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Compact generation of the category of D-modules
on the stack of G-bundles on a curve

V. Drinfeld and D. Gaitsgory

Let G be a reductive group. Let BunG denote the stack of G-
bundles on a smooth complete curve over a field of characteristic
0, and let D-mod(BunG) denote the DG category of D-modules on
BunG. The main goal of the paper is to show that D-mod(BunG)
is compactly generated (this is not automatic because BunG is not
quasi-compact). The proof is based on the following observation:
BunG can be written as a union of quasi-compact open substacks
j : U ↪→ BunG, which are “co-truncative”, i.e., the functor j! is
defined on the entire category D-mod(U).
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Introduction

0.1. The main result

Let k be an algebraically closed field of characteristic 0. Let X be a smooth
complete connected curve over k and let BunG denote the moduli stack of
principal G-bundles on X, where G is a connected reductive group.

0.1.1. The object of study of this paper is the DG category D-mod(BunG)
of D-modules on BunG. Our main goal is to prove the following theorem:

Theorem 0.1.2. The DG category D-mod(BunG) is compactly generated.

For the reader’s convenience we will review the theory of DG categories,
and the notion of compact generation in Sect. 1.

Essentially, the property of compact generation is what makes a DG
category manageable.

0.1.3. The above theorem is somewhat surprising for the following rea-
son.

It is known that if an algebraic stack Y is quasi-compact and the auto-
morphism group of every field-valued point of Y is affine, then the DG cate-
gory D-mod(Y) is compactly generated. This result is established in [DrGa1,
Theorem 0.2.2]. In fact, the compact generation of D-mod(Y) for most stacks
Y that one encounters in practice is much easier than the above-mentioned
theorem of [DrGa1]: it is nearly obvious for stacks of the form Z/H, where
Z is a quasi-compact scheme and H an algebraic group acting on it.

However, if Y is not quasi-compact then D-mod(Y) does not have to be
compactly generated. We will exhibit two such examples in Sect. 12.1; in
both of them Y will actually be a smooth non quasi-compact scheme (non-
separated in the first example, and separated in the second one).

0.1.4. So the compact generation of D-mod(Y) encodes a certain geomet-
ric property of the stack Y. We do not know how to formulate a necessary
and sufficient condition for D-mod(Y) to be compactly generated.



The category of D-modules on BunG 21

But we do formulate a sufficient condition, which we call “truncatibility”
(see Sect. 0.2.3 or Definition 4.1.1). The idea is that Y is truncatable if it
can be represented as a union of quasi-compact open substacks U so that
for each of them direct image functor

j∗ : D-mod(U) → D-mod(Y)

has a particularly nice property explained below.

0.2. Truncativeness, co-truncativeness and truncatability

0.2.1. Let Y be a quasi-compact algebraic stack with affine automorphism

groups of points, and let Z
i
↪→ Y be a closed embedding. By [DrGa1, Theorem

0.2.2], both categories D-mod(Z) and D-mod(Y) are compactly generated.
We have a pair of adjoint functors

idR,∗ : D-mod(Z) � D-mod(Y) : i!.

Being a left adjoint, the functor idR,∗ preserves compactness. But there
is no reason for i! to have this property. We will say that Z is truncative in
Y if i! does preserve compactness.

Truncativeness is a purely “stacky” phenomenon. In Sect. 3.2.1 we will
show that it never occurs for schemes, unless Z is a union of connected
components of Y.

Let U
j
↪→ Y be the embedding of the complementary open substack. We

say that U is co-truncative in Y if Z is truncative. This property can be
reformulated as saying that the functor

j∗ : D-mod(U) → D-mod(Y)

preserves compactness. We show that the property of co-truncativeness can
be also reformulated as the existence of the functor j! : D-mod(U) →
D-mod(Y), left adjoint to the restriction functor j∗. (A priori, j! is only
defined on the holonomic subcategory.)

Remark 0.2.2. The property of being compact for an object in D-mod(Y) is
somewhat subtle (e.g., it is not local in the smooth topology). In Sect. 3.5
we reformulate the notion of truncativeness and co-truncativeness in terms
of the more accessible property of coherence instead of compactness.

0.2.3. Let us now drop the assumption that Y be quasi-compact. We say
that a closed substack Z (resp., open substack U) is truncative (resp., co-

truncative), if for every quasi-compact open
◦
Y ⊂ Y, the intersection Z ∩

◦
Y
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(resp., U ∩
◦
Y) is truncative (resp., co-truncative) in

◦
Y.

We say that Y is truncatable if it equals the union of its quasi-compact
co-truncative open substacks. We will show that a union of two co-truncative
open substacks is co-truncative. So Y is truncatable if and only if every open
quasi-compact substack of Y is contained in one which is co-truncative.

We will show (see Proposition 4.1.6) that if Y is truncatable, then
D-mod(Y) is compactly generated. (This is an easy consequence of [DrGa1,
Theorem 0.2.2].)

0.2.4. Thus Theorem 0.1.2, follows from the next statement, which is the
main technical result of this paper.

Theorem 0.2.5. The stack BunG is truncatable.

Let us explain how to cover BunG by quasi-compact open co-truncative

substacks. For every dominant rational coweight θ let Bun
(≤θ)
G ⊂ BunG de-

note the open substack parameterizingG-bundles whose Harder-Narasimhan
coweight1 is ≤

G
θ (the partial ordering ≤

G
on coweights is defined as usual:

λ1 ≤
G
λ2 if λ2−λ1 is a linear combination of simple coroots with non-negative

coefficients). Equivalently, Bun
(≤θ)
G parameterizes those G-bundles PG that

have the following property: for every reduction PB to the Borel, the degree
of PB (which is a coweight of G) is ≤

G
θ.

The substacks Bun
(≤θ)
G are quasi-compact and cover BunG . So Theo-

rem 0.2.5 is a consequence of the following fact proved in Sect. 9:

The substack Bun
(≤θ)
G is co-truncative if for every simple root α̌i one has

(0.1) 〈θ , α̌i〉 ≥ 2g − 2,

where g is the genus of X.

E.g., if G = GL(2) this means that the open substack

Bun
(≤m)
GL2

∩BunnGL2
⊂ BunGL2

that parameterizes rank 2 vector bundles of degree n all of whose line sub-
bundles have degree ≤ m, is co-truncative provided that 2m− n ≥ 2g − 2.

Condition (0.1) means that θ is “deep enough” inside the dominant
chamber (of course, if g ≤ 1 then the condition holds for any dominant θ).

1This rational coweight was defined by Harder-Narasimhan [HN] in the case
G = GL(n) and by A. Ramanathan [R1] for any G.
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0.2.6. Establishing truncativeness. To prove Theorem 0.2.5, we will
have to show that certain explicitly defined locally closed substacks of BunG
are truncative.

We will do this by using a “contraction principle”, see Proposition 5.1.2.
In its simplest form, it says that the substack {0}/Gm ↪→ An/Gm is trunca-
tive (here Gm acts on An by homotheties).

0.3. Duality

0.3.1. Recall the notion of dualizability of a DG category in the sense of
Lurie (see Sect. 1.5.1). Any compactly generated DG category is automat-
ically dualizable. In particular, such is D-mod(Y) when Y is a truncatable
algebraic stack.

0.3.2. However, more is true. As we recall in Sect. 2.2.14, if Y is quasi-
compact, not only is the category D-mod(Y) dualizable, but Verdier duality
defines an equivalence

D-mod(Y)∨ 	 D-mod(Y).

It is natural to ask for a description of the dual category D-mod(Y)∨

when Y is no longer quasi-compact, but just truncatable.

0.3.3. As we will see in Sect. 4.2–4.4, the category D-mod(Y)∨ can be
described explicitly, but it is a priori different from D-mod(Y).

There exists a naturally defined functor

DVerdier
Y,naive : D-mod(Y)∨ → D-mod(Y),

but we show (see Proposition 4.4.5) that this functor is not an equivalence
unless the closure of every quasi-compact open in Y is again quasi-compact.

0.3.4. However, in Sect. 4.4.8 we define a less obvious functor

DVerdier
Y,! : D-mod(Y)∨ → D-mod(Y),

which may differ from DVerdier
Y,naive even for Y quasi-compact.

In general, DVerdier
Y,! is not an equivalence, but there are important and

nontrivial examples of quasi-compact and non-quasi-compact stacks Y for
which DVerdier

Y,! is an equivalence.
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In particular, in a subsequent publication2 it will be shown that the
functor DVerdier

Y,! is an equivalence if Y = BunG, where G is any reductive
group.

Thus, for any reductive G, the DG category D-mod(BunG) identifies with
its dual (in a non-trivial way and for non-trivial reasons).

0.4. Generalizations and open questions

Let us return to the main result of this paper, namely, Theorem 0.1.2.

0.4.1. In the situation of Quantum Geometric Langlands, one needs to
consider the categories of twisted D-modules on BunG. The corresponding
analog of Theorem 0.1.2, with the same proof, holds in this more general
context.

0.4.2. Let x1, . . . , xn ∈ X. Instead of BunG , consider the stack of G-
bundles on X with a reduction to a parabolic Pi at xi, 1 ≤ i ≤ n. Most
probably, in this situation an analog of Theorem 0.1.2 holds and can be
proved in a similar way.

0.4.3. Suppose now that instead of reductions to parabolics (as in
Sect. 0.4.2), one considers deeper level structures at x1, . . . , xn (the simplest
case being reduction to the unipotent radical of the Borel).

We do not know whether an analog of Theorem 0.1.2 holds in this case,
and we do not know what to expect. In any case, our strategy of the proof
of Theorem 0.1.2 fails in this context.

0.4.4. Here are some more questions:

Question 0.4.5. Does the assertion of Theorem 0.1.2 (and its strengthen-
ing, Theorem 0.2.5) hold for Y being one of the stacks BunB, BunP , BunP
and B̃unP , where B is the Borel, and P a general parabolic?

We are quite confident that the answer is “yes” for BunB, but are less
sure in other cases.

Question 0.4.6. Does the assertion of Theorem 0.1.2 hold for an arbitrary
connected affine algebraic group G (i.e., without the assumption that G be
reductive)?

0.5. Organization of the paper

0.5.1. In Sect. 1 we review some basic facts regarding DG categories.

2For a draft see [Ga2].
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0.5.2. In Sect. 2 we review some general facts about the category of
D-modules on an algebraic stack Y. We first consider the case when Y is
quasi-compact and make a summary of the relevant results from [DrGa1].
We then consider the case when Y is not quasi-compact and characterize the
subcategory of D-mod(Y) formed by compact objects.

0.5.3. In Sect. 3, we introduce some of the main definitions for this pa-
per: the notions of truncativeness (for a locally closed substack) and co-
truncativeness (for an open substack). We study the behavior of these no-
tions under morphisms, base change, refinement of stratification, etc. We
also discuss the “non-standard” functors associated to a truncative closed
(or locally closed) substack (see Sects. 3.3 and Remark 3.4.5), in particular,
the very unusual functors i? and j?.

0.5.4. Sect. 4 is, philosophically, the heart of this article.
In Sect. 4.1 we introduce the notion of truncatable stack. We show that

if Y is truncatable then the category D-mod(Y) is compactly generated. In
particular, we obtain that Theorem 0.2.5 implies Theorem 0.1.2.

In Sects. 4.2–4.5 we discuss the behavior of Verdier duality on truncat-
able stacks and the relation beween the category D-mod(Y) and its dual.

0.5.5. In Sect. 5 we formulate a contraction principle, see Proposi-
tion 5.1.2. It shows that a closed substack with the property that we call
contractiveness is truncative.

In Sect. 5.3 we explicitly describe the non-standard functors i∗ and i? in
the setting of Proposition 5.1.2.

0.5.6. In Sect. 6 we prove Theorem 0.2.5 in the particular case of G =
SL2. The proof in the general case follows the same idea, but is more involved
combinatorially.

0.5.7. In Sect. 7 we recall the stratification of BunG according to the
Harder-Narasihman coweight of the G-bundle. We briefly indicate a way to
establish the existence of such a stratification using the relative compactifi-
cation of the map BunP → BunG.

0.5.8. In Sect. 8 we introduce a book-keeping device that allows to pro-
duce locally closed substacks of BunG from locally closed substacks of BunM ,
where M is a Levi subgroup of G. Certain locally closed substacks of BunG
obtained in this way, will turn out to be contractive, and hence truncative,
and as such will play a crucial role in the proof of Theorem 0.2.5.
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0.5.9. In Sect. 9–11 we finally prove Theorem 0.2.5. The proof amounts
to combining the Harder-Narasimhan-Shatz strata of BunG (i.e., the strata
corresponding to a fixed value of the Harder-Narasihman coweight) into
certain larger locally closed substacks and applying the contraction principle.
A more detailed explanation of the idea of the proof can be found in Sect. 9.1.

In Sect. 9 we prove Theorem 0.2.5 modulo a key Proposition 9.2.2. The
latter is proved in Sect. 10–11.

0.5.10. In Sect. 12 we prove the existence of non quasi-compact stacks Y
such that the category D-mod(Y) is not compactly generated.

Namely, we show that if Y = Y is a smooth scheme containing a non
quasi-compact divisor, then the category D-mod(Y) is not generated by com-
pact objects. More precisely, we show that (locally) coherent D-modules on
Y that belong to the full subcategory generated by compact objects cannot
have all of T ∗(Y ) as their singular support. In particular, the D-module DY

does not belong to the subcategory.

0.5.11. In Appendix A we recall an explicit description of open, closed,
and locally closed subsets of a (pre)-ordered set equipped with its natural
topology. We use this description (combined with the Harder-Narasihman
map) to explicitly construct some locally closed substacks of BunG , see
Sect. 7.4.10 and Corollary 7.4.11.

0.5.12. In Appendix B we give a variant of the proof of Theorem 9.1.2
that has some advantages compared with the one from Sect. 9.3. The method
is to define a coarsening of the Harder-Narasimhan-Shatz stratification such
that each stratum is contractive (and therefore truncative). This is done
using the Langlands retraction of the space of rational coweights onto the
dominant cone.

0.5.13. In Appendix C we prove a “stacky” generalization of the contrac-
tion principle from Sect. 5.1 and of the adjunction from Proposition 5.3.2.

0.6. Conventions and notation

0.6.1. Our conventions on ∞-categories follow those of [DrGa1, Sect.
0.6.1]. Whenever we say “category”, by default we mean an (∞, 1)-category.
We denote by ∞ -Cat the (∞, 1)-category of ∞-categories.

We denote by ∞ -Grpd ⊂ ∞ -Cat in the (∞, 1)-subcategory spanned by
∞-groupoids, a.k.a., spaces. We denote by C �→ Cgrpd the functor ∞ -Cat →
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∞ -Grpd right adjoint to the above embedding. Explicitly, Cgrpd is obtained
from C by discarding non-invertible 1-morphisms.

For C ∈ ∞ -Cat and objects c1, c2 ∈ C we denote by MapsC(c1, c2) ∈
∞ -Grpd the corresponding space of maps. We let HomC(c1, c2) denote the
set π0(MapsC(c1, c2)).

0.6.2. Schemes and stacks. This paper deals with categorical aspects
of the category of D-modules, i.e., we do not need derived algebraic geom-
etry for this paper. Therefore, by a scheme we shall understand a classical
scheme. We let Sch (resp., Schaff) denote the category of schemes (resp.,
affine schemes) over k, and Schlft (resp., Schaffft ) its full subcategory con-
sisting of affine schemes locally of finite type (resp., affine schemes of finite
type).

By a prestack we shall mean an arbitrary functor (Schaff)op → ∞ -Grpd.
By a stack we shall mean a prestack that satisfies the fppf descent condi-

tion. For the general notion of Artin stack we refer the reader to [GL:Stacks,
Sect. 4.2]. However, neither general stacks nor Artin stacks are necessary for
this paper. What we need is the more restricted (and standard) notion of
algebraic stack. We adopt the following conventions: a stack Y is said to be
an algebraic stack if:

• The diagonal morphism Y → Y × Y is schematic, quasi-compact and
quasi-separated;

• There exists a scheme Z equipped with a morphism f : Z → Y (this
morphism is automatically schematic, by the previous condition) such
that f is smooth and surjective.

The pair (Z, f) is called a presentation or atlas of Y.
We note that this definition is slightly more restrictive than the one in

[GL:Stacks, Sect. 4.2.8].

0.6.3. Finite type(ness). All schemes, algebraic stacks and prestacks
considered in this paper will be locally of finite type over k.

We recall that a classical prestack, i.e., a functor (Schaff)op → ∞ -Grpd,
is said to be locally of finite type if it takes limits in Schaff to colimits in
∞ -Grpd. Equivalently, a classical prestack is locally of finite type if it is the
left Kan extension from the full subcategory Schaffft ⊂ Schaff . The upshot is
that when considering prestacks locally of finite type, one can forget about
all affine schemes altogether and restrict one’s attention to Schaffft .

An algebraic stack is said to be locally of finite type if it is such when
considered as a prestack. This is equivalent to requiring that it admit an
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atlas (Z, f) with Z being locally of finite type. Or, still equivalently, that
for any Z ∈ Sch equipped with a smooth map to Y, the scheme Z is of finite
type. The equivalence of these conditions is established, e.g., in [GL:Stacks,
Proposition 4.9.2].

0.6.4. D-modules. We refer the reader to the paper [GR] for the theory
of D-modules (a.k.a. crystals) on prestacks locally of finite type.

For a morphism f : Y1 → Y2 of prestacks we have a tautologically defined
functor

f ! : D-mod(Y2) → D-mod(Y1).

This functor may or may not have a left adjoint, which we denote by f!.
If f is schematic3 and quasi-compact, we also have a functor of direct

image

fdR,∗ : D-mod(Y1) → D-mod(Y2).

However, when f is an open embedding, we will use the notation j∗
instead of jdR,∗, and j∗ instead of j!, for reasons of tradition. This is not
supposed to cause confusion, as the above functors go to the same-named
functors for the underlying O-modules.
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1. DG categories

Sects. 1.1–1.6 are devoted to recollections and conventions regarding DG
categories. In Sects. 1.7–1.9 we provide a categorical framework for Sects.
4.2–4.3; this material can definitely be skipped until it is used.

1.1. The setting

1.1.1. Throughout this paper we will work with DG categories over the
ground field k. We refer the reader to [GL:DG] for a survey.4

3Recall that f is said to be schematic if Y1 ×
Y2

S is a scheme for any scheme S

equipped with a morphism S → Y2 .
4Whenever we talk about a DG category C, we will always assume that it is

pre-triangulated, which by definition means that Ho(C) is triangulated.
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We let Vect denote the DG category of chain complexes of k-vector
spaces.

We let DGCat denote the ∞-category of all DG categories.5

1.1.2. Cocomplete DG categories. Our basic object of study is the
(∞, 1)-category DGCatcont whose objects are cocomplete DG categories (i.e.,
ones that contain arbitrary direct sums, or equivalently, colimits), and where
1-morphisms are continuous functors (i.e., exact functors that commute with
arbitrary direct sums, or equivalently all colimits).

The construction of DGCatcont as an (∞, 1)-category has not been fully
documented. A pedantic reader can replace DGCatcont by the equivalent
(∞, 1)-category of stable ∞-categories tensored over k, whose construction
is a consequence of [Lu2, Sects. 4.2 and 6.3].

We have a forgetful functor DGCatcont → DGCat that induces an iso-
morphism on 2-morphisms and higher.

1.1.3. Terminological deviation (i). We will sometimes encounter
non-cocomplete DG categories (e.g., the subcategory of compact objects
in a given DG category). Every time that this happens, we will say so
explicitly.

1.1.4. The category DGCatcont has a natural symmetric monoidal struc-
ture given by Lurie’s tensor product, denoted by ⊗ (see [Lu2, Sect. 6.3] or
[GL:DG, Sect. 1.4] for a brief review).

Its unit object is the category Vect of chain complexes of k-vector spaces.

1.1.5. Functors. For C1,C2 ∈ DGCatcont we will denote by
Functcont(C1,C2) their internal Hom in DGCatcont, which is therefore
another DG category.

