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A coregular space is a representation of an algebraic group for
which the ring of polynomial invariants is freely generated. We
show that the orbits of many coregular irreducible representations
of algebraic groups where the number of generating invariants is
at least two, over a (not necessarily algebraically closed) field k,
correspond to genus one curves over k together with line bundles,
vector bundles, and/or points on their Jacobian curves. In particu-
lar, we give explicit descriptions of certain moduli spaces of genus
one curves with extra structure as quotients by algebraic groups of
open subsets of affine spaces.

In most cases, we also describe how the generators of the in-
variant rings are geometrically manifested, often as coefficients for
the Jacobian families of elliptic curves for the genus one curves. We
also show how many of the correspondences, including their proofs,
are special cases of two general constructions related to Hermitian
matrices and cubic Jordan algebras.

In forthcoming work, we use these orbit parametrizations to
determine the average sizes of Selmer groups for various families
of elliptic curves.
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1. Introduction

In 1963, Birch and Swinnerton-Dyer [BSD63] carried out a seminal study
of the moduli space of genus one curves equipped with degree 2 line bun-
dles, in terms of the orbits of the action of GL2 on the space Sym4(2) of
binary quartic forms. This orbit space parametrization was a key ingredi-
ent in the explicit 2-descent computations that led them to the celebrated
Birch and Swinnerton-Dyer conjecture. The analogues of this parametriza-
tion for line bundles of degree 3, 4, and 5 (i.e., “elliptic normal curves” of
degrees 3, 4, and 5) were subsequently investigated in the important works
of Cassels [Cas62], and more recently, Cremona [Cre99], Cremona–Fisher–
Stoll [CFS10], and Fisher [Fis10]. These works have, in particular, enabled
explicit 3-, 4-, and 5-descent computations on elliptic curves analogous to
the original 2-descent computations of Birch and Swinnerton-Dyer. Recently,
these parametrizations of elliptic normal curves have also been used to ob-
tain bounds on the average rank and Selmer ranks of elliptic curves (see
[BS15a, BS15b]).

The important consequences and the elegance of these classical orbit
parametrizations naturally raise the question as to whether further such
correspondences exist that could shed light on other data attached to genus
one curves. The purpose of this article is to develop additional such corre-
spondences. In fact, we will show that the classical representations described
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above for elliptic normal curves are only four among at least 20 such repre-
sentations whose orbits parametrize nontrivial data on genus one curves—
such as line bundles, vector bundles, points on the Jacobian, as well as more
exotic structures.

The underlying philosophy is the use of orbit spaces to parametrize alge-
braic or geometric objects. In 1801, Gauss gave perhaps the first nontrivial
example of such a parametrization in his celebrated Disquisitiones Arith-
meticae [Gau01], where he studied integral binary quadratic forms under a
certain action of the group GL2(Z). Although the space of binary quadratic
forms is a prehomogeneous vector space, meaning that it has only one open
orbit over C, the rational and especially the integral orbits are in bijection
with quite nontrivial arithmetic objects, namely, quadratic fields and ideal
classes in quadratic rings, respectively.

In [WY92], Wright and Yukie showed that orbits of many prehomoge-
neous vector spaces over a field k correspond to field extensions of k. The
series of papers [Bha04a, Bha04b, Bha04c, Bha08, Bha] describes how the
integral orbits of most prehomogeneous vector spaces parametrize arithmetic
objects, such as rings of low rank together with ideals and modules. These
parametrizations were used in [Bha05, Bha10], for example, to determine
the density of discriminants of quartic and quintic fields, thus completing
the original program of Wright and Yukie (see [WY92, §1]) of using preho-
mogeneous representations to determine densities of arithmetic objects.

It is natural to ask whether representations having more than one in-
variant might also similarly lead to parametrizations of arithmetic interest.
In this paper, we study a natural series of coregular representations, that is,
representations for which the ring of relative invariants is a polynomial ring
(an example is the space of binary quartic forms). We show that the orbits of
“most” such coregular representations of semisimple groups that have more
than one generating invariant—i.e., are not prehomogeneous—parametrize
data involving genus one curves, thus extending the aforementioned work of
Birch and Swinnerton-Dyer.

Just as the space of 2 × 2 × 2 cubes and 2 × 3 × 3 boxes played a cen-
tral role in the study of prehomogeneous vector spaces [Bha04a, Bha04b],
here the spaces of 2 × 2 × 2 × 2 hypercubes and 3 × 3 × 3 cubes play a
central role in the theory, from which we are then able to derive various
other irreducible coregular spaces corresponding to genus one curves via suit-
able invariant-theoretic procedures. Also, analogous to the prehomogeneous
cases, the invariant theory of our spaces plays a crucial role in constructing
and describing the corresponding geometric data. Indeed, in many cases,
our bijections yield natural geometric interpretations for the generators of
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the invariant ring. While there are many similarities between the preho-
mogeneous cases and the coregular cases, e.g., the interpretation of certain
representations as spaces of “boxes”, in most cases the ideas required to
prove these parametrizations and construct the invariants are new.

A summary of the parametrizations we obtain is provided in Table 1. In
this table, the first and second columns list the representations in question;
for simplicity, we list a semisimple group Gss, which has a map to the desired
group G (with finite kernel and solvable cokernel), since some of the actions
of the relevant groups are not completely standard. The third column lists
the geometric data (up to isomorphism) arising from a general orbit of this
representation: the data in every case includes a genus one curve C. The
curve may also be equipped with line bundles, denoted by Ld, L

′
d, L

′′
d, etc.,

where d is the degree of the line bundle, or with a vector bundle, denoted
by Mr,d, where r is the rank and d is the degree of the vector bundle. The
notation P or P ′ indicates a rational point on the Jacobian of C (often in a
certain arithmetic subgroup of Jac(C)), and Pe indicates that the point is a
nontrivial rational torsion point of order e. The notation ∼ indicates that the
data on the two sides are equivalent and are both suitable interpretations for
the moduli problem. There may be some additional mild (open) conditions
on the geometric data not indicated in column three. The fourth column
gives the degrees of the invariants of the representation of the semisimple
group, and the fifth contains the extended or affine Dynkin diagram as-
sociated with the representation (see Section 7). Finally, the sixth column
indicates the subsection in which that case is proved and/or discussed most
carefully, although most of the theorems are previewed in Sections 2 and 3.
Note that in many cases, changing the form of the group over K leads to a
twisted version of the geometric data in column three.

For example, line 3 of Table 1 corresponds to the case of 2 × 2 × 2 × 2
hypercubical matrices over a field K (char(K) �= 2, 3). We show that the
nondegenerate GL2(K)4-orbits of K2 ⊗ K2 ⊗ K2 ⊗ K2 correspond to the
data (C,L, P, P ′), where: C is a genus one curve over K; L is a degree 2 line
bundle on C; and P and P ′ are non-identityK-points in a certain arithmetic
subgroup of the Jacobian of C. (More symmetrically, we in fact recover three
non-identity points P , P ′, and P ′′ that sum to zero.) Meanwhile, the ring of
polynomial invariants for the action of SL2(K)4 on K2 ⊗K2 ⊗K2 ⊗K2 is
freely generated by four invariants a2, a4, a

′
4, and a6, having degrees 2, 4, 4,

and 6, respectively. In terms of the geometric data, if we write the Jacobian
of C as a Weierstrass elliptic curve y2 = x3 + Ax + B on which the points
P , P ′, P ′′ lie, then: a2 can be interpreted as the slope of the line connecting
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Group (s.s.) Representation Geometric Data Invariants Dynkin §
1. SL2 Sym4(2) (C,L2) 2, 3 A

(2)
2 4.1

2. SL2
2 Sym2(2)⊗ Sym2(2) (C,L2, L

′
2) ∼ (C,L2, P ) 2, 3, 4 D

(2)
3 6.1

3. SL4
2 2⊗ 2⊗ 2⊗ 2 (C,L2, L

′
2, L

′′
2) ∼ (C,L2, P, P

′) 2, 4, 4, 6 D
(1)
4 6.2

4. SL3
2 2⊗ 2⊗ Sym2(2) (C,L2, L

′
2) ∼ (C,L2, P ) 2, 4, 6 B

(1)
3 6.3.1

5. SL2
2 Sym2(2)⊗ Sym2(2) (C,L2, L

′
2) ∼ (C,L2, P ) 2, 3, 4 D

(2)
3 6.3.3

6. SL2
2 2⊗ Sym3(2) (C,L2, P3) 2, 6 G

(1)
2 6.3.2

7. SL2 Sym4(2) (C,L2, P3) 2, 3 A
(2)
2 6.3.4

8. SL2
2 × SL4 2⊗ 2⊗ ∧2(4) (C,L2,M2,4) 2, 4, 6, 8 D

(1)
5 6.6.1

9. SL2 × SL6 2⊗ ∧3(6) (C,L2,M3,6) with L⊗3 ∼= detM 2, 6, 8, 12 E
(1)
6 6.6.2

10. SL2 × Sp6 2⊗ ∧3
0(6) (C,L2, (M3,6, ϕ)) with L⊗3 ∼= detM 2, 6, 8, 12 E

(2)
6 6.6.3

11. SL2 × Spin12 2⊗ S+(32) (C → P1(H3(H)), L2) 2, 6, 8, 12 E
(1)
7 6.6.3

12. SL2 × E7 2⊗ 56 (C → P1(H3(O)), L2) 2, 6, 8, 12 E
(1)
8 6.6.3

13. SL3 Sym3(3) (C,L3) 4, 6 D
(3)
4 4.2

14. SL3
3 3⊗ 3⊗ 3 (C,L3, L

′
3) ∼ (C,L3, P ) 6, 9, 12 E

(1)
6 5.1

15. SL2
3 3⊗ Sym2(3) (C,L3, P2) 6, 12 F

(1)
4 5.2.1

16. SL3 Sym3(3) (C,L3, P2) 4, 6 D
(3)
4 5.2.2

17. SL3 × SL6 3⊗ ∧2(6) (C,L3,M2,6) with L⊗2 ∼= detM 6, 12, 18 E
(1)
7 5.5

18. SL3 × E6 3⊗ 27 (C ↪→ P2(O), L3) 6, 12, 18 E
(1)
8 5.4

19. SL2 × SL4 2⊗ Sym2(4) (C,L4) 8, 12 E
(2)
6 4.3

20. SL5 × SL5 ∧2(5)⊗ 5 (C,L5) 20, 30 E
(1)
8 4.4

Table 1: Table of coregular representations and their moduli interpretations
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P , P ′ and P ′′; a4 and a′4 are the x-coordinates of the points P and P ′; and
a6 is the y-coordinate of P .

Similarly, line 14 of Table 1 corresponds to the case of GL3(K)3 acting on
the spaceK3⊗K3⊗K3 of 3×3×3 cubical matrices overK. We prove that the
nondegenerate orbits parametrize data consisting of a triple (C,L, P ), where
C is a genus one curve over K, L is a degree 3 line bundle on C defined over
K, and P is a non-identity point in an arithmetic subgroup of the Jacobian
of C. The three generators b6, b9, and b12 of the SL3(K)3-invariant ring have
degrees 6, 9, and 12, respectively. If we again write the Jacobian of C as a
Weierstrass elliptic curve y2 = x3 +Ax+B, then P = (b6, b9) and A = b12.

In both of these examples, we introduce new methods to construct and
interpret the invariants. In particular, there are certain noncommutative
diagrams (see §2.3.4 and §3.2.3) that play a crucial role in understanding
the invariant theory and describing these moduli spaces.

We briefly describe some forthcoming applications of these parametriza-
tions. In [BS15a, BS15b], an implementation of certain geometric counting
techniques (building on those in [Bha10]) for integral orbits of the repre-
sentations in lines 1 and 13 of Table 1 has led to results on the average
sizes of the 2- and 3-Selmer groups of the family of all elliptic curves over Q
(when ordered by height), and corresponding (finite) upper bounds on the
average rank of all elliptic curves. By developing these counting techniques
further, so that they may be applied to other cases in Table 1, we deter-
mine in [BH12] the average sizes of the 2- and 3-Selmer groups for various
families of elliptic curves, e.g., those with marked points. These results lead
to corresponding average rank bounds for the curves in these families. For
example, the space of 3×3×3 cubes allows us to show that the average size
of the 3-Selmer group in the family of elliptic curves

y2 + a3y = x3 + a2x
2 + a4x

having a marked point at (0, 0) is 12. As a result, we show that the (limsup
of the) average rank of this family of elliptic curves is finite (indeed, at most
21
6), and that a positive proportion of curves in this family have rank one.

Analogous results for average sizes of Selmer groups in families of elliptic
curves with one marked point of order 3 or 2 (using lines 6 and 15, respec-
tively, of Table 1) and elliptic curves with two general marked points (using
line 3, the space of hypercubes) are also obtained.

Outline. The organization of this paper is as follows. Sections 2 and 3 form
an extended introduction in which we describe the basic constructions and
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parametrizations corresponding to 2 × 2 × 2 × 2 hypercubes and 3 × 3 × 3
cubes, respectively, and how many of the various other coregular space orbit
parametrizations in Table 1 may be (at least heuristically) derived from
them. These introductory sections also highlight the relationship between
the constructions in this paper and previous work.

Section 4 describes orbit parametrizations for the moduli spaces of genus
one curves with degree n line bundles, for 2 ≤ n ≤ 5. Many of the ideas in
this section are classical or well known, at least over algebraically closed
fields, but our constructions generalize to other fields and more general base
schemes. We also show that the stabilizers of elements in these representa-
tions are naturally isomorphic to the automorphism group of a genus one
curve with a degree n line bundle, which is related to the so-called Heisen-
berg theta group. These results about stabilizers play a central role in the
works [BS15a, BS15b]. The parametrizations of elliptic normal curves of de-
gree n, especially for n = 2 and n = 3, will also be used extensively in the
later parts of the paper.

In Section 5, we concentrate on the coregular spaces whose orbits are
related to a genus one curve and a degree 3 line bundle, possibly with ad-
ditional data. We first discuss some of the fundamental cases, such as the
aforementioned space of 3×3×3 cubical matrices. In each case, we construct
the invariants of the representation, and show that they are closely related
to the geometric data, and in particular, to the Jacobian of the genus one
curve that arises.

We then study spaces of the form V ⊗ J , where V is a 3-dimensional
vector space and J is a certain type of cubic Jordan algebra (to be specified),
up to the natural action of a group which we denote by GL(V )× SL(J). In
each case, the group (Gm×)SL(J) acting on J is a prehomogeneous vector
space, equipped with a relative invariant cubic norm form and an adjoint
map. We prove a uniform theorem about the orbits of these type of repre-
sentations, by stratifying the elements of the Jordan algebras geometrically
(using ideas from the theory of cubic Jordan algebras, representation the-
ory, and algebraic geometry, especially the tangent and secant varieties of
Severi varieties). We then specialize to specific J to recover a number of the
introductory cases as well as other interesting moduli problems.

Section 6 develops further ideas in order to study orbits that parametrize
genus one curves with degree 2 line bundles and additional data. We begin
by discussing the most fundamental representations, including the space of
bidegree (2, 2) forms on P1×P1 and the aforementioned space of 2×2×2×2
hypercubical matrices. We show that the invariants of each representation
are again closely related to the corresponding geometric data.
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As in the case of degree 3 line bundles, we then study a more general
situation. In particular, we consider the tensor product of a two-dimensional
vector space V and a space C (J) of “Hermitian cubes” with respect to a
cubic Jordan algebra J , under the action of a group which we denote by
SL2(V ) × SL2(J); the space C (J) has a quartic norm form and a natu-
ral adjoint map. Again, we study representations of this kind uniformly by
understanding these spaces C (J) geometrically; the algebraic geometry re-
quired here is slightly more technical than in §5, partly because the relevant
genus one curves are naturally double covers of the projective line instead of
curves embedded in the projective plane. Specializing to specific C (J) then
recovers many of the earlier fundamental cases as well as several new moduli
problems.

In Section 7, we describe how all of the representations we study are re-
lated to exceptional Lie algebras. In particular, these representations all arise
from Vinberg’s theory of θ-groups [Vin76]; his constructions give a wide class
of coregular spaces. In his recent Harvard Ph.D. thesis, J. Thorne [Tho12]
studies some canonical constructions in invariant theory arising from Vin-
berg theory, and it is thus an interesting question as to how his more
representation-theoretic constructions are related to our geometric ones. Fi-
nally, we also describe how our spaces are closely related to the representa-
tions found in the Deligne-Gross Magic Triangle [DG02].

The “certain arithmetic subgroup” of the Jacobian of the genus one curve
C arising in many of our moduli problems is the group Pic0(C) of degree
0 divisors or line bundles (up to equivalence) on C. When working over an
algebraically closed field, it is isomorphic to the group of rational points of
the entire Jacobian, but in general, when working over number fields, it is a
finite-index subgroup of the Jacobian, whose rational points correspond to
all rational degree 0 divisor classes.

Acknowledgments. We would like to thank Bhargav Bhatt, John Cremona,
Benedict Gross, Joe Harris, Abhinav Kumar, and Catherine O’Neil for use-
ful conversations. The main theorems in §3.2 and §5.1 are joint work with
Catherine O’Neil. We also thank the anonymous referee for many useful
suggestions.

2. Main results I: Genus one curves and 2 × 2 × 2 × 2
hypercubes

In this section, we discuss the space of 2× 2× 2× 2 hypercubical matrices
over K, and we describe the various parametrizations of genus one curves
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with extra data that may be obtained from this perspective. No proofs or

details are given in this section. Here, we simply describe in an elementary

way the constructions of the genus one curves and extra data from the orbits

of our representations, and state the main theorems related to these cases.

Further details, more functorial descriptions of the constructions, and proofs

may be found in Section 6.

2.1. Preliminaries on 2 × 2 × 2 cubes

Before studying 2× 2× 2× 2 hypercubical matrices, we first review the case

of 2× 2× 2 cubical matrices (see [Bha04a] for more details).

Let K be a field with char(K) �= 2. Let C2(K) denote the space K2 ⊗
K2 ⊗ K2. Then each element of C2(K) can naturally be represented as a

cubical matrix A = (aijk) with entries in K, where i, j, k ∈ {1, 2}:

(1)

a111 a112

a121 a122

a211 a212

a221 a222
��

��

��

��

.

If we denote by {e1, e2} the standard basis of K2, then the element of C2(K)

described by (1) is ∑
i,j,k

aijk ei ⊗ ej ⊗ ek.

As the cubical matrix representation is both more intuitive and more con-

venient, we shall identify C2(K) with the space of 2 × 2 × 2 matrices with

entries in K, or the space of cubes over K.

Now a cube A over K may be naturally sliced into two 2 × 2 matrices

over K in three different ways. Namely, the cube A = (aijk) given by (1)

may be partitioned into the two 2 × 2 matrices M� and N�, for � = 1, 2, 3,

as follows:

1) M1 = (a1jk) is the front face and N1 = (a2jk) is the back face of A;

2) M2 = (ai1k) is the top face and N2 = (ai2k) is the bottom face of A;

3) M3 = (aij1) is the left face and N3 = (aij2) is the right face of A.
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We may consider the natural action of SL2(K)3 on the tensor product C2(K),
namely for any � ∈ {1, 2, 3}, the element ( r s

t u ) in the �th factor of SL2(K)3

acts on the cube A by replacing (M�, N�) by (rM� + sN�, tM� + uN�). The
actions of these three factors of SL2(K) in SL2(K)3 commute with each
other, analogous to the fact that row and column operations on a rectangu-
lar matrix commute. Hence we obtain a natural and well-defined action of
SL2(K)3 on C2(K).

This action turns out to have a single polynomial invariant1, which we
call the discriminant. Given a 2×2×2 cube A over K, for each � ∈ {1, 2, 3},
we obtain a binary quadratic form

(2) Q�(x, y) = det(M�x+N�y).

The discriminants of these three binary quadratic forms all coincide (see
[Bha04a, §2]), and this gives the desired invariant, called the discriminant
disc(A) of the cube A. (These triples of binary quadratic forms with the
same discriminant arising from cubes were used to give a simple description
of Gauss composition in [Bha04a].) This fundamental invariant of degree
four on the space K2 ⊗K2 ⊗K2 of cubical matrices over K will play a key
role in understanding the next space K2 ⊗K2 ⊗K2 ⊗K2 of hypercubical
matrices over K.

2.2. On 2 × 2 × 2 × 2 hypercubes

Assuming now that K has characteristic not 2 or 3, let H2(K) denote the
space K2 ⊗ K2 ⊗ K2 ⊗ K2. Then we may identify H2(K) with the space
of 2 × 2 × 2 × 2 hypercubical matrices H = (hijk�) over K, which we will
call the space of hypercubes over K. Such hypercubes are somewhat harder
to draw on paper; breaking symmetry, we write our hypercube H = (hijk�)
thus:

(3)

h1111 h1112

h1121 h1122

h1211 h1212

h1221 h1222
��

��

��

��
h2111 h2112

h2121 h2122

h2211 h2212

h2221 h2222
��

��

��

��

.

1We use throughout the standard abuse of terminology “has a single polynomial
invariant” (or “has k polynomial invariants”) to mean that the corresponding poly-
nomial invariant ring is generated freely by one element (respectively, k elements).
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Now just as a cube A over K could be partitioned into two 2×2 matrices
in three different ways, a hypercube H over K may be partitioned into two
2×2×2 matrices in four different ways. More precisely, the hypercube H =
(hijk�) can be partitioned into two cubes Am and Bm, for m ∈ {1, 2, 3, 4},
as follows:

1) A1 = (h1jk�) and B1 = (h2jk�);
2) A2 = (hi1k�) and B2 = (hi2k�);
3) A3 = (hij1�) and B3 = (hij2�);
4) A4 = (hijk1) and B4 = (hijk2),

where the first slicing 1) is depicted in (3).
We define a natural action of SL2(K)4 on the space of hypercubes so

that, for any i ∈ {1, 2, 3, 4}, an element ( r s
t u ) in the ith factor of SL2(K)

acts on the hypercube H by replacing (Ai, Bi) by (rAi + sBi, tAi + uBi).
The actions of these four factors of SL2(K) in SL2(K)4 again commute with
each other, so we obtain a well-defined action of SL2(K)4 on H2(K).

Now recall that a cube over K naturally yields three binary quadratic
forms overK, through its slicings into pairs of 2×2 matrices overK. Namely,
for each slicing of a cube A into a pair (Mi, Ni) of 2 × 2 matrices, we may
construct the formQi(x, y) = det(Mix+Niy). As is well-known, the determi-
nant function is the unique polynomial invariant for the action of SL2(K)2

on 2 × 2 matrices over K, and since it a degree two invariant, we obtain
binary quadratic forms.

Analogously, a hypercube over K naturally yields four binary quartic
forms via its slicings into pairs of cubes over K. Indeed, we have seen that
the action of SL2(K)3 on 2 × 2 × 2 cubes over K has a single polynomial
invariant, of degree four, given by its discriminant. In analogy with the case
of cubes, given a hypercube H ∈ H2(K), for each i ∈ {1, 2, 3, 4}, we may
construct a binary quartic form

(4) fi(x, y) = disc(Aix+Biy),

where the (Ai, Bi) denote the four slicings of the hypercube H into pairs of
cubes over K.

Note that the form f1 is invariant under the action of the subgroup
{id} × SL2(K)3 ⊂ SL2(K)4 on H ∈ H2(K), because the action of SL2(K)3

on the cube A1x + B1y of linear forms in x and y fixes disc(A1x + B1y).
The remaining factor of SL2(K) in SL2(K)4 then acts in the usual way on
the binary quartic form f1, and it is well known that this action has two
independent polynomial invariants, which are traditionally called I(f1) and
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J(f1) (see §4.1 for more details on binary quartic forms). These invariants
have degrees 2 and 3, respectively, in the coefficients of f1. Since they co-
incide with the corresponding invariants I and J of f2, f3, and f4 (as an
easy calculation shows), this yields well-defined SL2(K)4-invariants I(H)
and J(H) for all elements H ∈ H2(K). The invariants I(H) and J(H) thus
have degrees 8 and 12, respectively, in the entries of H. Unlike for the case
of 2× 2× 2 boxes, this method does not produce all the SL2(K)4-invariants
on H; in §2.3.4, we will construct a certain noncommutative diagram to
produce the others.

The discriminant disc(f) of a binary quartic form f is defined by

(5) disc(f) := 4I(f)3 − J(f)2,

which is nonzero precisely when f has four distinct roots in P1(K); such a
binary quartic form is called nondegenerate. For a hypercube H, since the I
and J invariants are the same for all the fi, so are their discriminants. We
may define the discriminant of H to be

(6) disc(H) := 4I(H)3 − J(H)2,

which is nonzero precisely when any of the binary quartic forms fi asso-
ciated to H has four distinct roots in P1(K). We say the hypercube H is
nondegenerate if its discriminant is nonzero.

We give a conceptual explanation as to why I(fi) = I(fj) and J(fi) =
J(fj) (and thus disc(fi) = disc(fj)) for all i and j in the next subsection.

2.3. Genus one curves from hypercubes

We now explain how a nondegenerate hypercube H gives rise to a number
of genus one curves Ci (1 ≤ i ≤ 4), Cij (1 ≤ i < j ≤ 4), and Cijk (1 ≤ i <
j < k ≤ 4). We also discuss how these genus one curves are related to each
other, and the resulting description of the nondegenerate orbits of SL2(K)4

on the space K2 ⊗K2 ⊗K2 ⊗K2 of hypercubes over K.

2.3.1. Genus one curves mapping to P1. Given a nondegenerate bi-
nary quartic form f over K, we may attach to f a genus one curve C(f)
over K, namely the normalization of the projectivization of the affine curve
y2 = f(x, 1). It is known (see, e.g., [BSD63, AKM+01]) that the Jacobian
of the curve C(f) may be written as a Weierstrass elliptic curve with coef-
ficients involving the invariants I(f) and J(f) of f , namely as

(7) E(f) : y2 = x3 − 27I(f)− 27J(f).



14 Manjul Bhargava and Wei Ho

We always take E(f) as our model for the Jacobian of C(f).

Now given a nondegenerate hypercube H ∈ H2(K), we have seen that

we naturally obtain four binary quartic forms f1, f2, f3, f4 over K from

H. Thus each hypercube H ∈ H2(K) yields four corresponding genus one

curves C1, C2, C3, C4 over K, where Ci = C(fi).

2.3.2. Genus one curves in P1 × P1. These genus one curves obtained

from a nondegenerate hypercube H ∈ H2(K) may be seen more explicitly

in P1 × P1. Let us first identify H2(K) with the space of quadrilinear forms

on W1 ×W2 ×W3 ×W4, where each Wi (i ∈ {1, 2, 3, 4}) is a 2-dimensional

K-vector space. (In this identification, when we write H2(K) = K2 ⊗K2 ⊗
K2 ⊗K2, then the ith factor of K2 here is the K-vector space dual to Wi.)

Then for any H ∈ H2(K), viewed as such a quadrilinear form, consider the

variety

C12(K) =
{
(w1, w2) ∈ P(W1)× P(W2) : det(H(w1, w2, · , · )) = 0

}
⊂ P1 × P1,

where we view H(w1, w2, · , · ) naturally as a bilinear form on W3 × W4,

whose determinant’s vanishing or nonvanishing is thus well-defined.

By definition, C12(K) consists of the set of K-points of a bidegree (2,2)

curve C12 in P1×P1, which is a genus one curve if smooth (precisely when H

is nondegenerate). The projections of C12 to P(W1) or to P(W2) then yield

the double covers of P1 corresponding to C1 and C2, respectively. Indeed,

the points of ramification of the projection C12 → P(W1) are the points

(w1, w2) ∈ C12 ⊂ P(W1) × P(W2) for which det(H(w1, w2, ·, , · )) has van-

ishing discriminant as a quadratic form in w1; this discriminant is precisely

the binary quartic form f1 on W1!

It follows that C12 is isomorphic to both C1 and C2, and hence all these

genus one curves Ci are isomorphic to each other: for 1 ≤ i < j ≤ 4, we have

natural isomorphisms

Ci
∼= Cij

∼= Cj .

It also follows then that all four binary quartic forms fi must have the same

values for the invariants I and J , as claimed at the end of §2.2. (Indeed,
all I(fi) and all J(fi) must be the same for all forms fi—up to scaling by

c2 and c3, respectively, for some constant c—in order for the Jacobians in

(7) to be isomorphic. But then symmetry considerations show that c must

be 1.)
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2.3.3. Genus one curves in P1×P1×P1. The curve C12 can in fact be
mapped into P(W1)×P(W2)×P(W3) ∼= P1×P1×P1, as follows. For a point
(w1, w2) ∈ C12, since H(w1, w2, · , · ) is singular as a bilinear form on W3 ×
W4, the kernel of H(w1, w2, · , · ) in W3 is nonempty; if H is nondegenerate,
it can be shown that the kernel in W3 is one-dimensional. We thus obtain a
well-defined element w3 ∈ P(W3) such that H(w1, w2, w3, · ) ≡ 0. Therefore,

C123(K) :=
{
(w1, w2, w3) ∈ P(W1)×P(W2)×P(W3) : H(w1, w2, w3, · ) ≡ 0

}
gives the set of K-points of a genus one curve C123 in P(W1) × P(W2) ×
P(W3) ∼= P1 × P1 × P1 defined over K; moreover, the projection of C123

onto P(W1) × P(W2) gives an isomorphism onto C12. In particular, C123

provides us with explicit isomorphisms among the three curves C12, C13,
and C23, through projection and un-projection. It is natural to package this
information together by keeping track simply of the single curve C123 in
P(W1)× P(W2)× P(W3).

2.3.4. The fundamental tetrahedron of isomorphisms. Wemay thus
construct curves C123, C124, C134, and C234 in P1×P1×P1 from a nondegen-
erate hypercube H ∈ H2(K). These four genus one curves are all isomorphic
to each other, as we have already seen. In fact, we may construct explicit and
natural isomorphisms between them, as follows. Given a point (w1, w2, w3)
on C123 ⊂ P(W1) × P(W2) × P(W3), the bilinear form H( · , w2, w3, · ) on
W1×W4 is singular and of rank 1, so there exists a unique w4 ∈ P(W4) such
that H( · , w2, w3, w4) ≡ 0. This implies that (w2, w3, w4) ∈ C234(K), giving
the desired map

τ234123 : C123 → C234,

and similarly we obtain the maps τ134123 , τ
123
124 , etc. Note that each of these

maps is invertible, since clearly τ123234 = (τ234123 )
−1, etc.

We thus obtain a tetrahedron of maps:

(8) C123

C124 C134

C234

However, these isomorphisms do not all commute with each other! For
example, starting at C123 and tracing around the triangle of isomorphisms
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τ123134 ◦ τ134124 ◦ τ124123 yields a hyperelliptic involution ι1 on C123. The quotient of
C123 by this involution ι1 yields the double cover of P1 given by C1 : y2 =
f1(x, 1). Similarly, the other two triangles of isomorphisms starting at C123

yield the involutions ι2 and ι3 on C123 corresponding to the double covers
C2 and C3 of P

1 whose branch points are the roots of f2 and f3, respectively.
If one instead starts at C123 and follows a quadrilateral of isomorphisms

involving all four curves, then (viewing the traversal of the quadrilateral
as a traversal of two triangles) we obtain the automorphism ιi ◦ ιj of C123,
which is a translation of C123 by a point Pij on the Jacobian of C123. We
thus obtain three points P12, P23, and P31 on the Jacobian E := E(H) of
C := C123. Since (ι1 ◦ ι2) ◦ (ι2 ◦ ι3) ◦ (ι3 ◦ ι1) = id, we have the relation

(9) P12 + P23 + P31 = 0.

Moreover, these points Pij are nonzero, and they lie in the subgroup
Pic0(C)(K) in E(K). The difference is that the points of Pic0(C)(K) corre-
spond to the divisor classes of K-rational divisors of degree 0 on C, whereas
the points of E(K) correspond to the K-rational divisor classes of degree
0 (that is, where the divisor class is K-rational, but not necessarily any of
the divisors in it). Here, these points Pij arise as differences of actual ratio-
nal divisors and thus lie in Pic0(C)(K). Indeed, if D1, D2, and D3 denote
the degree two divisors on C123 corresponding to the three projections to
P(W1), P(W2), and P(W3), respectively, then for a point x on C123 we have
ιi(x) = Di − x. Thus ιi ◦ ιj(x) = x+ (Di −Dj), so that Pij = Di −Dj . This
also implies the relation (9).

