamics of
parametrizations of Bruhat cells is controlled by cluster algebras [CA3]. In
the upcoming work [LP3] we shall explain the details. We refer the reader
to Section 7 for an example.

Let us list some differences between cluster algebras and Laurent phe-
nomenon algebras:

(1) For certain initial seeds, the cluster algebra generated by that seed
may not be the same as the LP algebra generated by that seed; in
Corollary 4.5 we show that this never happens if the cluster algebra
has principal coefficients.

(2) In the definition of seed mutation of a LP algebra, a substitution is
first made in an exchange polynomial and then a (possibly very inter-
esting) polynomial factor is removed; in the cluster case this factor is
always just a monomial.

(3) In a LP algebra it is possible for the exchange polynomial of one clus-
ter variable to depend on another cluster variable, while the reverse
is not true; in the cluster case this relation is always symmetric.

(4) In a LP algebra mutation a priori depends on the exchange polyno-
mials of all cluster variables of the seed, including cluster variables
which are not being mutated. The extent to which this dependence is
not present is a very interesting question, a special case of which is
addressed in [LP2, Theorem 2.4]. In the cluster case freezing a variable
by never mutating it is straightforward.

(5) In a LP algebra, the cluster complex that describes which variables
can belong to the same cluster is not necessarily a flag complex (that
is, it is not necessarily given by just pairwise compatibility), see Re-
mark 3.8; this property is known to hold for cluster algebras aris-
ing from surfaces, and is conjectured for cluster algebras in general
[FSTh].

The paper is organized as follows. In Section 2 we define seeds and seed
mutation of LP algebras, and establish their basic properties. In Section 3 we
give the definition of LP algebras. In Section 4 we compare cluster algebras
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with LP algebras, and discuss sufficient conditions for a cluster algebra to be
a LP algebra. In Section 5 we prove that the Laurent phenomenon holds for
LP algebras. In Section 6 we give a complete classification of rank two LP
algebras of finite type. In Section 7 we discuss several interesting families of
examples of LP algebras, recovering and explaining connections to the work
of Chekhov and Shapiro [ChSh], Hone [Ho], and Henriques and Speyer [HS].

2. Seeds and seed mutation

Recall that an element f ∈ A of a unique factorization domain is irreducible
if it is non-zero, not a unit, and cannot be expressed as the product f = gh
of two elements g, h ∈ A which are non-units. If f, g ∈ A and g is not a
unit, and not zero in A it makes sense to ask for the highest power of g that
divides f .

2.1. Seeds

Much of our notation and terminology imitates that in the theory of cluster
algebras [CA1, CA2, CA3, CA4].

Let S be a coefficient ring over Z, which we assume to be a unique
factorization domain. For example S could be Z, a polynomial ring over Z,
or a Laurent polynomial ring over Z. Let n ≥ 1 be a positive integer and
write [n] for {1, 2, . . . , n}. Let the ambient field F be the rational function
field in n independent variables over the field of fractions Frac(S).

A seed in F is a pair (x,F) where

• x = {x1, x2, . . . , xn} is a transcendence basis for F over Frac(S).
• F = {F1, F2, . . . , Fn} is a collection of polynomials in P = S[x1, x2, . . . ,
xn] satisfying:

(LP1) Fi is an irreducible element of P and is not divisible by any vari-
able xj

(LP2) Fi does not involve the variable xi

The variables {x1, x2, . . . , xn} are called cluster variables, and the polyno-
mials

{F1, F2, . . . , Fn}

are called exchange polynomials. As is usual in the theory of cluster alge-
bras, the set {x1, x2, . . . , xn} will be called a cluster. If t = (x,F) is a seed,
we let L = L(t) denote the Laurent polynomial ring S[x±1

1 , x±1
2 , . . . , x±1

n ].
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If x is a cluster variable, we shall use the notation Fx to denote the ex-
change polynomial associated to a cluster variable x. This is to be distin-
guished from the notation F (y) in use later. We call n the rank of the seed
(x,F).

For two polynomials f, g ∈ P , or more generally two elements f, g ∈ F ,
write f ∝ g to mean that f and g differ (multiplicatively) by a unit in S.

Remark 2.1. The sets {x1, x2, . . . , xn} and {F1, F2, . . . , Fn} are considered
to be unordered, but the information of which exchange polynomial corre-
sponds to which cluster variable is given. When giving an example, we will
often list a seed by giving a set of ordered pairs, each pair (xi, Fi) consisting
of a cluster variable and its exchange polynomial.

Remark 2.2. The mutation dynamics that we shall discuss sometimes behave
properly even for seeds t not satisfying the irreducibility condition of (LP1),
though in all the examples we have encountered we can reduce to consider
a seed t′ which does satisfy (LP1), for example by changing the coefficient
ring, or by introducing new coefficients.

For each seed (x,F), we define a collection {F̂1, F̂2, . . . , F̂n} ⊂ L of ex-
change Laurent polynomials by the conditions:

• F̂j = xa1

1 · · · x̂j · · ·xan
n Fj for some a1, . . . , aj−1, aj+1, . . . , an ∈ Z≤0

• for i �= j we have that

F̂i|xj←Fj/x lies in S[x±1
1 , . . . , x±1

j−1, x
±1, x±1

j+1, . . . , x
±1
n ] and,(2.1)

as an element of this ring, is not divisible by Fj .

The well-definedness of F̂i follows from the following lemma.

Lemma 2.3. Let F (x) ∈ S[x±1] be a Laurent polynomial in x with coeffi-
cients in a unique factorization domain S. Let P be an irreducible element
of S. Then there is a unique integer m ∈ Z so that G(x) = xmF (x) satisfies
the following two properties:

(1) G(P/x) ∈ S[x±1]
(2) G(P/x) is not divisible by P

Proof. We may assume that F is a polynomial in x. Then F (P/x) ∈ S[x±1].
Let m be negative of the maximal power of P that divides F (P/x). Then
clearly G(x) = xmF (x) satisfies both (1) and (2) and this value of m is
unique.

Lemma 2.4. The collections {F1, . . . , Fn} and {F̂1, . . . , F̂n} determine each
other uniquely.
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Proof. The definition of the F̂i-s tells us how to uniquely obtain them from
the Fi-s. For the reverse direction, we simply drop the denominators of F̂i-s
to recover the Fi-s.

More formally, we have that

(2.2) Fi = xb11 · · · x̂i · · ·xbnn F̂i

where bj ∈ Z≥0 are the minimal nonnegative integers such that Fi is a

genuine (not Laurent) polynomial. Indeed, by definition the F̂i-s are obtained
from the polynomials Fi-s by dividing by some nonnegative powers of xj ’s.
We need to compensate for this division when we go in the other direction.
If we chose larger values of bj in (2.2), then Fi would not be irreducible,
contradicting (LP1). If we chose smaller values of bj in (2.2), then Fi would
not be a genuine polynomial. Thus the integers bj in (2.2) are uniquely
determined.

Let us pause now and consider an example.

Example 2.5. Let S = Z and F = Q(a, b, c). Consider the seed

t = {(a, b+ 1), (b, (a+ 1)2 + c2), (c, b2 + b+ a3 + a2)}.

Then F̂a = Fa since both Fb and Fc depend on a, and thus b and c can-
not appear in the denominator of F̂a with a non-zero exponent. Similarly,
F̂b = Fb. For the same reason F̂c does not have any b-s in its denomina-
tor. To compute the exponent of a in the denominator of F̂c we make the
substitution a ←− b+1

a′ in Fc, obtaining

b(b+ 1) +
(b+ 1)2(b+ 1 + a′)

(a′)3
.

The maximal power of b + 1 that divides this is (b + 1)1, and therefore
F̂c = Fc/a.

Lemma 2.6. In (2.1), the substitution xj ← Fj/x can be replaced by

xj ← F̂j/x without changing the condition. Similarly, in (2.1) we can test

divisibility by F̂j instead of by Fj.

Proof. We begin by noting that Fj and F̂j do not depend on x.

Consider an arbitrary Laurent polynomial P ∈ S[x±1
1 , . . . , x±1

j−1, x
±1
j ,

x±1
j+1, . . . , x

±1
n ]. If Fj divides T (x) = P |xj←Fj/x in S[x±1

1 , . . . , x±1
j−1, x

±1,

x±1
j+1, . . . , x

±1
n ], then it divides all the coefficients cr of T (x) =

∑
r crx

r as a
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Laurent polynomial in x. Let F p
j be the maximal power of Fj that divides

T (x). Then p = minr pr, where F pr

j is the maximal power of Fj that divides

cr.

Now consider T ′(x) = P |xj←F̂j/x
=

∑
r c

′
rx

r. Since Fj and F̂j differ by

(multiplication by) a unit not involving x in S[x±1
1 , . . . , x±1

j−1, x
±1, x±1

j+1, . . . ,

x±1
n ], we have that c′r/cr is a unit in S[x±1

1 , . . . , x±1
j−1, x

±1
j+1, . . . , x

±1
n ]. Suppose

that F
p′
r

j is the maximal power of Fj that divides c
′
r. Then p′r = pr. It follows

that F p
j is the maximal power of Fj that divides T

′(x). This proves the first
statement.

The second statement also follows from the fact that F̂j and Fj differ

multiplicatively by a unit in S[x±1
1 , . . . , x±1

j−1, x
±1, x±1

j+1, . . . , x
±1
n ], and thus

the maximal powers of each that divides any coefficient cj of T (x) (or of
T ′(x)) are the same.

Lemma 2.7. Suppose that Fj/F̂j involves xi. Then Fi does not use the
variable xj.

Proof. The fact that Fj/F̂j involves xi means that there is a non-trivial

power of Fi that divides Fj |xi←Fi/x. Indeed, by the definition (2.1) of F̂j this

power is exactly the power of xi in Fj/F̂j .

Now by (LP1), Fj is not divisible by xi, and has a non-zero constant

term c = Fj |xi←0 when viewed as a polynomial in xi. Since Fi divides

Fj |xi←Fi/x, it also divides c. Since Fj does not depend on xj , the constant
term c also does not depend on xj , and we conclude that Fi does not depend

on xj .

Example 2.8. In Example 2.5, the ratio Fc/F̂c = a involves a, and indeed

we see that c does not appear in Fa = b+ 1. This agrees with Lemma 2.7.

We may think of F and F̂ as two different normalizations for the tuple

of exchange polynomials. They are defined up to a monomial product in
the xi’s. The set F consists of the unique representatives which are poly-

nomials not divisible by any variable. The elements of F̂ are the unique

representatives satisfying (2.1).

Lemma 2.9. If Fi �= Fj, the exponent ai in the definition of F̂j is maximal

such that F̂j is a Laurent polynomial in L(μi(x,F)).