1.1.6. Terminological deviation (ii). For two DG categories C1 and
C2 we will sometimes encounter functors C1 → C2 that are not continuous
(but still exact). For example, for a non-compact object c ∈ C, such is the
functor MapsC(c,−) : C → Vect (see below for the notation).

Every time when we encounter a non-continuous functor, we will say so
explicitly.

All exact functors C1 → C2 also form a DG category, which we denote
by Funct(C1,C2).

5We will ignore set-theoretic issues; however, the reader can assume that all DG
categories and functors are accessible in the sense of [Lu1, Sect. 5.4.2].



30 V. Drinfeld and D. Gaitsgory

1.1.7. Mapping spaces. Any DG category C can be thought of as an
∞-category enriched over Vect with the same set of objects. For two ob-
jects c1, c2, we will denote by MapsC(c1, c2) ∈ Vect the corresponding Hom
object.

We let MapsC(c1, c2) ∈ ∞ -Grpd denote the Hom-space, when we con-
sider C as a plain ∞-category. The object MapsC(c1, c2) equals the image
of τ≤0(MapsC(c1, c2)) under the Dold-Kan functor

Vect≤0 → ∞ -Grpd .

We denote by HomC(c1, c2) the object H0(MapsC(c1, c2)) ∈ Vect♥. Its
underlying set identifies with π0(MapsC(c1, c2)).

1.1.8. t-structures. Whenever a DG category C has a t-structure, we
let C≤0 (resp., C≥0) denote the full subcategory of connective (resp., co-
connective) objects. We denote by C♥ the heart of the t-structure.

1.2. Compactness and compact generation

1.2.1. Recall that an object c in a (cocomplete) DG category C is called
compact if the functor

HomC(c,−) : C → Vect♥

commutes with arbitrary direct sums. This is equivalent to the (a priori
non-continuous) functor

MapsC(c,−) : C → Vect

being continuous, or the functor of ∞-categories

MapsC(c,−) : C → ∞ -Grpd

commuting with filtered colimits.
For a DG category C, we let Cc denote the full (but not cocomplete)

DG subcategory that consists of compact objects.

1.2.2. Compact generation. Let C be a cocomplete DG category. We
say that a set of objects cα ∈ C generates C if for every c ∈ C the following
implication holds:

(1.1) HomC(cα, c) = 0, ∀α ⇒ c = 0.

This is known to be equivalent to the following condition:C does not contain
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a proper full cocomplete DG subcategory that contains all the objects cα.
A cocomplete DG categoryC is called compactly generated if there exists

a set of compact objects cα that generates C in the above sense.

1.2.3. The following observations will be used repeatedly throughout the
paper:

Let C1 and C2 be a pair of DG categories, and let G : C2 → C1 be
a (not necessarily continuous) functor. If G admits a left adjoint functor
F : C1 → C2 then F is automatically continuous.

Let F,G be as above and suppose, in addition, that C1 is compactly
generated. Then G is continuous if and only if F preserves compactness (i.e.,
F(Cc

1) ⊂ Cc
2). This implies the “only if” part of the following well-known

proposition.

Proposition 1.2.4. Let C1 be a compactly generated DG category and F :
C1 → C2 a continuous DG functor. Then F has a continuous right adjoint
if and only if F(Cc

1) ⊂ Cc
2.

Proof of the “if” statement. The existence of the not necessarily continuous
right adjoint G follows from the Adjoint Functor Theorem, see [Lu1, Corol-
lary 5.5.2.9]. To test that G is continuous, it is enough to show that the
functors

MapsC1
(c1,G(−)) : C2 → Vect

are continuous for c1 ∈ Cc
1. The required continuity follows from the as-

sumption on F.

1.3. Ind-completions

1.3.1. Let C0 be an essentially small (but not cocomplete) DG cate-
gory. We can functorially assign to it a cocomplete DG category, denoted
Ind(C0) (and called the ind-completion of C0), equipped with a functor
C0 → Ind(C0) and characterized by the property that restriction defines an
equivalence

(1.2) Functcont(Ind(C
0),D) → Funct(C0,D)

for a cocomplete category D (see [Lu1, Sect. 5.3.5] for the corresponding
construction for general ∞-categories).

The category Ind(C0) can be explicitly constructed as
Funct((C0)op,Vect).

It is known that the functor C0 → Ind(C0) is fully faithful, and that
its essential image belongs to the subcategory Ind(C0)c. It follows formally
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from (1.2) that the essential image of C0 generates Ind(C0).

1.3.2. Thus, the assignment C0 � Ind(C0) is a way to obtain compactly
generated categories. In fact, all cocomplete compactly generated DG cate-
gories arise in this way. Namely, we have the following assertion (see [Lu1,
Proposition 5.3.5.11]):

Lemma 1.3.3. Let C be a cocomplete compactly generated DG category.
Let F0 : C0 → Cc be a fully faithful functor, such that its essential image
generates C. Then the resulting functor F : Ind(C0) → C, obtained from F0

via (1.2), is an equivalence.

As a consequence, we obtain:

Corollary 1.3.4. Let C be a cocomplete compactly generated DG category.
Then the tautological functor Ind(Cc) → C is an equivalence.

1.4. Karoubi-completions

1.4.1. Let C0 be an essentially small (but non-cocomplete) DG cate-
gory. We say that C0 is Karoubian if its homotopy category is idempotent-
complete.

For example, for a cocomplete compactly generated DG category C, the
corresponding subcategory Cc is Karoubian.

1.4.2. Let C0 → C0
Kar be a functor between essentially small (but non-

cocomplete) DG categories.
We say that the above functor realizes C0

Kar as a Karoubi-completion of
C0 if restriction defines an equivalence

Funct(C0
Kar,

′C0) → Funct(C0, ′C0)

for any Karoubian ′C0 . Clearly,C
0
Kar , if it exists, is defined up to a canonical

equivalence.
The following is a reformulation of the Thomason-Trobaugh-Neeman

localization theorem (see [N, Theorem 2.1] or [BeV, Proposition 1.4.2]):

Lemma 1.4.3. (a) Let C0 be an essentially small (but not cocomplete)
DG category. The canonical functor C0 → Ind(C0)c realizes Ind(C0)c as a
Karoubi-completion of C0.

(b) Every object of Ind(C0)c can be realized as a direct summand of one
in C0 ⊂ Ind(C0)c.

Lemma 1.4.3 implies that the functor Ho(C0) → Ho(C0
Kar) identifies

Ho(C0
Kar) with the idempotent completion of Ho(C0).
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1.4.4. We obtain that the assignments

C0 � Ind(C0) and C � Cc

define mutually inverse equivalences between the appropriate ∞-categories.
The two ∞-categories are as follows. One is DGCatKar, whose objects

are essentially small Karoubian DG categories and morphisms are exact
functors. The other is DGCatcomp.gen.

cont,pr.comp., whose objects are cocomplete com-
pactly generated categories and morphisms are continuous functors preserv-
ing compactness.

1.4.5. Let C0 be an essentially small (but not cocomplete) DG category.
Let S be a subset of its objects.

We say that S Karoubi-generates C0 if every object in the homotopy
category of C0 can be obtained from objects in S by a finite iteration of op-
erations of taking the cone of a morphism, and passing to a direct summand
of an object.

By combining Lemmas 1.4.3 with 1.3.3 we obtain:

Corollary 1.4.6. Let C be a cocomplete DG category. Let S ⊂ Cc be a
subset of objects that generates C. Then S Karoubi-generates Cc.

1.5. Symmetric monoidal structure and duality

1.5.1. The notion of dual of a DG category. A DG category C is
called dualizable if it is such as an object of the symmetric monoidal category
(DGCatcont,⊗). We refer the reader to [DrGa1, Sect. 4.1] for a review of some
of the properties of this notion. The most important ones are listed below.

For a dualizable category C we denote by C∨ its dual. One constructs
C∨ explicitly as

(1.3) C∨ 	 Functcont(C,Vect).

In addition, for any D ∈ DGCatcont, the natural functor

C∨ ⊗D → Functcont(C,D)

is an equivalence.

1.5.2. If F : C1 → C2 is a (continuous) functor between dualizable cat-
egories, there exists a canonically defined dual functor F∨ : C∨

2 → C∨
1 (the

construction follows, e.g., from (1.3)). The assignment F �→ F∨ is functorial
in F. One has (F∨)∨ = F, (G ◦ F)∨ = F∨ ◦ G∨.

From here we obtain that if the functors
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F : C1 � C2 : G

are mutually adjoint, then so are the functors

G∨ : C∨
2 � C∨

1 : F∨.

1.5.3. IfC is compactly generated, then it is dualizable. We have a canon-
ical identification

(C∨)c 	 (Cc)op.

Vice versa, if C1 and C2 are two compactly generated categories, then
an identification

Cc
1 	 (Cc

2)
op

gives rise to an identification

C∨
1 	 C2.

1.6. Limits of DG categories

The reason that we work with DG categories rather than with triangulated
ones is that the limit (i.e., projective limit) of DG categories is well-defined
as a DG category (while the corresponding fact for triangulated categories
is false).

More precisely, the (∞, 1)-categories DGCatcont and DGCat admit limits
and the forgetful functor DGCatcont → DGCat commutes with limits (this
is essentially [Lu1, Proposition 5.5.3.13]) This is important for us because
the DG category of D-modules on an algebraic stack is defined as a limit
(see Sect. 2.1.1 below).

1.6.1. Let

i �→ Ci, (i → j) �→ (φi,j ∈ Functcont(Ci,Cj))

be a diagram of DG categories, parameterized by an index category I. The
limit

C := lim
←−
i∈I

Ci

is a priori defined by a universal property in DGCatcont: for a DG category
D we have a functorial isomorphism

(Functcont(D,C))grpd 	 lim
←−
i∈I

(Functcont(D,Ci))
grpd
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where the in the left-hand side the limit is taken in the (∞, 1)-category
∞ -Grpd. We remind that the superscript “grpd” means that we are taking
the maximal ∞-subgroupoid in the corresponding ∞-category.

1.6.2. Note that [Lu1, Corollary 3.3.3.2 ] provides a more explicit descrip-
tion of C. Namely, objects of C are Cartesian sections, i.e., assignments

i � (ci ∈ Ci), φi,j(ci)
αφi,j	 cj ,

equipped with data making αφi,j
coherently associative. In fact, this descrip-

tion follows easily from the above functorial description, by takingD = Vect,
and using the fact Functcont(Vect,C) 	 C as DG categories.

If c := (ci, αφi,j
) and c̃ := (c̃i, α̃φi,j

) are two such objects, then one can
upgrade the assignment

i �→ MapsCi
(ci, c̃i)

into a homotopy I-diagram in Vect, and

MapsC(c, c̃) 	 lim
←−
i∈I

MapsCi
(ci, c̃i)

as objects of Vect.

1.6.3. The following observation will be useful in the sequel. Let C =
lim
←−
i∈I

Ci be as above, and let

(α ∈ A) �→ (cα ∈ C)

be a collection of objects of C parameterized by some category A. In par-
ticular, for every i ∈ I we obtain a functor

(α ∈ A) �→ (ci,α ∈ Ci).

We have:

Lemma 1.6.4. For every i, the map from colim
−→
α∈A

ci,α ∈ Ci to the i-th com-

ponent of the object colim
−→
α∈A

cα is an isomorphism.

In other words, colimits in a limit of DG categories can be computed
component-wise.
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Remark 1.6.5. The assertion of Lemma 1.6.4 can be reformulated as saying
that the evaluation functors evi : C → Ci commute with colimits, i.e., are
continuous. This is tautological from the definition of C as a limit in the
category DGCatcont.

1.7. Colimits in DGCatcont

The goal of the remaining part of Sect. 1 is to provide a categorical frame-
work for Sects. 4.2–4.3. This material is not used in other parts of the article.

1.7.1. As was mentioned in Sect. 1.6, limits in DGCatcont are the same
as limits in DGCat. However, colimits are different (for example, the colimit
taken in DGCat does not have to be cocomplete).

It is known to experts that under suitable set-theoretical conditions, col-
imits in DGCatcont always exist. We are unable to find a really satisfactory
reference for this fact.

On the other hand, in this paper we work only with colimits of those
functors

Ψ : I → DGCatcont

that satisfy the following condition: for every arrow i → j in I the corre-
sponding functor ψi,j : Ψ(i) → Ψ(j) admits a continuous right adjoint. In
this case existence of the colimit of Ψ is provided by Proposition 1.7.5 below.

1.7.2. The setting. Let I be a small category, and let Ψ : I → DGCatcont
be a functor

i � Ci, (i → j) ∈ I � ψi,j ∈ Functcont(Ci,Cj).

Assume that for every arrow i → j in I, the above functor ψi,j admits a
continuous right adjoint, φj,i .

We can then view the assignment

i � Ci, (i → j) ∈ I � φj,i ∈ Functcont(Cj ,Ci).

as a functor Φ : Iop → DGCatcont .

Remark 1.7.3. Some readers may prefer to assume, in addition, that each
DG categoryCi is compactly generated. As explained in Sect. 1.9 below, this
special case of the situation of Sect. 1.7.2 is very easy (Propositions 1.7.5 and
1.8.3 formulated below become obvious, and it is easy to understand “who
is who”). Moreover, this case is enough for the applications in Sects. 4.2–4.3.
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1.7.4. The following proposition is a variant of [Lu1, Corollary 5.5.3.4];
a digest of the proof is given in [GL:DG, Lemma 1.3.3].

Proposition 1.7.5. In the situation of Sect. 1.7.2, the colimit

colim
−→
i∈I

Ci := colim
−→
I

Ψ ∈ DGCatcont

exists and is canonically equivalent to the limit

lim
←−
i∈Iop

Ci := lim
←−
Iop

Φ ∈ DGCatcont ;

the equivalence is uniquely characterized by the condition that for i0 ∈ I, the
evaluation functor

evi0 : lim←−
i∈Iop

Ci → Ci0

is right adjoint to the tautological functor

insi0 : Ci0 → colim
−→
i∈I

Ci ,

in a way compatible with arrows in I.

The above proposition can be reformulated as follows. Let C denote the
limit of the DG categories Ci . The claim is that each functor evi : C → Ci

admits a left adjoint functor ′insi : Ci → C, and that the functors ′insi :
Ci → C together with the isomorphisms

′insj ◦ψi,j 	 ′insi , (i → j) ∈ I,

that one obtains by adjunction, make C into a colimit of the DG categories
Ci .

Remark 1.7.6. Let I be filtered. In this case one can show (see [GL:DG,
Lemma 1.3.6]) that if an index i0 ∈ I is such that for every arrow i0 → i the
functor ψi0,i : Ci0 → Ci is fully faithful then the functor insi0 is fully faithful.
If C is compactly generated this follows from Lemma 1.9.5(ii) below.

1.8. Colimits and duals

1.8.1. Assume now that the categories Ci are dualizable. Then we can
produce yet another functor

Φ∨ : I → DGCatcont
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that sends

i � C∨
i , (i → j) ∈ I � (φj,i)

∨ ∈ Functcont(C
∨
i ,C

∨
j ).

1.8.2. In this case we have the following result ([GL:DG, Lemma 2.2.2]):

Proposition 1.8.3. The category

lim
←−
i∈Iop

Ci := lim
←−
Iop

Φ

is dualizable, and its dual is given by

colim
−→
i∈I

C∨
i := colim

−→
I

Φ∨.

This identification is uniquely characterized by the property that for i0 ∈ I,
we have

(1.4) (insi0,Φ∨)∨ 	 evi0,Φ ,

in a way compatible with arrows in I.

In formula (1.4), the notation insi0,Ψ∨ means the functor

insi0 : C
∨
i0 → colim

−→
I

Φ∨,

and the notation evi0,Φ means the functor

evi0 : lim←−
Iop

Φ → Ci0 .

Remark 1.8.4. By adjunction between ins and ev (see Proposition 1.7.5),
one gets from (1.4) a similar isomorphism (insi0,Ψ)

∨ 	 evi0,Ψ∨ .

1.9. Colimits of compactly generated categories

The main goal of this subsection is to demonstrate that the results of
Sects. 1.7–1.8 are very easy under the additional assumption that each DG
category Ci is compactly generated.

1.9.1. Who is who. Suppose that in the situation of Sect. 1.7.2 each of
the categories Ci is compactly generated, so
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Ci 	 Ind(Cc
i )

or equivalently,

(1.5) Ci 	 Funct((Cc
i )

op,Vect).

By Proposition 1.2.4, the assumption that the functor ψi,j : Ci → Cj has
a continuous right adjoint just means that ψi,j(C

c
i ) ⊂ Cc

j (so ψi,j is the
ind-extension of a functor ψc

i,j : C
c
i → Cc

j).

Moreover, the right adjoint functor φj,i : Cj → Ci is just the restriction
functor

Funct((Cc
j)

op,Vect) → Funct((Cc
i )

op,Vect)

corresponding to ψc
i,j : C

c
i → Cc

j .

1.9.2. On Propositions 1.7.5 and 1.8.3 in the compactly generated
case.

Set C := colim
−→
i∈I

Ci . In our situation the existence of this colimit is clear:

in fact,

(1.6) C 	 Ind( colim
−→
i∈I

Cc
i ),

where the colimit in the right hand side is computed in DGCat.

Just as in Sect. 1.9.1, we can rewrite (1.6) as

(1.7) C 	 Funct( colim
−→
i∈I

(Cc
i )

op,Vect).

Now the canonical equivalence

C 	 lim
←−
i∈Iop

Ci

from Proposition 1.7.5 becomes obvious: this is just the composition

C 	 Funct( colim
−→
i∈I

(Cc
i )

op,Vect) 	 lim
←−
i∈Iop

Funct((Cc
i )

op,Vect) 	 lim
←−
i∈Iop

Ci ,

where the first equivalence is (1.7) and the third one comes from (1.5).
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Proposition 1.8.3 says that C is dualizable and

(1.8) C∨ 	 colim
−→
i∈I

C∨
i .

This is clear because by formula (1.6) and Sect. 1.5.3, both sides of (1.8)
canonically identify with

Ind( colim
−→
i∈I

(Cc
i )

op)

(the colimit in this formula is computed in DGCat).

1.9.3. As a consequence of (1.6), we obtain the following

Corollary 1.9.4. In the situation of Sect. 1.9.1 the category C is compactly
generated. More precisely, objects of C of the form

(1.9) insi(c), i ∈ I, c ∈ Cc
i

are compact and generate C.

In addition, one has the following lemma.

Lemma 1.9.5. Suppose that in the situation of Sect. 1.9.1 the category I
is filtered. Then

(i) every compact object of C is of the form (1.9);
(ii) for any i, i′ ∈ I, c ∈ Cc

i , and c′ ∈ Cc
i′ the canonical map

colim
j, α:i→j, β:i′→j

MapsCj
(ψi,j(c), ψi′,j(c

′)) → MapsC(insi(c), insi′(c
′))

is an isomorphism.

Proof. For statement (ii), see [Roz].
Using (ii) and the assumption that I is filtered, it is easy to see that the

class of objects of the form (1.9) is closed under cones and direct summands.
So (i) follows from (ii) and Corollary 1.4.6.

2. Preliminaries on the DG category of D-modules on an
algebraic stack

In this section we recall some definitions and results from [DrGa1].
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2.1. D-modules on prestacks and algebraic stacks

2.1.1. Let Y be a prestack (always assumed locally of finite type). Recall

following [DrGa1, Sect. 6.1] that the category D-mod(Y) is defined as the

limit

(2.1) lim
←−

S∈(Schaff
ft )/Y

D-mod(S),

where the limit is taken in the (∞, 1)-category DGCatcont. Here

S �→ D-mod(S)

is the functor

(Schaffft )
op → DGCatcont

were for f : S′ → S the corresponding map D-mod(S) → D-mod(S′) is f !.

I.e., as was explained in Sect. 1.6.2, informally, an object

F ∈ D-mod(BunG) is an assignment for every S → Y of an object

FS ∈ D-mod(S), and for every f : S′ → S over Y of an isomorphism

f !(FS) 	 FS′ .