In summary, we have seen that there is a canonical elliptic curve E(H)
attached to any nondegenerate hypercube H ∈ H2(K), namely,

(10) E(H) : y2 = x3 − 27I(H)− 27J(H)

with

I(H) := I(fi) and J(H) := J(fi)

for 1 ≤ i ≤ 4, where f1, f2, f3, f4 are the binary quartic forms naturally
arising from H. Furthermore, E := E(H) is canonically the Jacobian of each
of the genus one curves Ci (1 ≤ i ≤ 4) as well as the genus one curves Cij

(1 ≤ i ≤ j ≤ 4) and Cijk (1 ≤ i ≤ j ≤ k ≤ 4) arising from H. Finally, there
is a natural tetrahedron of isomorphisms (8) among the Cijk which does not
commute. We thus obtain, in addition to a degree 2 divisor D1 on the curve
C123, three nonzero rational points P12, P23, and P31 in Pic0(C123)(K) that
sum to zero.
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2.4. Orbit classification of 2 × 2 × 2 × 2 hypercubes

We will show in §6.2 that the data of a genus one curve C = C123, the
equivalence class of a degree two rational divisor D = D1 on C, and three
nonzero points P = P12, P

′ = P23, and P ′′ = P31 (with P +P ′ +P ′′ = 0) in
the subgroup Pic0(C)(K) of the Jacobian of C is in fact sufficient to recover
the orbit of a hypercube H. We have:

Theorem 2.1. For any field K with char(K) � 6, there is a canonical bijec-
tion between nondegenerate GL2(K)4-orbits on the space K2⊗K2⊗K2⊗K2

of hypercubes over K and isomorphism classes of triples (C,L, (P, P ′, P ′′)),
where C is a smooth irreducible genus one curve over K, L is a degree 2
line bundle on C, and P , P ′, P ′′ are nonzero K-points that sum to zero in
Pic0(C)(K).

It is known (see [Vin76, Lit89]) that the ring of polynomial invariants
for the action of SL2(K)4 on K2⊗K2⊗K2⊗K2 is freely generated by four
polynomials a2, a4, a

′
4, and a6, having degrees 2, 4, 4, and 6, respectively, in

the entries of the hypercube. In terms of the geometric data in Theorem 2.1,
we may write the Jacobian of C as a Weierstrass elliptic curve y2 = x3 +
a8x+ a12, on which the points P = (a4, a6), P

′ = (a′4, a
′
6), P

′′ = (a′′4, a
′′
6) lie,

such that a2 can be interpreted as the slope a′
6−a6

a′
4−a4

of the line connecting P

and P ′ (and P ′′).
From these four invariants, the invariant a′6 (i.e., the y-coordinate of P ′)

may be determined:

a′6 = a6 + a2(a
′
4 − a4).

The coefficients a8 and a12 of the Weierstrass elliptic curve may also be
determined, since there is a unique such elliptic curve passing through the
two points P and P ′. Indeed, we find

a8 = a2(a6 + a′6)− (a24 + a4a
′
4 + a′24 ), and(11)

a12 = a26 − a2a4(a6 + a′6) + a4a
′
4(a4 + a′4).

Finally, the coordinates of P ′′ = (a′′4, a
′′
6) may be recovered by finding the

third point of intersection of the line y − a6 = a2(x − a4) with the elliptic
curve y2 = x3 + a8x+ a12; this yields

a′′4 = 3a22 − a4 − a′4, and

a′′6 = a32 − 3(a2a4 − a6)− a6 − a′6.
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In conclusion, a2, a4, a
′
4, a

′′
4, a6, a

′
6, a

′′
6, a8 = −27I, and a12 = −27J are all

fundamental and important polynomial invariants for the action of SL2(K)4

on K2⊗K2⊗K2⊗K2; they all have key geometric interpretations and can
be expressed as simple polynomials in the four basic invariants a2, a4, a

′
4,

and a6.

2.5. Symmetrization

Just as one may identify the binary quadratic form ax2 + 2bxy + cy2 with
the symmetric 2× 2 matrix [

a b
b c

]
,

and the binary cubic form ax3+3bx2y+3cxy2+dy3 with the triply symmetric
2× 2× 2 matrix

(12)

a b

b c

b c

c d
��

��

��

��

(see [Bha04a]), one may associate the binary quartic form

(13) ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4

with the quadruply-symmetric 2× 2× 2× 2 matrix

(14)

a b

b c

b c

c d
��

��

��

��
b c

c d

c d

d e

��

��

��

��

.

Using Sym4K
2 to denote the space of binary quartic forms of this type,

the above association of the binary quartic form (13) with the hypercube
(14) corresponds to the natural inclusion

Sym4K
2 ↪→ K2 ⊗K2 ⊗K2 ⊗K2
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of the space of quadruply-symmetric hypercubes into the space of hyper-
cubes.

Such hypercubes lead to geometric data (C,L, (P, P ′, P ′′)) as in The-
orem 2.1, but (due to the symmetry) we also have P = P ′ = P ′′. Since
P + P ′ + P ′′ = 0, we see that P is a 3-torsion point on the Jacobian of C.
Conversely, we will show in §6.3.4 that this is the only constraint on P . Thus
we obtain the following theorem classifying the orbits of GL2(K) × Gm on
Sym4K

2:

Theorem 2.2. For any field K with char(K) � 6, there is a canonical bijec-
tion between nondegenerate GL2(K) × Gm-orbits on the space Sym4K

2 of
binary quartic forms over K and isomorphism classes of triples (C,L, P ),
where C is a smooth genus one curve over K, L is a degree 2 line bundle
on C, and P a nonzero 3-torsion point on the Jacobian of C defined over
K.

We have already noted in §2.3.1 (see §4.1 for further details) that certain
GL2(K)-orbits on Sym4K2 correspond to pairs (X,L), where X is a genus
one curve and L is a degree 2 line bundle on X. When char(K) � 6, these
two spaces Sym4K

2 and Sym4K2 are naturally identified, so we obtain two
“dual” moduli interpretations of the space of binary quartic forms in terms
of genus one curves. The two genus one curves coming from a binary quartic
are not the same, however; they are related by a Hessian-type construction
(see §6.3.4).

2.6. Triple symmetrization

The orbit description for binary quartic forms in §2.5 was obtained by im-
posing a symmetry condition on the orbit description for hypercubes. Rather
than imposing a fourfold symmetry, we may instead impose only a threefold
symmetry. This leads to hypercubes of the form

(15)

a b

b c

b c

c d
��

��

��

��
e f

f g

f g

g h
��

��

��

��

.

That is, these hypercubes can be sliced (in a certain fixed direction) into
two triply symmetric cubes, and therefore can naturally be viewed as a pair
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of binary cubic forms

(16) (ax3 + 3bx2y + 3cxy2 + dy3, ex3 + 3fx2y + 3gxy2 + hy3).

The above association of the pair (16) of binary cubic forms with the
hypercube (15) corresponds to the natural inclusion map

j : K2 ⊗ Sym3K
2 ↪→ K2 ⊗K2 ⊗K2 ⊗K2.

To such nondegenerate triply symmetric hypercubes, we may associate
the usual geometric data (C,L, (P, P ′, P ′′)) as in Theorem 2.1, and as in
the fully symmetric case, the symmetry implies that P is a 3-torsion point.
We will show in §6.3.2 that this is again the only constraint on P , and
so we obtain the following theorem classifying the orbits of GL2(K)2 on
K2 ⊗ Sym3K

2:

Theorem 2.3. For any field K with char(K) � 6, there is a canonical bi-
jection between nondegenerate GL2(K)2-orbits on the space K2 ⊗ Sym3K

2

of pairs of binary cubic forms over K and isomorphism classes of triples
(C,L, P ), where C is a smooth genus one curve over K, L is a degree 2 line
bundle on C, and P a nonzero 3-torsion point on the Jacobian of C defined
over K.

It is interesting that the data parametrized by the orbits on both Sym4K
2

and K2 ⊗ Sym3K
2 are the same, and our orbit description in fact allows us

to determine an explicit linear transformation in GL2(K)2 that takes any
given nondegenerate element of K2 ⊗ Sym3K

2 to an element of Sym4K
2.

2.7. Double symmetrization

We may instead impose only a twofold symmetry, leading us to study the
space K2 ⊗K2 ⊗ Sym2K

2 of 2 × 2 matrices of binary quadratic forms. In
terms of the geometric data (C,L, (P, P ′, P ′′)) of Theorem 2.1, we see that
P ′ and P ′′ coincide, which then determines P by the relation P+P ′+P ′′ = 0.
Thus only the information of the point P ′ needs to be retained. Since P �= 0,
the point P ′ cannot be 2-torsion, and so (writing now P ′ as P ) we obtain
the following:

Theorem 2.4. For any field K with char(K) � 6, there is a canonical bijec-
tion between nondegenerate GL2(K)3-orbits on the space K2⊗K2⊗Sym2K

2

of 2×2 matrices of binary quadratic forms over K and isomorphism classes
of triples (C,L, P ), where C is a smooth genus one curve over K, L is a
degree 2 line bundle on C, and P is a non-2-torsion point of the subgroup
Pic0(C)(K) of Jac(C)(K).
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2.8. Double-double symmetrization

We may, in fact, ask for the hypercubes to be symmetric under any subgroup
of the symmetric group S4. One of the interesting cases arises from the
hypercubes fixed under the action of S2 × S2 ⊂ S4, which we call double-
double symmetrization:

Theorem 2.5. For any field K with char(K) � 6, there is a canonical
bijection between nondegenerate GL2(K)2-orbits on the space Sym2K

2 ⊗
Sym2K

2 of symmetric 2×2 matrices of binary quadratic forms over K and
isomorphism classes of triples (C,L, P ), where C is a smooth genus one
curve over K, L is a degree 2 line bundle on C, and P is a non-2-torsion
point of the subgroup Pic0(C)(K) of Jac(C)(K).

Over a field K not of characteristic dividing 6, the space Sym2K2 ⊗
Sym2K2 is isomorphic to the space of the doubly-doubly symmetric hyper-
cubes. Analogous to the case discussed in §2.6, there is a natural “dual” inter-
pretation for the orbits of this space, also involving genus one curves X with
degree 2 line bundles and a point in Jac2X(K) (see §6.1); however, the two
genus one curves C and X obtained from an element of Sym2K2⊗Sym2K2

are not the same, but are again related by a certain Hessian-type construc-
tion (see §6.3.3).

2.9. Double skew-symmetrization

Instead of imposing conditions of symmetry, one may impose conditions
of skew-symmetry on hypercubes, analogous to those described in [Bha04a,
§2.6]. To define these skew-symmetrizations, let us view again our original
hypercube space K2 ⊗K2 ⊗K2 ⊗K2 as the space of K-quadrilinear maps
W1 × W2 × W3 × W4 → K, where W1,W2,W3,W4 are K-vector spaces of
dimension 2 (namely, the K-duals of the four factors K2 in K2⊗K2⊗K2⊗
K2). Then given such a quadrilinear map

φ : W1 ×W2 ×W3 ×W4 → K

in K2⊗K2⊗K2⊗K2, one may naturally construct another K-quadrilinear
map

φ̄ : W1 ×W2 × (W3 ⊕W4)× (W3 ⊕W4) → K

that is skew-symmetric in the third and fourth variables; this map φ̄ =
id⊗ id⊗ ∧2,2(φ) is given by

φ̄ (r, s, (t, u), (v, w)) = φ(r, s, t, w)− φ(r, s, v, u).
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Thus we have a natural K-linear mapping

(17)

id⊗∧2,2 : K
2⊗K2⊗K2⊗K2 → K2⊗K2⊗∧2(K2⊕K2) = K2⊗K2⊗∧2K4

taking 2 × 2 × 2 × 2 hypercubes to 2 × 2 matrices of alternating 2-forms

in four variables. Explicitly, in terms of fixed bases for W1,W2,W3,W4, the

hypercube (3) maps to the 2 × 2 matrix of skew-symmetric matrices as

follows:

(18)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎣

h1111 h1112

h1121 h1122

−h1111 −h1121

−h1112 −h1122

⎤
⎥⎥⎦

⎡
⎢⎢⎣

h1211 h1212

h1221 h1222

−h1211 −h1221

−h1212 −h1222

⎤
⎥⎥⎦

⎡
⎢⎢⎣

h2111 h2112

h2121 h2122

−h2111 −h2121

−h2112 −h2122

⎤
⎥⎥⎦

⎡
⎢⎢⎣

h2211 h2212

h2221 h2222

−h2211 −h2221

−h2212 −h2222

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Analogous to the case of double skew-symmetrization of 2×2×2 cubes,

where two ideal classes become replaced with a single rank 2 module, in the

geometric data corresponding to a double-skew-symmetric hypercube, two

degree 2 line bundles L3 and L4 that come from the curves C3 and C4 are

replaced by a single vector bundle M of rank 2 and degree 4. We thus have

the following result (where the nondegeneracy condition on the geometric

data is a mild open condition and will be discussed in §6.5).

Theorem 2.6. For any field K with char(K) � 6, there is a canonical bi-

jection between nondegenerate GL2(K)2×GL4(K)-orbits on the space K2⊗
K2 ⊗∧2K4 of 2× 2 matrices of alternating quaternary 2-forms over K and

isomorphism classes of nondegenerate quadruples (C,L, P,M), where C is

a smooth genus one curve over K, L is a degree 2 line bundle on C, P is a

nonzero point of Pic0(C)(K), and M is a rank 2 vector bundle of degree 4

such that detM ∼= P ⊗ L⊗2.

2.10. Triple skew-symmetrization

We may also impose a triple skew-symmetry on hypercubes. With the same

notation as in the previous section, given a quadrilinear map

φ : W1 ×W2 ×W3 ×W4 → K,
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we may construct the K-quadrilinear map

φ̄ : W1 × (W2 ⊕W3 ⊕W4)× (W2 ⊕W3 ⊕W4)× (W2 ⊕W3 ⊕W4) → K,

which is alternating in the last three factors and explicitly given by

φ̄(r, (s1, s2, s3), (t1, t2, t3), (u1, u2, u3)) =
∑
σ∈S3

(−1)σφ(r, sσ(1), tσ(2), uσ(3)).

Thus, we obtain a natural K-linear injection

(19) id⊗∧2,2,2 : K
2⊗K2⊗K2⊗K2 → K2⊗∧3(K2⊕K2⊕K2) = K2⊗∧3K6

from the space of hypercubes to the space of pairs of senary alternating
3-forms. In analyzing the GL2(K)×GL6(K)-orbits of this larger space, one
finds that the degree 2 line bundles L2, L3, L4 coming from C2, C3, C4 are
now replaced by a single rank 3 vector bundle (which splits into the direct
sum of these line bundles for elements in the image of id⊗ ∧2,2,2). We thus
obtain the following:

Theorem 2.7. For any field K with char(K) � 6, there is a canonical bijec-
tion between nondegenerate GL2(K)×GL6(K)-orbits on the space K2⊗∧3K6

of pairs of senary alternating 3-forms over K and isomorphism classes of
nondegenerate triples (C,L,M), where C is a smooth genus one curve over
K, L is a degree 2 line bundle on C, and M is a rank 3 vector bundle of
degree 6 such that detM ∼= L⊗3.

2.11. A simultaneous generalization: triply Hermitian
hypercubes

Many of the orbit parametrizations we have discussed in this section can be
unified and generalized, via a process we call Hermitianization. Just as one
can consider square matrices that are Hermitian over a composition algebra,
we may consider cubical matrices that are Hermitian over a cubic algebra.
The most convenient notion for this purpose is Springer’s definition of a
cubic Jordan algebra, which we discuss in more detail in §5.3. For now, it
suffices to say that a cubic Jordan algebra is a generalization of the notion
of a cubic field extension, where each element of the cubic Jordan algebra
has two other formal conjugates, and there is a well-defined notion of a
characteristic polynomial that these conjugate elements all satisfy. Some
simple examples of cubic Jordan algebras over a field K include K3, K2, K,
cubic field extensions of K, K ×Mat2×2(K), and Mat3×3(K).



24 Manjul Bhargava and Wei Ho

A triply Hermitian hypercube for the cubic algebra J over K is one of

the form

(20)

a b

b′ c′′

b′′ c′

c d
��

��

��

��
e f

f ′ g′′

f ′′ g′

g h
��

��

��

��

where a, d, e, h ∈ K and b, c, f, g ∈ J , and b′, b′′ and c′, c′′ are formal conju-

gates of b and c, respectively. We denote the space of all triply Hermitian

hypercubes for such a cubic Jordan algebra J/K by C2(J).

For each such J , there is a natural group SL2(J) acting by linear trans-

formations but preserving a certain discriminant quartic form on the space

C2(J). Then we obtain a parametrization for the orbits of GL2(K)×SL2(J)

on C2(J) (a full version of the theorem may be found in §6.5):

Theorem 2.8. For any field K with char(K) � 6, and a cubic Jordan algebra

J over K, there is a canonical bijection between nondegenerate GL2(K) ×
SL2(J)-orbits on the space C2(J) of triply Hermitian hypercubes for J over

K and isomorphism classes of triples (C,L,F), where C is a smooth genus

one curve over K, L is a degree 2 line bundle on C, and F is a flag of vector

bundles on C with additional structure coming from J , subject to a relation

between L and F.

In each case, one of the key components of the construction of the cor-

responding geometric data is a flag variety related to the representation of

SL2(J) on C2(J). Each element of C2(J) produces a map from a genus one

curve C to this flag variety, thereby giving the flag F on C described in the

theorem. See §6.5 for full details.

The cases J = K3, K ×K, K, K ×Mat2×2(K), and Mat3×3(K) yield

regular hypercubes, triply symmetric hypercubes, doubly symmetric hyper-

cubes, doubly skew-symmetric hypercubes, and triply skew-symmetric hy-

percubes, respectively. From this perspective, one may also obtain moduli

descriptions of some more exotic spaces, e.g., GL2(K) × Sp6(K)-orbits on

K2⊗∧3
0(K

6), GL2(K)×Spin12(K)-orbits onK2⊗K32, and GL2(K)×E7(K)-

orbits on K2 ⊗K56.
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3. Main results II: Genus one curves and 3 × 3 × 3 Rubik’s
cubes

In this section, we discuss the space of 3× 3× 3 cubical matrices (“Rubik’s
cubes”) over K, and describe the various parametrizations of genus one
curves with extra data that can be obtained from this perspective. Again,
no proofs or details are given in this section. Further details, more basis-free
constructions, and proofs may be found in Section 5.

3.1. On Rubik’s cubes

Let K be a field of characteristic not dividing 6. Analogous to the space of
2 × 2 × 2 cubes from §2.1, we may consider the space of 3 × 3 × 3 cubes,
which we call Rubik’s cubes. Let C3(K) denote the space K3 ⊗ K3 ⊗ K3.
Then each element of C3(K) may be represented as a 3×3×3 cubical matrix
B = (bijk)1≤i,j,k≤3 with entries in K:

(21)

b311 b312 b313

b211 b212 b213
b323

b111 b112 b113
b223

b331 b333
b121 b122 b123

b233

b131 b132 b133

.

If we denote by {e1, e2, e3} the standard basis of K3, then the element of
C3(K) described by the cubical matrix B = (bijk)1≤i,j,k≤3 above is∑

1≤i,j,k≤3

bijk ei ⊗ ej ⊗ ek.

Thus we may identify C3(K) with the space of 3×3×3 matrices with entries
in K or, simply, the space of Rubik’s cubes over K.

As in §2.1, a Rubik’s cube can naturally be partitioned into three 3× 3
matrices in three distinct ways. Namely, the cube B = (bijk) given by (21)
can be sliced into the three 3×3×3 matrices M�, N�, and P�, for � = 1, 2, 3,
as follows:
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1) M1 = (b1jk) is the front face, N1 = (b2jk) is the middle slice, and
P1 = (b3jk) is the back face;

2) M2 = (bi1k) is the top face, N2 = (bi2k) is the middle slice, and P2 =
(bi3k) is the bottom face;

3) M3 = (bij1) is the left face, N3 = (bij2) is the middle slice, and P3 =
(bij3) is the right face.

There is also a natural action of SL3(K)3 on C3(K), analogous to the action
of SL2(K)3 on the space C2(K) of 2 × 2 × 2 cubes. Namely, for any i ∈
{1, 2, 3}, the element g = (g�m) ∈ SL3(K) in the ith factor acts on the
cube B by replacing (Mi, Ni, Pi) by (g11Mi+g12Ni+g13Pi, g21Mi+g22Ni+
g23Pi, g31Mi+ g32Ni+ g33Pi). These three SL3(K)-actions commute, giving
a well-defined action of SL3(K)3 on C3(K).

Recall that a 2×2×2 cube naturally gave rise to three binary quadratic
forms, by slicing the cube and taking determinants as in (2). In the analogous
manner, a Rubik’s cube B = (bijk) naturally gives rise to three ternary cubic
forms

(22) fi(x, y, z) = det(Mix+Niy + Piz)

for 1 ≤ i ≤ 3. The ternary cubic form f1 is invariant under the action of the
subgroup id× SL3(K)2 ⊂ SL3(K)3 on B ∈ C3(K). The remaining factor of
SL3(K) acts in the standard way on the ternary cubic form f1, and it is well
known that this action has two independent polynomial invariants, which
are traditionally called S(f1) and T (f1) (see §4.2 for more details on ternary
cubic forms). These invariants have degrees 4 and 6, respectively, in the co-
efficients of f1. Analogous to the situation with 2 × 2 × 2 × 2 hypercubes,
one checks that f2 and f3 also have the same invariants as f1, and so we
have produced well-defined SL3(K)3-invariants S(B) and T (B) for Rubik’s
cubes B, having degrees 12 and 18, respectively. Again, this construction
does not produce all the invariants; in §3.2.3, we will again construct a cer-
tain noncommutative diagram in order to produce the remaining generators
of the SL3(K)3-invariant ring.

The discriminant disc(f) of a ternary cubic form f is defined by

(23) disc(f) =
1

1728
(S(f)3 − T (f)2),

and the discriminant of the ternary cubic form f is nonzero precisely when
it cuts out a smooth curve in P2; such a ternary cubic form is called non-
degenerate. Since the S and T invariants are common to all the fi, their
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discriminants are also all the same, and thus we may naturally define the
discriminant of a Rubik’s cube B to be

(24) disc(B) :=
1

1728
(S(B)3 − T (B)2),

which is nonzero precisely when any of the ternary cubic forms fi associated
to B cut out a smooth curve in P2. We say then that the Rubik’s cube B is

nondegenerate if its discriminant is nonzero.

We give a conceptual explanation as to why S(fi) = S(fj) and T (fi) =
T (fj) (and thus disc(fi) = disc(fj)) for all i and j in the next subsection.

3.2. Genus one curves from Rubik’s cubes

We now explain how a nondegenerate Rubik’s cube B naturally gives rise
to a number of genus one curves Ci (1 ≤ i ≤ 3) and Cij (1 ≤ i < j ≤ 3). We

also discuss how these genus one curves are related to each other, and the
resulting description of the nondegenerate orbits of SL3(K)3 on the space
K3 ⊗K3 ⊗K3 of Rubik’s cubes over K.

3.2.1. Genus one curves in P2. Given a nondegenerate ternary cu-
bic form f over K, we may attach to f a genus one curve C(f) over K,

namely the zero locus of the polynomial f in P2. It is known (see, e.g.,
[ARVT05, AKM+01]) that the Jacobian of the curve C(f) may be written
as a Weierstrass elliptic curve with coefficients expressed in terms of the
invariants S(f) and T (f), namely as

E(f) : y2 = x3 − 27S(f)x− 54T (f).

We always take E(f) as our model for the Jacobian of C(f).

Now given a nondegenerate Rubik’s cube B ∈ C3(K), we have seen that
we naturally obtain three ternary cubic forms f1, f2, f3, over K from B.
Thus each Rubik’s cube B ∈ C3(K) yields three corresponding genus one
curves C1, C2, C3 over K, where Ci = C(fi).

3.2.2. Genus one curves in P2×P2. The genus one curves we have ob-

tained from a nondegenerate Rubik’s cube B ∈ C3(K) may also be embedded
naturally in P2 × P2. Let us first identify C3(K) with the space of trilinear
forms on W1×W2×W3, where each Wi (i ∈ {1, 2, 3}) is a 3-dimensional K-
vector space. (In this identification, when we write C3(K) = K3⊗K3⊗K3,
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then the ith factor of K3 is the K-vector space dual to Wi.) Then for any

B ∈ C3(K), viewed as a trilinear form, we consider the set

C12(K) := {(w1, w2) ∈ P(W1)× P(W2) : B(w1, w2, ·) ≡ 0}
⊂ P(W1)× P(W2) ∼= P2 × P2.

If B is nondegenerate, then C12 in fact yields the graph of an isomorphism

between C1 and C2. Indeed, for any point w1 ∈ C1, the form B(w1, ·, ·) is

singular with a one-dimensional kernel in W2; this gives a point of P(W2)

that then must lie on C2!

As this process is reversible, it follows that C12 is isomorphic to both C1

and C2 via projection, and hence all the curves Ci are isomorphic to each

other: for 1 ≤ i < j ≤ 3, if we define Cij ⊂ P2×P2 in the analogous manner,

then we have natural isomorphisms

Ci
∼= Cij

∼= Cj .

It also follows (by the same argument as given at the end of §2.3.2) that all
three ternary cubic forms fi have the same values for the invariants S and

T , as was claimed at the end of §3.1.

3.2.3. The fundamental triangle of isomorphisms. From a nonde-

generate Rubik’s cube B, we have thus constructed three genus one curves

C12, C23, and C13, which are all isomorphic. In fact, we may construct ex-

plicit and natural isomorphisms between them, e.g.,

τ2312 : C12 → C2 → C23,

given by projection and un-projection. More explicitly, for a given point

(w1, w2) ∈ C12, the bilinear form B(·, w2, ·) is singular and has rank 2, so

there exists a unique w3 ∈ P(W3) such that B(·, w2, w3) ≡ 0. Then (w2, w3)

is a point on C23, giving the map τ2312 . Clearly, all such maps are invertible,

e.g., τ1223 = (τ2312 )
−1.

We thus obtain a triangle of maps

(25)

C12

C23 C13

.
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However, this triangle does not commute! Composing the three maps of
this triangle in a clockwise direction, starting from say C = C12, yields an
automorphism of C given by translation by a point P on the Jacobian E =
Jac(C) of C. Composing the three maps in the counterclockwise direction
then yields the automorphism of C given by translation by P ′ = −P . As
before, these points P , P ′ are in fact in Pic0(C)(K). Indeed, ifD1 andD2 are
the degree 3 divisors on C corresponding to the embeddings into P(W1) and
P(W2), respectively, then we find that the difference D2 − D1 corresponds
to the point P on the Jacobian of C.

In summary, from a nondegenerate Rubik’s cube B ∈ C3(K), we obtain
an elliptic curve

E(B) : y2 = x3 − 27S(B)x− 54T (B),

with

S(B) = S(fi) and T (B) = T (fi)

for 1 ≤ i ≤ 3, where f1, f2, and f3 are the ternary cubic forms naturally
arising from B. Furthermore, the elliptic curve E := E(B) is canonically the
Jacobian of each of the genus one curves Ci (1 ≤ i ≤ 3) and Cij (1 ≤ i ≤ j ≤
3) arising from B. Finally, there is a natural triangle (25) of isomorphisms
among the Cij , which does not commute. We thus obtain, in addition to a
degree 3 divisor D1 on the curve C12, a pair of points P , P ′ in Pic0(C12)(K)
that sum to zero.

3.3. Orbit classification of Rubik’s cubes

We will show in §5.1 that the data of a genus one curve C = C12, the
equivalence class of a degree 3 rational divisor D = D1 on C, and a pair
P, P ′ of nonzero points summing to zero in Pic0(C)(K) is in fact sufficient
to recover the orbit of a Rubik’s cube B. We have:

Theorem 3.1. For any field K with char(K) � 6, there is a canonical bi-
jection between nondegenerate GL3(K)3-orbits on the space K3 ⊗K3 ⊗K3

of Rubik’s cubes over K and isomorphism classes of triples (C,L, (P, P ′)),
where C is a smooth genus one curve over K, L is a degree 3 line bundle
on C, and P and P ′ are nonzero points in Pic0(C)(K) that sum to zero.

It is known (see, e.g., [Vin76]) that the ring of polynomial invariants
for the action of SL3(K)3 on the space K3 ⊗ K3 ⊗ K3 is freely generated
by three polynomials d6, d9, and d12 = −27S, having degrees 6, 9, and 12,
respectively, in the entries of the Rubik’s cube. In terms of the geometric
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data in Theorem 3.1, these three invariants have geometric meaning. We
may write the Jacobian of the curve C in Weierstrass form as

E : y2 = x3 + d12x+ d18,

where d18 = −54T is a degree 18 polynomial in the entries of the Rubik’s
cube, and where the points P and P ′ are given by (x, y) = (d6,±d9) on the
model E. It is clear then that d18 may be expressed in terms of the generators
d6, d9, and d12. In conclusion, d6, d9, d12 and d18 are all fundamental and
important polynomial invariants for the action of SL3(K)3 on K3⊗K3⊗K3;
they all have key geometric interpretations and can be expressed as simple
polynomials in the three basic invariants d6, d9, and d12.

3.4. Triple symmetrization

Analogous to the case of symmetric hypercubes discussed in §2.5, we may
consider symmetric Rubik’s cubes. If we ask for complete symmetry under
the action of S3, the Rubik’s cubes in question will be of the form

(26)

⎛
⎝a b c
b d e
c e f

⎞
⎠

⎛
⎝b d e
d g h
e h i

⎞
⎠

⎛
⎝c e f
e h i
f i j

⎞
⎠

where each 3×3 matrix represents one “slice.” Just as quadruply-symmetric
hypercubes (14) could be identified with binary quartic forms (13), in the
same way the triply-symmetric Rubik’s cube (26) may be identified with the
ternary cubic form

(27) ax3+3bx2y+3cx2z+3dxy2+6exyz+3fxz2+gy3+3hy2z+3iyz2+jz3.

This identification corresponds to the natural inclusion

Sym3(K
3) ↪→ K3 ⊗K3 ⊗K3

of the space of triply-symmetric Rubik’s cubes into the space of all Rubik’s
cubes.

Such Rubik’s cubes lead to geometric data (C,L, (P, P ′)) as in Theo-
rem 3.1, but due to the symmetry we also have P = P ′. Since P + P ′ = 0,
we see that P is a 2-torsion point on the Jacobian of C. Conversely, we
will show in §5.2.2 that this is the only constraint on P ; thus we obtain the
following theorem classifying the orbits of GL3(K) on Sym3K

3:
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Theorem 3.2. For any field K with char(K) � 6, there is a natural bijection
between nondegenerate GL3(K)-orbits on the space Sym3K

3 of ternary cubic
forms over K and isomorphism classes of triples (C,L, P ), where C is a
smooth genus one curve over K, L is a degree 3 line bundle on C, and P is
a nonzero 2-torsion point on the Jacobian of C defined over K.

We have already noted in (see §4.2 for further details) that certain
GL3(K)-orbits on Sym3K3 correspond to pairs (X,L), where X is a genus
one curve and L is a degree 3 line bundle on X. When char(K) � 6, these
two spaces Sym3K

3 and Sym3K3 are naturally identified, so we obtain two
“dual” moduli interpretations of the space of ternary cubics in terms of
genus one curves. However, as in the case of symmetric hypercubes viewed
as binary quartics in §2.5, these two genus one curves arising from a ternary
cubic are not the same; they are related by the classical Hessian construction
(see §5.2.2).

3.5. Double symmetrization

The orbit description for ternary cubic forms in §3.4 was obtained by im-
posing a symmetry condition on the orbit description for Rubik’s cubes.
Rather than imposing a threefold symmetry, we can impose only a double
symmetry to obtain Rubik’s cubes of the form

(28)

⎛
⎝a1 b1 c1
b1 d1 e1
c1 e1 f1

⎞
⎠

⎛
⎝a2 b2 c2
b2 d2 e2
c2 e2 f2

⎞
⎠

⎛
⎝a3 b3 c3
b3 d3 e3
c3 e3 f3

⎞
⎠ ,

where again, each 3× 3 matrix represents a slice of the Rubik’s cube. Since
a symmetric 3 × 3 matrix represents a ternary quadratic form, a doubly
symmetric Rubik’s cube may be viewed as a triple of ternary quadratic
forms

(a1x
2 + 2b1xy + 2c1xz + d1y

2 + e1yz + f1z
2,

a2x
2 + 2b2xy + 2c2xz + d2y

2 + e2yz + f2z
2,(29)

a3x
2 + 2b3xy + 2c3xz + d3y

2 + e3yz + f3z
2).