Proof. The largest power of Fi that divides Fj |xi←Fi/x is clearly the largest

ai such that Fj/x
ai

i remains Laurent polynomial after the substitution xi ←
Fi/x.
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2.2. Mutations

Suppose i ∈ [n]. Then we say that a tuple (x′,F′) is obtained from a seed
(x,F) by mutation at i, and write (x′,F′) = μi(x,F), if the former can be
obtained from the latter by the following (non-deterministic) procedure.

The cluster variables of μi(x,F) are given by x′i = F̂i/xi and x′j = xj for
j �= i. The exchange polynomials F ′

j ∈ L′ := L(t′) are obtained from Fj as
follows. First, we define F ′

i := Fi. For j �= i we have two cases. If Fj does not
depend on xi, then Fj is also an element of L′, and we define F ′

j to be any
polynomial satisfying F ′

j ∝ Fj , where F ′
j is now considered as an element of

L′.
Now suppose Fj does depend on xi. By Lemma 2.7, xj cannot appear

in the denominator Fi/F̂i of F̂i, so F̂i|xj←0 is well defined. We define Gj by

(2.3) Gj = Fj |
xi←

F̂i|xj←0

x′
i

Next, we define Hj to be Gj with all common factors (in S[x1, . . . , x̂i, . . . ,

x̂j . . . , xn]) with F̂i|xj←0 removed. Note that this defines Hj only up to a
unit in S. Finally, we define

(2.4) F ′
j = MHj

where M is a Laurent monomial in the x′1, x
′
2, . . . , x̂

′
j , . . . , x

′
n with coefficient

a unit in S, such that F ′
j ∈ P ′ = S[x′1, . . . , x

′
n], satisfies (LP2), and is not

divisible by any variable in P ′. For any Hj , it is always possible to pick
the monomial M to satisfy these conditions, but in general there are many
choices for the coefficient of M . In particular F ′

j is defined only up to a unit
in S.

Example 2.10. Consider the seed

t = {(a, b+ 1), (b, (a+ 1)2 + c2), (c, b2 + b+ a3 + a2)}

from Example 2.5. Recall that F̂a = Fa, F̂b = Fb and F̂c = Fc/a. Let us see
what happens when we mutate at c. The variable c changes into

d =
F̂c

c
=

b2 + b+ a3 + a2

ac
.

The exchange polynomial Fa does not change (or changes only by a unit in
S = Z) since it does not depend on c. To compute the new Fb, we make the
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substitution

c ←− F̂c|b=0

d
=

a(a+ 1)

d
.

The result is (a+1)2 + (a(a+1)
d )2. Now we need to kill all common factors it

has with a(a+1), and change it to an irreducible polynomial by multiplying
by a monomial. The first step kills the factor (a+1)2, resulting in 1+ (ad)

2,
and the second step turns it into a2 + d2. Thus, the resulting mutated seed
can be chosen to be

μc(t) = {(a, b+ 1), (b, a2 + d2), (d, b2 + b+ a3 + a2)}.

One can verify from the definition that this is indeed a valid seed.

We shall now show that if (x′,F′) = μi(x,F) is obtained by mutation of
(x,F) at i then (LP1) is automatically satisfied, so (x′,F′) is also a seed. It
is clear that if x is a transcendence basis of F over Frac(S), then so is x′.

Lemma 2.11. Assume we are mutating at i ∈ [n]. Then Fj depends on xi
if and only if F ′

j depends on x′i.

Proof. If Fj does not depend on xi, then F ′
j ∝ Fj does not depend on x′i.

If Fj depends on xi, then Gj must involve x′i since F̂i |xj←0 is non-zero
by (LP1). But the remaining operations will not change the fact that x′i is
involved (using also that Fj is not divisible by xi).

Example 2.12. Compare the two seeds

t = {(a, b+ 1), (b, (a+ 1)2 + c2), (c, b2 + b+ a3 + a2)}

and

μc(t) = {(a, b+ 1), (b, a2 + d2), (d, b2 + b+ a3 + a2)}
from Example 2.10. We see that before the mutation Fa does not depend
on c, while Fb does. Similarly, after the mutation Fa does not depend on d,
while Fb does. This agrees with Lemma 2.11.

Lemma 2.13. Assume we are mutating at i ∈ [n]. Then F̂i = F̂ ′
i .

Proof. By definition we have F ′
i = Fi, so we need to know that, for each j, the

same power of Fj divides Fi |xj←Fj/x as the power of F ′
j divides Fi |xj←F ′

j/x
.

If Fj does not depend on xi, then Fj ∝ F ′
j so this is clear. On the other hand,

if Fj depends on xi then F ′
j also depends on x′i by Lemma 2.11. But then

by Lemma 2.7 we conclude that both F̂i/Fi and F̂ ′
i/F

′
i do not involve xj .

Thus F̂i/Fi and F̂ ′
i/F

′
i has the same power of xj , for any j, and the lemma

follows.
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Example 2.14. We verify Lemma 2.13 in Example 2.10. Let us compute F̂d

in the seed

μc(t) = {(a, b+ 1), (b, a2 + d2), (d, b2 + b+ a3 + a2)}.

Since Fb depends on d, there is no b in the denominator of F̂d. To find the
exponent of a in this denominator, make the substitution a ←− b+1

a′ in Fd,
obtaining

b(b+ 1) +
(b+ 1)2(b+ 1 + a′)

(a′)3
.

The maximal power of b + 1 that divides this is (b + 1)1, and therefore
F̂d = Fd/a = (b2 + b + a3 + a2)/a. As we have seen in Example 2.5, this
coincides with F̂c in the original seed t, agreeing with Lemma 2.13.

Proposition 2.15. Mutation at i gives a valid seed

μi(x,F) = ({x′1, . . . , x′n}, {F ′
1, . . . , F

′
n}).

Proof. We need to check the condition (LP1). By construction, it only re-
mains to show that the F ′

j are irreducible in P ′. This is clear if Fj does not
involve xi. Suppose otherwise. Then F ′

j involves x′i, so it is a non-constant
polynomial in P ′ = S[x′1, . . . , x

′
n], and in particular is not a unit in P ′.

(Indeed, the only units in P ′ are the units in S.) Suppose F ′
j = P1P2, for

Pr ∈ P ′ non-units. Let Z = F̂i|xj←0. Then Gj = A ·M−1 · P1P2, where Gj

is as in (2.3), and M is the Laurent monomial of (2.4), and we have that
A ∈ P ′ ∩ P and the irreducible factors of A are factors of Z. Since M is a
Laurent monomial in x′1, x

′
2, . . . , x̂

′
j , . . . , x

′
n (together with a unit coefficient

in S), up to a unit in L, we have that M |x′
i← Z

xi

is just a power of Z. Now

Fj = Gj |x′
i← Z

xi

,

and Fj is irreducible, so it follows that one of Pr|x′
i← Z

xi

for r = 1, 2 is either

(i) a unit in L, or (ii) it is a product of factors of Z with a unit in L. Since F ′
j

is not divisible by any x′k, it follows that Pr is not a monomial in P ′. Since
Z does not involve xi or x

′
i, case (ii) is only possible if Pr does not involve

x′i, and hence Pr is itself divisible by a factor of Z. This would contradict
the definition of Hj , so we must be in case (i): Pr|x′

i← Z

xi

is a unit in L. If
Pr does not involve x′i, then it is also a unit in P ′, which is a contradiction.
Finally, if Pr involves x′i, and since it is not divisible by x′i in P ′, it is clear
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that Pr|x′
i← Z

xi

cannot be a unit. Indeed, this is because Pr|x′
i← Z

xi

is not a

monomial, as Pr had terms with distinct degrees of x′i, and this property is
preserved under substitution.

Proposition 2.16. If (x′,F′) is obtained from (x,F) by mutation at i, then
(x,F) can be obtained from (x′,F′) by mutation at i.

Proof. By Lemma 2.13, mutating at i twice we reproduce the same cluster
variables x1, . . . , xn. Thus we need only focus on whether we can recover
(up to a unit) Fj for j �= i. If Fj does not involve xi this follows from the
definition. Now suppose that Fj does involve the variable xi. Let F

′′
j denote

the result of mutating F ′
j at i (since mutation is not completely deterministic,

we are taking F ′′
j to be any such mutation). We have

Gj = A ·M−1 · F ′
j

as in the proof of Proposition 2.15. Now Fj = Gj |x′
i← Z

xi

and Fj is irre-

ducible so Fj must divide A|x′
i← Z

xi

, M−1|x′
i← Z

xi

or F ′
j |x′

i← Z

xi

. By assumption,

Fj involves xi, so it does not divide A|x′
i← Z

xi

or M−1|x′
i← Z

xi

. Thus it must

divide F ′
j |x′

i← Z

xi

. It is easy to see then that Fj divides F
′′
j . Indeed, F

′′
j differs

from F ′
j |x′

i← Z

xi

by a Laurent monomial factor, and by a factor consisting of

common divisors with Z. Neither one can be divisible by Fj , since it is not
monomial and depends on xi, unlike Z. Irreducibility of Fj and F ′′

j now
implies the statement.

Example 2.17. Consider the seed

t = {(a, b+ 1), (b, (a+ 1)2 + c2), (c, b2 + b+ a3 + a2)}

from Example 2.5 and its mutation

μc(t) = {(a, b+ 1), (b, a2 + d2), (d, b2 + b+ a3 + a2)}

from Example 2.10. We saw in Example 2.14 that F̂d = Fd/a. It can be
easily seen that F̂a = Fa and F̂b = Fb in μc(t), just like in Example 2.5. Let
us see what happens when we mutate the seed μc(t) at d. The variable d
changes into

F̂d

d
=

b2 + b+ a3 + a2

ad
= c.

The exchange polynomial Fa does not change (or changes only by a unit in
S = Z) since it does not depend on d. To compute the new Fb, we make the
substitution
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d ←− F̂d|b=0

c
=

a(a+ 1)

c
.

The result is a2 + (a(a+1)
c )2. Now we need to kill all common factors it has

with a(a+1), and change it to an irreducible polynomial by multiplying by
a monomial. The first step kills the factor a2, resulting in 1 + (a+1

c )2, and
the second step turns it into (a+1)2 + c2. Thus, the resulting mutated seed
can be chosen to be

μd(μc(t)) = {(a, b+ 1), (b, (a+ 1)2 + c2), (c, b2 + b+ a3 + a2)} = t.

This agrees with Proposition 2.16.

