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Type II blow up for the energy supercritical NLS

Frank Merle, Pierre Raphaël, and Igor Rodnianski

We consider the energy super critical nonlinear Schrödinger equa-

tion

i∂tu+Δu+ u|u|p−1 = 0

in large dimensions d ≥ 11 with spherically symmetric data. For

all p > p(d) large enough, in particular in the super critical re-

gime

sc =
d

2
− 2

p− 1
> 1,

we construct a family of C∞ finite time blow up solutions which

become singular via concentration of a universal profile

u(t, x) ∼ 1

λ(t)
2

p−1

Q

(
r

λ(t)

)
eiγ(t)

with the so called type II quantized blow up rates:

λ(t) ∼ cu(T − t)
�
α , � ∈ N∗, 2� > α = α(d, p).

The essential feature of these solutions is that all norms below

scaling remain bounded

lim sup
t↑T

‖∇su(t)‖L2 < +∞ for 0 ≤ s < sc.

Our analysis fully revisits the construction of type II blow up so-

lutions for the corresponding heat equation in [15], [34], which was

done using maximum principle techniques following [26]. Instead

we develop a robust energy method, in continuation of the works

in the energy critical case [38], [31], [39], [40] and the L2 critical

case [22]. This shades a new light on the essential role played by

the solitary wave and its tail in the type II blow up mechanism,

and the universality of the corresponding singularity formation in

both energy critical and super critical regimes.
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1. Introduction

1.1. The NLS problem

In this paper we study the focusing nonlinear Schrödinger equation:

(1.1) (NLS)

{
i∂tu+Δu+ u|u|p−1 = 0,
u|t=0 = u0

(t, x) ∈ R+×Rd, u(t, x) ∈ C.

This canonical dissipative model conserves the total energy and mass:

E(u(t)) =
1

2

∫
|∇u|2 − 1

p+ 1

∫
|u|p+1 = E(u0),(1.2) ∫

|u(t)|2 =
∫

|u0|2.(1.3)

The scaling symmetry uλ(t, x) = λ
2

p−1u(λ2t, λx) for λ > 0 is an isometry of
the homogeneous Sobolev critical space

‖uλ(t, ·)‖Ḣsc = ‖u(λ2t, ·)‖Ḣsc for sc =
d

2
− 2

p− 1
.

We focus on the energy critical and super critical models:

sc ≥ 1 i.e. p ≥ 2∗ − 1 =
d+ 2

d− 2
, d ≥ 3.

These problems are locally well posed in Hsc and if the nonlinearity is ana-
lytic

p = 2q + 1, q ∈ N∗,

then the flow propagates Sobolev regularity and there holds the blow up
criterion:

T < +∞ implies lim
t↑T

‖u(t)‖Hs = +∞ for s > sc.

1.2. Type I and type II blow up for the heat equation

Singularity formation is better understood for the scalar nonlinear heat equa-
tion

(1.4) (NLH)

{
∂tu = Δu+ up,
ut=0 = u0

(t, x) ∈ R+ × Rd
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in dimension d ≥ 3, in particular in the radial setting where maximum
principle techniques apply. In particular, one can construct time-dependent
Lyapunov functionals, based on counting the number of spatial intersections
between two solutions. Let us very briefly recall some of the main known facts
on singularity formation for (1.4) in the energy critical and super critical
range

p > 2∗ − 1, sc > 1.

The basic object at the heart of the analysis is the self-similar profile. Let
us look for solutions to (1.4) of the explicit form

(1.5) u(t, x) =
1

λ(t)
2

p−1

Qb

(
r

λ(t)

)
where λ(t) is given by the exact self similar-scaling:

(1.6) λ(t) =
√

b(T − t), b = 1.

Qb is then a solution elliptic stationary self-similar equation:

(1.7) ΔQb − bΛQb +Qp
b =, Λ =

2

p− 1
+ y · ∇, b = 1.

Spherically symmetric solutions of (1.7) are completely classified. There are
two fundamental objects: the regular at the origin constant self-similar so-
lution

(1.8) Q1 ≡ κp, κp =

(
2

p− 1

) 1

p−1

,

and the singular at the origin homogeneous self-similar solution:

(1.9) R(r) =
c∞

r
2

p−1

, c∞ =

[
2

p− 1

(
d− 2− 2

p− 1

)] 2

p−1

.

Type I blow up: The regular constant self-similar solution (1.8) generates a
stable blow up dynamics of so called type I with universal blow up rate given
by:

(1.10) ‖u(t)‖L∞ ∼ 1

(T − t)
1

p−1

,
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consistent with (1.5), (1.6). The existence and stability of this object can be
proved using spectral techniques and energy methods, [10], [11], [12], [33],
[3]. In fact. this blow up regime exists for all p and is not specific to the
energy supercritical range. A related analysis has been recently successfully
propagated to the case of the wave equation, [7].

In the regime 2∗ − 1 < p < pJL there exists another class of regular
solutions, decaying at ∞, to the self-similar equation (1.7) which give rise
to the type I unstable blow up1, [19], [25]. Here, pJL if the Joseph-Lundgren
exponent given by

(1.11) p > pJL =

{
+∞ for d ≤ 10,
1 + 4

d−4−2
√
d−1

for d ≥ 11.

Type II blow up: In the 1992 unpublished manuscript by Herrero and Ve-
lasquez, announced in [15], proposed a different type of blow up mechanism
for p > pJL, based on a threshold structure of the spectrum of the linearized
operator, close to (1.9),

(1.12) HR = −Δ+Λ− pcp−1
∞
r2

The spectrum of HR turns out to be completely explicit in suitable weighted
spaces. The authors describe a singularity formation in which

(1.13) ‖u(t)‖L∞ ∼ 1

(T − t)
2α�

p−1

, � ∈ N∗, 2α� > 1

where α is the phenomenological number (1.25). The blow up bubble corre-
sponds, in self-similar renormalized variables,

(1.14) u(t, x) =
1

λ(t)
2

p−1

v(s, z), z =
r

λ(t)
, λ(t) =

√
T − t,

ds

dt
=

1

λ2(t)
,

to a profile generated by the singular self-similar solution R:

(1.15) v(s, z) = R(z) + e−λjsψj(z) + lot

where λj is the j-th, j = j(�), strictly positive eigenvalue with eigenvector
ψj of the linearized operator HR. The decomposition (1.15) is singular at

1this corresponds to a threshold regime between global solutions and the stable
type I blow up dynamics.
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the origin and, in particular, does not readily imply the L∞ control (1.13).
It is merely designed to capture the behavior of the solution tail, while
the leading order of the solution near the origin is given by a renormalized
smooth radial solitary wave Q(r) solving

ΔQ+Qp = 0, Q(0) = 1.

The situation was clarified in the series of works by Matano and Merle
[25, 26] through the proof of two fundamental theorems in the radial set-
ting:

• For 2∗ − 1 < p < pJL, only type I (1.10) occurs, with both stable and
threshold regimes.

• For p > pJL, type II occurs as a threshold dynamics between type I
and global existence. This requires in particular d ≥ 11, and yields an
indirect proof of the existence of type II blow up solutions.

We emphasize that an essential tool in the analysis in [25, 26] was a construc-
tion of a Lyapunov functional based on the precise counting of intersections
of a solution with the singular self-similar solution R. This feature strongly
anchors the analysis to the radial setting and to the use of tools reliant on
the maximum principle.
Following that, using the maximum principle tools developed in [25, 26],
Mizoguchi, in [34, 35], has been able to rigorously implement the formal
construction of [15] to prove both the existence of solutions with blow up
speed (1.13) and to give a complete classification of radial type II blow
up solutions2. The difficulty here is that the decomposition (1.15) is fun-
damentally singular both at infinity, where all terms have infinite energy,
and at the origin, where both R and ψj are singular3. The whole analy-
sis consists in deriving (1.15), first in some weak local L2 sense, and then
propagating this weak control to the L∞ topology in a self-similar win-
dow

(1.16)
1

A(t)
< z < A(t), lim

t→T
A(t) = +∞.

The maximum principle based tools developed in [25, 26] are once again
essential in this analysis and not at all amenable to an extension of these
results to a problem like NLS, or even the non-radial heat equation.

2in a suitable class.
3without an obvious cancellation.
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1.3. Critical blow up problems

The past ten years has seen remarkable progress on the question of singu-
larity formation for critical problems, where the scaling symmetry meets a
conservation law. For (1.4), this corresponds to the case p = 2∗−1. Interest-
ingly enough, even maximum principle techniques were not able to address
this case, and despite some formal predictions [9], the rigorous derivation of
type II blow up solutions has remained open until very recently.
A new intuition based on Liouville classification theorem and a new set of
energy type techniques have led to the pioneering blow up results on the
mass critical (gKdV) [20], [27], [21], to the new classification results of blow
up dynamics near the ground state for the mass critical NLS [28], [29], [30],
and more recently to a complete classification of the flow near the ground
state for the (gKdV) [22], [23], [24]. Energy critical models have also been
a source of important progress in connection with the two dimensional crit-
ical geometric equations: the wave maps, the Schrödinger maps and the
parabolic harmonic heat flow, [44], [18], [14], [38], [31], [39], [40]. New fun-
damental tools have been developed for the construction of energy critical
blow up solutions, in settings where even an existence of singular dynam-
ics had been mostly unknown, and for the analysis of their stability/finite
codimensional instability. A continuum of blow up rates were constructed in
[18] for the wave map problem, and in [22] for gKdV, while for the parabolic
heat flow, a discrete sequence of blow up regimes was rigorously obtained
in [40], in agreement with the formal predictions in [2]. In the setting of
the nonlinear heat equation (1.4), these techniques have led to the first con-
struction of type II blow up solutions in the energy critical case p = 3, d = 4,
[45].

In all these works, the blow up profile is not given by a stationary self-
similar solution to (1.7), but rather by a soliton, i.e. a smooth stationary
or time periodic solution to the original PDE, for example for the (NLS)
equation:

(1.17) u(t, x) = Q(x)eit, ΔQ+Qp = 0.

The blow up solution then corresponds to a decomposition

u(t, x) =
1

λ(t)
2

p−1

v(s, y)eiγ(t), y =
x

λ(t)
,

ds

dt
=

1

λ2(t)
,

with
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(1.18) v(s, y) = Q(y) + ε(s, y), |ε| � 1.

The blow up rate λ(t) is never given by the self-similar speed (1.14), but
by its suitable deformations. The ground state which is a smooth stationary
solution, as opposed to the singular self-similar solution (1.9), turns out,
after renormalization, to be the universal attractor of the flow in a suitable
topology:

(1.19) lim
t↑T

‖∇sε(t)‖L2 = 0 for s > sc.

A robust general strategy for the construction of blow up solutions in the
critical regimes emerged from the works [38], [31], [39], [40], [41], [22] and
relies on a two step procedure:

• Construction of a suitable approximate blow up profile through iter-
ated resolutions of elliptic equations. The “tail computation” allows
one to derive formally the blow up speed from the behavior of the tail
of a profile at infinity. An essential algebraic fact for the analysis is
the asymptotic behavior

(1.20) Q(r) ∼ 1

rc(d)

The parameter c(d) drives the derivation of the blow up law (and the
possibility of a blow up with Q profile).

• Implementation of an energy method to control the full flow via the
derivation of “Lyapunov” functionals involving super critical Sobolev
norms adapted to the linearized flow near the ground state, which do
not rely on spectral estimates and may therefore be easily adapted to
various settings4.

1.4. Super critical numerology

Let us now come back to the super critical problem sc > 1 and discuss some
essential algebraic facts. The problem

ΔQ+Qp = 0

admits a one parameter family of smooth spherically symmetric solitary
waves solutions with the asymptotic behavior

4for example, nonlocal non self-adjoint operators as in [41], or quasilinear prob-
lems in [31].
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(1.21) Q(r) ∼ R(r) =
c∞

r
2

p−1

as r → +∞,

with c∞ given by (1.9). A well known characterization of the Joseph-Lund-
gren exponent (1.11) is given through the positivity of the linearized operator
closed to Q, see for example [16]. Indeed, let

L+ = −Δ− pQp−1,

then:

• for 2∗ − 1 < p < pJL, L+ has a non positive eigenvalue with well
localized eigenvector;

• for p > pJL, L+ is strictly lower bounded by the Hardy potential

(1.22) L+ > −Δ− (d− 2)2

4r2
> 0.

The proof of (1.22) relies on a Sturm-Liouville oscillation argument and is
related to the asymptotic expansion

(1.23) Q(r) =
c∞

r
2

p−1

+
c1
rγ

+ o

(
1

rγ

)
, c1 
= 0,

where

(1.24)

{
γ = 1

2(d− 2−
√
Discr) > 0, Discr = (d− 2)2 − 4pcp−1

∞ > 0
p > pJL iff Discr > 0.

We introduce the phenomenological number

(1.25) α = γ − 2

p− 1
, α > 2 for p > pJL,

see Appendix A.

1.5. Statement of the result

Our main claim in this paper is that the asymptotics (1.23) for p > pJL,
replaces the expansion (1.20) in the critical case, are perfectly suitable for the
implementation of the strategy for a construction of a blow bubble solution
with profile Q. The resulting blow up mechanism is type II energy super
critical:
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Theorem 1.1 (Type II blow up for the super critical NLS equation). Let

d ≥ 11. Let α be given by (1.25) and assume:

(1.26)

⎧⎨⎩
p = 2q + 1, q ∈ N∗,
p > pJL,
Discr > 4

and

(1.27)
α

2
/∈ N,

1

2
+

1

2

(
d

2
− γ

)
/∈ N,

1

2
+

1

2

(
d

2
− 2

p− 1

)
/∈ N.

Fix an integer

(1.28) � ∈ N∗ with � >
α

2
,

and an arbitrary large Sobolev exponent

s+ ∈ N, s+ ≥ s(�) → +∞ as � → +∞.

Then there exists a radially symmetric initial data u0(r) ∈ Hs+(Rd,C) such

that the corresponding solution to (1.1) blows up in finite time 0 < T < +∞
via concentration of the soliton profile:

(1.29) u(t, r) =
1

λ(t)
2

p−1

(Q+ ε)

(
r

λ(t)

)
eiγ(t)

with:

(i) Blow up speed:

(1.30) λ(t) = c(u0)(1 + ot↑T (1))(T − t)
�

α , c(u0) > 0;

(ii) Stabilization of the phase:

(1.31) γ(t) → γ(T ) ∈ R as t → T ;

(iii) Asymptotic stability above scaling:

(1.32) lim
t↑T

‖∇sε(t, ·)‖L2 = 0 for all sc < s ≤ s+;
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(iv) Boundedness below scaling:

(1.33) lim sup
t↑T

‖u(t)‖Hs < +∞ for all 0 ≤ s < sc;

(v) Behavior of the critical norm:

(1.34) ‖u(t)‖Ḣsc =

[
c∞

√
�

α
+ ot↑T (1)

]√
|log(T − t)|.

Comments on Theorem 1.1

1. On the assumptions on p. The assumption (1.27) is generic but technical
and avoids the appearance of logarithmic losses in the sequence of weighted
Hardy inequalities which we use to close our energy estimates. Unlike the
situation in the critical case [38], [31], we claim that these logarithms are
irrelevant in our setting and, in this sense, the assumption (1.27) could be
removed. Regarding the assumption (1.26), Discr > 4 is automatic for d ≥ 13
and p ≥ 3, or for p large enough in dimensions d = 11, 12. This assumption is
relevant only for the asymptotic development of the solitary wave (2.2), and
allows for a simple decoupling of the remainder terms. We however claim
that it is not essential and we could treat the case Discr > 0 along similar
lines. Finally, the assumption p = 2q + 1 makes the nonlinearity analytic,
and in particular allows us to estimate the solution in any homogeneous
Sobolev norm Ḣs. Given � as in the statement of Theorem 1.1, we need to
control Ḣs(�) norm of the solution with

lim
�→∞

s(�) = +∞.

Hence, a C∞ regularity of the nonlinearity is required for a statement which
holds true for all � large enough. However, for a given � a blow up solution
satisfying (1.30) can be constructed for any p ≥ p(�) large enough using the
techniques of this paper. Yet, as presented, our analysis does not cover non
smooth nonlinearities near the pJL exponent.

2. On the role of the topology. We stress that the structure of the blow up
solution (1.29), (1.32) is exactly the same as the one obtained in the energy
critical case (1.19), see in particular [38], [31], [39]. This is quite unexpected
and reveals the essential role payed by the topology in which the deformation
of the ground state is measured.
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For example, the structure of Q and a theorem from [4] ensures that
e−itHQ enjoys standard Strichartz estimates, and hence we expect that Q is
stable and in fact asymptotically stable as a solution to (1.1) with respect
to well localized perturbations.

This was proved using sup-sub solutions for the nonlinear heat equa-
tion in [13]. A related phenomenon is the global existence proof by Beje-
naru, Tataru [1] for the energy critical Schrödinger map in the vicinity of
the ground state harmonic map. However, since Q has infinite energy from
(1.23), if the perturbation is well localized then this kind of flow corresponds
to infinite energy solutions. We should also mention here a very recent re-
sult of Krieger, Schlag [17] on a global existence of certain solutions to a
supercritical septic wave equation in dimension three, arising from the data
with an infinite scale invariant norm.

On the contrary, the full initial data of Theorem 1.1 can be taken to
be even compactly supported (and, of course, smooth). This means that the
initial perturbation ε to Q must possess a far away tail to cancel the slow
decay of Q at infinity, and hence ceases to belong to standard spaces in
which decay is usually measured. These considerations necessitate the need
to work with homogeneous high Sobolev norms for which Q has a finite
contribution and for which the decomposition (1.29) makes complete sense.
Let us also note another unexpected feature: the subcritical conservation
laws play essentially no role in our analysis. In fact, the whole analysis takes
place in the super critical algebra Ḣσ ∩ Ḣs+ with

sc < σ <
d

2
� s+

and whether the full solution is or is not of finite energy or mass is irrelevant
in the blow up regime under consideration.

3. On the role of the decay of the ground state. The tail computation, initiated
in the critical case, allows one to compute explicitly the expected rates of
type II blow up directly from the asymptotic expansion of the ground state
at spatial infinity, see the strategy of the proof below. It is therefore essential
to recall that if

Q(r) ∼ 1

rc(d,p)
, p ≥ 2∗ − 1,

then the mapping

p → c(d, p) is discontinuous at p = 2∗ − 1
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For the heat equation this explains why type II blow up holds in the critical
case p = 2∗−1, [39], [45], ceases to exist for 2∗−1 < p < pJL, [25], and then
exists again for p > pJL.

4. On the manifold construction. The statement of Theorem 1.1 can be made
more precise. Let � ∈ N∗ satisfying (1.28), s+ � 1, then our initial data is
of the form

(1.35) u0 = Qb(0),a(0) + ε0

where Qb,a is a deformation of a ground state Q and

a = (a1, . . . , aL−), b = (b1, . . . , bL+
), s+ ∼ 2L+ ∼ 2L−

correspond to possible unstable directions of the flow in the ˙Hs+ topology
in a suitable neighborhood of Q. Fix a low Sobolev exponent

sc < σ <
d

2
,

we show that for all ε0 ∈ Ḣσ ∩Hs+ small enough in this topology and for all
(b1(0), b�+1(0), . . . , bL+

(0))×(ak�+1(0), . . . , aL−(0) small enough, there exists
a choice of unstable directions

(b2(0), . . . , b�(0))× (a1(0), . . . , ak�
(0))

such that the solution arising from initial data (1.35) satisfies the conclu-
sions of Theorem 1.1. Here, k� is given by (1.41). This implies that our blow
up solutions are constructed for a codimension � − 1 + k� > 0 manifold of
initial data. Let us insist that our class of initial data includes in particular
compactly supported C∞ initial data. As is now standard in the field, this
manifold is constructed as a C0 manifold using a soft Brouwer type fixed
point argument. This provides a precise count of the number of directions
of instability in this type II blow up regime. Constructing a local Lipschitz
manifold would require proving an appropriate local uniqueness statement.
The recent analysis [8] clearly suggests that once the existence is shown, by a
Brouwer type argument, and with a strong decay on the solution – as is the
case in the setting of Theorem 1.1 – then local uniqueness can be obtained by
rerunning the machinery on the difference of two solutions, see also [42], [22].

5. On quantization of blow up rates. The quantization of blow up rates (1.30)
is the same as the one obtained in the case of the heat equation through a
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complete classification theorem in [35], see also [40]. In dispersive settings,
a continuum of blow up rates can be constructed, [18], but they correspond
to solutions propagating from non-regular data and are therefore never H∞.
See [24] for the study of related phenomena. We expect that the quantized
rates (1.30) are the building blocks to classify type II blow up of smooth
solutions near the ground state for (1.1).

6. Comparison with the heat equation. Observe that (1.29), (1.30), (1.32)
imply the rate of blow up

‖u(t)‖L∞ ∼ 1

λ(t)
2

p−1

∼ 1

(T − t)
2α�

p−1

which, according to (1.13), is the same as for the nonlinear heat equation.
Let us however stress that the decomposition (1.29) centered on the solitary
wave looks very different from the decomposition (1.15) centered on the
singular self-similar solution. In fact, we claim that the sharp description
of the blow up behind (1.29) implies a quantized version of the decompo-
sition (1.15) in self-similar variables, see the Strategy of the proof below.
In other words, our analysis covers, with one set of estimates relying only
on energy methods, both the self-similar zone and the zone near the singu-
lar point. This is a substantial clarification of the analysis of type II blow up.

7. Other super critical blow up for NLS. In the setting of the energy super
critical NLS equation, the sole other example of a blow up phenomenon that
we are aware of is the construction of standing ring blow up solutions for
the focusing quintic model p = 5 in all dimensions d ≥ 2, [36], [37]. These
solutions emerge from smooth well localized radial data and concentrate
on the sphere r = 1. The behavior of Sobolev norms is very different, in
particular for these ring solutions

lim
t↑T

‖u(t)‖Ḣs = +∞ for all s > 0,

which implies that these blow up solutions are very much connected to the
mass conservation law. Theorem 1.1 gives the first result of type II blow
up for the energy super critical NLS which, following [25], [26], should be
understood as a singular regime where according to (1.33), all norms below
scaling remain bounded.

Our approach can be extended to the heat and wave equations, and the
radial assumption can be removed. The case of the wave equation will be
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treated in [5].

Notations: We collect the main algebraic notations and facts which are
used throughout the paper.
Super critical numerolgy: Given d ≥ 11, p > pJL, we let:

γ =
1

2
(d− 2−

√
Discr) > 0, Discr = (d− 2)2 − 4pcp−1

∞ > 0

and

α = γ − 2

p− 1
> 2,

see Appendix A. We define5:{
k+ = E

[
1
2 + 1

2

(
d
2 − γ

)]
≥ 1,

1
2 + 1

2

(
d
2 − γ

)
= k+ + δk+

, 0 ≤ δk+
< 1.

(1.36) ⎧⎨⎩ k− = E
[
1
2 + 1

2

(
d
2 − 2

p−1

)]
> 1,

1
2 + 1

2

(
d
2 − 2

p−1

)
= k− + δk− , 0 ≤ δk− < 1.

(1.37)

so that from (1.27):

0 < δ± < 1.

We let

(1.38) δp = max{δ+, δ−}, 0 < δp < 1,

and

(1.39) Δk = k− − k+ ≥ 1

from (1.25). We will use the relations

(1.40)

⎧⎨⎩
d− 2γ − 4k+ = 4δk+

− 2

d− 4
p−1 − 4k− = 4δk− − 2,

α
2 −Δk = δk− − δk+

.

We let

(1.41) �− α

2
= k� + δ�, k� ∈ N, 0 < δ� < 1

5where we recall the definition of the integer part: E(x) ≤ x < E(x)+ 1, E(x) ∈
Z.
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from (1.27).
Notations for the analysis: Given a large integer L+ � 1, we let:

(1.42) L− = L+ −Δk

and define the Sobolev exponent:

(1.43) s+ = 2k+ + 2L+ + 1.

We define the generator Λ of a scaling symmetry

Λu =
2

p− 1
u+ y · ∇u.

Given b1 > 0, we define:

(1.44) B0 =
1√
b1
, B1 = B1+η

0

where

(1.45) η =
η0
L+

, 0 < η0 � 1.

We denote:

Bd(R) = {x = (x1, . . . , xd) ∈ Rd,

d∑
i=1

x2i ≤ R2},

Sd(R) = {x = (x1, . . . , xd) ∈ Rd,

d∑
i=1

x2i = R2}.

We let the matrix

(1.46) J =

(
0 −1
1 0

)
, J2 = −Id = −

(
1 0
0 1

)
.

For real vectors:

u =

∣∣∣∣ u1u2 , v =

∣∣∣∣ v1v2 , (u, v) = u1v1 + u2v2

and for complex valued functions:

(f, g) = �
(∫

Rd

fg

)
.
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The nonlinearity

f(u) = u|u|p−1.

We define the sequence of iterated derivatives

Dku =

∣∣∣∣ Δmu for k = 2m
∂yΔ

mu for k = 2m+ 1.

We let χ be a smooth radially symmetric cut-off function

(1.47) χ(x) =

{
1 for |x| ≤ 1
0 for |x| ≥ 2.

Linearized operator. Given ε ∈ C, we identify

(1.48) ε =

∣∣∣∣ �(ε)�(ε) .

Near Q the linearization of (1.1) generates a linear operator L, given in
complex variables by

Lε = −Δε− p+ 1

2
Qp−1ε− p− 1

2
Qp−1ε

or, equivalently, in terms of (1.48):

L =

(
L+ 0
0 L−

)
where

L+ = −Δ− pQp−1, L− = −Δ−Qp−1.

We let the potentials

(1.49) W+ = pQp−1, W− = Qp−1,

and introduce the matrix operator

(1.50) L̃ = −JL =

(
0 L−
−L+ 0

)
,

adapted to the linearized flow of (1.1) near Q

i∂sε = Lε i.e. ∂sε = L̃ε.
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Observe that

(1.51) L̃∗ =

(
0 −L+

L− 0

)
= JL̃J, (JL̃)∗ = JL̃.

1.6. Strategy of the proof

We now give a brief description of the proof of Theorem 1.1. We keep the
notations and the strategy close to the ones of the critical case, see in par-
ticular [40], with the intent to show the deep unity of the analysis. In what
follows, we pick

� ∈ N∗, � >
α

2
associated with the blow up speed (1.30), and another integer

L+ � �, L− = L+ −Δk,

related to the regularity of the solution and the construction of suitable
Lyapunov functionals.

(i) Renormalized flow and iterated resonances. Let us look for a modulated
solution u(t, r) of (1.4) in the modulated form:

(1.52) u(t, r) = v(s, y)eiγ , y =
r

λ(t)
,

ds

dt
=

1

λ2(t)

which leads to the renormalized flow:

(1.53) ∂sv − iΔv + b1Λv + ia1v − iv|v|p−1 = 0, b1 = −λs

λ
, a1 = γs.

Assuming that the leading par of the solution is given by the ground state
profile6, the remaining linear part of the flow is governed by the matrix
Schrödinger operator

L̃ =

(
0 L−
−L+ 0

)
.

The scaling and phase invariances of the problem induce an explicit reso-
nance7:

L̃
∣∣∣∣ ΛQQ = 0.

6this is a theorem for type II blow up in the radial case, [25].
7This is not an eigenvalue, since neither Q nor ΛQ decay sufficiently fast at

infinity. In particular, ΛQ 
∈ L2.
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Each component behaves differently at infinity:

Q ∼ c∞

y
2

p−1

and there holds the fundamental cancellation of the tail at infinity:

(1.54) ΛQ ∼ c

yγ
as y → ∞ with γ = α+

2

p− 1
> 2 +

2

p− 1
.

We already see here the appearance of the condition p > pJL: for 2
∗−1 < p <

pJL, the asymptotic (1.54) is false and would instead include oscillations8,
see for example [13].
We may now compute the kernel of the powers of L̃ through the iterative
scheme

(1.55) L̃Φk+1,+ = Φk,+, Φ0,+ =

∣∣∣∣ ΛQ0 , L̃Φk+1,− = Φk,−, Φ0,− =

∣∣∣∣ 0Q
which display a non trivial tail at infinity:

(1.56) JkΦk,+ ∼
∣∣∣∣ ck,+y2k−γ

0
, JkΦk,− ∼

∣∣∣∣∣ 0ck,−y2k− 2

p−1
for y � 1.

Note in passing that the positivity of L+ is equivalent to

ΛQ > 0

and implies with L−Q = 0 the factorization

(1.57) L± = A∗
±A±, A+ = −∂y + ∂y(logΛQ), A− = −∂y + ∂y(logQ)

which simplifies the resolution of L̃u = f in the radial sector.

(ii) Tail dynamics. We now implement the approach developed in [38], [31],
[40] and claim that (Φk,±)k≥1 correspond to unstable directions which can
be excited in a universal way to produce the type II blow up solutions. To
see this, let us look for a slowly modulated solution to (1.53) of the form
v(s, y) = Qb(s),a(s)(y) with

(1.58) b = (b1, . . . , bL+
), a = (a1, . . . , aL−)

8a simple way of seeing this is to remark that γ given by (1.24) is complex valued.



Type II blow up 457

(1.59) Qb,a = Q(y) +

L+∑
k=1

bkΦk,+(y) +

L−∑
k=1

akΦk,−(y) +

L±+2∑
k=2

Sk,±(y, a, b)

where we expect the a priori bounds

(1.60) bk ∼ bk1, |ak| ≤ b
k+α

2

1 ,

and the improved decay estimates

|Sk,+(y)| � bk1y
2(k−1)−γ , |Sk,−(y)| � b

k+α

2

1 y2(k−1)− 2

p−1 ,

so that Sk is in some sense homogeneous of degree k in b1 but decays better
than Φk. The key point is that this improved decay is possible for a specific
regime of the universal dynamical system driving the modes (bk)1≤i≤L+

×
(ak)1≤k≤L− : this is the tail computation. In particular, the improved decay
(1.58) for the ak parameters is in agreement with the worst decay (1.56) of
Φk,−, and we bootstrap a regime where the influence of the a terms, i.e., of
the phase, is of lower order.
Let us now illustrate the tail dynamics. We inject the decomposition (1.59)
into (1.53) and choose the law, i.e. ODE, for ((ak)s, (bk)s) which cancels the
leading order term at infinity:

O(b1). We cannot adjust the law of b1 for the first term and obtain from
(1.53) the equation

b1

(
L̃Φ1,+ −

∣∣∣∣ ΛQ0
)

= 0, Φ1,+ ∼
∣∣∣∣ 0c1,+

yγ−2

as y → +∞.

O(a1). We similarly cannot adjust the law of a1 for the first term and obtain
from (1.53) the equation

a1

(
L̃Φ1,− −

∣∣∣∣ 0Q
)

= 0, Φ1,− ∼
∣∣∣∣∣

c1,−

y
2

p−1
−2

0
as y → +∞.

O(b21, b2). We consider the imaginary part and obtain

(b1)sΦ1,+ + b21ΛΦ1,+ − b2L̃Φ2,+ − L̃S2,+ = b21NL1(Φ1,+, Q) + lot

where NL1(T1, Q) corresponds to nonlinear interaction terms, while the
lower order terms come from neglecting some additional contributions which
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arise after the use of the a priori bounds (1.60). When considering the far
away tail (1.56), we have for y large,

ΛΦ1,+ ∼
(

2

p− 1
− (γ − 2)

)
Φ1,+ = (2− α) Φ1,+, L̃Φ2,+ = Φ1,+

and thus

(b1)sΦ1,+ + b21ΛΦ1,+ − b2L̃Φ2,+ ∼ ((b1)s + (2− α) b21 − b2)Φ1,+,

and hence the leading order growth for y large is cancelled by the choice

(b1)s + (2− α) b21 − b2 = 0.

We then solve for

L̃S2,+ = b21(ΛΦ1,+ − (2− α)Φ1,+)−NL(Φ1,+, Q)

and check that the far away tail is improved:

|S2,+| � b21y
2−γ for y � 1.

O(b1a1, a2). We now consider the real part and obtain to leading order

(a1)sΦ1,− + a1b1ΛΦ1,− − a2L̃Φ2,− − L̃S2,− = a1b1NL1(Φ1,+, Q) + lot.

When considering the far away tail (1.56), we have for y large,

ΛΦ1,− ∼
[

2

p− 1
−
(

2

p− 1
− 2

)]
Φ1,− = 2Φ1,−, L̃Φ2,− = Φ1,−

and thus

(a1)sΦ1,− + b1a1ΛΦ1,− − a2L̃Φ2,− ∼ ((a1)s + 2b1a1 − a2)Φ1,−,

and hence the leading order growth for y large is cancelled by the choice

(a1)s + 2b1a1 − a2 = 0.

We then solve for

L̃S2,− = a1b1(ΛΦ1,− − 2Φ1,−)−NL(Φ1,−, Q)
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and check that the far away tail is improved:

|S2,−| � a1b1y
− 2

p−1 for y � 1.

O(bk+1
1 , bk+1). At the k-th iteration, we obtain an elliptic equation of the

form:

(bk)sΦk,+ + b1bkΛΦk,+ − bk+1L̃Φk,+ − L̃Sk+1,+

= bk+1
1 NLk(Φ1,+, . . . ,Φk,+, Q) + lot.

We have from (1.56) for tails:

ΛΦk,+ ∼ (2k − α)Φk,+

and therefore:

(bk)sΦk,+ + b1bkΛΦk,+ − bk+1L̃Φk+1 ∼ ((bk)s + (2k − α)b1bk − bk+1)Φk,+.

The cancellation of the leading order growth occurs for

(bk)s + (2k − α)b1bk − bk+1 = 0.

We then solve for the remaining Sk+1,+ term and check that Sk+1,+ �
bk+1
1 y2k−γ for y large.

O(b1ak, ak+1). We obtain along similar lines:

(ak)sΦk,− + b1akΛΦk,− − ak+1L̃Φk,− − L̃Sk+1,−

= bk1a1NLk(Φ1,−, . . . ,Φk,−, Q) + lot.

We have from (1.56) for tails:

ΛΦk,− ∼ 2kΦk,−

and therefore:

(ak)sΦk,− + b1akΛΦk,− − ak+1L̃Φk+1 ∼ ((ak)s + 2kb1ak − ak+1)Φk,−.

The cancellation of the leading order growth occurs for

(ak)s + 2kb1ak − ak+1 = 0.
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We then solve for the remaining Sk+1,− term and check that Sk+1,− �
bk+1
1 y2k−

2

p−1 for y large. Note that we neglected here further nonlinear terms
in a since a will turn out to be lower order in the regime9 (1.60).

(iii) The universal system of ODE’s. The above approach leads to the uni-
versal system of ODE’s which we stop after the (L+)-th iterate:

(1.61)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(bk)s + (2k − α) b1bk − bk+1 = 0, 1 ≤ k ≤ L+, bL++1 ≡ 0,
(ak)s + 2kb1ak − ak+1 = 0, 1 ≤ k ≤ L−, aL−+1 ≡ 0,

−λs

λ = b1, γs = a1,
ds
dt =

1
λ2 .

Unlike the critical case, there is no further logarithmic correction to take
into account. The system (1.61) can be solved in a closed form, and a set of
explicit solutions is given by

(1.62)

{
bej(s) =

cj
sj 1 ≤ j ≤ L+

aej(s) = 0, 1 ≤ j ≤ L−
, s > s0 > 0,

where ⎧⎪⎨⎪⎩
c1 =

�
2�−α ,

cj+1 = −α(�−j)
2l−α cj , 1 ≤ j ≤ �− 1,

cj = 0, j ≥ �+ 1

, � ∈ N∗, � >
α

2
.

In the original time variable t, this produces λ(t) vanishing in finite (blow
up) time T with:

λ(t) ∼ (T − t)
�

α .

Moreover, the linearized flow of (1.61) near this solution is explicit and dis-
plays �−1 unstable directions in b and k� unstable directions in a, see Lemma
3.7 and Lemma 3.9. Note that � > α

2 > 1 and hence type II is always unsta-
ble10.

(iv). Decomposition of the flow and modulation equations. Let then the ap-
proximate solution Qb,a be given by (1.59), which by construction generates

9for example |a1b1| ∼ b
2+α

2
1 but a21 � b2+α

1 .
10On the contrary, the energy critical case treated in [39], [40] formally corre-

sponds to α = 1, and hence � = 1 is admissible and generates a stable type II
regime.
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an approximate solution to the renormalized flow (1.53):

Ψ = ∂sQb,a−iΔQb,a+b1ΛQb,a+ia1Qb,a−Qb,a|Qb,a|p−1 = Mod(t)+O(b
2L++2
1 )

where the modulation equation term is roughly of the form:

Mod(t) =

L+∑
k=1

[(bk)s + (2k − α)b1bk − bk+1] Φk,+

+

L−∑
k=1

[(ak)s + 2kb1ak − ak+1] Φk,−.

We localize Qb,a in the zone y ≤ B1 to avoid the irrelevant growing tails for
y � 1√

b1
. We then pick initial data of the form

u0(y) = Qb,a(y) + ε0(y), ‖ε0(y)‖ � 1

in some suitable sense and with (b(0), a(0)) chosen to be close to the date for
the exact solution (1.62). By a standard modulation argument, we introduce
a dynamically modulated decomposition of the flow

u(t, r) = (Qb(t),a(t) + ε)

(
t,

r

λ(t)

)
eiγ(t)

=

[
(Qb(t),a(t))

(
t,

r

λ(t)

)
+ w(t, r)

]
eiγ(t)(1.63)

where the L+ + L− + 2 modulation parameters (b(t), λ(t), a(t), γ(t)) are
chosen in order to manufacture the orthogonality conditions:
(1.64)

(ε(t), L̃kΦM,+) = 0, 0 ≤ k ≤ L+, (ε(t), L̃kΦM,−) = 0, 0 ≤ k ≤ L−.

Here ΦM,±(y) are some fixed directions depending on a large constant M ,

generating an approximation of the kernel of the powers of L̃, see section
4.1. This orthogonal decomposition, which for each fixed time t directly
follows from the implicit function theorem, now allows us to compute the
modulation equations governing the parameters (b(t), λ(t), a(t), γ(t)). The
Qb,a construction produces the expected modulation equations11:∣∣∣∣λs

λ
+ b1

∣∣∣∣+ |γs − a1|+
L+∑
i=1

|(bi)s + (2i− α)b1bi − bi+1|

11see Lemma 4.4.
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+

L−∑
i=1

|(ai)s + 2ib1ai − ai+1| � ‖ε‖loc + b
L++ 3

2

1(1.65)

where ‖ε‖loc measures a spatially localized norm of the radiation ε.

(v). The mixed energy/Morawetz estimate. According to (1.65), we need to
show now that local norms of ε are under control and do not disturb the
dynamical system (1.61). This is achieved via a high order mixed energy/
Morawetz type estimates, which in particular provide control of the high
order Sobolev norms adapted to the linear flow and based on the powers of
the linear operator L̃. In turn, the orthogonality conditions (1.64) are sharp
enough to ensure the Hardy type coercivity of the iterated matrix operator:

Es+ = (JL̃L̃k+L+ε, L̃k++L+ε) �
∫

|∇s+ε|2 +
∫ |ε|2

1 + y2s+

where s+ is given by (1.43). Here the factorization (1.57) will help simplify
the argument. As stated above we can dynamically control this norm thanks
to an energy estimate seen on the linearized equation in original variables,
i.e., by working with w in (1.63) and not ε. This strategy was initiated in
[44], [38], [31], [40]. The outcome is an estimate of the form

(1.66)
d

ds

{Es+ + b1M
λ2(s+−sc)

}
� b

2L++1+δ(d,p)
1

λ2(s+−sc)
, δ(d, p) > 0

where the right hand side is controlled by the size of the error in the con-
struction of the approximate blow up profile. Here M corresponds to an
additional Morawetz type term needed to control L2 terms sharply localized
on the soliton core. A remarkable algebraic fact is that the corresponding
virial type quadratic form is coercive thanks to the fact that L− > L+ > 0
in Ḣ1, see (2.4). Hence the estimate (1.66) belongs to the class of mixed
energy/Morawetz estimates introduced in [38], which have been particularly
efficient in blow up settings, see in particular [22], and which completely
avoid the use of spectral tools. We integrate (1.66) in time using the small-
ness

b1|M| ≤ 1

10
Es+

to estimate in the regime b1 ∼ be1 given by (1.62):

(1.67)

∫
|∇s+ε|2 +

∫ |ε|2
1 + y2s+

� Es+ � b
2L++δ(d,p)
1 , δ(d, p) > 0,
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which is good enough to control local norms in ε and close the modulation
equations (1.65).