In particular, for F1,F2 ∈ D-mod(BunG), the complex Maps(F1,F2) is

calculated as

lim
←−

S∈(Schaff
ft )/Y

MapsD-mod(S)((F1)S , (F2)S).

This definition has several variants. For example, we can replace the

category of affine schemes by that of quasi-compact schemes, or all schemes.

2.1.2. Assume now that Y is an Artin stack (see [GL:Stacks, Sect. 4] for

our conventions regarding Artin stacks).

In this case, as in [Ga1, Corollary 11.2.3], in the formation of the limit

in (2.1), we can replace the category (Schaffft )/Y by its non-full subcategory

(Schaffft )/Y,smooth, where we restrict objects to be those pairs (S, g : S → Y)

for which the map g is smooth, and 1-morphisms to smooth maps between

affine schemes.

As before, we can replace the word “affine” by “quasi-compact”, or just

consider all schemes.
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2.2. D-modules on a quasi-compact algebraic stack

2.2.1. QCA and locally QCA stacks. QCA is shorthand for “quasi-

compact and with affine automorphism groups”.

Definition 2.2.2. We say that an algebraic stack Y is locally QCA if the

automorphism groups of its field-valued points are affine. We say that Y is

QCA if it is quasi-compact and locally QCA.

Convention: in this article all stacks will be assumed to be locally QCA.

The reason is clear from Theorem 2.2.4 below.

2.2.3. A property of QCA stacks. The following result is established

in [DrGa1, Theorem 8.1.1].

Theorem 2.2.4. Let Y be a QCA stack. Then the category D-mod(Y) is

compactly generated.

Remark 2.2.5. In fact, [DrGa1, Theorem 8.1.1] produces an explicit set of

compact generators of D-mod(Y). These are objects induced from coherent

sheaves on Y.

Remark 2.2.6. Before [DrGa1], the above result was known for algebraic

stacks that can be represented as Z/G, where Z is a quasi-compact scheme

and G is an affine algebraic group acting on S. Most quasi-compact Artin

stacks that appear in practice (e.g., all quasi-compact open substacks of

BunG) admit such a representation. More generally, it was known for alge-

braic stacks that are perfect in the sense of [BFN].

2.2.7. Cartesian products. The following result is established in

[DrGa1, Corollary 8.3.4].

Proposition 2.2.8. Let Y and Y′ be QCA stacks. Then the natural functor

D-mod(Y)⊗D-mod(Y′) → D-mod(Y× Y′)

is an equivalence.

Remark 2.2.9. In fact, as is remarked in the proof of [DrGa1, Corollary 8.3.4],

the assertion of Proposition 2.2.8 is valid for any pair of prestacks Y and Y′

as long as either D-mod(Y) or D-mod(Y′) is dualizable (see Sect. 1.5.1).
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2.2.10. Compactness and coherence. Let Z be a quasi-compact
scheme. An object of D-mod(Z) is said to be coherent if it is a bounded
complex whose cohomology sheaves are coherent D-modules.

It is known that the (non cocomplete) subcategory D-modcoh(Z) that
consists of coherent objects coincides with D-mod(Z)c (see [DrGa1, Sect.
5.1.17]). Recall from Sect. 1.2.1 that for a DG category C we denote by Cc

the full subcategory of compact objects.
For an algebraic stack Y, an object F ∈ D-mod(Y) is said to be coherent

if f !(F) (or equivalently, f∗
dR(F)) is coherent for any smooth map f : Z →

Y, where Z is a quasi-compact scheme. So by definition, the property of
coherence is local for the smooth topology. The full (but non-cocomplete)
subcategory of coherent objects of D-mod(Y) is denoted by D-modcoh(Y).

Theorem 2.2.11. Let Y be a QCA stack.

(i) We have the inclusion D-mod(Y)c ⊂ D-modcoh(Y).
(ii) The above inclusion is an equality if and only if for every geometric

point y of Y, the quotient of the automorphism group Aut(y) by its
unipotent radical is finite.

This theorem is proved in [DrGa1, Lemma 7.3.3 and Corollary 10.2.7].

Remark 2.2.12. One may wonder how far coherence is from compactness.
The answer is provided by the notion of safety, introduced in [DrGa1, Sect.
9.2]. In [DrGa1, Proposition 9.2.3] it is shown that an object of D-modcoh(Y)
is compact if and only if it is safe.

Remark 2.2.13. Note that the notion of coherence of D-modules makes sense
for any algebraic stack Y, i.e., it does not have to be quasi-compact: we test it
by smooth maps Z → Y, where Z is a quasi-compact scheme. The inclusion
of point (i) of Theorem 2.2.11 remains valid in this context. The proof is
very easy: for a map f : Z → Y, the functor f∗

dR sends compacts to compacts
because it admits a continuous right adjoint, namely fdR,∗.

2.2.14. Verdier duality. Let Y be a QCA stack. Accoding to [DrGa1,
Sect. 7.3.4], the (non-cocomplete) DG category D-modcoh(Y) carries a nat-
ural anti-involution

DVerdier
Y : (D-modcoh(Y))

op → D-modcoh(Y),

which we refer to as Verdier duality.
The following key feature of this functor is established in [DrGa1, Corol-

lary 8.4.2]:
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Theorem 2.2.15. The functor DVerdier
Y sends the subcategory

(D-mod(Y)c)op ⊂ (D-modcoh(Y))
op

to D-mod(Y)c ⊂ D-modcoh(Y).

2.2.16. By Sect. 1.5.3, we obtain that the resulting functor

DVerdier
Y : (D-mod(Y)c)op → D-mod(Y)c

uniquely extends to an equivalence

(2.2) DVerdier
Y : D-mod(Y)∨ 	 D-mod(Y).

Alternatively, we can view the Verdier duality functor as follows. By

Sect. 1.5.1, the DG category Functcont(D-mod(Y),D-mod(Y)) identifies tau-

tologically with

D-mod(Y)∨ ⊗D-mod(Y).

The equivalence (2.2) is characterized by the property that the identity

functor on D-mod(Y) corresponds to the object of D-mod(Y) ⊗ D-mod(Y)

that identifies via Proposition 2.2.8 with

(ΔY)dR,∗(ωY) ∈ D-mod(Y× Y).

Here ωY ∈ D-mod(Y) is the dualizing object and ΔY : Y → Y × Y is the

diagonal.

Let Y1,Y2 be QCA stacks. If F : D-mod(Y1) → D-mod(Y2) is a con-

tinuous functor then the dual functor F∨ : D-mod(Y2)
∨ → D-mod(Y1)

∨

(see Sect. 1.5.2) will be considered, via (2.2), as a functor D-mod(Y2) →
D-mod(Y1).

We will use the following fact [DrGa1, Proposition 8.4.8].

Proposition 2.2.17. For any schematic quasi-compact morphism

f : Y1 −→ Y2 , the functors

fdR,∗ : D-mod(Y1) → D-mod(Y2), f ! : D-mod(Y2) → D-mod(Y1)

are dual to each other in the sense of Sect. 1.5.2.
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2.3. Non quasi-compact algebraic stacks

Let Y be now a stack, which is only assumed to be locally QCA. Then every
quasi-compact open substack U ⊂ Y is QCA, so the category D-mod(U) is
compactly generated by Theorem 2.2.4. However, it is not true, in general,
that the category D-mod(Y) is compactly generated. For a counterexample,
see Sect. 12.

In this subsection we give a description of the subcategory of compact
objects

D-mod(Y)c ⊂ D-mod(Y),

see Proposition 2.3.7 below.

2.3.1. The category D-mod(Y) as a limit. The following statement
immediately follows from the definition of D-mod(Y), see Sect. 2.1.1.

Lemma 2.3.2. The restriction functor

D-mod(Y) → lim
←−
U⊂Y

D-mod(U),

is an equivalence, where the limit is taken over the poset of open quasi-
compact substacks of Y.

In particular, we obtain that for F1,F2 ∈ D-mod(Y), the natural map

(2.3) MapsD-mod(Y)(F1,F2) → lim
←−
U⊂Y

MapsD-mod(U)(F1|U ,F2|U )

is an isomorphism.
The following observation will be useful in the sequel:

Corollary 2.3.3. Suppose that a family of objects Fα ∈ D-mod(Y) is locally
finite, i.e., for every quasi-compact open U ⊂ Y the set of α’s such that
Fα|U �= 0 is finite. Then the map

⊕
α
Fα →

α
ΠFα

is an isomorphism.

Proof. Follows immediately from (2.3) and Lemma 1.6.4.

2.3.4. The functors j∗ and j!. Let U
j
↪→ Y be an open substack. We

have a pair of (continuous) adjoint functors



46 V. Drinfeld and D. Gaitsgory

j∗ : D-mod(Y) � D-mod(U) : j∗.

In particular, the functor j∗ sends D-mod(Y)c to D-mod(U)c.

Now, the functor j∗ has a partially defined left adjoint, denoted j!. It
again follows automatically that if for FU ∈ D-mod(U)c, the object j!(FU ) ∈
D-mod(Y) is defined, then it is compact.

We claim:

Lemma 2.3.5. Let FU ∈ D-mod(U) be such that j!(FU ) is defined.

(a) The canonical map

(2.4) FU → j∗(j!(FU ))

is an isomorphism.
(b) If j′ : U ′ ↪→ Y is another open substack, then

(j′)∗(j!(FU )) 	 j̃!(FU |U∩U ′),

(where j̃ : U ∩ U ′ ↪→ U ′). In particular, j̃!(FU |U∩U ′) is defined.

Proof. The functor j∗ ◦ j! is the partially defined left adjoint of j∗ ◦ j∗, and
the natural transformation Id → j∗ ◦ j! is obtained by adjunction from the
co-unit j∗ ◦ j∗ → Id. However, the latter is an isomorphism since j∗ is fully
faithful.

Statement (b) follows similarly.

2.3.6. A description of the subcategory D-mod(Y)c ⊂ D-mod(Y).

Proposition 2.3.7. An object F ∈ D-mod(Y) is compact if and only if

(2.5) F = j!(FU )

for some open quasi-compact U
j
↪→ Y and some FU ∈ D-mod(U)c.

Formula (2.5) should be understood as follows: the partially defined
functor j! is defined on FU , and the resulting object is isomorphic to F.

Remark 2.3.8. By Lemma 2.3.5(a), the object FU can be recovered from F

as F|U := j∗(F).

2.3.9. Proof of Proposition 2.3.7. First, let us give two more reformu-
lations of condition (2.5):
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Lemma 2.3.10. For F ∈ D-mod(Y) the following conditions are equivalent:

(1) F = j!(FU ) for some FU ∈ D-mod(U).
(2) For any F1 ∈ D-mod(Y), supported on Y − U , we have

HomD-mod(Y)(F,F1) = 0.

(3) For any U
j̃
↪→ U ′ j′

↪→ Y, where U ′ is another open quasi-compact sub-
stack of Y, we have:

F|U ′ 	 j̃!(FU ),

in particular, the object j̃!(FU ) is defined.

Proof. By adjunction, (1)⇔(2). The implication (1)⇒(3) follows from
Lemma 2.3.5(b).

Let us show that (3) implies (2). By formula (2.3), for any F,F1 ∈
D-mod(Y) one has

(2.6) MapsD-mod(Y)(F,F1) 	 lim
←−
U ′

MapsD-mod(U ′)(F|U ′ ,F1|U ′).

If F1 is supported on Y − U then all the terms in the RHS are zero, so the
LHS is zero.

Let us now prove Proposition 2.3.7.

Proof. As was remarked in Sect. 2.3.4, if (2.5) holds then the compactness
of F follows by adjunction.

Conversely, suppose F ∈ D-mod(Y) is compact. Then by Sect. 2.3.4, for
every open U ⊂ Y the object F|U ∈ D-mod(U) is compact. So it remains to

show that (2.5) holds for some quasi-compact open U
j
↪→ Y.

Assume the contrary. Using the equivalence (1)⇔(3) of Lemma 2.3.10,
we obtain that for every quasi-compact open U ⊂ Y there is a quasi-compact
open U ′ ⊂ Y containing U such that (jU,U ′)!(F|U ) �= (F|U ′) (here jU,U ′ : U ↪→
U ′).

Thus, we obtain an increasing sequence of open quasi-compact
substacks Ui ⊂ Y such that (jUi,Ui+1

)!(F|Ui
) �= F|Ui+1

. Therefore, by
Lemma 2.3.10, for each i there exists Ei ∈ D-mod(Ui+1) such that Ei|Ui

= 0
but Hom(F|Ui+1

,Ei) �= 0.

Let V be the union of the Ui’s and let Ẽi ∈ D-mod(V ) be the direct
image of Ei under Ui ↪→ V . Then

(2.7) Hom(F|V , Ẽi) = Hom(F|Ui+1
,Ei) �= 0.
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By Corollary 2.3.3,

(2.8) Hom(F|V ,⊕
i
Ẽi) 	

∏
i

Hom(F|V , Ẽi).

On the other hand, by Sect. 2.3.4, F|V is compact, so Hom(F|V ,⊕
i
Ẽi) 	

⊕
i
Hom(F|V , Ẽi). This contradicts (2.8) because of (2.7).

3. Truncativeness and co-truncativeness

Until the last subsection of this section we let Y be a QCA stack.

3.1. The notion of truncative substack

3.1.1. Let Z
i
↪→ Y be a closed substack, and let Y

j←↩ U be the comple-
mentary open. Consider the corresponding pairs of adjoint functors

idR,∗ : D-mod(Z) � D-mod(Y) : i!, j∗ : D-mod(Y) � D-mod(U) : j∗ .

Recall that by Theorem 2.2.4, all the categories involved are compactly
generated.

Proposition 3.1.2. The following conditions are equivalent:

(i) The functor i! sends D-mod(Y)c to D-mod(Z)c.
(i′) The functor i! admits a continuous right adjoint.
(ii) The functor j∗ sends D-mod(U)c to D-mod(Y)c.
(ii′) The functor j∗ admits a continuous right adjoint.
(iii) The functor j!, left adjoint to j∗, is defined on all of D-mod(U).
(iii′) The functor j!, left adjoint to j∗, is defined on D-mod(U)c.
(iv) The functor i∗dR, left adjoint to idR,∗, is defined on all of D-mod(Y).
(iv′) The functor i∗dR, left adjoint to idR,∗, is defined on D-mod(Y)c.

Note that in the situation of (iii) and (iv) if the functors j! and i∗dR are
defined they are automatically continuous by adjunction.

To prove the proposition, we need the following lemma.

Lemma 3.1.3. The essential image of D-mod(Y)c under j∗ : D-mod(Y) →
D-mod(U) Karoubi-generates D-mod(U)c.

Proof. Since j∗ has a continuous right adjoint j∗ , we have j∗(D-mod(Y)c) ⊂
D-mod(U)c. Since the functor j∗ is conservative j∗(D-mod(Y)c) generates
D-mod(U). By Corollary 1.4.6, this implies that j∗(D-mod(Y)c) Karoubi-
generates D-mod(U)c.
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Proof of Proposition 3.1.2. Since j∗ preserves compactness and idR,∗ is fully
faithful and continuous, the fact that (ii) implies (i) follows from the exact
triangle

idR,∗(i
!(F)) → F → j∗ ◦ (j∗(F)).

The implication (i)⇒(ii) follows from Lemma 3.1.3 and the same exact tri-
angle.

The equivalences (i)⇔(i′) and (ii)⇔(ii′) follow from (the tautological)
Proposition 1.2.4.

Let us show that (iii′)⇔(iii)⇔(ii′). The full subcategory of objects of
D-mod(U) on which j! is defined is closed under colimits. Since D-mod(U)
is generated by D-mod(U)c we see that (iii′)⇔(iii). By Proposition 2.2.17,
the dual of the functor j∗ = j! : D-mod(Y) → D-mod(U) identifies, via the
self-duality equivalences

DVerdier
U : D-mod(U)∨ 	 D-mod(U), DVerdier

Y : D-mod(Y)∨ 	 D-mod(Y),

with j∗ : D-mod(U) → D-mod(Y). By duality (see Sect. 1.5.2), the existence
of a continuous right adjoint to j∗ is equivalent to the existence of (the
automatically continuous) left adjoint of j∨∗ 	 j∗. I.e., (iii)⇔(ii′).

Similarly to the above proof of (iii′)⇔(iii)⇔(ii′), one shows that
(iv′)⇔(iv)⇔(i′).

3.1.4. The following definition is crucial for this paper.

Definition 3.1.5. A closed substack Z
i
↪→ Y is called truncative (resp., an

open substack U
j
↪→ Y is called co-truncative) if it satisfies the equivalent

conditions of Proposition 3.1.2.

3.1.6. Let us reformulate Definition 3.1.5 in terms of the non-cocomplete
DG categories D-mod(Y)c, D-mod(Z)c, D-mod(U)c.

First, let Z
i
↪→ Y be any closed substack, and let U

j
↪→ Y be the com-

plementary open, then we have an exact sequence6 of Karoubian (non-
cocomplete) DG categories

(3.1) 0 → D-mod(Z)c
(idR,∗)c→ D-mod(Y)c

(j∗)c→ D-mod(U)c → 0.

6By definition, exactness means that ic∗ identifies D-mod(Z)c with a full subcat-
egory of D-mod(Y)c, and (j∗)c identifies the Karoubi-completion of the quotient
D-mod(Y)/D-mod(Z)c with D-mod(U)c.
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The exactness of (3.1) follows from the fact that the corresponding se-
quence of the ind-completions

0 → D-mod(Z)
idR,∗→ D-mod(Y)

j∗→ D-mod(U) → 0

is exact, see Sect. 1.4.4.
Each of the conditions (i)–(ii) from Proposition 3.1.2 says that the sub-

category

D-mod(Z)c ⊂ D-mod(Y)c

is right-admissible7, which by definition means that the functor

(idR,∗)
c = (i!)

c : D-mod(Z)c → D-mod(Y)c

admits a right adjoint (i!)c : D-mod(Y)c → D-mod(Z)c, or equivalently, the
functor

(j∗)c : D-mod(Y)c → D-mod(U)c

has a right adjoint (j∗)c : D-mod(U)c → D-mod(Y)c .
Similarly, conditions (iii)–(iv) from Proposition 3.1.2 say that the sub-

category

D-mod(Z)c ⊂ D-mod(Y)c

is left-admissible, which by definition means that the functor

(idR,∗)
c : D-mod(Z)c → D-mod(Y)c

admits a left adjoint (i∗dR)
c : D-mod(Y)c → D-mod(Z)c, or, equivalently, the

functor

(j∗)c : D-mod(Y)c → D-mod(Z)c

has a left adjoint (j!)
c : D-mod(Z)c → D-mod(Y)c .

In our situation left admissibility is equivalent to right admissibility by
Verdier duality.

Thus if i : Z ↪→ Y is truncative then in addition to (3.1) one has the
exact sequences

0 → D-mod(U)c
(j!)c→ D-mod(Y)c

(i∗dR)
c

→ D-mod(Z)c → 0,(3.2)

0 → D-mod(U)c
(j∗)c→ D-mod(Y)c

(i!)c→ D-mod(Z)c → 0.(3.3)

7Synonyms: right-admissible = coreflective, left-admissible = reflective.
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It is convenient to arrange the functors between D-mod(Z)c and
D-mod(Y)c into a sequence

(3.4) (i∗dR)
c , (idR,∗)

c , (i!)c

and the functors between D-mod(U) and D-mod(Y) into a sequence

(3.5) (j!)
c, (j∗)c, (j∗)

c .

In each of the sequences, each neighboring pair forms an adjoint pair of
functors.

3.2. Some examples of (co)-truncative substacks

3.2.1. (Co)-truncativeness is a purely “stacky” phenomenon, i.e., it al-
most never happens for schemes.

More precisely, it is easy to see that if j : U ↪→ Y is an open embedding
of schemes which is not a closed embedding then U cannot be co-truncative.
Indeed, choose M ∈ Coh(U) such that j∗(M) is not coherent. Then

j∗(indD-mod(U)(M)) 	 indD-mod(Y)(j∗(M))

is not in D-mod(Y )c. Here indD-mod(−) denotes the induction functor from
IndCoh(−) to D-mod(−), see [DrGa1, Sect. 5.1.3].