The above association of the triple (29) of ternary quadratic forms with the
doubly symmetric Rubik’s cube (28) corresponds to the natural inclusion

K3 ⊗ Sym2K
3 ↪→ K3 ⊗K3 ⊗K3.
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To such nondegenerate doubly symmetric Rubik’s cubes, we can asso-
ciate the usual geometric data (C,L, (P, P ′)) as in Theorem 3.1, and as in
the fully symmetric case, the symmetry implies that P is a 2-torsion point.
We will show in §5.2.2 that this is again the only constraint on P , and
so we obtain the following theorem classifying the orbits of GL3(K)2 on
K3 ⊗ Sym2K

3:

Theorem 3.3. For any field K with char(K) � 6, there is a natural bijec-
tion between nondegenerate GL3(K)2-orbits on the space K3 ⊗ Sym2K

3 of
triples of ternary quadratic forms over K and isomorphism classes of triples
(C,L, P ), where C is a smooth genus one curved over K, L is a degree 3
line bundle on C, and P is a nonzero 2-torsion point on the Jacobian of C
defined over K.

Note that the data parametrized by triply symmetric and doubly sym-
metric Rubik’s cubes is the same! The two orbit parametrizations in fact
allow us to construct an explicit linear transformation taking any given non-
degenerate element of the space K3 ⊗ Sym2K

3 to an element of Sym3K
3.

3.6. Double skew-symmetrization

Instead of imposing conditions of symmetry, one may impose conditions of
skew-symmetry on Rubik’s cubes. Let us view again our Rubik’s cube space
K3 ⊗K3 ⊗K3 as the space of K-trilinear map W1 ×W2 ×W3 → K, where
W1, W2, and W3 are 3-dimensional K-vector spaces. Then given such a
K-trilinear map φ, one may construct another K-trilinear map

φ̄ : W1 × (W2 ⊕W3)× (W2 ⊕W3)

that is skew-symmetric in the last two variables and is given by

φ̄(r, (s, t), (u, v)) = φ(r, s, v)− φ(r, u, t).

This gives a natural K-linear injection

id⊗ ∧3,3 : K
3 ⊗K3 ⊗K3 → K3 ⊗ ∧2(K6)

taking Rubik’s cubes to triples of alternating 2-forms in six variables.
In analyzing the GL3(K)×GL6(K)-orbits of this larger space, one finds

that the degree 3 line bundles L2 and L3 coming from C2 and C3 are now
replaced by a single rank 2 vector bundle (which splits into the direct sum
of these line bundles for elements in the image of id⊗∧3,3). We thus obtain
the following (see §5.5 for details):
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Theorem 3.4. For any field K with char(K) � 6, there is a natural bijection
between nondegenerate GL3(K) × GL6(K)-orbits on the space K3 ⊗ ∧2K6

of triples of alternating senary 2-forms over K and isomorphism classes of
nondegenerate triples (C,L,M), where C is a smooth genus one curved over
K, L is a degree 3 line bundle on C, and M is a rank 2 degree 6 vector
bundle on C with L⊗2 ∼= detM .

The nondegeneracy condition on the geometric data is a mild open condition
and will be discussed in §5.4.

3.7. A simultaneous generalization: doubly Hermitian Rubik’s
cubes

Many of the orbit parametrizations we have discussed in this section can
be unified and generalized, by a Hermitianiziation process that is analogous
to the one introduced in §2.11. Recall that a Rubik’s cube may be seen as
a triple of 3 × 3 matrices. To define a doubly Hermitian Rubik’s cube, we
replace the triple of standard 3 × 3 matrices by a triple of 3 × 3 matrices
that are Hermitian with respect to some composition algebra A over K.
By a composition algebra A, we mean a unital (not necessarily associative)
algebra A over K with a nondegenerate quadratic norm form nA(·) such that
nA(xy) = nA(x) nA(y) for all x, y ∈ A. This implies that A is alternative (i.e.,
x(xy) = (xx)y and (yx)x = y(xx) for all x, y ∈ A) and is equipped with a
K-algebra involution ι : A → A, sending x ∈ A to its conjugate x̄, such that
all trA(x) := x+ x̄ and nA(x) = xx̄ lie in the image of K in A and all x ∈ A
satisfy the quadratic relation a2− (trA(x))x+nA(x) = 0. (We also allow the
0 algebra as a composition algebra.) A Hermitian 3 × 3 matrix M for the
composition algebra A over K is one of the form⎛

⎝a d e
d̄ b f
ē f̄ c

⎞
⎠

where a, b, c ∈ K and d, e, f ∈ A. We denote the space of all doubly Hermi-
tian Rubik’s cubes for such a composition algebra A by C3(A). Examples of
suitable composition algebras A include K itself, K2, Mat2×2(K), or gen-
eral quaternion or octonion algebras over K. Details about the composition
algebras A used in this paper are discussed in §5.3.

For each such composition algebra A, there is a natural group SL3(A)
that acts on 3×3 Hermitian matrices by linear transformations that preserve
the determinant. Then we may classify the orbits of the action of GL3(K)×
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SL3(A) on C3(A) as follows (a full version of this theorem may be found in
§5.4):
Theorem 3.5. For any field K with char(K) � 6, and a composition algebra
A over K, there is a canonical bijection between nondegenerate GL3(K) ×
SL3(A)-orbits on the space C3(A) of doubly Hermitian Rubik’s cubes for A
over K and isomorphism classes of triples (C,L,M), where C is a smooth
genus one curve over K, L is a degree 3 line bundle on C, and M is a
vector bundle of rank equal to the dimension of A over K, with a global
faithful A-action and other structure coming from A, subject to a relation
between L and M .

In each case, the vector bundle M arises via a natural map from the
curve C to the variety of rank one 3 × 3 Hermitian matrices up to scaling.
The rank one Hermitian matrices form a flag variety in the space of all
Hermitian matrices, and the vector bundle M on C is part of the flag on C
coming from the pullback of the universal flag. See §5.4 for details.

The cases A = K × K, K, Mat2×2(K) yield regular Rubik’s cubes,
doubly symmetric Rubik’s cubes, and doubly skew-symmetric Rubik’s cubes,
respectively. Other examples include twists of these spaces, as well as the
space K3 ⊗K27 under the action of GL3(K)×E6(K), which arises when A
is an octonion algebra.

Preliminaries and notation

Let K be a field not of characteristic 2 or 3. We will work over the field K
throughout this paper (unless specified otherwise); many of the results have
analogues over a Z[16 ]-scheme as well.

We use the convention that the projectivization of a vector space param-
etrizes lines, not hyperplanes. For example, a basepoint-free line bundle L
on a variety X induces a natural map φL : X → P(H0(X,L)∨).

A genus one curve means a proper, smooth, geometrically connected
curve with arithmetic genus 1, and an elliptic curve is such a genus one
curve equipped with a base point.

An isomorphism of sets of data D1 and D2, where Di consists of a genus
one curve Ci and vector bundles for i = 1 or 2, is an isomorphism C1 → C2,
along with isomorphisms between the pullbacks of the vector bundles on C2

and the respective bundles on C1.
If A is an element in a tensor product of vector spaces, we use the

notation A(·, . . . , ·) to denote the multilinear form, where the dots may be
replaced by substituting elements of the respective dual vector spaces. For
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example, for vector spaces V1, V2, and V3, if A ∈ V1 ⊗ V2 ⊗ V3 and v ∈ V ∨
1 ,

the notation A(v, ·, ·) will refer to the evaluation A� v of the trilinear form A
on v, which gives an element of V2⊗V3. By a slight abuse of notation, we will
also use this notation to specify whether A(v, ·, ·) vanishes for v ∈ P(V ∨

1 ),
for example.

If V is a m-dimensional vector space, then the notation Symn V refers
to the nth symmetric power of V , typically constructed as a quotient of
the n-fold tensor product V ⊗ · · · ⊗ V . For a fixed basis v1, . . . , vm of V ,
elements of Symn V may be thought of as degree n homogeneous polynomials
in v1, . . . , vm. In contrast, we use Symn V to denote the space of the n-fold
symmetric tensors, which is usually constructed as the subspace of V ⊗· · ·⊗V
fixed under the natural action of the symmetric group Sn. Note that Symn V
and Symn V , over a field of characteristic not dividing n!, are isomorphic. In
this paper, we take care to use either the quotient or subspace as needed, even
though they will be isomorphic in each case here (since we have charK �=
2, 3 and only consider cases where n = 2 or 3), for the purposes of future
applications.

4. Genus one curves with degree 2, 3, 4, or 5 line bundles

In this section, we describe representations V of algebraic groups G whose
orbits correspond to genus one curves with degree d line bundles for 2 ≤ d ≤
5. For any field K not of characteristic 2, 3, or 5, there is a natural bijection
between nondegenerate orbits in V (K)/G(K) and isomorphism classes of
genus one curves defined over K equipped with degree d line bundles.

Most of these quotient descriptions are classical (or at least fairly well
known) over an algebraically closed field. For example, for d = 2, the space
under consideration is that of binary quartic forms, and for d = 3, ternary
cubic forms. What is new here is that, for each case, we also show that with
the right forms of the group G acting on the representation V , the stabilizer
of a generic element of the representation agrees with the automorphism
group of the curve and the line bundle. Thus we obtain an equivalence
of moduli stacks, which is important in the arithmetic applications (e.g.,
in [BS15a, BS15b]). We suspect that some of this section is known to the
experts, but has not previously been stated explicitly; see also the related
work of Cremona, Fisher, and Stoll [CF09, Fis06, CFS10, Fis10].

4.1. Binary quartic forms

A binary quartic form over K is a two-dimensional vector space V over K
equipped with an element q of Sym4 V . With a choice of basis {w1, w2}
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for V , a binary quartic form over K may be represented as a homogeneous
degree 4 polynomial

(30) q(w1, w2) = aw4
1 + bw3

1w2 + cw2
1w

2
2 + dw1w

3
2 + ew4

2,

where a, b, c, d, e ∈ K. The group GL(V ) acts on Sym4 V by acting on V in
the standard way. The ring of SL(V )-invariants of a binary quartic form q
as in equation (30) is a polynomial ring, generated by the two invariants

I(q) = 12ae−3bd+c2 and J(q) = 72ace+9bcd−27ad2−27eb2−2c3.

The categorical quotient Sym4 V//SL2(V ) is thus birational to the affine
plane, with coordinates given by the invariants I and J . There is also a
natural notion of the discriminant Δ(q) = 4I(q)3−J(q)2 of a binary quartic
form. The nonvanishing of the discriminant Δ(q) corresponds to q having
four distinct roots over the separable closure ofK; we call such binary quartic
forms nondegenerate.

We may also consider the following twisted action of g ∈ GL(V ) on
q ∈ Sym4 V :

(31) g · q(w1, w2) = (det g)−2q((w1, w2)g)

for which the SL(V )-invariants described above are preserved as well. This
representation is GL(V ) acting on Sym4 V ⊗ (∧2V )−2; we will sometimes
denote it by the action of GL(V )(−2) on binary quartic forms. Note that the
stabilizer of this twisted action contains the diagonal Gm of GL(V ) (i.e.,
scalar matrices), thereby inducing an action of PGL(V ) on the space of
binary quartic forms.

There is one more action we will consider, which is scaling by squares,
i.e., γ ∈ Gm sends q ∈ Sym4 V ⊗ (∧2V )−2 to γ2q. We will denote this as the
action of 2Gm on binary quartics.

A nondegenerate binary quartic form q may be associated to a genus
one curve C in the weighted projective space P(1, 1, 2) by the equation

(32) y2 = q(w1, w2) = aw4
1 + bw3

1w2 + cw2
1w

2
2 + dw1w

3
2 + ew4

2,

where w1 and w2 each have degree 1 and y has degree 2. Over the algebraic
closure, the four roots of the binary quartic correspond to the four points of
P(V ∨) over which C ramifies; in other words, the subscheme of P(V ∨) = P1

cut out by q is the ramification locus of the two-to-one map C → P(V ∨).
Nondegeneracy is clearly preserved by all of the group actions above.
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From a nondegenerate binary quartic q, we thus obtain a smooth irre-
ducible genus one curve C, as well as a degree 2 line bundle L on C, which is
the pullback of OP(V ∨)(1) to C. Then the space of sections H0(C,L) may be

identified with the vector space V . The GL(V )(−2)×2Gm-action on a binary
quartic does not change the isomorphism class of the curve C obtained in
this way. The Jacobian of the curve C associated to q has Weierstrass form

y2 = x3 − 27I(q)x− 27J(q)

(see, e.g., [AKM+01, CF09]).

Conversely, given a smooth irreducible genus one curve C over K and a
degree 2 line bundle L, the hyperelliptic map η : C → P(H0(C,L)∨) given
by the complete linear series |L| has a ramification divisor of degree 4 by the
Riemann–Hurwitz Theorem. The branch divisor is a degree 4 subscheme of
P(H0(C,L)∨) defined over K, which recovers a binary quartic form over K,
up to scaling. We next compute this scaling factor more precisely, in order
to keep track of the group actions for Theorem 4.1 below.

Given the genus one curve π : C → Spec K and a degree 2 line bundle
L on C, we have the exact sequence

0 −→ η∗Ω1
P(H0(C,L)∨) −→ Ω1

C −→ Ω1
C/P(H0(C,L)∨) −→ 0,

and taking the pushforward under η gives the exact sequence

(33) 0 −→ Ω1
P(H0(C,L)∨) ⊗ η∗OC −→ η∗Ω

1
C −→ η∗Ω

1
C/P(H0(C,L)∨) −→ 0.

The first two terms of the sequence (33) are rank two bundles whose de-
terminants have degrees −6 and −2, respectively. Taking determinants and
twisting gives the map

O → (Ω1
P(H0(C,L)∨))

⊗−2 ⊗ ω⊗2
C

where ωC := π∗Ω1
C is the Hodge bundle for C. The induced map on coho-

mology is

(34) K −→ Sym4(H0(C,L))⊗ (∧2(H0(C,L)))⊗(−2) ⊗ ω⊗2
C

and the image of 1 ∈ K is the desired binary quartic form. If we were not
allowing the action of 2Gm on binary quartics as well, then we would need
to specify a differential to pin down the scaling of the binary quartic form.
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In other words, there is an isomorphism between the open subset of

Sym4 V of nondegenerate binary quartic forms and the moduli problem for

(C,L, φ, δ), where C is a smooth irreducible genus one curve, L is a degree

2 line bundle on C, φ : H0(C,L) → V is an isomorphism, and δ is a nonzero

differential on C. By the computation (34), this isomorphism is GL(V ) ×
Gm-equivariant: the group acts on binary quartic forms as described above

(namely, as GL(V )(−2) × 2Gm), while on the geometric data, GL(V ) goes

through the isomorphism φ to act on H0(C,L), and Gm acts by scaling on

δ.

Thus, by descending to the quotient by these group actions, we obtain

the correspondence of Theorem 4.1 below. The stabilizer of a binary quartic

form here is exactly the automorphism group of the geometric data corre-

sponding to the form. In order to describe the stabilizer, we first recall that

there is a projective representation E[2] → PGL(H0(E,O(2O)) = PGL2

since translating by the 2-torsion points of E stabilizes the line bundle

O(2O). We recall the definition of the Heisenberg group ΘE,2 for an el-

liptic curve E as the pullback of Gm → GL2 → PGL2 along the map

E[2] → PGL2; it satisfies the following commutative diagram:

(35) 0 Gm ΘE,2 E[2] 0

0 Gm GL2 PGL2 0.

More generally, for any n, we may define ΘE,n analogously as an extension

of E[n] by Gm. (See [Mum66] for more details on Heisenberg groups.)

Theorem 4.1. Let V be a 2-dimensional vector space over K. Then nonde-

generate GL(V )(−2) × 2Gm-orbits on Sym4 V are in bijection with isomor-

phism classes of pairs (C,L), where C is a smooth irreducible genus one

curve over K and L is a degree 2 line bundle on C. The stabilizer group (as

a K-scheme) of a nondegenerate element of Sym4 V corresponding to (C,L)

is an extension of Aut(Jac(C)) by ΘJac(C),2, where Jac(C) is the Jacobian

of the curve C, Aut(Jac(C)) is its automorphism group as an elliptic curve,

and ΘJac(C),2 is the Heisenberg group as defined in (35).

Remark 4.2. When the Jacobian of C does not have j-invariant 0 or

1728, the automorphism group of (C,L) is in fact just the direct product

ΘJac(C),2 × Z/2Z ⊂ GL(V )×Gm. More generally, the automorphism group

scheme described in Theorem 4.1 is not necessarily a split extension.
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The set of isomorphism classes of pairs (C,L), where C is an E-torsor and
L is a degree 2 line bundle on C, may be identified with the set H1(K,ΘE,2),
which may also be identified with the kernel of the obstruction map in the
language of [O’N02, CFO+08]. Therefore, given an elliptic curve

(36) E : y2 = x3 − 27Ix− 27J,

the setH1(K,ΘE,2) is in bijective correspondence with the set of GL(V )(−2)-
orbits of binary quartic forms q having invariants I(q) = I and J(q) = J .

Remark 4.3. Theorem 4.1 may also be rephrased in terms of divisors on
the genus one curves instead of line bundles; we also replace the group
GL(V )(−2) × 2Gm with PGL(V ) × 2Gm. In this case, the stabilizer of a
binary quartic corresponding to a pair (C, [D]) for a genus one curve C with
a degree 2 K-rational divisor D (of equivalence class [D]) is the group of
K-points of the corresponding extension of Aut(Jac(C)) by Jac(C)[2]. For
example, if the j-invariant of Jac(C) is not 0 or 1728, then the stabilizer is
just Z/2Z×Jac(C)(K)[2]. While the nondegenerate orbits of Sym4 V under
our original group GL(V )(−2)×2Gm and the group PGL(V )×2Gm are iden-
tical, with the latter group action the stabilizer of an element matches the
naturally defined automorphism group of the corresponding pair (C, [D]).

Furthermore, by considering only the PGL(V )-action, the invariants of
the binary quartic form are fixed, and so is a differential on the Jacobian.
This revision of Theorem 4.1—i.e., the bijection between PGL(V )-orbits of
binary quartic forms and isomorphism classes of triples (E,C, [D]), where E
is a fixed elliptic curve of the form (36)—is used in [BS15a] to prove that the
average size of 2-Selmer groups for elliptic curves over Q, ordered by height,
is 3, which in turn implies that the average rank of elliptic curves (ordered
in the same way) is bounded by 1.5.

Remark 4.4. By generalizing the above constructions to base schemes over
Z[1/6] and letting V be a rank 2 free module over Z[1/6], we obtain an iso-
morphism between the nondegenerate substack of the double quotient stack
[2Gm \ Sym4 V ⊗ (∧2V )−2/GL(V )] and the quotient stack [M1,1/ΘEuniv,2],
where M1,1 is the moduli space of elliptic curves and ΘEuniv,2 is the theta
group scheme for the universal elliptic curve Euniv over M1,1. Here, the T -
points of the double quotient stack are triples (V, LT , s), where p : V → T
is a rank 2 vector bundle over T , LT is a line bundle on T , and s is a map
L⊗2
T → Sym4(V)⊗ (∧2V)−2.
Analogous statements will be true for all of the other cases discussed in

this section; we discuss this further in §4.5.
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4.2. Ternary cubic forms

A ternary cubic form over K is a three-dimensional vector space V and an
element f of Sym3 V ; with a choice of basis B = {w1, w2, w3} for V ∨, such
a form may be represented as a homogeneous degree 3 polynomial

f(w1, w2, w3) = aw3
1 + bw3

2 + cw3
3 + a2w

2
1w2 + a3w

2
1w3

(37)

+ b1w1w
2
2 + b3w

2
2w3 + c1w1w

2
3 + c2w2w

2
3 +mw1w2w3

with coefficients in K. There is a natural action of GL(V ) on the space of
all ternary cubic forms by the standard action of GL(V ) on V . The ring of
SL(V )-invariants of the space of ternary cubic forms is a polynomial ring
generated by a degree 4 invariant d4 = S and a degree 6 invariant d6 = T ,
and they may be computed by classical formulas (see [Fis06], for our choice
of scaling). Thus, the coarse moduli space Sym3 V//SL(V ) is birational to
the affine plane A2 with coordinates d4 and d6.

For the twisted action of GL(V ) on Sym3 V where g ∈ GL(V ) sends
f(X,Y, Z) ∈ Sym3 V to (det g)−1f((X,Y, Z)g), the SL(V )-invariants de-
scribed above are also preserved. This representation is described more ac-
curately as the action of GL(V ) on Sym3 V ⊗ (∧3V )−1, and we will also
sometimes denote it by the action of GL(V )(−1) on Sym3 V to indicate the
−1-twist of the determinant. Note that this representation has a nontriv-
ial kernel, namely the diagonal Gm of GL(V ) (i.e., scalar matrices), so it
induces a natural PGL(V )-action on the space of ternary cubic forms.

We will also consider the action of Gm on Sym3 V (or on Sym3 V ⊗
(∧3V )−1) by scaling. Scaling the form f by γ ∈ Gm scales each GL(V )(−1)-
invariant by γd, where d is the degree of the invariant.

We claim that the nondegenerate subset of ternary cubic forms, up to the
GL(V )(−1)×Gm-action, parametrizes genus one curves equipped with degree
3 line bundles, up to isomorphisms. In particular, a ternary cubic form f
defines a curve ι : C := {f = 0} ↪→ P(V ∨). We say that f a nondegenerate
ternary cubic form if C is smooth, which occurs if and only if the degree 12
discriminant Δ(f) := (d34 − d26)/1728 of f is nonzero. In this case, the curve
C has genus one, and the pullback ι∗OP(V ∨)(1) is a degree 3 line bundle on
C.

On the other hand, given a (smooth irreducible) genus one curve π : C →
Spec K and a degree 3 line bundle L on C, the embedding of C into
P(H0(C,L)∨) ∼= P2 gives rise to the exact sequence of sheaves

0 −→ IC −→ OP(H0(C,L)∨) −→ OC −→ 0
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on P(H0(C,L)∨), where IC is the ideal defining the curve C. Tensoring

with the sheaf OP(H0(C,L)∨)(3), taking cohomology, and then tensoring with

H0(P(H0(C,L)∨), IC(3))∨ gives the map

K −→ H0(P(H0(C,L)∨),O(3))⊗ (∧3(H0(C,L)))−1 ⊗ ωC ,

where ωC := π∗Ω1
C is the Hodge bundle for the curve C. The image of 1 ∈ K

is an element of Sym3(H0(C,L)) ⊗ (∧3(H0(C,L)))−1, i.e., a ternary cubic

form with V := H0(C,L). Although the Hodge bundle ωC is trivial over a

field, if we did not include the Gm-action here, we would need to specify a

differential to pin down the scaling of the ternary cubic form.

These two functors between ternary cubic forms and pairs (C,L) are

inverse to one another.

As in the binary quartic case, there is in fact an isomorphism between

the nondegenerate subset of Sym3 V and the moduli problem for (C,L, φ, δ),

where C is a genus one curve, L is a degree 3 line bundle, φ : H0(C,L) →
V is an isomorphism, and δ is a differential on C. This isomorphism is

GL(V )×Gm-equivariant, and so we obtain the following:

Theorem 4.5. Let V be a 3-dimensional K-vector space. Then nondegen-

erate GL(V )(−1) × Gm-orbits of Sym3 V are in bijection with isomorphism

classes of pairs (C,L), where C is a smooth irreducible genus one curve

over K and L is a degree 3 line bundle on C. The stabilizer group (as a K-

scheme) of a nondegenerate element of Sym3 V corresponding to (C,L) is an

extension of Aut(Jac(C)) by ΘJac(C),3, where Jac(C) is the Jacobian of C,

Aut(Jac(C)) is its automorphism group as an elliptic curve, and ΘJac(C),3

is the degree 3 Heisenberg group of Jac(C).

Remark 4.6. More precisely, the stabilizer group of a nondegenerate ele-

ment of Sym3 V coincides with the automorphism group of the correspond-

ing pair (C,L). Here, the automorphism group of the pair (C,L) consists of

the K-points of the group scheme given by a possibly non-split extension of

Aut(Jac(C)) by ΘJac(C),3.

For example, if C has a point O, and L is the line bundle O(3O), then

the extension is indeed split, since for all automorphisms of C fixing O, the

pullback of L is isomorphic to L. However, in general this extension will

not split. For example, if C is a nontrivial torsor of its Jacobian, then the

automorphism group of (C,L) is just ΘJac(C),3.

Note that the automorphism group of (C,L) as a torsor for

(Jac(C),O(3O)) is always ΘJac(C),3.
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Given a ternary cubic form f , the associated genus one curve C has
Jacobian E := Jac(C) which is determined by the SL(V )-invariants d4 =
d4(f) and d6 = d6(f) (see [AKM+01] for details). In Weierstrass form, the
elliptic curve E may be expressed as

(38) E : y2 = x3 − 27d4x− 54d6.

The discriminant Δ(E) is then given by the formula

1728Δ(E) = d34 − d26.

Note that d4 and d6 are scaled by the usual action of Gm on f , so they are
only relative invariants for the action of the group GL(V )(−1) ×Gm on the
orbit of f ; however, all elliptic curves in this orbit are isomorphic, as E is
isomorphic to the elliptic curve given by y2 = x3−27λ4d4x−54λ6d6 for any
λ ∈ K∗.

Conversely, given two numbers d4, d6 ∈ K such that d34 − d26 �= 0, the
GL(V )(−1) × Gm-orbits of Sym3 V having relative invariants d4 and d6 are
made up of ternary cubic forms having invariants γ4d4 and γ6d6 for γ ∈ K∗.
Over an algebraically closed field, these ternary cubic forms comprise exactly
one orbit, but over a general field they may break up into many K-orbits.

Given invariants d4, d6 ∈ K, one may specify an elliptic curve E, say in
the form of (38). Then the GL(V )(−1)×Gm-orbits of ternary cubic forms over
K having associated Jacobian E correspond to pairs (C,L) with Jacobian
isomorphic to E. Such pairs (C,L) are twists of the elliptic curve E and
the standard degree 3 line bundle O(3O) where O is the identity point on

E. The K-rational pairs (C,L) with a choice of isomorphism Jac0(C)
∼=−→

E are exactly parametrized up to isomorphism by H1(K,ΘE,3). Thus, the
GL(V )(−1)-orbits of Sym3 V with invariants d4 and d6 are in bijection with
the pointed setH1(K,ΘE,3), where E is the elliptic curve in (38). We recover
the following proposition, which is Theorem 2.5 of [Fis06]:

Proposition 4.7. Let E be an elliptic curve over K with Weierstrass form

y2 = x3 − 27d4x− 54d6.

Then the set H1(K,ΘE,3) parametrizes GL(V )(−1)-equivalence classes of
Sym3 V with invariants d4 and d6.

Remark 4.8. The difference between the GL(V )(−1)-orbits of Sym3 V with
invariants d4 and d6 and the GL(V )(−1) ×Gm-orbits with the same relative
invariants is subtle. For example, under the first action, a ternary cubic
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form f and its negative −f are not generally in the same orbit (but they
are in the same GL(V )(−1) ×Gm-orbit). While f and −f cut out the same
genus one curve C in the plane, they correspond to inverse elements in
H1(K,ΘJac(C),3); this exactly reflects the Z/2Z in the automorphism group
of any elliptic curve.

Remark 4.9. Analogously to Remark 4.3, we may replace line bundles
with equivalence classes of divisors in the statement of Theorem 4.5 and the
group GL(V )(−1)×Gm with PGL(V )×Gm. We may further only consider the
action of PGL(V ) to obtain a bijection between PGL(V )-orbits of Sym3 V
and isomorphism classes of triples (E,C, [D]), where E is a fixed elliptic
curve of the form (38) and C is an E-torsor with a rational degree 3 divisor
D. The stabilizer of a nondegenerate element of Sym3 V corresponding to
(E,C, [D]) is the automorphism group of (E,C, [D]), namely E[3](K).

In [BS15b], this bijection is used to prove that the average size of 3-
Selmer groups for elliptic curves over Q, ordered by height, is 4, implying
an improved upper bound of 7/6 for the average rank of elliptic curves over
Q.

Remark 4.10. As in Remark 4.4, we actually have an isomorphism between
the nondegenerate substack of the quotient stack

[Sym3 V ⊗ (∧3V )−1/GL(V )×Gm]

and the quotient stack [M1,1/ΘEuniv,3], where ΘEuniv,3 is the theta group
scheme for the universal elliptic curve Euniv over M1,1. See §4.5 for more
details.

4.3. Pairs of quaternary quadratic forms

Next, let V and W be vector spaces of dimensions 4 and 2, respectively, over
K. We study the space W ⊗Sym2 V . With a choice of bases for both V and
W , any element ofW⊗Sym2 V may be represented as a pair of symmetric 4×
4 matrices, say A and B. There is a natural action of GL(W )×GL(V ) on this
space, and the SL(W )× SL(V )-invariants for this space form a polynomial
ring generated by two invariants d8 and d12 of degrees 8 and 12, respectively
[AKM+01]. In particular, the SL(V )-invariants of the element represented
by the pair (A,B) of symmetric matrices are the coefficients of the binary
quartic form q(x, y) = det(Ax+By) (see, e.g., [AKM+01, MSS96]), and the
SL(W )-invariants of this binary quartic form q(x, y) are the polynomials
I(q) and J(q) from §4.1.
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We describe briefly how nondegenerate elements of this space naturally
give genus one curves with degree 4 line bundles (see [MSS96] for an excellent
exposition of the details). An element of W ⊗ Sym2 V represents a pencil
(parametrized by P(W∨)) of quadrics in P(V ∨). If this pencil is nontrivial,
its base locus is a curve C, which is of genus one if smooth, by adjunction.
The curve C is smooth exactly when the discriminant Δ(q) = 4I(q)3−J(q)2

is nonzero, just as for binary quartic forms, and elements of W ⊗ Sym2 V
giving smooth curves are called nondegenerate. Pulling back OP(V ∨)(1) to
the genus one curve C gives a degree 4 line bundle. Furthermore, the rulings
on these quadrics parametrize a double cover D of P(W∨) ramified at the
degree 4 subscheme given by the binary quartic form q(x, y). This curve D
is also a genus one curve, and in fact, as elements of H1(K,E), the class of
D is double that of C.

On the other hand, starting with a genus one curve C and a degree 4
line bundle L, the embedding of C into P(H0(C,L)∨) ∼= P3 gives rise to the
exact sequence of sheaves

0 −→ IC −→ OP(H0(C,L)∨) −→ OC −→ 0,

and twisting by OP(H0(C,L)∨)(2) shows that H0(P(H0(C,L)∨), IC(2)) is at
least 2-dimensional. It is easy to check that for C to be a smooth irreducible
genus one curve, this space is exactly 2-dimensional (e.g., by computing
the free resolution for OC over P(H0(C,L)∨) ∼= P3). We thus obtain a 2-
dimensional subspace of OP(H0(C,L)∨)(2) (the space of quadratic forms on
P3) as desired.

Therefore, we have an isomorphism between nondegenerate elements of
W ⊗ Sym2 V and the moduli problem for triples (C,L, φ, ψ), where C is a
genus one curve, L is a degree 4 line bundle, and φ : H0(C,L) → V and
ψ : H0(P(H0(C,L)∨), IC) → W∨ are isomorphisms. The group GL(W ) ×
GL(V ) acts on W ⊗ Sym2 V in the standard way, and it acts on φ and ψ by
the actions on V and W∨, respectively. Therefore, taking the quotients of
both sides of this isomorphism by GL(W )×GL(V ) gives a correspondence
between the orbits and the isomorphism class of pairs (C,L).

Theorem 4.11. Let W and V be K-vector spaces of dimensions 2 and 4,
respectively. There exists a bijection from nondegenerate GL(W )×GL(V )-
orbits of W ⊗Sym2 V and isomorphism classes of pairs (C,L), where C is a
smooth irreducible genus one curve and L is a degree 4 line bundle on C. The
stabilizer group (as a K-scheme) of a nondegenerate element of W⊗Sym2 V
corresponding to (C,L) is an extension of Aut(Jac(C)) by ΘJac(C),4, where
Jac(C) is the Jacobian of C, Aut(Jac(C)) is its automorphism group as an
elliptic curve and ΘJac(C),4 is the degree 4 Heisenberg group of Jac(C).
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Remark 4.12. As in the ternary cubic case, the automorphism group of
a pair (C,L) is made up of the K-points of the group scheme given by a
possibly non-split extension of Aut(Jac(C)) by ΘJac(C),4. In this case, part
of the extension splits more often, e.g., if the curve C has a degree 2 line
bundleM , then the pair (C,M⊗2) has automorphism group ΘJac(C),4�Z/2Z
if Jac(C) does not have j-invariant 0 or 1728.

Remark 4.13. Again, in Theorem 4.11, we may replace the line bundle
L with the equivalence class of a rational degree 4 divisor D, and the
group GL(W )×GL(V ) with a subquotient (restricting to pairs (g1, g2) with
(det g1)(det g2)

2 = 1 and quotienting by the remaining elements in the kernel
of the multiplication map Gm ×Gm → Gm sending (γ1, γ2) to γ1γ

2
2). Then

the stabilizer of a nondegenerate element of W ⊗ Sym2 V corresponding to
(E,C, [D]) is E[4](K). This correspondence is used in [BS13a] to compute
the average size of the 4-Selmer group of elliptic curves over Q.

