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The proof of Theorem 1.1 in the published version of PSL(2;C) connec-
tions on 3-manifolds with L2 bounds on curvature (Cambridge Journal of
Mathematics 1 (2013) 239–397, denoted subsequently by [T1]) has an error
that was discovered by Thomas Walpulski shortly after the publication of
the article. As a result of this error, certain assertions in Theorem 1.1 from
[T1] can not be said to be proved.

By way of background, this theorem considers sequences of connections
on a given PSL(2;C) bundle over a compact, Riemannian 3-manifold with
an apriori bound on the L2 norm of the associated sequence of curvature
2-forms. Theorem 1.1 in [T1] makes assertions about the limits of such se-
quences. This theorem can be viewed as having two parts. The first part
makes an assertion to the effect that if no subsequence converges directly in a
certain Sobolev topology (the bundle analog of a function and its derivatives
being square integrable), then, after suitable renormalization, the sequence
has subsequences that converge in this Sobolev topology on compact sets in
the complement of a nowhere dense closed set in the manifold (henceforth
denoted by Z). This first part of Theorem 1.1 also observes that the limiting
data in this case is characterized by a non-zero, harmonic 1-form with values
in a real line bundle that is defined on the complement of Z; and that the
norm of this 1-form extends over Z as a Hölder continuous function with Z
being a component of its zero locus. The error found by Thomas Walpulski
does not concern this first part of Theorem 1.1 in [T1]. (The proof of this
first part of Theorem 1.1 builds upon techniques that were pioneered many
years ago by Karen Uhlenbeck.)

The second part of Theorem 1.1 in [T1] says more about the fine struc-
ture of the set Z. In particular, the second part asserts that Z is contained
in a countable union of Lipshitz curves and that there is a dense open set
in Z that has the structure of a C1 submanifold of the ambient 3-manifold.
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This second part of Theorem 1.1 is affected by the error found by Thomas
Walpulski. In particular, the assertion that Z is contained in a countable
union of Lipshitz curves can not be said now to be proved. What can still
be said is that Z has Hausdorff dimension 1 and that it has a dense open
set with the structure of a C1 submanifold. (One can conjecture that Z is a
C1 submanifold on the complement of a finite set; or that such is the case
when the metric is suitably generic.)

1. Theorems 1.1a and 1.1b

Theorems 1.1a and 1.1b which are stated momentarily assert those parts
of Theorem 1.1 of [T1] that are proved. Theorem 1.1a makes a formal re-
statement of what was just described as being the first part of Theorem 1.1
in [T1]. Theorem 1.1b makes a formal statement of what can be proved
with regards the second part of Theorem 1.1 in [T1]. The mistake found by
Thomas Walpulski is in the proof of [T1]’s Lemma 8.8; and the assertions in
Theorem 1.1a constitute parts of Theorem 1.1 of [T1] that are not affected
by the error in Lemma 8.8. Meanwhile, Theorem 1.1b revises and elaborates
on the assertions of Theorem 1.1 in [T1] that depended on [T1]’s Lemma 8.8.

The notation used below and the context is the same as that for Theo-
rem 1.1 in [T1]. By way of a very brief review of the context and notation,
M in what follows denotes a compact, oriented 3-dimensional manifold and
P → M denotes a given principal SO(3) bundle. The Lie algebra of the
group SU(2) (and hence SO(3)) is denoted by su(2). Supposing that A
is a connection on P , its curvature is denoted by FA. If a is a section of
(P ×SO(3) su(2))⊗ T ∗M then its A-covariant exterior derivative is denoted
by dA. Note that if (A, a) is a pair as just described, then A = A + ia de-
fines a connection on the associated principal bundle P ×SO(3) PSL(2;C).
Conversely, any connection on this bundle can be written as A+ ia with A
and a as above. Given such a connection A = A+ ia, which is to say a pair
(A, a), define

F(A) =

∫
M
(|FA − a ∧ a|2 + |dAa|2 + |dA ∗ a|2)

with the norms defined by the Riemannian metric and the trace inner prod-
uct on su(2). What is denoted by ∗ is the metric’s Hodge star operator.