3.2.2. Example. The following example of a co-truncative substack is
most important for us:

Take Y = An/Gm, where Gm acts on An by dilations. Take U = (An −
{0})/Gm 	 Pn−1. In Sect. 5 we will see that U ↪→ Y is co-truncative.

3.2.3. The most basic case of the above example is when n = 1. In this
case, the co-truncativeness assertion is particularly evident. Namely, let us
check that condition (iii′) of Proposition 3.1.2 holds. Indeed, D-mod(U) 	
Vect, so it is sufficient to show that j!(k) is defined, where k is the generator
of Vect. This is clear since we are dealing with holonomic D-modules.

3.2.4. Here is a generalization of the example of Sect. 3.2.3 in a direction
different from Sect. 3.2.2: if Y is any QCA stack that has only finitely many
isomorphism classes of k-points then every open substack U ⊂ Y is co-
truncative. Indeed, condition (iii′) of Proposition 3.1.2 is verified because
every object of D-mod(U)c is holonomic.

Examples of such Y include N\G/B, or any quasi-compact open of BunG
for X of genus 0.



52 V. Drinfeld and D. Gaitsgory

3.3. The non-standard functors

Let Z
i
↪→ Y be a truncative closed substack and U

j
↪→ Y the corresponding

co-truncative open substack.

Definition 3.3.1. The functors right adjoint to i! and j∗ are denoted by

i? : D-mod(Z) → D-mod(Y), j? : D-mod(Y) → D-mod(U).

Remark 3.3.2. The proof of the equivalences (iii)⇔(ii′) and (iv)⇔(i′) from
Proposition 3.1.2 shows that i? is the dual to i∗dR : D-mod(Y) → D-mod(Z)
and j? is the dual to j! : D-mod(U) → D-mod(Y) in the sense of Sect. 1.5.2.
Recall that these dualities follow from the duality between i! and idR,∗ , and
between j∗ and j∗.

Remark 3.3.3. Recall that the existence of i? and/or j? as a continuous func-
tor is among the equivalent definitions of truncativeness, see Definition 3.1.5
and Proposition 3.1.2(i′, ii′).

The existence of i∗dR and/or j! as an everywhere defined (and automati-
cally continuous) functor is also among the equivalent definitions of trunca-
tiveness, see Proposition 3.1.2(iii, iv).

The functors i?, j
?, i∗dR, j! are called the non-standard functors associated

to Z ⊂ Y (or to U ⊂ Y).
The functors i∗ and j! are at least, familiar as partially defined functors

(e.g., they are always defined on the holonomic subcategory), but i? and
j? are quite unfamiliar. On the other hand, in some situations the non-
standard functors identify with certain standard functors, see Example 3.3.9
and Remark 3.3.10 below.

3.3.4. Inventory. It is convenient to arrange the functors between
D-mod(Z) and D-mod(Y) into a sequence

(3.6) i∗dR, idR,∗, i
!, i?

and the functors between D-mod(U) and D-mod(Y) into a sequence

(3.7) j!, j
∗, j∗, j

?.

In each of the sequences, each neighboring pair forms an adjoint pair of
functors. The first and last functors in (3.6) and in (3.7) are non-standard,
the other functors are standard. By Remark 3.3.2, each of the sequences
(3.6)–(3.7) is self-dual in the sense of Sect. 1.5.2.
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3.3.5. We know that the functors idR,∗ and j∗ are fully faithful; equiva-
lently, the adjunctions

(3.8) i∗dR ◦ idR,∗ → IdD-mod(Z), IdD-mod(U) → j? ◦ j∗

are isomorphisms (just as are the adjunctions j∗ ◦ j∗ → IdD-mod(U) and

IdD-mod(Z) → i! ◦ idR,∗, which involve only the standard functors).

Proposition 3.3.6. (i) The functors i? and j! are fully faithful.
(ii) The adjunctions i! ◦ i? → IdD-mod(Z) and IdD-mod(U) → j∗ ◦ j! are

isomorphisms.

Although this proposition is extremely simple, we will give two proofs.

Proof 1. Statements (i) and (ii) are clearly equivalent, so it suffices to prove
(ii).

Recall that the adjoint pairs (i!, i?) and (j∗, j?) are dual to the adjoint
pairs (i∗dR, idR,∗) and (j!, j

∗). So statement (ii) follows from the fact that the
adjunctions (3.8) are isomorphisms.

Proof 2. We will deduce statement (i) from the following general lemma,
which is part of the categorical folklore.8

Lemma 3.3.7. Let F be a functor between ∞-categories that admits a left
adjoint FL and a right adjoint FR. Then FL is fully faithful if and only if FR

is.

Let us apply Lemma 3.3.7 to F := j∗. Since (j∗)R = j∗ is fully faithful,
we obtain that (j∗)L = j! is fully faithful.

Let us apply Lemma 3.3.7 to F := i!. Since (i!)L = idR,∗ is fully faithful,
we obtain that (i!)R = i? is fully faithful.

3.3.8. Regardless of whether the substack Z ⊂ Y is truncative, one has
canonical exact sequences of DG categories

(3.9) 0 → D-mod(Z)
idR,∗→ D-mod(Y)

j∗→ D-mod(U) → 0

and

8Lemma 3.3.7 for ∞-categories immediately follows from the same statement for
usual categories. For proofs in the setting of usual categories, see [DT, Lemma 1.3],
[KeLa, Proposition 2.3], and the article on adjoint triples from [nLab] (on the other
hand, the reader can easily reconstruct the argument because we essentially used
it in the proof of Lemma 2.3.5(a)). Note that in the case of triangulated categories
and functors (which is enough for our purpose) Lemma 3.3.7 is well known.
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(3.10) 0 → D-mod(U)
j∗→ D-mod(Y)

i!→ D-mod(Z) → 0,

where the latter is obtained from the former by passing to right adjoints.
If Z is truncative one also has exact sequences

(3.11) 0 → D-mod(Z)
i?→ D-mod(Y)

j?→ D-mod(U) → 0

and

(3.12) 0 → D-mod(U)
j!→ D-mod(Y)

i∗dR→ D-mod(Z) → 0,

where (3.11) is obtained by passing to right adjoints from (3.10), and (3.12)
is obtained by passing to left adjoints from (3.9).

In addition, (3.9) and (3.10) are obtained from one another by passing
to the dual categories and functors. Similarly, (3.12) and (3.11) are obtained
from one another by passing to the dual categories and functors.

3.3.9. Example. Consider the situation of Sect. 3.2.3, i.e., the embedding
i : Z ↪→ Y, where Y = A1/Gm, Z = {0}/Gm. Let π : Y → Z be the morphism
induced by the map A1 → {0}. Let us show that the non-standard functors

i∗dR : D-mod(Y) → D-mod(Z) and i? : D-mod(Z) → D-mod(Y)

identify with the following standard functors:

i∗dR 	 πdR,∗ , i? 	 π! ;

in other words, (πdR,∗, idR,∗) and (i!, π!) are adjoint pairs. By Proposi-
tion 2.2.17, πdR,∗ is dual to π! and idR,∗ is dual to i!, so it suffices to
show that (πdR,∗, idR,∗) is an adjoint pair. Let us prove that for any
M ∈ D-mod(Y), N ∈ D-mod(Z) the map

πdR,∗ : Hom(M, idR,∗(N)) → Hom(πdR,∗(M), πdR,∗ ◦ idR,∗(N))

= Hom(πdR,∗(M),N)

is an isomorphism.
This is clear if M ∈ D-mod(Z) ⊂ D-mod(Y). The DG category

D-mod(Y) is generated by D-mod(Z) and j!(k), where j : pt = Y − Z ↪→ Y

is the open embedding. So it remains to consider the case M = j!(k). Then
Hom(M, idR,∗(N)) = 0 and πdR,∗(M) = 0 (the latter follows from the fact
the de Rham cohomology of A1 equals k).

Remark 3.3.10. Example 3.3.9 is a “baby case” of Proposition 5.3.2.
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3.4. Truncativeness of locally closed substacks

Let Z
i
↪→ Y be a locally closed substack. This means that i becomes a locally

closed embedding after any base change Y → Y, where Y is a scheme (in
fact, it suffices to verify this condition for just one smooth or flat covering
Y → Y).

Definition 3.4.1. A locally closed substack Z
i
↪→ Y is said to be truncative

if the functor i! preserves compactness (or equivalently, has a continuous
right adjoint functor i?).

For instance, any open substack is truncative.

3.4.2. Definition 3.4.1 immediately implies that truncativeness is transi-
tive:

Lemma 3.4.3. Let Y1 ↪→ Y2 ↪→ Y3 be locally closed embeddings. If Y1 is
truncative in Y2 and Y2 is truncative in Y3, then Y1 is truncative in Y3.

As in the case of schemes, every locally closed embedding Z ↪→ Y can be
factored (and even canonically so) as

(3.13) Z
i′

↪→ Y′ j
↪→ Y,

where i′ is a closed embedding, and j is an open embedding. Namely, Y′ :=
Y− (Z̄− Z), where Z̄ is the closure of Z in Y (so that Z is open in Z̄).

Lemma 3.4.4. A locally closed substack Z
i
↪→ Y is truncative if and only

if for some/any factorization (3.13) with i′ being closed and j open, Z in
truncative in Y′.

Proof. The “if” statement follows from Lemma 3.4.3. It remains to show that

if the composition (3.13) is truncative then so is Z
i′

↪→ Y′. This follows from
the fact that the essential image of D-mod(Y)c under j∗ Karoubi-generates
D-mod(Y′)c, see Lemma 3.1.3.

Remark 3.4.5. In the case of locally closed substacks the situation with the
non-standard functors is as follows. By duality (in the sense of Sect. 1.5.2),

a locally closed substack Z
i
↪→ Y is truncative if and only if the functor idR,∗

has a left adjoint functor i∗dR (which is automatically continuous).
Thus for a truncative locally closed substack we have adjoint pairs of

continuous functors (i∗dR, idR,∗) and (i!, i?) dual to each other. Just as in the
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case of closed embeddings (see Proposition 3.3.6), the functors idR,∗ and
i? are fully faithful; equivalently, the adjunctions i! ◦ i? → IdD-mod(Z) and
IdD-mod(Z) → idR,∗◦i∗dR are isomorphisms. But if the substack Z is not closed

then idR,∗ �= i! , so the functors idR,∗ and i! do not form an adjoint pair.

3.5. Truncativeness via coherence

3.5.1. As was mentioned in Sect. 2.2.10, the property of compactness of
a D-module on a stack is subtle. For example, it is not local in the smooth
topology. We are going to reformulate the notion of truncativeness via a
more accessible property, namely, coherence.

Proposition 3.5.2. (a) A locally closed substack Z
i
↪→ Y is truncative if

and only if the functor i! sends D-modcoh(Y) to D-modcoh(Z).

(b) An open substack U
j
↪→ Y is co-truncative if and only if j∗ sends

D-modcoh(U) to D-modcoh(Y).

Proof. To prove the “if” implications in both (a) and (b) we will use the
notion of safety from [DrGa1, Sect. 9.2], and the fact that for a morphism
f : Y1 → Y2 between QCA stacks, the functor fdR,∗ always preserves safety,
and f ! preserves safety if f itself is safe (in particular, when f is schematic);
see [DrGa1, Lemma 10.4.2].

Thus, the “if” implications follow from the fact that “compact-
ness=coherence+safety”, see [DrGa1, Proposition 9.2.3].

To prove the “only if” implication in (a), we will use the following result
(see [DrGa1, Lemma 9.4.7(a)]):

Lemma 3.5.3. For a QCA stack Y, an object F ∈ D-modcoh(Y) and an
integer n, there exists F′ ∈ D-mod(Y)c and a map F′ → F, such that its
cone lies in D-mod(Y)<−n.

Note that the functor i! is left t-exact, and has a finite cohomological
amplitude, say k. For F ∈ D-modcoh(Y), which lies in D-mod(Y)≥−m, choose
F′ as in Lemma 3.5.3 with n > k +m. Consider the exact triangle

i!(F′) → i!(F) → i!(F′′),

where F′′ := Cone(F′ → F). By construction, the maps

(3.14) τ≥−m(i!(F′)) → τ≥−m(i!(F)) → i!(F)

are isomorphisms.
By assumption, i!(F′) ∈ D-mod(Z)c ⊂ D-modcoh(Z). Note also

that the truncation functors preserve the subcategory D-modcoh(−).
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Hence τ≥−m(i!(F′)) ∈ D-modcoh(Z). Hence, (3.14) implies that i!(F) ∈
D-modcoh(Z), as desired.

The “only if” implication in (b) is proved similarly.

3.6. Stability of truncativeness

In this subsection i : Z ↪→ Y denotes a locally closed embedding.

3.6.1. Cartesian products.

Lemma 3.6.2. Suppose that a substack Z
i
↪→ Y is truncative. Then for any

QCA stack X, the substack Z× X ↪→ Y× X is also truncative.

Proof. By [DrGa1, Corollary 8.3.4], for a pair of QCA stacks X1 and X2, the
natural functor

D-mod(X1)⊗D-mod(X2) → D-mod(X1 × X2)

is an equivalence. So the functor (i× idX)
! : D-mod(Y×X) → D-mod(Z×X)

identifies with the functor i! ⊗ IdD-mod(X) , which clearly preserves compact-
ness.

3.6.3. Descent.

Proposition 3.6.4. Let Z ⊂ Y be a locally closed substack, f : Ỹ → Y a
smooth morphism, and Z̃ ⊂ Z ×

Y
Ỹ an open substack such that the resulting

morphism f ′ : Z̃ → Z is surjective. If the locally closed embedding ĩ : Z̃ ↪→ Ỹ

is truncative then so is i : Z ↪→ Y.

Proof. By Proposition 3.5.2(a), it suffices to show that i! sends D-modcoh(Y)
to D-modcoh(Z). The morphism f ′ is smooth and surjective, so it suffices to
show that the functor f ′! ◦ i! preserves coherence. But f ′! ◦ i! 	 ĩ! ◦ f !, and
each of the functors ĩ! and f ! preserves coherence.

Corollary 3.6.5. Let Z ⊂ Y be a locally closed substack. Suppose that each
z ∈ Z has a Zariski neighborhood U ⊂ Y such that Z∩U is truncative in U .
Then Z is truncative in Y.

Remark 3.6.6. The converse to Proposition 3.6.4 is false: truncativeness
downstairs does not imply truncativeness upstairs (e.g., consider the em-
bedding pt /Gm ↪→ A1/Gm smoothly covered by pt ↪→ A1). However, the
converse to Proposition 3.6.4 does hold for étale schematic morphisms; this
follows from Lemma 3.6.9 below.
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Lemma 3.6.7. Suppose that in a Cartesian diagram

Z̃
ĩ−−−−→ Ỹ

f ′
⏐⏐� ⏐⏐�f

Z
i−−−−→ Y

f is schematic, proper and surjective, and i a locally closed embedding. If Z̃
is truncative in Ỹ then Z is truncative in Y.

Proof. First, by [DrGa1, Lemma 5.1.6], the functor f ! is conservative. Hence,
the essential image of fdR,∗ generates D-mod(Y). Hence, by Corollary 1.4.6,

the essential image of D-mod(Ỹ)c under fdR,∗ Karoubi-generates D-mod(Y)c.
Therefore, it is sufficient to show that the functor i! ◦ fdR,∗ preserves com-

pactness. But i! ◦ fdR,∗ 	 f ′
dR,∗ ◦ ĩ!, the functor ĩ! preserves compactness

by assumption, and f ′
dR,∗ preserves compactness by properness (it has a

continuous right adjoint given by (f ′)!).

3.6.8. Quasi-finite base change.

Lemma 3.6.9. Suppose that f : Ỹ → Y is étale and schematic. If a locally
closed embedding i : Z ↪→ Y is truncative then so is ĩ : Z×

Y
Ỹ ↪→ Ỹ.

Proof. The functor fdR,∗ : D-mod(Ỹ) → D-mod(Y) is conservative. So by
Corollary 1.4.6, the essential image of D-mod(Y)c under f∗

dR 	 f ! Karoubi-

generates D-mod(Ỹ)c. So it is enough to show that ĩ! ◦f ! preserves compact-
ness. However, ĩ!◦f ! 	 f ′!◦i!. Now, i! preserves compactness by assumption,
and f ′! preserves compactness because it is isomorphic to (f ′)∗dR, which is
the left adjoint of a continuous functor, namely, f ′

dR,∗.

Lemma 3.6.10. If f : Ỹ ↪→ Y is a locally closed embedding and a locally
closed substack Z ↪→ Y is truncative then so is Z×

Y
Ỹ ↪→ Ỹ.

Proof. If f is an open embedding the statement holds by Lemma 3.6.9. If f
is a closed embedding use the fact that an object F ∈ D-mod(Ỹ) is compact
if and only if fdR,∗(F) ∈ D-mod(Y) is; this follows from the fact that the
functor fdR,∗ is fully faithful and continuous.

Lemma 3.6.10 for a closed embedding f admits the following generaliza-
tion.

Proposition 3.6.11. Let f : Ỹ → Y be a finite schematic morphism. If a
locally closed embedding i : Z ↪→ Y is truncative then so is ĩ : Z×

Y
Ỹ ↪→ Ỹ.
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To prove the proposition, we need the following lemma.

Lemma 3.6.12. Let g : X′ → X be a finite schematic morphism. If F′ ∈
D-mod(X′) is such that gdR,∗(F′) ∈ D-mod(X) is coherent then F′ is coher-
ent.

Proof. Follows immediately from the fact that the functor gdR,∗ is t-exact
and conservative.

Proof of Proposition 3.6.11. We have to show that the functor ĩ! preserves
coherence. Applying Lemma 3.6.12 to the morphism f ′ : Z×

Y
Ỹ → Z, we see

that it suffices to prove that the composition f ′
dR,∗ ◦ ĩ! preserves coherence.

But f ′
dR,∗ ◦ ĩ! 	 i! ◦ fdR,∗ and each of the functors i! and fdR,∗ preserves

coherence.

Remark 3.6.13. One can combine Lemma 3.6.9 and Proposition 3.6.11 to
the following statement: the assertion of Proposition 3.6.11 continues to
hold when f is a quasi-finite compactifiable morphism.

3.7. Intersections and unions of truncative substacks

Lemma 3.7.1. If Z1 and Z2 are locally closed truncative substacks of Y,
then so is Z1 ∩ Z2.

Proof. By Lemma 3.6.10, Z1 ∩ Z2 is truncative in Z1. Now, the assertion
follows from Lemma 3.4.3.

Proposition 3.7.2. Suppose that a locally closed substack Z ⊂ Y is equal to
the union of (possibly intersecting) locally closed substacks Zi, i = 1, ..., n.
If each Zi is truncative in Y, then so is Z.

First, let us prove the following particular case of Proposition 3.7.2.

Lemma 3.7.3. Let Z′ ↪→ Z ↪→ Y be closed embeddings. If Z′ and Z−Z′ are
truncative in Y then so is Z.

Proof. Consider the open substacks Y − Z ⊂ Y − Z′ ⊂ Y. The fact that
Z′ is truncative in Y means, by definition, that Y − Z′ is co-truncative in
Y. By Lemma 3.4.4, the fact that Z − Z′ is truncative in Y implies that
Z − Z′ is truncative in Y − Z′, i.e., that Y − Z is co-truncative in Y − Z′.
But the relation of co-truncativeness is transitive: this is clear if one uses
property (ii) from Proposition 3.1.2 as a definition of co-truncativeness. So
Y− Z is co-truncative in Y, i.e., Z is truncative in Y.

Proof of Proposition 3.7.2. We proceed by induction on n.
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By Corollary 3.6.5, it suffices to show that each z ∈ Z has a Zariski
neighborhood U ⊂ Y such that Z ∩ U is truncative in U . Choose i so that
z ∈ Zi . After replacing Z by an open neighborhood of z, one can assume
that Zi and Z are closed in Y.

Writing Z − Zi as a union of the substacks Zj − (Zi ∩ Zj), j �= i, and
applying the induction assumption, we see that Z−Zi is truncative in Y−Zi

and therefore in Y. It remains to apply Lemma 3.7.3 to Zi ↪→ Z ↪→ Y.