(vi). Control of the nonlinear term and low Sobolev norms. The control of
high Sobolev norms alone is however not enough to control the nonlinear
term and we need a low Sobolev estimate. The bounds following from the
conservation laws would be too weak at this point, and we will need the
fundamental observation that

sc =
d

2
− 2

p− 1
<

d

2
� s+,

while Ḣ
d

2 almost embeds into L∞, and hence the space

Ḣσ ∩ Ḣs+ , sc < σ <
d

2
< s+

is an algebra. To close the nonlinear term, it therefore suffices to close an
estimate for the low Sobolev norm ‖∇σε‖2L2 for some sc < σ < d

2 . Let us
insist that it is essential that this norm is above scaling, any norm of ε below
scaling blows up. We then exhibit an energetic Lyapunov functional with
the dynamical estimate:

d

ds

{‖∇σε‖2L2

λ2(σ−sc)

}
� b1

λ2(σ−sc)

[
b
δ(d,p)
1 ‖∇σε‖2L2 + b

σ−sc+δ(d,p)
1

]
which upon integration in time yields a bound

‖∇σε‖2L2 � b
σ−sc+δ(d,p)
1 , δ(d, p) > 0

which is enough to control of the nonlinear term.

(vii). Construction of the C0 manifold. The above scheme designs a boot-
strap regime which traps blow up solutions with speed (1.30). According
to Lemma 3.7, Lemma 3.9, such a regime displays k� + � − 1 > 0 unstable
modes and one therefore needs to build the associated stable manifold. We
do this in a classical way using a Brouwer fixed point type argument as in
[6], and the proof of Theorem 1.1 follows.

(viii). Relation with the decomposition (1.15). Let us conclude this introduc-
tion by making a link between the above construction and the decomposition
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of previously known type II blow up solutions for the heat equation (1.15).
For this, let us consider the two changes of variables:

(1.68) u(t, x) =
1

λ
2

p−1

v(s, y)eiγ(t) =
1

μ
2

p−1

V (τ, z)eiγ(t)

with {
y = x

λ(t) ,
ds
dt =

1
λ2 , λ(t) = (T − t)

�

α

z = x
μ(t) ,

dτ
dt = 1

μ2 , μ =
√
T − t

where the second decomposition corresponds to the self-similar variables
(1.15) in the approach of Herrero-Velasquez:

(1.69) V (τ, z) = R(z) + e−λjτψj(z) + lot

where λj is the j-th, j = j(�), strictly positive eigenvalue with eigenvector
ψj of the linearized operator HR:

HR = −Δ− iΛ− pcp−1
∞
r2

.

We now show how our construction and estimates for the renormalized v
imply the decomposition (1.69) in the far field in renormalized variables.
We compute

b1 ∼ −λλt ∼ (T − t)
2�

α
−1

and thus

z =
λ

μ
y = (T − t)

�

α
− 1

2 z ∼
√

b1y.

We now estimate the leading order term in the decomposition (1.59) in the
zone

z ≥ 1 i.e. y ≥ B0 =
1√
b1

by neglecting:

• the a terms which are lower order, see (4.31), (6.11);
• the S terms which decay better and hence are lower order for z ≥ 1;
• the bk terms for k ≥ � + 1 which are the stable modes and also turn

out to be lower order, see (6.9).

Using



Type II blow up 465

bk ∼ bek ∼ 1

sk
∼ bk1

this gives the far away development:

Qb,a ∼ Q+

�∑
k=1

bkΦk,+(y) + lot = R+

�∑
k=1

ckb
k
1i

ky2k−γ + lot

= R(y) + b
γ

2

1

�∑
k=0

cki
kz2k−γ + lot,

and hence using (1.68) and the fact that R is homogeneous:

V (τ, z) =
(μ
λ

) 2

p−1

[
R(y) + b

γ

2

1

�∑
k=0

cki
kzk + lot

]
(z)

= R(z) + b
γ

2

1

(μ
λ

) 2

p−1

[
�∑

k=0

cki
kz2k−γ

]
+ lot.

We now compute

b
γ

2

1

(μ
λ

) 2

p−1 ∼ (T − t)
γ

2 [
2�

α
−1]

(T − t)
1

p−1 [
2�

α
−1]

= e−λ�τ , λ� = �− α

2
,

and obtain the leading order decomposition in the far away zone:

V (τ, z) = R(z) + e−λ�τψ�(z) + lot

with

ψ�(z) =

�∑
k=0

cki
kz2k−γ , λ� = �− α

2
.

Now a simple computation, see Appendix E, reveals that (λ�, ψ�) is an eigen-
value-eigenvector pair for the linearized operator close to the singular self
similar solution R. The exact same computation can be done for the heat
equation, and the conclusion is the following: the singular decomposition
(1.15) in self similar variables is exactly the long range expansion y ≥ 1√

b1
of the regular decomposition (1.63) in the regime (1.30).

This paper is organized as follows. In section 2, we collect the main linear
properties on the linearized matrix operator L̃ and its iterates. In section 3,
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we construct the approximate self-similar solutions Qb,a and obtain sharp
estimates on the error term Ψ. We also exhibit an explicit solution to the
dynamical system (1.61) and show that it possesses (� + k� − 1) directions
of instability. In section 4, we set up the bootstrap argument, Proposition
4.3. In section 5, we construct the main Lyapunov functionals which rely on
a mixed energy/Morawetz computation. In section 6 we close the bootstrap
bounds and build the C0 manifold of data satisfying the conclusions of The-
orem 1.1.
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2. The linearized Hamiltonian and its iterates

We collect in this section the main properties of the linearized Hamiltonian
close toQ, which are at the heart of both the construction of the approximate
blow up profile and the derivation of coercivity properties required for the
high Sobolev energy estimates.

2.1. The matrix operator

By a standard argument, all smooth radially symmetric solutions to

(2.1) Δφ+ φp = 0

are dilates of a given normalized ground state profile

φ(r) = λ
2

p−1Q(λr),

{
ΔQ+Qp = 0
Q(0) = 1

.

Let us recall the following Lemma which follows directly from the results in
[13], [16]:

Lemma 2.1 (Structure of the ground state and positivity of L±). Let p >
pJL, then:
(i) Development of the solitary wave profile for y ≥ 1: there holds

(2.2) ∀k ≥ 0, ∂k
yQ = ∂k

y

[
R+

a1
yγ

]
+O

(
1

yγ+g+k

)
, a1 
= 0, g > 2
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where R is given by (1.9).
(ii) Degeneracy:

(2.3) ΛQ =
c

yγ
+O

(
1

yγ+g

)
as y → +∞, c 
= 0.

(iii) Positivity of L±:

(2.4) L− > L+ > −Δ+
1

|y|2
[
cp −

(d− 2)2

4

]
> 0

for some cp > 0.
(iv) Positivity of ΛQ:

(2.5) ΛQ > 0.

Proof of Lemma 2.1. The positivity (2.4) for p > pJL and the associated
pointwise lower bound follows from a non trivial Sturm-Liouville oscillation
argument, see [16]. Now from [13], Thm 2.5, there holds the asymptotic
expansion for p > pJL and y � 1:

(2.6) Q(r) =
c∞

y
2

p−1

+
a1
yγ

+O

(
1

yγ+α
+

1

yγ2

)
where

γ2 =
d− 2 +

√
Discr

2
.

We recall that α > 2 and from (1.26):

γ2 − γ =
√
Discr > 2

and thus

(2.7) Q = R+
a1
yγ

+O

(
1

yγ+g

)
g = min{α,

√
Discr} > 2.

The fact that the development (2.7) propagates to higher derivatives is now
a simple consequence of the Q equation (2.1), this is left to the reader, and
(2.3) follows. We finally claim that a1 
= 0. Indeed, otherwise from (2.6):

ΛQ = O

(
1

yγ+α
+

1

yγ2

)
,
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and then the bounds

d− 3− 2γ2 = −1−
√
Discr < −1

d− 3− 2γ − 2α = −1 +
√
Discr− 2α = −1 +

4

p− 1
− (d− 2) < −1

imply

(2.8)

∫
|∇ΛQ|2+

∫ |ΛQ|2
y2

�
∫

(1+yd−1−2−2γ−2α+yd−1−2−2γ2)dy < +∞.

By scaling invariance,

L+ΛQ = 0.

Fix a sufficiently largeR and let χR(y) be a smooth cut-off function, equal
to one for 0 ≤ y ≤ R. We have

L+(χRΛQ) �
(
|∇ΛQ|

y
+

|ΛQ|
y2

)
1y≥R,

which, combined with (2.8), implies∫
L+(χRΛQ) · (χRΛQ) � 1

Rη

for some strictly positive η. On the other hand, by strict positivity (2.4) of
L+, ∫

L+(χRΛQ) · (χRΛQ) ≥ c

∫
(χRΛQ)2

y2
≥ C

for some positive constant C independent of R, which follows since ΛQ does
not vanish identically on any open set. Contradiction.

2.2. Factorization of L±

The positivity (2.4) implies12 the factorization of L±.

Lemma 2.2 (Factorization of L±). Let

(2.9) V+ = ∂y(log(ΛQ)), V− = ∂y(logQ)

and the first order operators

12see [31] for a similar structure.
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A±u = −∂yu+ V±u, A∗
±u =

1

yd−1
∂y(y

d−1u) + V±u,

then

L± = A∗
±A±.

Remark 2.3. The adjoint operators A∗
± are defined with respect to the

Lebesgue measure∫
y>0

(Au)vyd−1dy =

∫
y>0

u(A∗v)yd−1dy.

We collect the following estimate on V± which follow from (2.2):

V+ =
∂y(ΛQ)

ΛQ
=

{
O(1) as y → 0

−γ
y +O

(
1
y3

)
as y → +∞ ,(2.10)

V− =
∂yQ

Q
=

{
O(1) as y → 0

− 2
(p−1)y +O

(
1
y3

)
as y → +∞ ,(2.11)

Qp−1 =

{
O(1) as y → 0
cp−1
∞
y2 +O

(
1
y4

)
as y → +∞.

(2.12)

We also estimate from (2.2) with the notations (1.49): for y ≥ 1,

(2.13) ∂j
yW± = O

(
1

1 + y2+j

)
, j ≥ 0.

2.3. Inverting L+

We rewrite

(2.14) A+u = −ΛQ∂y

(
u

ΛQ

)
, A∗

+u =
1

yd−1ΛQ
∂y(y

d−1ΛQ)

and hence the kernels of A,A∗ are explicit:

(2.15)

{
A+u = 0 on iff u ∈ Span(ΛQ),

A∗
+u = 0 on iff u ∈ Span

(
1

yd−1ΛQ

)
.

Hence

(2.16) L+u = 0 on iff u ∈ Span(ΛQ,Γ)
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with

(2.17) Γ+(y) = ΛQ

∫ y

1

dx

xd−1(ΛQ(x))2

which satisfies the Wronskian relation

(2.18) Γ′
+(ΛQ)− Γ+(ΛQ)′ =

1

yd−1
.

We observe the behavior

(2.19) Γ+ ∼ c

yd−2
as y → 0, c 
= 0.

Moreover, from (2.3):∫ +∞

1

dx

xd−1(ΛQ(x))2
�
∫ +∞

1

dx

xd−1−2γ
< +∞

where we used from (1.24) d− 1− 2γ = 1 +
√
Discr > 1. This implies:

Γ+ ∼ c

yγ
as y → +∞.

The explicit knowledge of the Green’s functions allows us to introduce the
formal inverse

(2.20) L−1
+ f = −Γ+(y)

∫ y

0
fΛQxd−1dx+ ΛQ(y)

∫ y

0
fΓ+x

d−1dx.

The factorization of L+ allows us to compute L−1
+ in an elementary two step

process13:

Lemma 2.4 (Inversion of L+). Let f be a C∞ radially symmetric function
and u = L−1

+ f be given by (2.20), then

(2.21) A+u =
1

yd−1ΛQ

∫ y

0
fΛQxd−1dx, u = −ΛQ

∫ y

0

A+u

ΛQ
dx.

Proof of Lemma 2.4. We compute from (2.18)

13this will avoid tracking cancellations in the formula (2.20) induced by the
Wronskian relation (2.18) when estimating the growth of L−1

+ f .
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A+Γ+ = −Γ′
+ +

(ΛQ)′

ΛQ
Γ+ = − 1

yd−1ΛQ
.

We therefore apply A+ to (2.20) and compute using the cancellation
A+(ΛQ) = 0:

(2.22) A+u =
1

yd−1ΛQ

∫ y

0
fΛQxd−1dx.

Hence from (2.14):

u = −ΛQ

∫ y

0

A+u

ΛQ
dx+ cuΛQ.

We now estimate at the origin using the formula (2.22), (2.20) and the
behavior (2.19):

|A+u| � y, |u| � y2, ΛQ ∼ c 
= 0

and thus cu = 0.

2.4. Inverting L−

We rewrite

(2.23) A−u = −Q∂y

(
u

Q

)
, A∗

−u =
1

yd−1Q
∂y(y

d−1Qu)

and hence the kernels of A−, A∗
− are explicit:

(2.24)

{
A−u = 0 on iff u ∈ Span(Q)

A∗
−u = 0 on iff u ∈ Span

(
1

yd−1Q

)
.

Hence

(2.25) L−u = 0 on iff u ∈ Span(Q,Γ−)

with

(2.26) Γ−(y) = Q

∫ y

1

dx

xd−1(Q(x))2

which satisfies the Wronskian relation

(2.27) Γ′
−Q− Γ−Q

′ =
1

yd−1
.
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We observe the behavior

(2.28) Γ− ∼ c

yd−2
as y → 0.

Moreover, from (2.3):∫ +∞

1

dx

xd−1Q(x)2
�
∫ +∞

1

dx

xd−1− 4

p−1

< +∞

where we used from (1.24) d− 1− 4
p−1 > d− 1− 2γ > 1. This implies:

Γ− ∼ c

y
2

p−1

as y → +∞.

The explicit knowledge of the Green’s functions allows us to introduce the
formal inverse

(A∗
−)

−1f =
1

yd−1Q

∫ y

0
fQxd−1dx

and

(2.29) L−1
− f =

⎧⎨⎩ Q
∫ +∞
y

(A∗
−)−1f

Q dx if
∫ +∞
0

∣∣∣ (A∗
−)−1f

Q

∣∣∣ dx < +∞,

−Q
∫ y
0

(A∗
−)−1f

Q dx otherwise.

Lemma 2.5 (Inversion of L−). Let f be a C∞ radially symmetric function
and u = L−1

− f be given by (2.29), then

(2.30) L−u = f, A−u =
1

yd−1Q

∫ y

0
fQxd−1dx = (A∗

−)
−1f.

Proof of Lemma 2.5. From (2.23), (2.29):

A−u = −Q∂y

(
u

Q

)
= (A∗

−)
−1f =

1

yd−1Q

∫ y

0
fQxd−1dx

L−u = A∗
−A−u =

1

yd−1Q
∂y

(
yd−1QA−u

)
= f

and (2.21) is proved.

The definitions (1.50), (2.20), (2.29) lead to the formal inverse of L̃:

(2.31) L̃−1 =

(
0 −(L+)

−1

(L−)−1 0

)
.
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2.5. Admissible functions

We define a class of admissible functions which display a suitable behavior
at infinity:

Definition 2.6 (Admissible functions). 1. Scalar functions: We say a radi-
ally symmetric f ∈ C∞(Rd,R) is admissible of degree (j,±) ∈ R×{−,+} if
f and its derivatives admit the bounds: for y ≥ 1,

(2.32) ∀k ≥ 0,
∣∣∣∂k

yf(y)
∣∣∣ �

{
y2j−γ−k for (j,+)

y2p−
2

j−1
−k for (j,−)

2. Vector valued functions: We say a radially symmetric C∞(Rd,R2) complex
valued function is admissible of degree (p1, p2) ∈ R×R if f and its derivatives
admit a bound: for y ≥ 1,

(2.33) ∀k ≥ 0,
∣∣∣∂k

y�f(y)
∣∣∣ � y2p1−γ−k,

∣∣∣∂k
y�f(y)

∣∣∣ � y2p2− 2

p−1
−k.

L̃ naturally acts on the class of admissible functions in the following
way:

Lemma 2.7 (Action of L̃, L̃−1 on admissible functions). Let f be an ad-
missible function of degree (p1, p2) ∈ N2, then:
(i) Λf is admissible of degree (p1, p2).
(ii) JL̃f is admissible of degree (p1 − 1, p2 − 1).
(iii) L̃−1(Jf) is admissible of degree (p1 + 1, p2 + 1).
(iv) JL̃−1f is admissible of degree (p1 + 1, p2 + 1).

Proof of Lemma 2.7. Proof of (i). This is a direct consequence of (2.33).
Proof of (ii). Let f be admissible of degree (p1, p2). Then L̃f is a smooth
radially symmetric function. For y ≥ 2, using (1.50), the decay (2.13) and a
simple application of the Leibniz rule imply: for y ≥ 1,

|∂k
y�(L̃f)| = |∂k

y (L−�f)| � y2p2− 2

p−1
−2−k,

|∂k
y�(L̃f)| = |∂k

y (L+�f)| � y2p1−γ−2−k,

and (ii) follows.
Proof of (iii). We compute from (2.31):

L̃−1J =

(
−(L+)

−1 0
0 (−L−)−1

)
.
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Let then (p1, p2) ∈ N2, f be admissible of degree (p1, p2) and let us show
that u = L̃−1Jf is admissible of degree (p1+1, p2+1). Near the origin, u is
bounded from (2.20), (2.29), and hence from L̃u = Jf , u is a smooth radially
symmetric function by standard elliptic regularity estimates. Moreover:

�u = −(L+)
−1�f, �u = −(L−)

−1�f.

Inversion of L+: For y ≥ 1, we use the lower bound from (1.24)

d− 2− 2γ =
√
Discr > 0

to estimate from (2.21):

A+�u = − 1

yd−1ΛQ

∫ y

0
(�f)ΛQxd−1dx = O

(
1

yd−1−γ

∫ y

0
x2p1−2γ+d−1dx

)
= O(y2p1+1−γ),(2.34)

�u = −ΛQ

∫ y

0

A+�u
ΛQ

dx = O

(
y−γ

∫ y

0
x2p1+1−γ+γdx

)
= O(y2p1+2−γ).

We conclude from (2.34), (2.10)

|∂y�u| � y2p1+1−γ , |∂2
y�u| � y2p1−γ ,

and then the bound

|∂k
y�u| � y2(p1+1)−γ−k, k ≥ 0, y ≥ 1

easily follows by induction by taking radial derivatives of the relation
L+(�u) = −�f.
Inversion of L−: Using

d− 2− 4

p− 1
> d− 2− 2γ > 0,

we estimate from (2.30):

A−�u = (A∗
−)

−1f = − 1

yd−1Q

∫ y

0
(�f)Qxd−1dx

= O

(
1

yd−1− 2

p−1

∫ y

0
x2p2− 4

p−1
+d−1dx

)
= O(y2p2+1− 2

p−1 ).(2.35)

We now distinguish cases. If
∫ +∞
0

∣∣∣ (A∗
−)−1
f

Q

∣∣∣ dx < +∞, then from (2.29):
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|�u| =
∣∣∣∣Q∫ +∞

y

(A∗
−)

−1�f
Q

dx

∣∣∣∣ � y−
2

p−1 � y2(p2+1)− 2

p−1 ,

and otherwise from p2 ≥ 0 and (2.35):

|�u| �
∣∣∣∣Q∫ y

0

(A∗
−)

−1�f
Q

dx

∣∣∣∣ � y−
2

p−1

∫ y

0
x2p2+1dx � y2(p2+1)− 2

p−1 .

This implies from (2.35), (2.11):

|∂y�u| � y2p2+1− 2

p−1 , |∂2
y�u| � y2p2− 2

p−1 ,

and then again a simple induction argument by differentiation of the relation
L−�u = −�f ensures the bound:

|∂k
y�u| � y2(p2+1)− 2

p−1
−k, k ≥ 0, y ≥ 1.

Proof of (iv). We compute from (2.31):

JL̃−1 =

(
−(L−)−1 0
0 (−L+)

−1

)
.

Let then (p1, p2) ∈ N2, f admissible of degree (p1, p2) and let us show that
u = JL̃−1f is admissible of degree (p2 + 1, p1 + 1). From (2.20), (2.29), u is
radially symmetric and bounded near the origin, and hence from L̃u = Jf ,
u is a smooth radially symmetric function by standard elliptic regularity
estimates. Moreover:

�u = −(L−)
−1�f, �u = −(L+)

−1�f.

Inversion of L+: For y ≥ 1, we use the lower bound from (1.24)

(2.36) d− 2− 2

p− 1
− γ > d− 2− 2γ > 0

to estimate from (2.21):

A+�u = − 1

yd−1ΛQ

∫ y

0
(�f)ΛQxd−1dx

= O

(
1

yd−1−γ

∫ y

0
x2p2− 2

p−1
−γ+d−1dx

)
= O(y2p2+1− 2

p−1 ),

and then using γ > 2
p−1 again:
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�u = −ΛQ

∫ y

0

A+�u
ΛQ

dx = O

(
y−γ

∫ y

0
x2p2+1− 2

p−1
+γdx

)
= O(y2p2+2− 2

p−1 )

and we easily conclude as above:

|∂k
y�u| � y2(p2+1)− 2

p−1
−k, k ≥ 0, y ≥ 1.

Inversion of L−: Using (2.36), we estimate from (2.30):

A−�u = − 1

yd−1Q

∫ y

0
(�f)Qxd−1dx

= O

(
1

yd−1− 2

p−1

∫ y

0
x2p1−γ− 2

p−1
+d−1dx

)
= O(y2p1+1−γ).(2.37)

We now distinguish cases. If 2p1 + 1− γ + 2
p−1 < −1, then from (2.30):

∫ +∞

0

∣∣∣∣(A∗
−)

−1�f
Q

∣∣∣∣ dx =

∫ +∞

0

∣∣∣∣A−u

Q
dx

∣∣∣∣ �
∫ +∞

0
(1+x2p1+1−γ+ 2

p−1 )dx < +∞

and thus from (2.29):

|�u| =

∣∣∣∣Q∫ +∞

y

(A∗
−)

−1�f
Q

dx

∣∣∣∣ � y−
2

p−1

∫ +∞

y
x2p1+1−γ+ 2

p−1dx

� y2p1+2−γ .

Otherwise, 2p1 + 1− γ + 2
p−1 ≥ −1, but then using α

2 /∈ N from (1.27):

(2.38) 2p1 + 1− γ +
2

p− 1
= 2p1 + 1− α > −1.

Then either
∫ +∞
0

∣∣∣ (A∗
−)−1�f

Q

∣∣∣ dx < +∞ in which case:

|�u| =
∣∣∣∣Q∫ +∞

y

(A∗
−)

−1�f
Q

dx

∣∣∣∣ � y−
2

p−1 � y2(p1+1)−γ

where we used (2.38) in the last step, or otherwise from (2.30), (2.37):

|�u| �
∣∣∣∣Q∫ y

0

(A∗
−)

−1�f
Q

dx

∣∣∣∣ � y−
2

p−1

∫ y

0
x2p1+1−γ+ 2

p−1dx � y2(p1+1)−γ .
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We then easily conclude as above:

|∂k
y�u| � y2(p1+1)−γ−k, k ≥ 0, y ≥ 1.

2.6. Generators of the kernel of L̃i

We now give an explicit example of admissible functions, which will be
essential for the analysis.

Lemma 2.8 (Generators of the kernel of L̃i). (i) Let

(2.39) Φi = L̃−i

∣∣∣∣ ΛQQ , i ≥ 0

then J iΦi is admissible of degree (i, i).
(ii) Let the sequence

(2.40) Ψi = ΛΦi − J−iDiJ
iΦi, i ≥ 1, Di =

(
2i− α 0
0 2i

)
,

then J iΨi is admissible of degree (i− 1, i− 1).

Remark 2.9. Equivalently, let the directions

Φi,+ = L̃−iΦ0,+, Φ0,+ =

∣∣∣∣ ΛQ0 , i ≥ 0(2.41)

Φi,− = L̃−iΦ0,−, Φ0,− =

∣∣∣∣ 0Q , i ≥ 0.(2.42)

A simple computation ensures

J−iDiJ
i =

⎧⎨⎩
Di for i = 2k(

2i 0
0 2i− α

)
for i = 2k + 1

,

and thus

Ψi = Ψi,+ +Ψi,−

with:

Ψi,+ = ΛΦi,+ − J−iDiJ
iΦi,+ = ΛΦi,+ − (2i− α)Φi,+(2.43)

Ψi,− = ΛΦi,− − J−iDiJ
iΦi,− = ΛΦi,− − 2iΦi,−.(2.44)

and J iΨi,+ is real valued of degree (i − 1,+), and J iΨi,− is imaginary of
degree (i− 1,−).
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Proof of Lemma 2.8. Proof of (i). Φ0 is admissible of degree (0, 0) from

(2.2). We now proceed by induction, assume the claim for i and prove for

i+ 1. By definition, Φi+1 = L̃−1Φi. For i = 2k, we have by induction:

J iΦi = J2kΦ2k = (−1)kΦ2k

is admissible of degree (2k, 2k) and hence from Lemma 2.7 (iv),

J i+1Φi+1 = (−1)kJL̃−1Φi

is admissible of degree (i+ 1, i+ 1). For i = 2k + 1, we have by induction:

J iΦi = J2k+1Φ2k+1 = (−1)kJΦ2k+1

is admissible of degree (2k + 1, 2k + 1) and hence from Lemma 2.7 (iii),

J i+1Φi+1 = (−1)k+1L̃−1Φ2k+1 = (−1)kL̃−1(JJΦ2k+1)

is admissible of degree (i+ 1, i+ 1).

Proof of (ii). We claim a more precise control of J iΦi for y ≥ 1:

(2.45)

∀k ≥ 0, ∀i ≥ 1,

∣∣∣∣∣∂k
y

(
J iΦi −

∣∣∣∣∣ c1,iy2i−γ

c2,iy
2i− 2

p−1

)∣∣∣∣∣ �
∣∣∣∣∣ c1,iy2(i−1)−γ−k

c2,iy
2(i−1)− 2

p−1
−k .

Assume (2.45), then Ψi is radially symmetric and satisfies the bound from

(2.40): for y ≥ 1,

J iΨi = (Λ−Di)JΦi = (Λ−Di)

∣∣∣∣∣ c1,iy2i−γ

c2,iy
2i− 2

p−1
+O

(∣∣∣∣ c1,iy2(i−1)−γ

c2,iy
2(i−1)

)
= O

(∣∣∣∣ c1,iy2(i−1)−γ

c2,iy
2(i−1)

)
.

The control of higher derivatives follows similarly, and hence J iΨi is admis-

sible of degree (i− 1, i− 1). We now prove (2.45) by induction on i ≥ 1.

i = 1: From (2.2), there holds for y ≥ 1:

Φ0 =

∣∣∣∣ ΛQQ =

∣∣∣∣∣∣
c1,0
yγ +O

(
1

yγ+g

)
, g = min{α,

√
Discr} > 2

c2,0

y
2

p−1
+O

(
1
yγ

)
.
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We then invert

L̃Φ1 =

∣∣∣∣ L−�Φ1

−L+�Φ1
=

∣∣∣∣ ΛQQ
From (2.30):

A−�Φ1 =
1

yd−1Q

∫ y

0
ΛQxd−1Qdx

=
1

yd−1Q

[
O(1)

+

∫ y

1

[
c

xγ
+O

(
1

xγ+g

)][
c

x
2

p−1

+O

(
1

xγ

)]
xd−1dx

]
=

c

yd−1− 2

p−1

[
1 +O

(
1
yγ

)][O(1)

+

∫ y

1
cxd−1−γ− 2

p−1

[
1 +O

(
1

xg

)]
dx

]
.

We now use the lower bounds:

d− 1− γ − 2

p− 1
− α = d− 1− 2γ = 1 +

√
Discr > −1

d− 1− γ − 2

p− 1
−
√
Discr ≥ d− 1− 2γ −

√
Discr = 1 > −1

to conclude:

A−�Φ1 =
1

yd−1− 2

p−1

[
1 +O

(
1
yγ

)]cyd−1−γ− 2

p−1
+1

[
1 +O

(
1

yg

)]

= cy1−γ

[
1 +O

(
1

yg

)]
This implies using α > 2:∫ +∞

0

|A−�Φ1|
Q

dx � 1 +

∫ +∞

1

dx

xγ−1− 2

p−1

< +∞

and hence from (2.29):

�Φ1 = Q

∫ +∞

y

A−�Φ1

Q
dx
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=
c

y
2

p−1

[
1 +O

(
1
yγ

)] ∫ +∞

y

1

xγ−1− 2

p−1

[
1 +O

(
1

xg

)]
dx

=
c

xγ−2

[
1 +O

(
1

xg

)]
=

c

xγ−2
+O

(
1

xγ

)
from our assumption g > 2. Similarily, using (2.21) and since the integral
term is the same:

A+�Φ1 =
−1

yd−1ΛQ

∫ y

0
Qxd−1ΛQdx = cy1−

2

p−1

[
1 +O

(
1

yg

)]
and hence from (2.21):

�Φ1 = −ΛQ

∫ y

0

A+�Φ1

ΛQ
dx

=
c

yγ

[
1 +O

(
1

yg

)][
O(1) +

∫ y

1
x1−

2

p−1
+γ

[
1 +O

(
1

yg

)]
dx

]
= cy2−

2

p−1

[
1 +O

(
1

yg

)]
= cy2−

2

p−1 +O
(
y−

2

p−1

)
where we used

1 + γ − 2

p− 1
− g = 1 + α− g ≥ 1 > −1

and g > 2. The bound (2.45) for i = 1 now easily follows by differentiation.

i → i+ 1 We invert

L̃Φi+1 =

∣∣∣∣ L−�Φi+1

−L+�Φi+1
=

∣∣∣∣ �Φi

�Φi

case i = 2k − 1, k ≥ 2. By induction, J iΦi = (−1)kJΦi satisfies (2.45).
Hence: ∣∣∣∣ L−�Φi+1

−L+�Φi+1
=

∣∣∣∣∣∣ c2,iy
2i− 2

p−1 +O
(
y2i−2− 2

p−1

)
c1,iy

2i−γ +O
(
y2i−2−γ

)
From (2.30) and using d− 4

p−1 > d− 2γ > 2:

A−�Φi+1 =
1

yd−1Q

∫ y

0
�Φix

d−1Qdx
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=
1

yd−1Q

[
O(1)

+

∫ y

1
c
x2i−

2

p−1

x
2

p−1

[
1 +O

(
1

x2

)][
1 +O

(
1

xα

)]
xd−1dx

]

=
c

yd−1− 2

p−1

[
1 +O

(
1
yγ

)][O(1)

+

∫ y

1
cx2i+d−1− 4

p−1

[
1 +O

(
1

x2

)]
dx

]
=

1

yd−1− 2

p−1

[
1 +O

(
1
yγ

)]cy2i+d− 4

p−1

[
1 +O

(
1

y2

)]

= cy2i+1− 2

p−1

[
1 +O

(
1

y2

)]
.

Since 2i+ 1 > 1,
∫ +∞
0

∣∣∣A−
Φ1

Q

∣∣∣ dy = +∞ and14 thus:

�Φi+1 = −Q

∫ y

0

A−�Φi+1

Q
dy

=
1

y
2

p−1

[
1 +O

(
1
yα

)] [O(1) +

∫ y

1
cx2i+1

[
1 +O

(
1

x2

)]
dx

]

= cy2i+2− 2

p−1

[
1 +O

(
1

y2

)]
.

Similarily, from (2.21):

A+�Φi+1 =
1

yd−1ΛQ

∫ y

0
�Φix

d−1ΛQdx

=
1

yd−1ΛQ

[
O(1) +

∫ y

1
c
x2i−γ

xγ

[
1 +O

(
1

x2

)]
xd−1dx

]
=

c

yd−1−γ
[
1 +O

(
1
y2

)][O(1)

+

∫ y

1
cx2i+d−1−2γ

[
1 +O

(
1

x2

)]
dx

]
14one easily checks by induction, starting from (2.2) with a1 
= 0, that the leading

order terms in (2.45) do not vanish, i.e., c1,i, c2,i 
= 0.
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=
1

yd−1−γ
[
1 +O

(
1
y2

)]cy2i+d−2γ

[
1 +O

(
1

y2

)]

= cy2i+1−γ

[
1 +O

(
1

y2

)]
,

and thus:

�Φi+1 = −ΛQ

∫ y

0

A+�Φi+1

ΛQ
dy

=
1

yγ
[
1 +O

(
1
y2

)] [O(1) +

∫ y

1
cx2i+1

[
1 +O

(
1

x2

)]
dx

]

= cy2i+2−γ

[
1 +O

(
1

y2

)]
.

The bound (2.45) for i+ 1 now easily follows by differentiation in y.
case i = 2k, k ≥ 1. By induction, J iΦi = (−1)kΦi satisfies (2.45). Hence:

∣∣∣∣ L−�Φi+1

−L+�Φi+1
=

∣∣∣∣∣ c1,iy
2i−γ +O

(
y2i−2−γ

)
c2,iy

2i− 2

p−1 +O
(
y2i−2− 2

p−1

)
From (2.30)and using d− γ − 2

p−1 > d− 2γ > 2:

A−�Φi+1 =
1

yd−1Q

∫ y

0
�Φix

d−1Qdx

=
1

yd−1Q

[
O(1) +

∫ y

1
c
x2i−γ

x
2

p−1

[
1 +O

(
1

x2

)]
xd−1dx

]
=

c

yd−1− 2

p−1

[
1 +O

(
1
yγ

)][O(1)

+

∫ y

1
cx2i+d−1−γ− 2

p−1

[
1 +O

(
1

x2

)]
dx

]
=

1

yd−1− 2

p−1

[
1 +O

(
1
yγ

)]cy2i+d−γ− 2

p−1

[
1 +O

(
1

y2

)]

= cy2i+1−γ

[
1 +O

(
1

y2

)]
.

If 2i+ 1− γ + 2
p−1 < −1, then

∫ +∞
0

|A−
Φi+1|
Q dy < +∞ and thus:
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�Φi+1 = Q

∫ +∞

y

A−�Φi+1

Q
dx = Q

∫ +∞

y
cx2i+1−γ+ 2

p−1

[
1 +O

(
1

x2

)]
dx

= cy2i+2−γ+ 2

p−1
− 2

p−1

[
1 +O

(
1

y2

)]
= y2i+2−γ

[
1 +O

(
1

y2

)]
.

If 2i + 1 − γ + 2
p−1 ≥ −1, then 2i + 1 − γ + 2

p−1 = 2i + 1 − α > −1 from

(1.27). Hence
∫ +∞
0

|A−
Φi+1|
Q dy = +∞ and:

�Φi+1 = −Q

∫ y

0

A−�Φi+1

Q
dx = −Q

∫ y

0
cx2i+1−γ+ 2

p−1

[
1 +O

(
1

x2

)]
dx

= cy2i+2−γ+ 2

p−1
− 2

p−1

[
1 +O

(
1

y2

)]
= y2i+2−γ

[
1 +O

(
1

y2

)]
.

Similarily:

A+�Φi+1 =
1

yd−1ΛQ

∫ y

0
�Φix

d−1ΛQdx

=
1

yd−1ΛQ

[
O(1) +

∫ y

1
c
x2i−

2

p−1

xγ

[
1 +O

(
1

x2

)]
xd−1dx

]

=
c

yd−1−γ
[
1 +O

(
1
yα

)][O(1)

+

∫ y

1
cx2i+d−1−γ− 2

p−1

[
1 +O

(
1

x2

)]
dx

]
=

1

yd−1−γ
[
1 +O

(
1
yγ

)]cy2i+d− 2

p−1
−γ

[
1 +O

(
1

y2

)]

= cy2i+1− 2

p−1

[
1 +O

(
1

y2

)]
,

and thus:

�Φi+1 = −ΛQ

∫ y

0

A+�Φi+1

ΛQ
dy

=
1

yγ
[
1 +O

(
1
y2

)] [O(1) +

∫ y

1
cx2i+1+γ− 2

p−1

[
1 +O

(
1

x2

)]
dx

]

= cy2i+2− 2

p−1

[
1 +O

(
1

y2

)]
.

The bound (2.45) for i+ 1 now easily follows by differentiation in y.
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3. Construction of the approximate profile

This section is devoted to the construction of the approximate blow up profile
Qb,a and the study of the associated dynamical system for the parameters
b = (b1, . . . , bL+

) and a = (a1, . . . .aL−).

3.1. Slowly modulated blow up profiles and growing tails

We introduce a simple notion of a homogeneous admissible function.

Definition 3.1 (Homogeneous functions). Given parameters b=(bm)1≤k≤L+
,

a = (an)1≤n≤L−, we say a function S(b, a, y) is homogeneous of degree
(p1, p2, j,±) ∈ N × N × N if it is a finite linear combination of monomi-
als [

Π
L+

k=1b
mk

k Π
L−
�=1a

n�

�

]
f±

with
L+∑
m=1

kmk = p1,

L−∑
k=1

knk = p2, (mk, nk) ∈ N2

with f± homogeneous of degree (j,±) in the sense of Definition 2.6. We set
deg(S) := (p1, p2, j,±).

We are now in position to construct a slowly modulated blow up profile
as a deformation of the solitary wave.

Proposition 3.2 (Construction of the approximate profile). Let L+ a large
integer

(3.1) L+ � α

2
=

1

2
(γ − 2

p− 1
),

and L− be given by (1.42). Let M > 0 be a large enough universal constant,
then there exists a small enough universal constant b∗(M,L+) > 0 such that
the following holds true. Let two C1 maps

b = (bj)1≤j≤L+
: [s0, s1] �→ (−b∗, b∗)L+ ,

a = (aj)1≤j≤L− : [s0, s1] �→ (−b∗, b∗)L−

with a priori bounds on [s0, s1]:

(3.2)

{
0 < b1 < b∗, |bj | � bj1, 1 ≤ j ≤ L+

|aj | ≤ bj+α
1 for 1 ≤ j ≤ L−.
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Then there exist homogeneous profiles{
Sj,± = Sj,±(b, a, y), 2 ≤ j ≤ L± + 2
S1,± = 0

such that

(3.3) Qb(s),a(s)(y) = Q(y) + ζb(s),a(s)(y)

with

(3.4) ζb,a(y) =

L+∑
j=1

bjΦj,+(y) +

L−∑
j=1

ajΦj,−(y) +

L±+2∑
j=2

Sj,±(b, a, y),

with Φj,± defined in (2.43), (2.44), generates an approximate solution to the
renormalized flow, see (1.53):

(3.5) ∂sQb,a − J(ΔQb,a + f(Qb,a)) + b1ΛQb,a + Ja1Qb,a = Ψ+Mod(t)

with the following properties:
(i) Modulation equations:

Mod(t) =

L+∑
j=1

[(bj)s + (2j − α)b1bj − bj+1](3.6)

×

⎡⎣Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

⎤⎦
+

L−∑
j=1

[(aj)s + 2jb1aj − aj+1]

⎡⎣Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

⎤⎦
where we used the convention{

bj = 0 for j ≥ L+ + 1
aj = 0 for j ≥ L− + 1

and

{
S1,+ = S1,− = 0
Sj,− = 0 for j ≥ L− + 3

.

(ii) Estimate on the profile: Sj,± is a finite15linear combination of terms

S
(1)
j,±,S

(2)
j,± with

15the total number of terms is bounded by C(p, L+) < +∞.
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{
degS

(1)
j,+ = (k1, k2, j − 1,+), k1 + k2 = j,

degS
(2)
j,+ = (k1, k2, j,+), k1 + k2 = j, k2 ≥ 1.

(3.7)

{
degS

(1)
j,− = (k1, k2, j − 1,−), k1 + k2 = j, k2 ≥ 1

degS
(2)
j,− = (k1, k2, j,−), k1 + k2 = j, k2 ≥ 2.

(3.8)

and

(3.9)

⎧⎨⎩
∂S

(k)
j,±

∂bm
= 0, 2 ≤ j ≤ m ≤ L±, 1 ≤ k ≤ 2

∂S
(k)
j,±

∂am
= 0, 2 ≤ j ≤ m ≤ L±, 1 ≤ k ≤ 2

,

(iii) Estimate on the error Ψ: let B1 be given by (1.44), then ∀0 ≤ j+ ≤ L+,
there holds a global weighted bound:∫

y≤2B1

(1 + y2)|L̃∗JL̃k++j+Ψ|2 +
∫
y≤2B1

|Ψ|2
1 + y4(k++j++2)

(3.10)

� b
2j++4+2(1−δk+

)−CL+
η

1 .

and the improved local control:

(3.11) ∀B ≥ 1,

∫
y≤2B

(1 + y2)|L̃∗JL̃k++j+Ψ|2 � BCb
2L++6
1 .