3. Laurent phenomenon algebras

3.1. Definition

Let S be a fixed coefficient ring and F denote the ambient fraction field in n
indeterminates as in Section 2. A Laurent phenomenon algebra (A, {(x,F})
is a subring of A ⊂ F together with a distinguished collection of seeds
{(x,F)} ⊂ F belonging to the ambient field F . The algebra A ⊂ F is gen-
erated over S by all the variables x in any of the seeds of A. The seeds
satisfy the condition: for each seed (x,F) and i ∈ [n], we are given a seed
(x′,F′) = μi(x,F) obtained from (x,F) by mutation at i. Thus the seeds
form the vertices of a n-regular graph, where the edges are mutations. Fur-
thermore, we assume all seeds are connected by mutation. We shall often
write A to mean the pair (A, {(x,F)}). To emphasize that the seeds are part
of the data we shall say “LP algebra A”, and if the seeds are not part of the
information, we say “commutative ring A”.

If t = (x,F) is any seed in F , we shall let A(t) denote any LP algebra
which has t as a seed. We say that A(t) is generated (as a LP algebra) by t,
or has initial seed t. Since seed mutation is only well-defined up to units, the
seeds of A(t) are not determined by t. However, as we shall see presently,
the commutative subring A(t) ⊂ F is determined by t.

3.2. Equivalence of seeds

Recall that for two elements f, g ∈ F , we write f ∝ g to mean that f and
g differ (multiplicatively) by a unit in S. We say that two seeds (x,F) and
(x′,F′) are equivalent if the following two conditions hold:
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(1) For each i we have xi ∝ x′i, and
(2) For each i we have Fi ∝ F ′

i , where Fi, F
′
i are viewed as elements of the

ambient field F = Frac(S[x1, x2, . . . , xn]) = Frac(S[x′1, x
′
2, . . . , x

′
n]).

Lemma 3.1. Suppose (x,F) and (x′,F′) are equivalent seeds. Let (y,G)
and (y′,G′) be obtained from (x,F) and (x′,F′) respectively by mutation at
i. Then (y,G) and (y′,G′) are equivalent seeds.

Lemma 3.2. Suppose A(t) and A′(t) are two LP algebras generated by a
fixed seed t. Then each seed of A(t) is equivalent to some seed of A′(t) and
conversely. In particular, as subrings of F , the two commutative rings A(t)
and A′(t) are identical.

Example 3.3. Let S = Z[C,C−1] and consider two LP algebras A and A′

generated by the same seed

t = {(a, f + C), (f, a+ C)}.

The first LP algebra A has cluster variables

a, b, d =
b+ 1

a
, e =

bC + a+ C

ab
, f =

a+ C

b
,

and seeds

{(a, b+ 1), (b, a+ C)}, {(b, Cd+ 1), (d, b+ 1)}, {(d, e+ 1), (e, Cd+ 1)},
{(e, f + C), (f, e+ 1)}, {(a, f + C), (f, a+ C)}.

The second LP algebra A′ has cluster variables

a, b, d′ =
b+ 1

aC
, e =

bC + a+ C

ab
, f =

a+ C

b
,

and seeds

{(a, (b+ 1)/C), (b, a+ C)}, {(b, C2d′ + 1), (d′, (b+ 1)/C)},
{(d′, (e+ 1)/C), (e, C2d′ + 1)}, {(e, f + C), (f, (e+ 1)/C)},

{(a, f + C), (f, a+ C)}.

Then the seeds split into pairs of equivalent ones in the obvious way. For
example, the seeds {(d, e+1), (e, Cd+1)} and {(d′, (e+1)/C), (e, C2d′+1)}
are equivalent since d ∝ d′ and also e+1 ∝ (e+1)/C and Cd+1 ∝ C2d′+1.
It is also easy to see that the rings generated by a, b, d, e, f and a, b, d′, e, f
over S = Z[C,C−1] coincide, in agreement with Lemma 3.2.
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3.3. Normalization

Let A be a Laurent phenomenon algebra. We will say that A is normalized
if whenever two seeds t1, t2 are equivalent, we have that t1 = t2. Suppose A′

is another LP algebra with the same ambient field as A. Then we will say A
is the normalization of A′ if A is normalized, and there is a surjective map
p : t′ 	→ t sending seeds of A′ to seeds of A such that

(1) for each seed t′ of A′, we have that p(t′) and t′ are equivalent, and
(2) for each seed t′ ofA′ and each i ∈ [n] we have that p(μi(t

′)) = μi(p(t
′)).

By Lemma 3.1, we see that (1) and the fact that A is normalized implies
(2). Our usage of “normalization” is different from, but related to, the usual
usage in cluster algebras [CA1].

The following result follows from Lemma 3.2.

Lemma 3.4. Suppose A and A′ are two LP algebras both generated by a
fixed seed t. If A′ is normalized, then it is the normalization of A.

Example 3.5. Both of the LP algebras in Example 3.3 are normalized, and
thus each of them is a normalization of the other. One could get a non-
normalized LP algebra A′′ with ten seeds by taking the multiset union of
all the seeds in A and in A′. The exchange graph (see Section 3.6) of A′′

is a 10-cycle that goes once through each of the ten seeds: imagine gluing
the two 5-cycle exchange graphs of A and A′′ by cutting one of the edges
incident to the initial seed t.

3.4. Finite type and finite mutation type

Suppose A is a LP algebra which is normalized. Then we say that A is of
finite type if it has finitely many seeds. If A is not necessarily normalized,
we say that A is of finite type if it has a normalization A′ of finite type. This
condition implies that A has finitely many equivalence classes of seeds, and
the converse holds in rank two (Corollary 6.5) but is not clear in general.

Call two seeds t and t′ similar if there exists a seed t′′ equivalent to
t′ such that t′′ can be obtained from t by renaming the cluster variables
(and substituting this renaming into the exchange polynomials). In partic-
ular, equivalent seeds are similar. Let us say that an LP algebra is of finite
mutation type if it has finitely many similarity classes of seeds. In the case
of cluster algebras there is a beautiful theory of cluster algebras of finite
mutation type, see [FSTh, FST]. See Sections 7.1 and 7.2 for examples of
interesting similarity classes of seeds, and of interesting LP algebras of finite
mutation type.
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3.5. Freezing

Let A be a rank n Laurent phenomenon algebra, and (x,F) a chosen seed
in A. Let i ∈ [n]. Let S′ = S[x±1

i ]. Let {(x(1),F(1)), (x(2),F(2)), . . .} be the
subset of seeds that can be obtained from (x,F) by mutation at the indices

j ∈ [n] \ i. In particular, each seed (x(k),F(k)) has x
(k)
i = xi.

For each seed (x(k),F(k)) we produce a rank n − 1 seed (x′(k),F′(k))

as follows: we remove (xi, Fi), and we replace F
(k)
j for j �= i by F

′(k)
j :=

F
(k)
j /xdi , where the power xdi is the same as that in F̂

(k)
j . We also have

x
′(k)
j = x

(k)
j for j �= i. Let us now consider the collection of rank n − 1

seeds {(x′(k),F′(k))}. The polynomials F
′(k)
i are now considered elements

of S′[x1, . . . , xi−1, xi+1, . . . , xn]. We claim that the seeds (x′(k),F′(k)) sat-

isfy (LP1) and (LP2). Indeed, F
(k)
j /xdi is still irreducible in S′[x1, . . . , xi−1,

xi+1, . . . , xn] since any factorization in S′[x1, . . . , xi−1, xi+1, . . . , xn] would,

after clearing denominators, give a factorization of F
(k)
j in S[x1, . . . , xn].

Also, F
(k)
j /xdi will not be divisible by xk for k �= i, and will not depend on

xj (because the same holds for F
(k)
j ). Let A′ ⊂ F = Frac(S′[x1, . . . , xi−1,

xi+1, . . . , xn]) be the subalgebra generated by all the variables x′.

Example 3.6. Let A be an LP algebra over S = Z with the initial seed

t = {(a, b+ 1), (b, a+ c), (c, b+ 1)}.

We mutate at the two variables distinct from c several times to obtain four
more seeds:

{(b, c2d+ 1), (c, b+ 1), (d, b+ 1)}, {(c, e+ 1), (d, e+ 1), (e, c2d+ 1)},
{(c, e+ 1), (e, f + c), (f, e+ 1)}, and {(a, f + c), (c, f + a), (f, a+ c)}.

Let A′ be the LP algebra over S = Z[c, c−1] obtained from A by freezing
c in t. The seeds of A′ obtained from the above seeds of A are

{(a, (b+ 1)/c), (b, a+ c)}, {(b, c2d+ 1), (d, (b+ 1)/c)},
{(d, (e+ 1)/c), (e, c2d+ 1)}, {(e, f + c), (f, (e+ 1)/c)},

{(a, f + c), (f, a+ c)},

where

a, b, d =
b+ 1

ac
, e =

bc+ a+ c

ab
, f =

a+ c

b
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are the variables in those seeds, coinciding with the variables of the original
LP algebra A. Here we applied the freezing procedure as described above.
For example, in the first seed we have Fa = (b + 1)/c since c appears with
exponent 1 in the denominator Fa/F̂a in t ∈ A. The reader can verify that
after the identification C 	→ c, the LP algebra A′ from Example 3.3 can be
identified with the LP algebra A′ in the current example.

Proposition 3.7. The algebra A′, together with the seeds {(x′,F′)} are a
Laurent phenomenon algebra.

Proof. We have already explained that each (x′,F′) is a legitimate LP seed.
We show that if two seeds t = (x(r),F(r)) and μ�(t) = (x(s),F(s)) of A
are related by mutation at �, then so are t′ = (x′(r),F′(r)) and μ�(t)

′ =

(x′(s),F′(s)). By (2.1) and the definition of F
′(k)
j , we have that F̂

′(k)
j = F̂

(k)
j

for all k and j �= i. It follows that the equation x
(r)
� x

(s)
� = F̂

(r)
� implies that

x
′(r)
� x

′(s)
� = F̂

′(r)
� . Thus the cluster variables in A′ mutate correctly. Now we

check that the exchange polynomials in A′ mutate correctly. The equality

F̂
′(r)
j = F̂

(r)
j and the equality x

′(r)
j = x

(r)
j for all j �= i implies that we

perform the same substitution in (2.3) to calculate μ� for the seeds t and t′.
The rest of the calculation of the mutation is also the same, and the only

difference is that for the seed t′, we started with F
′(r)
j = F

(r)
j /xdi . But xi is a

unit in the coefficient ring S′ of A′, and mutations of exchange polynomials
are defined up to units, so we indeed have μ�(t)

′ = μ�(t
′).

3.6. Cluster complex and exchange graph

The cluster complex of a LP algebra is the simplicial complex with base set
equal to the set of cluster variables, and faces corresponding to collections
of cluster variables that lie in the same cluster. The exchange graph of a LP
algebra A is the graph with vertex set equal to the set of seeds of A, and
edges given by mutations.