3.8. Truncativeness and co-truncativeness for non quasi-compact
stacks

Now suppose that Y is locally QCA (but not necessarily quasi-compact).

3.8.1. We give the following definitions:

Definition 3.8.2. (i) A locally closed substack Z ↪→ Y is said to be trunca-

tive if for every open quasi-compact substack
◦
Y ⊂ Y the intersection Z∩

◦
Y is

truncative in
◦
Y.

(ii) An open substack U ⊂ Y is said to be co-truncative if for every open

quasi-compact substack
◦
Y ⊂ Y the intersection U ∩

◦
Y is co-truncative in

◦
Y.

3.8.3. Clearly, a closed substack Z is truncative if and only if its comple-
mentary open is co-truncative.

In addition:

Lemma 3.8.4. If open substacks U1, U2 ⊂ Y are co-truncative then so is
U1 ∪ U2.

Proof. This immediately follows from Lemma 3.7.1.

3.8.5. As in Lemma 2.3.10, it is easy to see that U is co-truncative if and
only if the functor j!, left adjoint to j∗, is defined.

This formally implies that if i : Z ↪→ Y is truncative, then the functor
i∗dR, left adjoint to idR,∗, is also defined.

3.8.6. Finally, we note:

Lemma 3.8.7. For a co-truncative open quasi-compact substack U
j
↪→ Y the

functor

j! : D-mod(U) → D-mod(Y)

is fully faithful.

Proof. Follows from Lemma 2.3.5(a).
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4. Truncatable stacks

Let Y be an algebraic stack which is locally QCA. In this setting the notions
of truncativeness and co-truncativeness were introduced in Sect. 3.8.

4.1. The notion of truncatibility

We will now formulate a condition on Y called “truncatibility”. According to
Proposition 4.1.6 below, it implies that the category D-mod(Y) is compactly
generated.

Definition 4.1.1. The stack Y is said to be truncatable if it can be covered
by open quasi-compact substacks that are co-truncative.

4.1.2. By Lemma 3.8.4, we can rephrase Definition 4.1.1 as follows:

Lemma 4.1.3. A stack Y is truncatable if and only if every open quasi-
compact substack is contained in one which is co-truncative. Equivalently, Y
is truncatable if and only if the sub-poset of co-truncative open quasi-compact
substacks in Y is cofinal among all open quasi-compact substacks.

4.1.4. Notation. The poset of co-truncative open quasi-compact sub-
stacks U ⊂ Y is denoted by Ctrnk(Y); we will often consider this poset
as a category. Let Ctrnk(Y)op denote the opposite poset (or category).
Lemma 3.8.4 implies that Ctrnk(Y) is filtered.

The next statement immediately follows from Lemma 4.1.3.

Corollary 4.1.5. If Y is truncatable then the natural restriction functor

D-mod(Y) → lim
←−

U∈Ctrnk(Y)op

D-mod(U)

is an equivalence.

Proposition 4.1.6. If Y is truncatable then the category D-mod(Y) is com-
pactly generated.

Proof. Let U
j
↪→ Y be a co-truncative open quasi-compact substack and

FU ∈ D-mod(U)c. By Proposition 2.3.7, the object j!(FU ) ∈ D-mod(Y)
(which is well-defined by the co-truncativeness assumption) is compact. It
suffices to show that such objects generate D-mod(Y). In other words, we
have to show that if F ∈ D-mod(Y) is right-orthogonal to all such objects,
then F = 0.

For a given U , the fact that F is right-orthogonal to all j!(FU ) as
above is equivalent, by adjunction, to the fact that j∗(F) is right-orthogonal
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to D-mod(U)c. Since D-mod(U) is compactly generated, this implies that
j∗(F) = 0. By Corollary 4.1.5, this implies that F = 0.

4.1.7. As was mentioned in the introduction, we use Proposition 4.1.6
to deduce the main result of this paper (namely, the compact generation of
D-mod(BunG)) from the following result:

Theorem 4.1.8. Let G be a connected reductive group and X a smooth
complete connected curve over k. Let BunG denote the stack of G-bundles
on X. Then BunG is truncatable.

The proof for any connected reductive group G will be given in Sect. 9.
But its main idea is the same as in the easy case G = SL2 , which is consid-
ered separately in Sect. 6.

4.1.9. In Sects. 4.2–4.5 below we discuss some general properties of the
category D-mod(Y) for a truncatable stack Y.

4.2. Presentation as a colimit

In this subsection we fix Y to be a truncatable locally QCA stack. We will
use the notation Ctrnk(Y) from Sect. 4.1.4.

4.2.1. Note that for a morphism U1
j1,2
↪→ U2 in Ctrnk(Y), the pullback

functor

φU2,U1
:= j∗1,2 : D-mod(U2) → D-mod(U1)

admits a left adjoint, ψU1,U2
:= (j1,2)! : D-mod(U1) → D-mod(U2).

Hence, we are in the situation of Sect. 1.7.2 with I = Ctrnk(Y). In fact,
we are in the more restrictive (and possibly more understandable) situation
of Sects. 1.7.3 and 1.9.

4.2.2. Combining the assertion of Corollary 4.1.5 with that of Proposi-
tion 1.7.5, we obtain:

Corollary 4.2.3. The category D-mod(Y) is canonically equivalent to

colim
−→

U∈Ctrnk(Y)

D-mod(U),

where the functor Ctrnk(Y) → DGCatcont is

U �→ D-mod(U), (U1
j1,2
↪→ U2) �→ (j1,2)!.
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Under this equivalence, for a co-truncative open quasi-compact substack

U0
j0
↪→ Y, the functor

insU0
: D-mod(U0) → colim

−→
U∈Ctrnk(Y)

D-mod(U) 	 D-mod(Y),

is (j0)!.

Remark 4.2.4. Note that the assertion of Proposition 2.3.7 for a truncative
QCA stack Y follows also from Lemma 1.9.5(i). Note also that the assertion
of Lemma 2.3.5 for U (resp., U and U ′) co-truncative is a particular case of
Remark 1.7.6.

4.3. Description of the dual category

4.3.1. Combining Corollary 4.1.5 with Proposition 1.8.3 we obtain:

Corollary 4.3.2. The category D-mod(Y) is dualizable. Its dual category is
canonically equivalent to

(4.1) colim
−→

U∈Ctrnk(Y)

D-mod(U),

where the functor Ctrnk(Y) → DGCatcont is

(4.2) U �→ D-mod(U), (U1
j1,2
↪→ U2) �→ (j1,2)∗.

Under this equivalence, for a co-truncative open quasi-compact substack

U0
j0
↪→ Y, the functor

insU0
: D-mod(U0) → colim

−→
U∈Ctrnk(Y)

D-mod(U)

is the dual of restriction functor j∗0 : D-mod(Y) → D-mod(U0).

Proof. Follows from Proposition 2.2.17.

4.3.3. Notation. The category (4.1) that appears in Corollary 4.3.2 will
be denoted by

D-mod(Y)co .

The equivalence of Corollary 4.3.2 will be denoted by

(4.3) DVerdier
Y : D-mod(Y)∨ 	 D-mod(Y)co .
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Note that when Y is quasi-compact, this is the same as the equivalence
of (2.2).

4.3.4. Combining Corollary 4.3.2 with Proposition 1.7.5, we can rewrite
D-mod(Y)co also as a limit:

Corollary 4.3.5. The category D-mod(Y)co is canonically equivalent to

lim
←−

U∈Ctrnk(Y)op

D-mod(U),

where the functor Ctrnk(Y)op → DGCatcont is

U �→ D-mod(U), (U1
j1,2
↪→ U2) �→ j?1,2.

4.3.6. By construction, for every co-truncative quasi-compact open sub-

stack U
j
↪→ Y, we have a canonically defined functor

D-mod(U) → D-mod(Y)co.

We denote this functor by jco,∗. By construction, in terms of the identi-
fications

DVerdier
U : D-mod(U)∨ 	 D-mod(U) and

DVerdier
Y : D-mod(Y)∨ 	 D-mod(Y)co,

we have

(jco,∗)
∨ 	 j∗.

Similarly, from Corollary 4.3.5, we have a canonically defined functor

j? : D-mod(Y)co → D-mod(U),

which is the dual of j! : D-mod(U) → D-mod(Y), and the right adjoint of
jco,∗ .

4.3.7. We claim:

Lemma 4.3.8. The functor jco,∗ is fully faithful.

Proof. We need to show that the unit of the adjunction IdD-mod(U) → j? ◦
jco,∗ is an isomorphism. This is obtained by passing to dual functors (see
Sect. 1.5.2) in the map

IdD-mod(U) → j∗ ◦ j!,
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which is an isomorphism by Lemma 3.8.7.

Remark 4.3.9. Note that Lemma 4.3.8 follows more abstractly from Remark
1.7.6. However, this way to deduce Lemma 4.3.8 is equivalent to the proof
given above in view of Remark 4.2.4.

4.3.10. We claim that the category D-mod(Y)co is compactly generated
and that its compact objects are ones of the form jco,∗(FU ) for FU ∈
D-mod(U)c, where U is a co-truncative quasi-compact open substack of Y.

This follows from Proposition 2.3.7 and Sect. 1.5.3.
Alternatively, this follows from Corollary 1.9.4 and Lemma 1.9.5(i).

4.4. Relation between the category and its dual

In this subsection we continue to assume that Y is a truncatable locally QCA
stack.

4.4.1. By construction and Sect. 1.5.1, the DG category
Functcont(D-mod(Y)co,D-mod(Y)) identifies canonically with

(D-mod(Y)co)
∨ ⊗D-mod(Y) 	 D-mod(Y)⊗D-mod(Y).

In addition, by Proposition 2.2.8 and Remark 2.2.9, we have

D-mod(Y)⊗D-mod(Y) 	 D-mod(Y× Y).

Thus, every object Q ∈ D-mod(Y× Y) defines a functor

FQ : D-mod(Y)co → D-mod(Y).

4.4.2. The naive functor. Note that if Y is quasi-compact we have a
tautological equivalence

D-mod(Y)co 	 D-mod(Y).

Recall from Sect. 2.2.14 that the corresponding object in D-mod(Y × Y) is
(ΔY)dR,∗(ωY).

For any truncatable Y the functor D-mod(Y)co → D-mod(Y) correspond-
ing to

(ΔY)dR,∗(ωY) ∈ D-mod(Y× Y)

will be denoted by

Ps-IdY,naive : D-mod(Y)co → D-mod(Y)
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(here Ps-Id stands for “pseudo-identity”).
Let DVerdier

Y,naive : D-mod(Y)∨ → D-mod(Y) denote the composition

D-mod(Y)∨
DVerdier

Y	 D-mod(Y)co
Ps-IdY,naive−→ D-mod(Y).

4.4.3. An alternative description. Here is a tautologically equivalent
description of the functor Ps-IdY,naive : D-mod(Y)co → D-mod(Y).

By definition, to specify a continuous functor F from D-mod(Y)co to an
arbitrary DG category C, is equivalent to specifying a compatible collection
of functors FU : D-mod(U) → C for co-truncative quasi-compact open sub-

stacks U ⊂ Y. The compatibility condition reads that for U1
j1,2
↪→ U2, we must

be given a (homotopy-coherent) system of isomorphism

FU1
	 FU2

◦ (j1,2)∗.

Taking C = D-mod(Y), the corresponding functors (Ps-IdY,naive)U are

j∗ : D-mod(U) → D-mod(Y)

for U
j
↪→ Y.

4.4.4. Warning. For a general truncatable stack Y, the functor
Ps-IdY,naive is not an equivalence. In particular, it is not an equivalence for
Y = BunG unless G is solvable.

In fact, we have the following assertion:

Proposition 4.4.5. If the functor Ps-IdY,naive : D-mod(Y)co → D-mod(Y)
is an equivalence then the closure of any quasi-compact open substack of Y
is quasi-compact.

The converse statement is also true (for tautological reasons).
The proof of Proposition 4.4.5 given below is based on the following

lemma.

Lemma 4.4.6. Let Z be a quasi-compact scheme, U a QCA stack, and
f : Z → U a morphism. Then for any holonomic D-module F on Z the
object fdR,∗(F) ∈ D-mod(U) is compact.

Let us give two proofs:

Proof 1. This follows from the following general observation:

Lemma 4.4.7. Let F : C1 → C2 be a continuous functor between cocomplete
DG categories. Let c2 ∈ Cc

2 be such that the partially defined left adjoint FL

to F is defined on c2. Then FL(c2) ∈ C1 is compact.
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The functor f!, left adjoint to f ! is defined on holonomic objects. Hence,
by the above lemma, f!(D

Verdier
Z (F)) ∈ D-modcoh(U) is compact. By Theo-

rem 2.2.15,

DVerdier
U (f!(D

Verdier
Z (F))) 	 fdR,∗(F)

is compact, as required.

Proof 2. The object fdR,∗(F) is holonomic and therefore coherent. Since Z
is a scheme, by Theorem 2.2.11(ii), F is safe. By [DrGa1, Lemma 9.4.2]
we obtain that fdR,∗(F) is also safe. Thus, fdR,∗(F) is coherent and safe =
compact.

Proof of Proposition 4.4.5. Suppose that Ps-IdY,naive is an equivalence.
Since Y is truncatable, it is enough to show that the closure of every
co-truncative open quasi-compact substack is quasi-compact.

By assumption, the functor Ps-IdY,naive preserves compactness.
From Sect. 4.4.3, we obtain that Ps-IdY,naive sends a compact object

jop,∗(FU ) ∈ D-mod(Y)op, FU ∈ D-mod(U)c with U
j
↪→ Y co-truncative and

quasi-compact, to j∗(FU ) ∈ D-mod(Y). Thus, we obtain that j∗(FU ) needs
to be compact for any FU ∈ D-mod(U)c whenever U is co-truncative.

Take FU = fdR,∗(kZ), where Z is any quasi-compact scheme equipped
with a morphism f : Z → U and kZ is the “constant sheaf” on Z. By
Proposition 2.3.7, there exists a quasi-compact open substack V ⊂ Y such
that the ∗-stalk of jdR,∗(FU ) = (j◦f)dR,∗(kZ) over any point of Y−V is zero.
This means that the closure of the image of j ◦ f : Z → Y is contained in V
and therefore quasi-compact. Taking f surjective we see that the closure of
U is quasi-compact.

4.4.8. A better functor. Following [Ga3, Sect. 6], we define

Ps-IdY,! : D-mod(Y)co → D-mod(Y)

to be the functor corresponding in terms of Sect. 4.4.1 to the object

(ΔY)!(kY) ∈ D-mod(Y× Y),

where kY ∈ D-mod(Y) is the “constant sheaf” on Y. (The above object is
well-defined because kY is holonomic.)

Let DVerdier
Y,! : D-mod(Y)∨ → D-mod(Y) denote the composition

D-mod(Y)∨
DVerdier

Y	 D-mod(Y)co
Ps-IdY,!−→ D-mod(Y).
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4.4.9. Suppose for a moment that Y is smooth of dimension n, and that
the diagonal map

ΔY : Y → Y× Y

is separated. In this case we have an isomorphism

kY 	 ωY[−2n],

and a natural transformation

(ΔY)! → (ΔY)dR,∗ ,

which together define a natural transformation

(4.4) Ps-IdY,! → Ps-IdY,naive[−2n].

Remark 4.4.10. If Y is separated (i.e., if ΔY is proper) then (4.4) is an iso-
morphism. However, most stacks are not separated.9 Thus Ps-IdY,! is usually
different from Ps-IdY,naive (even for Y smooth and quasi-compact).

4.4.11. Here is a basic feature of the functor Ps-IdY,! : D-mod(Y)co →
D-mod(Y).

Lemma 4.4.12. Let U
j
↪→ Y be a co-truncative quasi-compact open sub-

stack. Then there exists a canonical isomorphism of functors D-mod(U) →
D-mod(Y):

Ps-IdY,! ◦jco,∗ 	 j! ◦ Ps-IdU,! .
Proof. Define ΔU,Y : U → U × Y by ΔU,Y(u) := (u, j(u)). It is easy to check
that both functors Ps-IdY,! ◦jco,∗ and j! ◦ Ps-IdU,! correspond to the object
(ΔU,Y)!(kU ) ∈ D-mod(U × Y) via the equivalence

D-mod(U × Y) 	 D-mod(U)⊗D-mod(Y)

	 D-mod(U)∨ ⊗D-mod(Y) 	 Functcont(D-mod(U),D-mod(Y)).

The meaning of this lemma is that the functor Ps-IdY,! sends objects
that are ∗-extensions from a co-truncative quasi-compact open substack in
D-mod(Y)op to objects in D-mod(Y) that are !-extensions (from the same
open).

9A separated locally QCA stack has to be a Deligne-Mumford stack. Indeed, if
ΔY is proper and affine then it is finite, and in characteristic 0 this means that Y

is Deligne-Mumford.
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4.4.13. Self-duality. Both functors

DVerdier
Y,naive : D-mod(Y)∨ → D-mod(Y), DVerdier

Y,! : D-mod(Y)∨ → D-mod(Y)

are canonically self-dual because the corresponding objects

(ΔY)dR,∗(ωY), (ΔY)!(kY) ∈ D-mod(Y× Y)

are equivariant with respect to the action of the symmetric group S2 on
Y× Y.

4.5. Miraculous stacks

4.5.1. Now let us give the following definition.

Definition 4.5.2. A truncatable stack Y is called miraculous if the functor

Ps-IdY,! : D-mod(Y)co → D-mod(Y)

is an equivalence.

Clearly this happens if and only if the functor DVerdier
Y,! : D-mod(Y)∨ →

D-mod(Y) is an equivalence.

4.5.3. The following easy lemma shows that not every algebraic stack is
miraculous.

Lemma 4.5.4. A separated quasi-compact scheme Z is a miraculous stack
if and only if Z has the following “cohomological smoothness” property: kZ
and ωZ are locally isomorphic up to a shift.

Proof. In our situation Ps-IdZ,! : D-mod(Z) → D-mod(Z) is the functor

M �→ M
!
⊗ kZ . Applying the functor to skyscrapers, we see that if Ps-IdZ,!

is an equivalence then each !-stalk of kZ is isomorphic to k up to a shift. It
is well known that this implies that kZ and ωZ are locally isomorphic up to
a shift.

It is also easy to produce an example of a smooth quasi-compact algebraic
stack Y which is not miraculous: it suffices to take Y to be the non-separated
scheme equal to A1 with a double point 0. We refer the reader to [Ga3, Sect.
5.3.5], where this example is analyzed (one easily shows that in this case the
functor Ps-IdY,! does not preserve compactness).

4.5.5. A basic example of a miraculous stack is Y := An/Gm; see [Ga3,
Corollary 5.3.4].

In addition, the following theorem is proved in [Ga2]:
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Theorem 4.5.6. Let G be a reductive group. Then the stack BunG is mirac-
ulous.

This theorem is equivalent to each quasi-compact co-truncative substack
of BunG being miraculous. The equivalence follows from the next lemma.

Lemma 4.5.7. A truncatable stack Y is miraculous if and only if every
quasi-compact co-truncative open substack U ⊂ Y is.

Proof. The “if” statement follows from Lemma 4.4.12 and the descriptions of
D-mod(Y) and D-mod(Y)co as colimits (see Corollary 4.2.3 and Sect. 4.3.3).

Let us prove the “only if” statement. Suppose that Y is miraculous and
j : U ↪→ Y is a quasi-compact co-truncative open substack. The functor
j! has a left inverse (namely, j! = j∗). The functor jco,∗ : D-mod(U)co →
D-mod(Y)co also has a left inverse (see the first proof of Lemma 4.3.8). So
Lemma 4.4.12 implies that Ps-IdU,! has a left inverse.

We obtain that the functor DVerdier
U,! : D-mod(U)∨ → D-mod(U) has a

left inverse. By self-duality of DVerdier
U,! (see Sect. 4.4.13), this implies that it

has a right inverse as well. So DVerdier
U,! is an equivalence.