Proof of Proposition 3.2. To ease the notation, we denote ζ = ζa,b. We com-
pute from (3.3), (3.5):

∂sQb,a − J(ΔQb,a + f(Qb,a)) + b1ΛQb,a + Ja1Qb,a(3.12)

= ∂sζ − L̃ζ + b1Λζ + Ja1ζ − J
[
f(Q+ ζ)− f(Q)− f ′(Q)ζ

]
+ b1ΛQ+ Ja1Q.

step 1 Computation of the linear term. We compute the linear term from
(3.4) using L̃Φi,± = Φi−1,± for i ≥ 1:

A1 = ∂sζ − L̃ζ + b1Λζ + Ja1ζ + b1ΛQ+ Ja1Q

=

L+∑
j=1

(bj)sΦj,+ + b1bjΛΦj,+ + Ja1bjΦj,+ − bjL̃Φj,+

+

L−∑
j=1

(aj)sΦj,− + b1ajΛΦj,− + Ja1ajΦj,− − ajL̃Φj,−
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+

L±+2∑
j=2

∂sSj,± + b1ΛSj,± + Ja1Sj,± − L̃Sj,±

+ b1ΛQ+ Ja1Q

= b1(ΛQ− Φ0,+) + a1(JQ− Φ0,−)

+

L+∑
j=1

[(bj)s+(2j − α)b1bj − bj+1]Φj,++

L−∑
j=1

[(aj)s+2jb1aj − aj+1]Φj,−

+

L+∑
j=1

[b1bjΨj,+ + a1bjJΦj,+] +

L−∑
j=1

[b1ajΨj,− + a1ajJΦj,−]

+

L±+2∑
j=2

∂sSj,± + b1ΛSj,± + Ja1Sj,± − L̃Sj,±

where we recall the convention bL++1 = aL−+1 = 0. We now treat the time
dependence using the anticipated approximate modulation equation:

∂sSj,± =

L+∑
m=1

(bm)s
∂Sj,±
∂bm

+

L−∑
m=1

(am)s
∂Sj,±
∂am

=

L+∑
m=1

((bm)s + (2m− α)b1bm − bm+1)
∂Sj,±
∂bm

−
L+∑
m=1

((2m− α)b1bm − bm+1)
∂Sj,±
∂bm

+

L−∑
m=1

((am)s + 2mb1am − am+1)
∂Sj,±
∂am

−
L−∑
m=1

(2mb1am − am+1)
∂Sj,±
∂am

and thus:

A1 =

L+∑
j=1

[(bj)s + (2j − α)b1bj − bj+1]

×

⎡⎣Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

⎤⎦
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+

L−∑
j=1

[(aj)s + 2jb1aj − aj+1]

×

⎡⎣Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

⎤⎦
+

L++1∑
j=1

[
Ej+1,+ − L̃Sj+1,+

]
+

L−+1∑
j=1

[
Ej+1,− − L̃Sj+1,−

]
(3.13)

+ (b1Λ + a1J)ΛSL++2,+

−
L+∑
m=1

[(2m− α)b1bm − bm+1]
∂SL++2,+

∂bm

−
L−∑
m=1

[2mb1am − am+1]
∂SL++2,+

∂am

+ (b1Λ + a1J)SL−+2,−

−
L+∑
m=1

[(2m− α)b1bm − bm+1]
∂SL−+2,−

∂bm

−
L−∑
m=1

(2mb1am − am+1)
∂SL−+2,−

∂am

with for 1 ≤ j ≤ L+ + 1:

Ej+1,+ = b1bjΨj,+ + b1ΛSj,+ + Ja1Sj,+ + Ja1bjΦj,+ +(3.14)

−
j−1∑
m=1

{
[(2m− α)b1bm − bm+1]

∂Sj,+

∂bm

+ (2mb1am − am+1)
∂Sj,+

∂am

}
and for 1 ≤ j ≤ L− + 1:

Ej+1,− = b1ajΨj,− + J [a1ajΦj,− + a1Sj,−] + b1ΛSj,−(3.15)

−
j−1∑
m=1

{
[(2m− α)b1bm − bm+1]

∂Sj,−
∂bm

+ (2mb1am − am+1)
∂Sj,−
∂am

}
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This immediately yields by induction on (3.7), (3.8) using Lemma 2.7 and

Lemma 2.8 that Ej+1,± is a finite linear combination of terms E
(1)
j+1,±, E

(2)
j+1,±

with {
degE

(1)
j+1,+ = (k1, k2, j − 1,+), k1 + k2 = j + 1,

degE
(2)
j+1,+ = (k1, k2, j,+), k1 + k2 = j + 1, k2 ≥ 1.

(3.16)

{
degE

(1)
j+1,− = (k1, k2, j − 1,−), k1 + k2 = j + 1 k2 ≥ 1

degE
(2)
j+1,− = (k1, k2, j,−), k1 + k2 = j + 1, k2 ≥ 2.

(3.17)

step 2 Expansion of the nonlinear term. We claim a decomposition

(3.18) f(Q+ ζ)− f(Q)− f ′(Q)ζ =

L++2∑
j=2

Rj,+ +

L−+2∑
j=2

(
R

(1)
j,− +R

(2)
j,−

)
+R1

where Rj,+ is a linear combination of terms of degree

degRj,+ = (k1, k2, j − 2,+), k1 + k2 = j

R
(1)
j,− is a linear combination of terms of degree

degR
(1)
j,− = (k1, k2, j − 2,−), k1 + k2 = j, k2 ≥ 1

and R
(2)
j,− is a linear combination of terms of degree

degR
(1)
j,− = (k1, k2, j − 1,−), k1 + k2 = j, k2 ≥ 2.

Moreover, the remainder has a decomposition

(3.19) R1 = R1,+ +R(1)
1,− +R(2)

1,−

where R1,+ is a linear combination of terms of degree

degR1,+ = (k1, k2, j − 2,+), k1 + k2 ≥ L+ + 3

R(1)
1,− is a linear combination of terms of degree

degR(1)
1,− = (k1, k2, j − 2,−), k1 + k2 ≥ L− + 3, k2 ≥ 1

and R(2)
1,− is a linear combination of terms of degree
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degR(1)
1,− = (k1, k2, j − 1,−), k1 + k2 ≥ L− + 3, k2 ≥ 2.

Proof of (3.18), (3.19): We expand the nonlinear term using that p = 2q+1.
Let the set

J = {0 ≤ j1 ≤ q + 1, 0 ≤ j2 ≤ q, j1 + j2 ≥ 2},

then

f(Q+ ζ)− f(Q)− f ′(Q)ζ = (Q+ ζ)q+1(Q+ ζ)q =
∑
j∈J

cj1,j2Q
p−(j1+j2)ζj1ζ

j2
.

Let (j1, j2) ∈ J and j = j1 + j2, then each monomial in the above decom-
position is by construction of ζ a linear combination of monomials

MΓ = Qp−jΠ
L+

k=1(bkΦk,+)
γ1,kΠ

L++2
k=2 (S

(1)
k,+)

γ2,k(S
(2)
k,+)

γ3,k

× Π
L−
k=1(akΦk,−)

γ4,kΠ
L−+2
k=2 (S

(1)
k,−)

γ5,k(S
(2)
k,−)

γ6,k .

We note

|J |1 =
L+∑
k=1

γ1,k +

L++2∑
k=2

(γ2,k + γ3,k) +

L−∑
k=1

γ4,k +

L++2∑
k=2

(γ5,k + γ6,k)

|J |2 =
L+∑
k=1

kγ1,k +

L++2∑
k=2

k(γ2,k + γ3,k) +

L−∑
k=1

kγ4,k +

L++2∑
k=2

k(γ5,k + γ6,k),

and observe the constraint

|J |1 = j ≥ 2.

Each monomial is a polynomial in (b, a) with

degMΓ = (k1, k2, S,±), k1 + k2 = |J |2 ≥ |J |1

for some degree S which we now compute in various regimes of parameters:
case γ4,k = γ5,k = γ6,k = 0: in this case, using |J1| = j, the rate S of the
asymptotic decay in y is given by

S = −2(p− j)

p− 1
+

L+∑
k=1

(2k − γ)γ1,k +

L++2∑
k=1

(2(k − 1)− γ)γ2,k + (2k − γ)γ3,k

≤ −2 + 2
j − 1

p− 1
+ 2|J |2 − γ|J1|
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= 2(|J |2 − 2) + 2 + (j − 1)
2

p− 1
− (j − 1)γ − γ

= 2(|J |2 − 2)− γ −
{
(j − 1)

[
γ − 2

p− 1

]
− 2

}
≤ 2(|J |2 − 2)− γ

from

j ≥ 2, γ − 2

p− 1
> 2.

We estimate higher order derivatives similarly and hence:

(3.20) degMΓ = (k1, k2, |J |2 − 2,+), k1 + k2 = |J |2.

case (γ4,k, γ5,k, γ6,k) 
= (0, . . . , 0): in this case, we use y−γ ≤ y−
2

p−1
−2 for

y ≥ 1 to estimate:

S ≤ −2(p− j)

p− 1

+

L+∑
k=1

(2k − 2

p− 1
− 2)γ1,k

+

L++2∑
k=2

(2(k − 1)− 2

p− 1
− 2)γ2,k + (2k − 2

p− 1
− 2)γ3,k

+

L−∑
k=1

(2k − 2

p− 1
)γ4,k +

L−+2∑
k=2

(2(k − 1)− 2

p− 1
)γ5,k + (2k − 2

p− 1
)γ6,k

≤ −2 + 2
j − 1

p− 1
+ 2|J |2 −

2

p− 1
|J1| − 2

∑
k

[γ1,k + γ2,k + γ3,k + γ5,k]

≤ 2

(
|J |2 − 1−

∑
k

[γ1,k + γ2,k + γ3,k + γ5,k]

)
− 2

p− 1
.

If one of the γ1,k, γ2,k, γ3,k, γ5,k is non zero, then

S ≤ 2(|J |2 − 2), degMΓ = (k1, k2, |J2| − 2,−), k1 + k2 = |J |2, k2 ≥ 1.

Otherwise, γ1,k = γ2,k = γ3,k = γ5,k = 0 and hence

|J |1 = γ4,k + γ6,k ≥ 2

implies

degMΓ = (k1, k2, |J |2 − 1,−), k1 + k2 = |J |2, k2 ≥ 2.
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We now sort all the above polynomials in terms of |J |2 ≥ 2 and obtain (3.18).

step 3 Choice of Sj,±. We compute from the definition (3.5) of Ψ and the
modulation equation (3.6), the linear computation (3.13) and the expansion
of the nonlinear term (3.18):

Ψ =

L++1∑
j=1

[
Ej+1,+ + JRj+1,+ − L̃Sj+1,+

]

+

L−+1∑
j=1

[
Ej+1,− + JR

(1)
j+1,− + JR

(2)
j+1,− − L̃Sj+1,−

]
+ (b1Λ + a1J)ΛSL++2,+

−
L+∑
m=1

[(2m− α)b1bm − bm+1]
∂SL++2,+

∂bm

−
L−∑
m=1

[2mb1am − am+1]
∂SL++2,+

∂aj

+ (b1Λ + a1J)SL−+2,−

−
L+∑
m=1

[(2m− α)b1bm − bm+1]
∂SL−+2,−

∂bm

−
L−∑
m=1

(2mb1am − am+1)
∂SL−+2,−

∂aj

+ JR1.

We therefore solve

L̃Sj+1,+ = Ej+1,+ + JRj+1,+, L̃Sj+1,− = Ej+1,− + JR
(1)
j+1,− + JR

(2)
j+1,−

and conclude from (3.16), (3.17), the properties of the decomposition (3.18)
and the inversion Lemma 2.7, that Sj+1,± satisfies (3.7), (3.8), (3.9) at the
order j + 1.

step 4 Estimating the error. It remains to estimate the error:

Ψ = (b1Λ + a1J)ΛSL++2,+ + (b1Λ + a1J)SL−+2,−(3.21)

−
L+∑
m=1

[(2m− α)b1bm − bm+1]
∂SL±+2,±

∂bm
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−
L−∑
m=1

[2mb1am − am+1]
∂SL±+2,±

∂aj

+ JR1.

Let

k+ + j+ = k− + j−, 0 ≤ j± ≤ L±.

We start by estimating SL±+2 terms and split the contribution according to
(3.7), (3.8).

S
(1)
2L+2,+ terms. A term

(1)∑
+

= (b1Λ + a1J)ΛS
(1)
L++2,+

−
L+∑
m=1

[(2m− α)b1bm − bm+1]
∂S

(1)
L++2,+

∂bm

−
L−∑
m=1

[2mb1am − am+1]
∂S

(1)
L++2,+

∂aj

is of degree

(k1, k2, L+ + 1,+), k1 + k2 = L+ + 3.

We recall from (1.40) the relation d − 2γ − 4k+ = 4δk+
− 2 and use the

definition (1.44) of B1 to estimate:

∫
y≤B1

(1 + y2)|L̃JL̃k++j+

(1)∑
+

|2

� b
2L++6
1

∫
y≤B1

y2|y2(L++1)−γ−2(k++j++1)|2yd−1dy

� b
2L++6
1

∫
y≤B1

y4(L+−j+)+d−2γ−4k++1dy

= b
2L++6
1

∫
y≤B1

y4(L+−j++δk+
)−1dy

� b
(2L++6)−2(L+−j++δk+

)−CL+
η

1 = b
2j++4+2(1−δk+

)−CL+
η

1

where we recall

η = η(L+), 0 < η � 1.
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S
(2)
2L+2,+ terms. A term

(2)∑
+

= (b1Λ + a1J)ΛS
(2)
L++2,+

−
L+∑
m=1

[(2m− α)b1bm − bm+1]
∂S

(2)
L++2,+

∂bm

−
L−∑
m=1

[2mb1am − am+1]
∂S

(2)
L++2,+

∂aj

is of degree

(k1, k2, L+ + 2,+), k1 + k2 = L+ + 3, k2 ≥ 1.

We then estimate as above using the gain (3.2) from k2 ≥ 1:

∫
y≤B1

(1 + y2)|L̃JL̃k++j+

(2)∑
+

|2 � b
2L++6+α
1

∫
y≤B1

y4(L+−j++δk+
)+3dy

� b
2j++2+α+2(1−δk+

)−CL+
η

1 ≤ b
2j++4+2(1−δk+

)−CL+
η

1

from α > 2.
S
(1)
2L+2,− terms. A term

(1)∑
−

= (b1Λ + a1J)ΛS
(1)
L−+2,−

−
L+∑
m=1

[(2m− α)b1bm − bm+1]
∂S

(1)
L−+2,+

∂bm

−
L−∑
m=1

[2mb1am − am+1]
∂S

(1)
L−+2,+

∂aj

is of degree

(k1, k2, L− + 1,−), k1 + k2 = L− + 3, k2 ≥ 1

We define

k+ + j+ = k− + j−, −Δk ≤ j− ≤ L−.
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We then use from (1.40) the relation d − 4
p−1 − 4k− = 4δk− − 2 and the

definition (1.44) of B1 to estimate:

∫
y≤2B1

(1 + y2)|L̃JL̃k−+j−

(1)∑
−

|2

� b
2L−+6+α
1

∫
y≤B1

y2|y2(L−+1)− 2

p−1
−2(k−+j−+1)|2yd−1dy

� b
2L−+6+2Δk
1

∫
y≤B1

y4(L−−j−)+d− 4

p−1
−4k−+1dy

= b
2L−+6+α
1

∫
y≤B1

y4(L−−j−+δk− )−1dy

� b
2L−+6−2(L−−j−+δk− )+α−CL+

η

1 = b
2j++4+2(1−δk− )+α−2Δk−CL+

η

1

= b
2j++4+2(1−δk+

)−CL+
η

1

where we used (1.40) in the last step.

S
(2)
2L+2,− terms. A term

(2)∑
−

= (b1Λ + a1J)ΛS
(2)
L−+2,−

−
L+∑
m=1

[(2m− α)b1bm − bm+1]
∂S

(2)
L−+2,+

∂bm

−
L−∑
m=1

[2mb1am − am+1]
∂S

(2)
L−+2,+

∂aj

is of degree

(k1, k2, L− + 2,−), k1 + k2 = L− + 3, k2 ≥ 2,

and we therefore estimate as above:∫
y≤B1

(1 + y2)|L̃JL̃k−+j−

(2)∑
−

|2

� b
2L−+6+2α
1

∫
y≤B1

y2|y2(L−+2)− 2

p−1
−2(k−+j−+1)|2yd−1dy
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� b
2j++2+2(1−δk− )+α+α−2Δk−CL+

η

1 � b
2j++4+2(1−δk+

)−CL+
η

1

from α > 2.
The R1 term is estimated exactly along the same lines, using the properties
of the decomposition (3.19). Moreover since the above estimate does not

use any cancellation induced by L̃, the control of
∫
y≤2B1

|Ψ|2
1+y4(k++j++2) can be

obtained along the exact same lines as above. This concludes the proof of
(3.10).
The global bound (3.11) is a direct consequence of the homogeneity in (a, b)
of the terms in (3.21). This concludes the proof of Proposition 3.2.

We now proceed to a brute force space localization of the profile Qb,a.
This is done to avoid the growth of tails, which becomes irrelevant for
y � B1 � B0. However we do not localize Q, as this would produce un-
controllable error terms. These considerations force us to work with norms
above scaling, which are finite when evaluated on Q.

Proposition 3.3 (Localization). Let the assumptions of Proposition 3.2
hold true. Assume in addition the a priori bound

(3.22) |(b1)s| � b21

Define the localized profile

(3.23) Q̃b(s),a(s)(y) = Q+ ζ̃(y), ζ̃ = χB1
ζ,

i.e.,

ζ̃ =

L+∑
j=1

bjΦ̃j,+ +

L−∑
j=1

ajΦ̃j,− +

L±+2∑
j=2

S̃j,±(3.24)

with Φ̃j,± = χB1
Φj,±, S̃j,± = χB1

Sj,±.

Then

(3.25) ∂sQ̃b,a − J [ΔQ̃b,a + f(Q̃b,a)] + b1ΛQ̃b,a + Ja1Q̃b,a = Ψ̃ + χB1
Mod

where Ψ̃ satisfies the bounds:
(i) Large Sobolev bound: let j+ + k+ = j− + k−, then for 0 ≤ j− ≤ L− − 1:
(3.26)∫

(1 + y2)|L̃∗JL̃k++j+Ψ̃|2 +
∫ |Ψ̃|2

1 + y4(k++j+)+2
� b

2j++2+2(1−δk+
)−CL+

η

1

and
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(3.27)∫
(1 + y2)|L̃∗JL̃k++L+Ψ̃|2 +

∫ |Ψ̃|2
1 + y4(k++j+)+2

� b
2L++2+2(1−δk+

)+2η(1−δp)

1

with δp given by (1.38).
(ii) Very local bound: ∀B ≤ B1

2 , ∀0 ≤ j+ ≤ L+,

(3.28)

∫
y≤2B

(1 + y2)|L̃∗JL̃k++j+Ψ|2 � BCb
2L++6
1

(iii) Refined local bound near B0: ∀0 ≤ j+ ≤ L+,∫
y≤2B0

(1 + y2)|L̃∗JL̃k++j+Ψ̃|2 +
∫
y≤2B0

|Ψ̃|2
1 + y4(k++j+)+2

(3.29)

� b
2j++4+2(1−δk+

)−CL+
η

1 .

(iii) Small Sobolev bound: let a universal constant

σ > sc, |σ − sc| � 1,

then:

(3.30) ‖∇σΨ̃‖2L2 ≤ bσ−sc+2+ν1

1

for some universal constant ν1(d, p) > 0.

Remark 3.4. Observe the loss in (3.27) with respect to (3.10). This is a an
unavoidable consequence of the localization of the profile, which generates
the worst case bound in (3.27).

Remark 3.5. We can take

ν =
α− 2

2
> 0

in (3.30).

Proof of Proposition 3.3. step 1 Algebraic identity. We compute from lo-
calization:

∂sQ̃b,a − J [ΔQ̃b,a + f(Q̃b,a)] + b1ΛQ̃b,a + Ja1Q̃b,a

= χB1
[∂sζ − J(Δζ + f(Qb,a)− f(Q)) + b1Λζ + Ja1ζ] + b1ΛQ+ Ja1Q

+ ζ
[
∂sχB1

+ b1yχ
′
B1

− JΔχB1

]
− 2J∇ζ · ∇χB1
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= χB1
[Ψ +Mod] + (1− χB1

)(b1ΛQ+ a1JQ)

− J
[
f(Q̃b,a)− f(Q)− χB1

(f(Qb,a)− f(Q))
]

+ ζ
[
∂sχB1

+ b1yχ
′
B1

− JΔχB1

]
− 2Jζ ′χ′

B1

or equivalently according to (3.25):

Ψ̃ = χB1
Ψ+ Ψ̂

with

Ψ̂ = (1− χB1
)(b1ΛQ+ a1JQ)

− J
[
f(Q̃b,a)− f(Q)− χB1

(f(Qb,a)− f(Q))
]

+ ζ
[
∂sχB1

+ b1yχ
′
B1

− JΔχB1

]
− 2Jζ ′χ′

B1
.(3.31)

step 2 Estimating integer derivatives. The bound (3.27) for χB1
Ψ follows

verbatim the proof of (3.10), (3.11) which, in fact, yield a stronger estimate
for 0 < η < η(L+) small enough. We therefore left to estimate the Ψ̂ terms.
Note that all terms in (3.31) are localized in B1 ≤ y ≤ 2B1 except the
first one16 for which Supp {(1− χB1

)(b1ΛQ+ a1JQ)} ⊂ {y ≥ B1}. Hence
(3.28), (3.29) follow directly from (3.11), (3.10). In order to treat the far
away localized remaining error, we split:

(3.32) Ψ̃ = Ψ̃+ + Ψ̃−, Ψ̃− = a1(1− χB1
)JQ,

and we claim the bounds:∫
(1 + y2)|L̃JL̃k++j+Ψ̃+|2 +

∫ |Ψ̃+|2
1 + y4(k++j+)+2

�
{

b
2j++2+2(1−δk+

)−CL+
η

1 for 0 ≤ j+ ≤ L+ − 1

b
2L++2+2(1−δk+

)+2η(1−δp)

1 for j+ = L+

,(3.33)

and ∫
(1 + y2)|L̃JL̃k−+j−Ψ̃−|2 +

∫ |Ψ̃−|2
1 + y4(k++j+)+2

�
{

b
2j++2+2(1−δk+

)−CL+
η

1 for 0 ≤ j− ≤ L− − 1

b
2L++2+2(1−δk+

)+2η(1−δp)

1 for j− = L−.
,(3.34)

Proof of (3.34). Let j+ ≥ 0. We first observe from (3.22) the bound:

16which is in fact the leading order term.
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(3.35) |∂sχB1
| � |(b1)s|

b1
|yχ′

B1
| � b11B1≤y≤2B1

.

Let now j+ ≥ 0. We estimate

∀k ≥ 0,

∣∣∣∣ dkdyk
[(1− χB1

)ΛQ]

∣∣∣∣ � 1

yγ+k
1y≥B1

from which, using (1.40) and the definition (1.44) of B1:∫
(1 + y2)

∣∣∣L̃JL̃k++j+ (b1(1− χB1
)ΛQ)

∣∣∣2 � b21

∫
y≥B1

yd−1dy

y4(k++j++1)+2γ−2

� b21

B
4j++4(1−δk+

)

1

� b
2j++2+2(1−δk+

)(1+η)

1 .

We now split:

ζ = ζ
(0)
± + ζ

(1)
± , ζ

(0)
+ =

L+∑
j=1

bjΦj,+, ζ
(0)
− =

L−∑
j=1

ajΦj,−, ζ
(1)
± =

L±+2∑
j=2

Sj,±.

From Lemma 2.8: for all B1 ≤ y ≤ 2B1,

(3.36)

∣∣∣∣ ∂k

∂yk
ζ
(0)
+

∣∣∣∣ �
L+∑
j=1

bj1y
2j−γ−k

from which, using (1.40): for all 0 ≤ j+ ≤ L+:∫
(1 + y2)

∣∣∣L̃JL̃k++j+

×
(
(∂sχB1

)ζ
(0)
+ − 2J∂yχB1

∂yζ
(0)
+ − Jζ

(0)
+ ΔχB1

+ b1ζ
(0)
+ yχ′

B1

)∣∣∣2
�

L+∑
j=1

b21b
2j
1

∫
B1≤y≤2B1

y2
∣∣∣y2j−γ−2(k++j++1)

∣∣∣2 yd−1dy

� b21

L+∑
j=1

b2j1 B
4(j−j+)−4(1−δk+

)

1 � b
2j++2
1

L+∑
j=1

(b1B
2
1)

2(j−j+)−2(1−δk+
)

�
{

b
2j++2+2(1−δk+

)−CL+
η

1 for 0 ≤ j+ ≤ L+ − 1

b
2L++2+2(1−δk+

)(1+η)

1 for j+ = L+

,
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Similarily, using (1.40) and the a priori bound (3.2):∫
(1 + y2)

∣∣∣L̃JL̃k++j+

×
(
(∂sχB1

)ζ
(0)
− − 2J∂yχB1

∂yζ
(0)
− − Jζ

(0)
− ΔχB1

+ b1ζ
(0)
− yχ′

B1

)∣∣∣2
�

L−∑
j=1

b21b
2j+α
1

∫
B1≤y≤2B1

y2
∣∣∣y2j− 2

p−1
−2(k−+j−+1)

∣∣∣2 yd−1dy

�
L−∑
j=1

b2j+2+α
1 B

4(j−j−)−4(1−δk− )

1

� b
2+2j++2(1−δk+

)

1

L−∑
j=1

(b1B
2
1)

2(j−j−)−2(1−δk− )

�
{

b
2j++2+2(1−δk+

)−CL+η

1 for 0 ≤ j+ ≤ L+ − 1

b
2L++2+2(1−δk+

)+2η(1−δk− )

1 for j+ = L+.

We now derive from (3.7) the bound:∣∣∣∂k
ySj,+

∣∣∣ � bj1y
2(j−1)−γ−k + b

j+α

2

1 y2j−γ−k

from which∫
(1 + y2)

∣∣∣L̃JL̃k++j+

×
(
(∂sχB1

)ζ
(1)
+ − 2J∂yχB1

∂yζ
(1)
+ − Jζ

(1)
+ ΔχB1

+ b1ζ
(1)
+ yχ′

B1

)∣∣∣2
�

L++2∑
j=2

b21b
2j
1

∫
B1≤y≤2B1

{
y2
∣∣∣y2(j−1)−γ−2(k++j++1)

∣∣∣2 yd−1

+ bα1 y
2
∣∣∣y2j−γ−2(k++j++1)

∣∣∣2 yd−1dy

}
� b21

L++2∑
j=2

{
b2j1 B

4(j−j+−1)−4(1−δk+
)

1 + b2j+α
1 B

4(j−j+)−4(1−δk+
)

1

}

� b
2j++4
1

L++2∑
j=2

(b1B
2
1)

2(j−j+−1)−2(1−δk+
)
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+ b
2j++2+α
1

L++2∑
j=2

(b1B
2
1)

2(j−j+)−2(1−δk+
)

� b
2j++4−CL+

η

1 ≤ b
2L++2+2(1−δk+

)(1+η)

1

for 0 < η � 1 small enough, thanks to the conditions α > 2 and 0 < δk+
< 1.

We next estimate from (3.8):∣∣∣∂k
ySj,−

∣∣∣ � b
j+α

2

1 y2(j−1)− 2

p−1
−k + bj+α

1 y2j−
2

p−1
−k

and obtain the bound:∫
(1 + y2)

∣∣∣L̃JL̃k++j+

×
(
(∂sχB1

)ζ
(1)
− − 2J∂yχB1

∂yζ
(1)
− − Jζ

(0)
− ΔχB1

+ b1ζ
(1)
− yχ′

B1

)∣∣∣2
�

L−+2∑
j=2

b2+α
1 b2j1

∫
B1≤y≤2B1

y2
{ ∣∣∣y2(j−1)− 2

p−1
−2(k−+j−+1)

∣∣∣2
+ bα1

∣∣∣y2j− 2

p−1
−2(k−+j−+1)

∣∣∣2}yd−1dy

� b2+α
1

L−+2∑
j=2

{
b2j1 B

4(j−j−−1)−4(1−δk− )

1 + b2j+α
1 B

4(j−j−)−4(1−δk− )

1

}

� b
2j−+α+4
1

L−+2∑
j=2

(b1B
2
1)

2(j−j−−1)−2(1−δk− )

+ b
2j−+2α+2
1

L−+2∑
j=2

(b1B
2
1)

2(j−j−)−2(1−δk− )

� b
2j++4+α−2Δk−CL+

η

1 = b
2j++2(1−δk+

)+2δk−−CL+
η

1 � b
2j++2(1+η)(1−δk+

)

1

for η < η(L+) small enough.

To estimate the nonlinear term, we first observe:∣∣∣f(Q̃b,a)− f(Q)− χB1
(f(Qb)− f(Q))

∣∣∣ � 1B1≤y≤2B1
[Qp−1 + |ζ|p−1]|ζ|.

We then estimate for y ∼ B1:
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Qp−1 � 1

y2
� b1+η

1

and observe the rough bound:

|ζ| �
L++2∑
j=1

bj1y
2j−γ +

L−+2∑
j=1

b
j+α

2

1 y2j−
2

p−1 � b
−CL+

η

1

yγ

from which using γ > 2, p− 1 > 1: for y ∼ B1,

|ζ|p−1 � b
γ(p−1)

2
−CL+

η

1 ≤ b1

for η small enough. Similar estimates also hold for derivatives. The bound∫
(1 + y2)

∣∣∣L̃JL̃k++j+
(
f(Q̃b,a)− f(Q)− χB1

(f(Qb)− f(Q))
)∣∣∣2

�
{

b
2j++2+2(1−δk+

)−CL+η

1 for 0 ≤ j+ ≤ L+ − 1

b
2L++2+2(1−δk+

)+2η(1−δp)

1 for j+ = L+.

now easily follows. Note that this argument does not use any cancellation
induced by L̃. This concludes the proof of (3.33).
Proof of (3.34). We now assume the stronger condition j− ≥ 0 to estimate
the last non localized term. Using (1.40),∫

(1 + y2)
∣∣∣L̃JL̃k++j+ (a1(1− χB1

)Q)
∣∣∣2 ++

∫ |Ψ̃−|2
1 + y4(k++j+)+2

� b2+α
1

∫
y≥B1

yd−1dy

y4(k−+j−+1)+ 4

p−1
−2

� b2+α
1

∫
y≥B1

dy

y1+4(j−+1−δk− )

� b
2+α+2j−+2(1−δk− )

1

(
B0

B1

)4j−+4(1−δk− )

� b
2+2j++2(1−δk+

)+2η(1−δk− )

1 ,

and (3.34) is proved.

step 3 Control of fractional derivatives. Let now sc < σ < d
2 . Arguing as in

the proof of (3.33), we estimate:∫ ∣∣∣∇2k++2j++1(χB1
Ψ+ Ψ̃+)

∣∣∣2
�

{
b
2j++2+2(1−δk+

)−CL+
η

1 for 0 ≤ j+ ≤ L+ − 1

b
2L++2+2(1−δk+

)+2η(1−δp)

1 for j+ = L+

,
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Now from (1.40) and α > 2:

(3.37) 2k+ + 1 = sc − 2
[α
2
− (1− δk+

)
]
< sc < σ.

We interpolate using the notation (1.43):

(3.38) σ = z(2k+ + 1) + (1− z)s+, 1− z =
σ − 2k+ − 1

2L+

so that:

‖∇σ(χB1
Ψ+ Ψ̃+)‖2L2 � b

(2+2(1−δk+
)−CL+

η)z+(2L++2(1−δk+
)+2η(1−δp))(1−z)

1

We then compute using (3.37), (3.38):

(2 + 2(1− δk+
)− CL+

η)z + (2L+ + 2(1− δk+
) + 2η(1− δp))(1− z) =

2 + 2(1− δk+
)− CL+

η + σ − (2k+ + 1) +O

(
1

L+

)
= σ − sc + α− CL+

η +O

(
1

L+

)
and obtain the bound from α > 2 for L+ large enough and η < η(L+) small
enough:

‖∇σ(χB1
Ψ+ Ψ̃+)‖2L2 � b

2+σ−sc+ν(d,p)
1 .

For the Ψ̃− term, we use the expansion

∂k
yQ =

c

y
2

p−1
+k

+O

(
1

yγ+k

)
, k ≥ 0

and standard commutator estimates to bound

‖∇σQ‖2L2(y≥B1)
� 1

B
2(σ−sc)
1

from which using (3.2):

‖∇σΨ̃−‖2L2 � b2+α
1

B
2(σ−sc)
1

� b2+σ−sc+α
1 .

This concludes the proof of (3.30) and of Proposition 3.3.
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3.2. Study of the dynamical system for b = (b1, . . . , bL+
) and

a = (a1, . . . , aL−)

The construction of the Qb,a profile together with the yet described orthog-
onality relations will generate a finite dimensional dynamical system for
b = (b1, . . . , bL+

) and a = (a1, . . . , aL−). At a formal level this system is
obtained by setting to zero the inhomogeneous Mod(t) term (3.6) of the
renormalized flow.

(3.39)

{
(bj)s + (2j − α) b1bj − bj+1 = 0, 1 ≤ j ≤ L+, bL++1 ≡ 0,
(aj)s + 2jb1aj − aj+1 = 0, 1 ≤ j ≤ L−, aL−+1 ≡ 0.

In this section we show that (3.39) admits a family of explicit solutions
indexed by � ∈ N∗, � > α

2 . This family has a special property that its
linearized flow is explicit as well and provides a direct description of its
stable and unstable manifolds.

Lemma 3.6 (Solution to the a, b system). Let

α

2
< � � L+, � ∈ N∗

and the sequence

(3.40)

⎧⎪⎨⎪⎩
c1 =

�
2�−α ,

cj+1 = −α(�−j)
2l−α cj , 1 ≤ j ≤ �− 1,

cj = 0, j ≥ �+ 1

then with the explicit choice

(3.41)

{
bej(s) =

cj
sj 1 ≤ j ≤ L+

aej(s) = 0
, s > 0

is a solution to (3.39).

The proof of Lemma 3.6 is an explicit computation which is left to the
reader. We now claim that this solution has a codimension (�+k�−1) stable
manifold with k� given by (1.41). We note that the stability and instability
of the (b, a) system is considered in the class of solutions

sup
s

sj |bj(s)| ≤ Cj , j = 1, ..., L+

sup
s

sj+
α

2 |aj(s)| ≤ Cj , j = 1, ..., L−

We start with the b instabilities:
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Lemma 3.7 (Linearization of the unstable b-subsystem). 1. Computation
of the linearized system: Let

(3.42) bk(s) = bek(s) +
Uk(s)

sk
, 1 ≤ k ≤ �,

and note U = (U1, . . . , U�). Then: for 1 ≤ k ≤ �− 1,

(3.43) (bk)s + (2k − α) b1bk − bk+1 =
1

sk+1

[
s(Uk)s − (M�U)k +O

(
|U |2

)]
and

(b�)s + (2�− α) b1b� =
1

s�+1

[
s(U�)s − (M�U)� +O

(
|U |2

)]
(3.44)

where

(3.45) M� = (ai,j)1≤i,j,≤� with

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a11 =
α(�−1)
2�−α − (2− α)c1

ai,i+1 = 1, 1 ≤ i ≤ �− 1
a1,i = −(2i− α)ci, 2 ≤ i ≤ �

ai,i =
α(�−i)
2�−α , 2 ≤ i ≤ �

ai,j = 0 otherwise

.

2. Diagonalization of the linearized matrix: M� is diagonalizable:

(3.46) M� = P−1
� D�P�, D� = diag

{
−1,

2α

2�− α
,

3α

2�− α
, . . . ,

�α

2�− α

}
.

Remark 3.8. Positive eigenvalues of the matrix M� correspond to (� − 1)
unstable directions of both the truncated and the full system for b. On the
other hand, the negative eigenvalue direction together with the submanifold
of solutions of the form (0, ..., 0, b�+1, ..., bL+

) generate the stable manifold.
Solutions of the form (0, ..., 0, b�+1, ..., bL+

) automatically obey the linear
system

(bj)s + (2j − α)be1bj − bj+1 = 0, j = �+ 1, ..., L+, bL++1 = 0.

Its stability in the class of solutions with uniform bounds on sj |bj(s)| is
ensured by the positivity of

(2j − α)c1 − j =
2j − α

2�− α
�− j = α

j − �

2�− α
> 0

for j > �.



506 Frank Merle et al.

Proof of Lemma 3.7. step 1 Linearization. A simple computation from
(3.41) gives for 1 ≤ k ≤ �− 1:

(bk)s + (2k − α) b1bk − bk+1

=
1

sk+1
[s(Uk)s− kUk +(2k−α)c1Uk +(2k−α)ckU1−Uk+1 +O(U1Uk)],

and the relation

(2k − α)c1 − k = −α(�− k)

2�− α

implies

(bk)s +

(
2k − 1 +

2

logs

)
b1bk − bk+1

=
1

sk+1

[
s(Uk)s + (2k − α)ckU1 −

α(�− k)

2l − α
Uk − Uk+1 +O

(
|U |2

)]
.

For k = �,

(b�)s + (2�− α) b1b� − b�+1

=
1

s�+1
[s(U�)s − �U� + (2�− α)c1U� + (2�− α)c�U1 +O(U1U�)]

=
1

s�+1

[
s(U�)s + (2�− α)c�U1 +O(|U |2)

]
thanks to

−�+ (2�− α)c1 = 0.

These two relations are equivalent to (3.43), (3.44), (3.45).

step 2 Diagonalization. We compute the characteristic polynomial. The
cases � = 2, 3 are done by direct inspection. Let us assume � ≥ 4 and
compute

P�(X) = det(M� −XId)

by expanding in the last row. This yields:

P�(X) = (−1)�+1(−1)(2�− α)c� + (−X)

{
(−1)�(−1)(2(�− 1)− α)c�−1

+

(
α

2�− α
−X

)[
(−1)�−1(−1)(2(�− 2)− α)c�−2



Type II blow up 507

+

(
2α

2�− α
−X

)
[. . . ...]

]}
.

We use the recurrence relation (3.40) to compute explicitly:

(−1)�+1(−1)(2�− α)cl

+ (−X)

{
(−1)�(−1)(2(�− 1)− α)c�−1

+

(
α

2�− α
−X

)[
(−1)�−1(−1)(2(�− 2)− α)c�−2

]}
= (−1)�

{
(2(�− 1)− α)c�−1

(
X − α

2(�− 1)− α

)
+ (2(�− 2)− α)c�−2

(
X − α

2�− α

)
X

}
.

We now compute from (3.40) for 1 ≤ k ≤ l − 2:

(2(�− k)− α))c�−k

(
X − α

2(�− k)− α)

)
+ (2(�− k − 1)− α))c�−(k+1)X

(
X − α

2�− α

)
= (2(�− k − 1)− α))c�−(k+1)

[
X

(
X − α

2�− α

)
− 2(�− k)− α

2(�− k − 1)− α

α(k + 1)

2�− α

(
X − α

2(�− k)− α)

)]
= (2(�− k − 1)− α))c�−(k+1)

×
(
X − α(k + 1)

2�− α

)(
X − α

2(�− k − 1)− α)

)
.(3.47)

We therefore obtain inductively:

P�(X) = (−1)�
{
(2�− 1− α)c�−1

(
X − α

2(�− 1)− α

)
+ (2(�− 2)− α)c�−2

(
X − α

2�− α

)
X

}
+ (−X)

(
α

2�− α
−X

)(
2α

2�− α
−X

)
×

[
(−1)�−2(−1)(2(�− 3)− α)c�−3 +

(
3α

2�− α
−X

)
[. . . ]

]
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= (−1)�
(
X − 2α

2�− α

){
(2(�− 2)− α)c�−2

(
X − α

2�− 2)− α

)
+ (2(�− 3)− α)c�−3X

(
X − α

2�− α

)}
+ (−X)

(
α

2�− α
−X

)(
2α

2�− α
−X

)(
3α

2�− α
−X

)
× [(−1)�−3(−1)(2(�− 4)− α)c�−4 . . . ]

= (−1)�
(
X − 2α

2�− α

)
. . .

(
X − (�− 2)α

2�− α

)
×

{
(4− α)c2

(
X − α

4− α

)
+X

(
X − α

2�− α

)
×

(
(2− α)c1 +X − α(�− 1)

2�− α

)}
.

We use (3.47) with k = l − 2 to compute the last polynomial:

(4− α)c2

(
X − α

4− α

)
+ X

(
X − α

2�− α

)(
(2− α)c1 +X − α(�− 1)

2�− α

)
=

{
(4− α)c2

(
X − α

4− α

)
+ (2− α)c1X

(
X − α

2�− α

)}
+ X

(
X − α

2�− α

)(
X − α(�− 1)

2�− α

)
= (2− α)c1

(
X − α(�− 1)

2�− α

)(
X − α

2− α

)
+ X

(
X − α

2�− α

)(
X − α(�− 1)

2�− α

)
=

(
X − α(�− 1)

2�− α

)[
(2− α)�

2�− α

(
X − α

2− α

)
+X

(
X − α

2�− α

)]
=

(
X − α(�− 1)

2�− α

)(
X − α�

2�− α

)
(X + 1) .