Theorem 1.1a. Suppose that {An = An + ian}n=1,2... is a sequence
of connections on P ×SO(3) PSL(2;C) with the corresponding sequence
{F(An)}n=1,2,... being bounded. For each n ∈ {1, 2, . . .}, use rn to denote
the L2 norm of an.
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• If the sequence {rn}n=1,2,... has a bounded subsequence, then there
exists a subsequence of {An}n=1,2,..., hence renumbered consecutively
from 1, and a corresponding sequence of automorphisms of P , this
denoted by {gn}n=1,2,..., such that {gn∗An}n=1,2,... converges weakly in
the L2

1 topology to an L2
1 connection on P ×SO(3) PSL(2;C).

• If the sequence {rn}n=1,2,... has no bounded subsequence, then there
exists a subsequence of {An}n=1,2,..., hence renumbered consecutively
from 1, a corresponding sequence of automorphisms of P , this denoted
by {gn}n=1,2,..., plus the following extra data: A closed set, nowhere
dense set Z ⊂ M , a real line bundle I → M−Z, and a harmonic I
valued 1-form on M−Z. The latter is denoted by ν. These are such
that

1. The norm |ν| of ν extends to the whole of M as a Hölder contin-
uous, L2

1 function with its zero locus being the set Z.

2. The sequence {gn∗An}n=1,2,... converges weakly in the L2
1;loc topol-

ogy on M−Z to an L2
1;loc connection on P |M−Z , this denoted

by A.

3. The sequence {r−1
n gn

∗an}n = 1, 2, . . . converges weakly in the
L2
1;loc topology on M−Z to νσ with σ being a unit length, A-

covariantly constant homorphism overM−Z from I into P×SO(3)

su(2). Meanwhile, {r−1
n |an|}n=1,2,... converges to |ν| in the weak

L2
1 topology and the C0 topology on the whole of M .

This theorem differs from Theorem 1.1 in [T1] to the extent that it
makes no claim about the set Z being contained in a countable union of
1-dimensional Lipshitz curves. The now unproved Lemma 8.8 in [T1] was
used in [T1] to prove the latter claim. A part of the upcoming Theorem 1.1b
makes a slightly weaker assertion about the structure of Z. (Lemma 8.8 in
[T1] makes an assertion to the effect that Z at each of its points has a unique
tangent cone. This is likely to be true, and perhaps it can be proved using
techniques from [KW].)

To set the notation for Theorem 1.1b, suppose that (Z, I, ν) is a data set
that comes from the second bullet of Theorem 1.1a. Theorem 1.1b introduces
the notion of a point of discontinuity for the bundle I. A point p ∈ Z is a
point of discontinuity for I if I is not isomorphic to the product R bundle
on the complement of Z in any neighborhood of p. These are the interesting
points in Z because if p is not a point of discontinuity for I, then ν near p
can be viewed as an honest R-valued harmonic 1-form.
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Theorem 1.1b also introduces the notion of a geodesic arc in a given
ball in M . Supposing that B is the ball, a geodesic arc in B is a properly
embedded geodesic segment in B through B’s center point.

Theorem 1.1b introduces one final notion, this being the notion of a 1-
dimensional, Lipshitz graph in M . For the present such a set is characterized
as follows: Let p denote any given point in the graph. Let x = (x1, x2, x3)
denote Euclidean coordinates for R3. There is a coordinate chart for M
centered at p that writes the graph near p as the small |x| part of the map
t → (x1 = t, x2 = ϕ2(t), x3 = ϕ3(t)) with ϕ = (ϕ1, ϕ2) being a Lipshitz map
from R to R2. By way of a reminder, a continuous map from an interval
I ⊂ R into a Riemannian manifold is said to be Lipshitz under the following
circumstances: Let γ denote the map in question. Then γ is Lipshitz when
supt,t′∈Idist(γ(t), γ(t′)) ≤ cγ |t− t′| with cγ being a constant.

Theorem 1.1b. Let (Z, I, ν) denote a data set that comes via the
second bullet of Theorem 1.1a from a sequence of PSL(2;C) connections
on M .

• Z has Hausdorff dimension at most 1.
• Given ε > 0 and θ > 0, there are finite sets of balls U and V with
the following properties: Their union contains Z, the balls in U have
pairwise disjoint closure, and

∑
B∈U(radius(B))θ < ε. Meanwhile, if

B ∈ V and if r is the radius of B, then B ∩ V is contained in the
radius rε tubular neighborhood of a geodesic arc in B.

• An open dense subset of Z is contained in a countable union of Lipshitz
graphs.

• The points of discontinuity for I are the closure of an open set in Z
that is an embedded C1 curve in M .