5. Contractive substacks

In its simplest form, the contraction principle says that the substack
{0}/Gm ↪→ An/Gm is truncative (here Gm acts on An by homotheties). In
this section we will prove a generalization of this fact, see Proposition 5.1.2.

In Sect. 5.3 we explicitly describe the non-standard functors i∗dR and i?
in the setting of Proposition 5.1.2.

We say that a substack of a stack is contractive if it locally satisfies the
conditions of Proposition 5.1.2; for a precise definition, see Sect. 5.2.1.

The upshot of this section is that “contractiveness” ⇒ “truncativeness.”

5.1. The contraction principle

5.1.1. Consider the following set-up. Suppose we have an affine morphism
p : W → S between schemes. Assume that the monoid A1 (with respect to
multiplication) acts on W over S (so that the action of A1 on S is trivial).
Assume also that the endomorphism of W corresponding to 0 ∈ A1 admits
a factorization

W
p→ S

ι→ W,

where ι is a section of p : W → S. (Informally, we can say that the action
of Gm ⊂ A1 “contracts” W onto the closed subscheme ι(S).)

Set Y := W/Gm, Z := S/Gm = S × (pt /Gm).
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Proposition 5.1.2. Under the above circumstances, the closed substack

Z
i
↪→ Y is truncative.

The rest of this subsection is devoted to the proof of Proposition 5.1.2.

5.1.3. Without loss of generality, we can assume that S is quasi-compact.
We have

W = SpecS(A),

where A =
⊕

nAn is a quasi-coherent sheaf of non-negatively graded OS-
algebras with A0 = OS . The section ι corresponds to the projection A →
A0 = OS .

For n ∈ N, let A(n) ⊂ A be the OS-subalgebra generated by An .
Choose n so that A is finite over A(n) (if A is generated by Am1

, . . . ,Amr

then one can take n to be the least common multiple of m1,. . . , mr). Set
W ′ := Spec(A(n)), then the morphism f : W → W ′ is finite. Moreover, the
embedding ι(S) ↪→ f−1(f(ι(S))) induces an isomorphism between the cor-
responding reduced schemes. So by Proposition 3.6.11, it suffices to prove
the proposition for W ′ instead of W .

5.1.4. Thus, we can assume that A is generated by An. Moreover, since
the proposition to be proved is local with respect to S (see Corollary 3.6.5),
we can assume that An is a quotient of a locally free OS-module E. Let V
denote the vector bundle over S corresponding to E∗ (in other words, V is
the spectrum of the symmetric algebra of E). Then W = Spec(A) identifies
with a closed conical subscheme in V .

5.1.5. Thus by Lemma 3.6.10 (for closed embeddings) it suffices to con-
sider the case where W is a vector bundle V over S equipped with an
A1-action obtained from the standard one by composing it with the homo-
morphism

(5.1) A1 −→ A1, λ �→ λn.

(here n is some positive integer). In this situation we have to prove that
0/Gm ⊂ V/Gm is truncative, where 0 ⊂ V is the zero section.

5.1.6. Let Ṽ
f→ V be the blow-up of V along 0. Set 0̃ := f−1(0). Since f is

proper and surjective, by Lemma 3.6.7, in order to prove the truncativeness
of 0/Gm ⊂ V/Gm, it suffices to show that 0̃/Gm is truncative in Ṽ /Gm.

Note that Ṽ is a line bundle over P(V ) and 0̃ is its zero section. So we
see that it suffices to prove the statement from Sect. 5.1.5 for line bundles
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over arbitrary bases. Moreover, since the statement is local, it suffices to
consider the trivial line bundle over an arbitrary quasi-compact scheme.

5.1.7. Thus it remains to prove that for any quasi-compact scheme S the
substack

S × ({0}/Gm) ⊂ S × (A1/Gm)

is truncative (here we assume that λ ∈ Gm acts on A1 as multiplication by
λn for some n ∈ N). By Lemma 3.6.2, we can assume that S = Spec(k). In
this case the statement follows from the fact that the number of Gm-orbits
in A1 is finite (see Sect. 3.2.4).

5.2. Contractiveness

5.2.1. We say that a locally closed substack Z′ of a stack Y′ is contractive
if there exists a commutative diagram

(5.2) Z Y

Z′ Y′

such that

(i) the upper row of (5.2) is as in Proposition 5.1.2;
(ii) the morphism Z → Z′ ×

Y′
Y is an open embedding;

(iii) the vertical arrows of (5.2) are smooth and the left one is surjective.

In other words, a substack is contractive if it locally satisfies the condi-
tions of Proposition 5.1.2.

5.2.2. We obtain:

Corollary 5.2.3. A contractive substack is truncative.

Proof. With no loss of generality, we can assume that Y is quasi-compact.
Now combine Proposition 5.1.2 and 3.6.4.

Note that the above definition of contractive substack makes sense with-
out the characteristic 0 assumption.

Remark 5.2.4. We are not sure that the notion of contractiveness is really
good. But it is convenient for the purposes of this article.
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5.3. An adjointness result

5.3.1. Let W → S
ι→ W be as in Proposition 5.1.2 (in particular, A1

acts on W ).
Consider the corresponding morphisms i : S/Gm ↪→ W/Gm and π :

W/Gm → S/Gm . By Proposition 5.1.2, the functor idR,∗ has a continuous
left adjoint (denoted by i∗dR) and i! has a continuous right adjoint (denoted
by i?).

The next proposition identifies the non-standard functors

i∗dR : D-mod(W/Gm) → D-mod(S/Gm) and

i? : D-mod(S/Gm) → D-mod(W/Gm)

with certain standard functors. Namely,

i∗dR 	 πdR,∗, i? = π!.

Proposition 5.3.2. The functors

πdR,∗ : D-mod(W/Gm) � D-mod(S/Gm) : idR,∗ and

i! : D-mod(W/Gm) � D-mod(S/Gm) : π!

form adjoint pairs with the adjunctions

πdR,∗ ◦ idR,∗
∼−→ IdD-mod(S/Gm) and i! ◦ π! ∼−→ IdD-mod(S/Gm)

coming from the isomorphism π ◦ i ∼−→ IdS/Gm
.

Note that a simple particular case of Proposition 5.3.2 was proved in
Sect. 3.3.9.

Remark 5.3.3. Proposition 5.3.2 clearly implies Proposition 5.1.2.

Proposition 5.3.2 is well known (at least, in the setting of constructible
sheaves instead of D-modules). It goes back to the works by Verdier [Ve,
Lemma 6.1] and Springer [Sp, Proposition 1]; see also [KL, Lemma A.7] and
[Br, Lemma 6].

The reader can easily prove Proposition 5.3.2 by slightly modifying the
argument from Sect. 5.1 (which is based on blowing up and properness).

On the other hand, in Appendix C we give a complete proof of a “stacky”
generalization of Proposition 5.3.2 (see Theorem C.5.3 and Corollary C.5.4).
The approach from Appendix C is close to [Sp] (there are no blow-ups, no
properness arguments, and we work with the monoid A1 rather than with
the scheme or stack on which A1 acts).
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5.4. A general lemma on contractiveness

The reader may prefer to skip this subsection on the first pass. Its main
result (Lemma 5.4.3) will not be used until Proposition 11.3.7(b).

5.4.1. The notion of contractive substack was defined in Sect. 5.2.1. This
notion is clearly local in the following sense:

Let f : Y′ → Y be a smooth surjective morphism of algebraic stacks and
Z ⊂ Y a locally closed substack. If f−1(Z) is contractive in Y′ then Z is
contractive in Y.

5.4.2. As before, we consider A1 as a monoid with respect to multiplica-
tion. It contains Gm as a subgroup.

We have:

Lemma 5.4.3. Let π : W → S be an affine schematic morphism of algebraic
stacks. Suppose that the monoid A1 acts on W by S-endomorphisms (i.e.,
over S, with the action of A1 on S being trivial). Assume that

(i) The S-endomorphism of W corresponding to 0 ∈ A1 equals i ◦ π for
some section i : S → W;

(ii) The action of Gm on W viewed as a stack over pt (rather than over
S) is isomorphic to the trivial action.

Then the substack S
i
↪→ W is contractive.

Remark 5.4.4. Condition (i) implies that the action of Gm on W viewed
as a stack over S is nontrivial unless π : W → S is an isomorphism. This
does not contradict (ii): we are dealing with stacks, and the functor from
the groupoid of S-endomorphisms of W to that of k-endomorphisms of W is
not fully faithful.

Before proving Lemma 5.4.3, let us consider two examples.

Example 5.4.5. Let p : W → S be as in Sect. 5.1.1. Set

W := W/Gm, S := S/Gm = S × (pt /Gm).

Then the conditions of Lemma 5.4.3 hold for the morphism π : W → S. The
conclusion of Lemma 5.4.3 holds tautologically.

Example 5.4.6. Let π : W → S be an affine schematic morphism of algebraic
stacks. Suppose that an action of A1 on W by S-endomorphisms satisfies
condition (i) of Lemma 5.4.3. Set W′ := W/Gm and S′ := S/Gm = S ×
(pt /Gm). Then the morphism π′ : W′ → S′ satisfies both conditions of
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Lemma 5.4.3. The conclusion of Lemma 5.4.3 is clear because after a smooth
surjective base change S → S we get the situation of Example 5.4.5.

5.4.7. To prove Lemma 5.4.3, we need the following assertion:

Lemma 5.4.8. Let ϕ : Y → Y′ and ψ : Y′ → Y be morphisms between alge-
braic stacks such that ψ ◦ϕ 	 IdY. Suppose that ϕ is smooth and surjective.
Then:

(a) The maps

{locally closed substacks of Y′} → {locally closed substacks of Y},
Z′ �→ ϕ−1(Z′),

{locally closed substacks of Y} → {locally closed substacks of Y′},
Z �→ ψ−1(Z)

are mutually inverse bijections;
(b) A locally closed substack Z ⊂ Y is contractive if and only if the corre-

sponding substack Z′ ⊂ Y′ is.

Remark 5.4.9. Since ϕ and ψ ◦ϕ are smooth and surjective ψ has the same
properties.10

Proof. The maps from statement (a) are clearly injective. Since ψ ◦ ϕ 	
IdY one has ϕ−1(ψ−1(Z)) = Z. Statement (a) follows. To prove (b), use
statement (a), Remark 5.4.9, and the locality of strong contractiveness, see
Sect. 5.4.1.

Proof of Lemma 5.4.3. Define π′ : W′ → S′ as in Example 5.4.6, then the
corresponding embedding i′ : S′ ↪→ W′ is contractive. We have a Cartesian
square

S
i−−−−→ W⏐⏐� ϕ

⏐⏐�
S′

i′−−−−→ W′

So by Lemma 5.4.8, it remains to show that the morphism ϕ : W → W′

admits a left inverse ψ : W′ → W. But W′ is the quotient of W by a trivial
action of Gm . Choosing a trivialization of this action we can identify W′

with W× (pt /Gm) and take ψ to be the projection

W× (pt /Gm) → W.

10By the way, this implies that Y′ is the classifying space of a group over Y.
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6. The case of SL2

In this section we will give a proof of Theorem 4.1.8 in the case G = SL2,
which will be the prototype of the argument in general.

6.1. The substack Bun
(≤n)
G

6.1.1. For an integer n ≥ 0, let Bun
(≤n)
G ⊂ BunG be the open substack

consisting of vector bundles that do not admit line sub-bundles of degree

> n. It is easy to see that the substacks Bun
(≤n)
G are quasi-compact and

that their union is all of BunG.

Let g be the genus of X. We will show that for n ≥ max(g − 1, 0), the

open substack Bun
(≤n)
G is co-truncative.

6.1.2. Let Bun
(n)
G be the locally closed substack

Bun
(n)
G := Bun

(≤n)
G −Bun

(≤n−1)
G ,

endowed, say, with the reduced structure.

By Proposition 3.7.2, it suffices to show that if n > max(g − 1, 0) then

Bun
(n)
G is a truncative substack of Bun

(≤n)
G . We will do this by combining

Propositions 3.6.4 and 5.1.2.

6.1.3. Note, however, that if n is small relative to the genus of X, then

the stratum Bun
(n)
G is not truncative. Indeed, one can choose X and n so

that Bun
(n)
G has a non-empty intersection with an open substack BunG that

is actually a scheme; then apply Sect. 3.2.1.

6.2. Reducing to a contracting situation

6.2.1. For an integer n, let BunnB be the stack classifying short exact
sequences

(6.1) 0 → L−1 → M → L → 0,

where M ∈ BunSL2
, and L is a line bundle of degree −n. Let pn : BunnB →

BunG denote the natural projection. If n > 0 then the image of pn equals

Bun
(n)
G .
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Lemma 6.2.2. Suppose that n > max(g − 1, 0). Then the morphism p−n :

Bun−n
B → BunG is smooth and its image contains Bun

(n)
G .

Proof. A point x ∈ Bun−n
B corresponds to an exact sequence (6.1) with

degL = n. The cokernel of the differential of p−n at x equals H1(X,L⊗2),
which is zero because degL⊗2 = 2n > 2g − 2. So p−n is smooth.

A point y ∈ Bun
(n)
G corresponds to an SL2-bundle M that can be rep-

resented as an extension (6.1) with degL = −n. Such an extension splits
because 2n > 2g − 2. So M is also an extension of L−1 by L. Hence, y is in
the image of p−n.

6.2.3. By Lemma 6.2.2 and Proposition 3.6.4, it suffices to show that if
n > max(g − 1, 0) then the substack

(6.2) Bun
(n)
G ×

BunG

Bun−n
B ⊂ Bun−n

B

is truncative.

6.3. Applying the contraction principle

6.3.1. Let BunnGL(1) denote the stack of line bundles on X of degree n.
Note that we have a canonical isomorphism

BunnGL(1) 	 Bun
(n)
G ×

BunG

Bun−n
B

that sends a line bundle L ∈ BunnGL(1) to

0 → L−1 → L−1 ⊕ L → L → 0.

6.3.2. Let Picn denote the coarse moduli scheme corresponding to
BunnGL(1). We have a vector bundle V on BunnGL(1) whose fiber over

L ∈ BunnGL(1) equals Ext(L,L
−1).

Choose a section s : Picn → BunnGL(1) of the morphism Bunn → Picn

(e.g., choose x0 ∈ X and identify Picn with the stack of line bundles of
degree n trivialized over x0).

Set V′ = s∗(V). Let 0 ⊂ V′ denote the zero section. Then Bun−n
B identifies

with the quotient stack V′/Gm and the substack

Bun
(n)
G ×

BunG

Bun−n
B 	 BunnGL(1) ↪→ Bun−n

B
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identifies with 0/Gm. Hence, the substack (6.2) is truncative by Proposi-
tion 5.1.2.

7. Recollections from reduction theory

The goal of this section is to prepare for the proof of Theorem 4.1.8 by
recalling the Harder-Narasimhan-Shatz stratification of BunG.

With future applications in mind, when defining these open substacks,
we will remove the assumption that our ground field is of characteristic
0, unless we explicitly specify otherwise. Thus, we let G be a connected
reductive group over any algebraically closed field k.

7.1. Notation related to G

7.1.1. To simplify the discussion, we will work with a fixed choice of a
Borel subgroup B ⊂ G.

Conjugacy classes of parabolics are then in bijection with the set of
parabolics that contain B, called the standard parabolics. From now on,
by a parabolic we will mean a standard parabolic, unless explicitly stated
otherwise.

For a parabolic P we will denote by U(P ) its unipotent radical.
We denote by ΓG the set of vertices of the Dynkin diagram of G. Parabol-

ics in G are in bijection with subsets of ΓG. For a parabolic P with Levi
quotient M we let ΓM ⊂ ΓG denote the corresponding subset; it identifies
with the set of vertices of the Dynkin diagram of M .

7.1.2. Let ΛG denote the coweight lattice of G and ΛQ

G := Q ⊗
Z
ΛG . Let

Λ+
G ⊂ ΛG denote the monoid of dominant coweights and Λpos

G ⊂ ΛG the

monoid generated by positive simple coroots. Let Λ+,Q
G ,Λpos,Q

G ⊂ ΛQ

G be the
corresponding rational cones.

Let α̌i, i ∈ ΓG, be the simple roots; we have:

Λ+,Q
G = {λ ∈ ΛQ

G | 〈λ, α̌i〉 ≥ 0 for i ∈ ΓG}.

7.1.3. Let P be a parabolic of G and M its Levi quotient. Let Z0(M) be
the neutral connected component of the center of M , then ΛZ0(M) ⊂ ΛG .

Set ΛQ

G,P := ΛQ

Z0(M) ⊂ ΛQ

G . Explicitly,

ΛQ

G,P = {λ ∈ ΛQ

G | 〈λ, α̌i〉 = 0 for i ∈ ΓM}.
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Note that

ΛQ

G,G = ΛQ

Z0(G) and ΛQ

G,B = ΛQ

G.

7.1.4. Set Λ+,Q
G,P := Λ+,Q

G ∩ ΛQ

G,P and

(7.1)

Λ++,Q
G,P := {λ ∈ ΛQ

G | 〈λ, α̌i〉 = 0 for i ∈ ΓM and 〈λ, α̌i〉 > 0 for i /∈ ΓM}.

In other words, Λ++,Q
G,P is the set of those elements of Λ+,Q

G,P that are regular

(i.e., lie off the walls of Λ+,Q
G,P ). Clearly

(7.2) Λ+,Q
G =

⊔
P

Λ++,Q
G,P ,

where the union is taken over the conjugacy classes of parabolics.

7.1.5. Note also that the inclusion ΛQ

G,P ↪→ ΛQ

G canonically splits as a

direct summand: the corresponding projector prP : ΛQ

G → ΛQ

G,P is defined

so that

ker (prP ) =
⊕
i∈ΓM

Q · αi.

We can also view the map ΛQ

G → ΛQ

G,P as follows: it comes from the map

ΛG 	 ΛM → ΛM/[M,M ]

and the isomorphism

ΛQ

Z0(M)

∼−→ ΛQ

M/[M,M ]

induced by the isogeny Z0(M) → M/[M,M ].

7.1.6. We introduce the partial order on ΛQ

G by

λ1 ≤
G
λ2 ⇔ λ2 − λ1 ∈ Λpos,Q

G .

The following useful observation is due to S. Schieder:

Lemma 7.1.7. For a parabolic P , the projection prP is order-preserving.

For a proof, see [Sch, Proposition 3.1.2(a)].
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7.2. The degree of a bundle

Fix a connected smooth complete curve X. For any algebraic group H let
BunH denote the stack of H-bundles on X.

7.2.1. One has a canonical isomorphism deg : π0(BunGm
)

∼−→ Z. Accord-
ingly, for any torus T one has a canonical isomorphism degT : π0(BunT )

∼−→
ΛT .

7.2.2. Let G̃ be any connected affine algebraic group and let G̃tor be its
maximal quotient torus. The composition

π0(BunG̃) → π0(BunG̃tor
)
degG̃tor−→ ΛG̃tor

will be denoted by degG̃.

If G̃ = G is reductive then Gtor = G/[G,G], and the map Z0(G) → Gtor

is an isogeny, so ΛQ

Gtor
	 ΛQ

Z0(G). Therefore one has a locally constant map

degG : BunG → ΛQ

Z0(G) . Its fibers are not necessarily connected but have

finitely many connected components; this follows from Remark 7.2.4 below.

7.2.3. Let now P be a parabolic subgroup of a reductive group G, and
let M be the Levi quotient of P .

Then by Sects. 7.1.3 and 7.2.2, one has the locally constant maps degM :
BunM → ΛQ

G,P and therefore degP : BunP → ΛQ

G,P .

The preimage of λ ∈ ΛQ

G,P in BunM (resp. BunP ) is denoted by BunλM
(resp. BunλP ).

It is easy to see that BunλM and BunλP are empty unless λ belongs to a
certain finitely generated subgroup AG,P ⊂ ΛQ

G,P such that AG,P⊗Q = ΛQ

G,P ;

namely, AG,P = prP (ΛG), where prP : ΛQ

G → ΛQ

G,P is as in Sect. 7.1.5.