Remark 3.8. The cluster complex of a LP algebra is not always a flag com-
plex: clusters are not determined by pairwise compatibility. Take the seed

t = {(x1, P ), (x2, P ), (x3, Q), (x4, Q)}

where P,Q ∈ S are irreducible and not proportional. The normalized LP
algebra generated by t has 9 seeds and 6 cluster variables. Every pair of
cluster variables appears together in some cluster.

The corresponding property is conjectured to hold for cluster algebras
[FSTh].
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4. Comparison with cluster algebras of geometric type

We compare our notion of seeds and seed mutation with those in the theory
of cluster algebras. We will restrict ourselves to cluster algebras of geometric
type.

In this subsection we will take an integer m ≥ n and set S = Z[x±1
n+1,

x±1
n+2, . . . , x

±1
m ]. The variables xn+1, . . . , xm are called frozen variables. A

cluster algebra seed in F is a pair (x, B̃) where

(1) x = {x1, x2, . . . , xn} is a transcendence basis for F over Frac(S).
(2) B̃ = (bij) is am×n exchange matrix such that the top n×n submatrix

B of B̃ is a skew-symmetrizable integer matrix: that is, there exists
a (n× n) diagonal matrix D with positive diagonal entries such that
the matrix DB is skew-symmetric.

To a cluster algebra seed (x, B̃) we associate exchange polynomials {F1, . . . ,
Fn} defined by

(4.1) Fj =
∏
bij>0

x
bij
i +

∏
bij<0

x
−bij
i .

These exchange polynomials are always binomials. Recall that a vector v ∈
Zm is called primitive if it is non-zero, and the greatest-common-divisor of
the entries of v is equal to 1.

Lemma 4.1. Suppose the column (b1j , b2j , . . . , bmj) is a primitive integer
vector in Zm. Then Fj is irreducible in S[x1, . . . , xn] = Z[x1, x2, . . . , xm].

Proof. Our proof will show that Fj is irreducible even with complex coeffi-
cients. The Newton polytope N(p) of a polynomial p(x1, . . . , xm) ∈
Z[x1, . . . , xm] is the convex hull of the vectors (a1, a2, . . . , am) for all mono-
mials xa1

1 · · ·xam
m that appear in p. It is well-known that we have N(pq) =

N(p) +N(q) where addition here is the Minkowski sum.
The Newton polytope N(Fj) of a binomial is a line segment. If Fj can

be factorized non-trivially, then N(Fj) must be the Minkowski-sum of two
lattice polytopes which are not points. (In fact, these polytopes must be
line segments parallel to N(Fj).) In particular, this would imply that N(Fj)
contained an interior lattice point. But this would in turn imply that there is
an integer d > 1, namely one plus the number of such internal points, which
divides all the coordinates of the endpoints of N(Fj). The result follows.

We say that B̃ is primitive (or (x, B̃) is primitive) if the columns of B̃
are primitive integer vectors.
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Proposition 4.2. A primitive cluster algebra seed (x, B̃) gives rise to a
Laurent phenomenon algebra seed (x,F).

Cluster algebra seed mutation is given as follows. Let i ∈ [n]. Then the
mutation μi(x, B̃) of (x, B̃) at i is given by (x′, B̃′) where x′i = Fi/xi and
x′j = xj for j �= i. Here Fi is given by (4.1) and note that the formula uses

Fi and not F̂i! The new exchange matrix is given by

(4.2) b′kj =

⎧⎨⎩−bkj if k = i or j = i;

bkj +
|bki|bij + bki|bij |

2
otherwise.

Given a cluster algebra seed t = (x, B̃), the cluster algebra ACA(t) with
initial seed t is the collection of all seeds t′ obtained by successive muta-
tion from t, together with the subring of F generated over S by all cluster
variables x′ in any of these seeds. The property that the exchange matrix is
primitive is preserved under mutation of exchange matrices.

Lemma 4.3. Suppose B̃ is primitive. Then so is B̃′ = μi(B̃).

Proof. Suppose d divides b′kj for all k and some fixed j. Then by (4.2), d

divides bij , and so it must divide
|bki|bij + bki|bij |

2
for any k. It follows that

d divides bkj for all k. Thus if B̃ is primitive, so is B̃′.

Assume now that we are in the situation of Proposition 4.2. Let (x, B̃)
be any cluster algebra seed of ACA(t0) and assume that the exchange poly-
nomials give a legitimate LP algebra seed (x,F). Let the cluster algebra seed
nutation of (x,F) at i be (x′, B̃′). Let the Laurent phenomenon seed muta-
tion of (x,F) at i be (x′′,F′′). We want to compare (x′′,F′′) with (x′, B̃′).
The new cluster variable x′′i in the Laurent phenomenon seed mutation is
given by F̂i/xi instead of Fi/xi, so we have the equality x′′i = x′i if and only
if F̂i = Fi.

When do we have Fi = F̂i for a LP algebra seed arising from a cluster
algebra seed? If xi occurs in Fj then we know that xj does not appear in

Fi/F̂i by Lemma 2.7. If xi does not occur in Fj , then xj also does not occur in
Fi by the skew-symmetrizability of B. But then Fi|xj←Fj/x = Fi is divisible
by Fj only if Fi ∝ Fj , since Fi and Fj are both irreducible. In fact, for a
cluster algebra seed, we have Fi ∝ Fj only if Fi = Fj . This suggests we look
at the “coprime” condition of cluster algebras.

Recall from [CA3] that a cluster algebra seed (x, B̃) is called coprime if
the exchange binomials Fi are coprime in S[x1, x2, . . . , xn]. If (x, B̃) satisfies
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the condition of Proposition 4.2, then coprimality is equivalent to the con-
dition that Fi �= Fj for i �= j, and thus implies that Fi = F̂i for all i. This
suggests the following result.

Proposition 4.4. Suppose t0 = (x0, B̃0) is a primitive cluster algebra seed
where B̃0 is a full rank matrix. Then the cluster algebra ACA(t) of geometric
type generated by (x0, B̃0) is a Laurent phenomenon algebra, and for every
seed in ACA(t), cluster algebra seed mutation agrees with LP algebra seed
mutation.

Proof. By [CA3, Proposition 1.8], all seeds mutation equivalent to (x0, B̃0)
are coprime. By Lemma 4.3, all these seeds are also primitive. Thus every
seed of ACA(t0) is a LP algebra seed which in addition satisfies F̂i = Fi for
all i ∈ [n].

Let (x, B̃) be any cluster algebra seed of ACA(t0) and let (x,F) denote
the corresponding LP algebra seed. Let the cluster algebra seed obtained
from mutation at i be (x′, B̃′) and let the Laurent phenomenon seed muta-
tion of (x,F) at i be (x′′,F′′). Since F̂i = Fi, we have x′i = x′′i .

We now check that F ′
j = F ′′

j . First, suppose that Fj does not involve xi.
This happens if and only if bij = 0 and directly from (4.2) we have that the
j-th column of B̃′ is the same as the j-th column of B̃. It follows that in
this case we have F ′′

j = Fj = F ′
j .

Now suppose that Fj does involve xi and so bij �= 0. Suppose Fj = A+B
where A is the monomial involving xi. We now calculate F ′′

j directly from

the definitions in Section 2. By the skew-symmetrizability condition of B̃,
we have that bji �= 0. Thus Fi involves xj , and so Fi|xj←0 is actually a
monomial (rather than a binomial). Then Gj = A′ + B as defined in (2.3)
is the sum of two monomials. Now let us consider the occurrences of xk for
k �= i in Gj . We calculate that as long as bki and bij have the same sign then

A′/A has a factor of x
bkibij
k . If bkj has the same sign as bij (or bkj = 0) then

all powers of xk in Gj occur in the same monomial. Otherwise if bkj �= 0
and has opposite sign to bij , then powers of xk occur in both monomials A′

and B of Gj . To obtain F ′′
j any common factors of xk are factored out. A

case-by-case computation shows that this is exactly what happens in (4.2),
giving the equality F ′′

j = F ′
j . Thus (x

′′,F′′) is the Laurent phenomenon seed

associated to (x′, B̃′).

The conditions of Proposition 4.4 holds for all cluster algebras which
have an initial seed with principal coefficients. A seed (x, B̃) has principal
coefficients if the matrix B̃ is 2n×n, and the bottom n×n submatrix is the
identity matrix. As shown in [CA4], “one can think of principal coefficients



140 Thomas Lam and Pavlo Pylyavskyy

as a crucial special case providing control over cluster algebras with arbitrary
coefficients”.

Corollary 4.5. Every cluster algebra with principal coefficients is a Laurent
phenomenon algebra.

Remark 4.6. The full rank and primitive conditions on the exchange matrix
B̃ can be thought of as certain non-degeneracy conditions on the cluster
algebra which have appeared in a number of places in the literature. For ex-
ample, constructions by Geiss, Leclerc, and Schroer [GLS] of cluster algebras
that are not unique factorization domains fail these conditions.

Example 4.7. Let us finish with an example of an LP algebra and a cluster
algebra which have the same initial seed but are different. Working with
S = Z and F = Q(a, b, c), consider the following initial seed:

t = {(a, 1 + b), (b, a+ c), (c, 1 + b)}.

(Note that Fa = Fc.) Then there are four more variables in this LP algebra,
given by

d =
1 + b

ac
, e =

a+ c

b
, e =

a+ c+ bc

ab
, f =

a+ c+ ab

bc
,

and the cluster complex consists of the faces abc, ace, cef , aeg, abd, bcd,
cfd, efd, egd, agd. The two other kinds of clusters that appear are

{(a, e+ b), (e, a+ c), (c, e+ b)} and {(d, 1 + b), (b, 1 + c2d), (c, 1 + b)}.

On the other hand, the cluster algebra this seed produces is a type A3 cluster
algebras with a total of 9 variables and 14 clusters.

5. The caterpillar lemma and Laurent phenomenon

In this section we establish the namesake property of Laurent phenomenon
algebras:

Theorem 5.1. Let A be a Laurent phenomenon algebra and t = (x,F) be a
seed of A. Then every cluster variable of A belongs to the Laurent polynomial
ring L(t) = S[x±1

1 , . . . , x±1
n ].