Theorem 1.1b constitutes special cases of Theorems 1.2, 1.3 and 1.4 in a
new paper, [T2], titled The zero locus of Z/2 harmonic spinors in dimensions
2, 3 and 4 which can be found at http://arxiv.org/abs/1407.6206. The input
from this paper needed to invoke the results in [T2] consists of a data of the
following sort:

• A continuous non-negative function on M to be denoted by f obeying

i) f > 0 somewhere.

ii) There exists ε > 0 such that if p ∈ M and f(p) = 0, and if r is
sufficiently small but positive, then

∫
dist(p,·)<r f

2 ≤ r3+ε.

• Let Z denote f−1(0). A real line bundle I → M−Z.
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• A section ν of T ∗M ⊗ I over M−Z that obeys

i) dν = 0 and d ∗ ν = 0.

ii) |ν| = f .

iii) The function |∇ν|2 is integrable on M−Z.

The data set (Z, I, ν) from Proposition 7.1 in [T1] with f = |ν| obeys
the conditions in (1.2); the condition in Item ii) of the first bullet being a
consequence of Items b) and c) of the fourth bullet of Proposition 7.1 in [T1]
and what is said by the second bullet of the Lemma 7.7 in [T1]. The existence
of the desired ε also follows from the identification |ν| = |â�| in Proposition
7.1 of [T1] and from what is said in Proposition 6.1 of this corrigendum to
the effect that |â�| is uniformly Hölder continuous along its zero locus.

The remainder of this corrigendum contains corrections/revisions for
some minor errors and omissions in Sections 3, 6 and 7 of [T1]. An un-
interrupted, corrected version of the proof of Theorem 1.1a can be found
at http://arxiv.org/abs/1205.0514. Note that this latest arXiv version has
given more detail for some of the arguments in Section 2 of [T1] and greatly
simplified and shortened the arguments in Section 4b)–4d) of [T1].

2. Corrections for Section 3 of [T1]

In the definition of κU in (3.1), the lower bound κU > 1 should be κU > c0.
(The precise value of κU is ultimately determined by Sobolev embedding
constants.)

Equation (3.17) in [T1] has some (inexplicable) sign errors. The corrected
equation reads

• ∗(da−me ∧ [τ, b]) + da0 +me[τ, b0] and −∗(d ∗ a+me ∧ [τ, b]),
• −∗(db+me ∧ [τ, a])− db0 +me[τa0] and ∗(d ∗ b−me ∧ [τ, ∗a]),

(3.17)

There are analogous changes to Equation (3.22):

• ∗s = m(eΔ − e) ∧ [τ, b]− 〈τ âAΔ
〉 ∧ [τ, a] + s,

• ∗r = −m(eΔ − e) ∧ [τ, a] + 〈τ âAΔ
〉 ∧ [τ, b] + r,

• ∗r0 = ∗(d(πφb)−me ∧ [τ, πφa]) +m(eΔ − e) ∧ [τ, ∗φa] +
〈τ âAΔ

〉 ∧ [τ, ∗φb] + r0,
(3.22)

And, there is the analogous change to Equation (3.23).

• ∗(da−me ∧ [τ, b]) = s and −∗(d ∗ a+me ∧ [τ, ∗b]) = s0.
• −∗(db−me ∧ [τ, a]) = r and ∗(d ∗ b−me ∧ [τ, ∗a]) = r0.

(3.23)
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3. Corrections for Section 4 of [T1]

Equation (4.16) in [T1] should read:

(4.16) |(g∗ã∗)|x − (g∗ã∗)|y| ≤ cE,μ(δ + rΔ)
1/4

Since [T1] has less than a sentence by way of justification for (4.16), a
derivation of this inequality is given in the next few paragraphs.

To start, note that the fifth bullet in Proposition 4.1 with μ replaced
by 1

4μ and the third bullet of (3.1) lead to a cE,μ a priori bound for the L2

norm of ∇(∇(g∗ã∗)) on the |x| ≤ 1 − 1
4μ ball centered at the origin. Here

and in what follows, ∇ denotes the covariant derivative that is defined by
the product connection θ. Granted this bound, then the top bullet of (3.10)
can be invoked to see that

∫
|x|≤1−μ/2

|∇(g∗ã∗)|4 ≤ cE,μ

(∫
|x|≤1−μ/2

|∇(g∗ã∗)|2
)1/2

.