7.2.4. Remark. Let G̃ be any connected affine algebraic group and G̃red

its maximal reductive quotient. Define π1(G̃) to be the quotient of ΛG̃red
by

the subgroup generated by coroots. It is well known that there is a unique
bijection π0(BunG̃)

∼−→ π1(G̃) such that the diagram

π0(BunB̃) ΛT̃ 	 ΛG̃red

π0(BunG̃) π1(G̃)
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commutes. Here B̃ is a Borel subgroup of G̃ and T̃ is the maximal quotient
torus of B̃.

7.3. Semistability

7.3.1. Let Gad denote the quotient of G by its center and

ΥG : ΛQ

G → ΛQ

Gad
,

the projection.

Let pP : BunP → BunG be the natural morphism. Recall that a G-
bundle PG ∈ BunG is called semi-stable if for every parabolic P such that
PG = pP (PP ) with PP ∈ BunμP we have

ΥG(μ) ≤
Gad

0.

In fact, semi-stability can be tested just using reductions to the Borel:

Lemma 7.3.2. A G-bundle PG is semi-stable if and only if for every re-
duction PB of PG to the Borel B with PB ∈ BunμB, we have ΥG(μ) ≤

Gad

0.

Proof. This follows from Lemma 7.1.7 and the fact that every M -bundle
admits a reduction to the Borel of M .

It is known that semi-stable bundles form an open substack BunssG ⊂
BunG , whose intersection with each connected component of BunG is quasi-
compact.

7.3.3. More generally, for θ ∈ Λ+,Q
G and a G-bundle PG, we say that PG

has Harder-Narasimhan coweight ≤
G

θ if for every parabolic P such that

PG = pP (PP ) with PP ∈ BunμP we have

μ ≤
G
θ.

As in Lemma 7.3.2, it suffices to check this condition for P = B.

7.3.4. One shows that G-bundles having Harder-Narasimhan coweight
≤
G
θ form an open substack of BunG . The argument repeats the proof of the

fact that BunssG is open, given in [Sch, Proposition 6.1.6].
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We denote the above open substack by Bun
(≤θ)
G and sometimes by

Bun
(≤
G
θ)

G . It lies in the (finite) union of connected components of BunG
corresponding to the image of θ under

ΛQ

G → ΛQ

G,G 	 ΛQ

Z0(G).

Furthermore,

θ1 ≤
G
θ2 ⇒ Bun

(≤θ1)
G ⊂ Bun

(≤θ2)
G ,

and ⋃
θ∈Λ+,Q

G

Bun
(≤θ)
G = BunG .

Finally, we have:

Proposition 7.3.5. The open substack Bun
(≤θ)
G is quasi-compact.

We will give two proofs:

Proof 1. With no loss of generality, we can assume that G is of adjoint type.
We will use the relative compactification pB : BunB → BunG of the map
pB : BunB → BunG, see Sect. 7.5.5.

For each connected component ′BunG ⊂ BunG choose a coweight λ ∈
−Λ+

G such that the map pB : BunλB → BunG lands in ′BunG and is smooth
(for smoothness, it is enough to take λ so that 〈λ, α̌i〉 < −(2g − 2) for each

simple root α̌i). Then the map pB : Bun
λ
B → ′BunG is surjective.

It is a basic property of BunB (see [Sch, Sect. 6.1.4]) that

pB(Bun
λ
B) =

⋃
μ∈Λpos

G

pB(Bun
λ+μ
B ).

Therefore
′BunG ∩Bun

(≤θ)
G =

⋃
μ∈Λpos

G , λ+μ≤
G
θ

pB(Bun
λ+μ
B ).

However, the set

{μ ∈ Λpos
G |λ+ μ ≤

G
θ}

is finite. Hence, ′BunG ∩Bun
(≤θ)
G is contained in the image of finitely many

quasi-compact stacks Bunλ+μ
B , and hence is itself quasi-compact.

The second proof will be given after Corollary 7.4.5.
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7.3.6. By definition, for λ ∈ ΛQ

G,G = ΛQ

Z0(G)

BunssG ∩BunλG = Bun
(≤λ)
G

and

BunssG =
⋃

λ∈ΛQ
G,G

Bun
(≤λ)
G .

7.3.7. For each parabolic P ⊂ G with Levi quotient M we have the
corresponding open substack BunssM ⊂ BunM ; let BunssP denote the pre-
image of BunssM in BunP .

For λ ∈ ΛQ

G,P we let

Bunλ,ssM := BunssM ∩BunλM = Bun
(≤
M
λ)

M , Bunλ,ssP := BunssP ∩BunλP .

7.4. The Harder-Narasimhan-Shatz stratification of BunG

This stratification was defined in [HN, Sh1, Sh2] in the case G = GL(n).
For any reductive G it was defined in [R1, R2, R3] and [Beh, Beh1].

7.4.1. We give the following definition:

Definition 7.4.2. A schematic morphism of algebraic stacks f : X1 → X2

is an almost-isomorphism if f is finite and each geometric fiber of f has a
single point.

The next theorem is a basic result of reduction theory.

Theorem 7.4.3. (1) Let λ ∈ Λ+,Q
G and let P ⊂ G be the unique parabolic

such that λ belongs to the set Λ++,Q
G,P defined by (7.1). Then pP : BunP →

BunG induces an almost-isomorphism between Bunλ,ssP and a quasi-compact

locally closed reduced substack Bun
(λ)
G ⊂ BunG.

(1′) If k has characteristic 0 then the morphism Bunλ,ssP → Bun
(λ)
G is an

isomorphism.

(2) The substacks Bun
(λ)
G , λ ∈ Λ+,Q

G , are pairwise non-intersecting, and

every geometric point of BunG belongs to exactly one Bun
(λ)
G .

(3) Let P ′ ⊂ G be a parabolic and let λ′ be any (not necessarily dominant)

element of ΛQ

G,P ′ . If pP ′(Bunλ
′

P ′) ∩ Bun
(λ)
G �= ∅ then λ′ ≤

G
λ.

Statements (1), (1′), (2), and a slightly weaker version of (3) are due
to K. Behrend [Beh, Beh1]. A complete proof of the theorem was given by
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S. Schieder, see [Sch, Theorem 2.3.3]. In Sect. 7.5 we give a sketch of the
proof from [Sch].

7.4.4. We apply Theorem 7.4.3 to obtain the following more explicit de-

scription of the open substacks Bun
(≤θ)
G :

Corollary 7.4.5. For θ ∈ Λ+,Q
G we have:

(7.3) Bun
(≤θ)
G =

⋃
λ, λ≤

G
θ

Bun
(λ)
G ,

and the set

(7.4) {λ ∈ Λ+,Q
G |λ ≤

G
θ and Bun

(λ)
G �= ∅}

is finite.

Proof. The fact that

Bun
(λ)
G ∩Bun

(≤θ)
G �= ∅ ⇒ λ ≤

G
θ

follows from the definition of Bun
(≤θ)
G .

The inclusion

Bun
(λ)
G ⊂ Bun

(≤θ)
G

for λ ≤
G
θ follows from Theorem 7.4.3(3).

This proves (7.3) in view of Theorem 7.4.3(2). The finiteness of the set
(7.4) follows from the fact that

Bun
(λ)
G �= ∅ ⇒ λ ∈

⋃
P

AG,P ,

see the end of Sect. 7.2.3.

As a corollary, we obtain a 2nd proof of Proposition 7.3.5:

Proof 2 (of Proposition 7.3.5). Follows from Corollary 7.4.5 and the fact

that each Bun
(λ)
G is quasi-compact.11

As another corollary of Corollary 7.4.5 we obtain:

11The quasi-compactness of Bun
(λ)
G relied on the fact that the open substack

Bunλ,ssM is quasi-compact, which in itself is a particular case of Proposition 7.3.5.
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Corollary 7.4.6. We have:

(7.5) Bun
(θ)
G = Bun

(≤θ)
G −

⋃
θ′,θ �=θ′≤

G
θ

Bun
(≤θ′)
G .

Remark 7.4.7. We could a priori define the locally closed substacks Bun
(θ)
G

by formula (7.5). However, without the interpretation of Bun
(θ)
G via The-

orem 7.4.3, it would not be clear that these locally closed substacks are
pairwise non-intersecting.

7.4.8. The Harder-Narasimhan map. Let |BunG(k)| denote the set
of isomorphism classes of G-bundles on X (or equivalently, of objects of the
groupoid BunG(k)). We equip |BunG(k)| with the Zariski topology.

By Theorem 7.4.3(2), for every F ∈ BunG(k) there exists a unique λ ∈
Λ+,Q
G such that F ∈ Bun

(λ)
G (k). This λ is called the Harder-Narasimhan

coweight12 of F and denoted by HN(F). Thus we have a map

(7.6) HN : |BunG(k)| → Λ+,Q
G .

Lemma 7.4.9. The map (7.6) has the following properties.

(i) It is upper-semicontinuous, i.e., for each λ0 ∈ Λ+,Q
G the preimage of

the subset

(7.7) {λ ∈ Λ+,Q
G |λ ≤ λ0}

is open.
(ii) The image of the map (7.6) is discrete in the real vector space ΛR

G :=
ΛG ⊗ R.

(iii) A subset S ⊂ |BunG(k)| is quasi-compact if and only if HN(S) is
bounded in ΛR

G.

Proof. Follows from Corollary 7.4.5 and the fact that the substacks Bun
(≤θ)
G

are open and quasi-compact.

7.4.10. Let us equip the set Λ+,Q
G with the order topology, i.e., the one

whose base is formed by subsets of the form (7.7). Then statement (i) of
Lemma 7.4.9 can be reformulated as follows: the map (7.6) is continuous.

12By Corollary 7.4.6, this agrees with the usage of the words “Harder-
Narasimhan coweight” in Sect. 7.3.4.
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Now it is clear that if a subset of Λ+,Q
G is locally closed then so is its

preimage in BunG. Note that for a subset of Λ+,Q
G it is easy to understand

whether it is open, closed, or locally closed, see Lemma A.1.1 from Ap-
pendix A. Thus we obtain:

Corollary 7.4.11. Let S ⊂ Λ+,Q
G be a subset. Consider the corresponding

subset

Bun
(S)
G :=

⋃
λ∈S

Bun
(λ)
G ⊂ BunG .

(a) If S has the property that λ1 ∈ S, λ1 ≤
G

λ ⇒ λ ∈ S, then Bun
(S)
G is

closed in BunG.
(b) If S has the property that λ1 ∈ S, λ ≤

G
λ1 ⇒ λ ∈ S, then Bun

(S)
G is

open in BunG.
(c) If S has the property that λ1, λ2 ∈ S, λ1 ≤

G
λ ≤

G
λ2 ⇒ λ ∈ S, then

Bun
(S)
G is locally closed in BunG.

In cases (a) and (c) of the lemma we will regard Bun
(S)
G as a substack of

BunG with the reduced structure.

7.5. On the proof of Theorem 7.4.3

Let us make some remarks regarding the proof of Theorem 7.4.3. For a full
proof along these lines see [Sch].

7.5.1. For a G-bundle PG let λ be a13 maximal element in ΛQ

G, with
respect to the ≤

G
order relation, such that there exists a parabolic P and

PP ∈ BunλP such that PG = pP (PP ). One shows using Lemma 7.1.7 that the

maximality assumption on λ implies that λ ∈ Λ+,Q
G and that PP ∈ Bunλ,ssP .

For details see [Sch, Sect. 6.2].

7.5.2. Using Bruhat decomposition, one shows (see [Sch, Theorem 4.5.1])
that if P ′ is another parabolic and PP ′ ∈ Bunλ

′

P ′ such that PG = pP ′(PP ′),
then λ′ ≤

G
λ, and the equality takes place if and only if P ′ ⊂ P and PP is

induced from PP ′ via the above inclusion.

7.5.3. We obtain that the set of maximal elements λ as in Sect. 7.5.1
contains a single element. Moreover, the set of parabolics as in Sect. 7.5.1

13The “a” is italicized because we do not yet know that such a maximal element
is unique, although we will eventually show that it is.
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also contains a unique maximal element P ; namely, one for which λ ∈ Λ++,Q
G,P .

7.5.4. This establishes points (2) and (3) of the theorem, modulo the fact

that Bun
(λ)
G is locally closed, and not just constructible.

7.5.5. Let λ and P be as in Sect. 7.5.3. To prove point (1), one uses the
relative compactification

pP : BunP → BunG

of the map BunP → BunG defined in [BG, Sect. 1.3.2] under the assumption
that [G,G] is simply connected and in [Sch, Sect. 7] for an arbitrary reductive

G. Since pP is proper, the images of Bun
λ
P and Bun

λ
P −Bunλ,ssP in BunG are

both closed. Using Sect. 7.5.2, one shows that the latter does not intersect

Bun
(λ)
G . This implies that p defines a finite map from Bunλ,ssP to a locally

closed substack of BunG. It is bijective at the level of k-points by Sect. 7.5.2.
See [Sch, Sect. 6.2.2] for details.14

7.5.6. Once (1) is proved, statement (1′) is equivalent to the fact that the

map Bunλ,ssP → BunG is a monomorphism (on S-points for any scheme S).
This is proved (see [Sch, Prop. 5.2.1]) using the fact that in characteristic
0, a homomorphism of reductive groups G1 → G2 that sends Z0(G1) to
Z0(G2) sends BunssG1

to BunssG2
, see [Sch, Prop. 5.2.1] for details. (We will

use a similar argument in the proof of Proposition 9.2.2(a) given in Sect. 10).

8. Complements to reduction theory: P -admissible sets

In this section we fix a parabolic P ⊂ G. Let M be the corresponding Levi.
Our goal is to prove Proposition 8.3.3, which allows us to produce locally

closed substacks of BunG from locally closed substacks of BunM .

8.1. Some elementary geometry

Instead of reading the proofs of Lemmas 8.1.2 and 8.1.4 below, the reader
may prefer to check the statements in the rank 2 case by drawing the picture,
and believe that the statements are true in general.

8.1.1. Recall that according to the definitions from Sect. 7.1.2, we have
ΛQ

G = ΛQ

M and Λ+,Q
G ⊂ Λ+,Q

M .

14The latter part of the argument will actually be carried out in a slightly more
general situation in the proof of Proposition 8.3.3.
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Lemma 8.1.2. Let λ, λ′ ∈ ΛQ

G = ΛQ

M and λ′ ≤
M

λ. Then

(a) 〈λ′ , α̌i〉 ≥ 〈λ , α̌i〉 for i �∈ ΓM ;
(b) If λ ∈ Λ+,Q

G and λ′ ∈ Λ+,Q
M then λ′ ∈ Λ+,Q

G .

Proof. Statement (a) follows from the inequality 〈αj , α̌i〉 ≤ 0 for i �= j.
To prove (b), we have to show that 〈λ′ , α̌i〉 ≥ 0 for all i ∈ ΓG. If i ∈ ΓM

this follows from the assumption that λ′ ∈ Λ+,Q
M . If i �∈ ΓM this follows from

(a) and the assumption that λ ∈ Λ+,Q
G .

8.1.3. In Sect. 7.1.3–7.1.5 we defined the subspace ΛQ

G,P ⊂ ΛQ

G and the
projector

prP : ΛQ

G → ΛQ

G,P .

Lemma 8.1.4. If λ ∈ Λ+,Q
G then

prP (λ) ≤
M

λ,(8.1)

〈prP (λ) , α̌i〉 ≥ 〈λ , α̌i〉 for i �∈ ΓM .(8.2)

Proof. On the one hand, for i ∈ ΓM , one has 〈λ−prP (λ) , α̌i〉 = 〈λ , α̌i〉 ≥ 0.
On the other hand, λ − prP (λ) belongs to the subspace generated by the
coroots of M . Thus λ − prP (λ) is in the dominant cone of the root system
of M . The latter is contained in Λpos,Q

M , so we get (8.1).
The inequality (8.2) follows from (8.1) by Lemma 8.1.2(a).

8.2. P -admissible subsets of Λ+,Q
G

8.2.1. Let S be a subset of Λ+,Q
G , and let P be a parabolic.

Definition 8.2.2. We say that S is P -admissible if the following three prop-
erties hold:

There exists μ ∈ ΛQ

G,P such that S ⊂ pr−1
P (μ) ∩ Λ+,Q

G .(8.3)

If λ1 ∈ S and λ2 ∈ Λ+,Q
G , λ2 ≤

M
λ1 then λ2 ∈ S.(8.4)

∀λ ∈ S, ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > 0.(8.5)

Remark 8.2.3. If S �= ∅ is P -admissible and prP (S) = μ ∈ ΛQ

G,P then

μ ∈ Λ++,Q
G,P ⊂ Λ+,Q

G ,

where, as before,
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Λ++,Q
G,P := {λ ∈ ΛQ

G | 〈λ, α̌i〉 = 0 for i ∈ ΓM and 〈λ, α̌i〉 > 0 for i /∈ ΓM}.

This follows from (8.2) and (8.5).

8.2.4. Examples.

(i) The subset of pr−1
P (μ) ∩ Λ+,Q

G , consisting of elements satisfying (8.5),
is P -admissible.

(ii) If λ ∈ Λ+,Q
G is such that 〈λ , α̌i〉 > 0 for all i �∈ ΓM then the set

S = {λ′ ∈ Λ+,Q
M |λ′ ≤

M
λ}

is P -admissible by Lemma 8.1.2.
(iii) If μ ∈ Λ++,Q

G,P then the one-element set {μ} is P -admissible and more-

over, it is the smallest non-empty P -admissible subset of pr−1
P (μ) ∩

Λ+,Q
G . This follows from (8.1).

8.2.5. Let S ⊂ Λ+,Q
G be P -admissible subset. Note that we can also regard

S as a subset of Λ+,Q
M .

Lemma 8.2.6. The subset S ⊂ Λ+,Q
M is open.

Proof. Follows from Lemma 8.1.2(b).

8.3. Reduction theory and P -admissible subsets

8.3.1. Let S ⊂ Λ+,Q
G be a P -admissible subset.

By Corollary 7.4.11, the subset

(8.6) Bun
(S)
G :=

⋃
λ∈S

Bun
(λ)
G ⊂ BunG

is locally closed (and thus we can regard it as a substack with the reduced
structure).

By Lemma 8.2.6 and Corollary 7.4.11, the subset

Bun
(S)
M :=

⋃
λ∈S

Bun
(λ)
M ⊂ BunM

is open. Set

Bun
(S)
P := BunP ×

BunM

Bun
(S)
M .

8.3.2. The next proposition is a generalization of Theorem 7.4.3(1); the
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latter corresponds to the case where the P -admissible subset S has one
element, see Example 8.2.4(iii).

Proposition 8.3.3. Let S ⊂ Λ+,Q
G be a P -admissible subset. Then the re-

striction of pP : BunP → BunG to Bun
(S)
P defines an almost-isomorphism

(8.7) Bun
(S)
P → Bun

(S)
G .

Remark 8.3.4. Later we will show that if k has characteristic 0 then the
map (8.7) is, in fact, an isomorphism (see Lemma 10.2.1 and Remark 10.2.2
below).

The rest of this section is devoted to the proof of Proposition 8.3.3.

8.3.5. First, let us prove that the map (8.7) maps Bun
(S)
P to Bun

(S)
G and

is bijective at the level of k-points. To this end, it suffices to show that if λ
is an element of

S ⊂ Λ+,Q
G ⊂ Λ+,Q

M

then the map pP sends

BunP ×
BunM

Bun
(λ)
M

bijectively to Bun
(λ)
G .

Let M ′ be the Levi of G such that

ΓM ′ = {i ∈ ΓG | 〈λ, α̌i〉 = 0}.

By condition (8.5), we have ΓM ′ ⊂ ΓM . Let P ′ ⊂ P be the corresponding
parabolic. Set P ′ := P ′/U(P ); this is a parabolic in M whose Levi quotient
identifies with M ′. We have

λ ∈ Λ++,Q
G,P ′ ⊂ Λ++,Q

M,P ′ .

By the definition of Bun
(λ)
M , we have a bijection

BunP ′ ×
BunM′

Bunλ,ssM ′ → Bun
(λ)
M .