As in the previous cases, the Jacobian of the curve C corresponding to
an element of W ⊗Sym2 V is given by its SL(W )×SL(V )-invariants d8 and
d12:

Jac(C) : y2 = x3 − 27d8x− 27d12.

This follows easily from the fact that d8 and d12 are the SL(W )-invariants
I(q) and J(q) of the binary quartic form q.

4.4. Quintuples of 5 × 5 skew-symmetric matrices

The degree 5 problem was studied extensively by Fisher in [Fis, Fis08] and
much of the following can be deduced from the work of Buchsbaum-Eisenbud
in [BE82]. For completeness, we very briefly remind the reader of the con-
structions involved. In this section, let K be a field not of characteristic 2,
3, or 5.

Let V and W be 5-dimensional K-vector spaces. We consider the space
V ⊗∧2W , which has SL(V )×SL(W )-invariant ring generated by two gener-
ators d20 and d30 of degrees 20 and 30, respectively. An element of V ⊗∧2W ,
with a choice of bases for V and W , may be thought of as five 5 × 5 skew-
symmetric matrices, or a single 5×5 skew-symmetric matrix of linear forms
on V ∨. Then generically the 4 × 4 Pfaffians intersect in a genus one curve
in P(V ∨) = P4, and pulling back OP(V ∨)(1) to this curve gives a degree 5
line bundle on the curve. The isomorphism class of the curve and the degree
5 line bundle are clearly GL(V ) × GL(W )-equivariant. The nondegeneracy
required here is the nonvanishing of the degree 60 discriminant formed in
the usual way from the generators of the invariant ring.
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To construct an element of V ⊗ ∧2W from a smooth irreducible genus
one curve C and a degree 5 line bundle L, one identifies V = H0(C,L)
and W = H0(P(V ∨), IC(2)), where IC is the ideal sheaf for C. Then one
immediately obtains a section of OP(V ∨)(1)⊗ ∧2W from the free resolution

0 → O(5) → O(−3)⊗W∨ → O(−2)⊗W → O → OC

of OC over P(H0(C,L)∨).
Therefore, there is an isomorphism between elements of V ⊗∧2W and the

moduli problem parametrizing (C,L, φ, ψ), where C is a genus one curve, L
is a degree 5 line bundle, and φ : H0(C,L) → V and ψ : H0(P(H0(C,L)∨),
IC(2)) → W are isomorphisms. Quotienting both sides by the natural actions
of GL(V )×GL(W ) gives

Theorem 4.14. Let V and W be 5-dimensional K-vector spaces. Then
there is a canonical bijection between nondegenerate GL(V )×GL(W )-orbits
of V ⊗ ∧2W and isomorphism classes of pairs (C,L), where C is a genus
one curve and L is a degree 5 line bundle on C. The stabilizer group (as a
K-scheme) of a nondegenerate element of V ⊗∧2W corresponding to (C,L)
is an extension of Aut(Jac(C)) by ΘJac(C),5, where Jac(C) is the Jacobian of
C, Aut(Jac(C)) is its automorphism group as an elliptic curve, and ΘJac(C),5

is the degree 5 Heisenberg group of Jac(C).

Remark 4.15. As in the previous three cases, Theorem 4.14 may be
rephrased using isomorphism classes of pairs (E,C, [D]), where now D is a
degree 5 rational divisor on C, by replacing the group GL(V )×GL(W ) with
a subquotient (again, restricting to pairs (g1, g2) with (det g1)(det g2)

2 = 1
and quotienting by the remaining elements in the kernel of the multiplica-
tion map Gm × Gm → Gm sending (γ1, γ2) to γ1γ

2
2). This correspondence

is used in [BS13b] to determine the average size of the 5-Selmer group of
elliptic curves over Q.

Again, the Jacobian of the curve C associated to a nondegenerate ele-
ment of V ⊗ ∧2W is given by the SL(V )× SL(W )-invariants d20 and d30:

Jac(C) : y2 = x3 + d20x+ d30.

See [Fis08] for details and methods for computing these invariants.

4.5. Some remarks on different bases

This short section may be safely skipped for readers interested in the main
theorems of this paper over fields K (as opposed to more general base rings
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or schemes). Here, we simply comment on how one can vary the base schemes
to study the moduli problems in Section 4.

All of the constructions discussed in this section may be made precise
over arbitrary Z[1/30]-schemes S. In particular, let Md denote the moduli
stack of genus one curves with degree d line bundles. Then for 2 ≤ d ≤ 5,
we claim that Md is isomorphic to an open substack of a certain quotient
stack [V/G] for a group G and representation V of G. The constructions are
straightforward generalizations of those over fields in §4.1 through §4.4, e.g.,
as in Remark 4.4.

For example, the case of ternary cubics is discussed in detail in [Ho09,
§2.A.2]: the idea is that the T -points of the double quotient [Gm \Sym3 V ⊗
(∧3V )−1/GL(V )] are triples (V, LT , f), where V is a rank 3 vector bundle
over T , LT is a line bundle on T , and f is a section of Sym3 V⊗(∧3V)−1⊗LT ,
and nondegenerate triples correspond to genus one curves over T with degree
3 line bundles. The curve C is the zero set of the section of f in P(V∨), and
the line bundle L is the pullback of OP(V∨)(1) via C → P(V∨); conversely,
given the curve π : C → T and L, the construction gives the vector bundle
π∗L with LT := π∗Ω1

C/T and an appropriate section.
In each of these cases 2 ≤ d ≤ 5, because the groups G appearing

have vanishing Galois cohomology group H1(K,G), this description of Md

as an open substack of [V/G] immediately implies that isomorphism classes
of objects parametrized by Md(K) are in bijection with the nondegenerate
elements of V (K)/G(K).

In the remainder of this paper, even though we restrict our attention
to working over a base field K not of characteristic 2 or 3, most of the
constructions we describe may be generalized to other base schemes. Just as
for Md here, one may show that the moduli spaces we encounter, of genus
one curves with extra data, may be given as open substacks of quotient
stacks.

5. Representations associated to degree 3 line bundles

In this section, we study a class of representations whose orbits are related
to genus one curves with degree 3 line bundles. The main results in this
section are summarized in Section 3.

We begin by studying the space of Rubik’s cubes, which is one of the
fundamental examples of this paper, and some of its simpler variants. The
orbit space for Rubik’s cubes (also called 3× 3× 3 boxes) is related to the
moduli space of genus one curves with two non-isomorphic degree 3 line
bundles. This may also be identified with the moduli space of genus one
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curves with a single degree 3 line bundle and one nonzero point on the
Jacobian (lying in the appropriate subgroup).

In §5.3, we then recall the theory of cubic Jordan algebras, in preparation
for the general case. The main general theorem is in §5.4, where we describe
how the orbit spaces of these representations, built from cubic Jordan al-
gebras, are moduli spaces for genus one curves with degree 3 line bundles
and additional vector bundles. In later subsections, we then explain how
to recover the earlier cases from the general theorem, and we also describe
another special case that gives rank 2 vector bundles on genus one curves.

Many of the orbit problems described in this section are used in [BH12]
to determine average sizes of 3-Selmer groups in certain families of elliptic
curves over Q.

5.1. Rubik’s cubes, or 3 × 3 × 3 boxes

We study an important example of a representation whose orbits naturally
produce genus one curves with degree 3 line bundles. This representation was
studied by K. Ng in [Ng95] over C, and we extend his results to more general
fields K. The main theorems of this section (Theorem 5.1 and Corollary 5.4)
are joint with C. O’Neil.

Let V1, V2, and V3 be three-dimensional K-vector spaces, so the group
G := GL(V1)×GL(V2)×GL(V3) acts on the representation V := V1⊗V2⊗V3.
The following theorem, which is proved for K = C in [Ng95], describes the
orbits of these “Rubik’s cubes” over more general fields K. Here, nondegen-
eracy is equivalent to the nonvanishing of a degree 36 invariant, which we
will describe in more detail below.

Theorem 5.1. Let V1, V2, and V3 be 3-dimensional vector spaces over K.
Then nondegenerate G-orbits of V1 ⊗ V2 ⊗ V3 are in bijection with isomor-
phism classes of quadruples (C,L1, L2, L3), where C is a genus one curve
over K and L1, L2, and L3 are degree 3 line bundles on C with L1 not
isomorphic to L2 or L3 and satisfying L⊗2

1
∼= L2 ⊗ L3.

Note that the action of the group G on V is clearly not faithful: the
kernel of the multiplication map

Gm(V1)×Gm(V2)×Gm(V3) → Gm ⊂ GL(V ),

where each Gm(Vi) is the group of scalar transformations of Vi for i = 1, 2, 3,
fixes every element in V1 ⊗ V2 ⊗ V3. For the sole purpose of classifying the
orbits, this does not matter, since the orbits of G and of the quotient by this
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kernel on the representation V are identical. However, this kernel, isomor-
phic to G2

m, shows up as part of the automorphism group of the geometric
data; in particular, the stabilizer in G of a generic nondegenerate element
of V1 ⊗ V2 ⊗ V3 giving the curve C corresponds to the K-points of an ex-
tension H of the group scheme Jac(C)[3] by this G2

m. More generally, the
stabilizer of a nondegenerate element consists of the K-points of a possibly
non-split extension of Aut(Jac(C)) by the group scheme H. For each non-
degenerate element, the stabilizer group coincides exactly with the group
of automorphisms of the geometric data (if we also record the isomorphism
L⊗2
1

∼= L2 ⊗ L3 in Theorem 5.1).

The rest of this section is devoted to describing the construction of the
genus one curve and its line bundles from an orbit. In particular, we prove
Theorem 5.1.

5.1.1. Geometric construction. We first describe the construction of
the genus one curve and the line bundles from a G-orbit. Let A ∈ V =
V1 ⊗ V2 ⊗ V3, so A induces a linear map from V ∨

1 to V2 ⊗ V3. There is a
natural determinantal cubic hypersurface Y in P(V2 ⊗ V3); with the choice
of bases for V2 and V3, it can be described as the vanishing of the determinant
of the 3× 3 matrices that comprise V2⊗V3. Then the intersection of Y with
the image of P(V ∨

1 ) → P(V2 ⊗ V3) is generically a cubic curve C1 on the
image of P(V ∨

1 ), given as the vanishing of a covariant ternary cubic form in
Sym3 V1.

In other words, the curve C1 is a determinantal variety, given by the
determinant of a matrix of linear forms on P(V ∨

1 ). Explicitly, with a choice of
bases for V1, V2, and V3, one can denote A as a 3×3×3 cube (arst)1≤r,s,t≤3 of
elements arst ∈ K. Then this ternary cubic form in Sym3 V1 may be written
simply as

f1(v) := det(A(v, ·, ·)),
for v ∈ V ∨

1 . One may similarly define cubic curves C2 ⊂ P(V ∨
2 ) and C3 ⊂

P(V ∨
3 ), cut out by ternary cubic forms f2 ∈ Sym3 V2 and f3 ∈ Sym3 V3.
We call a Rubik’s cube A nondegenerate if the variety C1 (equivalently,

C2 or C3) thus defined is smooth and one-dimensional, which corresponds
to the nonvanishing of a degree 36 polynomial in arst. This polynomial is
called the discriminant of the Rubik’s cube A, and it coincides with the
usual degree 12 discriminant Δ(f1) of the ternary cubic form f1 (which is
equal to Δ(f2) and Δ(f3)).

If A is nondegenerate, then the degree 3 plane curve C1 is smooth
of genus one. For all points w† ∈ C1, we claim that the singular matrix



50 Manjul Bhargava and Wei Ho

A(w†, ·, ·) has exactly rank 2. If not, then the 2×2 minors of A(w, ·, ·) would
vanish on w†, and so would all the partial derivatives

∂f

∂wi

∣∣∣∣
w=w†

=

3∑
s,t=1

aistA
∗
st(w

†)

where A∗
st(w

†) is the (s, t)th 2 × 2 minor of A(w†, ·, ·). Thus, since C1 was

assumed to be smooth, we see that the rank of the matrix A(w†, ·, ·) cannot
drop by two.

In other words, the nondegeneracy condition is equivalent to the condi-

tion that the image of P(V ∨
1 ) in P(V2 ⊗ V3) not intersect the image of the

Segre variety P(V2)×P(V3) ↪→ P(V2⊗V3). In the sequel, we assume that A is

nondegenerate. (Note that nondegeneracy is preserved by the group action.)

Given a nondegenerate Rubik’s cube A, define the variety

C12 := {(w, x) ∈ P(V ∨
1 )× P(V ∨

2 ) : A(w, x, ·) = 0} ⊂ P(V ∨
1 )× P(V ∨

2 ).

Because A is a trilinear form and the locus on which it vanishes in V1×V2 is

invariant under scaling, this is a well-defined locus in P(V ∨
1 )×P(V ∨

2 ). Since

A is nondegenerate, the projection

C12 −→ P(V ∨
1 )

is an isomorphism onto C1. The inverse map takes a point w ∈ C1 ⊂ P(V ∨
1 )

to the pair (w, x) ∈ P(V ∨
1 )×P(V ∨

2 ), where x corresponds to the exactly one-

dimensional kernel of the linear map A(w, ·, ·) ∈ V2 ⊗ V3
∼= Hom(V ∨

2 , V3).

This map C1 → C12 is algebraic, as this kernel is given as a regular map by

the 2×2 minors of the matrix A�w. Therefore, by dimension considerations,

the curve C12 is the complete intersection of three bidegree (1, 1) forms on

P(V ∨
1 ) × P(V ∨

2 ) = P2 × P2. Similarly, the projection from C12 to P(V ∨
2 ) is

an isomorphism onto C2, which shows that C1 and C2 are isomorphic.

We may also consider the curves

C13 := {(w, y) ∈ P(V ∨
1 )× P(V ∨

3 ) : A(w, ·, y) = 0}
C23 := {(x, y) ∈ P(V ∨

2 )× P(V ∨
3 ) : A(·, x, y) = 0}

and the analogous maps between Ci, C3, and Ci3 for i = 1 or 2 are also

isomorphisms. Thus, all the curves C1, C2, C3, C12, C13, and C23 are iso-

morphic, and the nondegeneracy condition is equivalent to the smoothness
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of any or all of these curves. The diagram

(39)

P(V ∨
1 )

C12
π2
1

π1
2

C1

ι1

τ2
1

τ3
1

C13
π3
1

π1
3

C2
ι2

τ1
2

τ3
2

C3
ι3

τ1
3

τ2
3

P(V ∨
2 ) P(V ∨

3 )

C23

τ3
2 τ2

3

summarizes the relationships between these curves. By construction, the
maps τ ji and τ ij are inverses to one another. These maps from the curve C1

to each projective space give the degree 3 line bundles

L1 := ι∗1OP(V ∨
1 )(1)

L2 := (ι2 ◦ τ21 )∗OP(V ∨
2 )(1)

L3 := (ι3 ◦ τ31 )∗OP(V ∨
3 )(1)

on C1. For 1 ≤ i ≤ 3, all three dimensions of sections of the degree 3 bundle
Li arise from pulling back sections from OP(V ∨

i )(1).

Lemma 5.2. The degree 3 line bundle L1 on C1 is not isomorphic to either
of the line bundles L2 or L3.

Proof. It suffices, by symmetry, to show that L1 and L2 are not isomorphic
line bundles. If L1

∼= L2, then the curve C12 would lie on a diagonal of
P2×P2 = P(V ∨

1 )×P(V ∨
2 ), and with an identification of the bases for V1 and

V2, we have A(w,w, ·) = 0 for all w ∈ C1. Because C1 spans P(V ∨
1 ), we must

have that A(·, ·, y) is a skew-symmetric 3 × 3 matrix for any y ∈ P(V ∨
3 ).

Since odd-dimensional skew-symmetric matrices have determinant zero, we
would have C3 = P(V ∨

3 ), which is a contradiction.

Lemma 5.3. The line bundles L1, L2, L3 on C1 defined above satisfy the
relation

(40) L1 ⊗ L1
∼= L2 ⊗ L3.
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Proof. For w ∈ C1 ⊂ P(V ∨
1 ), each coordinate of τ21 (w) ∈ P(V ∨

2 ) is given by
the 2 × 2 minors A∗

ij(w) of A(w, ·, ·) for some fixed j where not all A∗
ij(w)

vanish. Let D2 be an effective degree 3 divisor on C1 such that O(D2) ∼= L2.
Then the points of D2 (defined over an appropriate extension of K) are
the preimage on C1 of the intersection of a hyperplane with the image of
the curve C12 in P(V ∨

2 ); in particular, we may choose D2, without loss of
generality, to be the divisor defined by the locus where a particular minor,
say A∗

11(w), vanishes on the curve C1 but at least one A∗
i1(w) is nonzero.

Similarly, we may choose a divisor D3 such that O(D3) ∼= L3 to be the points
w ∈ C1 where A∗

11(w) = 0 but not all other A∗
j1(w) vanish. Then the points

of the degree 6 effective divisor D2 +D3 are exactly the intersection of the
curve C1 and A∗

11(w) = 0, and the line bundle O(D2 +D3) is isomorphic to
the pullback of OP(V ∨

1 )(2) to C1.

The composition maps arising from traversing the inner triangle in (39),
such as

α123 := τ13 ◦ τ32 ◦ τ21 : C1 −→ C1,

are not the identity map. A calculation using Lemma 5.3 and its symmetric
analogues shows that the automorphism α123 of C1 is given by translation
by the point P123 in Jac(C1) corresponding to the degree 0 line bundle
L2⊗L−1

1 ∈ Pic0(C1). In particular, Lemma 5.3 and its symmetric analogues
imply that each of the maps τ21 , τ

3
2 , and τ13 is an isomorphism where the

pullback of the appropriate OP2(1) between the target embedding and the
source differs by the same degree 0 line bundle L2⊗L−1

1 . Thus, the pullback
of L1 = ι∗1OP(V ∨

1 ) along the composition α123 differs from L1 itself by (L2 ⊗
L−1
1 )⊗3 (equivalently, by 3P123 if written additively in Jac(C1)), so the map

α123 corresponds to translation by the point P123 ∈ Jac(C1).
More generally, the analogous three-cycle αijk is the automorphism of Ci

given by translation by a point Pijk ∈ Pic0(Ci), where Pijk is the image of
the point sgn(ijk)P123 = ±P123 ∈ Jac(C1) under the canonical isomorphism
Jac(C1) → Jac(Ci).

5.1.2. Bijections. Because the geometric constructions in the previous
section are G-invariant, we have shown that a G-orbit of V produces a
genus one curve C with three degree 3 line bundles L1, L2, L3, such that
L2
1
∼= L2⊗L3 and L1 is not isomorphic to L2 or L3. We show that this data

exactly determines a G-orbit of V .

Proof of Theorem 5.1. We have already shown that there is a well-defined
map Φ from G-orbits of nondegenerate elements of V to the listed geomet-
ric data. In the other direction, given such a quadruple (C,L1, L2, L3), we
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consider the multiplication map (i.e., the cup product on cohomology)

(41) μ12 : H
0(C,L1)⊗H0(C,L2) −→ H0(C,L1 ⊗ L2).

A simple case of [Mum70, Theorem 6] shows that μ is surjective. Thus,
by Riemann-Roch, the kernel of μ12 has dimension 9 − 6 = 3. Now let
V1 := H0(C,L1), V2 := H0(C,L2), and V3 := (ker(μ12))

∨, so the injection

ker(μ12) ↪→ H0(C,L1)⊗H0(C,L2)

gives an element of Hom(ker(μ12), H
0(C,L1)⊗H0(C,L2)) ∼= V1 ⊗ V2 ⊗ V3.

If quadruples (C,L1, L2, L3) and (C ′, L′
1, L

′
2, L

′
3) are equivalent, then

there is an isomorphism σ : C → C ′ such that σ∗L′
i
∼= Li for 1 ≤ i ≤ 3.

The isomorphisms induced on the spaces of sections, e.g., H0(C,L1)
∼=−→

H0(C ′, L′
1), commute with the multiplication maps, so the Rubik’s cubes

constructed by their kernels differ only by choices of bases.

We check that the two functors between G-orbits of V and the equiv-
alence classes of quadruples are inverse to one another. Given a quadru-
ple (C,L1, L2, L3) of the appropriate type, let the images of the natural
embeddings be C1 ⊂ P(H0(C,L1)

∨), C2 ⊂ P(H0(C,L2)
∨), and C12 ⊂

P(H0(C,L1)
∨) × P(H0(C,L2)

∨). We construct the desired trilinear form
A ∈ H0(C,L1)⊗H0(C,L2)⊗ (kerμ12)

∨ as above. Now let

C ′
1 := {w ∈ P(H0(C,L1)

∨) : detA(w, ·, ·) = 0} ⊂ P(H0(C,L1)
∨)

C ′
2 := {x ∈ P(H0(C,L2)

∨) : detA(·, x, ·) = 0} ⊂ P(H0(C,L2)
∨)

C ′
12 := {(w, x) ∈ P(H0(C,L1)

∨)× P(H0(C,L2)
∨) : A(w, x, ·) = 0}

⊂ P(H0(C,L1)
∨)× P(H0(C,L2)

∨)

be the varieties cut out by the trilinear form A(·, ·, ·).
We claim that C1 = C ′

1, C2 = C ′
2, and C12 = C ′

12 as sets and thus
as varieties, which implies that the curve C ′

1 is isomorphic to C and that
the line bundles on C ′

1 defined as pullbacks of O(1) on P(H0(C,L1)
∨) and

P(H0(C,L2)
∨) are isomorphic to the pullbacks of L1 and L2, respectively,

via the isomorphism C
∼=−→ C ′

1. For all (w, x) ∈ C12, the construction of A
as the kernel of μ12 implies that A(w, x, ·) = 0, so C ′

12 contains C12 and also
C ′
1 ⊃ C1 and C ′

2 ⊃ C2.

Now either the polynomial detA(w, ·, ·) or detA(·, x, ·) is not identi-
cally 0. If they both were identically 0, then A(w, x, ·) = 0 for all (w, x) ∈
P(H0(C,L1)

∨) × P(H0(C,L2)
∨), which is a contradiction. Without loss of
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generality, assume detA(w, ·, ·) is not identically zero. Then both C ′
1 and C1

are given by nonzero degree 3 polynomials and thus define the same variety,
so C ′

1 is a smooth irreducible genus one curve in P2 = P(H0(C,L1)
∨). Be-

cause C ′
1 is smooth, the trilinear form A is nondegenerate, and C ′

12 is also
smooth and irreducible, hence exactly the same variety as C12.

It remains to show that the geometric data coming from a Rubik’s cube
produces the G-orbit of the same cube again. Given nondegenerate A ∈
V1⊗V2⊗V3, where Vi are 3-dimensional vector spaces for 1 ≤ i ≤ 3, we have
described the associated quadruple (C,L1, L2, L3) as the image of Φ. Then
the vector spaces Vi and H0(C,Li) are naturally isomorphic for i = 1, 2,
and V ∨

3 can be identified with the kernel of μ12. With these identifications,
the Rubik’s cube constructed from this quadruple is well-defined and G-
equivalent to the original A.

We may also rewrite the geometric data in Theorem 5.1 in terms of K-
points on the Jacobian of C. Indeed, instead of keeping track of the line
bundles L2 and L3, it suffices to record the difference of the line bundles as
a degree 0 line bundle, which corresponds to a point in the Jacobian. This
yields another version of Theorem 3.1:

Corollary 5.4. Let V1, V2, and V3 be 3-dimensional vector spaces over K.
Then nondegenerate G-orbits of V1 ⊗ V2 ⊗ V3 are in bijection with isomor-
phism classes of triples (C,L, P ), where C is a genus one curve over K, L
is a degree 3 line bundle on C, and 0 �= P ∈ Pic0(C)(K) ⊂ Jac(C)(K).

5.1.3. Invariant theory. The ring of SL(V1)×SL(V2)×SL(V3)-invariants
of the representation V1 ⊗ V2 ⊗ V3 for three-dimensional vector spaces V1,
V2, V3 is generated freely by polynomial invariants of degrees 6, 9, and
12, respectively. These have interpretations in terms of the geometric data
described in the bijection of Corollary 5.4.

Proposition 5.5. There exists a choice of normalization for the relative
invariants c6, c9, c12 such that given a nondegenerate tensor in V1⊗V2⊗V3

corresponding to (C,L, P ) as in Corollary 5.4, the Jacobian of C may be
expressed in generalized Weierstrass form as

(42) E : y2 + c9y = x3 + c6x
2 + c12x

and the point P on E is given by (0, 0).

The SL(V1)-invariants of the ternary cubic f = f1 given by (C,L) are
also clearly invariants for the whole space V1 ⊗ V2 ⊗ V3, since f is fixed
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under the action of SL(V2)×SL(V3). The polynomials d4(f) and d6(f) have
degrees 12 and 18 as invariants of V1 ⊗ V2 ⊗ V3. One may check that with
the normalizations above, we have

d4(f) = 16c26 − 48c12 and d6(f) = −64c36 − 216c29 + 288c6c12

so that (E,P ) may be taken by linear changes of variables to the elliptic
curve

E′ : y2 = x3 − 27d4(f)x− 54d6(f)

with the point P becoming (12c6, 108c9) on E′. This recovers the interpre-
tation of the invariants described in §3.3.

One proof of the above proposition is obtained by computing the ex-
pression for the point P in terms of the orbit. We omit these computations,
as all the invariants have a very large number of terms!2 A more abstract
argument is simple: any elliptic curve with a non-identity rational point P
may be written in the form (42), for some c6, c9, c12 ∈ K, where (0, 0) is
the point P . Then the numbers c6, c9, c12 are algebraic invariants of the
geometric data (C,L1, L2, L3) coming from a Rubik’s cube, up to scaling
by λ6, λ9, λ12, respectively, for some λ ∈ K∗. Thus, these must be relative
G-invariants of the representation V .

Given this interpretation of the invariants, we may specialize the cor-
respondence for a particular elliptic curve E over K. We think of c6, c9,
and c12 as polynomial functions of the corresponding degree from V1 ⊗ V2 ⊗
V3 → K (which are, of course, SL(V1) × SL(V2) × SL(V3)-invariant). Let
d12 = 16c26 − 48c12 and d18 = −64c36 − 216c29 + 288c6c12.

Corollary 5.6. Let E be an elliptic curve over K, given in Weierstrass
form as

y2 = x3 − 27a4x− 54a6.

Then the subset of triples (α1, α2, α3) ∈ H1(K,ΘE,3)
3 such that

(i) the sum of the images of αi under the natural map H1(K,ΘE,3) →
H1(K,E[3]) is zero,

(ii) α1 is not equal to α2 or α3, and
(iii) the images of αi under H1(K,ΘE,3) → H1(K,E[3]) → H1(K,E) all

coincide

2The degree 9 invariant is also known as the Strassen invariant and has a simple
closed form expression [Stu09]. If φ is represented by three 3× 3 matrices M1, M2,
and M3 by “slicing” in any of the three directions with detM2 �= 0, then c9(φ) may
be given by the expression (detM2

2 (M1M
−1
2 M3 −M3M

−1
2 M1)).
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are in bijection with the GL(V1) × GL(V2) × GL(V3)-orbits of V1 ⊗ V2 ⊗ V3

that have representatives A with d12(A) = λ12a4 and d18(A) = λ18a6, for
some nonzero λ ∈ K∗.

The condition on the invariants merely ensures that both sides of the bi-
jection are restricted to exactly those Rubik’s cubes corresponding to curves
with Jacobian E.

Given any elliptic curve over K, there may be no such (α1, α2, α3), for
example, if the elliptic curve does not have any non-identity rational points.
However, given an elliptic curve E over K of the form (42), there always
exists a G-orbit of V where E is the Jacobian of the associated genus one
curve. In particular, taking C to simply be the trivial torsor E with the
degree 3 line bundles O(3O) and O(2O + P ), where P is the point (0, 0) on
E, constructs such an orbit.

Corollary 5.7. The map from nondegenerate orbits V (K)/G(K) to elliptic
curves of the form

y2 + c9y = x3 + c6x
2 + c12x

with c6, c9, c12 ∈ K, obtained by taking the Jacobian of the genus one curve
associated to the orbit, is surjective.

For a global number or function field K, if we restrict to orbits where
the curve C is everywhere locally soluble (meaning that C has a Kν-point
for every place ν of K), Corollary 5.6 simplifies significantly and yields a
bijection between certain orbits and elements of the 3-Selmer group of elliptic
curves of the form (42). See [BH12] for details and applications.

5.2. Symmetric Rubik’s cubes

In this subsection, we study “symmetrized” Rubik’s cubes. There is a natural
S3-action on each Rubik’s cube, obtained by permuting the factors Vi for
i = 1, 2, 3, and we study the subset of Rubik’s cubes that are invariant
under the subgroup S2 ⊂ S3, or under all of S3.

5.2.1. Doubly symmetric Rubik’s cubes. The simplest case is that of
doubly symmetric Rubik’s cubes, i.e., triples of 3 × 3 symmetric matrices.
This is the subrepresentation V1⊗Sym2 V2 ⊂ V1⊗V2⊗V2 of GL(V1)×GL(V2),
for three-dimensionalK-vector spaces V1 and V2. Away from characteristic 2,
this is the same as the quotient V1⊗Sym2 V2. We give the orbit parametriza-
tion for this space in the following basis-free version of Theorem 3.3:
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Theorem 5.8. Let V1 and V2 be 3-dimensional vector spaces over K. Then
the nondegenerate GL(V1)×GL(V2)-orbits of V1 ⊗ Sym2 V2 are in bijection
with isomorphism classes of triples (C,L, P ), where C is a genus one curve
over K, L is a degree 3 line bundle on C, and P is a nonzero 2-torsion point
of Jac(C)(K).

Proof. Given an element A of V1 ⊗ Sym2 V2 ⊂ V1 ⊗ V2 ⊗ V2, we construct
the genus one curve C and line bundles L1, L2, L3 as before. Because of the
symmetry, the line bundles L2 and L3 coincide. The relation L⊗2

1
∼= L2⊗L3

and the fact that L1 �∼= L2 shows that the point P := L1 ⊗L−1
2 is a nonzero

2-torsion point of Jac(C). As all 2-torsion points of E(K) are contained in
Pic0(C)(K), requiring P to be in Pic0(C)(K) is not an extra condition.

On the other hand, given such (C,L, P ) and setting L′ = L⊗P , the proof
of Theorem 5.1 shows that the quadruple (C,L1, L2, L3) = (C,L, L′, L′)
recovers a GL(U1) × GL(U2) × GL(U3)-orbit of U1 ⊗ U2 ⊗ U3, where U1 =
H0(C,L1), U2 = H0(C,L2), and U3 is the dual of the three-dimensional
kernel of the multiplication map μ12 : U1⊗U2 → H0(C,L1⊗L2). It remains
to show that there exists a natural identification of U2 and U3 such that a
representative A of this orbit is doubly symmetric.

The proof of Theorem 5.1 implies that A in turn produces a genus one
curve and line bundles isomorphic to those with which we started. In other
words, we find that there is an isomorphism φ : U2 → U3. Let C1 be the
image of C under the embedding given by L1. For any point x ∈ C1, we have
det(A(x, ·, ·)) = 0 and the kernel of A(x, ·, ·) in U∨

2 and in U∨
3 is the same

(after applying φ). Because C1 spans P(U∨
1 ), the image of U∨

1 in U2 ⊗ U2

given by (id ⊗ φ) ◦ A is a three-dimensional subspace W of U2 ⊗ U2 such
that the “left” and the “right” kernels of each element in U∨

2 are the same
(usually empty).

We will make use of the following lemma, whose proof is postponed:

Lemma 5.9. Let M1 and M2 be two n × n matrices over K with M2 in-
vertible. Assume M1M

−1
2 has distinct eigenvalues over K and that for all

y, z ∈ K, the transpose of the left kernel of M1y −M2z is equal to its right
kernel. Then M1 and M2 are symmetric matrices.

To apply Lemma 5.9, note that for two nonsingular elements M1 and
M2 of U2 ⊗ U2, the matrix M1M

−1
2 will have distinct eigenvalues over K

if the binary cubic form det(M1y − M2z) has distinct roots, in which case
M1y−M2z has rank at least 2 for any values of y and z. Recall that because
the curve C is nonsingular, the space W does not contain any matrices of
rank less than 2 and any two elements of W will satisfy the conditions of
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the lemma. We thus may find a basis for W consisting only of symmetric
elements, thus giving an element of U1 ⊗ Sym2 U2 as desired.

Proof of Lemma 5.9. Because det(M1M
−1
2 − λI) has distinct roots, the bi-

nary n-ic form det(M1y −M2z) = det(M2)(detM1M
−1
2 y − λz) has distinct

roots [yi : zi] in P1(K) for i = 1, . . . , n. For each i, let vi be a nonzero vector
in the right kernel of M1yi − M2zi, implying that vti is a nonzero vector
in the left kernel. The vectors vi are linearly independent because they are
eignevectors corresponding to distinct eigenvalues.