Granted this bound, then the bound asserted by (4.16) follows from the
third bullet of (3.10) given a cE,μ(δ+ rΔ) bound for the L2 norm of ∇(g∗ã∗)
on the |x| ≤ 1− 1

2μ ball in R3.
To obtain the desired bound, let α denote for the moment the component

of g∗ã∗ along a given coordinate direction as defined by the Gaussian normal
coordinates. The su(2) valued 1-form ∇A♦α can be written as

∇A♦α = ∇α+ [âA♦ , α] + Γ · (g∗ã∗)

with Γ denoting a linear map with C1 norm bounded by c0r
2
Δ. (This Γ is

a linear combination of the metric’s Christoffel symbols.) Take the inner
product of both sides of the preceding identity with ∇α and then integrate
the result over the |x| ≤ 1 ball. This results in the following inequality:∫

|x|≤1
∇α|2 ≤ c0(δ

2 + r2Δ) + 2 |
∫
|x|≤1

〈∇α, [âAΔ
, α]〉|.

The notation here uses 〈, 〉 to indicate the combination of the metric inner
product and the inner product on su(2).

Let α denote the average of α over the |x| ≤ 1 ball. Since ∇α = 0, the
integrand for the integral on the right hand side of the preceding inequality
does not change if ∇α is replaced by ∇(α− α). Make this change and then
integrate by parts. Because d†âAΔ

= 0 and because the radial component
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of âAΔ
is zero on the |x| = 1 sphere, the integral on the right hand side is

equal to the following integral:∫
|x|≤1

〈[(α− α),∇α], âAΔ
〉.

Meanwhile, the norm of the latter is no greater than

2‖∇α‖2‖α− α‖4‖âAΔ
‖4,

which in turn is no greater than c15κ
−1/2
U ‖∇α‖22 with c ≤ c0. This bound on

c is a consequence of the top bullet of (3.10) and the fact that the L2 norm
of α − α is less than c0 times the L2 norm of ∇(α − α), thus c0 times the
L2 norm of ∇α. With these bounds in hand, one is led to conclude that∫

|x|≤1
|∇α|2 ≤ c0(δ

2 + r2Δ) + cκ
−1/2
U

∫
|x|≤1

|∇α|2.

Since κU ≥ c0 was assumed, one can assume that the factor in front of
the integral of |∇α|2 on the right hand side of this last inequality is less
than 1

2 ; and so the preceding inequality implies the desired bound ‖∇α‖2 ≤
c0(δ

2 + r2Δ)
1/2.

4. Corrections for Section 6 of [T1]

The wording of Proposition 6.1 in [T1] suggests that the Hölder exponent
at a zero of the function |â♦|, this denoted by 1/κ, has no a priori lower
bound. In fact, such a lower bound exists and such a bound is implicitly
used subsequently in [T1]. The correct wording should be as follows:

Proposition 6.1. Fix a subsequence Λ ⊂ {1, 2, . . .} so that
{(An, ân)}n∈Λ is described by Proposition 2.2. The limit function |â♦| given
by the second bullet of Proposition 2.2 is continuous. This function is also
Hölder continuous with exponent 1

4 on compact sets where it is bounded
away from zero. Meanwhile, there exists κ > 1 such that if p ∈ M and
if |â♦|(p) = 0, then |â♦| ≤ dist(p, ·)1/κ on a sufficiently small radius ball
centered at p.

The proof of this slightly stronger version of Proposition 6.1 is identical
to that of the original except for what is said in Section 6c). Moreover, the
changes in Section 6c) amount to little more than keeping track of what
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determines the size of κ. In this regard, the statement of Lemma 6.4 should
be amended with an assertion to the effect that its version of κ depends only
on the given constant c:

Lemma 6.4. Fix p ∈ M and c > 2. Suppose there exists a subsequence
in Proposition 6.1’s sequence Λ, this denoted by Λp, such that limn∈Λp

hn(r)≤
c r1/cr2 when r ≤ c−1. Then |â♦|(p) = 0. Moreover, |â♦| is continuous
at p and there exists a constant κ > 1 depending only on c such that
|â♦(·)| ≤ κdist(p, ·)1/κ on the ball of radius κ−1 centered at p.

The proof in Part 1 of Section 6c in [T1] of the [T1] version of Lemma 6.4
proves this stronger version also.

As noted above, changes in Part 2 of Section 6c to prove the corrected
version of Proposition 6.1 are needed only to the extent that one must keep
track of the factors that determine the Hölder exponent. Although this is
essentially straightforward, the full revision is given below.