We have therefore computed:

P�(x) = (−1)l
(
X − 2α

2�− α

)
. . .

(
X − 3α

2�− α

)(
X − (�− 1)α

2l − α

)
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×
(
X − �α

2�− α

)
(X + 1)

and (3.46) is proved.

We now compute the a instabilities:

Lemma 3.9 (Linearization of the unstable a-subsystem). Assume k� ≥ 1.
Let

Ak = sk+
α

2 ak, A = (Ak)1≤k≤k�
,

then for 1 ≤ k ≤ k� − 1 (if k� ≥ 2):

(ak)s +
2kc1
s

ak − ak+1 =
1

sk+
α

2
+1

[s(Ak)s − (Mk�
A)k]

and for k = k�:

(ak)s +
2kc1
s

ak =
1

sk+
α

2
+1

[s(Ak)s − (Mk�
A)k]

with ⎧⎨⎩
(Mk�

)i,i = − α
(2�−α) [k − (k� + δ�)] , 1 ≤ i ≤ k�

(Mk�
)i,i+1 = 1, 1 ≤ i ≤ k� − 1

(Mk�
)i,j = 0 otherwise.

We can diagonalize the matrix Mk�
:

(3.48)

Mk�
= Q�Dk�

Q−1
� , Dk�

= Diag

(
− α

(2�− α)
[k − (k� + δ�)]

)
1≤k≤k�

.

Remark 3.10. All k� eigenvalues of the matrix Mk�
are positive and thus

generate unstable directions of the truncated (and full) a-system. Similar to
the analysis of the b-system the solutions of the form (0, ..., 0, ak�+1, ...., aL−)
give rise to the stable directions of the a-system. We omit the computation.

Proof of Lemma 3.9. This is an elementary computation based on the value
of c1 from (3.40). Here, the explicit diagonalization of Mk�

is obvious.

4. The trapped regime

In this section, we introduce the main dynamical tools at the heart of the
proof of Theorem 1.1. We start with the description of the bootstrap regime
in which the blow up solutions of Theorem 1.1 will be trapped, based on
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the splitting of the motion into the finite dimensional part driven by the
modulation parameters and the remaining infinite dimensional dispersive
dynamics. We then establish the control of the finite dimensional dynamics
by the infinite dimensional part. The infinite dimensional part will in turn
be controlled through the derivation of a mixed Energy/Morawetz Lyapunov
functional in section 5.

4.1. Localized generators of the kernel of the iterates of L̃

We start by constructing two directions ΞM,± with the property that their

iterates (L̃kΞM,±)1≤k≤L± are a well localized approximation of the explicit

kernel of L̃k+L+ .

Construction of ΞM,+. First observe from (A.2) that since

d− γ − 2

p− 1
> d− 2γ > 0,

for any M � 1:

(4.1) Md−γ− 2

p−1 � |(JχMΦ0,+,Φ0,−)| =
∫

χMΛQQ � Md−γ− 2

p−1 .

We then consider the fixed vector:

(4.2) ΞM,+ =

L−∑
m=0

c+m,−(L̃∗)m(JχMΦ0,+) +

L+∑
m=0

c+m,+(L̃∗)m(JχMΦ0,−)

with the explicit choice:

c+0,+ = 1, c+0,− = 0

and the inductive relation: for 1 ≤ k ≤ L+,

c+k,+ = −
∑min{L−,k−1}

m=0 c+m,−(JχMΦ0,+, L̃mΦk,+) +
∑k−1

m=0 c
+
m,+(JχMΦ0,−, L̃mΦk,+)

(χMJΦ0,+,Φ0,−)
,

and for 1 ≤ k ≤ L−,

c+k,− = −
∑k−1

m=0 c
+
m,−(JχMΦ0,+, L̃mΦk,−) +

∑k−1
m=0 c

+
m,+(JχMΦ0,−, L̃mΦk,−)

(χMJΦ0,+,Φ0,−)
.
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We compute:

|(ΞM,+,Φ0,+)| =
∣∣∣c+0,−(JχMΦ0,+,Φ0,+) + c+0,+(JχMΦ0,−,Φ0,+)

∣∣∣
= |(JχMΦ0,+,Φ0,−)| � Md−γ− 2

p−1 ,(4.3)

and

(4.4) (ΞM,+,Φ0,−) = c+0,−(JχMΦ0,+,Φ0,−) + c+0,+(JχMΦ0,−,Φ0,−) = 0,

and for 1 ≤ k ≤ L+:

(ΞM,+,Φk,+) =

L−∑
m=0

c+m,−(JχMΦ0,+, L̃mΦk,+)

+

L+∑
m=0

c+m,+(JχMΦ0,−, L̃mΦk,+)

= c+k,+(JχMΦ0,−,Φ0,+) +

min{L−,k−1}∑
m=0

c+m,−(JχMΦ0,+, L̃mΦk,+)

+

k−1∑
m=0

c+m,+(JχMΦ0,−, L̃mΦk,+)

= 0

and for 1 ≤ k ≤ L−:

(ΞM,+,Φk,−) =

L−∑
m=0

c+m,−(JχMΦ0,+, L̃mΦk,−)

+

L+∑
m=0

c+m,+(JχMΦ0,−, L̃mΦk,−)

= c+k,−(JχMΦ0,+,Φ0,−) +
k−1∑
m=0

c+m,−(JχMΦ0,+, L̃mΦk,−)

+

k−1∑
m=0

c+m,+(JχMΦ0,−, L̃mΦk,−)

= 0.
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In particular:

(4.5)

{
(L̃iΦj,+,ΞM,+) = (JχMΦ0,+,Φ0,−)δi,j , 0 ≤ i, j ≤ L+

(L̃iΦj,−,ΞM,+) = 0, 0 ≤ j ≤ L−, 0 ≤ i ≤ L+.

We now claim by induction on k the bound

(4.6) |c+k,+| � M2k, |c+k,−| � M2k+α.

and indeed17

|c+k+1,+| � 1

Md−γ− 2

k−1

[
k∑

m=0

M2m+αMd−2γ+2(k+1−m)

+ M2mMd−γ− 2

m−1
+2(k+1−m)

]
� M2(k+1),

|c+k+1,−| � 1

Md−γ− 2

p−1

[
k∑

p=0

M2p+αMd−γ− 2

p−1
+2(k+1−p)

+ M2pMd− 4

p−1
+2(k+1−p)

]
� M2(k+1)+α.

Using the cancellation L̃∗(JΦ0,±) = 0 this yields the bound:

(4.7)

∫
|ΞM,+|2 �

L−∑
k=0

M4k+2αMd−2γ−4k +

L+∑
k=0

M4kMd− 4

p−1
−4k � Md− 4

p−1

and similarly18

(4.8)

∫
(1 + y2)|L̃∗ΞM,+|2 � Md− 4

p−1
−2.

Construction of ΞM,−. We now consider along the same lines the direction:

17using d− 2γ > 0 so that all integrals diverge.
18using d− 4

p−1 − 2 = d− 2γ + 2α− 2 > 0.
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(4.9) ΞM,− =

L−∑
m=0

c−m,−(L̃∗)m(JχMΦ0,+) +

L+∑
m=0

c−m,+(L̃∗)m(JχMΦ0,−)

with the explicit choice:

c−0,+ = 0, c−0,− = 1

and the induction relations: for 1 ≤ k ≤ L+,

c−k,+ = −
∑min{L−,k−1}

m=0 c−m,−(JχMΦ0,+, L̃mΦk,+) +
∑k−1

m=0 c
−
m,+(JχMΦ0,−, L̃mΦk,+)

(χMJΦ0,+,Φ0,−)
,

and for 1 ≤ k ≤ L−,

c−k,− = −
∑k−1

m=0 c
−
m,−(JχMΦ0,+, L̃mΦk,−) +

∑k−1
m=0 c

−
m,+(JχMΦ0,−, L̃mΦk,−)

(χMJΦ0,+,Φ0,−)

so that

(4.10) (ΞM,−,Φ0,+) = c−0,−(JχMΦ0,+,Φ0,+) + c−0,+(JχMΦ0,−,Φ0,+) = 0

|(ΞM,−,Φ0,−)| =
∣∣∣c−0,−(JχMΦ0,+,Φ0,−) + c−0,+(JχMΦ0,−,Φ0,−)

∣∣∣
= |(JχMΦ0,+,Φ0,−)| � Md−γ− 2

p−1(4.11)

and

(ΞM,−,Φk,+) = 0 for 1 ≤ k ≤ L+

(ΞM,−,Φk,−) = 0 for 1 ≤ k ≤ L−

In particular:
(4.12){

(L̃iΦj,+,ΞM,−) = 0, 0 ≤ i, j ≤ L+

(L̃iΦj,−,ΞM,−) = (JχMΦ0,+,Φ0,−)δi,j , 0 ≤ j ≤ L−, 0 ≤ i ≤ L+.

The bounds

(4.13)

∫
|ΞM,−|2 � Md− 4

p−1 ,

∫
(1 + y2)|L̃∗ΞM,−|2 � Md− 4

p−1
−2.

now follow verbatim as in the proof of (4.7), (4.8).
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4.2. Setting up the bootstrap

We are now in position to describe the set of initial data leading to the blow
up scenario of Theorem 1.1.
We assume that the initial data u0 ∈ H∞(Rd). Since the nonlinearity is
smooth, there exist a unique solution u ∈ C0([0, T0, Hs) for all s > 0 with
the blow up criterion

T < +∞ implies lim
t↑T

‖u(t)‖Hs = ∞ for s > sc.

We now restrict our class of initial data. We pick

L+ � 1

and a Sobolev exponent σ with

(4.14)
1

L+
� σ − sc � 1, sc < σ <

d

2
.

and require that initially

(4.15) ‖u0 −Q‖Ḣs � 1 for s ∈ [σ, L+].

Modulation. By continuity of the flow, the smallness (4.15) is propagated
on a small time interval [0, t1). On [0, t1) we then define the unique decom-
position:

u(t, r) =
1

λ(t)
2

p−1

(Q̃b(t),a(t) + ε)

(
t,

r

λ(t)

)
eiγ(t),(4.16)

λ(t) > 0, b = (b1, . . . , bL+
), a = (a1, . . . , aL−)

where the modulation parameters (a, b, λ, γ) are determined from the re-
quirement that ε(t) satisfies the L+ + L− + 2 orthogonality conditions:

(4.17) (ε, (L̃∗)kΞM,±) = 0, 0 ≤ k ≤ L±.

The existence of the decomposition (4.16) is a standard consequence of the
implicit function theorem and the explicit relations from (3.4), (3.9):(

∂

∂λ
(Q̃b,a)λe

iγ ,
∂

∂b1
(Q̃b,a)λe

iγ , . . . ,
∂

∂bL+

(Q̃b,a)λe
iγ ,
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∂

∂γ
(Q̃b,a)λe

iγ ,
∂

∂a1
(Q̃b,a)λe

iγ , . . . ,
∂

∂aL−

(Q̃b,a)λe
iγ

)
|λ=1,b=0,γ=0,a=0

= (Φ0,+,Φ1,+, . . . ,ΦL+,+Φ0,−,Φ1,−, . . . ,ΦL−,−)

which, using (4.1), (4.5), (4.12), imply the non degeneracy of the Jacobian:∣∣∣∣∣
(

∂

∂(λ, bj , ak)
(Q̃b,a)λ, (L̃∗)iΦM

)
1≤j≤L+,1≤k≤L−,0≤i≤L±

∣∣∣∣∣
λ=1,b=0,γ=0,a=0

= (χMJΦ0,+,Φ0,−)
L++L−+2 
= 0

for M ≥ M∗ large enough. The decomposition (4.16), in fact, exists as long
as t < T and ε(t, r) remains small in Ḣs ∩ ḢL+ .
Setting up the bootstrap. We now set up the bootstrap for the control of
the geometrical parameters (λ, b, γ, a) and the radiation ε. We will measure
the regularity of the map through the following coercive norms of ε:

• High Sobolev norms adapted to the linearized operator: let s+ be given
by (1.43), we consider the high order Sobolev norm adapted to L̃:
(4.18)

Es+ = (JL̃L̃k++L+ε, L̃k++L+ε) ≥ C(M)

[∫
|∇s+ε|2 +

∫ |ε|2
1 + y2s+

]
,

where the coercivity property follows from Lemma C.3 and the choice
of orthogonality conditions (4.17).

• Low Sobolev norm: let σ be chosen in the range (4.14), we will also
control ε in the norm:

(4.19)

∫
|∇σε|2.

We now choose our set of initial data in a more restricted way. More precisely,
pick a large enough time s0 � 1 and rewrite the decomposition (4.16):

(4.20) u(t, r) = (Q̃b(s),a(s) + ε)eiγ(t)(s, y)

where we introduced the renormalized variables:

(4.21) y =
r

λ(t)
, s(t) = s0 +

∫ t

0

dτ

λ2(τ)
.

The renormalized time variable s will be shown to range in the interval
[s0,+∞) with s = ∞ corresponding to the blow up time T . We introduce a
decomposition, see (3.42):
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(4.22) bk = bek +
Uk

sk
, 1 ≤ k ≤ �

and consider the variable

(4.23) V = P�U

where P� refers to the diagonalization (3.46) of M�. Similarily, if k� ≥ 1, we
let from (3.48):

(4.24) Ak = sk+
α

2 ak, A = (Ak)1≤k≤k�
, Ã = Q�A.

We recall that 0 < η � 1 is given by (1.45) and assume initially:

• Smallness of the initial perturbation for the bk unstable modes:

(4.25)
(
s

η

2
(1−δp)

0 Vk(s0)
)
2≤k≤�

∈ B� (1) .

• Smallness of the initial perturbation for the ak unstable modes: if
k� ≥ 1,

(4.26)
(
s

η

2
(1−δp)

0 Ãk(s0)
)
1≤k≤k�

∈ Bk�
(1) .

• Smallness of the initial perturbation for the stable b modes:
(4.27)

|V1(s0)| <
1

s
η

2
(1−δp)

, ∀�+ 1 ≤ k ≤ L+, |bk(s0)| < b1(s0)
k+ 5(2k−α)�

2�−α .

• Smallness of the initial perturbation for the stable a modes:

(4.28) ∀k� + 1 ≤ k ≤ L−, |ak(s0)| < b1(s0)
k+α

2
+ 5(2k)�

2�−α .

• Smallness of the data in high and low Sobolev norms:

(4.29)

∫
|∇σε(s0)|2 + Es+(s0) < b1(s0)

10�

2�−α
L+ .

• Normalization: up to a fixed rescaling, we may always assume

(4.30) λ(s0) = 1.

The heart of our analysis is the following:
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Proposition 4.1. Let

K = K(d, p,M,L+, σ) � 1

denote some large enough universal constant, then for any s0 large enough,
there exists initial data for the unstable modes(

Vk(s0)s
η

2
(1−δp)

0

)
2≤k≤�

×
(
Ãk(s0)s

η

2
(1−δp)

0

)
1≤k≤k�

∈ B�+k�−1 (1)

such that the corresponding solution satisfies the bounds: ∀s ≥ s0,

• Control of the unstable modes:

(4.31)
(
s

η

2
(1−δp)Vk(s)

)
2≤k≤�

×
(
s

η

2
(1−δp)Ãk(s)

)
1≤k≤k�

∈ B�+k�−1 (1) .

• Control of the stable bk modes:

(4.32) |V1(s)| ≤
10

s
η

2
(1−δp)

, |bk(s)| ≤
10

sk
, �+ 1 ≤ k ≤ L+.

• Control of the stable ak modes:

(4.33) |ak(s)| ≤
1

sk+
α

2

, k� + 1 ≤ k ≤ L−.

• Control of the radiation in high Sobolev norm:

(4.34) Es+(s) ≤ Kb1(s)
2L++2(1−δk+

)+2η(1−δp).

• Control of the radiation in low Sobolev norm:

(4.35) ‖∇σε‖2L2 ≤ Kb1(s)
2�

2�−α
(σ−sc).

Remark 4.2. Note in particular from (4.22) that the above bounds imply
that for η small enough

b1(s) ∼
c1
s
, |bk(s)| � (b1(s))

k, |ak(s)| ≤ (b1(s))
k+α

which are consistent with (3.2).

The proof of Proposition 4.1 proceeds via bootstrap combined with a
standard topological argument à la Brouwer. Given (ε(0), V (0)) as above,
we introduce the exit time
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s∗ = s∗(ε(s0), V (s0), Ã(s0))(4.36)

= sup{s ≥ s0 such that (4.31), (4.32), (4.33), (4.34),

(4.35) hold on [s0, s]},

assume that for any choice of

(4.37)
(
Vk(s0)s

η

2
(1−δk+

)

0

)
2≤k≤�

×
(
Ãk(s0)s

η

2
(1−δk+

)

0

)
1≤k≤k�

∈ B�+k�−1 (1)

the exit time s∗ < +∞. and look for a contradiction for s0 large enough. Our
main claim is that the a priori control of the unstable modes (4.31) is enough
to improve the bounds (4.32), (4.33), (4.34), (4.35). The contradiction claim,
i.e. existence of the data for �+ k� − 1 unstable modes resulting in the exit
time s∗ = ∞, is then established through a Brouwer type argument.

We formalize the first part of this argument in the following proposition.

Proposition 4.3 (Bootstrap under the a priori control of the unstable
modes). Under the assumptions of Proposition 4.1 let the solution (ε(s), a(s),
b(s), λ(s), γ(s)) obey the bounds (4.31), (4.32), (4.33), (4.34), (4.35) on a fi-
nite interval [s0, s

∗]. Then the bounds (4.32), (4.33), (4.34), (4.35) in fact
hold with an improved factor, e.g. 1/2, on the same interval [s0, s

∗].

The end of this section is devoted to the derivation of the modulation
equations. They follow from the construction of the directions ΞM,± and the
choice of the orthogonality conditions (4.17). The key monotonicity Lemmas
for the control of ε in the Ḣσ × Ḣs+ topology are then proved in section
5. The proof of Proposition 4.3 is then completed in section 6.1. We will
make a systematic implicit use of the interpolation bounds of Lemma D.1
following from the coercivity of the Es+ energy established in Lemma C.3.

4.3. Equation for the radiation

Recall the decomposition of the flow:
(4.38)

u(t, r) =
1

λ
2

p−1

(Q̃b(t),a(t) + ε)(s, y)eiγ =

[
1

λ
2

p−1

(Q+ ζ)(s, y) + w(t, r)

]
eiγ .

We use the rescaling formulas

u(t, r) =
1

λ
2

p−1

v(s, y)eiγ ,

y =
r

λ(t)
,
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∂tu =
1

λ2+ 2

p−1 (t)
(∂sv −

λs

λ
Λv + iγsv)(s, y)e

iγ

and (3.25) to derive the equation for ε in renormalized variables:

(4.39) ∂sε−
λs

λ
Λε− L̃ε = F − M̃od− γsJε = F

with

(4.40) M̃od = −
(
λs

λ
+ b1

)
ΛQ̃b,a + (γs − a1)JQ̃b,a − χB1

Mod

and

(4.41) F = −Ψ̃b + L(ε)−N(ε)

where L(ε) is the linear part arising from replacing Q̃b,a with Q in the
nonlinear term:

(4.42) L(ε) = J(f ′(Q)− f ′(Q̃b,a))ε, f(u) = u|u|p−1,

while the remainder higher order term:

(4.43) N(ε) = J
[
f(Q̃b,a + ε)− f(Q̃b,a)− εf ′(Q̃b,a)

]
.

We also need to write the flow (4.39) in original variables. For this, let the
rescaled linearized operator

(L+)λ = −Δ− p

λ2
Qp−1

( r
λ

)
, (L−)λ = −Δ− 1

λ2
Qp−1

( r
λ

)
and the renormalized matrix operator

L̃λ =

(
0 (L−)λ
−(L+)λ 0

)
,

then the renormalized function

w(t, r) =
1

λ
2

p−1

ε (s, y)

satisfies

(4.44) ∂tw − L̃λw =
1

λ2
Fλ, Fλ(t, r) =

1

λ
2

p−1

F(s, y).
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Observe from (3.41), (4.32) that for s < s∗,

|bk| � bk1, 0 < b1 � 1, 1 ≤ k ≤ L+

for some universal constant independent of the constant η in (4.31) in the
range 0 < η ≤ 1, and similarly from (4.31), (4.33):

|ak| ≤ bk+α
1 , 1 ≤ k ≤ L−

for η in (4.31) small enough. As a consequence the a priori bound (3.2) as
well as the conclusions of Proposition 3.3 hold with constants independent
of η, chosen to be sufficiently small.

4.4. Modulation equations

We now derive the modulation equations for (λ, b, γ, a) from the orthogo-
nality conditions (4.17).

Lemma 4.4 (Modulation equations). We have the following bounds on the
modulation parameters:

L+−1∑
k=1

|(bk)s + (2k − α)b1bk − bk+1|

+

L−−1∑
k=1

|(ak)s + 2kb1ak − ak+1|

+

∣∣∣∣λs

λ
+ b1

∣∣∣∣+ |γs − a1| � b
L++1+(1−δk+

)+η(1−δp)

1 ,(4.45)

the sharp bound for bL+
term:

(4.46)
∣∣(bL+

)s + (2L+ − α)b1bL+

∣∣ �
√

Es+
M2δk+

+ b
L++1+(1−δk+

)+η(1−δp)

1

and the lossy bound for aL− term:

(4.47)
∣∣(aL−)s + 2L−b1aL−

∣∣ � MC
√

Es+ + b
L++1+(1−δk+

)+η(1−δp)

1 .

for some universal constant c = cd,p,L+
> 0.

Remark 4.5. Note that under the bootstrap assumptions the above bounds
imply:
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(4.48) |(b1)s| � b21

and in particular (3.22).

Proof of Lemma 4.4. This Lemma is a consequence of our choice of orthogo-
nality conditions and the construction of the compactly supported directions
ΞM,±.

step 1 Law for bL+
. Let

D(t) =

∣∣∣∣λs

λ
+ b1

∣∣∣∣+ |γs − a1|(4.49)

+

L+∑
k=1

|(bk)s + (2k − α)b1bk − bk+1|

+

L−∑
k=1

|(ak)s + (2k − α)b1ak − ak+1|

We take the inner product of (4.39) with (L̃∗)L+ΞM,+ and obtain using the
orthogonality (4.17):

(M̃od(t), (L̃∗)L+ΞM,+)(4.50)

= −(Ψ̃b, (L̃∗)L+ΞM,+) + (L̃ε, (L̃∗)L+ΞM,+)

+

(
L(ε)−N(ε) +

λs

λ
Λε− γsJε, (L̃∗)L+ΞM,+

)
.

We now evaluate all terms in (4.50). The lhs is computed using (3.6), (4.40),
Supp(Ξm,+) ⊂ {y ≤ 2M} and the scalar products (4.5):

(M̃od(t), (L̃∗)L+ΞM,+)

=

(
−
(
λs

λ
+ b1

)
ΛQ̃b,a + (γs − a1)JQ̃b,a − χB1

Mod, (L̃∗)L+ΞM,+

)
= ((bL+

)s + (2L+ − α)b1bL+
)(JχMΦ0,+,Φ0,−) +O(MCb1|D(t)|).

We now turn to the rhs of (4.50). The error term is estimated from (3.28):∣∣∣(Ψ̃b, (L̃∗)L+ΞM,+)
∣∣∣ � MCb

L++3
1 ≤ b

L++1+(1−δk+
)+η(1−δp)

1 .

To estimate the linear term, we apply (C.20) to L̃L++1ε and estimate:
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Es+ = (JL̃L̃k++L+ε, L̃k++L+ε)

= (JL̃L̃k+−1L̃L++1ε, L̃k+−1L̃L++1ε) ≥ c0

∫ |L̃L++1ε|2
1 + y4k+−2

for some universal constant c0 > 0 independent of M , and hence using (4.7):∣∣∣(L̃ε, (L̃∗)L+ΞM,+)
∣∣∣

� ‖L̃L++1ε‖L2(y≤2M)‖‖ΞM,+‖L2 �
√

Es+M2k+−1‖ΞM,+‖L2

� M2k+−1+ d

2
− 2

p−1

√
Es+ .

We conclude using (4.1), (1.40):

(4.51)

∣∣∣∣∣(L̃ε, (L̃∗)L+ΞM,+)

(χMJΦ0,+,Φ0,−)

∣∣∣∣∣ � M2k+−1+ d

2
− 2

p−1

Md−γ− 2

p−1

√
Es+ �

√
Es+

M2δ+
.

The remaining terms are estimated using the Hardy bounds of Appendix B
and the size of the support of ΞM,+:∣∣∣∣(L(ε)−N(ε) +

λs

λ
Λε− γsJε, (L̃∗)L+ΞM,+

)∣∣∣∣ � MCb1(
√

Es+ + |D(t)|).

The collection of above bounds yields:

(4.52) |(bL+
)s+(2L+−α)b1bL+

| �
√

Es+
M2δ+

+b
L++1+(1+η)(1−δk+

)

1 +MCb1D(t).

step 2 Law for aL− . We follow a similar chain of estimates to compute
the modulation equation for aL− . We take the inner product of (4.39) with

(L̃∗)L−ΞM,− and obtain using the orthogonality (4.17):

(M̃od(t), (L̃∗)L−ΞM,−) = −(Ψ̃b, (L̃∗)L−ΞM,−) + (L̃ε, (L̃∗)L−ΞM,−)

(4.53)

+

(
L(ε)−N(ε) +

λs

λ
Λε− γsJε, (L̃∗)L−ΞM,−

)
.

We now evaluate all the terms in (4.53). The lhs is computed using (3.6),
(4.40), Supp(ΞM,−) ⊂ {y ≤ 2M} and the scalar products (4.5):

(M̃od(t), (L̃∗)L−ΞM,−)
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=

(
−
(
λs

λ
+ b1

)
ΛQ̃b,a + (γs − a1)JQ̃b,a − χB1

Mod, (L̃∗)L+ΞM,−

)
= ((aL−)s + 2L−b1aL−)(JχMΦ0,+,Φ0,−) +O(MCb1D(t)).

The error term is estimated from (3.28) which implies:∣∣∣(Ψ̃b, (L̃∗)L−ΞM,−)
∣∣∣ � MCb

L++3
1 ≤ b

L++1+(1−δk+
)+η(1−δp)

1 .

The remaining terms are estimated using the Hardy bounds of Appendix B
and the size of the support of ΞM,−:∣∣∣∣(L̃ε+L(ε)−N(ε)+

λs

λ
Λε− γsJε, (L̃∗)L−ΞM,−

)∣∣∣∣ � MC
√

Es++b1M
CD(t).

The collection of above bounds yields
(4.54)

|(aL−)s + 2L−b1aL−)| � MC
√

Es+ + b
L++1+(1−δk+

)+η(1−δp)

1 + b1M
CD(t).

step 3 Law for −λs

λ and bk, 1 ≤ k ≤ L+ − 1. We take the inner product of

(4.39) with (L̃∗)kΞM,+ and obtain using the orthogonality (4.17):

(M̃od(t), (L̃∗)kΞM,+) = −(Ψ̃b, (L̃∗)kΞM,+)

+

(
L(ε)−N(ε) +

λs

λ
Λε− γsJε, (L̃∗)kΞM,+

)
where in particular the linear term dropped thanks to (4.17) and k ≤ L+−1.
We compute from (3.6), (4.40), Supp(ΞM,−) ⊂ {y ≤ 2M} and the scalar
products (4.5):

(M̃od(t), (L̃∗)kΞM,+)

= ((bk)s + (2k − α)b1bk − bk+1)(JχMΦ0,+,Φ0,−) +O(MCb1D(t)).

The remaining terms are estimated using (3.28), the Hardy bounds of Ap-
pendix B and the compact support of ΞM,+ giving the bound:
(4.55)

|(bk)s+(2k−α)b1bk− bk+1| � b
L++1+(1−δk+

)+η(1−δp)

1 +MCb1(D(t)+
√

Es+).

Taking the inner product of (4.39) with ΞM,+ yields similarly:

(4.56)

∣∣∣∣λs

λ
+ b1

∣∣∣∣ � b
L++1+(1−δk+

)+η(1−δp)

1 +MCb1(D(t) +
√

Es+).
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step 4 Law for γs, ak, 1 ≤ k ≤ L− − 1. We take the inner product of (4.39)
with (L̃∗)kΞM,− and obtain using the orthogonality (4.17):

(M̃od(t), (L̃∗)kΞM,−) = −(Ψ̃b, (L̃∗)kΞM,−)

+

(
L(ε)−N(ε) +

λs

λ
Λε− γsJε, (L̃∗)kΞM,−

)
where again the linear term dropped thanks to (4.17) and k ≤ L− − 1.
We compute from (3.6), (4.40), Supp(ΞM,−) ⊂ {y ≤ 2M} and the scalar
products (4.5):

(M̃od(t), (L̃∗)kΞM,−)

= ((ak)s + 2kb1ak − ak+1)(JχMΦ0,+,Φ0,−) +O(MCb1|D(t)|).

The remaining terms are estimated using (3.28), the Hardy bounds of Ap-
pendix B and the compact support of ΞM,+ resulting in the bound:
(4.57)

|(ak)s + 2kb1ak − ak+1| � b
L++1+(1−δk+

)+η(1−δp)

1 +MCb1(D(t) +
√

Es+).

Taking the inner product of (4.39) with ΞM,− yields similarly:

(4.58) |γs − a1| � b
L++1+(1−δk+

)+η(1−δp)

1 +MCb1(D(t) +
√

Es+).

step 5 Conclusion. Summing (4.52), (4.54), (4.55), (4.56) (4.57), (4.58) gives
the rough bound:

|D(t)| � MC
√

Es+ + b
L++1+(1−δk+

)+η(1−δp)

1

which reinserted into (4.52), (4.54), (4.55), (4.56) (4.57), (4.58) yields (4.45),
(4.46), (4.47) for |b1| < b∗1(M) small enough.

4.5. Improved modulation equation for bL+
, aL−

The modulation equations for bL+
, aL− correspond to the unstable directions

linear in ε due to our choice of orthogonality conditions (4.17), and the fact
that ΞM,± is merely an approximation of the kernel of L̃k++L+ . Indeed (4.46),
(4.34) would only yield the pointwise bound∣∣(bL+

)s + (2L+ − α)b1bL+

∣∣ � b
L++(1−δk+

)+η(1−δp)

1
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which is not good enough to close the expected modulation equation∣∣(bL+
)s + (2L+ − α)b1bL+

∣∣� b
L++1
1 ,

and similarly for the aL− modulation equation (4.47). We however claim that
the main linear term can be removed modulo a term with a time oscillation:

Lemma 4.6 (Improved modulation equation). Then there holds the im-
proved bounds:∣∣∣∣∣(bL+

)s + (2L+ − α)b1bL+
+

d

ds

{
(L̃L+ε, χBμ

JΦ0,−)

(Φ0,+, χBμ
JΦ0,−)

}∣∣∣∣∣(4.59)

� 1

B
2δk+
μ

[
C(M)

√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

]
,∣∣∣∣∣(aL−)s + 2L−b1aL− +

d

ds

{
(L̃L−ε, χBμ

JΦ0,+)

(Φ0,−, χBμ
JΦ0,+)

}∣∣∣∣∣(4.60)

� 1

B
2δk−
μ

[
C(M)

√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

]
.

Proof of Lemma 4.6. step 1 Proof of (4.59). We commute (4.39) with L̃L+

and take the scalar product with χB0
JΦ0.−. This yields:

d

ds

{
(L̃L+ε, χB0

JΦ0,−)
}
− (L̃L+ε, JΦ0,−∂s(χB0

))

= (L̃L++1ε, JχB0
Φ0,−) +

λs

λ
(L̃L+Λε, χB0

JΦ0,−)− γs(L̃L+Jε, JχB0
Φ0,−)

+ (L̃L+(F − M̃od), JχB0
Φ0,−).

The linear term is estimated by Cauchy-Schwarz using Lemma C.3, (1.40)
and L̃∗(JΦ0,−) = 0:

|(L̃L++1ε, JχB0
Φ0,−)| � B

1+2k+

0 ‖L̃∗(JχB0
Φ0,−)‖L2

(∫ |L̃L+ε|2
1 + y2+4k+

) 1

2

� C(M)B
1+2k+

0 B
d

2
− 2

p−1
−2

0

√
Es+

= C(M)B
d−γ− 2

p−1
−2δk+

0

√
Es+ .

Similarily:
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∣∣∣∣λs

λ
(L̃L+Λε, χB0

JΦ0,−)

∣∣∣∣+ ∣∣∣γs(L̃L+Jε, JχB0
Φ0,−)

∣∣∣
� b1

(∫ |Λε|2 + |ε|2
1 + y4(L++k+)+2

) 1

2
(∫

(1 + y4(L++k+)+2)|(L̃∗)L+χB0
JΦ0,−|2

) 1

2

� b1C(M)
√

Es+B
d

2
− 2

p−1
+2k++1

0 � C(M)B
d−γ− 2

p−1
−2δk+

0

√
Es+

� C(M)B
d−γ− 2

p−1
−2δk+

0

√
Es+ ,

and ∣∣∣(L̃L+ε, JΦ0,−∂s(χB0
))
)
|

�
∣∣∣∣(b1)sb1

∣∣∣∣
(∫ |L̃L+ε|2

1 + y4k++2

) 1

2
(∫

B0≤y≤2B0

(1 + y4k++2)|y−
2

p−1 |2
) 1

2

� C(M)b1B
2k++1+ d

2
− 2

p−1

0

√
Es+ � C(M)B

d−γ− 2

p−1
−2δk+

0

√
Es+

� C(M)B
d−γ− 2

p−1
−2δk+

0

√
Es+ .

We now estimate the F terms. We anticipate the bound (5.23) to estimate:∣∣∣(L̃L+N(ε), JχB0
Φ0,−)

∣∣∣
�

(∫ |N(ε)|2
1 + y2s+

) 1

2
(∫

y≤2B0

(1 + y2(k++L+)+1− 2

p−1
−2L+)2yd−1dy

) 1

2

� b
1+ ν(d,p)

2

1

√
Es+B

d−γ− 2

p−1
−2δk+

+2

0 � B
d−γ− 2

p−1
−2δk+

0

√
Es+

and similarly using (5.30):∣∣∣(L̃L+L(ε), JχB0
Φ0,−)

∣∣∣
�

(∫ |L(ε)|2
1 + y2s+−4

) 1

2
(∫

y≤2B0

(1 + y2(k++L+)+1−2− 2

p−1
−2L+)2yd−1dy

) 1

2

� B
d−γ− 2

p−1
−2δk+

0

√
Es+ .

We estimate the Ψ̃b term from (3.29):

|(L̃L+Ψ̃, χB0
JΦ0,−)| = |(Ψ̃, (L̃∗)L+χB0

JΦ0,−)|
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�
(∫ |Ψ̃|2

1 + y4(k++L+)+2

) 1

2
(∫

B0≤y≤2B0

y4(k++L+)+2|y−
2

p−1
−2L+ |2

) 1

2

� b
L++2+(1−δk+

)−CL+
η

1 B
2k++1− 2

p−1
+ d

2

0

= B
d−γ− 2

p−1
−2δk+

+2

0 b
L++2+(1−δk+

)−CL+
η

1

� B
d−γ− 2

p−1
−2δk+

0 b
L++1+(1−δk+

)−CL+
η

1

� B
d−γ− 2

p−1
−2δk+

0 b
L++(1−δk+

)+η(1−δp)

1 .

We now compute the leading order term from (4.45), (4.40). We derive from

(3.7), (3.8) the rough bound: for y ≤ 2B0

(4.61) |ζb,a|+ |y · ∇ζa,b| � b1(1 + y2)

1 + yγ
+

b
1+α

2

1 (1 + y2)

1 + y
2

p−1

� b1(1 + y2)

1 + yγ

which together with the cancellation L̃∗JΦ0,− = 0 and (4.45) gives:∣∣∣∣λs

λ
+ b1

∣∣∣∣ |(L̃L+ΛQ̃b,a, χB0
JΦ0,−)|+ |γs − a1|(L̃L+JQ̃b,a, χB0

JΦ0,−)|

� b
L++1+(1−δk+

)+η(1−δp)

1 ,

∫
B0≤y≤2B0

b1(1 + y2)

1 + yγ
yd−1dy

1 + y2L++ 2

p−1

� b
L++1+(1−δk+

)+η(1−δp)

1 .

To estimate the lower order terms, we first observe the rough bound for

y ≤ 2B0, 1 ≤ j ≤ L+: ∣∣∣∣∣∣
L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

∣∣∣∣∣∣
�

L++2∑
m=j+1

bm−j
1

[
y2(m−1)−γ + b

α

2

1 y
2m−γ

+ b
α

2

1 y
2(m−1)− 2

p−1 + bα1 y
2m− 2

p−1

]
� b1y

2j−γ(4.62)

and hence for 1 ≤ j ≤ L+:
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∣∣∣∣∣∣
⎛⎝ L++2∑

m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

, (L̃∗)L+(χB0
JΦ0,−)

⎞⎠∣∣∣∣∣∣
�

∫
B0≤y≤2B0

b1y
2j−γ

y2L++ 2

p−1

yd−1dy � b1B
d−γ− 2

p−1

0 � b
1−δk+

1 B
d−γ− 2

p−1
−2δk+

0 .

We obtain, using

B
2−γ− 2

p−1

0 � (χB0
Φ0,+, JΦ0,−) � B

2−γ− 2

p−1

0 ,

the cancellation L̃L+Φj,+ = 0 for j ≤ L+ − 1 and (4.45):∣∣∣∣∣∣
L+−1∑
j=1

[(bj)s + (2j − α)b1bj − bj+1]

×

⎛⎝Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

, (L̃∗)L+(χB0
JΦ0,−)

⎞⎠∣∣∣∣∣∣
� b

L++1+(1−δk+
)+η(1−δp)

1 b
1−δk+

1 B
d−γ− 2

p−1
−2δk+

0

� b
L++1+(1−δk+

)+η(1−δp)

1 B
d−γ− 2

p−1
−2δk+

0

and using (4.46) for the leading order term:[
(bL+

)s + (2L+ − α)b1bL+
]

×

⎛⎝ΦL+,+ +

L++2∑
m=L++1

∂SL+,+

∂bL+

+

L−+2∑
m=L++1

∂Sm,−
∂bL+

, (L̃∗)L+(χB0
JΦ0,−)

⎞⎠⎤⎦
= [(bL+

)s + (2L+ − α)b1bL+
]

[
(Φ0,+, χB0

JΦ0,−)

+ O

(
b
1−δk+

1 B
d−γ− 2

p−1
−2δk+

0

)]
= [bL+

)s + (2L+ − α)b1bL+
](Φ0,+, χB0

JΦ0,−)

+ O

([ √
Es+

M2δk+

+ b
L++1+(1−δk+

)+η(1−δp)

1

]
b
1−δk+

1 B
d−γ− 2

p−1
−2δk+

0

)
.

We now observe the rough bound for y ≤ 2B0, 1 ≤ j ≤ L−:



Type II blow up 529

∣∣∣∣∣∣
L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

∣∣∣∣∣∣
�

L++2∑
m=j+1

bm−j
1

[
y2(m−1)−γ + y2m−γ

]

+

L−+2∑
m=j+1

bm−j
1

[
y2(m−1)− 2

p−1 + b
α

2

1 y
2m− 2

p−1

]
� y2j−γ + b1y

2j− 2

p−1(4.63)

and hence:∣∣∣∣∣∣
⎛⎝Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

, (L̃∗)L+(χB0
JΦ0,−)

⎞⎠∣∣∣∣∣∣
�

∫
y≤B0≤2B0

y2j−γ + b1y
2j− 2

p−1

y2L++ 2

p−1

yd−1dy

� B
d−γ− 2

p−1
+2(j−L+)

0 + b1B
d− 4

p−1
+2(j−L+)

0

� B
d−γ− 2

p−1
−2Δk

0 ++b1B
d− 4

p−1
−2Δk

0

� B
d−γ− 2

p−1
−2

1 + b1B
d−γ− 2

p−1
−2δk+

+2δk−
1

� B
d−γ− 2

p−1
−2δk+

1

where we used (1.40). Hence using (4.45), (4.47):∣∣∣∣∣∣
L−∑
j=1

[(aj)s + 2jb1aj − aj+1]

×

⎛⎝Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

, (L̃∗)L+(χB0
JΦ0,−)

⎞⎠∣∣∣∣∣∣
�

[
MC

√
Es+ + b

L++1+(1−δk+
)+η(1−δp)

1

]
B

d−γ− 2

p−1
−2δk+

0 .