For LP algebras of rank n ≤ 1 the result is trivial, so we assume n ≥ 2
from now on. Our proof follows the same strategy as Fomin and Zelevinsky’s
work [CA1, FZ1]. We prove an analogue of Fomin and Zelevinsky’s Cater-
pillar Lemma. Let t0 = t contain cluster variables x, y, and let t1, t2, t3 be
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the seeds obtained by mutating first at x, to get z, then at y to get u, and
finally at z to get v, as in the following diagram:

x,y• P̂
———

z,y• Q̂
———

z,u• R̂
———

v,u•

Here P̂ , Q̂, R̂ are the exchange Laurent polynomials of the respective muta-
tions, so xz = P̂ , yu = Q̂ and zv = R̂. We shall think of the Laurent poly-
nomials P̂ , Q̂, R̂ as polynomials in one special variable: P̂ = P̂ (y), Q̂ = Q̂(z)
and R̂ = R̂(u).

Let L = L(t0) denote the Laurent polynomial ring for the original cluster
containing x and y. In the following, gcd is always taken inside L. The
greatest common divisor is defined up to a unit, so saying that gcd(a, b) = 1,
is the same as saying that the only elements that divide both a and b are
units.

Lemma 5.2. We have

• u ∈ L,
• gcd(z, u) = 1.

Proof. To show that u ∈ L, it suffices to show that Q̂(z) ∈ L. But by
(2.1) and Lemma 2.6, Q̂(z)|z←P̂ /x lies in L. Thus the claim follows from the

equality z = P̂ /x in F .
Now, x and y are units in L and u = Q̂/y and z = P̂ /x so gcd(z, u) =

gcd(P̂ , Q̂) = gcd(P, Q̂). Again by (2.1) and Lemma 2.6, Q̂(x) = Q̂(z)|z←P̂ /x
is not divisible by P in L. Since P is irreducible in L, it follows that
gcd(P, Q̂) = 1.

Recall that f ∝ g means that f and g differ multiplicatively by a unit
in S.

Lemma 5.3. Suppose that considered as elements of the ambient field F ,
we have that P ∝ Q ∝ R and hence the polynomials do not depend on y, z, u
respectively. Then we have

z =
P

xyM
, u ∝ x, and v ∝ y,

where M is a monomial not involving x, y, z, v, u.

Proof. By definition, the exchange polynomials for x and y in t0 are P and

Q respectively. Using the definition (2.1), we have P̂ =
P

yM
, where M is

a monomial in the other (not x or y) cluster variables of t0. This gives the
formula for z.
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Similarly, Q̂ =
Q

zM ′ , giving u =
Q

yzM ′ ∝
xM

M ′ . From the definition (2.1)

and the assumption P ∝ Q, we see that the cluster variables w that occur
in M are also exactly the ones occurring in M ′, with the same degree. So
we have M = M ′, and u ∝ x. The argument for v ∝ y is the same.

Lemma 5.4. We have

• v ∈ L;
• gcd(z, v) = 1.

Proof. We have v = R̂(u)/z. Since xz = P̂ (y), we have that z/P (y) is a unit
in L, and thus z is irreducible in L by (LP1).

Case 1: Suppose that R(u) does not depend on u. Then by Lemma 2.11,
by the definition of mutation of exchange polynomials, R ∝ P and P (y) does
not depend on y. Now R̂ = R · M(u), where M(u) is a Laurent monomial
depending on u (and other cluster variables in t2) and not on z. The power
of u that appears in M(u) is equal to −1 if Q(z) divides R, and equal to
0 otherwise (we use (LP1) that R and Q(z) are irreducible). Since R does
not depend on z, the former occurs if and only if Q ∝ R, using (LP3). By
Lemma 5.3, v ∝ y is a unit in L, so both of the claims follow.

Thus we may assume that R̂ = R ·M where M is a Laurent monomial
not involving u. Similarly, we may assume that P̂ = P ·M ′ where M ′ is a
Laurent monomial not involving y. We calculate

v =
R̂

z
∝ P ·M

(P ·M ′)/x

giving that v is a unit in L, and again both of the claims follow.

Case 2: Suppose that R(u) depends on u. Then by Lemma 2.7, Q̂(z) =
Q(z) · M for a monomial M not depending on z. Suppose that R̂(u) =
R(u) · u−p ·M ′, for a monomial M ′ not depending on u, and p ≥ 0.

Case 2a: Suppose that Q̂(z) depends on z. Then p = 0 and R̂/R is a
unit in L. We have

R(u)

z
=

R
(
Q̂(z)
y

)
z

=
R
(
Q̂(z)
y

)
−R

(
Q̂(0)
y

)
z

+
R
(
Q̂(0)
y

)
z

Since R(u) mutates to P (y), we know that

(5.1)
R
(
Q̂(0)
y

)
z

=
P (y) ·M ′′ ·A

z
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where A is the product of some factors of Q̂(0) which can be chosen to

be polynomial, and M ′′ = M ′′(y) is a Laurent monomial in y, and the

other variables (that is, M ′′ does not involve z or u). Note that Q̂(0) ∈ L
and thus A ∈ L. As z = P̂ (y)/x and P̂ (y)/P (y) is a unit in L, it follows

that
R(Q(0)

y
)

z ∈ L. Also, f(z) = R
(
Q̂(z)
y

)
− R

(
Q̂(0)
y

)
is a polynomial in z

with constant term removed. It follows that 1
z

(
R
(
Q̂(z)
y

)
−R

(
Q̂(0)
y

))
is a

polynomial in z, and thus lies in L. Thus R(u)
z ∈ L, and since R̂/R ∈ L, we

have v = R̂/z ∈ L.
Now, Q̂(0) does not involve y, so the quantity A in (5.1) does not involve

y. Since we have assumed that R(u) depends on u, by Lemma 2.11, P (y)

depends on y as well, so we see that
R
(

Q̂(0)

y

)
z is not divisible by z in L. Since

z is irreducible in L, it follows that
R
(

Q̂(0)

y

)
z = Cx, where C ∈ L does not

depend on x, and gcd(C, z) = 1.

However, f(z) is a polynomial in z whose coefficients do not depend on

x. Thus we have
R(u)

z
≡ B + Cx mod z

for B,C ∈ L satisfying gcd(C, z) = 1, and B,C do not depend on x. It

follows that gcd(z, v) = gcd(z,B + Cx) = 1.

Case 2b: Suppose Q̂(z) does not depend on z, so Q̂(z) = Q̂(0). Then

R̂(u) =

(
Q̂(0)

y

)−p

·R
(
Q̂(0)

y

)
·M ′

where M ′ involves only the other cluster variables, and by (2.1) and
Lemma 2.6, p is chosen so that R̂ ∈ L and is not divisible by Q̂(0). But

by the definition of how to obtain P (y) from R(u) by mutation, we have

R

(
Q̂(0)

y

)
= P (y) ·M ′′ ·A

where A is a product of some factors of Q̂(0), and M ′′ is a unit in L. Since
Q̂(0) = Q̂(z) is irreducible by (LP1), we see that R̂(u)/P (y) is a unit in

L. It follows that v = R̂(u)/z = R̂(u)x/P̂ (y) ∈ L is a unit in L, and

gcd(z, v) = 1.
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Proof of Theorem 5.1. Denote by t0 = t our original cluster the Laurent
polynomial ring L(t) we are considering. Let thead be the cluster containing
the cluster variable w we are trying to prove lies in L(t). Find the mutation
path from t0 to thead which we shall refer to as the spine. Here we consider the
exchange graph to be a (infinite) regular tree of degree n, ignoring possible
monodromies. Thus every cluster thead can be assumed to have a unique
path from t0. The argument is by induction on the length the spine. If it has
length one, the statement is obvious, and if it has length two it is addressed
in Lemma 5.2.

Assume now the length of the spine is at least three. Assume that the
first two steps from t0 to thead are

x,y• P̂
———

z,y• Q̂
———

z,u• .

Consider a third mutation, which mutates the same variable as the first step
did, obtaining the familiar diagram

x,y• P̂
———

z,y• Q̂
———

z,u• R̂
———

v,u•

where the clusters from left to right are t0, t1, t2 and t3. Note that t3 might
not lie on the spine, but it is closer to thead than t0, and so is t1. By the
induction assumption we have w ∈ thead lies in L(t1) and in L(t3). Thus
we have two expressions w = f/za and w = g/ubvc, where f and g lie in
L = L(t0). By Lemmas 5.2 and 5.4 we know z is relatively prime with both
u and v, which implies w ∈ L.

6. Rank two

In this section we classify rank two Laurent phenomenon algebras, and give
an explicit description of normalized LP algebras of rank two with finitely
many seeds. Let A be a LP algebra of rank 2, with seeds . . . , t−1, t0, t1, . . .
and cluster variables . . . , x−1, x0, x1, x2, . . . so that ti contains the cluster
variables {xi, xi+1} as in the following:

(6.1) ———
x0,x1• ———

x1,x2• ———
x2,x3• ———

x3,x4• ———

Note that the seeds and variables may be repeated.

Example 6.1. Let S be a coefficient ring and F = Frac(S[x1, x2]). Let
q1, q2, r1, r2 ∈ S and b, c ∈ Z≥1 be such that r1 + q1x

c and r2 + q2x
c are
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irreducible in S[x]. Let Ab,c be the rank two LP algebra with initial seed
t1 = {{x1, x2}, {r2+q2x

c
2, r1+q1x

b
1}}. While we cannot apply Proposition 4.4

(unless r1, r2, q1, q2 are variables), nevertheless the cluster algebra ACA(t1)
with initial seed t1 can naturally be identified with Ab,c. The seeds of Ab,c

are of the form ti = {{xi, xi+1}, {ri+1 + qi+1x
bi+1

i+1 , ri + qix
bi
i }} where bi = c

if i is even, and bi = b if i is odd, and ri, qi ∈ S satisfy recursions given in
[CA1, Example 2.5].

By Theorem 5.1, we may write

xm =
S(x1, x2)

x
d1(m)
1 x

d2(m)
2

for a polynomial S(x1, x2) ∈ S[x1, x2] not divisible by either x1 or x2. Fol-
lowing terminology of cluster algebras [CA1] we call the vector

δ(m) = d1(m)α1 + d2(m)α2

the denominator vector of xm. Here α1 and α2 are a basis of a two-dimensio-
nal lattice Q 
 Z2. Given a rank two Cartan matrix(

2 −b
−c 2

)
we have a set Φ+ of positive real roots, and a set Φ+∪{−α1,−α2} of almost
positive real roots. We refer the reader to [CA1, Section 6] for full details.

Proposition 6.2. Suppose the exchange polynomials of t1 are F1 = P (x2)
and F2 = Q(x1) with degrees c ≥ 1 and b ≥ 1 respectively. Then the set of
denominator vectors of A is exactly Φ+ ∪ {−α1,−α2}.
Proof. We first observe that the condition that F1 and F2 depend on x2
and x1 implies that all the exchange polynomials of A depend on the other
variable of that cluster, and in particular that F̂ = F for all the exchange
polynomials of A.