Now consider the bilinear formsM1(·, ·) andM2(·, ·) defined byMk(a, b)=
atMkb for k = 1 and 2. Now vti(M1yi −M2zi)vj = vti(M1yj −M2zj)vj = 0
for any i �= j. Since (yi, zi) and (yj , zj) are linearly independent, we must
have vtiMkvj = 0 for any i �= j and for k = 1 and 2. Therefore, M1 and M2

give diagonal bilinear forms with respect to the basis v1, . . . , vn, and thus
are symmetric matrices with respect to any basis.

The representation V1⊗Sym2 V2 has SL(V1)×SL(V2)-invariant ring gen-
erated by the two previously defined polynomials c6 and c12 of degrees 6 and
12, respectively. These have the same interpretation as in §5.1.3. That is,
the Jacobian of C may be written in normal form as

E : y2 = x3 + c6x
2 + c12x

with nonzero 2-torsion point P having coordinates (x, y) = (0, 0). In other
words, the symmetric tensors are simply the elements of V1⊗V2⊗V2 where
the degree 9 invariant vanishes. Nondegeneracy is again given by the same
degree 36 discriminant, which now factors:

Δ = 16c212(−4c12 + c26).

The reduced discriminant has degree 24, and nondegeneracy is determined
by the nonvanishing of c12 and of −4c12 + c26.

5.2.2. Triply symmetric Rubik’s cubes, or ternary cubic forms
again. We now consider triply symmetric Rubik’s cubes, i.e., orbits of
GL(V ) × Gm on Sym3 V for a three-dimensional vector space V over K.
Although this space, away from characteristic 3, is isomorphic to the space
of ternary cubic forms Sym3 V discussed in §4.2,3 we treat this space as a
subspace of V ⊗ V ⊗ V , instead of a quotient, to obtain a different moduli
interpretation.

3More precisely, these representations are dual to one another if V is self-dual.
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Because Sym3 V ↪→ V ⊗ Sym2 V , for each tensor A ∈ Sym3 V we may
construct the associated genus one curve C and line bundles on C. We then
find that the orbit spaces of these two representations in fact correspond
to the same moduli problem! The following is a basis-free version of Theo-
rem 3.2:

Theorem 5.10. Let V be a three-dimensional vector space over K. Then
nondegenerate GL(V ) × Gm-orbits of Sym3 V are in bijection with isomor-
phism classes of triples (C,L, P ), where C is a genus one curve over K,
L is a degree 3 line bundle on C, and P is a nonzero 2-torsion point of
Jac(C)(K).

Proof. We simply strengthen the proof of Theorem 5.8 with the observation
that all the vector spaces in question may be naturally identified. As in the
proof of Theorem 5.8, given a triple (C,L, P ), we let U1 = H0(C,L) and
U2 = U3 = H0(C,L ⊗ P ) and obtain an element A of U1 ⊗ Sym2 U2. We
may also use the same proof to show that there is an identification between,
e.g., U1 and U3 such that A is symmetric between those two directions; thus,
by taking corresponding identified bases for U1, U2, and U3, we obtain an
element of Sym3 U1 in U⊗3

1
∼= U1 ⊗ U2 ⊗ U3.

This curve C is not the same as the curve Z associated to the ternary
cubic via §4.2. The curve C has a degree 36 discriminant, while Z has a
discriminant of degree 12. In fact, it is easy to check that the curve C is
the zero locus of the Hessian of the ternary cubic form defining Z! (Recall
that the Hessian of a ternary cubic form is given by the determinant of
the matrix of second partial derivatives, which yields another ternary cubic
form.) Therefore, we have another proof of the following:

Proposition 5.11. Given a ternary cubic form f over K, let H(f) denote
the Hessian ternary cubic form. If the discriminant of H(f) is nonzero, then
the Jacobian of the genus one curve cut out by H(f) is an elliptic curve with
a nonzero rational 2-torsion point.

This fact is classically shown by constructing a fixed-point free involution
on the curve cut out by H(f); see [Dol12, Chapter 3].

To describe the invariant theory and the relationship with this curve Z,
let A be a nondegenerate element of Sym3 V . Recall that the generators d4
and d6 of the SL(V )-invariant ring of this representation are of degrees 4 and
6; we maintain the normalization from §4.2. Then A, viewed as a ternary
cubic form as in §4.2, gives rise to a genus one curve Z in P(V ∨) whose
Jacobian is given by (38).
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On the other hand, let C denote the genus one curve obtained from

viewing A as a (symmetric) Rubik’s cube. Then an easy computation shows

that the Jacobian of C may be given in Weierstrass form as

(43) E : y2 = x3 − 72d6x
2 + 1296d34x,

where the point (0, 0) is the nonzero 2-torsion point on E. The discriminant

of E factors as a rational multiple of

d64(d
3
4 − d26),

so the reduced discriminant has degree 4 + 12 = 16. Note that the factor

d34 − d26 is a scalar multiple of the discriminant of the elliptic curve Jac(Z).

Thus, requiring nondegeneracy of A as a Rubik’s cube implies that both

the genus one curve Z and the curve C are smooth. Also, observe that

even without the parametrization of Theorem 5.10, we know that all elliptic

curves over K with a rational 2-torsion point may be written in the form

(43), since such an elliptic curve may clearly be written as

y2 = x3 + ax2 + bx

for any a, b ∈ K with nonzero discriminant (i.e., b(a2 − 4b) �= 0). Taking

d4 = 1296/b and d6 = −23328a/b2 gives (43).

5.3. Cubic Jordan algebras

A Jordan algebra overK is aK-algebra with a commutative bilinear product

• satisfying the Jordan identity (x2 • y) • x = x2 • (y • x). In this section,

we introduce the “cubic Jordan algebras” that will be relevant for the more

general degree 3 moduli problem. Some of their connections with geometry

and representation theory will prove vital for describing and proving the

related orbit parametrizations in §5.4.

5.3.1. Jordan cubic forms and Springer’s construction. Following

[McC04] and [KMRT98, Chapter IX], we first briefly describe Springer’s con-

struction of Jordan algebras from nondegenerate cubic forms; the algebras

thus constructed are known as cubic Jordan algebras. Let U be a finite-

dimensional vector space over our field K (recall that charK �= 2, 3), and let

N be a cubic form on U such that N(e) = 1 for some basepoint e. Then there
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are naturally associated spur and trace forms, and their (bi)linearizations4,

denoted by

S(x) := N(x, x, e) S(x, y) := N(x, y, e) = S(x+ y)− S(x)− S(y)(44)

Tr(x) := N(e, e, x) Tr(x, y) := Tr(x) Tr(y)− S(x, y).

In general, an adjoint map � for the cubic form (N, e) is a quadratic map

� : U → U satisfying

Tr(x�, y) = N(x, x, y)(45)

(x�)� = N(x)x(46)

e× x = Tr(x)e− x(47)

where × denotes the bilinearization

(48) x× y := (x+ y)� − x� − y�.

An admissible cubic form is a cubic form N with basepoint e and an as-

sociated adjoint map �. Such a form gives rise to a natural Jordan algebra

structure on U with unit element e and product given by

(49) x • y :=
1

2
(x× y +Tr(x)y +Tr(y)x− S(x, y)e) .

We also have the identity

x3 − Tr(x)x2 + S(x)x−N(x)e = 0,

i.e., the “characteristic polynomial of x”, evaluated at x, vanishes for all

x ∈ U (Cayley–Hamilton Theorem).

For cubic forms, there is often a natural choice of an adjoint map. In

particular, a cubic form is called nondegenerate if its associated bilinear

trace form Tr(·, ·) is nondegenerate, in which case U and its dual U∨ may

4The linearization of a homogeneous degree n polynomial is a symmetric multi-
linear polynomial in n (not necessarily commuting) variables such that the orig-
inal polynomial may be recovered by specializing all n variables to the same
variable. For example, the linearization of x2 is 1

2 (x1x2 + x2x1) and of x3 is
1
6 (x1x2x3 + x1x3x2 + x2x1x3 + x2x3x1 + x3x1x2 + x3x2x1). See [McC04, §1.4] for
more details on linearization.
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be canonically identified. In other words, for fixed x, the linear functional

y �→ N(x, x, y) corresponds to an element x� ∈ U , giving a quadratic map

(50) � : U U∨ ∼=
U

x N(x, x, ·) x�.

This map � by definition satisfies (45); if � also satisfies (46), then it is

easy to check that (47) holds as well and thus � is an adjoint map [McC04,

§4.3]. Therefore, a nondegenerate cubic form N on U with basepoint e has

a natural Jordan algebra structure on U with product defined as in (49).

By an abuse of notation, sometimes the map � will refer to just the

first map in (50), that is, the map from x ∈ U to the linear functional

y �→ N(x, x, y) in U∨, since U and U∨ are naturally identified.

5.3.2. Composition algebras and Hermitian matrices. We now de-

scribe a class of cubic Jordan algebras that will play a crucial role in the

representations we study. We begin with some remarks about composition

algebras, which are used to construct these Jordan algebras.

A composition algebra A over a field K is a K-algebra A with identity

element e and a nondegenerate quadratic norm form q on A that satisfies

q(e) = 1 and q(ab) = q(a)q(b)

for any elements a, b ∈ A. By a theorem of Hurwitz, such an algebra A is

either K itself, a quadratic étale K-algebras, a quaternion algebra over K,

or a Cayley algebra over K.

Example 5.12. If K = K is algebraically closed, then the only composition

algebras are the four split composition algebras of dimensions 1, 2, 4, and 8,

namely the split unarions U (K) := K, the split binarions B(K) ∼= K ×K,

the split quaternions Q(K) ∼= Mat2×2(K), and the split octonions O(K)

with the natural norm forms.

Example 5.13. Over K = R, in addition to the split composition algebras,

there exist the usual division algebras of dimensions 2, 4, and 8: the complex

numbers C, the Hamiltonian quaternions H, and the Cayley octonions O,

respectively.

If the quadratic form q on the composition algebra A is nondegenerate,

then A is alternative separable of degree 2 and has an anti-involution �
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sending a ∈ A to a	 = a [KMRT98, Prop. 33.9]. Any element a ∈ A hence
satisfies the equation

a2 − trA(a)a+ nA(a)e = 0,

where the trace and norm are defined in terms of the quadratic norm form
q as

trA(a) := q(a+ e)− q(a)− q(e) and nA(a) := q(a).

For a composition algebra A over K as above, the Hermitian matrix
algebra Hn(A) consists of the n×n matrices M = (mij) ∈ Matn×n(A) with

M = M
t
, or equivalently, mji = m	

ij for 1 ≤ i, j ≤ n. The multiplicative
structure of the algebra Hn(A) is commutative but not associative, given
by

(51) M •M ′ :=
1

2
(M ·M ′ +M ′ ·M)

where · denotes usual matrix multiplication. Under this algebra structure,
the Hermitian matrices Hn(A) form a Jordan algebra.

We now consider the case of cubic Jordan algebras given as a Hermi-
tian matrix algebra for a composition algebra A. There is one Jordan alge-
bra structure on H3(A) inherited from the composition law (51). Also, on
H3(A), we may define a natural admissible cubic form (N, e, �):

N

⎛
⎝c1 a3 a�

2

a�
3 c2 a1

a2 a�
1 c3

⎞
⎠ := c1c2c3 − c1 nA(a1)− c2 nA(a2)− c3 nA(a3) + trA(a1a2a3)(52)

e :=

⎛
⎝1

1
1

⎞
⎠

� :

⎛
⎝c1 a3 a�

2

a�
3 c2 a1

a2 a�
1 c3

⎞
⎠ �→

⎛
⎝c2c3 − nA(a1) a�

2a
�
1 − c3a3 a3a1 − c2a

�
2

a1a2 − c3a
�
3 c1c3 − nA(a2) a�

3a
�
2 − c1a1

a�
1a

�
3 − c2a2 a2a3 − c1a

�
1 c1c2 − nA(a3)

⎞
⎠(53)

for c1, c2, c3 ∈ K and a1, a2, a3 ∈ A. For example, if A were commutative,
then the norm form N is the usual determinant of the matrix and the map �
coincides with the usual adjoint map for 3×3 matrices. Springer’s construc-
tion then gives a Jordan algebra structure on H3(A) using this admissible
cubic form.

Proposition 5.14 ([McC04, §4.4]). The two Jordan algebra structures on
H3(A), as defined above, are the same.
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5.3.3. Hermitian tensor spaces. In this section, we describe in a basis-
free manner the algebra Hn(A) for associative composition algebras A over
K, i.e., composition algebras of dimensions 1, 2, or 4 over K. For such
A, we introduce the notion of a Hermitian tensor space of an A-bimodule
M. Just as for symmetric and alternating tensor products, the idea is to
construct a subspace (or a quotient space) of a tensor space that corresponds
to Hermitian matrices.

If M is an A-bimodule, then we define M	 to be its twist by the invo-
lution � on A. In other words, there is K-vector space (but not A-module)
isomorphism

M −→ M	

m �−→ m	

but the left and right A-actions on M	 are given by

a(m	) = ((m)a	)	 and (m	)a = (a	(m))	

for all a ∈ A and m ∈ M. For any two A-bimodules, the tensor product is
again an A-bimodule; in our case, we have that M⊗A M	 is an A-bimodule
with left and right A-actions described by

a(m1 ⊗m	
2) = a(m1)⊗m	

2 and

(m1 ⊗m	
2)a = m1 ⊗ (m	

2)a = m1 ⊗ (a	(m2))
	

for all a ∈ A and m1,m2 ∈ M. Note that elements of A can “pass through”
the tensor product, i.e., the relation (m1)a ⊗ m	

2 = m1 ⊗ a(m	
2) holds for

all a ∈ A and m1,m2 ∈ M. There is a natural involution τ on elements of
M⊗A M	 sending

m1 ⊗m	
2 �→ m2 ⊗m	

1.

Definition 5.15. The Hermitian tensor space Herm2(M) of M is the sub-
bimodule of M ⊗A M	 consisting of elements M satisfying τ(M) = M .

Remark 5.16. One could also define a similar Hermitian tensor space as a
quotient

M⊗A M	/I

where I is the submodule generated by all tensors of the form m1 ⊗ m	
2 −

m2⊗m	
1 for m,m′ ∈ M. Over a field of characteristic not 2, these notions are

the same (just like for symmetric tensors). For our purposes, the subspace
defined in Definition 5.15 is more useful.
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For any M, there is a Segre-like map

Seg : M −→ Herm2(M) ⊂ M⊗A M	(54)

m �−→ m⊗m	

whose image consists precisely of the “rank one” tensors in M⊗A M	. This
is, of course, not a linear map. In fact, the right A-action on M scales the
image of Seg by elements of the field K; in particular,

(55) Seg((m)a) = (m)a⊗ ((m)a)	 = (m)a⊗ a	(m	) = nA(a)(m⊗m	).

If M is a free rank r A-bimodule with a choice of basis, then the Her-
mitian tensor space Herm2(M) is visibly just the space Hr(A) of r × r
Hermitian matrices over A, as the involution τ corresponds to taking the
conjugate transpose of a matrix.

In the sequel, let M denote a free self-dual rank 3 A-bimodule, and let
J(A) := Herm2(M). Then J(A) also has the structure of a cubic Jordan
algebra as in §5.3.2. When we refer to J(A) for associative A, the module
M will be assumed. For an octonion algebra A over K, the notation J(A)
will refer to the exceptional Jordan algebra H3(A).

Remark 5.17. BecauseM is assumed to be self-dual, we may view elements
of the tensor space M ⊗A M	 as maps from M∨ ∼= M to M	. So there are
also basis-free definitions of the norm, trace, and spur forms, as well as the
adjoint map � in (50), for J(A).

5.3.4. Rank. Elements of J(A) inherit the notion of rank from the ambi-
ent tensor space M ⊗K M	. In this section, we discuss the stratification of
J(A) by rank, which is closely related to Severi varieties and their tangent
and secant varieties.

By forgetting the Jordan algebra and the A-module structure on J(A), it
makes sense to think of J(A) as a K-vector space of dimension 3 dim(A)+3.
The projective space P(J(A)) will denote the space of K-lines in J(A) as a
K-vector space and thus has dimension 3 dimA+ 2 over K.

Let XA ∈ P(J(A)) correspond to the rank one elements of J(A), so XA

is cut out by quadrics in P(J(A)). Let YA ∈ P(J(A)) consist of the elements
of J(A) having rank at most two. Then YA is visibly the secant variety of
XA in P(J(A)). On the other hand, the variety YA is defined by the cubic
norm form N on J(A), so it is a cubic hypersurface in P(J(A)).

If the composition algebra A has dimension d over K, then XA, YA, and
P(J(A)) have dimensions 2d, 3d + 1, and 3d + 2, respectively. Since d = 1,
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2, 4, or 8, in all these cases, the secant variety YA of XA is defective, and by
a theorem of Zak [Zak93], the secant variety is also the tangent variety.

Example 5.18. Over an algebraically closed field of characteristic 0, the
varieties XA ⊂ P(J(A)) for the four composition algebras A (see Example
5.12) are exactly the four Severi varieties [Zak85]:

(i) the Veronese surface P2 ⊂ P5,
(ii) the Segre fourfold P2 × P2 ⊂ P8,
(iii) the Grassmannian Gr(2, 6) ⊂ P14, and
(iv) the 16-dimensional variety E16⊂P26 discovered by Lazarsfeld

[LVdV84].

Over a general field K, the varieties that arise are twisted forms of these.

From the geometric perspective, the adjoint map � : J(A) → J(A)∨ is
essentially (up to scaling) the birational map

(56) βA : P(J(A)) ��� P(J(A)∨)

given by the linear system of quadrics passing throughXA, or in other words,
the partial derivatives of the norm form N on J(A) (see [ESB89] or [Zak85]).
By definition, the map βA blows down YA to XA, and the inverse blows up
XA to YA, so XA is naturally isomorphic to the dual variety of YA and vice
versa.

These varieties XA have a simple moduli interpretation, based on their
definition as rank one elements of J(A) up to K-scaling.

Lemma 5.19. For any composition algebra A of dimension 1, 2, or 4 over
K, the variety XA parametrizes elements of M up to right A-scaling.

Proof. The map Seg defined in (54) descends to a well-defined map

(M \ {0})/A −→ P(J(A))

by the computation in (55). (Here (M \ {0})/A denotes nonzero elements of
the module M up to right A-scaling.) The image of this map is by definition
XA, and it is easy to check that this map is injective.

In fact, the variety XA for all composition algebras A (including those
of dimension 8) over an algebraically closed field of characteristic 0 is often
considered an embedding of the projective plane P2(A) over A into P(J(A))
[Zak85]. Here, we work over a more general base field K, but the above argu-
ment only holds for associative composition algebras. For octonion algebras
A over K, an explicit computation shows that the variety XA here shares
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the same points as the usual definition of an octonionic projective plane
[CS03, Chapter 12], which can also be described as right (or left) A-lines in
A3.

5.3.5. Linear transformations of Jordan algebras. Let SL(J) be the
group of norm-preserving K-linear automorphisms of a Jordan algebra J .
In this way, the Jordan algebra J may be thought of as a representation of
the group SL(J). In the case J = H3(A), we also denote SL(J) by SL3(A).

Over an algebraically closed fieldK = K, the cubic Jordan algebras J(A)
built from the four split composition algebras A correspond to the following
groups and representations (see, e.g., [Jac68, §VI.7-VI.9] or [Kru07, Remark
10] for more details):

semisimple simply connected
A form of SL(J(A)) J(A)

U (K) = K SL3(K) Sym2(3)
B(K) ∼= K ×K SL3(K)× SL3(K) 3⊗ 3

Q(K) ∼= Mat2×2(K) SL6(K) ∧2(6)
O(K) E6(K) 27

Over a general field, we may consider various forms of these groups and the
corresponding representations.

For the cubic Jordan algebras J(A) described in §5.3.4, the cone on XA

— that is, the set of rank one tensors — in J(A) is exactly the orbit of the
highest weight vector of the representation J(A) of SL(J(A)) (see [Zak93,
Chapter 3] for an explanation over an algebraically closed field). Over the
algebraic closure, it is the unique closed orbit of the action of SL(J(A)) on
P(J(A)). Thus, the variety XA ⊂ P(J(A)) is isomorphic to the flag variety
SL(J(A))/P , where P is the parabolic subgroup of J(A) that stabilizes the
highest weight vector.

More generally, over the algebraic closure, the orbits of the action of
SL(J(A)) on J(A) give a stratification of J(A) by rank. We obtain another
description of the rank two tensors of the representation J(A), which to-
gether form another orbit of SL(J(A)) on P(J(A)).

Note that this description of XA automatically gives a moduli interpre-
tation of XA, since it is a generalized flag variety; the moduli interpretation
given in Lemma 5.19 is slightly stronger, since it also includes the action of
the composition algebra A on the vector bundle.

5.4. Doubly Hermitian Rubik’s cubes

Our goal in this section is to study, in a uniform way, the orbits of the
representations V ⊗ J(A) of the group GJ(A) := GL(V )× SL(J(A)), where
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V is a three-dimensional vector space over the field K and J(A) is the cubic
Jordan algebra obtained from a composition algebra A as defined in §5.3.
We will restrict ourselves to nondegenerate elements of the tensor space, as
these will correspond exactly to nonsingular curves.

Definition 5.20. An element φ ∈ V ⊗ J(A) is called nondegenerate if the
induced composition map

� ◦ φ : V ∨ → J(A) → J(A)∨

is injective.

We will show that nondegenerate elements of V ⊗ J(A) correspond to
genus one curves with extra data, including what we call an A-line on the
curve. Intuitively, an A-line on a variety Z is like a rank one (left or right)
A-module, if the notion of rank were well defined for noncommutative rings.

Definition 5.21. Let A be a dimension d composition algebra over K and
let Z be a variety defined over K. Then an A-line over Z is a rank d vector
bundle E over Z with a global faithful right A-action.

Fix a trivial rank ds bundle B over Z. We say that an A-line E on Z
has size s if E is isomorphic to a subbundle of B, such that B has a global
faithful right A-action that restricts on E to the given A-action on E. A
size 3 A-line E on Z is very ample if there is an immersion κ : Z → XA

such that the pullback of the universal A-line on XA is isomorphic to E.
Finally, for a very ample size 3 A-line E on Z, we denote by linE the line
bundle on Z given by pulling back OP(J(A))(1) to Z via the composition

Z
κ−→ XA ↪→ P(J(A)). We will show that linE is closely related to the

determinant bundle detE (of E as a vector bundle), in each case.

From an element of V ⊗J(A), we will construct a genus one curve with a
degree 3 line bundle and an A-line. This construction will be automatically
invariant under the action of GJ(A). In fact, this is exactly the data that
determines a GJ(A)-orbit!

Theorem 5.22. The nondegenerate GJ(A)-orbits of V ⊗ J(A) are in bijec-
tion with isomorphism classes of nondegenerate triples (C,L,E), where C
is a smooth genus one curve over K, L is a degree 3 line bundle on C, and
E is a very ample size 3 A-line over C satisfying linE ∼= L⊗2.

The nondegeneracy condition for a triple (C,L,E) will be discussed more
in the proof; it is an open condition, so the theorem may be rephrased as
a bijection between the orbits of V ⊗ J(A) and the K-points of an open
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substack of the moduli space of such triples (with the isomorphism between
linE and L⊗2). For some choices of A, we will work out a relatively simple
interpretation of this condition.

5.4.1. Geometric construction. We now show that a nondegenerate
element φ of V ⊗ J(A) naturally gives rise to the geometric data of a genus
one curve C, a degree 3 line bundle on C, and an A-bundle E. Let d be the
dimension of the composition algebra A over K.

Given φ ∈ V ⊗ J(A), we may instead think of φ as a linear map in
Hom(V ∨, J(A)). Nondegeneracy of φ immediately implies that this map is
injective, so we obtain a linear map

P(φ) : P(V ∨) −→ P(J(A)).

Let W be the image of P(φ) in P(J(A)). Then the secant variety YA of XA

cuts out a cubic plane curve C on W . In other words, the curve ι : C ↪→
P(J(A)) is defined by the vanishing of the cubic norm form N on the plane
W . Let L be the pullback of O(1) from the projective plane W to C, so L
is a degree 3 line bundle on C.

We claim that for φ nondegenerate, this curve C is smooth and irre-
ducible, and thus of genus one. Nondegeneracy of φ implies that W does
not intersect the variety XA, which is the base locus for the rational map
βA in (56), or equivalently, that the partials of the norm form N do not
simultaneously vanish. In this case, the curve C is nonsingular.

Lemma 5.23. The image C� of the curve C ⊂ YA under the adjoint map
βA is isomorphic to C, and hence is a smooth irreducible genus one curve
in XA ⊂ P(J(A)∨).

Proof. Recall that J(A) and its dual may be naturally identified, and from
§5.3.4, the adjoint map βA is a birational map from P(J(A)) to P(J(A)∨),
which blows down YA \XA to XA. The image of the plane W under βA is
birational on W \ C. In other words, the generic fiber of βA restricted to
W is connected, so by Zariski’s connectedness theorem, all the special fibers
are connected; since there are no contractible curves in W ∼= P2, each fiber
is a single point. Thus, the image C� of C is also a smooth irreducible genus
one curve, and it is contained in XA.

By the moduli interpretation of the variety XA, the closed immersion
C� ↪→ XA is equivalent to the data of a very ample size 3 A-line on C�,
which pulls back to a very ample size 3 A-line E on C. In other words, we
have produced the triple (C,L,E) as desired.
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It is clear that the isomorphism class of the triple (C,L,E) is preserved
under the action of GJ(A), where two such triples (C,L,E) and (C ′, L′, E′)
are isomorphic if there is an isomorphism σ : C → C ′ such that σ∗L′ = L
and σ∗E′ = E and the A-actions on E and E′ are related by σ. The groups
GL(V ) and SL(J(A)) act by linear transformations on V and on J(A),
respectively, and the action of SL(J(A)) fixes the varieties XA and YA.
Thus, both actions do not affect the geometric data, up to isomorphism.

Now we show that the triple (C,L,E) satisfies the last condition of the
theorem.

Lemma 5.24. There is an isomorphism

linE ∼= L⊗2

of line bundles on the curve C.

Proof. This relation follows from the fact that the map βA is given by
quadratic polynomials. The line bundle linE on the curve C is the pull-
back of OP(J(A))(1) via

C
βA−→ C� ↪→ XA ↪→ P(J(A)∨) ∼= P(J(A)),

which is isomorphic to ι∗OP(J(A))(2). On the other hand, the line bundle L is
defined as the pullback of OW (1) to C, and since W lies linearly in P(J(A)),
in fact L is isomorphic to ι∗OP(J(A))(1).

This line bundle linE on C is closely related to the determinant bundle
of E.

Lemma 5.25. For a very ample size 3 A-line E on a projective variety Z,
where A is a composition algebra over K of dimension d, if dimA = 1, then

(detE)⊗2 ∼= linE

and if dimA = 2, 4, or 8, then

detE ∼= (linE)⊗(d/2).

Proof. It suffices to prove this lemma for the variety XA itself. Recall that
XA is a homogeneous variety in P(J(A)) given as the projectivization of the
orbit of the highest weight vector of the representation J(A) of SL(J(A)).
It is well known that the pullback of OP(J(A))(1) to XA is the product of
the determinants of the vector bundles in the universal flag on XA [Ful97,
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Chapter 9]. Comparing the universal A-line E onXA to the vector bundles in
the universal flag under the typical moduli interpretation gives the lemma.
(For example, when A is the split quaternions over K, our A-line E is a
rank 4-vector bundle on XA = Gr(2, 6) and is the second tensor power of
the typical universal rank 2 bundle defined on the Grassmannian.)

5.4.2. Bijection. The geometric construction described above gives one
direction of the bijection. We now prove Theorem 5.22 (and its weaker ver-
sion, Theorem 3.5).

Proof of Theorem 5.22. Suppose (C,L,E) is a triple satisfying the condi-
tions of the theorem. We wish to recover a plane W in P(J(A)) such that C
is isomorphic to the curve cut out by W and the cubic hypersurface YA.

The degree 3 line bundle L on C gives a closed immersion η : C ↪→
P(H0(C,L)∨) ∼= P2. The A-line E on C implies that there is a closed im-
mersion

(57) κ : C → XA ↪→ P(J(A)) ∼= P(J(A)∨)

given by the sections of linE. More precisely, since linE ∼= κ∗OP(J(A))(1)
and deg(linE) = 6 by assumption, the image of κ lies in a P5 lying linearly
in P(J(A)), namely the image of the map λ : P(H0(C, linE)∨) ↪→ P(J(A)).

Recall that we have an isomorphism L⊗2 ∼= linE. The multiplication
map

H0(C,L)⊗H0(C,L) −→ H0(C,L⊗2) ∼= H0(C, linE)

is surjective and factors through Sym2H0(C,L), so a dimension count shows
that the spaces H0(C, linE) and Sym2H0(C,L) are naturally isomorphic.
Thus, we have a natural quadratic map

(58) ρ : P(H0(C,L)∨) −→ P(Sym2H0(C,L)∨)
∼=−→ P(H0(C, linE)∨).

Pulling back the line bundle OP(J(A))(1) to the curve C via the composition
λ◦ρ◦η and via κ give isomorphic line bundles on C, so under an appropriate
change of basis, the images of C in P(J(A)) via these two maps coincide. In
other words, the following diagram commutes:

C

η

XA

P(H0(C,L)∨)
λ◦ρ

quadratic
P(J(A))

.
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The image of P(H0(C,L)∨) under ρ is a Veronese surface V in the space
P(H0(C, linE)∨) ⊂ P(J(A)). The nondegeneracy condition we require is
that this Veronese V is not contained in YA. Under the inverse of the adjoint
map βA, we claim that V gives a P2 lying linearly in P(J(A)). Recall that
βA ◦ βA is the identity on P(J(A)) \ YA. By assumption, outside of the
image of C on V , the map βA is birational, so by the valuative criterion of
properness, there is a well-defined map from all of the surface V to P(J(A)),
whose image is a linear subspace of P(J(A)). This plane may be identified
with P(H0(C,L)∨) under some choice of basis.

Note that the nondegeneracy condition on the triple (C,L,E) is satisfied
when constructed from an element of V ⊗ J(A). Finally, the constructions
in each direction are inverse to one another, since βA ◦ βA is the identity on
an open set of P(J(A)).

5.5. Specializations

For particular choices of A, Theorem 5.22 recovers some of the spaces con-
sidered earlier, while some other choices of A give new parametrization the-
orems. In this section, we describe some of the cases where A is split.

For example, the case where A = K ×K and d = 2 recovers the space
of Rubik’s cubes studied in §5.1. For A = K × K, it is easy to check that
the Jordan algebra J(A) is isomorphic to the Jordan algebra Mat3×3(K)
of 3 × 3 matrices over K, where the norm, spur, and trace forms coming
from the characteristic polynomial in the standard way. The variety XA is
isomorphic to the Segre fourfold P2 × P2 ↪→ P8, and its secant variety YA
is the cubic hypersurface given by the vanishing of the determinant. Then
the curve obtained as a intersection of a plane and YA in P(J(A)) may be
thought of as a determinantal variety, just as before.

The specialization of Theorem 5.22 to A = K and d = 1 gives the space
of doubly symmetric Rubik’s cubes, which we studied in §5.2.1. Here, the
variety XA is the Veronese surface P2 ↪→ P5. The A-line E is another degree
3 line bundle, given as the pullback of O(1) from the Veronese surface to the
curve. The squares of the line bundles L and E are isomorphic, and thus
their difference is a 2-torsion point on the Jacobian of the curve, as described
in Theorem 5.8.

We next study Theorem 5.22 in the case where d = 4 and the compo-
sition algebra A is the algebra of split quaternions over K, i.e., the algebra
Mat2×2(K) of 2×2 matrices over K, in order to recover Theorem 3.4. In this
case, the algebra J(A) is isomorphic to the algebra of 6× 6 skew-symmetric
matrices over K, where the cubic form is the degree 3 Pfaffian of such a
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matrix. The moduli problem becomes one of determining so-called Pfaffian
representations, which have been studied over an algebraically closed field
in [BK11].

Theorem 5.26. Let V and W be K-vector spaces of dimensions 3 and 6,
respectively. Then nondegenerate GL(V )×SL(W )-orbits of V ⊗∧2W are in
bijection with isomorphism classes of nondegenerate triples (C,L, F ), where
C is a genus one curve over K, L is a degree 3 line bundle on C, and F is
a rank 2 vector bundle on C, with detF ∼= L⊗2.