The collection of above bounds together with the lower bound

(Φ0,+, χB0
JΦ0,−) � B

d−γ− 2

p−1

0
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yield the preliminary estimate:∣∣∣∣ [(bL+
)s + (2L+ − α))b1bL+

]
+

1

(Φ0,+, χB0
JΦ0,−)

d

ds

{
(L̃L+ε, χB0

JΦ0,−)
} ∣∣∣∣

� B
d−γ− 2

p−1
−2δk+

0

B
d−γ− 2

p−1

0

[
C(M)

√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

]
� 1

B
2δk+

0

[
C(M)

√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

]
.(4.64)

We now observe the bound

|(L̃L+ε, χB0
JΦ0,−)|

(Φ0,+, χB0
JΦ0,−)

�
(∫ |L̃L+ε|2

1 + y2+4k+

) 1

2
B

1+2k++ d

2
− 2

p−1

0

B
d−γ− 2

p−1

0

� C(M)B
2(1−δk+

)

0

√
Es+(4.65)

which implies: ∣∣∣∣(L̃L+ε, χB0
JΦ0,−)|

d

ds

1

(Φ0,+, χB0
JΦ0,−)

∣∣∣∣
� |(L̃L+ε, χB0

JΦ0,−)|
(Φ0,+, χB0

JΦ0,−)2
b1

∫
B0≤y≤2B0

|ΛQ|Q

� C(M)b1
B

2(1−δk+
)

0

√
Es+

B
d−γ− 2

p−1

0

B
d−γ− 2

p−1

0 �
C(M)

√
Es+

B
2δk+

0

.

Injecting this into (4.64) yields the expected bound (4.59).

step 2 Proof of (4.60). We commute (4.39) with L̃L− and take the scalar
product with χB0

JΦ0,+. This yields:

d

ds

{
(L̃L−ε, JχB0

JΦ0,+)
}
− (L̃L−ε, JΦ0,+∂s(χB0

))

= (L̃L−+1ε, JχB0
Φ0,+) +

λs

λ
(L̃L−Λε, χB0

JΦ0,+)− γs(L̃L−Jε, JχB0
Φ0,+)

+ (L̃L+(F − M̃od), JχB0
Φ0,+).
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We recall the notation L+ + k+ = L− + k−. The linear term is estimated by

Cauchy-Schwarz using the estimate (C.20) and L̃∗(Φ0,+) = 0:

|(L̃L−+1ε, JχB0
Φ0,−)| � B

1+2k−
0 ‖L̃∗(JχB0

Φ0,+)‖L2

(∫ |L̃L−ε|2
1 + y2+4k−

) 1

2

� C(M)B
1+2k−
0 B

d

2
−γ−2

0

√
Es+ = C(M)B

d−γ− 2

p−1
−2δk−

0

√
Es+ .

Similarily:∣∣∣∣λs

λ
(L̃L−Λε, χB0

JΦ0,+)

∣∣∣∣+ ∣∣∣γs(L̃L−Jε, JχB0
Φ0,+)

∣∣∣
� b1

(∫ |Λε|2 + |ε|2
1 + y4(L−+k−)+2

) 1

2
(∫

(1 + y4(L−+k−)+2)|(L̃∗)L−χB0
JΦ0,+|2

) 1

2

� b1C(M)
√

Es+B
d

2
−γ+2k−+1

0 ≤ C(M)B
d−γ− 2

p−1
−2δk−

0

√
Es+

� C(M)B
d−γ− 2

p−1
−2δk−

0

√
Es+∣∣∣(L̃L−ε, JΦ0,−∂s(χB0

))
)
|

�
∣∣∣∣(b1)sb1

∣∣∣∣
(∫ |L̃L−ε|2

1 + y4k−+2

) 1

2
(∫

B0≤y≤2B0

(1 + y4k−+2)|y−
2

p−1 |2
) 1

2

� b1C(M)B
2k−+1+ d

2
−γ

0

√
Es+ ≤ C(M)B

d−γ− 2

p−1
−2δk−

0

√
Es+ .

We now estimate the F terms. We anticipate the bound (5.22) to estimate:∣∣∣(L̃L−N(ε), JχB0
Φ0,+)

∣∣∣
�

(∫ |N(ε)|2
1 + y2s+

) 1

2
(∫

y≤2B0

(1 + y2(k−+L−)+1−γ−2L−)2yd−1dy

) 1

2

� b
1+ ν(d,p)

2

1

√
Es+B

d−γ− 2

p−1
−2δk−+2

0 � B
d−γ− 2

p−1
−2δk−

0

√
Es+

and similarly using (5.30):∣∣∣(L̃L−L(ε), JχB0
Φ0,+)

∣∣∣
�

(∫ |L(ε)|2
1 + y2s+−4

) 1

2
(∫

y≤2B0

(1 + y2(k−+L−)+1−2−γ−2L−)2yd−1dy

) 1

2
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� B
d−γ− 2

p−1
−2δk−

0

√
Es+ .

We estimate the Ψ̃b term from (3.29):

|(L̃L−Ψ̃, χB0
JΦ0,+)| = |(Ψ̃, (L̃∗)L−χB0

JΦ0,+)|

�
(∫ |Ψ̃|2

1 + y4(k−+L−)+2

) 1

2
(∫

B0≤y≤2B0

y4(k−+L−)+2|y−γ−2L− |2
) 1

2

� b
L++2+(1−δk+

)−CL+
η

1 B
2k−+1−γ+ d

2

0

= B
d−γ− 2

p−1
−2δk−+2

0 b
L++2+(1−δk+

)−CL+
η

1

� B
d−γ− 2

p−1
−2δk−

0 b
L++(1−δk+

)+η(1−δp)

1 .

We now estimate using (4.61), the cancellation L̃∗JΦ0,+ = 0 and (4.45):∣∣∣∣λs

λ
+ b1

∣∣∣∣ |(L̃L−ΛQ̃b,a, χB0
JΦ0,+)|+ |γs − a1|(L̃L−JQ̃b,a, χB0

JΦ0,+)|

� b
L++1+(1+η)(1−δk+

)

1

{∫
B0≤y≤2B0

b1
1 + yγ

yd−1dy

1 + y2L−+γ

}
� b

L++1+(1−δk+
)+η(1−δp)

1

Next, from (4.62) for 1 ≤ j ≤ L+:∣∣∣∣∣∣
⎛⎝Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

, (L̃∗)L−(χB0
JΦ0,+)

⎞⎠∣∣∣∣∣∣
�

∫
B0≤y≤2B0

b1y
2j−γ

y2L−+γ
yd−1dy � b1B

2Δk−α
0 B

d−γ− 2

p−1

0

� B
d−γ− 2

p−1
−2δk−

0 b1B
2δk+

0 � B
d−γ− 2

p−1
−2δk−

0

and hence:∣∣∣∣∣∣
L+∑
j=1

[(bj)s + (2j − α)b1bj − bj+1]

×

⎛⎝Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

, (L̃∗)L−(χB0
JΦ0,+)

⎞⎠∣∣∣∣∣∣
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�
[ √

Es+
M2δk+

+ b
L++1+(1−δk+

)+η(1−δp)

1

]
B

d−γ− 2

p−1
−2δk−

0 .

From (4.63) and α > 2 for 1 ≤ j ≤ L−:∣∣∣∣∣∣
⎛⎝ L++2∑

m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

, (L̃∗)L−(χB0
JΦ0,+)

⎞⎠∣∣∣∣∣∣
�

∫
B0≤y≤2B0

y2j−γ + b1y
2j− 2

p−1

y2L−+γ
yd−1dy � B

d−γ− 2

p−1
−α

0 + b1B
d− 2

p−1
−γ

0

� B
d−γ− 2

p−1
−2δk−

0 ,

which together with (4.45) gives:∣∣∣∣∣∣
L−−1∑
j=1

[(aj)s + 2jb1aj − aj+1]

×

⎛⎝Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

, (L̃∗)L+(χB0
JΦ0,−)

⎞⎠∣∣∣∣∣∣
� B

d−γ− 2

p−1
−2δk−

0 b
L++1+(1−δk+

)+η(1−δp)

1

Finally, from (4.47):[
(aL−)s + 2L−b1aL− ]

×

⎛⎝ΦL−,− +

L++2∑
m=L++1

∂SL+,+

∂bL+

+

L−+2∑
m=L++1

∂Sm,−
∂bL+

, (L̃∗)L−(χB0
JΦ0,+)

⎞⎠⎤⎦
= [(aL−)s + 2L−b1aL− ]

[
(Φ0,−, χB0

JΦ0,+) +O(B
d−γ− 2

p−1
−2δk−

0 )

]
= [(aL−)s + 2L−b1aL− ](Φ0,+, χB0

JΦ0,−)

+ O

([
MC

√
Es+ + b

L++1+(1−δk+
)+η(1−δp)

1

]
B

d−γ− 2

p−1
−2δk−

0

)
.

The collection of above bounds yields the preliminary estimate:∣∣∣∣[(aL−)s+2L−b1aL− ] +
1

(Φ0,−, χB0
JΦ0,+)

d

ds

{
(L̃L−ε, χB0

JΦ0,+)
}∣∣∣∣
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� B
d−γ− 2

p−1
−2δk−

0

B
d−γ− 2

p−1

0

[
C(M)

√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

]
� 1

B
2δk−
0

[
C(M)

√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

]
.(4.66)

We now observe the bound

|(L̃L−ε, χB0
JΦ0,+)|

(Φ0,−, χB0
JΦ0,+)

�
(∫ |L̃L−ε|2

1 + y2+4k−

) 1

2
B

1+2k−+ d

2
−γ

0

B
d−γ− 2

p−1

0

� C(M)B
2(1−δk− )

0

√
Es+(4.67)

which implies: ∣∣∣∣(L̃L−ε, χB0
JΦ0,−)|

d

ds

1

(Φ0,−, χB0
JΦ0,+)

∣∣∣∣
� |(L̃L−ε, χB0

JΦ0,+)|
(Φ0,−, χB0

JΦ0,+)2
b1

∫
B0≤y≤2B0

|ΛQ|Q

� C(M)b1
B

2(1−δk− )

0

√
Es+

B
d−γ− 2

p−1

0

B
d−γ− 2

p−1

0 �
C(M)

√
Es+

B
2δk−
0

.

Inserting this into (4.66) yields the expected bound (4.60).

5. Monotonicity

We are now in position to derive the main monotonicity tools at the heart of
the control of the infinite dimensional part of the solution. We rely on two
classical sets of estimates: energy estimates, at both high and low level of
regularity, yet above scaling, and a Morawetz bound to control local errors
on the soliton core. Note that neither of these two estimates is sufficient
to provide decay on its own, only the combination of the two is successful.
Roughly speaking, the energy bound provides the outer control in the self-
similar region, while the Morawetz estimate controls radiation on the soliton
core.

5.1. Monotonicity for the high Sobolev norm

We now turn to the derivation of a suitable Lyapunov functional for the Es+
energy.
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Recall the decomposition of the flow (4.38). We define the derivatives of w, ε
adapted to the corresponding linearized Hamiltonians L̃λ, L̃:

wk = L̃k
λw, εk = L̃kε, k ≥ 0

and claim:

Proposition 5.1 (Lyapunov monotonicity for the high Sobolev norm). Let

(5.1) g =
1− δp

4
,

then there holds:

d

dt

{ Es+
λ2(s+−sc)

[
1 +O(b

η(1−δp)
1 )

]}
≤ b1

λ2(s+−sc)+2

{ Es+
M cδk+

(5.2)

+ C(M)b
2L++2(1−δk+

)+η(1−δp)

1

+ C(M)

∫
1

1 + y4g

[
|∇εk++L+

|2 + |εk++L+
|2

1 + y2

]}
for some universal constant c > 0 independent of M,η and of the bootstrap
constant K in (4.34), (4.35).

Proof of Proposition 5.1. step 1 Suitable derivatives and energy identity.
Using the notation (4.44) we compute from (4.44):

(5.3) ∂twk++L+
− L̃λwk++L+

= [∂t, L̃k++L+

λ ]w + L̃k++L+

λ

(
1

λ2
Fλ

)
We now derive the energy identity for (5.3) using the self-adjointness (1.51):

d

dt

Es+
2

=
1

2

d

dt

{
(JL̃λwk++L+

, wk++L+
)
}

=
1

2
(J [∂t, L̃λ]wk++L+

, wk++L+
) + (∂twk++L+

, JL̃λwk++L+
)

=
1

2
(J [∂t, L̃λ]wk++L+

, wk++L+
) + ([∂t, L̃k++L+

λ ]w, JL̃λwk++L+
)

+

(
L̃k++L+

[
1

λ2
Fλ

]
, JL̃λwk++L+

)
(5.4)

Our next goal is to estimate all the terms in (5.4).

step 2 Well localized quadratic terms. By definition:
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JL̃λ =

(
−Δ+ 1− p 1

λ2Qp−1
(
r
λ

)
0

0 −Δ+ 1− 1
λ2Qp−1

(
r
λ

) )
from which

(5.5) J [∂t, L̃λ] =
1

λ4

λs

λ

(
pV0

(
r
λ

)
0

0 V0

(
r
λ

) ) , V0 = (p− 1)Qp−2ΛQ.

We observe the improved decay

(5.6) |∇kV0| � 1

yγ+
2(p−2)

p−1
+k

=
1

y2+α+k
, k ≥ 0

which yields the bound:

∣∣∣(J [∂t, L̃λ]wk++L+
, wk++L+

)
∣∣∣ � b1

λ2(s+−sc)+2

∫ |εk++L+
|2

1 + y2+α
.

We now claim the estimate

∫
(1 + y2α)

∣∣∣∇[∂t, L̃k++L+

λ ]w
∣∣∣2 + ∫

(1 + y2α+2)

∣∣∣[∂t, L̃k++L+

λ ]w
∣∣∣2

1 + y2

� C(M)
b21

λ2(s+−sc)+2
Es+ ,(5.7)

which is proved below. This implies:∣∣∣([∂t, L̃k++L+

λ ]w, JL̃λwk++L+
)
∣∣∣

≤ b1

λ2(s+−sc)+2

{ Es+
M cδk+

+ C(M)

∫
1

1 + y2α

[
|∇εk++L+

|2 + |εk++L+
|2

1 + y2

]}
Proof of (5.7). A simple induction argument gives the formula:

[∂t, L̃k++L+

λ ]w =

k++L+−1∑
k=0

L̃k
λ[∂t, L̃λ]L̃k++L+−(k+1)

λ w.

We renormalize and compute explicitly from (5.5):

[∂t, L̃k++L+

λ ]w(5.8)
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=
1

λ2(k++L+)+2+ 2

p−1

k++L+−1∑
k=0

L̃k

(
0 λs

λ V0

−λs

λ V0 0

)
L̃(k++L+)−(k+1)ε.

The regularity of V0 at the origin and a simple application of the Leibniz
rule with the improved decay (5.6) give the pointwise bound:

∣∣∣[∂t, L̃k++L+

λ ]w
∣∣∣ � b1

λ2(k++L+)+2+ 2

p−1

2(k++L+−1)∑
p=0

|∇2(k++L+−1)−pε|
1 + y2+α+p

=
b1

λ2(k++L+)+2+ 2

p−1

2(k++L+−1)∑
m=0

|∇mε|
1 + y2(k++L+)+α−m

∣∣∣∇[∂t, L̃k++L+

λ ]w
∣∣∣ � b1

λ2(k++L+)+3+ 2

p−1

2(k++L+−1)+1∑
m=0

|∇mε|
1 + y2(k++L+)+1+α−m

.

We conclude from (C.24):

∫
(1 + y2α)

∣∣∣∇[∂t, L̃k++L+

λ ]w
∣∣∣2 + ∫

(1 + y2α)

∣∣∣[∂t, L̃k++L+

λ ]w
∣∣∣2

1 + y2

� b21
λ2(s+−sc)+2

2(k++L+−1)+1∑
m=0

∫
|∇mε|2 1 + y2α

1 + y4(k++L+)+2+2α−2m

� b21
λ2(s+−sc)+2

s+∑
m=0

∫ |∇mε|2
1 + y2(s+−m)

� C(M)
b21

λ2(s+−sc)+2
Es+ ,

and (5.7) is proved.

step 3 Ψ̃ terms. From (3.27) and by the coercivity of L+, L−:∣∣∣∣(L̃k++L+

[
1

λ2
Ψ̃λ

]
, JL̃λwk++L+

)∣∣∣∣
� 1

λ2(s+−sc)+2

(∫ |εk++L+
|2

1 + y2

) 1

2
(∫

(1 + y2)|L̃∗JL̃k++L+Ψ̃|2
) 1

2

� 1

λ2(s+−sc)+2

(
CEs+

) 1

2

(
b
2L++2+2(1+η)(1−δk+

)

1

) 1

2

≤ b1

λ2(s+−sc)+2

[ Es+
M cδk+

+ C(M)b
2L++2(1−δk+

)+η(1−δp)

1

]
.
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step 4 M̃od terms. Recall (4.40):

M̃od(t) = −
(
λs

λ
+ b1

)
ΛQ̃b,a + (γs − a1)JQ̃b,a

+

L+∑
j=1

[(bj)s + (2j − α)b1bj − bj+1]χB1

×

⎡⎣Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

⎤⎦
+

L−∑
j=1

[(aj)s + 2jb1aj − aj+1]χB1

×

⎡⎣Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

⎤⎦ .

We need to remove the last modulation equations for (bL+
, aL−) in order to

take advantage of the improved bounds of Lemma 4.6 since the pointwise
bounds (4.46), (4.47) are not good enough to close. Let the directions

(5.9) TL+
= χB1

ΦL+,+, TL− = χB1
ΦL−,−

and the vectors:

(5.10) ξ+ =
(L̃L+ε, χB0

JΦ0,−)

(Φ0,+, χB0
JΦ0,−)

TL+
, ξ− =

(L̃L−ε, χB0
JΦ0,+)

(Φ0,−, χB0
JΦ0,+)

TL−

We decompose

(5.11) M̃od = M̂od− ∂sξ+ − ∂sξ−, M̂od = M̂odrad + M̂od1 + M̂od2

where

M̂odrad =
(L̃L+ε, χB0

JΦ0,−)

(Φ0,+, χB0
JΦ0,−)

∂sTL+
+

(L̃L−ε, χB0
JΦ0,+)

(Φ0,−, χB0
JΦ0,+)

∂sTL−

+ TL+

[
O

(
1

B
2δk+

0

[
C(M)

√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

])]

+ TL−

[
O

(
1

B
2δk−
0

[
C(M)

√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

])]
,
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according to (4.59), (4.60) applied with μ = 1,

M̂od1 = −
(
λs

λ
+ b1

)
ΛQ̃b,a + (γs − a1)JQ̃b,a + M̂od+ + M̂od−,

M̂od+ =

L+−1∑
j=1

[(bj)s + (2j − α)b1bj − bj+1]χB1

×

⎡⎣Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

⎤⎦ ,

M̂od− =

L−−1∑
j=1

[(aj)s + 2jb1aj − aj+1]

×

⎡⎣Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

⎤⎦ ,

and the remaining term:

M̂od2 =
[
(bL+

)s + (2L+ − α)b1bL+

] ⎡⎣ L++2∑
m=L++1

∂Sm,+

∂bL+

+

L−+2∑
m=L++1

∂Sm,−
∂bL+

⎤⎦
+

[
(aL−)s + 2jb1aL−

] ⎡⎣ L++2∑
m=L−+1

∂Sm,+

∂aL−

+

L−+2∑
m=L−+1

∂Sm,−
∂aL−

⎤⎦(5.12)

The bounds: ∫
(1 + y2)|L̃∗JL̃k++L+M̂odrad|2(5.13)

� b21

[
b
(1−δp)η
1 Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
,

∫
(1 + y2)|L̃∗JL̃k++L+M̂od1|2(5.14)

� b21

[
b
(1−δp)η
1 Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
(5.15)∫

(1 + y2+4g)|L̃∗JL̃k++L+M̂od2|2 � b21

[
C(M)Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
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with g given by (5.1) follow by direct inspection. We then estimate the

corresponding term in (5.4):∣∣∣∣(L̃k++L+

[
1

λ2
(M̂od1 + M̂odrad)λ

]
, JL̃λwk++L+

)∣∣∣∣
� 1

λ2(s+−sc)+2

(∫
(1 + y2)|L̃∗JL̃k++L+(M̂od1 + M̂odrad)|2

) 1

2

×
(∫ |εk++L+

|2
1 + y2

) 1

2

� b1

λ2(s+−sc)+2

[
b
(1−δp)η
1 Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
and ∣∣∣∣(L̃k++L+

[
1

λ2
(M̂od2)λ

]
, JL̃λwk++L+

)∣∣∣∣
� 1

λ2(s+−sc)+2

(∫
(1 + y2+4g)|L̃∗JL̃k++L+M̂od1|2

) 1

2
(∫ |εk++L+

|2
1 + y2+4g

) 1

2

≤ b1

[
C(M)

∫ |εk++L+
|2

1 + y2+4g
+ b

2L++2(1−δk+
)+2η(1−δp)

1 +
Es+

M cδk+

]
.

Proof of (5.13): Using the cancellation L̃∗JL̃L++k+ΦL+,+ = 0 we first esti-

mate: ∫
(1 + y2)

∣∣∣L̃∗JL̃L++k+(χB1
ΦL+,+)

∣∣∣2 � B
d−2γ−4−4k++2
1 =

1

B
4(1−δk+

)

1

� B
4δk+

0

b21B
4
0

B
4δk+

0

1

B
4(1−δk+

)

1

� b21B
4δk+

0

(
B0

B1

)4(1−δk+
)

.

This implies:

(5.16)

∫
(1 + y2)

∣∣∣L̃∗JL̃k++L+TL+

∣∣∣2 � b21B
4δk+

0

(
B0

B1

)4(1−δk+
)

and hence:

1

B
4δk+

0

[
C(M)Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
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×
∫

(1 + y2)
∣∣∣L̃∗JL̃k++L+TL+

∣∣∣2
� 1

B
4δk+

0

[
C(M)Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
b21B

4δk+

0

(
B0

B1

)4(1−δk+
)

� b21

[
b
(1−δk+

)η

1 Es+ + b
2L++2(1−δk+

)+2η(1−δp)

1

]
Similarly, ∫

(1 + y2)|L̃∗JL̃L−+k−(χB1
ΦL−,−)|2

� B
d− 4

p−1
−4−4k−+2

1 =
1

B
4(1−δk− )

1

� B
4δk−
0 b21

(
B0

B1

)4(1−δk− )

.(5.17)

This implies:

(5.18)

∫
(1 + y2)

∣∣∣L̃∗JL̃k++L+TL−

∣∣∣2 � b21B
4δk−
0

(
B0

B1

)4(1−δk+
)

and hence:

1

B
4δk−
0

[
C(M)Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
×

∫
(1 + y2)

∣∣∣L̃∗JL̃k++L+TL−

∣∣∣2
� 1

B
4δk−
0

[
C(M)Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
b21B

4δk−
0

(
B0

B1

)4(1−δk+
)

� b21

[
b
(1−δk− )η

1 Es+ + b
2L++2(1−δk+

)+2η(1−δp)

1

]
.

Similarily, ∫
(1 + y2)

∣∣∣L̃∗JL̃L++k+ΦL,+∂sχB1

∣∣∣2
� b21B

2−4k++d−2γ−4
1 =

b21

B
4(1−δk+

)

1

(5.19) ∫
(1 + y2)

∣∣∣L̃∗JL̃L−+k−ΦL,−∂sχB1

∣∣∣2
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� b21B
2−4k−+d− 4

p−1
−4

1 =
b21

B
4(1−δk− )

1

(5.20)

Therefore, using (4.65):

∫
(1 + y2)

∣∣∣∣∣(L̃L+ε, χB0
JΦ0,−)

(Φ0,+, χB0
JΦ0,−)

L̃∗JL̃L−+k−∂sTL+

∣∣∣∣∣
2

� C(M)B
4(1−δk+

)

0 Es+

[
b21

B
4(1−δk+

)

1

]
� b21b

η(1−δp)
1 Es+ ,

and with (4.67):

∫
(1 + y2)

∣∣∣∣∣(L̃L−ε, χB0
JΦ0,+)

(Φ0,−, χB0
JΦ0,+)

L̃∗JL̃L−+k−∂sTL−

∣∣∣∣∣
2

� C(M)B
4(1−δk− )

0 Es+

[
b21

B
4(1−δk− )

1

]
� b21b

η(1−δp)
1 Es+ .

This concludes the proof of (5.13).

Proof of (5.14), (5.15):

M̂od+ terms. From (3.7) by a brute force estimate for 1 ≤ j ≤ L+:

∫
(1 + y2+4g)

∣∣∣∣∣∣
L++2∑
m=j+1

L̃∗JL̃k++L+χB1

∂Sm,+

∂bj

∣∣∣∣∣∣
2

�
∫
y≤2B1

(1 + y2+4g)

L++2∑
m=j+1

b
2(m−j)
1

[
1 + |y2(m−1)−γ−2(k++L++1)|2

]

+

∫
y≤2B1

(1 + y2)

L++2∑
m=j+1

b
2(m−j)+α
1

[
1 + |y2m−γ−2(k++L++1)|2

]

� b21

L++1∑
m=j

b
2(m−j)
1

∫
y≤2B1

dy

1 + y1+4(L+−m)+4(1−δk+
)−4g
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+

L++2∑
m=j+1

b
2(m−j)+α
1

∫
y≤2B1

dy

1 + y1+4(L+−m)+4(1−δk+
)−4g

� b21

[
1 + b

2(L++1−j)
1 B

4δk+
+4g

1

]
+ bα1

[
b
2(L++1−j)
1 B

4δk+
+4g

1 + b
2(L++2−j)
1 B

4+4δk+
+4g

1

]
� b21

[
1 + b

2−2(δk+
+g)−Cη

1

]
+ bα1 b

2−2(δk+
+g)−Cη

1 � b21

for 0 < η � 1 small enough, thanks to α > 2 and (5.1). Similarily, from

(3.8), (1.40):

∫
(1 + y2+4g)

∣∣∣∣∣∣
L++2∑
m=j+1

L̃∗JL̃k++L+χB1

∂Sm,−
∂bj

∣∣∣∣∣∣
2

�
∫
y≤2B1

(1 + y2+2g)

L++2∑
m=j+1

b
2(m−j)+α
1

[
1 + |y2(m−1)− 2

p−1
−2(k−+L−+1)|2

]

+

∫
y≤2B1

(1 + y2+4g)

L++2∑
m=j+1

b
2(m−j)+2α
1

[
1 + |y2m− 2

p−1
−2(k−+L−+1)|2

]

� b21

L++1∑
m=j

b
2(m−j)+α
1

∫
y≤2B1

dy

1 + y1+4(L−−m)+4(1−δk− )−4g

+

L++2∑
m=j+1

b
2(m−j)+2α
1

∫
y≤2B1

dy

1 + y1+4(L−−m)+4(1−δk− )−4g

� b21

⎡⎣1 + L++2∑
m=L−+1

b
2(m−j)+α
1 B

4(m−L−)−4(1−δk− )+4g

1

⎤⎦
�� b21

⎡⎣1 + L++2∑
m=L−+1

(b1B
2
1)

2(m−L−)b
α+2(L−−j)+2(1−δk− )−2g−CL+

η

1

⎤⎦
� b21

[
1 + b

α−2Δk+2(1−δk− )−CL+
η

1

]
= b21

[
1 + b

2(1−δk+
)−CL+

η

1

]
� b21

(5.21)

Hence, using (4.45):
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∫
(1 + y2)

∣∣∣∣∣∣
L+−1∑
j=1

[(bj)s + (2j − α)b1bj − bj+1] L̃∗JL̃k++L+

⎡⎣χB1

⎛⎝Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

⎞⎠⎤⎦∣∣∣∣∣∣
2

� b21b
2L++2+2(1−δk+

)+2η(1−δp)

1

and (5.14) follows for M̂od+. Moreover from (4.46):∫
(1 + y2+4g)

∣∣∣[(bL+
)s + 2L+b1bL+

]
L̃∗JL̃k++L+⎡⎣χB1

L++2∑
m=L++1

∂Sm,+

∂bL+

+

L−+2∑
m=L++1

∂Sm,−
∂bL+

⎤⎦∣∣∣∣∣∣
2

� b21

[
C(M)Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
.

M̂od− terms: From (3.7) for 1 ≤ j ≤ L−:

∫
(1 + y2+4g)

∣∣∣∣∣∣
L++2∑
m=j+1

L̃∗JL̃k++L+χB1

∂Sm,+

∂aj

∣∣∣∣∣∣
2

�
∫
y≤2B1

(1 + y2+4g)

L++2∑
m=j+1

b
2(m−j)
1

[
1 + |y2(m−1)−γ−2(k++L++1)|2

]

+

∫
y≤2B1

(1 + y2)

L++2∑
m=j+1

b
2(m−j)
1

[
1 + |y2m−γ−2(k++L++1)|2

]

� b21 +

L++2∑
m=j+1

b
2(m−j)
1

∫
y≤2B1

dy

1 + y1+4(L+−m)+4(1−δk+
)−4g

� b21 +

L++2∑
m=L++1

b
2(m−j)
1 B

4(m−L+)−4(1−δk+
)+4g

1

� b21 + b
2(L+−j)+2(1−δk+

)−4g−CL+
η

1 � b21 + b2Δk
1 � b21,

since Δk ≥ 1, and from (3.8):
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∫
(1 + y2+4g)

∣∣∣∣∣∣
L++2∑
m=j+1

L̃∗JL̃k++L+χB1

∂Sm,−
∂aj

∣∣∣∣∣∣
2

�
∫
y≤2B1

(1 + y2)

L++2∑
m=j+1

b
2(m−j)
1

[
1 + |y2(m−1)− 2

p−1
−2(k−+L−+1)|2

]

+

∫
y≤2B1

(1 + y2+4g)

L++2∑
m=j+1

b
2(m−j)+α
1

[
1 + |y2m− 2

p−1
−2(k−+L−+1)|2

]

� b21

L++1∑
m=j

b
2(m−j)
1

∫
y≤2B1

dy

1 + y1+4(L−−m)+4(1−δk− )−4g

+

L++2∑
m=j+1

b
2(m−j)+α
1

∫
y≤2B1

dy

1 + y1+4(L−−m)+4(1−δk− )−4g

� b21 +

L++1∑
m=L−

b
2(m−j)
1 B

4(m−L−)−4(1−δk− )+4g

1

+

L++2∑
m=L−+1

b
2(m−j)+α
1 B

4(m−L−)−4(1−δk− )+4g

1

� b21 + b
α−CL+

η+2(1−δk− )−2g

1 � b21.

since α > 2. Hence, using (4.45):

∫
(1 + y2)

∣∣∣∣∣∣
L+−1∑
j=1

[(aj)s + 2jb1aj − aj+1] L̃∗JL̃k++L+

⎡⎣χB1

⎛⎝Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

⎞⎠⎤⎦∣∣∣∣∣∣
2

� b21b
2L++2+2(1−δk+

)+2η(1−δp)

1

and (5.14) is proved for M̂od−. Moreover from (4.47):

∫
(1 + y2+4g)

∣∣∣[(aL−)s + 2L−b1aL−

]
L̃∗JL̃k++L+
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⎡⎣χB1

L++2∑
m=L−+1

∂Sm,+

∂aL−

+

L−+2∑
m=L−+1

∂Sm,−
∂aL−

⎤⎦∣∣∣∣∣∣
2

� b21

[
C(M)Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
.

This concludes the proof of (5.15).

Lower order modulation parameters. We use L̃ΛQ = 0, L̃JQ = 0 and (1.40)

to estimate:

∣∣∣∣∫ (1 + y2)|L̃∗JL̃k++L+ΛQ̃b,a

∣∣∣∣2 + ∣∣∣∣∫ (1 + y2)|L̃∗JL̃k++L+JQ̃b,a

∣∣∣∣2
�

∫
y≤2B1

L+∑
j=1

b2j1 (1 + y2|y2j−γ−2(k++L++1)|2)

+

∫
y≤2B1

L++2∑
j=2

b2j1 (1 + y2|y2(j−1)−γ−2(k++L++1)|2)

+ b2j+α
1 (1 + y2|y2j−γ−2(k++L++1)|2)

+

∫
y≤2B1

L−∑
j=1

b2j+α
1 (1 + y2|y2j−

2

p−1
−2(k−+L−+1)|2)

+

∫
y≤2B1

L−+2∑
j=2

b2j+α
1 (1 + y2|y2(j−1)− 2

p−1
−2(k−+L−+1)|2)

+ b2j+2α
1 (1 + y2|y2j−

2

p−1
−2(k−+L−+1)|2)

�
L+∑
j=1

b2j1

∫
y≤2B1

dy

1 + y1+4(1−δk+
)+4(L+−j)

+

L++2∑
j=2

b2j1

∫
y≤2B1

dy

1 + y1+4(1−δk+
)+4(L++1−j)

+

L++2∑
j=2

b2j+α
1

∫
y≤2B1

dy

1 + y1+4(1−δk+
)+4(L+−j)

+

L−∑
j=1

b2j+α
1

∫
y≤2B1

dy

1 + y1+4(1−δk− )+4(L−−j)
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+

L−+2∑
j=2

b2j+α
1

∫
y≤2B1

dy

1 + y1+4(1−δk− )+4(L−+1−j)

+

L−+2∑
j=2

b2j+2α
1

∫
y≤2B1

dy

1 + y1+4(1−δk− )+4(L−−j)

� b21

and hence from (4.4):∫
(1 + y2)

∣∣∣∣−(λs

λ
+ b1

)
L̃∗JL̃k++L+ΛQ̃b,a + (γs − a1)L̃∗JL̃k++L+JQ̃b,a

∣∣∣∣2
� b21b

2L++2+2(1−δk+
)+2η(1−δp)

1 ,

which concludes the proof of (5.14).

step 7 Nonlinear term N(ε). We now turn to the control of the nonlinear
term. We expand using p = 2q + 1:

N(ε) =
∑

Nk1,k2
(ε), Nk1,k2

(ε) = εk1εk2Q̃q+1−k1

b,a Q̃q−k2

b,a ,

⎧⎨⎩
0 ≤ k1 ≤ q + 1
0 ≤ k2 ≤ q
k1 + k2 ≥ 2.

.

We claim the bound:
(5.22)∫

|∇JL̃k++L+Nk1,k2
(ε)|2 +

∫ |Nk1,k2
(ε)|2

1 + y2s+
� b

2+O
(

1

L+

)
1

(
‖ε‖2

Ḣσ

bσ−sc
1

)dk1,k2

Es+

for some dk1,k2
= d(k1, k2, d, p) > 0 which, together with (4.35) and Hardy,

yields ∫
|∇L̃k++L+Nk1,k2

(ε)|2 +
∫ |JL̃k++L+Nk1,k2

(ε)|2
1 + y2

+

∫ |Nk1,k2
(ε)|2

1 + y2s+

� b
2+ (σ−sc)ν(d,p)

2

1 Es+(5.23)

thanks to

(σ − sc)ν(d, p) �
1

L+

from (4.14). This gives the control of the corresponding term in (5.4):



548 Frank Merle et al.

∣∣∣∣(L̃k++L+

[
1

λ2
(N(ε))λ

]
, JL̃λwk++L+

)∣∣∣∣
� 1

λ2(s+−sc)+2

(
b
2+ (σ−sc)ν(d,p)

2

1 Es+
) 1

2
(∫

|∇εk++L+
|2 +

∫ |εk++L+
|2

1 + y2

) 1

2

≤ b1

λ2(s+−sc)+2

Es+
M

.

Proof of (5.22). We first derive from the Q̃b,a construction the bound:

(5.24) |∂k
y Q̃b,a| � 1

1 + y
2

p−1
+k

, k ≥ 0.

Using (B.4) we estimate:∫
|∇L̃k++L+Nk1,k2

(ε)|2 +
∫ |Nk1,k2

(ε)|2
1 + y2s+

�
s+∑
j=0

|DjNk1,k2
(ε)|2

1 + y2(s+−j)
�

s+∑
j=0

j∑
l=0

|Dl(εk1εk2)|2

1 + y2(s+−j)+
4(p−k1−k2)

p−1
+2(j−l)

�
∫ |Ds+(εk1εk2)|2

1 + y
4(p−k1−k2)

p−1

+

∫ |εk1εk2 |2

1 + y2s++
4(p−k1−k2)

p−1

.

Near the origin, Hs+(y ≤ 1) is an algebra and therefore:∫
y≤1

|Ds+(εk1εk2)|2

1 + y
4(p−k1−k2)

p−1

+

∫
y≤1

|εk1εk2 |2

1 + y2s++
4(p−k1−k2)

p−1

� ‖ε‖2(k1+k2)
Hs+ (y≤1) � E2

s+ � b31Es+ .

We now claim the bounds:
(5.25)∫

y≥1

|Ds+(εk1εk2)|2

1 + y
4(p−k1−k2)

p−1

� KCb
2+O

(
1

L+

)
1 b

2L++2(1−δk+
)+2η(1−δp)

1

(
‖ε‖2

Ḣσ

bσ−sc
1

)dk

∫
y≥1

|ε|2(k1+k2)

1 + y2s++ 4

p−1
(p−k1−k2)

� KCb
2+O

(
1

L+

)
1 b

2L++2(1−δk+
)+2η(1−δp)

1

(
‖ε‖2

Ḣσ

bσ−sc
1

)dk

(5.26)

which yield (5.22).
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Proof of (5.25): We let

k = k1 + k2, 2 ≤ k ≤ p.

We split the integral in two.
Term y ≥ B0: We estimate:

∫
y≥B0

∣∣∣∇s+(εk1εk2)
∣∣∣2

1 + y
4

p−1
(p−k1−k2)

� b
2(p−k)

p−1

1 ‖∇s+(εk1εk2)‖2L2 .

We claim the nonlinear estimate:

(5.27) ∀m ∈ N, m >
d

2
, ‖∇m(εk1εk2)‖L2 � (‖ε‖k−1

L∞ +‖∇ d

2 ε‖k−1
L2 )‖∇mε‖L2

which is proved below. Using (D.1):

∫
y≥B0

∣∣∣∇s+(εk1εk2)
∣∣∣2

1 + y
4

p−1
(p−k1−k2)

� b
2(p−k)

p−1

1

[
‖∇σε‖

1+O
(

1

L+

)
L2 b

1

2(
d

2
−σ)+O

(
1

L+

)
1

]2(k−1)

‖∇s+ε‖2L2

� C(M)Es+b
2(p−k)

p−1
+(k−1)(σ−sc)+(k−1)( d

2
−σ)+O

(
1

L+

)
1

(‖∇σε‖2L2

bσ−sc
1

)k−1

� b
2+O( 1

L)
1 Es+

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O

(
1

L+

)]

Proof of (5.27): By Leibniz:

|∇m(εk1εk2)| � Πl1+...lk=m|∇liε|.

Let pi =
2m
li

∈ [2,+∞], then from Hölder:

‖∇mεk‖L2 � ‖Πl1+...lk=m∇liε‖L2 � Π‖∇liε‖Lpi .

Let

−li +
d

pi
= −mi +

d

2



550 Frank Merle et al.

then from Sobolev:

‖∇liε‖Lpi � ‖∇miε‖L2 for pi < +∞ i.e. li 
= 0.

Observe that

(5.28) mi =
d

2
+ li

(
1− d

2m

)
>

d

2

and we can interpolate:

‖∇miε‖L2 � ‖∇ d

2 ε‖1−zi
L2 ‖∇mε‖ziL2

with

mi =
d

2
(1− zi) +mzi i.e. zi =

li
m

∈ [0, 1].

This yields

‖∇mεk‖L2 � Πl1+...lk=m‖∇liε‖Lpi �
k∑

j=1

‖ε‖k−j
L∞ Πl1+...lj=m,li>0‖∇miε‖L2

�
k∑

j=1

‖ε‖k−j
L∞ Πl1+...lj=m,li>0‖∇

d

2 ε‖1−
li
m

L2 ‖∇mε‖
li
m

L2

�
k∑

j=1

‖ε‖k−j
L∞ ‖‖∇ d

2 ε‖j−1
L2 ‖∇mε‖L2

� (‖ε‖k−1
L∞ + ‖∇ d

2 ε‖k−1
L2 )‖∇mε‖L2

by Hölder. This is (5.27).
Term y ≤ B0: We now control the inner integral. Note that for p = k, the
nonlinear estimate (5.27) treats the inner integral as well and we may there-
fore assume k ≤ p− 1. We expand using the Leibniz rule:

|∇s+(εk1εk2)| �
∑

l1+...lk=s+

|Πk
i=1∇liε|

and distinguish three cases.

case li = s+: In this case, using the L∞ bound (D.3) with δ = 2(p−k)
(p−1)(k−1) , we

have: ∫
y≥1

∣∣εk−1∇s+ε
∣∣2

1 + y
4

p−1
(p−k)
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�
∥∥∥∥∥ ε

1 + y
2(p−k)

(p−1)(k−1)

∥∥∥∥∥
2(k−1)

L∞

C(M)Es+

� C(M)Es+b
2(p−k)

p−1
+(k−1)( d

2
−σ)+(k−1)(σ−sc)+O( 1

L+
)

1

(‖∇σε‖2L2

bσ−sc
1

)k−1

� b
2+O( 1

L+
)

1

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
Es+ .

case li = s+ − 1: In this case,

∫
y≥1

∣∣Π∇liε
∣∣2

1 + y
4

p−1
(p−k)

�
∥∥∥∥ ε

1 + yαk

∥∥∥∥2(k−2)

L∞
‖∇ε‖2L∞

∫
|∇s+−1ε|2, αk =

2(p− k)

(p− 1)(k − 2)
.