When x2 is mutated, we have

F ′
1(x0) =

xc0F1(F2(0)/x0)

T

for T ∈ S not depending on x1 or x2. In particular F ′
1 also has degree c

in x0. It follows easily from this that the denominator vectors δ(m) depend
only on b and c, and not on P (x2) and Q(x1). So to compute δ(m) we may
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assume we are in the situation of Example 6.1 where the result is established
in [CA1].

Just as in [CA1, Theorem 6.1], each δ(m) can be computed explicitly,
but we shall not need this in the following. Proposition 6.2 does not consider
the case where P (x2) does not depend on x2, or Q(x1) does not depend on
x1. Instead we have

Proposition 6.3. Suppose the exchange polynomials of t1 are F1 = P (x2)
and F2 = Q(x1) and suppose that Q(x1) does not depend on x1, and fur-
thermore that P �∝ Q. Then x0 ∝ x4.

Proof. Let d be such that P̂ = P/xd1, and let k be the degree of P as a
polynomial in y. Clearly k ≥ d. Then

R ∝
P ( Q

x3
)xk3

Qd

where R = R(x3) is the exchange polynomial for x2 in t2 = {x2, x3}. In
terms of the t1 = {x1, x2} cluster we have

R ∝
P (x1)(

Q
x1
)k−d

xd1
,

and clearly k − d is the largest power of Q
x1

you can divide it by such that

the result is a Laurent polynomial. Thus by Lemma 2.9 R̂ = R/xk−d
3 . But

then

R̂ ∝
P (x1)(

Q
x1
)k−d

xd1(
Q
x1
)k−d

=
P (x1)

xd1
= P̂ ,

and therefore x0 and x4 are differ by a unit in S.

Theorem 6.4. Suppose the exchange polynomials of t1 are F1 = P (x2) and
F2 = Q(x1) with degrees c ≥ 0 and b ≥ 0 respectively, and assume that
c ≥ b. Then A is of finite type if and only if either b = 0, or (b, c) is equal
to one of (1, 1), (1, 2) and (1, 3).

Proof. For simplicity let us denote the initial seed by t1 = {(x, P (y)),
(y,Q(x))}, so x1 = x and x2 = y have exchange polynomials P (y) and
Q(x) respectively.

Suppose b = 0. If P ∝ Q then A has a normalization A′ consisting of
the following three seeds (see Lemma 5.3)

(6.2) {(x, P ), (y, P )}, {(x, P ), (z, P )}, {(z, P ), (y, P )} where z = P/xy.
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If P �∝ Q then by Proposition 6.3 (and with k, d as in Proposition 6.3)
our LP algebra has normalization A′ whose four seeds are

(6.3) {(x, P ), (y,Q)}, {(z, P ), (y,Q)}, {(z,R), (u,Q)} {(x,R), (u,Q)}

where

P̂ = P/yd, Q̂ = Q, R̂ = R/uk−d = P̂ .

Now suppose that b > 0 and thus also c > 0. We apply Proposition 6.2.
It is clear that the denominator vector is an invariant of the equivalence
class of a seed. Thus A can be of finite type only if the set Φ+∪{−α1,−α2}
of almost positive roots is finite, which happens if and only if the Cartan
matrix (

2 −b
−c 2

)
is of finite type. Thus we are reduced to (b, c) being equal to one of (1, 1),
(1, 2) and (1, 3). For each of these cases, we shall now construct a normalized
LP algebra A′ with initial seed t1 = {(x, P (y)), (y,Q(x))}. By Lemma 3.4,
this normalized LP algebra A′ will be the normalization of A.

Before we begin, we note that for all the exchange polynomials we shall
encounter, we have F̂ = F .

The case (b, c) = (1, 1).

In this case we have

t1 = {(x,A0y +B0), (y, C0x+D0)}

where A0, B0, C0, D0 ∈ S, and A0, C0 �= 0. Let E = gcd(B0, D0) (which is
only defined up to a unit in S). Renaming the coefficients, we shall write
the initial seed now as

{(x,Ay +BE), (y, Cx+DE)},

where A := A0, B := B0/E, C := C0, and D := D0/E, and B,D now
satisfy gcd(B,D) = 1. Also the irreducibility of Ay + BE and Cx + DE
is equivalent to gcd(A,B) = gcd(A,E) = gcd(C,E) = gcd(C,D) = 1, and
there are no further restrictions on A,B,C,D,E.

Mutation at x gives the seed

{(z,Ay +BE), (y,Dz +BC)}.
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Indeed, the mutation rule tells us to substitute z = BE/x into Cx + DE,
and then kill any common factors with BE. Thus we kill the factor E in
BCE+DEz, but no other factor since D is relatively prime with B and C,
by construction.

This seed has exactly the same form as the initial seed, except the coef-
ficients A,B,C,D,E are permuted as follows:

B ←→ E, C ←→ D.

Furthermore this relabeling just permutes the five relatively prime pairs

{(B,D), (A,B), (A,E), (C,E), (C,D)}.

As a result, we know that the next mutation will be identical to the first one,
just with a different permutation of coefficients. Proceeding in this fashion,
one checks that the list of clusters has the form given in Figure 1. An example
is the above calculation obtaining cluster {(z,Ay+BE), (y,Dz+BC)} from
the cluster {(x,Ay + BE), (y, Cx + DE)}. The fact the cluster variables
“wrap around” after five mutations is a simple computer calculation with
rational functions. For example, it says that

z =
Ay +BE

x
u =

Dz + CB

y
t =

Eu+AC

z

gives t =
Cx+ ED

y
. It follows from denominator vector considerations

(Proposition 6.2) that all of x, y, z, u, t are distinct even up to units.
Note that the subgroup of the permutation group of {A,B,C,D,E}

generated by the involutions (BC)(DE) and (AB)(DE) is a dihedral group
of order 10. The element in the center of this subgroup acts on the seeds by
swapping the two cluster variables and exchange polynomials.

The case (b, c) = (1, 2).
The initial seed in this case looks like

{(x,A0y
2 +B0y + C0), (y,D0x+ E0)}.

Let F0 = gcd(C0, E0), and define C1 := C0/F0 and E := E0/F0, and let
G = gcd(C1, B0, F0), and set C := C1/G, B = B0/G, and F := F0/G. This
writes the seed in the form

t1 = {(x,Ay2 +BGy + CFG2), (y,Dx+ EFG)}
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b = 0 triangle

{(x, P ), (y, P )}
{(x, P ), (z, P )}
{(z, P ), (y, P )}

z = P/xy

b = 0 square

{(x, P ), (y,Q)}
{(z, P ), (y,Q)}
{(z, R), (u,Q)}
{(x,R), (u,Q)}

P̂ = P/yd, Q̂ = Q, R̂ = R/uk−d = P̂ .

(b, c) = (1, 1) pentagon

{(x,Ay + BE), (y, Cx + DE)}
{(z, Ay + EB), (y,Dz + CB)}
{(z, Eu + AC), (u,Dz + BC)}
{(t, Eu + CA), (u,Bt + DA)}
{(t, Cx + ED), (x,Bt + AD)}

gcd(A,B) = gcd(A,E) = gcd(B,D) = gcd(C,D) = gcd(C,E) = 1

mutation generated by (BC)(DE) and (AB)(DE)

(b, c) = (2, 1) hexagon

{(x,Ay2 + BGy + CFG2), (y,Dx + EFG)}
{(z, Ay2 + BGy + FCG2), (y, Ez + DCG)}
{(z, Fu2 + BDu + ACD2), (u,Ez + GCD)}
{(v, Fu2 + BDu + CAD2), (u,Gv + EAD)}
{(v, Ct2 + BEt + FAE2), (t, Gv + DAE)}
{(x,Ct2 + BEt + AFE2), (t,Dx + GFE)}

gcd(A,G) = gcd(C,E) = gcd(D,E) = gcd(D,F ) = gcd(D,G) = gcd(E,G) =

gcd(A,B,C) = gcd(A,B, F ) = gcd(B,C, F ) = 1

mutation generated by (CF )(DE) and (AC)(EG)

(b, c) = (3, 1) octagon

{(x,Ay3 + BKLy2 + CHK2L2y + DGH2K3L3), (y, Ex + FGHKL2)}
{(z, Ay3 + BLKy2 + CHL2K2y + GDH2L3K3), (y, Fz + EDHLK2)}
{(z,Gu3 + CEKu2 + BDE2K2u + AHD2E3K3), (u, Fz + LHDEK2)}
{(w,Gu3 + CKEu2 + BDK2E2u + HAD2K3E3), (u, Lw + FADKE2)}
{(w,Hs3 + BFEs2 + CAF 2E2s + GDA2F 3E3), (s, Lw + KDAFE2)}
{(v,Hs3 + BEFs2 + CAE2F 2s + DGA2E3F 3), (s,Kv + LGAEF 2)}
{(v,Dt3 + CLFt2 + BGL2F 2t + HAG2L3F 3), (t,Kv + EAGLF 2)}
{(x,Dt3 + CFLt2 + BGF 2L2t + AHG2F 3L3), (t, Ex + KHGFL2)}

gcd(A,K) = gcd(A,L) = gcd(D,F ) = gcd(D,L) = gcd(E,F ) = gcd(E,G) =

gcd(E,H) = gcd(E,K) = gcd(E,L) = gcd(F,H) = gcd(F,K) = gcd(F,L) =

gcd(G,K) = gcd(K,L) = gcd(A,B,H) = gcd(C,D,G) = gcd(A,B,C,D) =

gcd(A,B,C,G) = gcd(B,C,D,H) = gcd(B,C,G,H) = 1

mutation generated by (DG)(EF )(KL) and (AD)(BC)(FK)(GH)

Figure 1: Finite type normalized LP algebras of rank two.

and by construction we have that gcd(CG,E) = gcd(C,B, F ) = 1. Fur-

thermore, the irreducibility of Ay2 + BGy + CFG2 and Dx + EFG imply

that gcd(A,BG,CFG) = gcd(D,EFG) = 1. Together these gcd conditions

are equivalent to the relatively prime pairs and triples listed in Figure 1.

Note that these gcd conditions do not imply that Ay2 +BGy+CFG2 does

not factor into two linear factors. This is a condition that is separately im-

posed.

Mutation of t1 at x produces the seed

{(z,Ay2 +BGy + CFG2), (y,Ez + CDG)}.
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This follows from the definitions, together with the observation that Ez +
CDG has no common factor with (Fx)|y←0 = CFG2, since gcd(E,CDG) =
1. This new seed is identical to the original seed with coefficients permuted
as follows:

F ←→ C, E ←→ D.

Furthermore, this relabeling just permutes the relatively prime pairs and
triples.

Similarly, the mutation at y of t1 produces

{(x,Ct2 +BEt+AFE2), (t,Dx+ EFG)}.