Part 2: The assertion in Proposition 6.1 to the effect that |â♦| is continuous
across its zero locus follows from the assertion in the proposition to the effect
that |â♦| is Hölder continuous at each of its zeros for a fixed Hölder exponent.
The proof of the uniform Hölder bound along the zero section of |â♦| is given
in five steps. These steps employ the following terminology: The local Hölder
property is said to hold at a given point p if there exist numbers κ > 1 and
ρ > 0 such that |â♦(q)| < dist(p, q)1/κ for all q ∈ M with dist(p, q) < ρ.
The Hölder assertion in Proposition 6.1 follows with a proof that each point
in Z has the local Hölder property with κ being independent of the given
point.

By way of a heads-up, the following observation is used implicitly in
what follows: Suppose that p ∈ Z and that there exist κ > 1 and ρ′ >
0 and xp > 1 such that |â♦(q)| ≤ xpdist(p, q)

2/κ when dist(p, q) ≤ ρ′.
Then |â♦|(q) ≤ dist(p, q)1/κ when dist(p, q) is less than the minimum of
ρ′ and xκp .

Step 1. Fix p ∈ M with |â♦|(p) = 0. Since |â♦|(p) = 0, so limn→∞ |ân|(p) =
0 also, this a consequence of the second bullet in Proposition 2.2. There are
now two cases to consider, the first being where p’s version of the sequence
{r♦n}n∈Λ has a subsequence that is bounded away from zero. If such is the
case, let r∗ > 0 denote a lower bound for this subsequence. The correspond-
ing subsequence of {ân}n∈Λ is bounded in the L2

2 topology on the radius r∗
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ball in M centered at p, and so it has a subsequence that converges strongly
in the exponent 1

4 Hölder topology on this ball. Let Λp ⊂ Λ denote the in-
dexing set for the latter subsequence. The Hölder convergence of {ân}n∈Λp

on the radius r∗ ball centered at p has the following consequence: Given
ε > 0, there exists Nε such that if n ∈ Λp and n > Nε, then

(6.18) |ân| ≤ ε+ dist(p, ·)1/4 on the radius r∗ ball centered at p.

Fix n ∈ Λp with n > Nε. The bound in (6.18) implies that the p and (An, ân)
version of the function hn(·) obeys hn(r) ≤ c0(ε + r1/4)r2 when r ∈ (0, r∗).
Granted this last bound, invoke Lemma 6.4 to see that the local Hölder
property holds at p with Hölder exponent 1

4 .

Step 2. Assume here and in the subsequent steps that {(An, ân)}nεΛ is
such that limnεΛ |ân|(p) = 0 and limnεΛ r♦n = 0. Granted this assump-
tion, then at least one of the three cases in the subsequent list describes
{(An, ân)}nεΛ. Step 3 contains the proof that the list is inclusive.

Case 1. This case occurs if there is a subsequence Λp ⊂ Λ with two
properties, the first being the following: If n ∈ Λp, then there exists r‡n ∈
[12r♦n, c

−1
0 ] which is such that hn(r‡n) ≤ r

2+1/16
‡n . The second property re-

quires that limn∈Λp
r‡n = 0. Fix n ∈ Λp. Let r1n ∈ [r‡n, c

−1
0 ] denote the

maximal value for r such that hn(s) ≤ s2+1/16 for all s ∈ [r‡n , r1n]. It
follows from the fourth bullet of Proposition 5.1 that hn(r) ≤ c0r

2+1/16

for all r ∈ [r1n, c
−1
0 ]; it follows from the definitions of r1n and r‡n that

hn(r) < r2+1/16 for all r ∈ [r‡n, r1n]. Since limn∈Λp
r‡n = 0, the subse-

quence Λp with any c > c0 can be used as input to Lemma 6.4 to prove
that the local Hölder property holds at p with Hölder exponent greater
than c−1

0 .

Case 2. This case occurs if there exist δ > 0 and a subsequence Λ′ ⊂ Λ
with the following property: If n ∈ Λ′, then hn(r) > r2+1/16 for all r ∈
[12r♦n, 9r♦n] and there exists r ∈ [12r♦n, 9r♦n] with nn(r) ≥ δ. Let r1n ∈
(9r♦n, c−1

0 ] denote the maximal r which is such that hn(s) ≥ s2+1/16 for all
s ∈ [r♦n, r1n].