We interpolate:

‖∇s+−1ε‖L2 � ‖∇s+ε‖α+

L2 ‖∇σε‖1−α+

L2

with

(5.29) α+ =
s+ − 1− σ

s+ − σ
= 1− 1

s+ − σ
= 1− 1

s+
+O

(
1

L2
+

)
We now invoke the L∞ bound (D.3) with δ = αk � 1, (D.2) and the

bootstrap bound (4.34) to estimate:∥∥∥∥ ε

1 + yαk

∥∥∥∥2(k−2)

L∞
‖∇ε‖2L∞

∫
|∇s+−1ε|2

� ‖∇σε‖
2(k−1)

[
1+O( 1

L+
)
]

L2 b
(k−2)αk+(k−2)( d

2
−σ)+( d

2
+1−σ)+O

(
1

L+

)
1

× ‖∇s+ε‖
2− 2

s+
+O

(
1

L2
+

)
L2

� KC

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
b
2 (p−k)

p−1
+(k−1)( d

2
−sc)+1+O

(
1

L+

)
1

× b

(
1− 1

2L+
+O( 1

L+
)
)(

2L++2(1−δk+
)+2η(1−δp)+O

(
1

L+

))
1
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� KCb
2+O( 1

L+
)

1

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
b
2L++2(1−δk+

)+2η(1−δp)

1 .

case li ≤ s+ − 2: Up to reordering, we have

l1 + . . . lj = s+, lj+1 = · · · = lk = 0, li > 0 for 1 ≤ i ≤ j.

By Hölder:∫
y≤B0

|Π∇liε|2

1 + y
4(p−k)

p−1

� ‖ε‖2(k−j)
L∞ |logb1|C‖Π1≤i≤j∇liε‖2Lq , with 1−2

q
=

4(p− k)

d(p− 1)
.

Using Hölder again:

‖Π1≤i≤j∇liε‖Lq � Π1≤i≤j‖∇liε‖Lqi , qi =
qs+
li

∈ (2,+∞].

From Sobolev and li > 0:

‖∇liε‖Lqi � ‖∇miε‖L2 , mi =
d

2
− d

qi
+ li.

We interpolate:

mi =
d

2
(1− zi) + zis+ ie zi =

li
s+

1− d
qs+

1− d
2s+

.

Observe that zi ≥ 0 for L+ large enough, and from li ≤ s+ − 2:

zi ≤ s+ − 2

s+

1− d
qs+

1− d
2s+

=

[
1− 2

2L+
+O

(
1

L2
+

)][
1− d

2qL+
+O

(
1

L2
+

)]
×

[
1 +

d

4L+
++O

(
1

L2
+

)]
= 1 +

1

2L+

[
d

2
− d

q
− 2

]
+O

(
1

L2
+

)
.

Now
d

2
− d

q
=

d

2

[
1− 2

q

]
=

d

2

4(p− k)

d(p− 1)
=

2(p− k)

p− 1
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and thus:

0 ≤ zi ≤ 1+
1

2L+

[
2(p− k)

p− 1
− 2

]
+O

(
1

L2
+

)
= 1− k − 1

(p− 1)L+
+O

(
1

L2
+

)
< 1

for L+ large enough since k ≥ 2. Moreover,

j∑
i=1

zi =
1− d

qs+

1− d
2s+

= 1+
1

2L+

[
d

2
− d

q

]
+O

(
1

L2
+

)
= 1+

p− k

(p− 1)L+
+O

(
1

L2
+

)
.

We therefore obtain the bound:

‖Π1≤i≤j∇liε‖Lq � Π1≤i≤j‖∇miε‖L2 � Π1≤i≤j‖∇s+ε‖ziL2∇
d

2 ε‖1−zi
L2

� ‖∇s+ε‖
1+ p−k

(p−1)L+
+O

(
1

L2
+

)
‖∇ d

2 ε‖
j−1+O

(
1

L+

)
L2

and therefore using (D.1):∫
y≤B0

|Π∇liε|2

1 + y
4(p−k)

p−1

� ‖∇s+ε‖
2+ 2(p−k)

(p−1)L+
+O

(
1

L2
+

)
‖∇ d

2 ε‖
2j−2+O

(
1

L+

)
L2 ‖ε‖2(k−j)

L∞ |logb1|C

� b

[
2+ 2(p−k)

(p−1)L+
+O

(
1

L2
+

)]
[L++(1−δk+

)+η(1−δp)]
1

× ‖∇σε‖
2(k−1)

[
1+O( 1

L+
)
]

L2 b
(k−1)[ d2−σ]+O( 1

L+
)

1

� K3b
O
(

1

L+

)
1 b

2L++2(1−δk+
)+2η(1−δp)+

2(p−k)

p−1
+(k−1)[ d2−sc]

1

×
(‖∇σε‖2L2

bσ−sc
1

)k−1
[
1+O( 1

L+
)
]

� KCb
2+O

(
1

L+

)
1 b

2L+2(1−δk+
)+2η(1−δp)

1

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
,

which concludes the proof of (5.25).

Proof of (5.26). We estimate from (D.3) with δ = αk = 2(p−k)
(p−1)(k−1) :∫

y≥1

|ε|2(k1+k2)

1 + y2s++ 4

p−1
(p−k1−k2)

�
∥∥∥∥ ε

1 + yαk

∥∥∥∥2(k−1)

L∞

∫ |ε|2
1 + y2s+
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� C(M)Es+‖∇σε‖
2(k−1)

[
1+O( 1

L+
)
]

L2 b
(k−1)αk+(k−1)( d

2
−σ)+O( 1

L+
)

1

� b
2+O( 1

L+
)

1 Es+
(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]

� KCb
2+O

(
1

L+

)
1 b

2L+2(1−δk+
)+2η(1−δp)

1

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
,

this is (5.26).

step 8 Small linear term L(ε). We claim the bound:∫
y≥1

(1 + y4)

[
|∇L̃k++L+L(ε)|2 + |L̃k++L+L(ε)|2

1 + y2
+

|L(ε)|2
1 + y2s+

]
� b21C(M)Es+ .(5.30)

Assume (5.30), we then estimate the corresponding term in (5.4):∣∣∣∣(L̃k++L+

[
1

λ2
(L(ε))λ

]
, JL̃λwk++L+

)∣∣∣∣
� 1

λ2(s+−sc)+2

(
b21C(M)Es+

) 1

2

(∫ |∇εk++L+
|2

1 + y4
+

∫ |εk++L+
|2

1 + y6

) 1

2

≤ b1

λ2(s+−sc)+2

Es+
M cδk+

+ C(M)

[
b1

∫ |∇εk++L+
|2

1 + y4
+

∫ |εk++L+
|2

1 + y6

]
Proof of (5.30): We compute explicitly from (3.23):

f ′(u)ε =
p+ 1

2
(uu)2qε+

p− 1

2
(uu)2(q−1)ε, p = 2q + 1.

We estimate the first contribution

L1(ε) =
p+ 1

2

[
(QQ)2q − (Q̃b,aQ̃b,a)

2q
]
ε,

the second contribution is estimated similarily. We expand:

L1(ε) =

⎡⎣ ∑
1≤k1+k2≤2q

ck1,k2
ζ̃k1 ζ̃k2Q2q−k1−k2

⎤⎦ ε.

We first observe from the Qb construction: for y ≤ 2B1,
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|ζ̃| �
L+∑
j=1

bj1y
2j−γ +

L−∑
j=1

b
j+α

2

1 y2j−
2

p−1 .

For the second term

b
j+α

2

1 y2j−
2

p−1 � b1

1 + y
2

p−1

(b1y
2)jb

α

2
−1

1 � b1

1 + y
2

p−1

from α > 2 and for η < η(L+) small enough. For the first term, if α−2j > 0,
then

bj1y
2j−γ = b1b

j−1
1 y2j−αy−

2

p−1 � b1y
− 2

p−1

and if α− 2j < 0:

bj1y
2j−γ < b1y

− 2

p−1 iff y ≤ 1

b
j−1

2j−α

1

= B
1+

α
2

−1

j−α
2

0

which holds for η small enough. Therefore,

|ζ̃| � b1

1 + y
2

p−1

and similarily for higher derivatives:

(5.31) |∂j
y ζ̃| � b1

1 + y
2

p−1
+j

from which:

(5.32)

∣∣∣∣∣∣∂j
y

⎡⎣ ∑
1≤k1+k2≤2q

ck1,k2
ζ̃k1 ζ̃k2Q2q−k1−k2

⎤⎦∣∣∣∣∣∣ � b1
1 + y2+j .

The function f ′(Q) − f ′(Q̃b,a) is radially symmetric. Therefore, a simple
application of the Leibniz rule and Sobolev gives near the origin:∫
y≤1

|∇L̃k++L+L1(ε)|2+
∫

|L1(ε)|2 � b21C(M)Es+ � b1b
2L+2(1−δk+

)+2η(1−δp)

1 .

For y ≥ 1, we estimate from (5.32):∫
y≥1

(1 + y4)

[
|∇L̃k++L+L1(ε)|2 +

|L1(ε)|2
1 + y2s+

]
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� b21

s+∑
j=0

∫ ∣∣∣∣ ∇jε

1 + y2+(s+−j)

∣∣∣∣2 (1 + y4) = b21

s+∑
j=0

∫ |∇jε|2
1 + y2(s+−j)

� b21C(M)Es+ .

The second term, L2(ε) is estimated similarly and (5.30) follows.

step 9 Time oscillations. Injecting the collections of above bounds into (5.4)
and recalling the definition (5.11) yields the first estimate:

d

ds

Es+
2

≤ b1

λ2(s+−sc)

{ Es+
M cδk+

+ C(M)b
2L++2(1−δk+

)+2η(1−δp)

1(5.33)

+ C(M)

∫
1

1 + y4g

[
|∇εk++L+

|2 + |εk++L+
|2

1 + y2

]}
(5.34)

+
1

λ2(s+−sc)

(
L̃k++L+(∂sξ+ + ∂sξ−), JL̃εk++L+

)
.

We now extract the full time derivative from the last term above:

1

λ2(s+−sc)

(
L̃k++L+(∂sξ+ + ∂sξ−), JL̃εk++L+

)
=

d

ds

⎧⎨⎩
(
L̃k++L+(ξ+ + ξ−), JL̃εk++L+

)
λ2(s+−sc)

⎫⎬⎭
+

1

λ2(s+−sc)

[
2(s+ − sc)

λs

λ

(
L̃k++L+(ξ+ + ξ−), JL̃εk++L+

)
−

(
L̃k++L+(ξ+ + ξ−), JL̃∂sεk++L+

)]
.

We estimate from (4.65), (5.16),∫
(1 + y2)|L̃∗JL̃k++L+ξ+|2 � C(M)B

4(1−δk+
)

0 Es+

[
b21B

4δk+

0

(
B0

B1

)4(1−δk+
)
]

≤ C(M)b
2η(1−δk+

)

1 Es+ ,(5.35)

and from (4.67), (5.18):∫
(1 + y2)|L̃∗JL̃k++L+ξ−|2 � C(M)B

4(1−δk− )

0 Es−

[
b21B

4δk−
0

(
B0

B1

)4(1−δk− )
]
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≤ C(M)b
2η(1−δk− )

1 Es+ ,(5.36)

which gives the bound∣∣∣(L̃k++L+(ξ+ + ξ−), JL̃εk++L+

)∣∣∣ � C(M)b
η(1−δp)
1 Es+

and the control of the first error term:∣∣∣∣λs

λ

(
L̃k++L+(ξ+ + ξ−), JL̃εk++L+

)∣∣∣∣ � C(M)b
η(1−δp)
1 Es+ .

We now rewrite (4.39) with (5.11):

∂sε−
λs

λ
Λε− L̃ε = F − M̂od− γsJε+ ∂sξ+ + ∂sξ−

from which:

(5.37)

∂sε2(k++L+)= L̃k++L++1ε+L̃k++L+

[
λs

λ
Λε− γsJε+ F − M̂od− ∂sξ+− ∂sξ−

]
and hence:(

L̃k++L+(ξ+ + ξ−), JL̃∂sεk++L+

)
= (L̃k++L+(ξ+ + ξ−), JL̃L̃k++L++1ε)

+

(
L̃k++L+(ξ+ + ξ−), JL̃L̃k++L+(

λs

λ
Λε− γsJε+ F − M̂od)

)
+

1

2

d

ds

{
(L̃k++L+(ξ+ + ξ−), JL̃L̃k++L+(ξ+ + ξ−))

}
.

We estimate from (5.35), (5.36):∣∣∣∣(L̃k++L+(ξ+ + ξ−), JL̃L̃k++L+

[
λs

λ
Λε− γsJε

])∣∣∣∣ � C(M)b1b
η(1−δp)
1 Es+ .

As in the proof of (5.35), (5.36):∫
(1 + y2)|(L̃∗)2JL̃k++L+ξ+|2 � C(M)b21b

2η(1−δk+
)

1 Es+∫
(1 + y2)|L̃∗JL̃k++L+ξ−|2 � C(M)b21b

2η(1−δk− )

1 Es+
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from which∣∣∣(L̃k++L+(ξ+ + ξ−), JL̃L̃k++L++1ε)
∣∣∣ � b1C(M)b

η(1−δp)
1 Es+ .

By the coercivity of L+, L− we have that for any v ∈ Ḣ1:∫
|∇v|2 +

∫ |v|2
1 + y2

� (JL̃v, v) �
(∫

(1 + y2)|L̃v|2
) 1

2
(∫ |v|2

1 + y2

) 1

2

and hence

(5.38)

∫ |v|2
1 + y2

�
∫

(1 + y2)|L̃v|2

from which using the relation JL̃ = −L̃∗J from (1.51) and (3.27):
(5.39)∫ |L̃k++L+Ψ̃|2

1 + y2
�
∫

(1 + y2)|L̃∗JL̃k++L+Ψ̃|2 � b
2L++2+2(1−δk+

)+2η(1−δp)

1

and hence using (5.35), (5.36):∣∣∣(L̃k++L+(ξ+ + ξ−), JL̃L̃k++L+Ψ̃
)∣∣∣

�
(∫ |L̃k++L+Ψ̃|2

1 + y2

) 1

2

×
(∫

(1 + y2)
[
|L̃∗JL̃k++L+ξ+|2 + |L̃∗JL̃k++L+ξ−|2

]) 1

2

� b1b
L++(1−δk+

)+η(1−δp)

1 b
η(1−δp)
1

√
Es+ .

We now estimate from (5.23) using again JL̃ = −L̃∗J and (5.35), (5.36):∣∣∣(L̃k++L+(ξ+ + ξ−), JL̃L̃k++L+N(ε)
)∣∣∣

�
(∫

(1 + y2)
[
|L̃k++L++1ξ+|2 + |L̃k++L++1ξ−|2

]) 1

2

×
(∫ |JL̃k++L+N(ε)|2

1 + y2

) 1

2

�
(
b
2+ν(d,p)
1 Es+

) 1

2
(
b
2η(1−δp)
1 Es+

) 1

2 � b1b
η(1−δp)
1 Es+ .
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Finally, using (5.30):∣∣∣(L̃k++L+(ξ+ + ξ−), JL̃L̃k++L+L(ε)
)∣∣∣

�
(∫ |L̃k++L++1ξ+|2 + |L̃k++L++1ξ−|2

1 + y2

) 1

2

×
(∫

(1 + y2)|JL̃k++L+L(ε)|2
) 1

2

�
(
b21C(M)Es+

) 1

2

(
b
2η(1−δp)
1 Es+

) 1

2 � b1b
η(1−δp)
1 Es+ .

Injecting the collection of above bounds into (5.33) we obtain

1

2

d

ds

{
Es+

+
−2(L̃k++L+(ξ+ + ξ−), JL̃εk++L+) + (L̃k++L+(ξ+ + ξ−), JL̃L̃k++L+(ξ+ + ξ−)

λ2(s+−sc)

}

� b1
λ2(s+−sc)+2

{
Es+

M cδk+

+ Cb
2L++2(1+η)(1−δk+

)

1

+ C(M)

∫
1

1 + y4g

[
|∇εk++L+ |2 +

|εk++L+ |2
1 + y2

]
+
∣∣∣(L̃k++L+(ξ+ + ξ−), JL̃L̃k++L+(ξ+ + ξ−)

∣∣∣}.

(5.40)

To control the corrections to the energy Es+ we argue as follows. First, the
linear in ε term is estimated using (5.35), (5.18):∣∣∣(L̃k++L+(ξ+ + ξ−), JL̃εk++L+

)
∣∣∣

�
(∫

(1 + y2)
[
|L̃k++L++1ξ+|2 + |L̃k++L++1ξ−|2

]) 1

2
(∫ |εk++L+

|2
1 + y2

) 1

2

� b
η(1−δp)
1 Es+

We then estimate by brute force, using L̃k++L++1ΦL+,± = 0:∣∣∣(L̃k++L+(χB1
ΦL+,+), JL̃L̃k++L+)(χB1

ΦL+,+)
∣∣∣
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� B
d−2γ−4k+−2
1 � 1

B
4(1−δk+

)

1∣∣∣(L̃k−+L−(χB1
ΦL−,−), JL̃L̃k−+L−)(χB1

ΦL−,−)
∣∣∣

� B
d− 4

p−1
−4k−−2

1 � 1

B
4(1−δk− )

1∣∣∣(L̃k−+L−(χB1
ΦL−,−), JL̃L̃k++L+)(χB1

ΦL+,+)
∣∣∣

� 1

B
4(1−

δk+
+δk−
2

)

1

,

which with the help of (4.65), (4.67) produces the bounds:∣∣∣(L̃k++L+ξ+, JL̃L̃k++L+ξ+)
∣∣∣ � 1

B
4(1−δk+

)

1

C(M)B
4(1−δk+

)

0

√
Es+ � b

2η(1−δk+
)

1 Es+∣∣∣(L̃k++L+ξ−, JL̃L̃k++L+ξ−)
∣∣∣ � 1

B
4(1−δk− )

1

C(M)B
4(1−δk− )

0

√
Es+ � b

2η(1−δk− )

1 Es+

∣∣∣(L̃k++L+ξ−, JL̃L̃k++L+ξ+)
∣∣∣ � C(M)B

4(1−
δk+

+δk−
2 )

0

B
4(1−

δk+
+δk−
2 )

1

� b
2η(1−δp)
1 Es+ .

Inserting these final bounds into (5.40) concludes the proof of (5.2) and of
Proposition 5.1.

5.2. Local Morawetz control

We now establish a Morawetz type identity. This identity will be used in
particular to control the remaining quadratic term on the rhs of (5.2) which
is better localized on the soliton core. This estimate is a replacement for
the dissipative bounds available in the parabolic setting19 and relies on the
coercivity of the virial quadratic form. This in turn is a direct consequence
of the fact that the linearized operator is pointwise strictly lower bounded
by the sharp Hardy potential20. Moreover, we may afford to use a lossy
Morawetz multiplier at infinity since in the setting of the energy estimate
(5.2), the far away zone y � 1 is already under control with a stronger norm
than the one provided by the Morawetz bound. This feature reenforces the
analogy with the inner/outer control in a parabolic flow.

19see [40].
20a fundamental structural property of the super critical problem p > pJL.
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Lemma 5.2 (Local Morawetz control). Let 0 < δ � 1 denote a small
enough universal constant and let

(5.41) ψ′
A(y) = χA(y)y

1−δ, χA(y) = χ
( y

A

)
, A � 1,

then there holds the bound:

d

ds

{
M

λ2(s+−sc)

}
≥ b1

λ2(s+−sc)

[
δ

∫
1

1 + yδ

(
|∇ε2(k++L+)|2 +

|ε2(k++L+)|2

y2

)

− b
2L++2(1−δk+

)+2η(1−δp)

1 − C

Aδ
Es+

]
(5.42)

with

M = b1�
(∫

∇ψA · ∇ε2(k++L+)ε2(k++L+)

)
+O

(√
b1Es+

)
= O

(√
b1Es+

)
.(5.43)

Proof of Lemma 5.2. step 1 The Morawetz identity. Let v be a solution of

(5.44) ∂sv = L̃v +G

For a compactly supported smooth function ψ the Morawetz type identity
takes the form

1

2

d

ds

{
�
(∫

∇ψ · ∇vv

)}
= −�

(∫
∂sv

[
Δψ

2
v +∇ψ · ∇v

])
= −�

(∫ [
L̃v +G

] [Δψ

2
v +∇ψ · ∇v

])
=

∫
L+�v

[
Δψ

2
�v +∇ψ · ∇�v

]
+

∫
L−�v

[
Δψ

2
�v +∇ψ · ∇�v

]
− �

(∫
G

[
Δψ

2
v +∇ψ · ∇v

])
For any potential V and real valued radially symmetric function u:∫

(−Δ−V )u

[
Δψ

2
u+∇ψ · ∇u

]
=

∫
ψ′′|∇u|2−1

4

∫
Δ2ψu2+

1

2

∫
∇V ·∇ψu2.

Using (2.5) we observe that for V = V+ = pQp−1 we have the lower bound:
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1

2
y∂yV =

p(p− 1)

2
y∂yQQp−2 =

p(p− 1)

2
Qp−2

[
2

p− 1
Q+ y∂yQ

]
− pQp−1

=
p(p− 1)

2
Qp−2ΛQ− pQp−1 ≥ −pQp−1 ≥ −

[
(d−2)2

4 − cp

]
y2

,

for some universal constant cp > 0, where the last inequality follows from

the positivity of the operator L+, (2.4). The same argument also applies to

V = V− = Qp−1. This gives the lower bound on the virial quadratic form:∫
L+�v

[
Δψ

2
�v +∇ψ · ∇�v

]
+

∫
L−�v

[
Δψ

2
�v +∇ψ · ∇�v

]
≥

∫
ψ′′|∇v|2 −

[
(d− 2)2

4
− cp

] ∫ |∂yψ|
y

|v|2
y2

− 1

4

∫
Δ2ψ|v|2(5.45)

Let now u be spherically symmetric, real valued. We have the following

weighted Hardy bound for 0 < δ � 1:∫
χ

yδ

(
∂yu+

β

y
u

)2

yd−1dy =

∫
χ

yδ

[
(∂yu)

2 +
β2

y2
u2 + 2

β

y
u∂yu

]
yd−1dy

=

∫
χ

yδ
(∂yu)

2 +

∫
u2

y2+δ

[
(β2 − β(d− δ − 2))χ− βyχ′]

For the optimal choice β = d−2−δ
2 ,

∫
χ

yδ
(∂yu)

2 ≥
(
d− 2− δ

2

)2 ∫
χ

u2

y2+δ
− C

∫ |yχ′|
y2+δ

u2

with C independent of χ, δ in the range 0 < δ � 1. With the choices of ψ

in (5.41) and χ in (1.47):∫
ψ′′
A|∇v|2 =

∫ [
χ′
Ay

1−δ +
χA(1− δ)

yδ

]
|∇v|2

≥ δ

∫
χA

yδ
|∇v|2 + (1− δ)2

(
d− 2− δ

2

)2

×
∫

χA
u2

y2+δ
− C

Aδ

∫
y≥A

[
|∇u|2 + u2

1 + y2

]
.
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Moreover, by a direct computation:

−Δ2ψA =
δ(d− δ)(d− δ − 2)

4

χA

y2+δ
+O

(
1

Aδy2
1A≤y≤2A

)
and hence using (5.45):∫

L+�v
[
ΔψA

2
�v +∇ψA · ∇�v

]
+

∫
L−�v

[
ΔψA

2
�v +∇ψA · ∇�v

]
≥ δ

∫
χA

yδ
|∇v|2 +

[
cp −

(d− 2)2

4
+ (1− δ)2

(
d− 2− δ

2

)2
]∫

χA
u2

y2+δ

− 1

4

∫
Δ2ψA|v|2 −

C

Aδ

∫
y≥A

[
|∇v|2 + |v|2

1 + y2

]
≥ δ

∫
χA

yδ

[
|∇v|2 + |v|2

y2

]
− C

Aδ

∫
y≥A

[
|∇v|2 + |v|2

1 + y2

]
for 0 < δ < δ(p) small enough. We have therefore obtained the monotonicity
formula for solutions to (5.44):

1

2

d

ds

{
�
(∫

∇ψA · ∇vv

)}
≥ δ

∫
1

1 + yδ

[
|∇v|2 + |v|2

y2

]
− �

(∫
G

[
ΔψA

2
v +∇ψ · ∇vA

])
− C

Aδ

∫
y≥A

[
|∇u|2 + u2

1 + y2

]
with C > 0 independent of A, δ. We now fix, once and for all, a small δ with

0 < δ � g

where g is given by (5.1), and apply this identity to (5.37) to obtain:

1

2

d

ds

{
�
(∫

∇ψA · ∇ε2(k++L+)ε2(k++L+)

)}
≥ δ

∫
1

1 + yδ

[
|∇ε2(k++L+)|2 +

|ε2(k++L+)|2

y2

]
− C

Aδ
Es+

− �
(∫

L̃k++L+

[
λs

λ
Λε− γsJε+ F − M̃od

]
×

[
ΔψA

2
ε2(k++L+) +∇ψA · ∇ε2(k++L+)

])
.
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The space localization of χA gives the rough bound:∣∣∣∣�(∫ ∇ψA · ∇ε2(k++L+)ε2(k++L+)

)∣∣∣∣ � ACC(M)Es+ .

Combining it with ∣∣∣∣λs

λ

∣∣∣∣ � b1, |(b1)s| � b21,

we obtain:

λ2(s+−sc)

2

d

ds

{
b1

λ2(s+−sc)
�
(∫

∇ψA · ∇ε2(k++L+)ε2(k++L+)

)}
(5.46)

≥ δb1

∫
1

1 + yδ

[
|∇ε2(k++L+)|2 +

|ε2(k++L+)|2

y2

]
−
[
C

Aδ
+ACb1

]
b1Es+

− b1�
(∫

L̃k++L+

[
λs

λ
Λε− γsJε+ F − M̃od

]
×

[
ΔψA

2
ε2(k++L+) +∇ψA · ∇ε2(k++L+)

])
.

We now estimate the last term on the rhs of (5.46).

step 2 Quadratic terms. Using the space localization of χA,∣∣∣∣b1�(∫ L̃k++L+

[
λs

λ
Λε− γsJε

] [
ΔψA

2
ε2(k++L+) +∇ψA · ∇ε2(k++L+)

])∣∣∣∣
� b21C(M)ACEs+ .

step 3 Nonlinear terms. We estimate from (5.39):∣∣∣∣b1�(∫ L̃k++L+Ψ̃

[
ΔψA

2
ε2(k++L+) +∇ψA · ∇ε2(k++L+)

])∣∣∣∣
� b1C(M)ACb

L++1+(1−δk+
)+η(1−δp)

1

√
Es+

� b1

[
b
2L++2(1−δk+

)+2η(1−δp)

1 + C(M)ACb1Es+
]
.

Similarily, from (5.23):∣∣∣∣b1�(∫ L̃k++L+N(ε)

[
ΔψA

2
ε2(k++L+) +∇ψA · ∇ε2(k++L+)

])∣∣∣∣
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� b1b1
√

Es+C(M)AC
√

Es+ ≤ b1
√

b1Es+ .

Next from (5.30):∣∣∣∣b1�(∫ L̃k++L+L(ε)

[
ΔψA

2
ε2(k++L+) +∇ψA · ∇ε2(k++L+)

])∣∣∣∣
� b1b1

√
Es+C(M)AC

√
Es+ ≤ b1

√
b1Es+ .

step 4 Modulation equation terms. We recall the explicit expression (4.40):

M̃od(t) = −
(
λs

λ
+ b1

)
ΛQ̃b,a + (γs − a1)JQ̃b,a

+

L+∑
j=1

[(bj)s + (2j − α)b1bj − bj+1]χB1

×

⎡⎣Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−+2∑
m=j+1

∂Sm,−
∂bj

⎤⎦
+

L−∑
j=1

[(aj)s + 2jb1aj − aj+1]χB1

×

⎡⎣Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

⎤⎦ .

Observe that since k+ ≥ 1

L̃k++L+(χB1
ΦL+,+) = L̃k+ΛQ = 0, L̃k++L+(χB1

ΦL−,−)

= L̃k++ΔkJQ = 0 on Suppψ′
A

and thus with the decomposition (5.11):

(5.47) L̃k++L+M̃od = L̃k++L+

[
M̂od1 + M̂od2

]
on Suppψ′

A.

We estimate from (5.14), (5.15), (5.38): for j = 1, 2,∫ |L̃k++L+M̂odj |2
1 + y2

� b21

[
C(M)Es+ + b

2L++2(1−δk+
)+2η(1−δp)

1

]
and therefore
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∣∣∣∣b1�(∫ L̃k++L+M̂odj

[
ΔψA

2
ε2(k++L+) +∇ψA · ∇ε2(k++L+)

])∣∣∣∣
� b1b1

[√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

]
C(M)AC

√
Es+

≤ b1

[
b

1

2

1 Es+ + b
2L++2(1−δk+

)+2η(1−δp)

1

]
.

This concludes the proof of (5.42), (5.43).

5.3. Monotonicity for the low Sobolev norm

We claim a similar monotonicity formula for the low Sobolev energy.

Lemma 5.3 (Monotonicity for the low Sobolev energy). For 0 < b1 <
b∗1(L+, d, p,M) small enough:

(5.48)
d

dt

{‖∇σε‖2L2

λ2(σ−sc)

}
≤ b1

λ2(σ−sc)+2

[
b

c

L+

1 ‖∇σε‖2L2 + bσ−sc+ν0

1

]
with some universal constants c(d, p, �), ν0(d, p) > 0 independent of σ in the
range (4.14).

Proof of Lemma 5.3. step 1 Energy identity. Recall (4.41), (4.44), we com-
pute using (1.49):

1

2

d

dt

∫
|∇σw|2 = �

(∫
∂tw∇2σw

)
(5.49)

= �
(∫ [

L̃λw +
1

λ2
Fλ

]
∇2σw

)
=

1

λ2+2(σ−sc)
�
(∫ [(

0 −W−
W+ 0

)
ε

− Ψ̃b + M̃od+ L(ε)−N(ε)

]
∇2σε

)
.

We now estimate all the terms on the rhs of (5.49).

step 2 Potential term. The potentials W± satisfy (B.8) with μ = 2. Using
Lemma B.2 with ν = σ − 2 so that ν + μ = σ < d

2 :∣∣∣∣∫ (
0 −W−
W+ 0

)
ε∇2σε

∣∣∣∣
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�
[
‖∇σ−2(W+ε)‖L2 + ‖∇σ−2(W−ε)‖L2

]
‖∇σ+2ε‖L2

� ‖∇σε‖L2‖∇σ+2ε‖L2 � ‖∇σε‖1+zL+

L2 ‖∇s+ε‖1−zL+

L2

� (b
1+ν

2

1 ‖∇σε‖L2)1+zL+ (b
−

(1+ν)(1+zL+
)

2(1−zL+
)

1 ‖∇s+ε‖L2)1−zL+

� b1+ν
1 ‖∇σε‖2L2 +MCL+ b

−
(1+ν)(1+zL+

)

1−zL+

1 ‖∇s+ε‖2L2

with

ν =
1

2L+
, σ + 2 = zL+

σ + (1− zL+
)s+.

We now compute

−1 + zL+

1− zL+

= 1− 2

1− zL+

= 1− (s+ − σ)

and hence using (1.43), (4.34), (1.40):

b
−

(1+ν)(1+zL+
)

1−zL+

1 ‖∇s+ε‖2L2 � Kb
2L++2(1−δk+

)+2η(1−δp)−(1+ν)(s+−σ−1)

1

� Kb
σ−sc+α+1+2η(1−δp)−ν(2L++O(1))
1 ≤ b1b

σ−sc+
α

2

1

for b1 < b∗1(M) small enough. We have therefore obtained the expected
bound: ∣∣∣∣∫ (

0 −W−
W+ 0

)
ε∇2σε

∣∣∣∣ ≤ b1

[
b

c

L+

1 ‖∇σε‖2L2 + b
σ−sc+

α

2

1

]
.

step 3 Ψ̃b term. We recall the Sobolev bound (3.30):

‖∇σΨ̃‖2L2 ≤ b2+σ−sc+ν1

1 , ν1 = ν(d, p) > 0

which implies

|(Ψ̃b,∇2σε)| � ‖∇σε‖L2‖∇σΨ̃b‖L2 � b1‖∇σε‖L2

(
bσ−sc+ν1

1

) 1

2

� b1

[
b

ν1
2

1 ‖∇σε‖2L2 + b
σ−sc+

ν1
2

1

]
.

step 4 M̃od term. Let

˜̃
Mod = M̃od− (γs − a1)JQ,

we claim the bound:
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(5.50) ‖∇2k++1 ˜̃Mod‖2L2 � b
2(1−δk+

)

1 .

Assume (5.50), we then observe

2σ − (2k+ + 1) = σ + σ − sc + α− 2 + 2δk+
> σ

and interpolate:

|( ˜̃Mod,∇2σε)| � ‖∇2σ−(2k++1)ε‖L2‖∇2k++1M̃od‖L2

� ‖∇σε‖z+L2‖∇s+ε‖1−z+
L2 b

2(1−δk+
)

1

with

2σ − (2k+ + 1) = z+σ + (1− z+)s+,

1− z+ =
σ − (2k+ + 1)

s+ − σ
=

σ − sc + α− 2(1− δk+
)

2L+
+O

(
1

L2
+

)
.

Therefore,

|( ˜̃Mod,∇2σε)| � ‖∇σε‖L2b
1−δk+

1 b

σ−sc+α−2(1−δk+
)

2
+O

(
1

L+

)
1

� b
σ−sc+α

2

1 ‖∇σε‖L2 � b1

[
b

ν0
2

1 ‖∇σε‖2L2 + b
σ−sc+

ν0
2

1

]
for some ν0(d, p) > 0, thanks to α > 2. The second term is estimated from

(4.45):

|((γs − a1)JQ,∇2σε)| � b
L++1+(1−δk+

)+η(1−δp)

1 ‖∇σQ‖L2‖∇σε‖L2

� b1

[
b1‖∇σε‖2L2 + b

2L+−1
1

]
.

This gives the desired control of the M̃od terms.

Proof of (5.50): By the Q̃b,a construction:

∫
|∇2k++1ΛQ̃b,a|2 +

∣∣∣∣∫ |∇2k++1(Q̃b,a −Q)

∣∣∣∣2
�

∫
y≤2B1

L+∑
j=0

b2j1 (1 + |y2j−γ−(2k++1)|2)
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+

∫
y≤2B1

L−∑
j=1

b2j+α
1 (1 + |y2j−

2

p−1
−(2k++1)|2)

+

∫
y≤2B1

L++2∑
j=2

b2j1 (1 + |y2(j−1)−γ−(2k++1)|2)

+ b2j+α
1 (1 + |y2j−γ−(2k++1)|2)

+

∫
y≤2B1

L−+2∑
j=2

b2j+α
1 (1 + |y2(j−1)− 2

p−1
−(2k++1)|2)

+ b2j+2α
1 (1 + |y2j−

2

p−1
−(2k++1)|2)

�
L++2∑
j=0

b2j1

∫
y≤2B1

1 + y4j

1 + y1+4(1−δk+
)
dy

+

L−+2∑
j=1

∫
y≤2B1

b2j+α
1

1 + y4(j+Δk)

1 + y1+4(1−δk− )
dy

� 1.

We now estimate for 1 ≤ j ≤ L+:

∫
y≤2B1

∣∣∣∣∣∣∇2k++1

⎡⎣Φj,+ +

L++2∑
m=j+1

∂Sm,+

∂bj
+

L−2+2∑
m=j+1

∂Sm,−
∂bj

⎤⎦∣∣∣∣∣∣
2

�
∫
y≤2B1

|y2j−γ−(2k++1)|2 + b
2(m−j)
1 |y2(m−1)−γ−(2k++1)|2

+ b
2(m−j)+α
1 |y2m− 2

p−1
−(2k++1)|2

� B
4j−4(1−δk+

)

1 +

L++2∑
m=j+1

b
2(m−j)
1 B

4(m−1)−4(1−δk+
)

1

+

L−2+2∑
m=j+1

b
2(m−j)+α
1 B

4m−4(1−δk− )+4Δk

1

� B
4j−4(1−δk+

)

1

⎡⎣1 + L++2∑
m=j+1

(b1B
2
1)

2(m−j)

B4
1

+

L−2+2∑
m=j+1

(b1B
2
1)

2(m−j)+α

⎤⎦
� B

4j−4(1−δk+
)−CL+

η

1 .
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Similarily for 1 ≤ j ≤ L−:

∫
y≤2B1

∣∣∣∣∣∣∇2k++1

⎡⎣Φj,− +

L++2∑
m=j+1

∂Sm,+

∂aj
+

L−+2∑
m=j+1

∂Sm,−
∂aj

⎤⎦∣∣∣∣∣∣
2

�
∫
y≤2B1

|y2j−
2

p−1
−(2k++1)|2 +

L++2∑
m=j+1

b
2(m−j)
1 |y2m− 2

p−1
−(2k++1)|2

� B
4j−4(1−δk− )+4Δk

1

The collection of above bounds together with (4.45), (4.46), (4.47) imply:

‖∇2k++1 ˜̃Mod‖2L2 � K2b
2L++2(1−δk+

)+2η(1−δp)

1

×
[
B

4L+−4(1−δk+
)−CL+

η

1 +B
4L−−4(1−δk− )+4Δk

1

]
≤ b

2(1−δk+
)+2(1−δp)−CL+

η

1 � b
2(1−δk+

)

1 .

step 5 Nonlinear term N(ε). We claim:

‖∇σN(ε)‖2L2 � b
2+O

(
1

L+

)
1 ‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]

which, upon expanding the nonlinearity

N(ε) =
∑

Nk1,k2
(ε), Nk1,k2

(ε) = εk1εk2Q̃q+1−k1

b,a Q̃q−k2

b,a ,

⎧⎨⎩
0 ≤ k1 ≤ q + 1
0 ≤ k2 ≤ q
k1 + k2 ≥ 2.

.

follows from: ∀2 ≤ k = k1 + k2 ≤ p,

(5.51) ‖∇σNk1,k2
(ε)‖L2 � b

2+O
(

1

L+

)
1 ‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
.

This implies from the bootstrap bound (4.35) and (4.14):

|(N(ε),∇2σε)| � b
1+O

(
1

L+

)
1

p∑
k=2

‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

) k−1

2

≤ b1b
c(σ−sc)
1 ‖∇σε‖2L2
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� b1b
c

L+

1 ‖∇σε‖2L2

for some universal constant c > 0, where we used (4.14) in the last step.
Proof of (5.51): We observe from (5.24) the bound:

(5.52)
∣∣∣∂j

y

(
Q̃q+1−k1

b,a Q̃q−k2

b,a

)∣∣∣ � 1

1 + y
2(p−k)

p−1
+j

, j ≥ 0.

We decompose

σ = s+ δσ, s ∈ N∗, 0 ≤ δσ < 1

and develop with the help of the Leibniz rule:

‖∇σεk1εk2Q̃q+1−k1

b,a Q̃q−k2

b,a ‖L2�
s∑

i=0

‖∇δσ
[
∇i(εk1εk2)∇s−i(Q̃q+1−k1

b,a Q̃q−k2

b,a )
]
‖L2 .

We now consider separate cases, depending on the value of i:
Case 2 ≤ i ≤ s: In this case, from 2 ≤ k ≤ p,

0 < δσ +
2(p− k)

p− 1
+ s− i = σ +

2(p− k)

p− 1
− i ≤ σ +

2(p− 2)

p− 1
− 2 < σ <

d

2

and we therefore estimate using (5.52) and the fractional Hardy estimate
(B.2):

‖∇δσ
[
∇i(εk1εk2)∇s−i(Q̃q+1−k1

b,a Q̃q−k2

b,a )
]
‖L2 � ‖∇δσ+

2(p−k)

p−1
+s−i∇i(εk1εk2)‖L2

� ‖∇σ+ 2(p−k)

p−1 (εk1εk2)‖L2 .

We now claim the nonlinear estimate: ∀2 ≤ k = k1 + k2 ≤ p, ∀σ ≤ β � s+,
(5.53)

‖∇β(εk1εk2)‖2L2 � b
2− 2(p−k)

p−1
+β−σ+O

(
1

L+

)
1 ‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]

which is proved below. This yields the expected bound for i ≥ 2:

‖∇δσ
[
∇i(εk1εk2)∇s−i(Q̃q+1−k1

b,a Q̃q−k2

b,a )
]
‖L2 � ‖∇σ+ 2(p−k)

p−1 (εk1εk2)‖2L2

� b
2− 2(p−k)

p−1
+σ+ 2(p−k)

p−1
−σ+O

(
1

L+

)
1 ‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
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� b
2+O

(
1

L+

)
1 ‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
.