The interpretation of XA as a moduli space of rank 2 vector bundles
is straightforward. Here XA ↪→ P(J(A)) is the Plücker embedding of the
Grassmannian Gr(2,W ) in P(∧2(W )) ∼= P14. The A-line E coming from
Theorem 5.22 is a rank 4 — not rank 2! — vector bundle over C, but there
is an equivalence of categories between modules E over rank 4 Azumaya
algebras and rank 2 vector bundles F . This phenomenon is special to the
case of the split quaternion algebra; for nonsplit quaternion algebras, the
minimal rank vector bundle recovered from this data will have rank 4.

We may also set A to be the split octonion algebra O over K, although
the data is certainly less familiar to most people! Then the algebra J(A) is
the exceptional Jordan algebra, and the variety XA is the fourth Severi vari-
ety found by Lazarsfeld [LVdV84, Zak85]. The variety XA is 16-dimensional,
and it is often interpreted as a projective plane P2(O) over O [SBG+95]. This
interpretation is exactly how we recover a O-line on a curve C from a map
C → P2(O).

Theorem 5.27. Let V and W be K-vector spaces of dimensions 3 and 27,
respectively, with the split algebraic group E6 acting on W . Then nondegen-
erate GL(V )×E6-orbits of V ⊗W are in bijection with isomorphism classes
of nondegenerate quadruples (C,L, ξ, E), where C is a genus one curve over
K, L is a degree 3 line bundle on C, ξ : C → P2(O) ⊂ P(W ) is a map, and
E is the rank 8 vector bundle on C obtained from pulling back the universal
bundle on P2(O), and detE ∼= L⊗8.

One may also take A to be a nonsplit composition algebra over K. We
plan to discuss some applications of these cases in future work.

6. Representations associated to degree 2 line bundles

In this section, analogously to Section 5, we study a class of representations
whose orbits are related to genus one curves with degree 2 line bundles. The
main theorems in this section are summarized in Section 2.



74 Manjul Bhargava and Wei Ho

We begin in §6.1 by considering the space of bidegree (2, 2) forms on P1×
P1. We show that the orbits here correspond to genus one curves equipped
with a degree 2 line bundle and a nonzero point on the Jacobian. (This
is analogous to the interpretation of orbits for the space of Rubik’s cubes!)
In §6.2–6.3, we then examine the space of hypercubes (2×2×2×2 matrices)
and some of its simpler variants; this space of hypercubes is the fundamental
space for many degree 2 moduli problems, just as the space of Rubik’s cubes,
considered in the previous section, was the fundamental space for many
degree 3 moduli problems.

In preparation for the general case, in §6.4 we then introduce the notion
of “triply Hermitian cubes” with respect to a cubic Jordan algebra J , which
form a vector space C = C (J), and we describe a flag variety inside this
space up to scaling. In §6.5, given an element of the space V ⊗ C where
V is a two-dimensional vector space, we then construct genus one curves
with a projection to that flag variety. This yields bijections between orbits
on V ⊗ C (i.e., the space of “triply Hermitian hypercubes”) and isomor-
phism classes of genus one curves equipped with degree 2 line bundles and
additional vector bundles. After uniformly treating the bijections for such
spaces, we then specialize to several of the split cases, for which the geomet-
ric data becomes easier to describe; many of these are related to interesting
arithmetic structures.

Many of the orbit problems described in this section are used in [BH12]
to determine average sizes of 2-Selmer groups for certain families of elliptic
curves over Q.

6.1. Bidegree (2, 2) forms

Let V1 and V2 be two-dimensional vector spaces over K. A (2, 2) form f over
K is an element of Sym2 V1 ⊗ Sym2 V2. With a choice of bases {w1, w2} and
{x1, x2} of V1 and V2, respectively, such a form f may be represented as a
polynomial

f(w1, w2, x1, x2) = a22w
2
1x

2
1 + a32w1w2x

2
1 + a42w

2
2x

2
1 + a23w

2
1x1x2(59)

+ a33w1w2x1x2 + a43w
2
2x1x2 + a24w

2
1x

2
2

+ a34w1w2x
2
2 + a44w

2
2x

2
2.

The group GL(V1)×GL(V2) acts on the space of (2, 2) forms by the standard
action on each factor. We will also consider a twisted action of (g1, g2) ∈
GL(V1)×GL(V2):

(g1, g2)f(w, x) = det(g1)
−1 det(g2)

−1f(g1(w), g2(x)).
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This is the representation Sym2 V1⊗Sym2 V2⊗(∧2V1⊗∧2V2)
−1 of GL(V1)×

GL(V2); by abuse of notation, we will refer to this as the twisted action on
(2, 2) forms. This twisted action is not faithful; for example, the scalars
Gm(Vi) of GL(Vi) act trivially on all (2, 2) forms. Finally, the standard
scaling action of Gm on such bidegree (2, 2) forms f will be relevant in the
sequel. The group G for the moduli problem here will be the product of the
scaling Gm and GL(V1)×GL(V2) acting by the twisted action.

6.1.1. Geometric construction and bijection. The (2, 2) form f cuts
out a bidegree (2, 2) curve C in P(V ∨

1 ) × P(V ∨
2 ). If the curve C is smooth,

then a standard computation shows that C has genus (2 − 1)(2 − 1) = 1.
Pulling back line bundles via the embedding ι : C ↪→ P(V ∨

1 ) × P(V ∨
2 ) gives

two degree 2 line bundles on C, namely

L1 := ι∗OP(V ∨
1 )×P(V ∨

2 )(1, 0) and L2 := ι∗OP(V ∨
1 )×P(V ∨

2 )(0, 1).

Each of the projection maps pri : C → P(V ∨
i ), for i = 1 or 2, is a degree

2 cover of P(V ∨
i ), ramified at four points over a separable closure of K. A

binary quartic q1 on V1 associated to the ramification locus in P(V ∨
1 ) may

be computed by taking the discriminant of f as a quadratic polynomial on
V2:

q1(w1, w2) : = disc(f(x1, x2))

= (a23w
2
1 + a33w1w2 + a43w

2
2)

2

− (a22w
2
1 + a32w1w2 + a42w

2
2)(a24w

2
1 + a34w1w2 + a44w

2
2),(60)

and similarly for q2(x1, x2) as a binary quartic form on V2. The nonsingular
genus one curve obtained from each of these binary quartics, as in §4.1, is
isomorphic to the curve C. Via those isomorphisms, the line bundles L1 and
L2 coincide with the natural degree 2 line bundles on the genus one curves
coming from these binary quartics.

We call a (2, 2) form f or its associated curve C nondegenerate if both
of the associated binary quartics are nondegenerate, i.e., have four distinct
roots over a separable closure. For each of the binary quartics, this condition
is given by the nonvanishing of the discriminant Δ(qi). As the binary quartic
qi is invariant under the action of SL(Vj) on f , the discriminant Δ(qi) is a
degree 12 SL(Vi)×SL(Vj)-invariant for f . Moreover, it is easy to check that
I(q1) = I(q2) and J(q1) = J(q2), so Δ(q1) = Δ(q2). Thus, the polynomials
I(f) := I(qi) and J(f) := J(qi) for i = 1 or 2 are SL(V1)×SL(V2)-invariants
of f having degrees 4 and 6, respectively. The discriminant Δ(f) = Δ(qi) of
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the (2, 2) form f is a degree 12 invariant, and a nondegenerate (2, 2) form

is one with nonzero discriminant.5 The nonvanishing of this discriminant is

also equivalent to the condition that the curve C cut out by f is nonsingular.

Thus, from a nondegenerate (2, 2) form f , we have constructed a genus

one curve in P1 × P1, and the G-action preserves the isomorphism class of

this curve and the line bundles. Conversely, given a genus one curve C and

two degree 2 line bundles L1 and L2 on C, there are natural degree 2 maps

ηi : C → P(H0(C,Li)
∨) = P1 and the product map

(η1, η2) : C P(H0(C,L1)
∨)× P(H0(C,L2)

∨) .

If L1
∼= L2, then (η1, η2) is a degree 2 cover of a diagonal in P1×P1, i.e., the

image of this map is isomorphic to P1. Otherwise, we claim that this map is

a closed immersion.

Lemma 6.1. For a smooth irreducible genus one curve C and non-isomor-

phic degree 2 line bundles L1 and L2 on C, the composition

C
(η1,η2)

P(H0(C,L1)
∨)× P(H0(C,L2)

∨)

Segre

P(H0(C,L1)
∨ ⊗H0(C,L2)

∨)

is a closed immersion.

Proof. By Riemann-Roch, the spaces of sections H0(C,L1), H
0(C,L2), and

H0(C,L1⊗L2) have dimensions 2, 2, and 4, respectively. The multiplication

map

μ12 : H
0(C,L1)⊗H0(C,L2) −→ H0(C,L1 ⊗ L2)

is an isomorphism, by Castelnuovo’s basepoint-free pencil trick (see

[ACGH85, p. 126]). Since deg(L1 ⊗ L2) = 4, the curve C is isomorphic

to its image in P(H0(C,L1 ⊗L2)
∨) = P3. Since the desired map is the com-

position of this map to P(H0(C,L1⊗L2)
∨) with the isomorphism P(μ∨

12), it

is a closed immersion.

5Neither J(f) nor Δ(f) is a generator for the ring of SL(V1)×SL(V2)-invariants

of Sym2 V1 ⊗ Sym2 V2. The invariant ring is a polynomial ring with generators in

degrees 2, 3, and 4, and will be discussed more carefully in §6.1.2.
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The image C12 of the curve C in P(H0(C,L1)
∨)× P(H0(C,L2)

∨) is cut
out by a (2, 2) form, via the exact sequence

0 → IC → OP(H0(C,L1)∨)×P(H0(C,L2)∨) → OC → 0

where IC is the ideal defining C12. Tensoring with O(2, 2), taking coho-
mology, and tensoring by the dual of H0(P(H0(C,L1)

∨) × P(H0(C,L2)
∨),

IC(2, 2)) gives a map from K to

H0(P(H0(C,L1)
∨)× P(H0(C,L2)

∨),O(2, 2))

⊗ (∧2(H0(C,L1)))
−1 ⊗ (∧2(H0(C,L2)))

−1 ⊗ ωC ,

where ωC is the usual Hodge bundle for C. We thus obtain a bidegree
(2, 2) form, namely an element of Sym2(H0(C,L1)) ⊗ Sym2(H0(C,L2)) ⊗
(∧2(H0(C,L1))⊗∧2(H0(C,L2)))

−1. The factor ωC fixes the scaling, just as
in the cases in Section 4.

Thus, a genus one curve and two nonisomorphic degree 2 line bundles
L1 and L2 give rise to a (2, 2) form.

Theorem 6.2. The nondegenerate G-orbits of Sym2 V1 ⊗ Sym2 V2 for two-
dimensional vector spaces V1 and V2 are in bijection with isomorphism classes
of triples (C,L1, L2), where C is a genus one curve and L1 and L2 are non-
isomorphic degree 2 line bundles on C.

The stabilizer of the G-action corresponds to the automorphism group of
the triple (C,L1, L2), which for a generic nondegenerate (2, 2) form is the K-
points of an extension of Jac(C)[2] by G2

m. In general, the stabilizer consists
of the K-points of a possibly non-split extension of this group scheme by
Aut(Jac(C)).

By the same argument as in Corollary 5.4, we may keep track of the
difference L2 ⊗ L−1

1 instead of L2. The difference corresponds to a point on
the Jacobian of C, and in fact, in Pic0(C)(K).

Corollary 6.3. The nondegenerate G-orbits of Sym2 V1⊗ Sym2 V2 for two-
dimensional vector spaces V1 and V2 are in bijection with isomorphism classes
of triples (C,L, P ), where C is a genus one curve, L is a degree 2 line bundle
on C, and 0 �= P ∈ Pic0(C)(K).

6.1.2. Invariant theory. The SL(V1) × SL(V2)-invariants of the repre-
sentation Sym2 V1 ⊗ Sym2 V2 form a polynomial ring generated by invari-
ants δ2, δ3, and δ4 of degrees 2, 3, and 4 (see [Dem73, Vin76], for exam-
ple). These same polynomials are relative invariants under the standard
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action of GL(V1) × GL(V2), but are invariant under the twisted action of

GL(V1) × GL(V2) described above. When f is a (2, 2) form given by (59),

we may take the generators to be

δ2 = a233 − 4a32a34 + 8a24a42 − 4a23a43 + 8a22a44

δ3 = a24a33a42 − a23a34a42 − a24a32a43 + a22a34a43 + a23a32a44 − a22a33a44

δ4 = I(f)

although any linear combination of I(f) and δ22 is a degree 4 generator of the

invariant ring. Given a (2, 2) form f , these invariants are essentially described

by the triple (C,L, P ) of Corollary 6.3, or in particular, the Jacobian E of

C and the coordinates of P on some form of E.

Recall that I(f) and J(f) are SL(V1) × SL(V2)-invariants of degrees 4

and 6, obtained from the binary quartics qi for i = 1 or 2. The Jacobian of

the curve C given by f = 0 is the Jacobian of the genus one curve associated

to qi, and it can be written in Weierstrass form as

y2 = x3 − 27I(f)x− 27J(f).

The nonzero point P has coordinates (x(f), y(f)) satisfying E, which are

SL(V1)× SL(V2)-invariants of degrees 2 and 3, respectively, i.e., scalar mul-

tiples of the generators δ2 and δ3 of the invariant ring! The relation

(108δ3)
2 = (3δ2)

3 − 27I(f)(3δ2)− 27J(f)

shows that (x(f), y(f)) = (3δ2, 108δ3).

We may also write the Jacobian of the genus one curve C in generalized

Weierstrass form as

(61) y2 + a3y = x3 + a2x
2 + a4x

where the coefficients satisfy

a2 = 9δ2, a3 = 216δ3, a4 = 27δ22 − 27δ4,

and are different generators of the invariant ring (since we are working over

a field K not of characteristic 2 or 3).



Coregular spaces and genus one curves 79

6.2. Hypercubes

We now consider 2× 2× 2× 2 boxes, or hypercubes. This space is the fun-
damental representation for the degree 2 cases, and we will study a number
of variants and generalizations in the subsections that follow.

The representation in question is V := V1 ⊗ V2 ⊗ V3 ⊗ V4, where each
Vi is a 2-dimensional K-vector space, with the natural action by G :=
GL(V1)×GL(V2)×GL(V3)×GL(V4). We prove the following theorem, where
nondegeneracy corresponds to the nonvanishing of a certain degree 24 in-
variant, described in more detail below.

Theorem 6.4. Let V1, V2, V3, V4 be 2-dimensional vector spaces over K.
Then nondegenerate GL(V1)×GL(V2)×GL(V3)×GL(V4)-orbits of the space
V1 ⊗ V2 ⊗ V3 ⊗ V4 are in bijection with isomorphism classes of quintuples
(C,L1, L2, L3, L4), where C is a genus one curve over K, and the Li are
degree 2 line bundles on C, satisfying L1 ⊗ L2

∼= L3 ⊗ L4 and Li �∼= Lj for
i �= j, 1 ≤ i ≤ 2, 1 ≤ j ≤ 4.

The stabilizer of a nondegenerate hypercube giving the genus one curve
C is exactly the automorphism group of the quintuple, provided that we
record the isomorphism L1 ⊗ L2

∼= L3 ⊗ L4. In particular, let H be the
extension of Jac(C)[2] by the kernel of the multiplication map Gm(V1) ×
Gm(V2) × Gm(V3) ×Gm(V4) → Gm, where each Gm(Vi) is the set of scalar
transformations of Vi for 1 ≤ i ≤ 4. Then the stabilizer consists of the
K-points of a possibly non-split extension of Aut(Jac(C)) by this group
scheme H. For example, if the j-invariant of Jac(C) is not 0 or 1728, and
C has a rational point O and full rational 2-torsion with respect to O,
generated by P1 and P2, then the hypercube corresponding to the quintuple
(C,O(2O),O(O+P1),O(O+P2),O(O+P1+P2)) will have stabilizer group
H × Z/2Z, that is, an extension of (Z/2Z)3 by G3

m.

6.2.1. Geometric construction. We describe how to construct the genus
one curve and degree 2 line bundles from a hypercube; any G-equivalent hy-
percube will produce an isomorphic curve and line bundles.

Let A ∈ V1 ⊗ V2 ⊗ V3 ⊗ V4, so A induces a linear map from V ∨
1 ⊗ V ∨

2 to
V3 ⊗ V4 and thus a linear map

P(V ∨
1 ⊗ V ∨

2 ) → P(V3 ⊗ V4).

There is a natural determinantal quadric in P(V3⊗V4); with choices of bases
for V3 and V4, it consists of nonzero 2×2 matrices, up to scaling, which have
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determinant 0. Let C12 be the intersection of this quadric with the image
of the Segre map P(V ∨

1 )× P(V ∨
2 ) → P(V ∨

1 ⊗ V ∨
2 ), composed with the linear

map given by A. Then C12 is generically a curve.

More explicitly, the curve C12 is a determinantal variety, given by the
vanishing of the determinant of a 2 × 2 matrix of bidegree (1, 1) forms on
P(V ∨

1 )×P(V ∨
2 ) = P1×P1. With choices of bases for all the vector spaces Vi,

the hypercube may be written as a 2× 2× 2× 2 array (arstu)1≤r,s,t,u≤2 with
arstu ∈ K. Then the curve C12 is given as the vanishing of the determinant
of A(w, x, ·, ·), which may be represented as the matrix

(a11tuw1x1 + a12tuw1x2 + a21tuw2x1 + a22tuw2x2)1≤t,u≤2

where {w1, w2} and {x1, x2} are the bases for V ∨
1 and V ∨

2 , respectively. This
determinant f12(w, x) is a (2, 2) form, i.e., an element of Sym2 V1⊗Sym2 V2,
and it is invariant under the action SL(V3) × SL(V4). One may similarly
define the varieties Cij for any 1 ≤ i �= j ≤ 4. (We identify Cij and Cji.)

We call a hypercube nondegenerate if the variety C12 is smooth and
one-dimensional, which by §6.1 is given by the nonvanishing of a SL(V1) ×
SL(V2) invariant of degree 12 in the coefficients of f12 and thus degree 24 in
the hypercube. This degree 24 polynomial is invariant under all SL(Vi) for
1 ≤ i ≤ 4. By symmetry (or explicit computation), this polynomial is the
discriminant for all the fij , and we call it the discriminant of the hypercube
A itself. Nondegeneracy is preserved by the action of G. In the sequel, we
will only work with nondegenerate hypercubes.

If A is nondegenerate, then for all points (w, x) ∈ C12, the matrix
A(w, x, ·, ·) is not the zero matrix and thus has rank exactly 1. (If it were
the zero matrix, then all the partial derivatives would vanish at the point
(w, x), so C12 would not be smooth.) So for all (w, x) ∈ C12, there is exactly
one dimension of vectors y ∈ V3 such that A(w, x, y, ·) = 0 (and similarly,
one dimension of vectors z ∈ V4 with A(w, x, ·, z) = 0).

Given a nondegenerate hypercube A, it turns out that all of the resulting
curves Cij are isomorphic! To see this, define the variety

C123 := {(w, x, y) ∈ P(V ∨
1 )× P(V ∨

2 )× P(V ∨
3 ) : A(w, x, y, ·) = 0}.

The projection π12
123 of this variety C123 onto C12 is an isomorphism, where

the inverse map ρ12312 is given by taking the point in P(V ∨
3 ) corresponding to

the exactly one-dimensional kernel of A(w, x, ·, ·). By symmetry, the curves
C13 and C23 are also isomorphic to C123. We may similarly define the curves
Cijk ⊂ P(V ∨

i ) × P(V ∨
j ) × P(V ∨

k ) for any {i, j, k} ⊂ {1, 2, 3, 4}, and they are
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all isomorphic to their projections to any two factors. The Cij are all smooth
irreducible isomorphic genus one curves, related by natural isomorphisms

τ jkij : Cij
ρijk
ij−→ Cijk

πik
ijk−→ Cjk

for {i, j, k} ⊂ {1, 2, 3, 4}, where each π is the projection and ρ is the natural
inverse “un-projection” map (where each map has domain given by the
subscript and target given by the superscript). We also obtain isomorphisms
of the form

τ jklijk : Cijk → Cjk → Cjkl

for {i, j, k, l} = {1, 2, 3, 4}. Finally, by the definition of these curves, we have
natural projection maps

πi
ij : Cij → P(V ∨

i ) and πi
ijk : Cijk → P(V ∨

i ).

It is clear that τ jklijk and τ ijkjkl are inverse maps, as are τ jkij and τ ijjk. However,
composing more than two such maps in sequence will not always give identity
maps on these curves. There are two types of interesting cycles we can obtain
from composing the τ jklijk maps. These are best exemplified by arranging the
curves Cijk in a tetrahedron as in (8): there are four triangles (the faces of
the tetrahedron) and three four-cycles.

Lemma 6.5. The triangle of maps on each of the faces of the tetrahedron
(8) is not the identity map, but composing it twice gives the identity map.
In particular, the composition Cijk → Cikl → Cijl → Cijk is the hyperellip-
tic involution for Cijk → P(V ∨

i ), sending any point (w, x1, y1) to the point
(w, x2, y2), where {x1, x2} and {y1, y2} are the (not necessarily distinct) so-
lutions to A� (w ⊗ x) = 0 and A� (w ⊗ y) = 0, respectively.

Proof. Given a point w ∈ P(V ∨
1 ) not in the ramification locus of the pro-

jection from C12, there are two distinct points x1, x2 ∈ P(V ∨
2 ) such that

detA(w, xi, ·, ·) = 0. For i = 1 or 2, we have A(w, xi, yi, ·) = 0 for exactly
one point yi ∈ P(V ∨

3 ). Since A(w, x2, y1, z) = 0 for some z ∈ P(V ∨
4 ), the

linear form A(w, ·, y1, z) vanishes when evaluated at both x1 and x2, so it is
identically 0; similarly, the linear form A(w, x2, ·, z) is identically zero. Thus,
we have the composition

C123
τ134
123

C134
τ124
134

C124
τ123
124

C123

(w, x1, y1) (w, y1, z) (w, x2, z) (w, x2, y2).
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Four-cycles of maps τ jklijk are also not the identity; we will show this by

proving a relation among degree 2 line bundles defined on each of the curves.

For simplicity of notation, choose one curve, say C12, to be the primary curve

under consideration. This choice matters in the definitions and constructions

we will make in the sequel, but all choices are equivalent.

Define four line bundles Li on C12 by pulling back the line bundle O(1)

from each P(V ∨
i ). Of course, it is important through which maps we choose

to pullback the bundle:

L1 := (π1
12)

∗OP(V ∨
1 )(1)

L2 := (π2
12)

∗OP(V ∨
2 )(1)(62)

L3 := (π3
123 ◦ ρ12312 )∗OP(V ∨

3 )(1)

L4 := (π4
124 ◦ ρ12412 )∗OP(V ∨

4 )(1).

That is, L1 and L2 come directly from the maps C12 → P(V ∨
1 ) and C12 →

P(V ∨
2 ), and for i = 3 or 4, the line bundle Li is pulled back via the simplest

maps C12 → C12i → C2i → P(V ∨
i ). Since all the curves Cij are defined by

bidegree (2, 2) equations, each of these line bundles on C12 have degree 2.

By Lemma 6.1, the line bundles L1 and L2 are not isomorphic, since

C12 is a smooth irreducible genus one curve given by a nondegenerate (2, 2)

form. Similarly, since Cij is also a smooth irreducible genus one curve for

i = 1 or 2 and j = 3 or 4, the line bundles (τ12ij )
∗Li = (πi

ij)
∗OP(V ∨

i )(1) and

(τ12ij )
∗Lj = (πj

ij)
∗OP(V ∨

j )(1) on Cij are not isomorphic, so Li and Lj are not

isomorphic bundles on C12. Thus, the four line bundles defined in (62) are

all pairwise nonisomorphic, except possibly L3 and L4.

Lemma 6.6. For the line bundles on C12 defined above, we have the relation

(63) L1 ⊗ L2
∼= L3 ⊗ L4.

Proof. With a choice of a basis for Vi, points of the projective spaces P(V
∨
i )

may be represented as [a : b]. Let D(L) be the linear equivalence class of

divisors corresponding to a line bundle L. A representative D3 of D(L3) is

(the formal sum of the points in) the preimage of a fixed point, say [1 : 0],

in P(V ∨
3 ), and similarly, we may choose a divisor D4 in the class of D(L4) as

the preimage of [1 : 0] ∈ P(V ∨
4 ). Let A(w, x, ·, ·) be denoted by the matrix

(
A11(w, x) A12(w, x)
A21(w, x) A22(w, x)

)
∈ V3 ⊗ V4.
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Then D3 +D4 is the sum of the four points that are solutions (counted up
to multiplicity) of the system{

A11(w, x) = 0
detA(w, x, ·, ·) = 0

}
.

Interpreted in another way, these four points of intersection are exactly the
points of intersection of C12 and the bidegree (1, 1) curve given by A11 in
P(V ∨

1 )×P(V ∨
2 ). Thus, the line bundle corresponding to the sum of these four

points is just the pullback of OP(V ∨
1 )×P(V ∨

2 )(1, 1) to C12; that is, O(D3+D4) ∼=
L1 ⊗ L2, which is the desired relation.

Using this relation among the line bundles, a computation shows that
the four-cycles in the tetrahedron (8) are not commutative. For example,
the composition map

τ123124 ◦ τ124134 ◦ τ134234 ◦ τ234123 : C123 −→ C123

is a nontrivial automorphism, given as a translation by the point

P := L3 ⊗ L−1
1 = L2 ⊗ L−1

4 ∈ Pic0(C12) ∼= Pic0(C123).

The reverse four-cycle is the inverse map and is given by translation by
−P . Similarly, the other four-cycles are given by translation by the points
L4 ⊗ L−1

1 and L2 ⊗ L−1
1 (up to sign). Because of the relation in (63), these

points (with the correct choice of sign) add up to 0 on the Jacobian! This
may also be seen directly from the tetrahedron picture, using the facts that
each four-cycle decomposes as two consecutive three-cycles and that each
three-cycle composed with itself is the identity (by Lemma 6.5).

We summarize these results in the following proposition:

Proposition 6.7. Given a nondegenerate hypercube A, we have the follow-
ing statements, for any permutation (i, j, k, l) of (1, 2, 3, 4):

(i) The composition map

αijkl := τ jklijk ◦ τ ijkijl ◦ τ ijlikl ◦ τ
ikl
jkl : Cjkl −→ Cjkl

is the automorphism of Cjkl given by translation by the point

Pijkl := Ml ⊗M−1
j ∈ Pic0(Cjl) ∼= Pic0(Cjkl)

where Mj = (πj
jl)

∗OP(V ∨
j )(1) and Ml = (πl

jl)
∗OP(V ∨

l )(1) are degree 2
line bundles on Cjl.
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(ii) We have Pijkl = −Pilkj, as αijkl ◦ αilkj is the identity map on Cjkl.
(iii) The points Pijkl, Piklj, and Piljk sum to 0 on the Jacobian of Cjkl,

so the composition of the automorphisms αijkl, αiklj, and αiljk in any
order is the identity map on Cjkl.

6.2.2. Bijections. Because the geometric constructions of the previous
section are entirely G-invariant, we have already seen that the G-orbit of
a nondegenerate hypercube gives rise to a genus one curve and four line
bundles (with a relation), up to isomorphism. In fact, we may construct a
nondegenerate hypercube from such a curve, along with the line bundles,
which will prove Theorem 6.4.

Proof of Theorem 6.4. Let C be a genus one curve, and let L1, L2, L3, L4

be degree 2 line bundles on C as in the statement of the theorem. We first
show how to construct a hypercube from this data.

Lemma 6.8. Given a genus one curve C and three non-isomorphic degree
2 line bundles L1, L2, L3 on C, the multiplication map (i.e., the cup product
on cohomology)

μ123 : H
0(C,L1)⊗H0(C,L2)⊗H0(C,L3) −→ H0(C,L1 ⊗ L2 ⊗ L3)

is surjective, and its kernel may be naturally identified with the space of global
sections H0(C,L−1

i ⊗ Lj ⊗ Lk) for any permutation {i, j, k} of {1, 2, 3}.
Proof. Recall from the proof of Lemma 6.1 that the multiplication map

μij : H
0(C,Li)⊗H0(C,Lj) −→ H0(C,Li ⊗ Lj)

for two such line bundles is an isomorphism, due to the basepoint-free pencil
trick. We apply the same trick again here: for any permutation {i, j, k} of
{1, 2, 3}, we tensor the sequence 0 → L−1

i → H0(C,Li)⊗OC → Li → 0 with
Lj ⊗ Lk and take cohomology to obtain the exact sequence

0 → H0(C,L−1
i ⊗ Lj ⊗ Lk) → H0(C,Li)⊗H0(C,Lj ⊗ Lk) → H0(C,Li ⊗ Lj ⊗ Lk)

→ H1(C,L−1
i ⊗ Lj ⊗ Lk) = 0.(64)

As the map μ123 factors through the isomorphism

(id, μjk) : H
0(C,Li)⊗H0(C,Lj)⊗H0(C,Lk) → H0(C,Li)⊗H0(C,Lj⊗Lk),

the sequence (64) shows that μ123 is surjective and its kernel may be natu-
rally identified with H0(C,L−1

i ⊗ Lj ⊗ Lk).
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Given C, L1, L2, L3 as in the lemma, by Riemann-Roch, the kernel of
μ123 has dimension 2, and we may use the inclusion of this kernel into the
domain to specify a hypercube

A ∼= Hom(kerμ123, H
0(C,L1)⊗H0(C,L2)⊗H0(C,L3))

∈ H0(C,L1)⊗H0(C,L2)⊗H0(C,L3)⊗ (kerμ123)
∨

where Vi = H0(C,Li) for 1 ≤ i ≤ 3 and V4 = (kerμ123)
∨. We will show

below that the hypercube A thus constructed is nondegenerate and that
the geometric construction from A gives a tuple isomorphic to the original
(C,L1, L2, L3, L4).

Let C ′
ij be the image of C via the natural immersion into P(H0(C,Li)

∨)×
P(H0(C,Lj)

∨). Let Cij be constructed from A by

Cij := {(w, x) ∈ P(V ∨
i )× P(V ∨

j ) : det(A� (w ⊗ x)) = 0} ⊂ P(V ∨
i )× P(V ∨

j ).

We will show that these two varieties are the same for all i �= j, but first for
some i �= j.

Claim 6.9. For some 1 ≤ i �= j ≤ 3, we have Cij = C ′
ij as sets.

Proof. For all i �= j, the inclusion C ′
ij ⊆ Cij is easy: for each 1 ≤ k ≤ 3, let

{rk1, rk2} be a basis of H0(C,Lk). Then the definition of A implies that

A� ([ri1(p) : ri2(p)]⊗ [rj1(p) : rj2(p)]⊗ [rk1(p) : rk2(p)]) = 0

for all points p ∈ C, so ([ri1(p) : ri2(p)], [rj1(p) : rj2(p)]) lies in Cij . Since Cij

is defined by a bidegree (2, 2) equation fij in P(V ∨
i )×P(V ∨

j ), if we show that
fij is nonzero and irreducible, then we find that Cij is a smooth irreducible
genus one curve and thus Cij = C ′

ij .

An irreducible bidegree (d1, d2) form on P1 × P1 defines a genus (d1 −
1)(d2 − 1) curve. So if fij is nonzero and factors nontrivially, then no irre-
ducible component can be a smooth irreducible genus one curve. However,
since Cij contains the smooth irreducible genus one curve C ′

ij , the polyno-
mial fij must be either zero or irreducible for each pair i �= j. If fij = 0
identically, then Cij is all of P(V ∗

i )× P(V ∗
j ). The projection of

C123 := {(w, x, y) ∈ P(V ∨
1 )× P(V ∨

2 )× P(V ∨
3 ) : A(w, x, y, ·) = 0}

to any P(V ∨
i )×P(V ∨

j ) is exactly Cij by definition, and we will show that at
least one of these projections is not two-dimensional.
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Let f and g be the two tridegree (1, 1, 1) equations defining C123. Because
A is defined by two linearly independent elements of kerμ123, we have that
f and g are nonzero and not multiples of one another. If gcd(f, g) = 1,
then C123 is a complete intersection and thus a one-dimensional variety.
Otherwise, suppose without loss of generality that gcd(f, g) has tridegree
(1, 1, 0) or (1, 0, 0). In either case, the projection to P(V ∨

1 ) × P(V ∨
2 ) is still

one-dimensional. Therefore, there exists some i �= j such that Cij is not
two-dimensional, and thus must be exactly C ′

ij .

Since fij cuts out a smooth irreducible genus one curve, we have disc fij
is nonzero. Thus, the hypercube A has nonzero discriminant and is nonde-
generate.