To see this we note that (Fy)|x←0 = EFG, and substituting y = EFG/t into
Fx = Ay2+BGy+CFG2 we obtain the Laurent polynomial A(EFG)2t−2+
BEFG2t−1 + CFG2. We then divide by FG2 and multiply by t2 to ob-
tain F ′

x = Ct2 + BEt + AFE2. Note that there are no further common
factors among the coefficients because we have gcd(C,BE,AFE2) = 1.
This seed is identical to the original seed with coefficients permuted as fol-
lows:

A ←→ C, E ←→ G.

Again, this relabeling just permutes the relatively prime pairs and triples.

Since the form of the seed always remains the same, it is easy to repeat-
edly mutate it. An involved but straightforward computer calculation then
checks that after the six mutations one indeed comes back to the original
variables. One checks that the resulting list of clusters is as given in Figure 1.
It follows from denominator vector considerations (Proposition 6.2) that all
of x, y, z, u, v, t are distinct even up to units.

In this case the subgroup of the permutation group on {A,B,C,D,E, F,
G} generated by the involutions (CF )(DE) and (AC)(EG) has order six.

The case (b, c) = (1, 3).

The initial seed in this case looks like

{(x,A0y
3 +B0y

2 + C0y +D0), (y,E0x+ F0)}

where A0, B0, C0, D0, E0, F0 ∈ S.

Let G0 = gcd(D0, F0) and define D1 := D0/G0 and F = F0/G0. Then
let H0 = gcd(D1, C0, G0), and define D2 := D1/H0, C1 := C0/H0 and G1 =
G0/H0. Then let K = gcd(D2, C1, B0, H0) and define D := D2/K, C2 :=
C1/K, B1 := B0/K, and H1 := H0/K. Finally, let L = gcd(G1, C2, B1, H1)
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and define G := G1/L, C := C2/L, B := B1/L, and H := H1/L. As a
result, the seed can be written in the form

t1 = {(x,Ay3 +BKLy2 +CHK2L2y+DGH2K3L3), (y,Ex+ FGHKL2)}

and we know that

gcd(DHK2L,F ) = gcd(DK,CKL,GL)

= gcd(D,CL,BL,HL) = gcd(G,C,B,H) = 1.

Also the irreducibility of the exchange polynomials gives

gcd(A,BKL,CHK2L2, DGH2K3L3) = gcd(E,FGHKL2) = 1.

Together these gcd conditions are equivalent to the relatively prime pairs,
triples, and quadruples listed in Figure 1.

We claim that mutation at x produces the seed

t2 = {(z,Ay3+BKLy2+CHK2L2y+DGH2K3L3), (y, Fz+DEHLK2)}.

To see this, we substitute x = (Fx)|y←0/z = DGH2K3L3/z into Fy to obtain
the Laurent polynomial DEGH2K3L3z−1 +FGHKL2 = (DEHLK2z−1 +
F )GHKL2. To check that there are no common factors between
DEHLK2z−1 + F and DGH2K3L3 it is enough to verify that
gcd(F,DEHLK2) = 1, which follows from the gcd conditions listed in
Figure 1. This new seed is identical to the original seed with coefficients
permuted as follows:

K ←→ L, E ←→ F, G ←→ D.

Furthermore, this relabeling just permutes the gcd conditions.
Similarly, the mutation at y of the original seed produces

{(x,Dt3 + CFLt2 +BGF 2L2t+AHG2F 3L3), (t, Ex+ FGHKL2)}.

To see that gcd(D,CFL,BGF 2L2, AHG2F 3L3) = 1, we use the conditions

gcd(D,F ) = gcd(D,L) = gcd(C,D,G)

= gcd(A,B,C,D) = gcd(B,C,D,H) = 1

from Figure 1. The new seed is identical to the original seed with coefficients
permuted as follows:
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B ←→ C, K ←→ F, G ←→ H, A ←→ D.

Furthermore, this relabeling just permutes the gcd conditions.
Again, we know that we can just proceed mutating and we will be

obtaining similar looking clusters where coefficients are just permuted as
described above. One checks that the resulting list of clusters is as given
in Figure 1. The check that the cluster variables correctly wrap around
is now a very involved computation with rational functions, which can
be verified by computer. In this case, the subgroup of the permutation
group on {A,B,C,D,E, F,G,H,K,L} generated by (DG)(EF )(KL) and
(AD)(BC)(FK)(GH) has order 8.

As a corollary we have

Corollary 6.5. A rank two LP algebra A is of finite type if and only if one
of the following equivalent conditions hold:

• A has finitely many equivalence classes of seeds;
• A has finitely many distinct cluster variables, up to units;
• A has finitely many distinct denominator vectors with respect to some
seed.

Proof. The “only if” direction follows from Theorem 6.4, since all the three
properties hold for the LP algebras listed in Figure 1, and all three properties
hold for a LP algebra A if and only if it holds for the normalization A′ of
A.

For the “if” direction, we first observe that finitely many equivalence
classes of seeds implies finitely many distinct cluster variables, up to units,
which in turn implies finitely many distinct denominator vectors with re-
spect to any seed. So suppose A has finitely many distinct denominator
vectors with respect to some seed. Then in the proof of Theorem 6.4 we
have constructed a normalization A′ of A with finitely many seeds. Thus A
is finite type.

A rank two LP algebra of infinite type has an exchange graph which is a
doubly-infinite path. A normalized rank two LP algebra of finite type has an
exchange graph which is a triangle, square, pentagon, hexagon, or octagon
as described in Figure 1. Only triangles do not occur as exchange graphs of
cluster algebras of rank two. However, the exchange graphs of finite type LP
algebras in higher rank is vastly richer than those of cluster algebras, as we
shall partly explore in [LP2].

Theorem 6.6. Suppose A is a rank two normalized LP algebra of finite
type. Then the list of seeds of A has the form given in Figure 1.
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Proof. Let t1 be a seed of A. In the proof of Theorem 6.4 we have con-
structed a normalized LP algebra with initial seed t1, and list of seeds given
by Figure 1. The two LP algebras will be normalizations of each other by
Lemma 3.4. By the definition of a normalized LP algebra, it follows that
there is a bijection t ↔ t′ = φ(t) between the seeds of A and A′, and
that under this bijection t and φ(t) are equivalent. In other words, the only
possible discrepancy between the seeds of A and the list of seeds given by
Figure 1 is that the seeds have been replaced by equivalent ones. We shall
show that this discrepancy can always be obtained by modifying the coeffi-
cients A,B,C, . . . used in Figure 1 by units. For the b = 0 cases, the situation
is trivial.

Suppose (b, c) = (1, 1) and let the seed t1 of A be {(x,Ay+BE), (y, Cx+
DE)}. This uniquely determines the cluster variables z and t in adjacent
seeds, though the exchange polynomials in adjacent seeds are only deter-
mined up to units. Nevertheless, once we know the last cluster variable u
in A, all the exchange polynomials are determined. So in fact, there is one
degree of freedom, and this corresponds to the degree of freedom in the fac-
torizations BE and DE: we can modify E by a unit and modify B and D
by the inverse unit. Let u′ denote the corresponding cluster variable in A′.
Since u′ = (Dz+CB)/y = (ADy+BCx+BDE)/xy, we see that modifying
E by a unit and modifying B and D by the inverse unit indeed modifies u′

by an arbitrary unit.

Now suppose (b, c) = (1, 2). Let A have initial seed {(x,Ay2 + BHy +
CFH2), (y,Dx+EFH)}. Let A′ be the normalized LP algebra with list of
seeds given in Figure 1. Then the cluster variables u′ and v′ in A′ may differ
from the cluster variables u and v in A by units. Indeed, if we modify F
by a unit α and C,E by α−1 (not changing the initial seed), we find that
u′ is modified by α−1. Similarly if we modify H by a unit β and B,C, F by
β−1 (again not changing the initial seed), then v′ is modified by β−1. So we
conclude that A is indeed of the form in Figure 1.

Finally let (b, c) = (1, 3). We proceed in the same way. Modifying F,D by
α and G by α−1 changes u′, w′, v′, s′ by α, α2, α, α respectively. Modifying
D,C,G by β and H by β−1 changes u′, w′, v′, s′ by 1, β, β, β respectively.
Modifying D,C,B,H by γ and K by γ−1 changes only v′ by γ. Modifying
G,C,B,H by δ and L by δ−1 changes w′ by δ. This allows us to modify
u′, w′, v′, s′ by arbitrary units, completing the proof.

Remark 6.7. Our classification of the rank two finite type LP algebras is
essentially what Fomin and Zelevinsky (in the context of cluster algebras)
call universal coefficients, see [CA4, Section 12].
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7. Examples

7.1. The Gale Robinson LP algebra

In [FZ1], Fomin and Zelevinsky studied a number of multi-dimensional re-
currence sequences, establishing the Laurent phenomenon. These include:
the cube recurrence, the Somos sequences, and the Gale-Robinson sequence.
As an example we show how the following case of the Gale-Robinson recur-
rence fits into our framework:

(7.1) yiyi+6 = y2i+3 + yi+2yi+4 + yi+1yi+5.

The recurrence (7.1) defines all yi given the initial y1, y2, . . . , y6.
We take S = Z and F = Q(y1, y2, . . . , y6). As initial seed we have

t1 = {(y1, y24 + y3y5 + y2y6), (y2, y3y
2
4 + y23y5 + y1y

2
5 + y1y4y6),

(y3, y2y
2
4y5 + y1y4y

2
5 + y1y

2
4y6 + y22y5y6 + y1y2y

2
6),

(y4, y2y
2
3y5 + y1y2y

2
5 + y22y3y6 + y1y

2
3y6 + y21y5y6),

(y5, y
2
3y4 + y1y3y6 + y2y

2
4 + y22y6), (y6, y

2
3 + y2y4 + y1y5)}

where for clarity we have listed the cluster variables next to the correspond-
ing exchange polynomial. It is not difficult to check that all the exchange
polynomials are irreducible, and satisfy F̂ = F .

Mutating at y1 we obtain the seed

t2 = {(y7, y24 + y3y5 + y2y6), (y2, y
2
5 + y4y6 + y3y7),

(y3, y4y
2
5 + y24y6 + y2y

2
6 + y2y5y7),

(y4, y3y
2
5y6 + y2y5y

2
6 + y2y

2
5y7+, y23y6y7 + y2y3y

2
7),

(y5, y3y
2
4y6 + y2y3y

2
6 + y23y4y7 + y2y

2
4y7 + y22y6y7),

(y6, y
2
4y5 + y2y4y7 + y3y

2
5 + y23y7)}

where y7 is the new cluster variable, related to y1 via the formula

y1y7 = y24 + y3y5 + y2y6.