Proof of (5.53). If β ∈ N, since β ≥ σ > d
2 we estimate from (5.27):

‖∇β(εk1εk2)‖L2 � (‖ε‖k−1
L∞ + ‖∇ d

2 ε‖k−1
L2 )‖∇βε‖L2

and thus from (D.1), (D.4):

‖∇β(εk1εk2)‖2L2 � ‖∇σε‖
2(k−1)+O

(
1

L+

)
L2 b

(k−1)( d

2
−σ)+O

(
1

L+

)
1

× ‖∇σε‖
2+O( 1

L+
)

L2 b
β−σ+O( 1

L+
)

1

� ‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
b
(k−1)( d

2
−sc)+β−σ+O( 1

L+
)

1

= b
2− 2(p−k)

p−1
+β−σ+O

(
1

L+

)
1 ‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
.

If β /∈ N, we split

β = sβ + δβ , sβ ∈ N∗, δβ ∈ (0, 1).

We recall the standard commutator estimate: let

0 < ν < 1, 1 < p, p1, p3 < +∞,

1 ≤ p2, p4 ≤ +∞ with
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
,

then

(5.54) ‖∇ν(uv)‖Lp � ‖∇νu‖Lp1‖v‖Lp2 + ‖∇νv‖Lp3‖u‖Lp4 .

We therefore expand:

‖∇δβ∇sβ(εk1εk2)‖L2 �
∑

l1+···+lk=sβ

∥∥∥∇δα
(
Π1≤i≤k∇liε

)∥∥∥
L2

�
∑

l1+···+lk=sβ

Π1≤i≤k‖∇l̃iε‖Lpi

where
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l̃i = li + δi=jδβ , 1 ≤ j ≤ k, pi =
2β

l̃i
,

k∑
i=1

l̃i = β.

We then estimate by Sobolev for l̃i > 0, i.e., 2 ≤ pi < +∞:

‖∇l̃iε‖Lpi � ‖∇miε‖L2 with −mi +
d

2
= −l̃i +

d

pi
.

We compute

mi =

⎧⎨⎩
(
d
2 − β

) (
1− l̃i

β

)
+ β ≥ α ≥ σ for β ≤ d

2

l̃i

(
1− d

2β

)
+ d

2 ≥ d
2 ≥ σ for β ≥ d

2

and thus σ ≤ mi ≤ s+. We interpolate:

mi = ziσ + (1− zi)s+ with zi =
s+ −mi

s+ − σ
= 1− mi − σ

2L+
+O

(
1

L2
+

)
.

and count the j ∈ [1, k] terms l̃j 
= 0. We compute:

j∑
i=1

mi = j
d

2
− d

2
+ β = (j − 1)

d

2
+ β

j∑
i=1

zi = j − 1

2L+

[
(j − 1)

d

2
+ β − jσ

]
+O

(
1

L2
+

)
= j − j − 1

2L+

(
d

2
− σ

)
− β − σ

2L+
+O

(
1

L2
+

)
and estimate using (D.1):∑

l1+···+lk=s

Π1≤i≤k‖∇l̃iε‖Lpi �
∑

1≤j≤k

‖ε‖k−j
L∞ Π

(
‖∇σε‖ziL2‖∇s+ε‖1−zi

L2

)
�

∑
1≤j≤k

(
‖∇σε‖

1+O( 1

L+
)

L2 b
1

2(
d

2
−σ)+O

(
1

L+

)
1

)k−j

× ‖∇σε‖
j+O

(
1

L+

)
L2 ‖∇s+ε‖

j−1

2L+
( d

2
−σ)+ β−σ

2L+
+O

(
1

L2
+

)
L2

� ‖∇σε‖
k+O( 1

L+
)

L2 b
k−1

2 ( d

2
−σ)+ β−σ

2
+O

(
1

L+

)
1
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and thus:

‖∇β(εk1εk2)‖2L2

� ‖∇σε‖
2k+O( 1

L+
)

L2 b
(k−1)( d

2
−σ)+β−σ+O

(
1

L+

)
1

� ‖∇σε‖2L2‖∇σε‖
2(k−1)+O( 1

L+
)

L2 b
β−σ+(k−1)( d

2
−σ)+O

(
1

L+

)
1

� b
2− 2(p−k)

p−1
+β−σ+O

(
1

L+

)
1 ‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]

and (5.53) is proved.

Case i = 0, 1: For i = 0, we estimate from (B.10), (5.52), (D.3):

‖∇δσ
[
εk1εk2∇s(Q̃q+1−k1

b,a Q̃q−k2

b,a )
]
‖L2

� ‖∇
(
εk2εk2(1 + y1−δσ)∇s(Q̃q+1−k1

b,a Q̃q−k2

b,a )
)
‖2L2

�
∥∥∥∥∥ εk

1 + yσ+
2(p−k)

p−1

∥∥∥∥∥
2

L2

+

∥∥∥∥∥ ∇(εk1εk2)

1 + yσ−1+ 2(p−k)

p−1

∥∥∥∥∥
2

L2

�
∥∥∥∥∥ ε

1 + y
2(p−k)

(k−1)(p−1)

∥∥∥∥∥
2(k−1)

L∞

[∥∥∥∥ ε

1 + yσ

∥∥∥∥2
L2

+

∥∥∥∥ ∇ε

1 + yσ−1

∥∥∥∥2
L2

]

�
(
‖∇σε‖L2b

2(p−k)

(k−1)(p−1)
+( d

2
−σ)+O

(
1

L+

)
1

)k−1

‖∇σε‖
2+O( 1

L+
)

L2

= b
2+O( 1

L+
)

1 ‖∇σε‖2L2

(‖∇σε‖2L2

bσ−sc
1

)(k−1)
[
1+O( 1

L+
)
]
.

The case i = 1 follows similarily and is left to the reader. This concludes the

proof of (5.51).

step 6 Small linear term L(ε). We use (5.32), (B.9) to estimate:

|(L(ε),∇2σε)| � ‖∇σ−2L(ε)‖L2‖∇σ+2ε‖L2 � b1‖∇σε‖L2‖∇σ+2ε‖L2

and follow the chain of estimates of step 2.

step 7 Conclusion. The collection of above bounds yields (5.48).
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6. Closing the bootstrap and proof of Theorem 1.1

We are now in position to close the bootstrap bounds of Proposition 4.3,
and then conclude the proof of Theorem 1.1.

6.1. Proof of Proposition 4.3

Our aim is to show first that for s < s∗, the a priori bounds (4.32), (4.33),
(4.34), (4.35) can be improved under the sole a priori control (4.31), and
then control the unstable modes (Vk)1≤k≤�, (Ãk))1≤k≤k�

.

step 1 Integration of the law for the scaling parameter. First observe from
(4.22) and the a priori bound (4.31) on Uk on s0 ≤ s < s∗ that

(6.1) |bk(s)| � |bk(s0)|.

We compute explicitly the scaling parameter for s < s∗. From (3.42), (3.41),
(4.31), (4.45), we have the bound:

−λs

λ
=

�

(2�− α)s
+O

(
1

s1+cη

)
which we rewrite

(6.2)

∣∣∣∣ dds {log (s �

(2�−α)λ(s)
)}∣∣∣∣ � 1

s1+cη
.

We integrate this using the initial value λ(s0) = 1 and conclude using s0 � 1
from (4.22):

(6.3) λ(s) =
(s0
s

) �

2�−α

[
1 +O

(
1

scη0

)]
.

Together with the law for b1 given by (4.31), (3.42), (3.41), this implies:

(6.4) b1(s0)
�

2�−α � b
�

2�−α

1 (s)

λ(s)
� b1(s0)

�

2�−α .

step 2 Improved control of Es+ . We now improve the control (4.34) of the
high order energy Es+ by reintegrating the Lyapunov monotonicity (5.2)
coupled with the local Morawetz (5.42) formulas in the regime governed
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by (6.4), (3.42): for a large enough universal constant D = D(M) � 1,
A = A(M) � D, 0 < b1 < b∗1(A),

d

ds

{ Es+
λ2(s+−sc)

[
1 +O(b

η(1−δp)
1 )

]
−DM

}
≤ b1

λ2(s+−sc)+2

[
C

Es+
M cδk+

+ Cb
2L++2(1−δk+

)+2η(1−δp)

1

+ C(M)

∫
1

1 + y4g

(
|∇εk++L+

|2 + |εk++L+
|2

1 + y2

)]
− b1

λ2(s+−sc)

[
Dδ

∫
1

1 + yδ

(
|∇ε2(k++L+)|2 +

|ε2(k++L+)|2

y2

)

+ Db
2L++2(1−δk+

)+2η(1−δp)

1 +
CD

Aδ
Es+

]
≤ b1

λ2(s+−sc)+2

[ Es+
M cδk+

+ C(M)b
2L++2(1−δk+

)+2η(1−δp)

1

]
≤

[
K

M cδk+

+ C(M)

]
b1b

2L++2(1−δk+
)+2η(1−δp)

1

λ2(s+−sc)

where we injected the bootstrap bound (4.34) in the last step, and where
we stress that C(M) is independent of K(M). We integrate in time using
λ(s0) = 1 and the bound (5.43):

Es+ ≤ Cλ(s)2(s+−sc)Es+(s0)

(6.5)

+ C

[
K

M cδk+

+ C(M)

]
λ(s)2(s+−sc)

∫ s

s0

b1(τ)
1+2L++2(1−δk+

)+2η(−δp)

λ(τ)2(s+−sc)
dτ.

We now estimate from (6.4):

λ(s)2(s+−sc)

∫ s

s0

b1(τ)
1+2L++2(1−δk+

)+2η(1−δp)

λ(τ)2(s+−sc)
dτ

� 1

s
2�(s+−sc)

2�−α

∫ s

s0

τ
2�(s+−sc)

2�−α
−[1+2L++2(1−δk+

)+2η(1−δp)]dτ.

The above integral is divergent since

2�(s+ − sc)

2�− α
− [1 + 2L+ + 2(1− δk+

) + 2η(1− δp)](6.6)
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=
2α

2�− α
L+ +OL+→∞(1) � −1

and thus leads to the upper bound:

λ(s)2(s+−sc)

∫ s

s0

b1(τ)
1+2L++2(1−δk+

)+2η(1−δp)

λ(τ)2(s+−sc)
dτ

� 1

s
2�(s+−sc)

2�−α

s
2�(s+−sc)

2�−α
−[2L++2(1−δk+

)+2η(1−δp)] � b
2L++2(1−δk+

)+2η(1−δp)

1 .

We now estimate the contribution of the initial data in (6.5) using (6.4), the
initial bounds (4.30), (4.29) and the comparison (6.6):

λ(s)2(s+−sc)Es+(0) �
(
b1(s)

b1(0)

) 2�(s+−sc)

2�−α

b1(0)
10�

2�−α
L+

≤ b1(s)
2L++2(1−δk+

)+2η(1−δp)

for L+ large enough. We have therefore obtained

Es+(s) ≤
[
C(M) +

K(M)

M c

]
b1(s)

2L++2(1−δk+
)+2η(1−δp)

≤ K(M)

2
b1(s)

2L++2(1−δk+
)+2η(1−δp)(6.7)

for K = K(M) large enough.

step 4 Improved control of ‖∇σε‖2L2 . We now turn to the improved control
of the low Sobolev norms. We inject the bootstrap bound (4.35) into the
monotonicity formula (5.48) and obtain:

d

ds

{‖∇σε‖2L2

λ2(σ−sc)

}
≤ b1

λ2(σ−sc)

[
Kb

2

L+
+ 2�

2�−α
(σ−sc)

1 + bσ−sc+ν0

1

]
≤ b1

λ2(σ−sc)
b

1

L+
+ 2�

2�−α
(σ−sc)

1

for σ− sc small enough and b1 < b∗1(L+) small enough. We now integrate in
time s and obtain from (4.29):

‖∇σε‖2L2 ≤λ(s)2(σ−sc)b1(s0)
10�

2�−α
L++λ(s)2(σ−sc)

∫ sc

s0

b1(τ)
1+ 1

L+
+ 2�

2�−α
(σ−sc)

λ(τ)2(σ−sc)
dτ.
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The time integral is estimated using (6.4):

λ(s)2(σ−sc)

∫ s

s0

b1(τ)
1+(σ−sc)(1+ν)

λ(τ)2(σ−sc)
dτ � 1

s
2�(σ−sc)

2�−α

∫ s

s0

dτ

τ
1+ 1

L+

� 1

s
2�(σ−sc)

2�−α

� b1(s)
2�

2�−α

and similarly for the boundary term from (6.4):

λ(s)2(σ−sc)b1(s0)
10�

2�−α
L+ � b1(s)

2�(σ−sc)

2�−α b1(s0)
�

2�−α
(10L+−2(σ−sc)) ≤ b1(s)

2�(σ−sc)

2�−α

and we have therefore obtained the improved bound:

(6.8) ‖∇σε‖2L2 � b1(s)
2�(σ−sc)

2�−α ≤ K

2
b1(s)

2�(σ−sc)

2�−α

for K large enough as expected.

step 5 Control of the stable bk modes. We now close the control of the stable
modes (b�+1, . . . , bL+

) and claim the bound:

(6.9) |bk| � 1

sk+η(1−δp)
, �+ 1 ≤ k ≤ L+.

case k = L+: Let

b̃L+
= bL+

+
(L̃L+ε, χB0

JΦ0,−)

(Φ0,+, χB0
JΦ0,−)

then from (4.65), (6.7):
(6.10)

|b̃L+
− bL| � B

2(1−δk+
)

0

√
Es+ � b

−(1−δk+
)+L++(1−δk+

)+η(1−δp)

1 � b
L++η(1−δp)
1

and hence from the improved modulation equation (4.59):∣∣∣(b̃L+
)s + (2L+ − α)b1b̃L+

∣∣∣ � b1|bL+
− b̃L+

|

+
1

B
2δk+

0

[
C(M)

√
Es+ + b

L++(1−δk+
)+η(1−δp)

1

]
� b

L++1+η(1−δp)
1 + b

δk+

1

[
b
L++(1−δk+

)+η(1−δp)

1

]
� b

L++1+η(1−δp)
1 .

Equivalently: ∣∣∣∣∣ dds
{

b̃L+

λ2L+−α

}∣∣∣∣∣ � b
L++1+(1−δp)η
1

λ2L+−α
.
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We integrate this identity in time from s0. The time integral is estimated
from (6.4):

λ(s)2L+−α

∫ s

s0

b1(τ)
L++1+(1−δp)η

λ(τ)2L+−α
dτ

� 1

s
(2L+−α)�

2�−α

∫ s

s0

τ
(2L+−α)�

2�−α
−L+−1−(1−δp)ηdτ

� 1

s
(2L+−α)�

2�−α

∫ s

s0

τ−1+
α(L+−�)

2�−α
−(1−δp)ηdτ ≤ s

α(L+−�)

2�−α

s
(2L+−α)�

2�−α

1

s(1−δp)η
=

1

sL++(1−δp)η

� b
L++(1−δp)η
1 .

The boundary term is estimated using (4.27), (4.29), (6.10):

|b̃L+
(s0)| � b1(s0)

5
2L+−α

2�−α +B
2(1−δk+

)

0

√
Es+(s0) � b1(s0)

5
2L+−α

2�−α

and hence using (6.4):(
λ(s)

λ(s0)

)2L+−α

|b̃L+
(s0)| � b1(s0)

5(2L+−α)�

2�−α

b1(s0)
2L+−α

2�−α

1

s
(2L+−α)�

2�−α

≤ 1

sL++(1−δp)η
.

The collection of above bounds yields the bound

|b̃L+
| � 1

sL++(1−δp)η

which together with (6.10) yields:

|bL+
| � 1

sL++(1−δp)η

and (6.9) is proved for k = L+.
case �+ 1 ≤ k ≤ L+ − 1: We now prove (6.9) by a descending induction: we
assume the claim for k + 1 and proved it for k, � + 1 ≤ k ≤ L+ − 1. From
Lemma 4.4 and the induction claim:∣∣∣∣(bk)s − (2k − α)

λs

λ
bk

∣∣∣∣ � b
L++1
1 + |bk+1| � b

k+1+η(1−δp)
1

from which ∣∣∣∣ dds
{

bk
λ2k−α

}∣∣∣∣ � b
k+1+η(1−δp)
1

λ2k−α
.



580 Frank Merle et al.

We integrate this identity in time from s0. The time integral is estimated
from (6.4) using �+ 1 ≤ k ≤ L+ − 1:

λ(s)2k−α

∫ s

s0

b1(τ)
k+1+η(1−δp)

λ(τ)2k−α
dτ � 1

s
(2k−α)�

2�−α

∫ s

s0

τ
(2k−α)�

2�−α
−k−1−η(1−δp)dτ

� 1

s
(2k−α)�

2�−α

∫ s

s0

τ−1−η(1−δp)+
α(k−�)

2�−α dτ ≤ s
α(k−�)−η(1−δp)

2�−α

s
(2k−α)�

2�−α

=
1

sk+η(1−δp)

� b
k+η(1−δp)
1 .

The boundary term in time is controlled using (6.4), (4.27):(
λ(s)

λ(s0)

)2k−α

|bk(s0)| � b1(s0)
k+ 5(2k−α)

2�−α

b1(0)
(2k−α)�

2�−α

1

s
(2k−α)�

2�−α

≤ 1

sk+
α(k−�)

2�−α

� b
k+η(1−δp)
1

thanks to k ≥ � + 1. The collection of above bounds yields the expected
bound (6.9).

step 6 Control of the stable ak modes. Recall (1.41). We claim a bound:

(6.11) |ak| � 1

sk+
α

2
+η(1−δp)

, k� + 1 ≤ k ≤ L−.

case k = L−: let

ãL− = aL− +
(L̃L−ε, χB0

JΦ0,+)

(Φ0,−, χB0
JΦ0,+)

then from (4.67), (6.7), (1.40):

|ãL− − aL− | � B
2(1−δk− )

0

√
Es+ � b

−(1−δk− )+L++(1−δk+
)+η(1−δp)

1

= b
L−+Δk+δk−−δk+

+η(1−δp)

1

= b
L−+α

2
+η(1−δp)

1 .(6.12)

From the improved modulation equation (4.60),∣∣(ãL−)s + 2L−b1ãL−

∣∣
� b1|aL− − ãL− |+

1

B
2δk−
0

[
C(M)

√
Es+ + b

L++(1−δk+
)(1+η)

1

]
� b

L−+1+α

2
+η(1−δp)

1 .
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Equivalently: ∣∣∣∣ dds
{

ãL−

λ2L−

}∣∣∣∣ � b
L−+1+α

2
+η(1−δp)

1

λ2L−
.

We integrate this identity in time from s0. The time integral is estimated
from (6.4) for L− large enough:

λ(s)2L−

∫ s

s0

b1(τ)
L−+1+α

2
+(1−δp)η

λ(τ)2L−
dτ

� 1

s
(2L−)�

2�−α

∫ s

s0

τ
(2L−)�

2�−α
−L−−1−α

2
−(1−δp)ηdτ

� 1

s
(2L−)�

2�−α

∫ s

s0

τ−1+
αL−
2�−α

−α

2
−(1−δp)ηdτ

≤ s
αL−
2�−α

s
(2L−)�

2�−α

1

s
α

2
+(1−δp)η

=
1

sL−+α

2
+(1−δp)η

.

The boundary term is estimated using (4.28), (4.29), (6.12):

|ãL−(s0)| � b1(s0)
α

2
+5

2L−
2�−α +B

2(1−δk+
)

0

√
Es+(s0) � b1(s0)

α

2
+5

2L−
2�−α

and hence:(
λ(s)

λ(s0)

)2L−

|ãL−(s0)| � b1(s0)
α

2
+5

2L−
2�−α

b1(s0)
2L−
2�−α

1

s
(2L−)�

2�−α

≤ 1

sL−+α

2
+η(1−δp)

.

The collection of above bounds yields the bound

|ãL− | � 1

sL−+α

2
+η(1−δp)

which together with (6.12) yields:

|aL− | � 1

sL−+α

2
+η(1−δp)

and (6.9) is proved for k = L−.
case k� + 1 ≤ k ≤ L− − 1: We now prove (6.9) by a descending induction:
we assume the claim for k+1 and prove it for k, k�+1 ≤ k ≤ L−− 1. From
Lemma 4.4 and the induction claim:
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∣∣∣∣(ak)s − 2k
λs

λ
ak

∣∣∣∣ � b
L++1+(1−δk+

)+η(1−δp)

1 + |ak+1| � b
k+1+α

2
+η(1−δp)

1

from which ∣∣∣∣ dds { ak
λ2k

}∣∣∣∣ � b
k+1+α

2
+η(1−δp)

1

λ2k
.

We integrate this identity in time from s0. The time integral is estimated
from (6.4) using k� + 1 ≤ k ≤ L+ − 1 and (1.41):

λ(s)2k
∫ s

s0

b1(τ)
k+1+α

2
+η(1−δp)

λ(τ)2k
dτ � 1

s
(2k)�

2�−α

∫ s

s0

τ
(2k)�

2�−α
−k−1−α

2
−η(1−δp)dτ

� 1

s
(2k)�

2�−α

∫ s

s0

τ−1+ α

2�−α
[k−(k�+δ�)]−η(1−δp)dτ ≤ s

α

2�−α
[k−(k�+δ�)]−η(1−δp)

s
(2k−α)�

2�−α

=
1

sk+
α

2
+η(1−δp)

.

The boundary term in time is controlled using (6.4), (4.28):(
λ(s)

λ(s0)

)2k

|ak(s0)| � b1(s0)
k+α

2
+ 5(2k)�

2�−α

b1(s0)
(2k)�

2�−α

1

s
(2k)�

2�−α

≤ 1

sk+
α

2
+ α

2�−α
[k−(k�+δ�)]

� 1

sk+
α

2
+η(1−δp)

thanks to k ≥ k� + 1. The collection of above bounds yields the expected
bound (6.11).
This concludes the proof of Proposition 4.3, modulo the bound for the stable
b-mode V1. We now turn to the remaining step in the proof of Proposition
4.1 and the proof of the improved bound (4.31) for V1.

step 6 Contradiction through a topological argument. Recall the decompo-
sitions (4.22), (4.24)

bk = bek +
Uk

sk
, 1 ≤ k ≤ �, V = P�U

Ak = sk+
α

2 ak, A = (Ak)1≤k≤k�
, Ã = Q�A,

where P�, Q� diagonalize the matrices M�,Mk�
with spectra (3.46), (3.48)

respectively. We argue by contradiction and assume (4.37):

∀
(
Vk(s0)s

η

2
(1−δp)

0

)
2≤k≤�

×
(
Ãk(s0)s

η

2
(1−δp)

0

)
1≤k≤k�

∈ B�+k�−1 (1)
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the exit time (4.36) s∗ < ∞. We claim that if s0 is large enough this con-
tradicts the Brouwer fixed point theorem.
Indeed, we first estimate from (3.43), (4.45): for 1 ≤ k ≤ �− 1,

|s(Uk)s − (M�U)k| � sk+1 |(bk)s + (2k − α) b1bk − bk+1|+ |U |2

� 1

sL+−k
+ |U |2,

and for k = � using (3.44), (4.45) and the improved bound (6.9):

|s(U�)s − (M�U)�| � s�+1 [|(b�)s + (2�− α) b1b� − b�+1|+ |b�+1|] + |U |2

� 1

sη(1−δp)
+ |U |2.

This yields using the diagonalization (3.46):

(6.13) sVs = DLVs +O

(
1

sη(1−δp)

)
.

This first implies the control of the stable mode V1 from (3.46):

|(sV1)s| � 1

sη(1−δp)

and thus from (4.25):

|sη(1−δp)V1(s)| ≤
(s0
s

)1−η(1−δp)
s
η(1−δp)
0 V1(0) + 1 � s

η(1−δp)
0

and thus

(6.14) |s
η

2
(1−δp)V1(s)| ≤ 1

for s0 ≥ s∗0(η) large enough.
From (6.7), (6.8), (6.9), (6.11), (6.14), (4.36) and a standard continuity

argument we conclude that (4.37) implies:

(6.15)

�∑
k=2

∣∣∣(s∗) η

2
(1−δp)Vk(s

∗)
∣∣∣2 + k�∑

k=1

∣∣∣(s∗) η

2
(1−δp)Ãk(s

∗)
∣∣∣2 = 1.

We then compute from (6.13), (3.46) at the exit time:

1

2

d

ds

{
�∑

k=2

∣∣∣(s∗) η

2
(1−δp)Vk(s

∗)
∣∣∣2}
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= (s∗)η(1−δp)−1
�∑

k=2

[η
2
(1− δp)V

2
k + sVk(Vk)s

]
(s∗)

= (s∗)η(1−δp)−1

[
�∑

k=2

(
kα

2k − α
+

η

2
(1− δp)

)
V 2
k +O

(
1

(s∗)
3

2
η(1−δp)

)]
(s∗)

≥ 1

s∗

[
c(d, p, �)

�∑
k=2

∣∣∣(s∗) η

2
(1−δp)Vk(s

∗)
∣∣∣2 +O

(
1

(s∗)
η

2
(1−δp)

)]

for some universal constant c(d, p, �) > 0. We now estimate from (4.45),
(6.11):

|(ak)s + 2kb1ak − ak+1| � 1

sk+1+α

2
+η(1−δp)

, 1 ≤ k ≤ k� − 1,

|(ak)s + 2kb1ak| � |ak+1|+
1

sk+1+α

2
+η(1−δp)

� 1

sk+1+α

2
+η(1−δp)

for k = k�.

Using ∣∣∣b1 − c1
s

∣∣∣ � 1

s1+
η

2
(1−δp)

,

Lemma 3.9 and (4.31) this implies:

|s(Ak)s − (Mk�A)k| � 1

sη(1−δp)

or, equivalently, in the diagonal basis:∣∣∣∣s(Ãk)s +
α

2�− α
[k − (k� + δ�)] Ãk

∣∣∣∣ � 1

sη(1−δp)
.

We compute for k ≤ k� that at the exit time

1

2

d

ds

{
k�∑
i=1

∣∣∣(s∗) η

2
(1−δp)Ãk(s

∗)
∣∣∣2}

= (s∗)η(1−δp)−1
�∑

k=2

[η
2
(1− δp)Ã

2
k + sÃk(Ãk)s

]
(s∗)

= (s∗)η(1−δp)−1

[
�∑

k=2

(
(k� + δ� − k)α

2k − α
+

η

2
(1− δp)

)
Ã2

k
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+ O

(
1

(s∗)
3

2
η(1−δp)

)]
(s∗)

≥ 1

s∗

[
c(d, p, �)

�∑
k=2

∣∣∣(s∗) η

2
(1−δp)Ãk(s

∗)
∣∣∣2 +O

(
1

(s∗)
η

2
(1−δp)

)]

for some universal constant c(d, p, �) > 0. We therefore obtain the funda-
mental outgoing behavior at exit time:

1

2

d

ds

{
�∑

i=2

∣∣∣(s∗) η

2
(1−δp)Vi(s

∗)
∣∣∣2 + k�∑

i=1

∣∣∣(s∗) η

2
(1−δp)Ãk(s

∗)
∣∣∣2}

≥ c(d, p, �)

s∗

[
�∑

i=2

∣∣∣(s∗) η

2
(1−δp)Vi(s

∗)
∣∣∣2

+

k�∑
i=1

∣∣∣(s∗) η

2
(1−δp)Ãk(s

∗)
∣∣∣2 +O

(
1

(s∗)
η

2
(1−δp)

)]

≥ c(d, p, �)

s∗

[
1 +O

(
1

(s∗)
η

2
(1−δp)

)]
> 0

for s0 ≥ s∗0 large enough. This strict outgoing behavior at exit time implies
the continuity of the map Φ : B�+k�−1(1) → S�+k�−1(1):(

s
η

2
(1−δk+

)

0 Vk(s0)
)
2≤k≤�

×
(
s

η

2
(1−δp)

0 Ãk(s0)
)
1≤k≤k�

�→(
(s∗)

η

2
(1−δk+

)Vk(s
∗)
)
2≤k≤k�

×
(
(s∗)

η

2
(1−δk+

)Ãk(s
∗)
)
1≤k≤k�

.

Since Φ is the identity map on the boundary sphere S�+k�−1(1), this is a
contradiction of the standard fact that a boundary sphere can not be a
continuous retract of the ball. This concludes the proof of Proposition 4.1.

6.2. Proof of Theorem 1.1

We are now in position to conclude the proof of Theorem 1.1.

step 1 Finite time blow up. We pick initial data satisfying the conclusions
of Proposition 4.1. In particular, integrating (6.2) from s to +∞ implies the
existence of c(u0) > 0 such that

λ(s) =
c(u0)

s
�

2�−α

[
1 +O

(
1

scη

)]
.
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Then from (4.45), (3.42):

−λλt = −λs

λ
= b1 +O

(
1

sL

)
=

c1
s

[
1 +O

(
1

sη̃

)]
= c(u0)λ

2�−α

�

[
1 +O

(
1

sη̃

)]
and hence the ODE:

−λ1− 2�−α

� λt = c(u0)(1 + o(1)).

We easily conclude that λ vanishes at some finite time T = T (u0) < +∞,
with near blow up time behavior:

(6.16) λ(t) = c(u0)(1 + o(1))(T − t)
�

α .

The phase parameter is estimated from (4.45)

|γs| � 1

s1+
α

2

and hence

∫ +∞

s0

|γs|ds < +∞

which implies (1.31).

Remark 6.1. Note that this closes the construction of a type II blow up
solution in Ḣσ ∩ Ḣs+ and no additional regularity is needed on the data. In
particular, whether the data has finite energy or mass is irrelevant.

step 2 Control of Sobolev norms. First observe by interpolation between
(4.34) and (4.35) that

∀σ ≤ s ≤ s+, lim
t↑T

‖∇sε(t)‖L2 = 0.

We now further assume that u0 ∈ L2 and aim at controlling low Sobolev
norms. By mass conservation:

(6.17) ‖u(t)‖L2 = ‖u0‖L2 .

We split

Q+ ε = χ 1

λ
Q+ ε̃ i.e. ε̃ = (1− χ 1

λ
)Q+ ε,

then from (6.17):

(6.18) ‖ε̃‖L2 � ‖(1− χ 1

λ
)Q‖L2 + ‖Q+ ε‖L2 � C(u0)

λsc
.
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Moreover from (4.35), (6.4):

‖∇σε‖L2 � C(u0)λ
σ−sc

and hence by direct computation:

(6.19) ‖∇σ ε̃‖L2 � ‖∇σ(1− χ 1

λ
)Q‖L2 + ‖∇σε‖L2 � λσ−sc .

We interpolate (6.18) and (6.19) and conclude:

∀0 ≤ s ≤ σ, ‖∇sε̃‖L2 � C(u0)λ
s−sc .

Therefore for 2 ≤ s < sc:

‖u(t)‖Ḣs � λsc−s
[
‖∇s(1− χ 1

λ
)Q‖L2 + ‖∇sε̃‖L2

]
� C(u0)

and for the critical norm, using (1.21), (6.16):

‖u(t)‖Ḣsc = ‖∇sc(1− χ 1

λ
)Q+∇sc ε̃‖L2 = ‖∇sc(1− χ 1

λ
)Q‖L2 +O(1)

=
(
c2∞|logλ(t)|

) 1

2 +O(1) =

[
c∞

√
�

α
+ o(1)

]√
|log(T − t)|

as t → T . This concludes the proof of Theorem 1.1.

Appendix A. Super critical numerology

We collect in this Appendix some algebraic facts induced by the condition
p > pJL. Recall that the exponent pJL is defined in (1.11), the critical
Sobolev exponent sc =

d
2 − 2

p−1 and the parameter γ is in (1.24).

Lemma A.1 (Range of parameters). Let d ≥ 11. The condition

pJL < p < +∞

is equivalent to

(A.1) 2 +
√
d− 1 < sc <

d

2
.

Moreover, there holds the bound:

(A.2) 2 < α = γ − 2

p− 1
<

d

2
− 1
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(A.3) k+ = E

[
1

2
+

1

2

(
d

2
− γ

)]
≥ 1.

Proof of Lemma A.1. Recall the definitions (1.9), (1.24). We compute the
discriminant in terms of sc:

Discr = (d− 2)2 − 4pcp−1
∞ = (d− 2)2 − 4(p− 1 + 1)cp−1

∞

= (d− 2)2 − 4

(
4

d− 2sc
+ 1

)(
d

2
− sc

)(
d

2
− 2 + sc

)
= (d− 2)2 − (4 + d− 2sc)(d− 4 + 2sc)

= (d− 2)2 − (d+ 2(2− sc))(d− 2(2− sc))

= (d− 2)2 − d2 + 4(2− sc)
2 = 4

[
(sc − 2)2 − (d− 1)

]
.

In particular

sc(pJL) = 2 +
√
d− 1

and hence21

pJL < p < +∞ iff 2 +
√
d− 1 < sc <

d

2
.

Define f(s) = s−
√

(s− 2)2 − (d− 1). From (1.24):

γ − 2

p− 1
= sc − 1−

√
Discr

2
= sc − 1−

√
(sc − 2)2 − (d− 1) = f(sc)− 1.

We compute

f ′(sc) = 1− sc − 2√
(sc − 2)2 − (d− 1)

< 0

and thus

f(sc) > f(
d

2
).

We now compute:

f(
d

2
) =

d

2
−
√

(
d

2
− 2)2 − (d− 1)

=
1

2

[
d−

√
d2 − 12d+ 20

]
=

6d− 10

d+
√

(d− 10)(d− 2)

> 3

21Observe that 2+
√
d− 1 < d

2 iff d2−120d+20 = (d−10)(d−2) > 0 ie d ≥ 11.
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by a direct check, and (A.2) is proved.

Finally, from (1.24):

1

2
+

1

2

(
d

2
− γ

)
=

1

2
+

1

2

[
1 +

√
Discr

2

]
≥ 1

and (A.3) follows.

Appendix B. Hardy inequalities

In this section we recall the standard Hardy type inequalities in dimension

d ≥ 3. We define the space of radially symmetric test functions

Drad = {u ∈ C∞
c (Rd) with radial symmetry}.

Note that the notation
∫
f stands for the integral over Rd with respect to

the standard volume form:∫
f :=

∫ ∞

0
f(y)yd−1dy

We also recall the notation

Dk =

{
Δm, k = 2m,
∂yΔ

m, k = 2m+ 1

Lemma B.1 (Hardy with the best constant). (i) Hardy near the origin: let

u ∈ Drad, then:

(B.1)

∫
y≤1

|∂yu|2yd−1dy ≥ (d− 2)2

4

∫
y≤1

u2

y2
yd−1dy − Cdu

2(1).

(ii) Hardy away from the origin, non-critical exponent: let q > 0, q 
= d−2
2

and u ∈ Drad, then:

∫
y≥1

|∂yu|2
y2q

yd−1dy ≥ |d− (2q + 2)|
2

∥∥∥∥∥ u

yq+1− d

2

∥∥∥∥∥
2

L∞(y≥1)

− Cq,du
2(1)(B.2)

∫
y≥1

|∂yu|2
y2q

yd−1 ≥
(
d− (2q + 2)

2

)2 ∫
y≥1

u2

y2+2q
yd−1dy − Cq,du

2(1)
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(iii) Hardy away from the origin, critical exponent: let q = d−2
2 and u ∈ Drad,

then:

(B.3)

∫
y≥1

|∂yu|2
y2q

yd−1dy ≥ 1

4

∫
y≥1

u2

y2q+2(1 + logy)2
yd−1dy − Cdu

2(1).

(iv) General weighted Hardy: let u ∈ Drad then for any δ > 0, k ∈ N∗ with
k ≥ 2 and 1 ≤ j ≤ k − 1,

(B.4)

∫ |Dju|2
1 + yδ+2(k−j)

�j,δ

∫ |Dku|2
1 + yδ

+

∫
u2

1 + yδ+2k
.

Proof. Proof of (i): We integrate by parts:∫ 1

ε

u2

y2
yd−1dy =

1

d− 2

∫ 1

ε
u2∂y(y

d−2)dy

=
1

d− 2

[
u2yd−2

]1
ε
− 2

d− 2

∫ 1

ε

∂yuu

y
yd−1dy

≤ Cdu
2(1) +

2

d− 2

(∫ 1

ε

u2

y2
yd−1dy

) 1

2
(∫ 1

ε
|∂yu|2yd−1dy

) 1

2

≤ Cdu
2(1) +

1

d− 2

[
σ

∫ 1

ε

u2

y2
yd−1dy +

1

σ

∫ 1

ε
|∂yu|2yd−1dy

]
and hence letting ε → 0:[

1− σ

d− 2

] ∫
y≤1

u2

y2
yd−1dy ≤ Cdu

2(1) +
1

σ(d− 2)

∫
y≤1

|∂yu|2yd−1dy

and the optimal choice σ = d−2
2 yields (B.1).

Proof of (ii): For 0 < q < d−2
2 i.e. 2q + 2 < d,

(B.5)
1

yd−1
∂y

(
yd−1

y2q+1

)
=

d− (2p+ 2)

y2q+2

and hence integrating by parts:∫ R

1

u2

y2q+2
yd−1dy =

1

d− (2q + 2)

∫ R

1
u2∂y

(
yd−1

y2q+1

)
dy

=
1

d− (2q + 2)

[
yd−(2q+2)u2

]R
1
− 2

d− (2q + 2)

∫ R

1

u∂yu

y2q+1
yd−1dy
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≤ Rd−(2q+2)

d− (2q + 2)
u2(R)

+
2

d− (2q + 2)

(∫ R

1

u2

y2q+2
yd−1dy

) 1

2
(∫ R

1

|∂yu|2
y2q

yd−1dy

) 1

2

.

We let R → +∞ and hence∫ +∞

1

u2

y2q+2
yd−1dy

≤ 2

d− (2q + 2)

(∫ +∞

1

u2

y2q+2
yd−1dy

) 1

2
(∫ +∞

1

|∂yu|2
y2q

yd−1dy

) 1

2

which implies:

(B.6)

∫
y≥1

|∂yu|2
y2q

yd−1dy ≥
(
d− (2q + 2)

2

)2 ∫
y≥1

u2

y2+2q
yd−1dy.

We now estimate from 2q + 2 < d and (B.6):

u2(R) = −2

∫ +∞

R
∂yuudy �

∫
y≥R

(y
d−1−2q

2 ∂yu)(y
d−3−2q

2
u)

yd−2−2q
dy

≤ 1

Rd−2−2q

(∫
y≥1

|∂yu|2
y2q

yd−1dy

) 1

2
(∫

y≥1

|u|2
y2q+2

yd−1dy

) 1

2

≤ 1

Rd−2−2q

2

d− (2q + 2)

∫
y≥1

|∂yu|2
y2q

yd−1dy

and (B.2) is proved.

For q > d−2
2 , we compute similarly from (B.5):∫ R

1

u2

y2q+2
yd−1dy = − 1

2q + 2− d

∫ R

1
u2∂y

(
yd−1

y2q+1

)
dy

=
−1

2q + 2− d

[
yd−(2q+2)u2

]R
1
+

2

2q + 2− d

∫ R

1

u∂yu

y2q+1
yd−1dy

≤ Cq,du
2(1)− 1

2q + 2− d

u2(R)

R2q+2−d

+
2

|2q + 2− d|

(∫ R

1

u2

y2q+2
yd−1dy

) 1

2
(∫ R

1

|∂yu|2
y2q

yd−1dy

) 1

2
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≤ Cq,du
2(1)− 1

2p+ 2− d

u2(R)

R2q+2−d

+
1

|2q + 2− d|

[
σ

∫ R

1

u2

y2q+2
yd−1dy +

1

σ

∫ R

1

|∂yu|2
y2q

yd−1dy

]
and hence: [

1− σ

|2q + 2− d|

] ∫ R

1

u2

y2q+2
yd−1dy +

1

2q + 2− d

u2(R)

R2q+2−d

≤ Cq,du
2(1) +

1

σ(2q + 2− d)

∫ R

1

|∂yu|2
y2q

yd−1dy.