As disc(A) �= 0, the polynomials fkl do not vanish for any k �= l, and
the Ckl are smooth irreducible genus one curves. It follows from the proof
of Claim 6.9 that all of the Ckl are in fact set-theoretically equal to C ′

kl.
Moreover, C123 is set-theoretically equal to the image C ′

123 of the embed-
ding of C into the triple product space P(H0(C,L1)

∨) × P(H0(C,L2)
∨) ×

P(H0(C,L3)
∨). Because there is a canonical isomorphism C ′

123 → C123, for
1 ≤ i ≤ 3, the pullbacks of OP(H0(C,Li)∨)(1) to C123 and then to C are exactly
the line bundles Li.

From a genus one curve and three nonisomorphic degree 2 line bundles on
this curve, we have constructed a nondegenerate hypercube. This hypercube,
in turn, produces—via the constructions of §6.2.1—an isomorphic curve and
the same line bundles. Similarly, by the definitions of these maps, going
from G-orbits of nondegenerate hypercubes to quintuples (C,L1, L2, L3, L4)
as in the theorem, and then back to G-orbits of hypercubes, is the identity
map.

We now rewrite the basic bijection of Theorem 6.4, by describing the
geometric data in a slightly different way. This is analogous to the corollary
following Theorem 5.1. We simply replace the data of the line bundles L2,
L3, L4 by the differences between each of them and L1, which is a point on
Pic0(C) ⊂ Jac(C). Since the sum of these differences (up to sign) is zero, it
suffices to keep track of two such points on the Jacobian of the curve, say
P := L2 ⊗ L−1

1 and P ′ := L3 ⊗ L−1
2 .

Corollary 6.10. Let V1, V2, V3, V4 be 2-dimensional K-vector spaces. Then
the nondegenerate GL(V1)×GL(V2)×GL(V3)×GL(V4)-orbits of V1 ⊗ V2 ⊗
V3⊗V4 are in bijection with isomorphism classes of quadruples (C,L, P, P ′),
where C is a genus one curve over K, L is a degree 2 line bundle on C, and
P and P ′ are distinct nonzero points in Pic0(C)(K).
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This also concludes the proof of Theorem 2.1, where we take P ′′ to
represent the difference between L1 and L3.

6.2.3. Invariant theory. The SL(V1)×SL(V2)×SL(V3)×SL(V4)-invari-
ants of an element of V1 ⊗ V2 ⊗ V3 ⊗ V4, for two-dimensional vector spaces
Vi, form a polynomial ring generated freely by a2, a4, a

′
4, a6 of degrees 2, 4,

4, and 6, respectively [Lit89]. Just as in the previous cases considered, these
invariants have several interpretations in terms of each orbit’s geometric data
consisting of a genus one curve C, a degree 2 line bundle L, and nonzero
points P , P ′, and P ′′ in Pic0(C)(K) that sum to 0.

One geometric interpretation of the generators of the invariant ring was
discussed in §2.4: the Jacobian of the genus one curve is given by

(65) E : y2 = x3 + a8x+ a12,

where we have formulas for a8 and a12 in terms of a2, a4, a
′
4, and a6; then

a2 is the slope of the line on which P , P ′, P ′′ lie (on E); (a4, a6) are the
coordinates for the point P on E; and a′4 is the x-coordinate for P ′.

Another interpretation gives a model for the Jacobian elliptic curve with
fixed points corresponding to P and P ′:

Proposition 6.11. There exists a choice of normalization for the SL(V1)×
SL(V2) × SL(V3) × SL(V4)-invariants δ2, δ4, δ

′
4, δ6 such that given a non-

degenerate tensor in V1 ⊗ V2 ⊗ V3 ⊗ V4 corresponding to (C,L, P, P ′) as in
Corollary 6.10, the Jacobian of C may be given in normal form as

(66) E : y2 + δ′4y = x4 + δ2x
3 + δ4x

2 + δ6x

with identity point (0, 0), and the points P and P ′ correspond to the two
points at infinity when homogenized.

Just as for Proposition 5.5, straightforward proofs of both of these re-
sults are computational. In this case, the invariants are very reasonable to
work with explicitly, and it is easy to show that the elliptic curve in (66)
is isomorphic to the Jacobian of the genus one curves constructed from
the hypercube and that the points at infinity give the translations αijk.
An abstract proof of Proposition 6.11, again like in Proposition 5.5, relies
on the fact that elliptic curves with two distinct non-identity points may
be written in the form (66), so the coefficients δ2, δ4, δ

′
4, δ6 are relative

GL(V1)×GL(V2)×GL(V3)×GL(V4)-invariants of V1 ⊗ V2 ⊗ V3 ⊗ V4.
For any elliptic curve E over K of the form (66), there always exists

a G-orbit of V where E is the Jacobian of the associated genus one curve,
giving the analogous statement to Corollary 5.7:
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Corollary 6.12. The map from nondegenerate orbits V (K)/G(K) to ellip-
tic curves of the form

E : y2 + δ′4y = x4 + δ2x
3 + δ4x

2 + δ6x

with δ2, δ4, δ′4, δ6 ∈ K, by taking the Jacobian of the genus one curve
associated to the orbit, is surjective.

6.3. Symmetric hypercubes

In this section, we study “symmetrized” hypercubes, as discussed in §2.5–
2.8. We show that nondegenerate orbits of the different types of symmetric
hypercubes correspond to genus one curves with different numbers of de-
gree 2 line bundles. Nondegeneracy for symmetric hypercubes is determined
by the nonvanishing of the same degree 24 discriminant for hypercubes,
although this discriminant factors differently in each case.

6.3.1. Doubly symmetric hypercubes. The simplest case is that of
doubly symmetric hypercubes, i.e., elements of the representation V1⊗V2⊗
Sym2 V3 ⊂ V1⊗V2⊗V3⊗V3 of GL(V1)×GL(V2)×GL(V3), where the Vi are
2-dimensional K-vector spaces. With choices of bases for each vector space,
the elements may be viewed as doubly symmetric hypercubes or as 2 × 2
matrices of binary quadratic forms. Away from characteristic 2, this is the
same as the quotient representation V1 ⊗ V2 ⊗ Sym2 V3.

Theorem 6.13. Let V1, V2, V3 be 2-dimensional vector spaces over K. Then
nondegenerate GL(V1) × GL(V2) × GL(V3)-orbits of V1 ⊗ V2 ⊗ Sym2 V3 are
in bijection with isomorphism classes of quadruples (C,L1, L2, L3), where C
is a genus one curve over K, and L1, L2, L3 are degree 2 line bundles on C
satisfying L1 ⊗ L2

∼= L⊗2
3 and L3 not isomorphic to L1 or L2.

Proof. Given a nondegenerate element A ∈ V1⊗V2⊗Sym2 V3 ⊂ V1⊗V2⊗V3⊗
V3, we construct the genus one curve C ⊂ P(V ∨

1 )×P(V ∨
2 ) and four degree 2

line bundles L1, L2, L3, L4 on C in the same way as in §6.2. The symmetry
implies that the line bundles L3 and L4 may be naturally identified, so we
have from before that L1 ⊗L2

∼= L⊗2
3 and L3 is not isomorphic to L1 or L2.

Conversely, given such (C,L1, L2, L3) as in the theorem, we may set
L4 = L3 and use the construction in the proof of Theorem 6.4 to obtain
a nondegenerate orbit of a hypercube A ∈ V1 ⊗ V2 ⊗ V3 ⊗ V4, where Vi =
H0(C,Li) for i = 1, 2, 3 and V4 is the dual of the kernel of the multiplication
map μ123. From the proof of Theorem 6.4, we see that V4 is also identified
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with H0(C,L4), so the spaces V3 and V4 are naturally identified, say by
ψ43 : V4 → V3. The maps from C ∼= C12 ∈ P(V ∨

1 ) × P(V ∨
2 ) to P(V ∨

3 )
and P(V ∨

4 ) are both given by sections of the same line bundle L3 and thus
identical (after applying the identification ψ43).

Now given a rank one element B ∈ V ⊗ V for a 2-dimensional K-vector
space V , if B(x, ·) = 0 and B(·, x) = 0 for some nonzero x ∈ V ∨, then B is
in the subspace Sym2 V of V ⊗ V . Therefore, for any (x, y) ∈ C12, the map
1⊗ψ43 on V3⊗V4 takes A(x, y, ·, ·) to an element of Sym2 V3 ⊂ V3⊗V3. And
since C12 spans P(H0(C,L1)

∨)×P(H0(C,L2)
∨), the map 1⊗ 1⊗ 1⊗ψ43 on

V1 ⊗ V2 ⊗ V3 ⊗ V4 sends A to an element of V1 ⊗ V2 ⊗ Sym2 V3 ⊂ V1 ⊗ V2 ⊗
V3 ⊗ V3.

The two points P and P ′ referred to in Corollary 6.10 are now related;
in particular, we have P = 2P ′. Therefore, it suffices to keep track of only a
single point P ′, giving the following basis-free formulation of Theorem 2.4:

Corollary 6.14. Let V1, V2, V3 be 2-dimensional vector spaces over K.
Then nondegenerate GL(V1)×GL(V2)×GL(V3)-orbits of V1⊗V2⊗Sym2 V3

are in bijection with isomorphism classes of quadruples (C,L, P ′), where C
is a genus one curve over K, and L is a degree 2 line bundle on C, and P ′

is a nonzero, non-2-torsion point in Jac2C(K).

The ring of SL(V1)× SL(V2)× SL(V3)-invariants of V1 ⊗ V2 ⊗ Sym2 V3 is
a polynomial ring generated in degrees 2, 4, and 6 [Lit89]. Again, we may
find several related geometric interpretations of these invariants.

Recall that there is a choice of rational generators a2, a4, a
′
4, a6 for

the invariant ring of hypercubes such that the Jacobian of the genus one
curve is given by (65), where a8 and a12 are given as in (11) and the two
points on the Jacobian are P = (a4, a6) and P ′ = (a′4, a

′
6). For the doubly

symmetric hypercube, as we know from Corollary 6.14, because we have
P = 2P ′, we compute that 2a′4 = 9a22 − a4. The expressions for a8, a12, and
the discriminant Δ also simplify significantly, when written in terms of a2,
a′4, a

′
6:

a8 = −3a′24 + 2a2a
′
6,

a12 = 2a′34 − 2a2a
′
4a

′
6 + a′26 ,

Δ = −16a′26 (−36a22a
′2
4 + 108a′34 + 32a32a

′
6 − 108a2a

′
4a

′
6 + 27a′26 ).(67)

Note that because of the factorization of Δ, the nondegeneracy condition
that we require is now actually the nonvanishing of a degree 6 + 12 = 18
invariant.
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A little bit of algebra shows that the Jacobian is isomorphic to the elliptic
curve

(68) E : y2 + 2a2xy + 2a′6y = x3 + (3a′4 − a22)x
2

where the point P ′ is now at (x, y) = (0, 0).

Proposition 6.15. There is a choice of normalization for the relative in-
variants b2, b4, b6 for the space of doubly symmetric hypercubes such that
given a nondegenerate element of V1 ⊗ V2 ⊗ Sym2V3 corresponding to
(C,L, P ′) as in Corollary 6.14, the Jacobian of C may be given in gen-
eralized Weierstrass form as

(69) E : y2 + b2xy + b6y = x3 + b4x
2

with the point P ′ being (x, y) = (0, 0). Furthermore, the map from nonde-
generate GL(V1)×GL(V2)×GL(V3)-orbits of this representation to elliptic
curves of the form (69), given by taking the Jacobian of the associated elliptic
curve, is surjective.

6.3.2. Triply symmetric hypercubes. Next, we study the space of
triply symmetric hypercubes. We may use the same methods as before
to obtain a parametrization of the GL(V1) × GL(V2)-orbits of the space
V1⊗Sym3 V2 ⊂ V1⊗V2⊗V2⊗V2, for 2-dimensional K-vector spaces V1 and
V2. As K does not have characteristic 2 or 3 by assumption, this space is
isomorphic to the quotient space V1 ⊗ Sym3 V2, and it may also be thought
of as pairs of binary cubic forms. The following is a basis-free version of
Theorem 2.3:

Theorem 6.16. Let V1 and V2 be 2-dimensional vector spaces over K. Then
nondegenerate GL(V1)×GL(V2)-orbits of V1⊗Sym3 V2 are in bijection with
isomorphism classes of triples (C,L, P ), where C is a genus one curve over
K, L is a degree 2 line bundle on C, and P is a nonzero 3-torsion point of
Jac(C)(K).

Proof. From a nondegenerate element of V1 ⊗ Sym3 V2 ⊂ V1 ⊗ V2 ⊗ V2 ⊗ V2,
we obtain a genus one curve C and four line bundles L1, L2, L3, L4 such that
L1 ⊗ L2

∼= L3 ⊗ L4, just as for the usual hypercube. For ease of exposition,
we will sometimes refer to the second and third copies of V2 as V3 and V4,
respectively. The symmetry clearly indicates that L3 and L4 are isomorphic.
While it is tempting to conclude that the symmetry also implies that L2

is isomorphic to L3 and L4, recall that this cannot be so even in the usual
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hypercube case! We instead have that the map from the curve C to P(V ∨
1 )×

P(V ∨
2 ) × P(V ∨

3 ) is invariant under switching the latter two factors (where
V2 = V3), so there must be an isomorphism L2⊗L3

∼= L⊗2
1 . Thus, combining

these relations and setting P := L2⊗L−1
1 as a point on Jac(C), we have that

3P = 0. Note that all 3-torsion points are in Pic0(C)(K). Therefore, from a
nondegenerate triply symmetric hypercube, we obtain a genus one curve, a
degree 2 line bundle L1, and a nonzero 3-torsion point in Jac(C)(K).

Conversely, given such a triple (C,L, P ), we claim that we may construct
a triply symmetric hypercube. We may define the line bundles L1 = L,
L2 = L⊗P and L3 = L4 = L⊗P ⊗P , and the usual construction produces
a nondegenerate hypercube A ∈ V1 ⊗ V2 ⊗ V3 ⊗ V4 from (C,L1, L2, L3, L4),
where V1 = H0(C,L1), V2 = H0(C,L2), V3 = H0(C,L3), and V4 is dual
to the kernel of the multiplication map μ123. By the same argument as in
Theorem 6.13, we may choose an appropriate identification of V3 and V4

such that A lies in V1 ⊗ V2 ⊗ Sym2 V3; in other words, A is invariant under
the transposition (34) acting on the indices of the vector spaces Vi for i = 1,
2, 3, 4.

In fact, we may identify V2 and V3 as well. Our A gives rise again to a
genus one curve isomorphic to C, but we may choose different line bundles
to reconstruct the hypercube. That is, by focusing on C ↪→ C14 ∈ P(V ∨

1 )×
P(V ∨

4 ), we have line bundles L1 and L4, as before, which are the pullbacks of
OP(V ∨

1 )(1) and OP(V ∨
4 )(1), respectively, to C14. The pullbacks of OP(V ∨

2 )(1) and
OP(V ∨

3 )(1) to C14 via ρ12414 and ρ13414 , respectively, are now both isomorphic to
L1⊗P . Using the multiplication map μ124 to reconstruct the same hypercube
A gives a natural identification of V2 and V3 where the maps from C14 to
P(V ∨

2 ) and to P(V ∨
3 ) are identical. Thus, we obtain an identification of V2

and V3 such that the hypercube A remains invariant under the transposition
(23).

Therefore, because A is fixed under the transpositions (23) and (34), it
is a triply symmetric hypercube in V1 ⊗ Sym3 V2, as desired.

The SL(V1)× SL(V2)-invariants for the space V1 ⊗ Sym3 V2 form a poly-
nomial ring, generated by two polynomials a2 and a6 of degrees 2 and 6, re-
spectively. We may use our understanding of the invariant theory of normal
hypercubes and of doubly symmetric hypercubes to explain these invariants
geometrically. In particular, the two degree 4 invariants for hypercubes (and
the one for doubly symmetric hypercubes) are now just a22/3. Substituting
this relation into (67) then gives that the Jacobian of the associated genus
one curve C has discriminant

Δ = 16(4a32 − 27a6)a
3
6.
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Thus, the condition that a triply symmetric hypercube is nondegenerate is

given by the nonvanishing of a polynomial of degree 6+6 = 12. The Jacobian

of C may also be written in the form

E : y2 + 2a2xy + 2a6y = x3,

where P is the 3-torsion point at (x, y) = (0, 0).

Proposition 6.17. There is a choice of normalization for the relative in-

variants b2 and b6 for the space of triply symmetric hypercubes such that

given a nondegenerate element of V1 ⊗ Sym3 V2 corresponding to (C,L, P )

as in Theorem 6.16, the Jacobian of C may be given in generalized Weier-

strass form as

(70) E : y2 + b2xy + b6y = x3

with the 3-torsion point P being (x, y) = (0, 0). Furthermore, the map

from nondegenerate GL(V1) × GL(V2)-orbits of this representation to ellip-

tic curves of the form (70), given by taking the Jacobian of the associated

elliptic curve, is surjective.

6.3.3. Doubly doubly symmetric hypercubes, or bidegree (2, 2)

forms again. We now study the subrepresentation Sym2 V1 ⊗ Sym2 V2 ⊂
V1 ⊗ V1 ⊗ V2 ⊗ V2 of GL(V1) × GL(V2) × Gm, where V1 and V2 are 2-

dimensional K-vector spaces. We call these doubly doubly symmetric hy-

percubes. Away from characteristic 2, this space is isomorphic to the repre-

sentation Sym2 V1×Sym2 V2 of bidegree (2, 2) forms, which we examined in

§6.1 with a different interpretation.

Theorem 6.18. Let V1 and V2 be 2-dimensional vector spaces over K. Then

nondegenerate GL(V1) × GL(V2) × Gm-orbits of Sym2 V1 × Sym2 V2 are in

bijection with isomorphism classes of triples (C,L, P ), where C is a genus

one curve over K, L is a degree 2 line bundle on C, and P is a nonzero

non-2-torsion point on Jac(C)(K).

This statement is a basis-free version of Theorem 2.5. Note that the

moduli problem for doubly doubly symmetric hypercubes is identical to

that for doubly symmetric hypercubes!

Proof. Starting from an element of Sym2 V1⊗Sym2 V2 ⊂ V1⊗V1⊗Sym2 V2,

Corollary 6.14 gives the triple (C,L, P ) as desired.
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Conversely, given such (C,L, P ), recall from the proof of Theorem 6.13

that we may construct a hypercube A ∈ U1 ⊗ U2 ⊗ Sym2 U3, where Ui :=

H0(C,Li) for

L1 := L L2 := L⊗ P ⊗ P L3 := L⊗ P.

From this hypercube A, we may create the usual curves Cijk in P1×P1×P1;

for example, we have C123 ⊂ P(U∨
1 )× P(U∨

2 )× P(U∨
3 ) with Li the pullback

of OP(U∨
i )(1) to C123. Under the composition

C123 → C13 → C134 → C34 → C234 → P(U∨
2 ),

the line bundle OP(U∨
2 )(1) pulled back to C123 is isomorphic to L1 (using

the relations of the form in Lemma 6.6). In particular, this gives a natural

identification of the vector spaces U1 = H0(C,L1) with U2! Moreover, the

two maps

π1
134 ◦ ρ13434 : C34 → C134 → P(U∨

1 )

π2
234 ◦ ρ23434 : C34 → C234 → P(U∨

2 )

are the same after the identification of U1 and U2. Therefore, there exists

a choice of basis for U1 and for U2 such that A is actually invariant when

switching the first and second factor; in other words, it is in the orbit of an

element in Sym2 U1 ⊗ Sym2 U3.

There also exists a straightforward computational proof, by exhibiting

a linear transformation in GL(V1) taking an element of V1 ⊗ V1 ⊗ Sym2 V2

to an element of Sym2 V1 ⊗ Sym2 V2. This linear transformation has entries

that are degree 3 in the coefficients of the original element; its determinant

is nonzero for nondegenerate doubly symmetric hypercubes, as it is exactly

the degree 6 invariant a′6 from §6.3.1, which appears as a factor of the dis-

criminant for doubly symmetric hypercubes. If we choose bases {u1, u2} and

{v1, v2} for V1 and V2, respectively, we may represent a doubly symmetric

hypercube as

(71)

2∑
i,j=1

(rijv
2
1 + sijv1v2 + tijv

2
2)uiuj .
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Then the linear transformation ( a b
c d ) ∈ GL(V1) with

a = −r22s21t11 + r21s22t11 + r22s11t21 − r11s22t21 − r21s11t22 + r11s21t22

b = −r21s12t11 + r12s21t11 + r21s11t12 − r11s21t12 − r12s11t21 + r11s12t21

c = −r22s21t12 + r21s22t12 + r22s12t21 − r12s22t21 − r21s12t22 + r12s21t22

d = −r22s12t11 + r12s22t11 + r22s11t12 − r11s22t12 − r12s11t22 + r11s12t22

will send the doubly symmetric hypercube (71) to a doubly doubly symmet-

ric hypercube.

Note that this moduli interpretation for the orbits is very similar to

the one in Corollary 6.3. However, the curve X obtained in that corollary

(and the previous Theorem 6.2) has discriminant of degree 12. The curve C

here, from Theorem 6.18, has discriminant of degree 24, so they are clearly

not the same — but they are closely related. In particular, the curve C is

the (generalized) Hessian of the curve X! Here, we define the Hessian of a

bidegree (2, 2) form f(w1, w2, x1, x2) in Sym2 V1⊗Sym2 V2 (and by abuse of

terminology, the Hessian of the corresponding curve) as the curve cut out

by the determinant of the matrix

(
∂2f

∂wi∂xj

)
1≤i,j≤2

which is also a bidegree (2, 2) form on Sym2 V1 ⊗ Sym2 V2. It is a small

computation to check that the genus one curve C is the Hessian of X.

The SL(V1) × SL(V2)-invariant ring of Sym2 V1 × Sym2 V2 is generated

by three invariants δ2, δ3, δ4 of degrees 2, 3, and 4, respectively, as we know

from §6.1.2. We may apply our understanding of the invariants in the doubly

symmetric hypercube case; in particular, we find that

δ2 = −8

3
a2, δ23 =

4

27
a′6, δ4 =

64

9
a22 − 16a′4,

where a2, a
′
4, and a′6 are the polynomials from §6.3.1. We can substitute

these formulas into (68) to obtain a formula for the Jacobian of the curve

C arising from an element f of Sym2 V1 ⊗ Sym2 V2 via Theorem 6.18. Thus,

there are rational generators b2, b3, b4 for the invariants such that Jac(C)

may be written in generalized Weierstrass form as

(72) y2 + b2xy + 6b23y = x3 + b4x
2,
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and the point P is at (x, y) = (0, 0). The discriminant of the Jacobian of C
factors as a rational multiple of

δ43(−64a22a
′2
4 + 192a′34 + 384a32δ

2
3 − 1296a2a

′
4δ

2
3 + 2187δ43),

where the second factor (up to a scalar) is the discriminant of the Jacobian
of the genus one curve X cut out by f directly.

A priori, it may not be obvious that any elliptic curve over K with a
nonzero non-2-torsion point can be expressed in the form (72). To see this,
recall that any such curve can be expressed in the form

y2 + axy + by = x3 + cx2

where the discriminant is nonzero (and thus b �= 0). We then note that the
latter elliptic curve is actually isomorphic to one of the form (72) by taking
b2 = 6a/b, b4 = 6/b, and b6 = 36c/b2.

6.3.4. Quadruply symmetric hypercubes, or binary quartic forms
again. The last symmetrization that we study is the case of fully sym-
metric hypercubes, i.e., elements of Sym4(V ) ⊂ V ⊗4 for a 2-dimensional
K-vector space V . Since our field K is not of characteristic 2 or 3, this space
is isomorphic to the quotient space Sym4 V of binary quartic forms. Here,
we take the standard GL(V )-action on Sym4(V ), along with a standard Gm-
action by scaling, which is slightly different than the action considered on
binary quartic forms in §4.1. The following is a basis-free version of Theo-
rem 2.2:

Theorem 6.19. For a 2-dimensional K-vector space V , the nondegenerate
GL(V )×Gm-orbits of Sym4(V ) are in bijection with isomorphism classes of
triples (C,L, P ), where C is a genus one curve over K, L is a degree 2 line
bundle on C, and P is a nonzero 3-torsion point of Jac(C)(K).

This moduli problem is identical to that of triply symmetric hypercubes!

Proof. Given an element of Sym4(V ) ⊂ V ⊗ Sym3 V , we may apply Theo-
rem 6.16 to obtain a genus one curve C with a degree 2 line bundle L and
a nonzero 3-torsion point P of Jac(C)(K).

Conversely, given such a triple (C,L, P ), we may use Theorem 6.16 to
construct a hypercube A in U1 ⊗ U2 ⊗ U3 ⊗ U4, where U1 = H0(C,L) and
U2 = H0(C,L ⊗ P ) has a natural identification with U3 and U4 such that
A is invariant under permutations of U2, U3, and U4. An almost identical
argument to the one in Theorem 6.18 shows that we may in fact identify
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U1 with U2 and that A is invariant under switching U1 and U2. In other
words, the hypercube A coming from (C,L, P ) is in the orbit of a quadruply
symmetric hypercube.

A simple computational proof, just as for Theorem 6.18, is also possible;
we only need to specify an element of GL(V ) that acts on a given nonde-
generate element of V ⊗ Sym3(V ) (via the first factor only) to produce an
element of Sym4(V ). With a choice of basis {v1, v2} for V , we may represent
an element of V ⊗ Sym3 V as

(73)

2∑
i=1

vi ⊗ (riv
3
1 + siv

2
1v2 + tiv1v

2
2 + uiv

3
2).

Then applying the linear transformation ( a b
c d ) ∈ GL(V ), with

a = −s22t1 + s1s2t2 + r2t1t2 − r1t
2
2 − r2s1u2 + r1s2u2

b = s1s2t1 − r2t
2
1 − s21t2 + r1t1t2 + r2s1u1 − r1s2u1

c = s2t1t2 − s1t
2
2 − s22u1 + r2t2u1 + s1s2u2 − r2t1u2

d = −s2t
2
1 + s1t1t2 + s1s2u1 − r1t2u1 − s21u2 + r1t1u2,

to the first factor of V , gives a quadruply symmetric hypercube. The de-
terminant of this transformation is just the degree 6 invariant a6 for triply
symmetric hypercubes (from §6.3.2), and since it is a factor of the discrimi-
nant, it is nonzero for nondegenerate hypercubes.

Just as for the triply symmetric Rubik’s cubes and the doubly doubly
symmetric hypercubes, this parametrization of binary quartic forms is re-
lated to the other “dual” parametrization for the same space, namely the
one described in §4.1. In Theorem 4.1, the genus one curve X arising from a
binary quartic form has discriminant of degree 6. Here, in Theorem 6.19, we
produce a genus one curve C whose discriminant has degree 24. But these
two curves X and C are again related by the Hessian construction, i.e., C
is the Hessian of X! More precisely, let q(w1, w2) be a binary quartic form
in Sym4 V . Then the Hessian of q (or of the genus one curve X given as
y2 = q(w1, w2)) is the binary quartic

H(q)(w1, w2) := disc

(
∂3q

∂wi∂wj∂wk

)
1≤i,j,k≤2

,

i.e., the discriminant of the three-dimensional matrix of triple derivatives.
(Recall from §2.1 that the discriminant is the unique polynomial invariant
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of a 2 × 2 × 2 cube.) By abuse of terminology, we also say that the genus
one curve C associated to H(q) is the Hessian of q and of X. This curve C
is the one obtained from Theorem 6.19. In particular, we obtain a proof of
the following:

Corollary 6.20. Given a binary quartic form q of Sym4 V , where V is a
2-dimensional K-vector space, let H(q) denote the Hessian binary quartic
form. Then the Jacobian of the genus one curve given by the equation y2 =
H(q) has a nonzero 3-torsion point defined over K.

Recall from §4.1 that the SL(V )-invariants of Sym4 V are generated by
two invariants I and J of degrees 2 and 3, respectively. These invariants
appear in the coefficients for the Jacobian of the curve C arising from an
element A ∈ Sym4(V ) via Theorem 6.19. In particular, because the space
Sym4(V ) is contained in both V ⊗ Sym3 V and Sym2 V ⊗ Sym2 V , we may
use the geometric interpretations of the invariants of triply symmetric hy-
percubes and of doubly doubly symmetric hypercubes to easily understand
the invariants in this case! The Jacobian of C is isomorphic to

(74) E : y2 + 2a2xy + 216a23y = x3,

where a2 is defined as for hypercubes and a3 is the primitive integral degree 3
invariant generator. In terms of the invariants I and J , because A viewed as
a binary quartic form has coefficients with factors of 4 and 6, the polynomials
I(A) and J(A) are not primitive: I(A) = −4a2 and J(A) = −432a3. The
discriminant of the Jacobian (74) factors as a rational multiple of

a63(a
3
2 + 729a23),

and the latter factor is just the discriminant of the Jacobian of Z (or of A
as a binary quartic form).

Finally, just as before, we observe that any elliptic curve over K with a
nonzero 3-torsion point defined over K can be expressed in the form (74).
Namely, if we have an elliptic curve of the form y2 + axy + by = x3 with
nonzero discriminant (implying b �= 0), then setting a2 = 108a/b and a3 =
216/b gives an isomorphic elliptic curve of the form (74).

6.4. Hermitian cubes

In this section, we discuss spaces C , sometimes called “Freudenthal alge-
bras,” or “Freudenthal triple systems,” that have a quartic norm form, orig-
inally introduced in [Fre]. These vector spaces are related to the space of
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2 × 2 × 2 cubes—that is, the tensor space V1 ⊗ V2 ⊗ V3 where Vi is a two-
dimensional vector space over K—in the same way that the spaces of Her-
mitian matrices over composition algebras are related to the usual matrix
algebras. Our goal here, then, is to “triply Hermitianize” the space of 2×2×2
cubes with respect to a cubic algebra.

The natural cubic algebras to use are cubic Jordan algebras J . In fact,
this process works for any cubic Jordan algebra with a nondegenerate trace
form (see §5.3.1 for general constructions of such cubic Jordan algebras).
Some of the properties and formulas we use below for Hermitian cubes are
explained in more detail in [Kru07] and also rely on ideas from [Fau72,
Cle03].

Analogously to §5.3, we describe spaces C of Hermitian 2×2×2 cubical
matrices and their properties, including a norm form, a trace form, an adjoint
map, and a notion of rank. We then are interested in the rank one loci of such
spaces and their moduli descriptions. We use such moduli interpretations to
obtain vector bundles on varieties mapping to these rank one loci. This
allows us in §6.5 to uniformly study representations of the form V ⊗ C ,
where V is a K-vector space of dimension 2, in terms of genus one curves.

6.4.1. Definitions and invariants.

Definition 6.21. A Hermitian cube space C (J) over a cubic Jordan algebra
J is the K-vector space of quadruples (a, b, c, d), where a, d ∈ K and b, c ∈ J .
We call elements of C (J) Hermitian cubes.

The reason for the name is that we may think of elements of C (J) as
“cubes” of the form

b′ c′′

a b

c d

b′′ c′

where b′ and b′′ (respectively, c′ and c′′) are thought of as formal conjugates
of b (resp., c) in isomorphic copies of J . (This viewpoint makes Hermitian
cubes analogous to the Hermitian matrices discussed in §5.3.2.) In some
cases, the other copies of J may naturally be viewed as embedded in a
larger algebra, e.g., if J is a cubic field over K, then the other isomorphic
copies may be thought of as the Galois conjugate fields as subfields of the
Galois closure of J over K, and b′, b′′ are the usual Galois conjugates of b.
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If J has dimension d over K, then C (J) is a K-vector space of dimension
2d+2. Although there is a very weak algebra structure on C (J), we will not
use it in the sequel. We will only use the structure of C (J) as a representation
of a certain reductive group GC (J), which will be a prehomogeneous vector
space with a relative invariant of degree 4. This invariant will be the norm
form for Hermitian cubes.

Recall that a cubic Jordan algebra J comes equipped with a trace form
Tr and a cubic norm form N, as well as their (bi)linearizations (see equation
(44) in §5.3.1). We restrict our attention to cubic Jordan algebras for which
the trace form Tr is nondegenerate, in which case we obtain a natural adjoint
map �, as in equation (50). We use these properties of J to construct a trace
form TrC (J) and quartic norm form NC (J) for C (J), given the basepoint
ε := (1, 0, 0, 1).

For the cubic Jordan algebra of 3× 3 Hermitian matrices over a compo-
sition algebra A, the cubic norm form is a generalization of the determinant
of the matrix; here, we analogously generalize the quartic discriminant of
a 2 × 2 × 2 cube, which is the generator of the ring of SL3

2-invariants for
2× 2× 2 cubes.

Definition 6.22. The discriminant of a Hermitian cube A = (a, b, c, d) is
given by

(75) disc(A) = (ad− Tr(b, c))2 − 4Tr(b�, c�) + 4aN(c) + 4dN(b).