Note that t2 can be obtained from t1 by reindexing the yi’s and thus t1
and t2 are similar seeds in the language of Section 3.4. It follows that if we
mutate t2 at y2, and so on, the form of the seeds will remain the same, and
we will generate the recurrence (7.1). By Theorem 5.1, it then follows that
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all the yi defined by (7.1) are Laurent polynomials in y1, y2, . . . , y6. It is not
however clear how to describe all the seeds of this LP algebra.

Remark 7.1. Essentially all the examples in [FZ1] can be fit into our frame-
work in this way: the exchange polynomials of the initial seed can be calcu-
lated by repeatedly mutating the polynomial defining the recurrence relation
(y24+y3y5+y2y6 in our example above). One technical point is that we require
the recurrence polynomial to be irreducible. This can usually be overcome
by introducing coefficients: for example 1+x3 is reducible in Z[x], but A+x3

is irreducible in Z[x,A].

Remark 7.2. The work of Andrew Hone on the Laurent phenomenon be-
yond the cluster case [Ho] contains more examples that fit into our Laurent
phenomenon algebras setting. His recurrence (5.1) is one such example.

7.2. LP algebras of finite mutation type

As the following example shows, there are LP algebras of finite mutation
type which do not fall into the cluster setting.

Take the coefficient ring S = Z, ambient field F = Q(y1, y2, y3) and
initial seed

t = {(y1, y2 + y3 + 1), (y2, y
2
1 + y1y3 + y23), (y3, y2 + y1 + 1)}.

Then one obtains the exchange graph shown in Figure 2. The initial seed
corresponds to the vertex shared by the three bricks labeled y1, y2, and y3.

Figure 2: Two-layer brick wall with two brick sizes.

Any seed in this LP algebra is similar to either the initial seed, or one
of the following three seeds:

{(y1, 1 + x1), (y2, 1 + y1(2 + x1) + y21(1 + x1 + x21)), (x1, 1 + y1 + y2)},
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{(y1, y23 + z + y3z), (z, y
2
1 + y1y3 + y23), (y3, y

2
1 + z + y1z)},

{(x1, 1+w+y2w), (y2, 3x
3
1+x41+3x1(1+w)+(1+w)2+x21(4+w)), (w, 1+x1)}.

The similarity type of a seed depends on the shapes of the bricks that the
corresponding vertex lies in. We encourage the reader to compare this ex-
ample with the two-layer brick wall example in [CA1].

7.3. Chekhov-Shapiro LP algebras

In their work on Teichmüller spaces of Riemann surfaces with orbifold points
Chekhov and Shapiro [ChSh] study a generalization of cluster algebras,
which they call generalized cluster algebras. They show that their algebras
satisfy the Laurent phenomenon and have the same finite type classification
as cluster algebras.

LP algebras generalize Chekhov and Shapiro’s algebras in a similar man-
ner to the way LP algebras generalize cluster algebras (as in Section 4); that
is, the dynamics studied in [ChSh] are a special case of LP algebra dy-
namics with some assumption on the non-degeneracy of coefficients. All the
exchange polynomials of a cluster algebra are binomials, so in particular
the Newton polytope of the exchange polynomials are line segments. The
Chekhov-Shapiro LP algebras are essentially those LP algebras A for which
there is a cluster algebra A′, together with a bijection between the seeds of A
and A′ under which the Newton polytopes of all the exchange polynomials
are identical.

Example 7.3 ([ChSh]). Let S = Z[A,B,C, P,Q], F = Frac(S)(x, y). Con-
sider the initial seed t = {(x,A + By + Cy2), (y,Q + Px)}. The LP alge-
bra A(t) with initial seed t is a Chekhov-Shapiro LP algebra, and it was
shown in [ChSh] that A(t) has the same cluster complex as the type B2

cluster algebra. The Newton polytope of Fx is the line segment connect-
ing the lattice points (0, 0) with (0, 2), even though Fx is not a binomial.
This agrees with the Newton polytopes of the initial seed of the cluster
algebra of type B2, which can be taken to be t′ = {(x,A + Cy2), (y,Q +
Px)}.

Note that in this case the close connection between A(t) and A(t′) also
follows from our Theorem 6.4.

The Chekhov-Shapiro LP algebras are a much narrower generalization
of cluster algebras than the LP algebras in general. On the other hand,
Chekhov-Shapiro LP algebras resemble cluster algebras more closely, and
thus potentially more properties of cluster algebras extend to them.
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7.4. Linear LP algebras

Let Γ be a directed, multiplicity-free, loopless graph on the vertex set [n] =
{1, 2, . . . , n}. Thus, every edge i −→ j is either present with multiplicity one
or absent, for each ordered pair (i, j), i �= j. Define the initial seed tΓ with
variables (X1, . . . , Xn) and exchange polynomials Fi = Ai+

∑
i→j Xj , where

i → j denotes an edge in Γ. The following theorem is proved in [LP2].

Theorem 7.4. [LP2] For any directed graph Γ, the LP algebra AΓ with
initial seed tΓ is of finite type.

As we already saw when we looked at rank 2, there are LP algebras of
finite type which do not possess a linear seed.

Let us identify subsets of vertices of Γ with the corresponding induced
subgraphs, for example we shall talk about strongly connected subsets, and
so on. Let I ⊂ 2[n] denote the collection of strongly-connected subsets of Γ.
A family of subsets S = {I1, . . . , Ik} ∈ I is nested if

• for any pair Ii, Ij either one of them lies inside the other, or they are
disjoint;

• for any tuple of disjoint Ij-s, they are the strongly connected compo-
nents of their union.

The support S of a nested family S = {I1, . . . , Ik} is S =
⋃

Ij . A nested
family is maximal if it is not properly contained in another nested family
with the same support.

Theorem 7.5. [LP2] Non-initial cluster variables in AΓ are in bijection
with elements of I. The clusters of AΓ are in bijection with maximal nested
families of Γ.

Example 7.6. Consider the graph Γ on four vertices with edges 1 −→ 2,
2 −→ 1, 1 −→ 3, 3 −→ 1, 3 −→ 2, 2 −→ 3, 1 −→ 4, 3 −→ 4, 4 −→ 2, shown
in Figure 3. Then the initial seed is given by

tΓ = {(X1, A1 +X2 +X3 +X4), (X2, A2 +X1 +X3),

(X3, A3 +X1 +X2 +X4), (X4, A4 +X2)}.

The resulting LP algebra has 15 cluster variables and 46 clusters.

It turns out the cluster complex of AΓ contains inside it the nested
complex studied in [Pos, FS, Zel]. In particular, there is a LP algebra A′

Γ,
obtained from AΓ by freezing, such that the exchange graph of A′

Γ is the
1-dimensional skeleton of a polytope known as a nestohedron [Pos, Zel].

We refer the reader to [LP2] for full details on the structure of linear LP
algebras arising from graphs.
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Figure 3: The example graph.

7.5. LP algebras arising from electrical Lie groups

Consider a wiring diagram W in a disk: a collection of simple curves called
wires embedded into a disk, with endpoints on the boundary of the disk,
such that no two curves intersect more than once, and all intersection points
are transversal. The wires subdivide the disk into regions, and a region is
internal if it is bounded completely by wires. We assign a cluster variable to
each internal region and a frozen variable to each non-internal region.

For each internal region with variable a define an exchange polynomial
Fa as follows. Each region R adjacent to the a region is either a corner region
if it shares only a vertex with region a, or a side region if it shares an edge
with region a. Associate to each corner region R the monomial mR obtained
by multiplying its variable with the variables of all side regions that are
not adjacent to it. Let Fa =

∑
R mR be the sum of these monomials over

all the corner regions. For example, the monomials one needs to sum for a
pentagonal region are schematically shown in Figure 4.

Figure 4: The exchange polynomial of a pentagonal region is homogeneous
of degree four and has five terms.

Let S = Z[frozen variables] be the polynomial ring generated by the
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variables associated to the non-internal regions. Let F = Q(all variables)
be the rational function field in all the variables associated to internal or
non-internal regions. Let tW be the initial seed with cluster variables cor-
responding to internal regions and exchange polynomials given by the rule
above. Let AW be the LP algebra tW generates.

Example 7.7. Consider the wiring diagram W shown in Figure 5. We have

S = Z[P, T, U, V,W,X, Y, Z]

and F = Frac(S[a, b, c]). The initial seed in this case is

Figure 5: A wiring diagram W and the variable labels of its regions; the
cluster complex of the corresponding normalized finite type LP algebra AW .

tW = {(a, bX+cY +PZ), (b, acT+cUY +PUZ+aV Z), (c, PU+aV +bW )}.

The exchange relations for a and c are

ad = bX + cY + PZ and cf = PU + aV + bW.

These relations are instances of the cube recurrence [Pro], which fit into a
normalized finite type LP algebra. Another seed in this LP algebra is

{(a, e+ UX), (e, acT + cUY + PUZ + aV Z), (c, e+WZ)}

and each of the 16 seeds looks like either this seed, or the initial seed.
As we shall show in [LP3], our general LP algebra seed mutation is

compatible with the combinatorics of wiring diagrams. Namely, performing
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a braid move on the wiring diagram W corresponds to a LP algebra seed
mutation at a cluster variable labeling a triangular region. In particular,
wiring diagrams W1 and W2 connected by braid moves give rise to seeds
tW1

and tW2
that belong to the same LP algebra.

It turns out the dynamics of the LP algebras AW corresponds to the
dynamics of transitions between factorizations of elements of electrical Lie
groups, as defined in [LP1]. In fact, the LP algebras arising in this way are
a natural analogue of cluster algebras appearing in double Bruhat cells of
classical groups, as studied in [CA3]. The detailed study of these LP algebras
and their relation with electrical Lie groups is the subject of the forthcoming
[LP3].

Remark 7.8. The dynamics of cluster-like exchanges given by the formula
in Figure 4 was studied by Henriques and Speyer [HS] under the name of
the multidimensional cube recurrence. Their work however deals only with
the “Plücker” part of these algebras, corresponding to wiring diagrams. In
other words, the multidimensional cube recurrence only allows mutations
corresponding to triangular bounded regions in the wiring diagram. In fact,
Henriques and Speyer state the problem of mutating beyond wiring diagrams
as an open question. The Laurent phenomenon algebras AW constructed in
this section accomplish this: in [LP3] we show that these algebras contain
all the seeds and mutations studied by Henriques and Speyer, but in ad-
dition one can perform mutations for regions with arbitrarily many sides.
Furthermore, since LP algebras can be mutated indefinitely in all directions,
we can keep mutating even after we have left the part described by wiring
diagrams.
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