Suppose first that lim infn∈Λ′ r1n = 0. Fix n ∈ Λ′. The fourth bullet of
Proposition 5.1 implies that hn(r) ≤ c0r

2+1/16 for all r ∈ [r1n, c
−1
0 ]. Fix a

subsequence Λp ⊂ Λ′ such that limn∈Λp
r1n = 0. The fact that limn∈Λp

r1n =



628 Clifford H. Taubes

0 implies that Λp and any c > c0 version of Lemma 6.4 can again be used
to prove that the local Hölder property holds at p.

Suppose on the other hand that there exists r0 < c−1
0 such that

lim infn∈Λ′ r1n > 2r0. Fix n ∈ Λ′ such that r1n > r0. Then hn(r) > r2+1/16

on [r♦n, r0]. This being the case, the second bullet of Proposition 5.1 can be
invoked to see that nn(r) ≥ 1

2δ if r ∈ [12r♦n, c
−1
0 r0]. With this understood,

invoke the first bullet of Proposition 5.1 to obtain the inequality

(6.19)
d

dr
hn ≥ 2r−1(1 +

1

2
δ)hn − c0δ

−1r−1
n r

where r ∈ [12r♦n, c
−1
0 r0]. Fix r in this range, and integrate (6.19) from r

to c−1
0 r0 and use the fact that hn(c

−1
0 r0) ≤ c0r

2
0 to conclude that hn(r) ≤

c0(r
−1/(2δ)
0 r2+1/(2δ)+r−1

n r20). Let r‡n denote the number r
−1/(2+1/(2δ))
n r0 and

let x denote c0(δ
−1 + c0r

−1/2δ
0 ). Then the preceding bound on hn(r) implies

that hn(r) ≤ xr2+1/x when r ∈ [r‡n , c
−1
0 r0]. Noting that limn∈Λ′ r‡n = 0,

Lemma 6.4 can be invoked using as input Λp = Λ′ and x to prove that
the local Hölder property assertion holds at p with Hölder exponent greater
than c−1

0 δ.
The statement of the third case reintroduces notation from Part 3 of

Section 6b.

Case 3. This case occurs when three conditions are met. The first con-
dition requires that hn(r) > r2+1/16 for all r ∈ [12r♦n

, 9r♦n] when n ∈ Λ
is sufficiently large; and the second condition requires that
limn∈Λ supr∈[ 1

2
r♦n,9r♦n] nn(r) < δ. The third condition requires there be a

subsequence Λ′ ∈ {1, 2, . . .} and an associated sequence {p∗n}n∈Λ′ ⊂ M
with the following properties.

• Each n ∈ Λ′ version of p∗n has distance less than 3r♦n from p.
• Either or both of the following statements are true.

i) If n ∈ Λ′, then there exists r∗‡n ∈ [12r∗♦n, 9r∗♦n] such that

h∗n(r∗‡n) ≤ r
2+1/16
∗‡n .

ii) supr∈[ 1
2
r∗♦n,9r∗♦n] n∗n(r) ≥ δ.

(6.20)

Suppose there is a subsequence Λ′′ ⊂ Λ′ such that Item i) in the second
bullet of (6.20) holds for all n ∈ Λ′′. Fix n ∈ Λ′′ and let h∗n denote the
p∗n version of h. But for cosmetic changes, the argument in Case 1 can
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be used with p∗n replacing p to see that h∗n(s) ≤ c0s
2+1/16 for all s ∈

[9r∗♦n, c−1
0 ]. Keeping this in mind, use an integration by parts with the fact

that ‖∇An
ân‖2 ≤ c0 and |ân| ≤ c0 to see that

(6.21) hn(s) ≤ h∗n(s+ 4r♦n) + c0r
3/2
♦n ,

when s > 10r♦n. Fix r > 0 and (6.21) implies that limn∈Λ′ hn(r) ≤ c0r
2+1/16.