Passing to the limit R → +∞ and picking the optimal σ = 2q+2−d
2 yields

(B.2).
Proof of (iii): In the critical case p = d−2

2 , we compute:∫ R

1

u2

y2q+2(1 + logy)2
yd−1dy

=

∫ R

1

u2

y(1 + logy)2
dy = −

∫ R

1
u2∂y

(
1

1 + logy

)
= −

[
u2

1 + logy

]R
1

+ 2

∫ R

1

u∂yu

1 + logy
dy

≤ u2(1) + 2

(∫ R

1

u2

y(1 + logy)2
dy

) 1

2
(∫ R

1
|∂yu|2ydy

) 1

2

≤ u2(1) +
1

2

∫ R

1

u2

y2q+2(1 + logy)2
yd−1dy + 2

∫ R

1

|∂yu|2
y2q

yd−1dy

and letting R → +∞ yields (B.3).
Proof of (iv). We argue by induction on k with the induction claim: (B.4)
holds for all δ > 0. For k = 2, we integrate by parts and use Cauchy Schwarz
to estimate:∫ |∇u|2

1 + y2+δ
= −

∫
u∇ ·

[
∇u

1 + y2+δ

]
= −

∫
uΔu

1 + y2+δ
+

∫
u∇u · ∇

(
1

1 + y2+δ

)
≤ C

[∫ |Δu|2
1 + yδ

+

∫ |u|2
1 + y4+δ

]
+

1

2

∫ |∇u|2
1 + y2+δ
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and (B.4) is proved. Assume the claim for k and prove it for k + 1. For
1 ≤ j ≤ k − 1 we have from the induction claim at the level k applied to
δ̃ = δ + 2:
(B.7)∫ |Dju|2

1 + yδ+2(k+1−j)
=

∫ |Dju|2
1 + yδ+2+2(k−j)

�
∫ |Dku|2

1 + y2+δ
+

∫
u2

1 + yδ+2+2k

For j = k,∫ |Dku|2
1 + y2+δ

=

∫
Dk−1uD

(
Dku

1 + y2+δ

)
=

∫
Dk−1uDkuD

(
1

1 + y2+δ

)
+O

[(∫ |Dk−1u|2
1 + y4+δ

) 1

2
(∫ |Dk+1u|2

1 + yδ

) 1

2

]

= C

∫ |Dk+1u|2
1 + yδ

+ C

∫ |Dk−1u|2
1 + y4+δ

+
1

2

∫ |Dku|2
1 + y2+δ

and (B.4) is proved.

We now state a refined fractional global Hardy bound:

Lemma B.2 (Fractional Hardy). Let u ∈ Drad and

0 < ν < 1 and μ > 0 with μ+ ν <
d

2
,

and a smooth radially symmetric function f with

(B.8) |∂k
yf(y)| � 1

1 + |y|μ+k
, k = 0, 1,

then

(B.9) ‖∇ν (uf)‖L2 � ‖∇μ+νu‖L2 .

Proof. We recall the standard fractional Hardy inequality:

(B.10) ∀0 < s <
d

2
,

∫ |u|2
|x|2s � ‖∇su‖2L2 .

From 0 < ν < 1,

‖∇ν (uf)‖2L2 =

∫ |f(x)u(x)− f(y)u(y)|2
|x− y|d+2ν

dxdy.



594 Frank Merle et al.

We split the integral in various zones. First:∫
|x−y|≤ |x|

2

|f(x)u(x)− f(y)u(y)|2
|x− y|d+2ν

dxdy

�
∫
|x−y|≤ |x|

2

|f(x)|2|u(x)− u(y)|2
|x− y|d+2ν

dxdy

+

∫
|x−y|≤ |x|

2

|f(x)− f(y)|2|u(y)|2
|x− y|d+2ν

dxdy.

The first term is the most delicate one:∫
|x−y|≤ |x|

2

|f(x)|2|u(x)− u(y)|2
|x− y|d+2ν

dxdy �
∫
|x−y|≤ |x|

2

|u(x)− u(y)|2
|x|2μ|x− y|d+2ν

dxdy

�
∫
x

∫
z

|u(x+ z)− u(x)|2
|x|2μ|z|d+2ν

dxdz.

Let vz(x) = u(x+ z)− u(x), then from (B.10), Fubini and Plancherel:∫
x

∫
z

|u(x+ z)− u(x)|2
|x|2μ|z|d+2ν

dxdz =

∫
z

dz

|z|d+2ν

∫ |vz(x)|2
|x|2μ dx

�
∫

dz

|z|d+2ν

∫
|∇μvz(x)|2dx

�
∫

dz

|z|d+2ν

∫
|ξ|2μ|v̂z(ξ)|2dξ =

∫
|ξ|2μ|û(ξ)|2dξ

∫ |1− e−iξ·z|2
|z|d+2ν

dz

�
∫

|ξ|2μ+2ν |û(ξ)|2dξ = ‖∇μ+νu‖2L2

where we used from 0 < ν < 1 and a simple homogeneity argument:∫ |1− e−iξ·z|2
|z|d+2ν

dz = cd|ξ|2ν .

For the second term, we estimate using |x− y| ≤ |x|
2 :

|f(x)− f(y)| �
∫ 1

0
|x− y||f ′(x+ t(x− y))|dt

�
∫ 1

0

|x− y|dt
1 + |x+ t(x− y)|μ+1

� |x− y|
|x|μ+1

and hence using |x| ∼ |y|:
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∫
|x−y|≤ |x|

2

|f(x)− f(y)|2|u(y)|2
|x− y|d+2ν

dxdy �
∫
|x−y|≤ |x|

2

|u(y)|2
|x|2μ+2|x− y|d+2ν−2

�
∫ |u(y)|2

|y|2μ+2
dy

∫
|x−y|�|y|

dx

|x− y|d+2ν−2
�
∫ |u(y)|2

|y|2μ+2ν
dy � ‖∇ν+μu‖2L2

from (B.10). By symmetry, we estimate similarly |x− y| ≤ |y|
2 . For |x− y| �

max{|x|, |y|}, we estimate:∫
|x−y|�|x|,|y|

|f(x)u(x)− f(y)u(y)|2
|x− y|d+2ν

dxdy

�
∫
|x−y|�|x|,|y|

|u(x)|2
|x|2μ|x− y|d+2ν

dxdy +

∫
|x−y|�|x|,|y|

|u(y)|2
|y|2μ|x− y|d+2ν

dxdy

�
∫ |u(x)|2dx

|x|2μ
∫
|x−y|�|x|

dy

|x− y|d+2ν
+

∫ |u(y)|2dy
|y|2μ

∫
|x−y|�|y|

dx

|x− y|d+2ν

�
∫ |u(x)|2dx

|x|2μ+2ν
+

∫ |u(y)|2dy
|y|2μ+2ν

� ‖∇ν+μu‖2L2

and (B.9) is proved.

Appendix C. Linear weighted coercitivity bounds

Given M ≥ 1, we let ΞM,± be given by (4.2). We claim suitable weighted

coercivity bounds for the linearized operator L̃

L̃∗ =

(
0 L−
−L+ 0

)
with

L+ = −Δ− pQp−1, L− = −Δ−Qp−1.

We will use in an essential way the factorization of L± = A∗
±A±,

A±u = −∂yu+ V±u, A∗
±u =

1

yd−1
∂y(y

d−1u) + V±u,

with

V+ = ∂y(log(ΛQ)), V− = ∂y(logQ),

and deal first with A± and A∗
± separately.
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C.1. Coercivity of A∗
±

We start with the weighted coercivity of A∗
±

Lemma C.1 (Weighted coercitivity for A∗
±). Let k ∈ R+, then there exists

ck > 0 such that for all u ∈ Drad:

(C.1)

∫ |A∗
±u|2

1 + y4k
≥ ck

[∫ |u|2
y2(1 + y4k)

+

∫ |∂yu|2
1 + y4k

]
.

Proof. step 1 Subcoercive bound for A∗
+. Let u ∈ Drad, we claim the fol-

lowing lower bound:∫ |A∗
+u|2

1 + y4k
≥ c

[∫
u2

y2(1 + y4k)
+

∫ |∂yu|2
1 + y4k

]
− 1

c

[
u2(1) +

∫
u2

1 + y4k+4

]
(C.2)

for some universal constant c = cp,d,k > 0. Indeed, recall the definition of
A∗

+:

A∗
+ = ∂y + Ṽ+, Ṽ+ =

d− 1

y
+ V+

where V+ satisfies (2.10). Near the origin,∫
y≤1

|A∗
+u|2

1 + y4k
�
∫
y≤1

|∂yu+ Ṽ+u|2

=

∫
y≤1

[
|∂yu|2 + Ṽ 2

+u
2 + 2Ṽ+u∂yu

]
=

∫
y≤1

|∂yu|2 +
∫
y≤1

u2
[
Ṽ 2
+ − 1

yd−1
∂y(y

d−1Ṽ+)

]
=

∫
y≤1

|∂yu|2 +
∫
y≤1

u2

y2
[(d− 1)2 − (d− 1)(d− 2)] +O

(∫
y≤1

u2

y

)
�
∫
y≤1

|∂yu|2 +
∫
y≤1

u2

y2
+O

(∫
y≤1

u2
)
.(C.3)

Away from the origin, we estimate from (2.10):∫
y≥1

(∂yu+ Ṽ+u)
2

y4k
=

∫
y≥1

1

y4k

[
∂yu+

d− 1− γ

y
u+O

(
u

y2

)]2
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�
∫
y≥1

1

y4k

[
∂yu+

d− 1− γ

y
u

]2
+O

(∫
y≥1

u2

y4k+4

)
=

∫
y≥1

1

y4k+2(d−1−γ)

∣∣∣∂y(yd−1−γu)
∣∣∣2 +O

(∫
y≥1

u2

y4k+4

)
.

Let then v = yd−1−γu, p = 2k + (d− 1− γ), then from (A.2):

2p− (d− 2) = 4k + 2(d− 1− γ)− (d− 2) = 4k + d− 2γ > 0,

and we may therefore apply Lemma B.1 in the non-degenerate case to con-
clude:∫
y≥1

1

y4k+2(d−1−γ)

∣∣∣∂y(yd−1−γu)
∣∣∣2 =

∫
y≥1

1

y2p
|∂yv|2 �

∫
y≥1

v2

y2p+2
− cv2(1)

�
∫
y≥1

u2

y4k+2
− cu2(1).

This gives the lower bound:∫ |A∗
+u|2

1 + y4k
≥ c

∫
u2

y2(1 + y4k)
− 1

c

[∫
u2

1 + y4k+4
+ u2(1)

]
.

On the other hand, there holds the trivial bound from (2.10):∫ |∂yu|2
1 + y4k

−
∫

u2

y2(1 + y4k)
�
∫ |A∗

+u|2
1 + y4k

and (C.2) follows.

step 2 Subcoercive bound for A∗
−. We claim the following lower bound:∫ |A∗

−u|2
1 + y4k

≥ c

[∫
u2

y2(1 + y4k)
+

∫ |∂yu|2
1 + y4k

]
− 1

c

[
u2(1) +

∫
u2

1 + y4k+4

]
(C.4)

for some universal constant c = cp,d,k > 0. Indeed, recall the definition of
A∗

−:

A∗
− = ∂y + Ṽ−, Ṽ+ =

d− 1

y
+ V−

where V− satisfies (2.11). Near the origin, we estimate verbatim as in the
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proof of (C.3):∫
y≤1

|A−
+u|2

1 + y4k
�
∫
y≤1

|∂yu|2 +
∫
y≤1

u2

y2
+O

(∫
y≤1

u2
)
.

Away from the origin, we estimate from (2.11):

∫
y≥1

(∂yu+ Ṽ−u)2

y4k
=

∫
y≥1

1

y4k

[
∂yu+

d− 1− 2
p−1

y
u+O

(
u

y2

)]2

�
∫
y≥1

1

y4k

[
∂yu+

d− 1− 2
p−1

y
u

]2
+O

(∫
y≥1

u2

y4k+4

)
=

∫
y≥1

1

y4k+2(d−1− 2

p−1
)

∣∣∣∂y(yd−1− 2

p−1u)
∣∣∣2 +O

(∫
y≥1

u2

y4k+4

)
.

Let v = yd−1− 2

p−1u, q = 2k + (d− 1− 2
p−1), then from (A.2):

2q − (d− 2) = 4k + 2(d− 1− 2

p− 1
)− (d− 2) > 4k + d− 2γ > 0,

and we may therefore apply Lemma B.1 in the non-degenerate case to con-
clude:∫
y≥1

1

y4k+2(d−1−γ)

∣∣∣∂y(yd−1−γu)
∣∣∣2 =

∫
y≥1

1

y2p
|∂yv|2 �

∫
y≥1

v2

y2p+2
− cv2(1)

�
∫
y≥1

u2

y4k+2
− cu2(1).

This yields the lower bound:∫ |A∗
−u|2

1 + y4k
≥ c

∫
u2

y2(1 + y4k)
− 1

c

[∫
u2

1 + y4k+4
+ u2(1)

]
.

On the other hand, there holds the trivial bound from (2.11):∫ |∂yu|2
1 + y4k

−
∫

u2

y2(1 + y4k)
�
∫ |A∗

−u|2
1 + y4k

and (C.4) follows.

step 3 Coercivity. We argue by contradiction. Let M = M(j) > 0 fixed and
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consider a normalized sequence un ∈ Drad with

(C.5)

∫ |un|2
y2(1 + y4k)

+

∫ |∂yun|2
1 + y4k

= 1,

∫ |A∗
±un|2

1 + y4k
≤ 1

n
.

This implies from the subcoercivity estimates (C.2), (C.4):

(C.6) u2n(1) +

∫
u2n

1 + y4k+4
� 1.

From (C.5), the sequence un is bounded in H1(ε < y < R) for all R, ε >
0. Hence from a standard diagonal extraction argument, there exists u ∈
∩R,ε>0H

1(ε < y < R) such that up to a subsequence,

(C.7) ∀ε,R > 0, un ⇀ u in H1(ε < y < R)

and from the local compactness of one dimensional Sobolev embeddings:

un → u in L2(ε < y < R), un(1) → u(1).

This implies from (C.6), (C.5) and the lower semi continuity of norms:

(C.8) u2(1) +

∫
u2

1 + y4k+4
� 1,

∫ |u|2
y2(1 + y4k)

� 1.

and thus in particular u 
= 0. On the other hand, from (C.5), (C.7):

A∗
±u = 0 in R∗

+

and thus from (2.15), (2.24):

u =

{
c

yd−1ΛQ for A∗
+

c
yd−1Q for A∗

−

The constant c is non zero from u 
= 0, but then since Q,ΛQ are smooth at
the origin: ∫

y≤1

u2

y2
�
∫
y≤1

yd−1

y2(d−2)+2
dy =

∫
y≤1

dy

yd−1
= +∞

which contradicts the a priori regularity (C.8) of u.
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C.2. Weighted coercivity of L̃

We now turn to the coercivity of L̃ which we consider in the generic case
δk± 
= 0, with k± and δk± defined in (1.36), (1.37). We let ΞM,± be given by
(4.2), (4.9).

Lemma C.2 (Weighted coercitivity for L̃, case δk± 
= 0). Assume δk± 
= 0.
Let k ∈ N. Then:
(i) Case k small: assume k+ ≥ 2 and let 1 ≤ k ≤ k+ − 1, then there exists
ck > 0 such that for all u ∈ Drad, there holds:

(C.9)

∫ |L̃u|2
1 + y4k−2

≥ ck

[∫ |Δu|2
1 + y4k−2

+

∫ |∂yu|2
1 + y4k

+
|u|2

y2(1 + y4k)

]
.

(ii) Case k intermediate: let k+ ≤ k ≤ k− − 1, let M ≥ M(k) large enough,
then there exists cM,k > 0 such that for all u ∈ Drad satisfying the orthogo-
nality

(u,ΞM,+) = 0,

there holds:

(C.10)

∫ |L̃u|2
1 + y4k−2

≥ cM,k

[∫ |Δu|2
1 + y4k−2

+

∫ |∂yu|2
1 + y4k

+
|u|2

y2(1 + y4k)

]
.

(ii) Case k large: let k ≥ k−, let M ≥ M(k) large enough, then there exists
cM,k > 0 such that for all u ∈ Drad satisfying the orthogonality

(u,ΞM,+) = (u,ΞM,−) = 0,

there holds:

(C.11)

∫ |L̃u|2
1 + y4k−2

≥ cM,k

[∫ |Δu|2
1 + y4k−2

+

∫ |∂yu|2
1 + y4k

+
|u|2

y2(1 + y4k)

]
.

Proof of Lemma C.2. step 1 Subcoercive bound for A±. Let k ≥ 0 and
u ∈ Drad. We claim the following lower bound:∫ |A±u|2

1 + y4k
≥ c

[∫ |∂yu|2
1 + y4k

+

∫
u2

y2(1 + y4k)

]
− 1

c

[
u2(1) +

∫
u2

1 + y4k+4

]
(C.12)
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for some universal constant c = cp,d,k > 0. Recall the definition of A±:

A± = −∂y + V±

with V± satisfying (2.10), (2.11). We estimate near the origin from (B.1):∫
y≤1

|A±u|2
1 + y4k

�
∫
y≤1

[
c|∂yu|2 −

1

c
u2
]

� c

∫
y≤1

[
|∂yu|2 +

u2

y2

]
− 1

c

[∫
y≤1

u2 + u2(1)

]
.

Away from the origin, we estimate from (2.10):∫
y≤1

|A+u|2
1 + y4k

�
∫
y≥1

1

y4k

[
∂yu+

γ

y
u+O

(
u

y2

)]2
�

∫
y≥1

1

y4k

[
∂yu+

γ

y
u

]2
+O

(∫
y≥1

u2

y4k+4

)
We let v = yγu, 2q = 4k + 2γ. We observe that

2q − (d− 2) = 4k + 2γ − (d− 2) = 4(k + 1− k+ − δk+
) 
= 0

from δk+

= 0 and k ∈ N, and we may therefore apply Lemma B.1 in the

non-generate case to conclude:∫
y≥1

|∂y(yγu)|2
y4k+2γ

=

∫
y≥1

|∂yv|2
y2q

≥ c

∫
y≥1

v2

y2q+2
− 1

c
v2(1)

≥ c

∫
y≥1

u2

y2(1 + y4k+2)
− 1

c
u2(1).

The collection of the above bounds yields the lower bound:∫ |A+u|2
1 + y4k

≥ c

∫
u2

y2(1 + y4k)
− 1

c

[
u2(1) +

∫
u2

1 + y4k+4

]
which together with the trivial estimate∫ |∂yu|2

1 + y4k
−
∫

u2

y2(1 + y4k)
�
∫ |A+u|2

1 + y4k

implies (C.12) for A+.
Similarily, we estimate away from the origin from (2.11):
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∫
y≥1

|A−u|2
1 + y4k

�
∫
y≥1

1

y4k

[
∂yu+

2

(p− 1)

u

y
+O

(
u

y2

)]2
�

∫
y≥1

1

y4k

[
∂yu+

2

p− 1

u

y

]2
+O

(∫
y≥1

u2

y4k+4

)

We let v = y
2

p−1u, 2q = 4k + 4
p−1 . We observe that

2q − (d− 2) = 4k +
4

p− 1
− (d− 2) = 4(k + 1− k− − δk−) 
= 0

from δk− 
= 0 and k ∈ N, and we therefore apply Lemma B.1 in the non
generate case to conclude:∫

y≥1

|∂y(y
2

p−1u)|2

y4k+
4

p−1

=

∫
y≥1

|∂yv|2
y2q

≥ c

∫
y≥1

v2

y2q+2
− 1

c
v2(1)

≥ c

∫
y≥1

u2

y2(1 + y4k+2)
− 1

c
u2(1).

The collection of above bounds yields the lower bound:∫ |A−u|2
1 + y4k

≥ c

∫
u2

y2(1 + y4k)
− 1

c

[
u2(1) +

∫
u2

1 + y4k+4

]
which together with the trivial estimate∫ |∂yu|2

1 + y4k
−
∫

u2

y2(1 + y4k)
�
∫ |A−u|2

1 + y4k

implies (C.12) for A−.

step 2 Coercivity. We argue by contradiction and let a normalized sequence
un ∈ Drad be such that

(C.13)

∫ |∂yun|2
1 + y4k

+

∫ |un|2
y2(1 + y4k)

= 1,

∫ |L̃u|2
1 + y4k−2

≤ 1

n

and

(C.14)

∣∣∣∣ (un,ΞM,+) = 0 for max{k+, 1} ≤ k ≤ k− − 1
(un,ΞM,+) = (un,ΞM,−) = 0 for k ≥ k−.
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From Lemma (C.1)∫ |L̃un|2
1 + y4k−2

=

∫ |A∗
−A−�un|2 + |A∗

+A+�un|2
1 + y4k−2

�
∫ |A−�un|2 + |A+�un|2

1 + y4k

and hence the subcoercivity estimate (C.12) and (C.13) imply:

(C.15) |un|2(1) +
∫ |un|2

1 + y4k+4
� 1.

From (C.13), the sequence un is bounded in H1(ε < y < R) for all R, ε >
0. Hence from a standard diagonal extraction argument, there exists u ∈
∩R,ε>0H

1(ε < y < R) such that up to a subsequence,

(C.16) ∀R > 0, un ⇀ u in H1(ε < y < R)

and from the local compactness of Sobolev embeddings

un → u in L2(ε < y < R), un(1) → u(1).

This implies from (C.15), (C.13):

(C.17) |u|2(1) +
∫ |u|2

1 + y4k+4
� 1,

∫ |u|2
y2(1 + y4k)

� 1.

The compact support and regularity of ΞM± allows us to pass to the limit
in (C.14) and conclude:

(C.18)

∣∣∣∣ (u,ΞM,+) = 0 for max{k+, 1} ≤ k ≤ k− − 1
(u,ΞM,+) = (u,ΞM,−) = 0 for k ≥ k−.

On the other hand, from (C.13), (C.16):

L̃u = 0 on R∗
+

and hence from (2.16), (2.19) and (2.25), (2.28) and the a priori regularity
at the origin (C.17):

(C.19) u = c+

∣∣∣∣ ΛQ0 + c−

∣∣∣∣ 0Q = c+Φ0,+ + c−Φ0,−.
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We now distinguish cases.
case 1 ≤ k ≤ k+ − 1. In this case:∫

y≥1

|ΛQ|2
y2(1 + y4k)

�
∫
y≥1

yd−1

y2(1 + y4k)y2γ
dy = +∞

from

1 + 2γ + 4k + 2− d = 1 + 4(k + 1)− 4(k+ + δk+
) ≤ 1− 4δk+

< 1.

Similarily:∫
y≥1

|Q|2
y2(1 + y4k)

�
∫
y≥1

yd−1

y2(1 + y4k)y
4

p−1

dy �
∫
y≥1

yd−1

y2(1 + y4k)y2γ
dy = +∞.

We conclude from (C.19) and the established regularity (C.17) that u ≡ 0
which contradicts the non degeneracy (C.17).
case max{k+, 1} ≤ k ≤ k− − 1. In this case:∫

y≥1

|Q|2
y2(1 + y4k)

�
∫
y≥1

yd−1

y2(1 + y4k)y
4

p−1

dy = +∞

from

1 +
4

p− 1
+ 4k + 2− d = 1 + 4(k + 1)− 4(k− + δk−) ≤ 1− 4δk− < 1.

Hence from (C.19), (C.17), c− = 0. But then the orthogonality condition
(C.18) and the non degeneracy (4.3) imply c+ = 0, hence u ≡ 0 which
contradicts the non degeneracy (C.17).
case k ≥ k−. In this case, (C.19), the orthogonality condition (C.18) and the
relations (4.3), (4.4), (4.10), (4.11) imply c+ = c− = 0. Hence u ≡ 0 which
contradicts the non degeneracy (C.17).

C.3. Coercivity of L̃k

We are now position to prove the coercivity of L̃k under suitable orthogo-
nality conditions. We recall from (A.3) that k+ ≥ 1.

Lemma C.3 (Coercivity of L̃k, non degenerate case). Assume δk± 
= 0.
(i) Case k small: let 0 ≤ k ≤ k+ − 1, then there exists δk > 0 such that for
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all u ∈ Drad, there holds:

(C.20) (JL̃L̃ku, L̃ku) ≥ ck

2k+1∑
n=0

∫ |Dnu|2
1 + y4k+2−2n

.

(ii) Case k intermediate: let k = k+ + j+ ≤ k− − 1, j+ ∈ N, let M = M(j+)
large enough, there exists ck,M > 0 such that for all u ∈ Drad satisfying the
orthogonality conditions:

(C.21) (u, (L̃∗)nΞM,+) = 0, 0 ≤ n ≤ j+,

there holds:

(C.22) (JL̃L̃ku, L̃ku) ≥ ck,M

2k+1∑
n=0

∫ |Dnu|2
1 + y4k+2−2n

.

(iii) Case k large: let k = k++ j+ = k−+ j−, (j+, j−) ∈ N2, let M = M(j+)
large enough, there exists ck,M > 0 such that for all u ∈ Drad satisfying the
orthogonality conditions:

(C.23)

{
(u, (L̃∗)nΞM,+) = 0, 0 ≤ n ≤ j+
(u, (L̃∗)nΞM,−) = 0, 0 ≤ n ≤ j−

there holds:

(C.24) (JL̃L̃ku, L̃ku) ≥ ck,M

2k+1∑
n=0

∫ |Dnu|2
1 + y4k+2−2n

.

Proof of Lemma C.3. step 1 Hardy bound. We first claim: ∀δ ≥ 0,

2k+1∑
n=0

∫ |DnL̃u|2
1 + y4k+2−2n+δ

+

∫ |u|2
1 + y4k+6+δ

�δ,k

2k+3∑
n=0

∫ |Dnu|2
1 + y4(k+1)+2−2n+δ

.(C.25)

We argue by induction on k.
k = 0: We infer from the definition of L̃ and the decay

|DjW±| � 1

1 + y2+j
, j ≥ 0
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the bound: ∫ |Δu|2
1 + y2+δ

�
∫ |L̃u|2

1 + y2+δ
+

∫ |u|2
1 + y6+δ

.

Hence from (B.4):∫ |∇u|2
1 + y4+δ

�
∫ |Δu|2

1 + y2+δ
+

∫ |u|2
1 + y6+δ

�
∫ |L̃u|2

1 + y2+δ
+

∫ |u|2
1 + y6+δ

.

This implies:∫ |∇Δu|2
1 + yδ

�
∫ |∇(−Δu−W±u)|2

1 + yδ
+

∫ |L̃u|2
1 + y2+δ

+

∫ |u|2
1 + y6+δ

�
∫ |DL̃u|2

1 + yδ
+

∫ |L̃u|2
1 + y2+δ

+

∫ |u|2
1 + y6+δ

and (C.25) is proved for k = 0.
(δ + 4, k) → (δ, k + 1): From the induction claim for (k, δ + 4):

2k+1∑
n=0

∫ |DnL̃u|2
1 + y4(k+1)+2−2n+δ

+

∫ |u|2
1 + y4(k+1)+6+δ

�δ,k

2k+3∑
n=0

∫ |Dnu|2
1 + y4(k+2)+2−2n+δ

.

We now estimate from Leibniz:∫ |D2k+4u|2
1 + y2+δ

�
∫ |D2k+2L̃u|2

1 + y2+δ
+

2k+2∑
n=0

∫ |Dnu|2
1 + y4(k+2)+2−2n+δ∫ |D2k+5u|2

1 + yδ
�
∫ |D2k+3L̃u|2

1 + yδ
+

2k+3∑
n=0

∫ |Dnu|2
1 + y4(k+2)+2−2n+δ

and the conclusion follows.

step 2 Conclusion. We now prove the claim by induction on k.
Initialization k = 0, 1. For k = 0, we recall from (2.4):

L− > L+ > 0 on Ḣ1

and hence from the standard Hardy inequality:
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(C.26) (JL̃u, u) = (L+�u,�u) + (L−�u,�u) �
∫

|∂yu|2 +
∫ |u|2

y2
.

Assume that k+ ≥ 2 and let us prove (C.20) for k = 1. We estimate from
(C.26) and Lemma C.2:

(JL̃L̃u, L̃u) �
∫

|∂yL̃u|2 +
∫ |L̃u|2

1 + y2

�
∫

|∂yL̃u|2 +
∫ |Δu|2

1 + y2
+

∫ |∂yu|2
1 + y4

+

∫ |u|2
1 + y6

and hence using the expression for L̃:

(JL̃L̃u, L̃u) �
∫

|D3u|2 +
∫ |D2u|2

1 + y2
+

∫ |Du|2
1 + y4

+
|u|2

1 + y6
.

Induction k → k + 1 ≤ k+ − 1. We assume the claim for k ≥ 0 and prove it

for k + 1 ≤ k+ − 1. Let v = L̃u, then by induction:

(JL̃L̃k+1u, L̃k+1u) = (JL̃L̃kv, L̃kv) �
2k+1∑
n=0

∫ |Dnv|2
1 + y4k+2−2n

.

Now from Lemma C.2, case k + 1 ≤ k+ − 1, there holds:∫ |v|2
1 + y4k+2

=

∫ |L̃u|2
1 + y4k+2

�
∫ |u|2

1 + y4k+6
.

and hence the expected lower bound follows from (C.25) with δ = 0:

(JL̃L̃k+1u, L̃k+1u) �
2k+3∑
p=0

∫ |Dpu|2
1 + y4(k+1)+2−2p

.

Initialization k = k+. Recall that k+ < k−. Let u satisfy (u,ΞM,+) = 0,

v = L̃u, then from the previous step:

(JL̃L̃ku, L̃ku) = (JL̃L̃k−1v, L̃k−1v) �
2k−1∑
n=0

∫ |Dnv|2
1 + y4k−2−2n

.

Now from Lemma C.2, case k+ ≤ k ≤ k− − 1,
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∫ |v|2
1 + y4k−2

=

∫ |L̃u|2
1 + y4k−2

�
∫ |u|2

1 + y4k+2

and the conclusion follows from (C.25) again written for k − 1.
Initialization k → k + 1 ≤ k− − 1. Let k + 1 = k+ + j+ + 1 and u satisfy

(u, (L̃∗)pΞM,+) = 0, 0 ≤ p ≤ j+ + 1,

then v = L̃u satisfies

(v, (L̃∗)pΞM,+) = 0, 0 ≤ p ≤ j+,

and hence by induction:

(JL̃L̃k+1u, L̃k+1u) = (JL̃L̃kv, L̃kv) �
2k+1∑
n=0

∫ |Dnv|2
1 + y4k+2−2n

.

Now from Lemma C.2, case k+ ≤ k + 1 ≤ k− − 1, and using (u,ΞM,+) = 0,
there holds: ∫ |v|2

1 + y4k+2
=

∫ |L̃u|2
1 + y4k+2

�
∫ |u|2

1 + y4k+6

and the conclusion follows from (C.25) again.
Initialization k = k−. Let k = k− = k+ + j+, let u satisfy

(u, (L̃∗)nΞM,+) = 0, 0 ≤ n ≤ j+, and (u,ΞM,−) = 0.

Then v = L̃u satisfies

(v, (L̃∗)nΞM,+) = 0, 0 ≤ p ≤ j+ − 1

and hence from the previous step:

(JL̃L̃ku, L̃ku) = (JL̃L̃k−1v, L̃k−1v) �
2k−1∑
n=0

∫ |Dnv|2
1 + y4k−2−2n

.

From Lemma C.2, case k ≥ k−, and using (u,ΞM,±) = 0, we have:∫ |v|2
1 + y4k−2

=

∫ |L̃u|2
1 + y4k−2

�
∫ |u|2

1 + y4k+2
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and the conclusion follows from (C.25) again written for k − 1.
Induction k → k + 1. Let k + 1 = k+ + j+ + 1 = k− + j− + 1 and u satisfy

(u, (L̃∗)nΞM,±) = 0, 0 ≤ n ≤ j± + 1,

then v = L̃u satisfies

(v, (L̃∗)nΞM,±) = 0, 0 ≤ n ≤ j±,

and hence by induction:

(JL̃L̃k+1u, L̃k+1u) = (JL̃L̃kv, L̃kv) �
2k+1∑
n=0

∫ |Dnv|2
1 + y4k+2−2n

.

Now from Lemma C.2, case k ≤ k−, and using (u,ΞM,±) = 0, there holds:∫ |v|2
1 + y4k+2

=

∫ |L̃u|2
1 + y4k+2

�
∫ |u|2

1 + y4k+6

and the conclusion follows from (C.25) again.

Appendix D. Interpolation bounds

In this appendix we derive some weighted L∞ bounds which are used to
control the lower order terms (N(ε), L(ε)) in section 5. They will follow
from simple interpolation arguments.

Lemma D.1 (L∞ bounds). (i) L∞ bound:

(D.1) ‖ε‖L∞ + ‖∇ d

2 ε‖L2 � ‖∇σε‖
1+O

(
1

L+

)
L2 b

1

2(
d

2
−σ)+O

(
1

L+

)
1 ,

(D.2) ‖∇ε‖L∞ � ‖∇σε‖
1+O

(
1

L+

)
L2 b

1

2(
d

2
+1−σ)+O

(
1

L+

)
1 ,

(ii) Weighted L∞ bound: let 0 ≤ δ � L+, then:

(D.3)

∥∥∥∥ ε

1 + yδ

∥∥∥∥
L∞

� ‖∇σε‖
1+O

(
1

L+

)
L2 b

δ

2
+ 1

2(
d

2
−σ)+O

(
1

L+

)
1 .

(iii) Sobolev interpolation: Let σ ≤ β � L+, then

(D.4) ‖∇βε‖2L2 � ‖∇σε‖
2+O( 1

L+
)

L2 b
β−σ+O( 1

L+
)

1 .
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Remark D.2. Interpolation constants in (D.1), (D.2), (D.3) depend on the
bootstrap constant K(M).

Proof. Proof of (i): From Sobolev,

‖ε‖L∞ + ‖∇ d

2 ε‖L2 � ‖∇s+ε‖1−z
L2 ‖∇σε‖zL2

with

z =
s+ − d

2

s+ − σ
= 1− 1

2L+

(
d

2
− σ

)
+O

(
1

L2
+

)
and thus using (4.34):

‖ε‖L∞ + ‖∇ d

2 ε‖L2 � ‖∇σε‖
1+O

(
1

L+

)
L2 b

1

2(
d

2
−σ)+O

(
1

L+

)
1 .

Similarily:

‖∇ε‖L∞ � ‖∇s+ε‖1−z
L2 ‖∇σε‖zL2

with

z =
s+ − d

2 − 1

s+ − σ
= 1− 1

2L+

(
d

2
+ 1− σ

)
+O

(
1

L2
+

)
and thus

‖∇ε‖L∞ � ‖∇σε‖
1+O

(
1

L+

)
L2 b

1

2(
d

2
+1−σ)+O

(
1

L+

)
1 .

Proof of (ii): For y ≤ 1, we have from Sobolev

‖ε‖L∞(y≤1) � ‖ε‖Hs+ (y≤1) � b
L+

1 .

We estimate from (B.3) with p = s+ − 1 and (4.34):∥∥∥∥∥ ε

1 + ys+− d

2

∥∥∥∥∥
2

L∞(y≥1)

� b
2L+

1 .

We therefore interpolate for 0 < δ � L+ using (D.1):∥∥∥∥ ε

1 + yδ

∥∥∥∥
L∞

� As+− d

2
−δ

∥∥∥∥∥ ε

1 + ys+−
d

2

∥∥∥∥∥
L∞(y≤A)

+
‖ε‖L∞(y≥A)

Aδ

� (b
L+

1 )
δ

s+− d
2
−2δ ‖ε‖

1− δ

s+− d
2
−2δ

L∞
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� ‖∇σε‖
1+O

(
1

L+

)
L2 b

δ

2
+ 1

2(
d

2
−σ)+O

(
1

L+

)
1 .

Proof of (iii). We interpolate

‖∇βε‖L2 � ‖∇σε‖z+L2‖∇s+ε‖1−z+
L2

with

1− z+ =
β − σ

s+ − σ
=

β − σ

2L+
+O

(
1

L2
+

)
and hence using (4.34):

‖∇βε‖2L2 � ‖∇σε‖
2+O( 1

L+
)

L2 b
β−σ+O( 1

L+
)

1 .

Appendix E. Eigenvalues of the linearized operator in self
similar variables

We briefly revisit in this section the standard computation of the eigenvalues
and eigenvectors of the linearized operator close to the self similar solution:

HΦ = H0Φ−
[

1

p− 1
Φ +

1

2
rΦ′

]
, H0 =

(
0 H−
−H+ 0

)
with

H+ = −Δ− pcp−1
∞
r2

, H− = −Δ− cp−1
∞
r2

.

step 1 First set of eigenvalues.

case � = 0. We let

Φ0,+(r) =

∣∣∣∣ 1
rγ

0
, λ0 =

1

p− 1
− γ

2

and compute:

HΦ0,+ =

∣∣∣∣∣ −
[

1
p−1 + 1

2r∂r

]
r−γ

−H+r
−γ

+ = −λ0Φ0,+

where we used the γ equation:

H+(r
−γ) = −γ2 − (d− 2)γ + pc∞p−1

rγ+2
= 0.



612 Frank Merle et al.

case � ≥ 1. We let

Φ�,+ =

�∑
k=0

ckJ
k

∣∣∣∣ r2k−γ

0
, λ�,+ =

1

p− 1
− γ

2
+ �, c0 = 1

and compute:

HΦ�,+ + λ�,+Φ�,+

=

�∑
k=0

ckH0J
k

∣∣∣∣ r2k−γ

0
+

�∑
k=0

{
λ�,+ −

[
1

p− 1
+

1

2
r∂r

]}
ckJ

k

∣∣∣∣ r2k−γ

0

=

�∑
k=1

ckH0J
k

∣∣∣∣ r2k−γ

0
+

�−1∑
k=0

{
λ�,+ −

[
1

p− 1
+

1

2
r∂r

]}
ckJ

k

∣∣∣∣ r2k−γ

0

=

�−1∑
k=0

ck+1H0J
k+1

∣∣∣∣ r2k+2−γ

0
+ ck

{
λ�,+ −

[
1

p− 1
+

1

2
r∂r

]}
Jk

∣∣∣∣ r2k−γ

0

thanks to the γ equation for k = 0 and the choice of λ�,+ for k = �. We now
compute for k = 2p:

ck+1H0J
k+1

∣∣∣∣ r2k+2−γ

0
+ ck

{
λ�,+ −

[
1

p− 1
+

1

2
r∂r

]}
Jk

∣∣∣∣ r2k−γ

0

=

∣∣∣∣∣ (−1)pck+1H−(r2k+2−γ) + ck

{
λ�,+ −

[
1

p−1 + 1
2r∂r

]}
r2k−γ

0

=

∣∣∣∣ ck+1dk − ckek
0

and for k = 2p+ 1:

ck+1H0J
k+1

∣∣∣∣ r2k+2−γ

0
+ ck

{
λ�,+ −

[
1

p− 1
+

1

2
r∂r

]}
Jk

∣∣∣∣ r2k−γ

0

=

∣∣∣∣∣ 0(−1)pck+1H+(r
2k+2−γ) + (−1)p+1ck

{
λ�,+ −

[
1

p−1 + 1
2r∂r

]}
r2k−γ

=

∣∣∣∣ 0ck+1dk − ckek

and hence the recurrence relation (dk 
= 0)

ck+1 =
ek
dk

ck, c1 = 0
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yields an eigenvector.

step 2 Second set of eigenvalues.

case � = 0. We let

Φ0,−(r) =

∣∣∣∣∣ 0 1

r
2

p−1

, λ0,− = 0

and compute:

HΦ0,− =

∣∣∣∣∣ H−(r
− 2

p−1 )

−
[

1
p−1 + 1

2r∂r

]
r−

2

p−1
+ = 0

where we used the definition (1.9) of c∞:

H−(r
− 2

p−1 ) =
1

r
2

p−1
+2

{
− 2

p− 1

(
2

p− 1
+ 1

)
+

2(d− 1)

p− 1
− cp−1

∞

}
=

1

r
2

p−1
+2

{
2

p− 1

(
d− 2− 2

p− 1

)
− cp−1

∞

}
= 0.

case � ≥ 1. We let

Φ�,− =

�∑
k=0

ckJ
k

∣∣∣∣∣ 0r2k− 2

p−1
, λ�,− = �, c0 = 1

and compute:

HΦ�,− + λ�,−Φ�,−

=

�∑
k=0

ckH0J
k

∣∣∣∣∣ 0r2k− 2

p−1
+

�∑
k=0

{
λ�,− −

[
1

p− 1
+

1

2
r∂r

]}
ckJ

k

∣∣∣∣∣ 0r2k− 2

p−1

=

�∑
k=1

ckH0J
k

∣∣∣∣∣ 0r2k− 2

p−1
+

�−1∑
k=0

{
λ�,− −

[
1

p− 1
+

1

2
r∂r

]}
ckJ

k

∣∣∣∣∣ 0r2k− 2

p−1

=

�−1∑
k=0

ck+1H0J
k+1

∣∣∣∣∣ 0r2k+2− 2

p−1
+ ck

{
λ�,− −

[
1

p− 1
+

1

2
r∂r

]}
Jk

∣∣∣∣∣ 0r2k− 2

p−1

thanks to the c∞ equation for k = 0 and the choice of λ�,− for k = �. This as
above yields a suitable induction relation on the ck to create an eigenvector.
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