The norm form NC (J) is the complete linearization of the discriminant form,
so it is a symmetric quadrilinear map

NC (J) : C (J)× C (J)× C (J)× C (J) −→ K

with NC (J)(A,A,A,A) = disc(A). The linear trace form TrC (J) is defined as

TrC (J)(A) := NC (J)(A, ε, ε, ε)

and there is an alternating bilinear trace form

〈A,A′〉 = ad′ − Tr(b, c′) + Tr(b′, c)− a′d.

Since the trace form Tr for the Jordan algebra J is nondegenerate, and
hence the bilinear trace form 〈·, ·〉 is nondegenerate, the space C (J) is self-
dual. There is a natural cubic “adjoint” map � associated to C (J):

(76) � : C (J) C (J)∨
∼=

C (J)

A NC (J)(A,A,A, ·) A�.
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This map is the analogue of the adjoint map � for cubic Jordan algebras

(defined in equation (50)) and satisfies the properties

NC (J)(A,A,A,B) = 〈A�, B〉 and (A�)� = − disc(A)2A.(77)

Explicitly, for a Hermitian cube A = (a, b, c, d), the adjoint A�=(a�, b�, c�, d�)

is given by the formulas

a� = a2d− aTr(b, c) + 2N(b)

b� = 2c× b� − 2ac� + (ad− Tr(b, c))b(78)

c� = −2b× c� + 2db� − (ad− Tr(b, c))c

d� = −ad2 + dTr(b, c)− 2N(c)

where × denotes the bilinearization of � defined in (48). As in the cubic case,

by an abuse of notation, the map � will sometimes just refer to the first map

in (76) from C (J) to C (J)∨.

Example 6.23. If J is the field K itself with cubic norm form N(x) = x3

for x ∈ K, the space C (J) is isomorphic to Sym3K2, and the discriminant

of a A = (a, b, c, d) is the usual quartic discriminant of a binary cubic form

in Sym3K2. That is, if A = (a, b, c, d) represents the binary cubic aX3 +

3bX2Y + 3cXY 2 + dY 3, then

disc(A) = a2d2 − 3b2c2 − 6abcd+ 4ac3 + 4b3d

and the adjoint is the binary cubic form covariant given by the determinant

of the Jacobian matrix of the cubic and its Hessian, namely

A� = (2b3−3abc+a2d, b2c−2ac2+abd,−bc2+2b2d−acd,−2c3+3bcd−ad2).

Example 6.24. If J is the split algebra K × K × K with norm form

N((x1, x2, x3)) = x1x2x3, then C (J) is isomorphic to K2 ⊗ K2 ⊗ K2, or

the space of 2 × 2 × 2 cubes, and the discriminant of the Hermitian cube

A = (a, (b1, b2, b3), (c1, c2, c3), d) is the usual quartic discriminant of a 2×2×2

cube (see [Bha04a, §2.1]):

disc(A) = a2d2 + b21c
2
1 + b22c

2
2 + b23c

2
3 + 4(ac1c2c3 + b1b2b3d)

− 2(ab1c1d+ ab2c2d+ ab3c3d+ b1b2c1c2 + b1b3c1c3 + b2b3c2c3).
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The adjoint A� := (a�, (b�1, b
�
2, b

�
3), (c

�
1, c

�
2, c

�
3), d

�) is easy to compute, with
coordinates

a� = 2b1b2b3 − a(b1c1 + b2c2 + b3c3) + a2d

d� = −2c1c2c3 + d(b1c1 + b2c2 + b3c3)− ad2

b�i = (−bici + bjcj + bkck)bi − 2acjck + adbi

c�i = −(−bici + bjcj + bkck)ci + 2dbjbk − adci

where {i, j, k} = {1, 2, 3}.

6.4.2. Rank and linear transformations. We may also define an ana-
logue of rank for Hermitian cube spaces that agrees with the natural notion
of rank for a tensor space in the simplest cases.

Definition 6.25. A nonzero Hermitian cube A ∈ C (J) has rank one if it is
a scalar multiple of a Hermitian cube of the form

(79) (a, b, c, d) = (N(α), α� • β, β� • α,N(β))

for any α, β ∈ J . A Hermitian cube A ∈ C (J) has rank ≤ 2 if its adjoint
A� is 0. It has rank ≤ 3 if its discriminant disc(A) is 0, and A has rank four
if its discriminant is nonzero. Finally, a Hermitian cube A has rank zero if
A = (0, 0, 0, 0).

Note that the condition on scalar multiples for rank one cubes is neces-
sary: if k ∈ K is not in the image of the map N, then (k, 0, 0, 0) is not of the
form in (79), but intuitively we would still like this cube to have rank one.
With this definition, the rank one (and zero) cubes are, up to K-scaling,
given by elements of J2. More precisely, there is a map

J ⊕ J −→ C (J)

(α, β) �−→ (N(α), α� • β, β� • α,N(β))

that descends to a rational map

(80) τ : P(J ⊕ J) ��� P(C (J))

where P(J ⊕ J) and P(C (J)) denotes K-lines in the K-vector spaces J ⊕ J
and C (J), respectively. LetXC (J) denote the image of the map τ . Intuitively,
the variety XC (J) is like the projective line over J , with τ being analogous
to the embedding of the twisted cubic. (This comparison is not entirely
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accurate, of course, since scaling (α, β) by elements of J does not usually fix
its image under τ .)

Let SL2(J) denote the group of discriminant-preserving K-linear trans-
formations of the space C (J) (this group is denoted by Inv(C (J)) in [Kru07]).
Some examples include

J C (J) SL2(J)

K Sym3(2) SL2(K)
K3 2⊗ 2⊗ 2 SL2(K)3

H3(K) ∧3
0(6) Sp6(K)

H3(K ×K) ∧3(6) SL6(K)
H3(Q) S+(32) Spin12
H3(O) 56 E7

where the last two may also range over different quaternion and octonion
algebras over K (and thus are associated with different forms of the corre-
sponding groups).

Thus, the space C (J) may be thought of as a representation of SL2(J).
In fact, the variety XC (J) is the projectivization of the orbit of the highest
weight vector of the representation of SL2(J) on C (J), and is isomorphic
to the homogeneous space given by this representation! That is, the variety
XC (J) is isomorphic to SL2(J)/PC (J), where PC (J) is the parabolic subgroup
associated to the representation C (J), and it has a moduli interpretation as
a flag variety.

In fact, the rank of all the elements of C (J) is preserved under the
action of SL2(J), and over an algebraically closed field, the group SL2(J)
acts transitively on the set of rank r elements [Kru07, Lemma 21 & Thm
2]. In other words, the space C (J) is stratified by rank into orbits of SL2(J)
when K is algebraically closed. Thus, for many computations related to
elements in C (J), they may just be checked on representatives of C (J) of
the appropriate rank; see, e.g., [Kru07, eqs. (58)-(61)] for some simple choices
of representatives.6

In the case where J is the H3(C × C) and XC (J) is the Grassmannian
Gr(3, 6), these varieties and some of the geometric constructions in the sequel
are studied in Donagi’s work [Don77].

Furthermore, in each of the cases in the above table over an algebraically
closed field, the secant variety of XC (J) is the entire space P(C (J)), and
the tangent variety of XC (J) is the quartic hypersurface YC (J) given by the
vanishing of the discriminant [Zak93, Chap. III]; that is, YC (J) is made up

6For example, the definition of “rank one” cubes in [Kru07] differs from Definition
6.25, but it is easy to check that they are equivalent by this method.
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of the rank ≤ 3 elements of C (J) (up to K-scaling). In fact, Zak shows (and
it is easy to check on representatives of the appropriate ranks):

Lemma 6.26. Each general point of P(C (J)) \ YC (J) lies on exactly one
secant line of XC (J). Each point of YC (J) \XC (J) lies on exactly one tangent
line of XC (J).

Therefore, we find that the adjoint map � induces a birational map

βJ : P(C (J)) ��� P(C (J))

whose reduced base locus is the variety XC (J). Under βJ , the quartic hyper-
surface YC (J) is blown down to XC (J), as the adjoint of rank ≤ 3 elements
in C (J) have rank ≤ 1. By (77), applying βJ twice is the identity away from
YC (J).

Furthermore, the adjoint map βJ preserves each secant line. This is easy
to check by computation, e.g., by showing that the adjoint of the sum of
two rank one cubes is in their span. For example, the adjoint of the sum of
A = (1, 0, 0, 0) and B = (N(α), α� • β, β� • α,N(β)) is N(β)A−N(β)B.

6.5. Triply Hermitian hypercubes

As in §5.4, we would like to study the orbits of a class of “Hermitianized” rep-
resentations uniformly. Namely, for V a two-dimensional K-vector space and
J a cubic Jordan algebra, we study the representation of GL(V )× SL2(J)-
orbits on V ⊗ C (J). We find that the orbits correspond to isomorphism
classes of genus one curves with degree 2 line bundles, along with bundles
related to XC (J). We consider only nondegenerate elements of the tensor
space, which will correspond to smooth curves.

Definition 6.27. An element φ ∈ V ⊗ C (J) is called nondegenerate if the
induced composition map

� ◦ φ : V ∨ → C (J) → C (J)∨

is injective. Note that nondegeneracy implies that the elements in the image
of φ do not have rank one, and the discriminant of all but four points (over
K, up to multiplicity) in the image of φ is nonzero.

The following theorem—a more precise version of Theorem 2.8—states
that the orbits of such nondegenerate elements of V ⊗ C (J) are in corre-
spondence with genus one curves with certain vector bundles:
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Theorem 6.28. The nondegenerate GL2(K)×SL2(J)-orbits of V ⊗C (J) are
in bijection with isomorphism classes of nondegenerate quadruples
(C,L,F, κ), where C is a genus one curve over K; L is a degree 2 line
bundle on C; F = (Ei) is the flag of vector bundles Ei given by pulling back
the universal flag via the map κ : C → XC (J); and κ∗OP(C (J))(1) ∼= L⊗3.

As in §5.4, we will discuss the nondegeneracy condition on quadruples
(C,L,F, κ) in the proof. It is again an open condition, so the statement of the
theorem may be rephrased as giving a bijection between orbits of V ⊗C (J)
and the K-points of an open substack of the moduli space of (C,L,F, κ)
(with the isomorphism from κ∗OP(C (J))(1) to L⊗3). Again, in many cases,
this nondegeneracy condition will be a simple condition on the bundles.

The rest of this subsection contains the proof of Theorem 6.28. First,
from a nondegenerate element φ in V ⊗ C (J), we explain how to naturally
construct the genus one curve and associated data described in Theorem
6.28. The construction will be invariant under the group action. Although
many features of this construction are similar to the one described in §5.4,
here the curve will not necessarily be immersed in P(C (J)) but instead have
a degree 2 map to a line in P(C (J)). In addition, the adjoint map plays
a different role here and is not logically necessary for describing the genus
one curve and other geometric data from the multilinear object. For the
remainder of this subsection, we fix the cubic Jordan algebra J and set
X := XC (J) and Y := YC (J).

We will work with the Hilbert scheme Hilb2(X) of two points on X.
Let ζ : Zuniv → Hilb2(X) denote the universal degree 2 subscheme over
Hilb2(X), so there is also a natural map ε : Zuniv → X. Let Luniv denote
the universal line over Hilb2(X) pulled back from the universal line over
the Hilbert scheme Hilb2(P(C (J))) of two points in P(C (J)). That is, to
a zero-dimensional degree 2 subscheme in X ⊂ P(C (J)), we associate the
unique line passing through it; a nonreduced subscheme gives a point and a
tangent direction, and thus also a unique line. We then have the diagram

(81) Zuniv

ζ

ι
Luniv

P
1-bundle

b
P(C (J))

Hilb2(X)

where the map b on the right comes from the construction of Luniv. A
straightforward computation (e.g., as found in [Ver09, §2.1]) gives

(82) Luniv ∼= P(ζ∗ε
∗OX(1)),
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where OX(1) denotes the pullback of OP(C (J))(1) to X ⊂ P(C (J)).
We first give the construction of a genus one curve and the appropriate

bundles from an orbit of V ⊗ C (J).

Construction 6.29. Given φ ∈ V ⊗ C (J), we view φ as a linear map in
Hom(V ∨,C (J)). Nondegeneracy implies that there is a map

P(φ) : P(V ∨) −→ P(C (J))

whose image does not intersect X. Lemma 6.26 implies that the general
points of P(V ∨) each lie in exactly one secant line. The idea is that the
curve will be made up of the “pivot” points of these secant lines and thus
be a double cover of P(V ∨).

More precisely, because the image of the map P(φ) : P(V ∨) → P(C (J))
is not completely contained in X, the map P(φ) lifts uniquely to Luniv by
the valuative criterion, as b is birational. We thus have

(83) P(V ∨)

P(φ)
P̃(φ)

Zuniv

ζ

ι
Luniv

p

b
P(C (J))

Hilb2(X)

If P̃(φ) factors through a fiber of p, then the image of P(φ) would itself be
a secant line to X, which contradicts the nondegeneracy assumption. Thus,

the composite map p ◦ P̃(φ) is a finite map; because two lines in P(C (J))
intersect in at most one point, this composite map is actually an isomorphism
onto its image in Hilb2(X).

Pulling back the bottom left triangle of (83) via p ◦ P̃(φ) : P(V ∨) →
Hilb2(X), we obtain the diagram

C

η

ι
Σ

p

P(V ∨)

where Σ is a ruled surface and C is a degree 2 cover of P(V ∨).
Recall that Hilb2(X) is the blowup of Sym2(X) along the diagonal. The

2-to-1 map C → P(V ∨) ramifies exactly where P(V ∨) intersects the locus of
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fat schemes of Hilb2(X), namely the pullback of the diagonal of Sym2(X)
via the natural birational map Hilb2(X) ��� Sym2(X). This ramification
locus is the intersection of Im (P(φ)) ⊂ P(C (J)) and the tangent variety Y .
Since Y is a quartic hypersurface in P(C (J)), the ramification locus is a zero-
dimensional subscheme of degree 4, and by the nondegeneracy assumption,
the four points of ramification over K are distinct. By Riemann-Hurwitz,

the curve C, possibly after normalization, has genus one.

This construction also produces an explicit equation for the curve C,
e.g., for v ∈ V ∨, it is the double cover of P(V ∨) given by y2 = disc(φ(v)).

The bundles on the curve C may also be found immediately from the con-
struction. First, the pullback of OP(V ∨)(1) via the degree 2 map η is the
desired degree 2 line bundle L. The map

κ : C −→ Zuniv ε−→ X ↪→ P(C (J))

and the moduli interpretation of X as a flag variety in P(C (J)) together
give a flag of bundles F = (Ei) on the curve C.

Now we establish a relation between the line bundles L and κ∗OP(C (J))(1)
on C. It is easiest to describe geometrically. Take a hyperplane H in P(C (J))
containing the image of P(φ) but not its (cubic) image under the adjoint
map βJ . Then for any point of C intersecting H, its conjugate (under the

map η) also lies on H, since the secant line containing these two conjugate
points intersects Im P(φ) by the construction of C. Thus, the line bundle
κ∗OP(C (J))(1) is a power of L.

To show that this power is 3, recall that the adjoint map βJ preserves
secant lines. In particular, for a general point in P(C (J))\X, the line spanned
by itself and its image under βJ is a secant line of X. Now applying the
adjoint map βJ to Im P(φ) gives a cubic rational curve in P(C (J)), i.e., a
curve whose intersection with H is degree 3. Therefore, for a general choice
of H, there are exactly three secant lines that contain points of Im P(φ) and
are contained in H; these give rise to exactly three pairs of conjugate points
on the curve C contained in H.

As noted earlier, the data of the curve C, the line bundle L, the flag F,
and the map κ are all clearly preserved (up to isomorphism) under the action
of the group GL(V )×SL2(J), since each factor acts by linear transformations
on its respective projective space.

We have described the map from GL(V )×SL2(J)-orbits of V ⊗C (J) to
isomorphism classes of quadruples (C,L,F, κ). We now describe the reverse
map. It will be clear that these two constructions are inverse to one another.
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Construction 6.30. The general idea of the reverse map is as follows:

starting with the geometric data of (C,L,F, κ), we would like to pick out a

linear P1 in P(C (J)). For each degree 2 divisor on the curve in the linear

series |L|, we find the “average” point of the images of its support in X, and

all such points together form the desired P1.

More precisely, given a quadruple (C,L,F, κ) as in the theorem, we have

a natural degree 2 map η : C → P(H0(C,L)∨) ∼= P1. Using the hyperelliptic

involution ι on C given by η and the map κ : C → X, we obtain the

commutative diagram

C
(κ,κ◦ι)

η

X ×X

S2−quotient

P(H0(C,L)∨)
h′ Sym2(X).

The map h′ may be lifted to a map h : P(H0(C,L)∨) → Hilb2(X), since the

image of h′ does not lie completely in the diagonal of Sym2(X). We thus

have the commutative diagram

C

η

Zuniv

ζ

X ×X

S2−quotient

P(H0(C,L)∨)
h

Hilb2(X) Sym2(X).

By diagram (81), recall that Luniv is a P1-bundle over Hilb2(X). Define

Σ := h∗Luniv, so p : Σ → P(H0(C,L)∨) gives a ruled surface, specifically

a P1-bundle over P(H0(C,L)∨). In fact, using the relation between L and

κ∗OX(1) and (82), along with the projection formula, we see that

Σ = P(η∗OC ⊗ OP(H0(C,L∨)(3)).

We would like to pick out a section s : P(H0(C,L)∨) → Σ such that the

image of the composite b ◦ h ◦ s is linear in P(C (J)).

First, we claim there is a unique section s : P(H0(C,L)∨) → Σ classifying

η∗OC ⊗ O(3) → O(1). That is, a cohomology computation shows that there

is an exact sequence

0 → O(3) → η∗OC ⊗ O(3) → O(1) → 0
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on P(H0(C,L)∨), and because Hom(O(3),O(1)) = 0, any such map η∗OC ⊗
O(3) → O(1) is this one, up to scalars.

Therefore, we obtain a map from P(H0(C,L)∨) to Luniv, and thus to
P(C (J)). The nondegeneracy condition on the geometric data that we re-
quire is exactly that the image of this map does not intersect X; it is clear
that it is satisfied by the data in Construction 6.29 by assumption.

We now check that this map P(H0(C,L)∨) → P(C (J)) is linear, i.e.,
the pullback of OP(C (J))(1) to P(H0(C,L)∨) from P(C (J)) (via b ◦ h ◦ s) is
isomorphic to OP(H0(C,L)∨)(1). Since Σ is a ruled surface, there exists some
a1, a2 ∈ Z such that

(84) (b ◦ h)∗OP(C (J))(1) = Op(a1)⊗ p∗OP(H0(C,L)∨)(a2).

It is easy to see that a1 = 1 because the fibers of Σ map to lines in P(C (J)).
To compute a2, we pull back (84) to C via ι : C → Σ:

ι∗(b ◦ h)∗OP(C (J))(1) = ι∗Op(1)⊗ η∗OP(H0(C,L)∨)(a2)(85)

= η∗OP(H0(C,L)∨)(3)⊗ η∗OP(H0(C,L)∨)(a2),

Since the left-hand side of (85) is just η∗OP(H0(C,L)∨)(3) by the assumed
relation, we must have a2 = 0. Thus, we obtain

s∗(b ◦ h)∗OP(C (J))(1) = s∗(Op(1)) = OP(H0(C,L)∨)(1),

as desired.

6.6. Specializations

Allowing the cubic Jordan algebra J in Theorem 6.28 to vary gives many
special cases, as highlighted in Table 1. For certain choices of J , we recover
some of the previously considered spaces related to hypercubes and the
corresponding parametrization theorems, while for others, we obtain moduli
spaces of genus one curves with higher rank vector bundles.

For example, for J = K × K × K, we recover the case of standard
hypercubes from §6.2. In this case, the homogeneous variety XC (J) is just
the Segre embedding of P1 × P1 × P1. If we instead let J = K, with norm
form N(x) = x3 for an element x ∈ K, then the space C (J) coincides with
the space of triply symmetric hypercubes studied in §6.3.2, and XC (J) is
the twisted cubic in P3. Also, the space of doubly symmetric hypercubes
(see §6.3.1) may be obtained by taking J = K × K, with the norm form
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N(x1, x2) = x1x
2
2 for (x1, x2) ∈ K × K and XC (J) the image of P1 × P1

embedded in P5 via O(1, 2).
We describe some of the new moduli problems below. In each case, we

also describe more carefully the bijections when the algebra J contains split
algebras, e.g., matrix algebras instead of more general central simple alge-
bras. Taking other forms of these algebras then give twisted versions of the
geometric data on the genus one curve.

6.6.1. Doubly skew-symmetrized hypercubes. A new case arises by
choosing the cubic Jordan algebra J to be the algebra K ×Mat2×2(K). We
first describe the structure of J and the space of Hermitian cubes C (J) for
this choice of J .

The norm of an element (x,M) ∈ K×Mat2×2(K) is N(x,M) = x det(M),
and for Springer’s construction, we take the basepoint e to be (1, Id). Com-
position in this algebra is component-wise, with the usual Jordan structure
on Mat2×2(K): for elements (x1,M1), (x2,M2) ∈ K ×Mat2×2(K), we have
(x1,M1) • (x2,M2) = (x1x2, (M1 ·M2 +M2 ·M1)/2).

We claim that there is a natural isomorphism between C (J) and the
space W := K2 ⊗ ∧2K4, where the action of SL2(J) on C (J) corresponds
to the natural action of SL2(K)× SL4(K) on W . We represent elements of
W as a pair of 4 × 4 skew-symmetric matrices. Let a, b, c, d, bij , cij ∈ K for
1 ≤ i, j ≤ 2. Then this isomorphism sends (a, (b, (bij)), (c, (cij)), d) ∈ C (J)
to the pair⎛

⎜⎜⎝
0 a −b12 b11
−a 0 −b22 b21
b12 b22 0 c
−b11 −b21 −c 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 b −c12 c11
−b 0 −c22 c21
c12 c22 0 d
−c11 −c21 −d 0

⎞
⎟⎟⎠

in W . It is a slightly tedious but trivial computation to check that the two
group actions align.

The homogeneous variety XC (J) is P1 × Gr(2, 4) ↪→ P1 × P(∧2K4) ↪→
P(W∨), where the first inclusion is by the Plücker map and the second is
the Segre embedding. A map from a scheme T to X thus gives a degree 2
line bundle and a rank 2 vector bundle on T . Theorem 6.28 with this choice
of J gives the following moduli description for pairs of Hermitian cubes up
to equivalence:

Theorem 6.31. Let V1, V2, and V3 be K-vector spaces of dimensions 2, 2,
and 4, respectively. Then nondegenerate GL(V1)×GL(V2)×GL(V3)-orbits of
V1⊗V2⊗∧2(V3) are in bijection with isomorphism classes of nondegenerate
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triples (C,L1, L2, E), where C is a genus one curve over K, L1 and L2 are

non isomorphic degree 2 line bundles on C, and E is a rank 2 vector bundle

on C with detE ∼= L1 ⊗ L2.

If we record the point P := L2 ⊗ L−1
1 instead of the line bundle L2,

we recover Theorem 2.6. Also, we may also replace J with K × Q, for any

quaternion algebra Q over K, in which case the homogeneous variety X is

a product of P1 and a twisted form of the Grassmannian Gr(2, 4).

6.6.2. Triply skew-symmetrized hypercubes. Now let J = H3(K ×
K), i.e., the space of 3× 3 Hermitian matrices over the composition algebra

K ×K. It is easy to check that J is isomorphic to the space Mat3×3(K) of

3× 3 matrices over K, with composition given by (M1 ·M2+M2 ·M1)/2 for

M1,M2 ∈ Mat3×3(K).

Then the space C (J) of Hermitian cubes is isomorphic to W := ∧3K6,

with the action of SL2(J) matching the natural action of SL6(K) on W .

We will write down the isomorphism, following [Kru07, Example 19]. Let

a, bij , cij , d ∈ K for 1 ≤ i, j ≤ 3. Let {e1, e2, e3, f1, f2, f3} be a basis for K6,

and let e∗j = ej+1 ∧ ej+2 and f∗
j = fj+1 ∧ fj+2 in ∧2K6, where the indices

are taken cyclically. Then the element (a, (bij), (cij), d) is sent to

ae1 ∧ e2 ∧ e3 +

3∑
i,j=1

bijei ∧ f∗
j +

3∑
i,j=1

cijfi ∧ e∗j + df1 ∧ f2 ∧ f3

in W = ∧3K6.

Here, the homogeneous variety XC (J) is the Grassmannian Gr(3, 6),

which lies in P(W∨) via the Plücker map. Specializing Theorem 6.28 gives

the following basis-free version of Theorem 2.7:

Theorem 6.32. Let V1 and V2 be K-vector spaces of dimensions 2 and

6, respectively. Then nondegenerate GL(V1) × SL(V2)-orbits of V1 ⊗ ∧3(V2)

are in bijection with isomorphism classes of nondegenerate triples (C,L,E),

where C is a genus one curve over K, L is a degree 2 line bundle on C, and

E is a rank 3 vector bundle on C with detE ∼= L⊗3.

6.6.3. Some more exceptional representations. For J = H3(Q),

where Q denotes the split quaternion algebra over K (isomorphic to the

algebra Mat2×2(K)), we obtain a more exceptional representation and the-

orem.



Coregular spaces and genus one curves 111

Theorem 6.33. Let V1 and V2 be K-vector spaces of dimensions 2 and
32, respectively, where V2 is the half-spin representation of Spin12. Let X
be the homogeneous space for this action in P(V ∨

2 ). Then nondegenerate
GL(V1) × Spin12-orbits of V1 ⊗ V2 are in bijection with the K-points of an
open substack of the moduli space of nondegenerate tuples (C,L, κ, ψ), where
C is a genus one curve, L is a degree 2 line bundle on C, and κ is a map from
C to X ⊂ P(V ∨

2 ), along with an isomorphism ψ from L⊗3 to the pullback of
OP(V ∨

2 )(1) to C via κ.

In Table 1, we referred to this choice of XC (J) as the projective line
over the cubic algebra J ; this is due to our interpretation of XC (J) as the
rank one cubes that are Hermitian over J . In addition, analogous theorems
hold when Q is replaced by a non-split quaternion algebra. Then, the group
Spin12 is replaced by the appropriate twists.

For J = H3(O), where O denotes the split octonion algebra over K, we
have a similar statement.

Theorem 6.34. Let V1 and V2 be K-vector spaces of dimensions 2 and 56,
respectively, where V2 is the miniscule representation of the group E7. Let
X be the homogeneous space for this action in P(V ∨

2 ). Then nondegenerate
GL(V1)×E7-orbits of V1 ⊗ V2 are in bijection with the K-points of an open
substack of the moduli space of nondegenerate tuples (C,L, κ, ψ), where C is
a genus one curve, L is a degree 2 line bundle on C, and κ is a map from
C to X ⊂ P(V ∨

2 ), along with an isomorphism ψ from L⊗3 to the pullback of
OP(V ∨

2 )(1) to C via κ.

Again, taking different octonion algebras over K gives similar theorems,
where the split E7 is replaced by twisted forms of E7.

7. Connections with exceptional Lie groups and Lie algebras

In this section, we describe two ways in which the coregular representations
we have considered in this paper are related to exceptional Lie groups and Lie
algebras. These still mysterious connections give hints as to further moduli
problems and directions for investigation.

7.1. Vinberg’s θ-groups

All of the representations we have considered in this paper are θ-groups in
the sense of Vinberg [Vin76], when viewed as representations of complex
Lie groups. Vinberg’s idea was to extend the concept of a Weyl group and a
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Cartan subspace to graded Lie algebras. Then the invariants of the represen-
tation correspond exactly to the invariants of the Cartan subspace under the
action of the Weyl group. Since the Weyl group here is generated by com-
plex reflections, its ring of invariants is free, so the representations obtained
in this way are coregular. Moreover, this construction gives a description of
the invariants (including their degrees) in terms of the Lie theory.

Let g be a Z/mZ-graded (or Z-graded) Lie algebra for some integer
m ≥ 1 (or respectively, m = ∞). Then for m finite, we may write

g = g0 + g1 + · · ·+ gm−1

with [gi, gj ] ⊂ gi+j for i, j ∈ Z/mZ. To each such graded Lie algebra, one
associates an automorphism θ (or, for m infinite, a one-parameter family of
such θ) of g, e.g., for m finite, we have θ(x) = ωkx for x ∈ gk and ω = e2πi.

Given a graded Lie algebra g, let G be any connected group having g as
its Lie algebra, and let G0 be the connected subgroup of G with g0 as its
Lie algebra. Then a θ-group corresponding to g is the representation of G0

on g1. (The name “group” makes sense by thinking of G0 as a subgroup of
GL(g1).)

Vinberg showed that the G0-invariants of g1 form a polynomial ring,
and in fact, the elements of g1 with the same G0-invariants comprise a finite
number of orbits over C [Vin76]. Moreover, Kac showed that most such
representations arise in this way [Kac80].

These observations give a heuristic reason for looking at these particu-
lar representations if we want to find parametrizations of genus one curves
with data such as line bundles and points on the Jacobian. The coarse mod-
uli space of such objects is often a weighted projective space, or a generi-
cally finite cover thereof, e.g., in many of the cases in this paper, the orbit
spaces over C parametrize elliptic curves in some family determined by the
invariants. In contrast, arithmetic objects such as rings and ideal classes,
whose coarse moduli spaces are just a finite number of points, are often
parametrized by orbits of prehomogeneous vector spaces.

The θ-groups may be read off directly from subdiagrams of Dynkin dia-
grams or affine Dynkin diagrams [Vin76, Kac80]. For subdiagrams of Dynkin
diagrams, the θ-groups are all prehomogeneous vector spaces. All other irre-
ducible θ-groups are listed in [Kac80, Table III]. These are given by removing
a single node from the affine Dynkin diagram. We have indicated the affine
Dynkin diagram that gives rise to each representation in Table 1. (Note that
in Table 1 we only list the semisimple part of the θ-group.) We have m = 2
for lines 1–12 of Table 1, m = 3 for lines 13–18, m = 4 for line 19, and m = 5
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(A1, 2)

(Gm, 1) (A2, 3)

(μ3, 1) (A1, 3) (G2, 7)

(μ2
2, 1) (G2

m, 2) (A3
1, 4) (D4, 8)

(μ2
2, 2) (A1, 5) (A2, 8) (C3, 14) (F4, 26)

(μ3, 1) (G2
m, 3) (A2, 6) (A2

2, 9) (A5, 15) (E6, 27)

(Gm, 2) (A1, 4) (A3
1, 8) (C3, 14) (A5, 20) (D6, 32) (E7, 56)

Table 2: Deligne and Gross’s Magic Triangle of group representations

for line 20. Thus the value of m corresponds to the degree of the associated
line bundles in the geometric data!

The connection between these moduli problems and Vinberg theory, es-
pecially in the case m = 2, is investigated in the beautiful work of Thorne
[Tho12]. It is an interesting question as to how Thorne’s representation-
theoretic constructions of families of curves when m = 2, obtained via Vin-
berg theory and the deformation theory of simple singularities, are related
to our more direct geometric constructions of these families.

7.2. The Magic Triangle of Deligne and Gross

In [DG02], Deligne and Gross observed that many of the remarkable prop-
erties of the adjoint representations of the groups in the exceptional series

(86) 1 ⊂ A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8

(as observed in [Del96]) persist for certain other natural sequences of rep-
resentations. Namely, for each pair H ⊂ K of distinct subgroups in (86),
we may consider the centralizer Z(H,K) of H in K. In this way, we ob-
tain a triangle of subgroups of E8, as shown in Table 2, where the rows
are indexed by H = E7, . . . , A1 from top to bottom, and the columns are
indexed by K = A1, . . . , E7 from left to right, and where we have ignored all
semidirect products with, and quotients by, finite groups. Deligne and Gross
show that each of the groups in this triangle is naturally equipped with a
certain preferred representation of that group, obtained from the action of
Z(H,K) × H on Lie(K) (see [DG02] for details). In Table 2, we have in-
cluded also the dimensions of these preferred representations. Note that the
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groups in the bottom right 4× 4 square in Table 2 correspond to the entries

of “Freudenthal’s Magic Square” of Lie algebras [Fre].

If one takes the last row of representations (Z(H,K), V ), where H =

A1, and considers instead (Z(H,K) × H,V ⊗ 2), one obtains many of the

representations that we used in Sections 2 and 6 to understand degree 2

line bundles on genus one curves. Similarly, if one takes the second-to-last

row of representations (Z(H,K), V ), where H = A2, and considers instead

(Z(H,K)×H,V ⊗3), one obtains many of the representations that we used

in Sections 3 and 5 to understand degree 3 line bundles on genus one curves.

As with §7.1, we suspect that much more lies behind this connection.
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