This being the case, then Lemma 6.4 can be invoked using as input Λp = Λ′′

and any c ≥ c0 to prove that p has the local Hölder property.
Suppose next that Item i) of (6.20) is not true if n ∈ Λ′ is large. This

understood, throw out the finite set of integers where Item i) is true and use
Λ′ now to denote the remaining set. Each n ∈ Λ′ obeys the condition in Item
ii) of (6.20). But for cosmetic changes, the argument in Case 2 can be used
with each n ∈ Λ′ version of p∗n replacing p to obtain the following data: A
number c > 1 that depends only on δ and a sequence {r∗‡n}n∈Λ′ ⊂ (0, c−1])
with limit zero and with the following additional property: If n ∈ Λ′, then
r∗‡n is such that h∗n(s) ≤ cs2+1/c when s ∈ [r∗‡n, c−1]. Granted this data,
use (6.21) to conclude that limn∈Λ′ hn(r) ≤ c0cr

2+1/c for each r ∈ (0, c−1).
It follows from the latter bound that the sequence Λp = Λ′ and the given
value of c can be used as input to Lemma 6.4 to prove that p has the local
Hölder property with Hölder exponent greater than c−1

0 δ.

Step 3. Assume that {(An, ân)}n∈Λ is such that limn∈Λ |ân|(p) = 0 and
limn→∞ r♦n = 0. The paragraphs that follow prove that at least one of the
three cases in Step 2 applies with δ being greater than c−1

0 . To this end,
assume to the contrary that none of these cases apply for a given δ. The
existence of such a sequence is shown below to lead to nonsense when δ is
smaller than c−1

0 .
After discarding a finite set of terms and then relabeling the result as Λ,

then any given n ∈ Λ pair from the sequence {(An, ân)}n∈Λ must have the
following properties:

• hn(r) ≥ r2+1/16 for all r ∈ [12r♦n, 4r♦n].
• nn(r) < δ for all r ∈ [12r♦n, 4r♦n].
• Supposing that p∗n has distance less than 3r♦n from p and that r ∈
[12r∗♦n, 9r∗♦n], then h∗n(r) ≤ r2+1/16 and n∗n(r) < δ.

(6.22)

Indeed, the first bullet of (6.22) must be obeyed to avoid a Case 1 label,
the second bullet of (6.22) must be obeyed to avoid a Case 2 label, and the
third bullet of (6.22) must be obeyed to avoid a Case 3 label.
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Step 4. Fix n ∈ Λ and a point p∗n ∈ M with dist(p, p∗n) ≤ 3r♦n. The
constructions in Part 4 of Section 6b can be repeated to construct what is
denoted there by â∗∗n. The L2 norm of â∗∗n on the |x| ≤ 1 ball in R3 is equal
to 1. Moreover, the condition on n∗n in the third bullet of (6.22) implies that

(6.23)

∫
|x|≤1

|∇A∗♦n
â∗∗n|2 ≤ c0δ.

With (6.23) understood, fix ε ∈ (0, 1] and let κε denote the E ≤ c0 and
μ = 1

4 version of what is denoted by κE,μ,ε in Proposition 3.2 and (3.8). It

follows from (6.23) that if δ ≤ c−1
0 κ−1 and if n is large so that r♦n ≤ c−1

0 κ−1
ε ,

then the square of the L2 norm of FA∗♦n
on the |x| ≤ 3

4 ball is bounded by ε.

Step 5. Having fixed n ∈ Λ, repeat the iteration procedure in Part 6 of
Section 6b to construct an iteration sequence {p, p∗n,1, . . . , p∗n,k}. The final
paragraph of Step 4 implies that what is said about p∗n,k in Part 7 in Section
6b holds in this case also. In particular, (6.15) holds. The latter inequality
is nonsensical if ε < c−1

0 and n is large for the same reason it is nonsensical
in Section 6b: It runs afoul of the definition of r∗♦n,k.

5. Corrections for Section 7 of [T1]

Lemma 7.7’s second bullet makes the assertion that there is a strictly positive
lower bound for the value of the function p → n(p)(0) on Z. The argument
given for this in Part 5 of Section 7c) is circular and so does not prove the
claim. The argument that follows gives a proof of Lemma 7.7’s assertion
that there is κ > 1 such that n(p)(0) > κ−1 on Z. The proof starts with
the identity |v| = |â♦| from Proposition 7.1. Granted this identity, then
Proposition 6.1 supplies κ > 1 such that if p ∈ Z and q is a point in
M in a small radius ball centered at p, then |v|(q) ≤ dist(p, q)1/κ. What
follows is a consequence: If r is positive but small, then h(p)(r) ≤ c0xr

2+2/κ.
Meanwhile, Items b) and c) of the fourth bullet of Proposition 7.1 that
h(p)(r) ≥ x′r2+2N(p)(0) if r is small with x′ being independent of r if r is
small. These two bounds are not compatible if n(p)(0) < κ.
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