Hence, it is enough to show that the map

BunP ×
BunM

BunP ′ ×
BunM′

Bunλ,ssM ′ → BunG

defines a bijection onto Bun
(λ)
G .
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However,

BunP ×
BunM

BunP ′ ×
BunM′

Bunλ,ssM ′ 	 BunP ′ ×
BunM′

Bunλ,ssM ′ ,

and the required assertion follows from the definition of Bun
(λ)
G .

8.3.6. To finish the proof of the proposition, we have to show that the
map (8.7) is finite. We already know that it is bijective, so it suffices to show
the map (8.7) is proper. This will be done by generalizing the argument in
Sect. 7.5.5 using the stack BunP .

Let μ ∈ ΛQ

G,P be such that S ⊂ pr−1
P (μ) ∩ Λ+,Q

G . Consider the map

p̄P : Bun
μ
P → BunG .

This map is proper. So to prove properness of (8.7), it is enough to show
that

(8.8) p̄P (Bun
μ
P − Bun

(S)
P ) ∩ Bun

(S)
G = ∅.

We have

Bun
μ
P − Bun

(S)
P = (Bun

μ
P − BunμP ) ∪ (BunμP −Bun

(S)
P ),

so to prove (8.8), it suffices to show that

(8.9) p̄P (Bun
μ
P − BunμP ) ∩ Bun

(λ)
G = ∅ for all λ ∈ S

and

(8.10) pP (Bun
μ
P −Bun

(S)
P ) ∩ Bun

(λ)
G = ∅ for all λ ∈ S.

8.3.7. To prove (8.9), we use the equality

p̄P (Bun
μ
P − BunμP ) =

⋃
μ′∈ΛQ

G,P μ′−μ∈Λpos
G −0

pP (Bun
μ′

P ),

which follows from [Sch, Sect. 6.1.4]. This equality shows that if (8.9) were
false we would have

(8.11) pP (Bun
μ′

P ) ∩ Bun
(λ)
G �= ∅

for some μ′ ∈ ΛQ

G,P such that
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(8.12) μ ≤
G
μ′ �= μ.

However, (8.11) implies, by Theorem 7.4.3(3), that μ′ ≤
G

λ. So by

Lemma 7.1.7,

μ′ ≤
G
prP (λ) = μ,

which contradicts (8.12).

8.3.8. To prove (8.10), we have to show that if λ′ ∈ Λ+,Q
M is such that

(8.13) pP (Bun
μ
P ×

BunM

Bun
(λ′)
M ) ∩ Bun

(λ)
G �= ∅

then λ′ ∈ S.
If (8.13) holds then λ′ ≤

G
λ by Theorem 7.4.3(3). Since prP (λ) = μ =

prP (λ
′) this implies that λ′ ≤

M
λ.

Since λ′ ∈ Λ+,Q
M and λ′ ≤

M
λ we get λ′ ∈ Λ+,Q

G by Lemma 8.1.2(b). Since

λ ∈ S, λ′ ∈ Λ+,Q
G , and λ′ ≤

M
λ we get λ′ ∈ S by the admissibility of S.

9. Proof of the main theorem

9.1. The main result of this section

We wish to prove Theorem 4.1.8 (=Theorem 0.2.5), which says that BunG
is truncatable.

9.1.1. For each θ ∈ Λ+,Q
G , we have the quasi-compact open substack

Bun
(≤θ)
G ⊂ BunG, see Sect. 7.3.4 and formula (7.3). The substacks Bun

(≤θ)
G

cover BunG .
So Theorem 4.1.8 is a consequence of the following fact:

Theorem 9.1.2. The substack Bun
(≤θ)
G is co-truncative if for every simple

root α̌i one has

(9.1) 〈θ , α̌i〉 ≥ 2g − 2,

where g is the genus of X.

In this section we will prove Theorem 9.1.2 modulo a key geometric
assertion, Proposition 9.2.2.
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Remark 9.1.3. In Theorem 9.1.2 we assume that the ground field k has
characteristic 0 (because the notion of truncativeness is defined in terms of
D-modules). However, Proposition 9.2.2 (of which Theorem 9.1.2 is an easy
consequence) is valid over any k.15

Below follow some remarks on the proof of Theorem 9.1.2.

9.1.4. The main difficulty. In Sect. 6 we already proved Theorem 9.1.2
for G = SL2. The proof in the general case is more or less similar.

However, one has to keep in mind the following. If G = SL2 we saw that

all but finitely many Harder-Narasimhan-Shatz strata Bun
(λ)
G are truncative.

This is false already for G = SL2 × SL2. Indeed, the stratum of the form

Bun
(n)
SL2

×Bun
(m)
SL2

, with n small relative to the genus of X, is not truncative

in BunSL2
×BunSL2

= BunSL2×SL2
because Bun

(n)
SL2

is not truncative in
BunSL2

, see Sect. 6.1.3.

For any G, it turns out that Bun
(λ)
G is truncative if λ is “deep inside”

the interior of some face of the cone Λ+,Q
G ; the problem arises if λ is close to

the boundary of the open face of Λ+,Q
G containing λ.

9.1.5. Resolving the difficulty. We prove that certain unions of the

strata Bun
(μ)
G are truncative (see Corollary 9.2.7). In particular, we show

that if λ ∈ Λ+,Q
G and

(9.2) Sλ := {μ ∈ Λ+,Q
G | λ− μ ∈

∑
i∈ΓG,λ

Q≥0 · αi},

where ΓG,λ := {i ∈ ΓG | 〈λ , α̌i〉 ≤ 2g − 2} then

⋃
μ∈Sλ

Bun
(μ)
G

is a truncative locally closed substack of BunG . To finish the proof of The-
orem 9.1.2, we show that if θ satisfies (9.1) then the set

{λ ∈ Λ+,Q
G |λ �≤

G
θ}

can be represented as a union of subsets of the form (9.2).

15We have in mind future applications to the �-adic derived category on BunG,
and this category makes sense in any characteristic.
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9.1.6. The rank 2 case is representative enough. All the difficulties
of the proof of Theorem 9.1.2 appear already if G is a semi-simple group
of rank 2. On the other hand, in this case various combinatorial-geometric
statements (e.g., the above statement at the end of Sect. 9.1.5) become
obvious once you draw a picture.

9.1.7. In Appendix B we give a variant of the proof of Theorem 9.1.2,
which has some advantages compared with the one from Sect. 9.3. The
relation between the two proofs is explained in Sects. 9.4 and B.4.

9.2. A key proposition

9.2.1. We will deduce Theorem 9.1.2 from the following assertion:

Proposition 9.2.2. There exists an assignment

i ∈ ΓG � ci ∈ Q≥0

such that for any parabolic P and any P -admissible subset S ⊂ Λ+,Q
G satis-

fying the condition

(9.3) ∀λ ∈ S, ∀i ∈ ΓG − ΓM 〈λ , α̌i〉 > ci

(where as usual, M is the Levi quotient of P ) the following properties hold:

(a) The morphism Bun
(S)
P → Bun

(S)
G induced by pP : BunP → BunG is an

isomorphism;

(b) The locally closed substack Bun
(S)
G ⊂ BunG is contractive in the sense

of Sect. 5.2.1.

When char k = 0 we can take ci = max(0, 2g − 2).

9.2.3. Proposition 9.2.2 will be proved in Sects. 10 and 11. Namely, in
Sect. 10 we will produce the numbers ci and prove property (a) for these
numbers (and, in fact, for smaller ones). In Sect. 11 we will prove prop-
erty (b).

Remark 9.2.4. It is only property (b) that will be needed for the proof of
Theorem 9.1.2. Property (a) will be used for the proof of property (b).

Remark 9.2.5. Note that the assertion of point (a) of Proposition 9.2.2 dif-
fers from that of Proposition 8.3.3 only slightly: the former asserts “isomor-
phism”, while the latter “almost-isomorphism”.
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9.2.6. We now specialize to the case of char k = 0, in which case we have
the theory of D-modules and of truncative substacks (see Definition 3.4.1).

We have:

Corollary 9.2.7. Let S ⊂ Λ+,Q
G be a P -admissible subset such that

(9.4) ∀λ ∈ S, ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > 2g − 2.

Then the locally closed substack Bun
(S)
G ⊂ BunG is truncative.

Proof. Since S is admissible, the condition 〈λ , α̌i〉 > 2g − 2 from (9.4) is
equivalent to the condition 〈λ , α̌i〉 > max(0, 2g − 2).

Now apply Proposition 9.2.2 with ci = max(0, 2g − 2), and the asser-
tion follows from the fact that contractiveness implies truncativeness, see
Corollary 5.2.3.

9.3. Proof of Theorem 9.1.2

9.3.1. We have to show that if

(9.5) ∀i ∈ ΓG we have 〈θ , α̌i〉 ≥ 2g − 2

and θ′ ≥
G
θ then the substack Bun

(≤θ′)
G −Bun

(≤θ)
G ⊂ BunG is truncative.

If g = 0 then any locally closed substack of BunG is truncative (see
Sect. 3.2.4). So we can and will assume that g ≥ 1.

9.3.2. By Proposition 3.7.2, it suffices to cover Bun
(≤θ′)
G −Bun

(≤θ)
G by

finitely many truncative substacks.
Let λ ∈ Λ+,Q

G be such that λ �≤
G
θ, i.e.,

(9.6) θ − λ �∈ Λpos,Q
G :=

∑
i∈ΓG

Q≥0 · αi .

It suffices to construct for each such λ a subset Sλ ⊂ Λ+,Q
G containing λ such

that the substack Bun
(Sλ)
G ⊂ BunG is truncative and

(9.7) Bun
(≤θ)
G ∩Bun

(Sλ)
G = ∅.

Here is the construction. Let P be the parabolic whose Levi quotient,
M , corresponds to the following subset of ΓG :

(9.8) ΓM = {i ∈ ΓG | 〈λ , α̌i〉 ≤ 2g − 2}.
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Now define

(9.9) Sλ := {λ′ ∈ Λ+,Q
G |λ′ ≤

M
λ}.

Note that by (9.8), for each i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > 2g − 2,
which implies that 〈λ , α̌i〉 > 0 (because we are assuming that g ≥ 1).
So by Lemma 8.1.2(a), Sλ is P -admissible and satisfies the condition of

Corollary 9.2.7. Hence, the substack Bun
(Sλ)
G ⊂ BunG is truncative.

Therefore, to prove Theorem 9.1.2 it remains to check (9.7).

9.3.3. Proof of equality (9.7). We need the following lemma.

Lemma 9.3.4. Let ν =
∑

i∈ΓG
ai · αi , ai ∈ Q. Assume that ai ≥ 0 for

i �∈ ΓM and 〈ν , α̌i〉 ≥ 0 for i ∈ ΓM . Then ai ≥ 0 for all i ∈ ΓG .

Proof. Set νM :=
∑

i∈ΓM
ai · αi . We have to show that νM ∈ Λpos,Q

M . The
assumptions of the lemma and the inequality 〈αj , α̌i〉 ≤ 0 for i �= j imply
that 〈νM , α̌i〉 ≥ 0 for i ∈ ΓM . Thus νM belongs to the dominant cone of
the root system of M and therefore to Λpos,Q

M .

We are now ready to prove (9.7). It suffices to prove the following

Lemma 9.3.5. There is no λ′ ∈ Λ+,Q
G such that λ′ ≤

G
θ and λ′ ≤

M
λ.

Proof. Suppose that such λ′ exists. Then θ − λ has the form
∑

i∈ΓG
ci · αi ,

where ci ≥ 0 for i �∈ ΓM . By (9.5) and (9.8), 〈θ − λ , α̌i〉 ≥ 0 for i ∈ ΓM .
Hence, by Lemma 9.3.4, θ−λ ∈ Λpos,Q

G , contrary to the assumption (9.6).

Thus we have proved Theorem 9.1.2.

9.4. A variant of the proof

In the above proof of Theorem 9.1.2 we used substacks of the form Bun
(Sλ)
G ,

λ ∈ Λ+,Q
G , where Sλ is defined by (9.8)–(9.9). Instead of considering all

substacks of this form, one could consider only maximal ones among them;
one can show that they form a stratification of BunG all of whose strata are
truncative. This somewhat “cleaner” picture is explained in Appendix B.

10. The estimates

In this section we produce the numbers ci mentioned in Proposition 9.2.2
and prove Proposition 9.2.2(a) for these numbers (and, in fact, for smaller
ones).
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10.1. The vanishing of H0 and H1

10.1.1. For what follows, we fix a maximal torus T ⊂ B. This allows
us to view the Levi quotient M of a (standard) parabolic P as a subgroup
M ⊂ P (the unique splitting that contains T ).

Recall that for a parabolic P we denote by U(P ) its unipotent radical.
We will use the following notation for Lie algebras: g := Lie (G), p := Lie (P ),
n(P ) := Lie (U(P )).

For an algebraic group H, a principal H-bundle FH and an
H-representation V , we denote by VFH

the associated vector bundle.

10.1.2. The main result of this section is:

Proposition 10.1.3. There exists a collection of numbers

c′i,∈ Q, c′′i ∈ Q≥0, i ∈ ΓG

such that for any quadruple

(P,M, λ,FM ),

where P is a parabolic, M the corresponding Levi, λ ∈ Λ+,Q
G and FM ∈

Bun
(λ)
M , the following statements hold:

if ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > c′i then H1(X, n(P )FM
) = 0;(10.1)

if ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > c′′i then H0(X, (g/p)FM
) = 0.(10.2)

If char k = 0 then one can take c′i = 2g − 2, c′′i = 0.

Proposition 10.1.3 will be proved in Sect. 10.4. For a discussion of the
case char k > 0, see Sect. 10.5.

10.2. The numbers ci : proof of Proposition 9.2.2(a)

In this subsection we will assume Proposition 10.1.3.
Let c′i and c′′i be as in Proposition 10.1.3. Set

(10.3) ci := max(c′i, c
′′
i ).

Eventually we will show that Proposition 9.2.2 holds for the numbers ci
defined by (10.3). For Proposition 9.2.2(a) this follows from the next lemma
(which is slightly sharper than Proposition 9.2.2(a) because the numbers ci
are replaced by c′′i ≤ ci).
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Lemma 10.2.1. Let c′′i be as in Proposition 10.1.3. Let S ⊂ Λ+,Q
G be a

P -admissible subset such that

(10.4) ∀λ ∈ S, ∀i ∈ ΓG − ΓM 〈λ , α̌i〉 > c′′i .

Then the morphism Bun
(S)
P → Bun

(S)
G induced by pP : BunP → BunG is an

isomorphism.

Remark 10.2.2. The lemma implies that if char k = 0 then the morphism

Bun
(S)
P → Bun

(S)
G is an isomorphism for any P -admissible S ⊂ Λ+,Q

G . Indeed,
if char k = 0 one can take c′′i = 0 (see the last sentence of Proposition 10.1.3);
on the other hand, for c′′i = 0 the inequality (10.4) holds by the definition
of P -admissibility, see Definition 8.2.2.

Proof of Lemma 10.2.1. By Proposition 8.3.3, it suffices to show that for
any y ∈ BunP (k), the tangent space at y to the fiber of pP : BunP → BunG
over pP (y) is zero.

The tangent space in question identifies with H0(X, (g/p)FP
), where FP

is the P -bundle corresponding to y.
Note that the vector bundle (g/p)FM

can be identified with the associ-
ated graded of (g/p)FP

with respect to a (canonically defined) filtration on
the latter. Hence, (10.2) implies that H0(X, (g/p)FP

) = 0.

10.3. The notion of strangeness

10.3.1. Let G̃ be a reductive group and V a finite-dimensional G̃-module
on which Z0(G̃) acts by a character μ̌.

Lemma 10.3.2. (i) There exists a number c ∈ Q such that for every FG̃ ∈
Bunss

G̃
the degree of any line sub-bundle of VFG̃

is ≤ 〈degG̃(FG̃), μ̌〉+ c.
(ii) If char k = 0 one can take c = 0.

Proof. Statement (i) follows from the fact that the intersection of Bunss
G̃

with every connected component of BunG̃ is quasi-compact, and that under
the action of BunZ0(G̃) on BunG̃, the number of orbits of π0(BunZ0(G̃)) on

π0(BunG̃) is finite.
Statement (ii) follows from the fact that if char k = 0 then for every

FG̃ ∈ Bunss
G̃

the vector bundle VFG̃
is semistable of slope 〈degG̃(FG̃), μ̌〉 (a

proof of this fact can be found in [RR, Sect. 3]; for references to other proofs
see the introduction to [RR]).

10.3.3. We give the following definition:
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Definition 10.3.4. The strangeness strngX(G̃, V ) is the smallest number
c ∈ Q having the property from Lemma 10.3.2(i).

One always has strngX(G̃, V ) ≥ 0 (because the trivial G̃-bundle is semi-
stable). If char k = 0 then strngX(G̃, V ) = 0.

Remark 10.3.5. As before, let G̃ be a reductive group, V a finite-dimensional
G̃-module on which Z0(G̃) acts by a character μ̌, and F ∈ Bunss

G̃
. Then

H0(X,VFG̃
) = 0 if 〈degG̃(FG̃), μ̌〉 < − strngX(G̃, V ),

H1(X,VFG̃
) = 0 if 〈degG̃(FG̃), μ̌〉 > 2g − 2 + strngX(G̃, V ∗).

In particular, if char k = 0 then

H0(X,VF) = 0 if 〈degG̃(FG̃), μ̌〉 < 0,

H1(X,VF) = 0 if 〈degG̃(FG̃), μ̌〉 > 2g − 2.
(10.5)

10.4. Proof of Proposition 10.1.3

10.4.1. Let us introduce some notation. Let P ′ ⊂ G be a parabolic and
M ′ ⊂ P ′ the corresponding Levi (see our conventions in Sect. 10.1.1); in
particular M ′ ⊃ T .

Given a root α̌ of G which is not a root of M ′, define an M ′-submodule
VM ′,α̌ ⊂ g by

(10.6) VM ′,α̌ :=
⊕

β̌,β̌−α̌∈R(M ′)

gβ̌,

where R(M ′) is the root lattice of M ′.
The coefficient of α̌i in a root α̌ will be denoted by coeffi(α̌).

10.4.2. We are going to formulate a slightly more precise version of
Proposition 10.1.3.

Let

i ∈ ΓG � c′i, c
′′
i ∈ Q

be numbers satisfying the following inequalities:

For every Levi subgroup M ′ ⊂ G, every i ∈ ΓG −ΓM ′ , and every root α̌
of G such that coeff i(α̌) > 0, we have:

coeffi(α̌) · c′i ≥ 2g − 2 + strngX(M ′, (VM ′,α̌)
∗).(10.7)

coeffi(α̌) · c′′i ≥ strngX(M ′, VM ′,−α̌).(10.8)
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10.4.3. Remark. In the characteristic 0 case we can take c′i = 2g−2 and
c′′i = 0: indeed, in this case the numbers strngX from formulas (10.7)–(10.8)
are zero.

10.4.4. Here is the promised version of Proposition 10.1.3.

Proposition 10.4.5. Let c′i, c
′′
i be numbers satisfying the conditions from

Sect. 10.4.2. Let P ⊂ G be a parabolic, M be the corresponding Levi, λ ∈
Λ+,Q
G ⊂ Λ+,Q

M and FM ∈ Bun
(λ)
M .

(a) If 〈λ , α̌i〉 > c′i for all i ∈ ΓG − ΓM then H1(X, n(P )FM
) = 0.

(b) If 〈λ , α̌i〉 > c′′i for all i ∈ ΓG − ΓM then H0(X, (g/p)FM
) = 0.

Proof. Let Pλ be the parabolic of M corresponding to the subset {i ∈
ΓM | 〈λ , α̌i〉 = 0} ⊂ ΓM . Let Mλ be the corresponding Levi. The fact that

FM ∈ Bun
(λ)
M means that FM admits a reduction to Pλ such that the corre-

sponding Mλ-bundle FMλ
is semi-stable of degree λ.

Let us prove statement (a). Note that the vector bundle n(P )FM
has

a canonical filtration with the associated graded identified with n(P )FMλ
.

Hence, it suffices to show that H1(X, n(P )FMλ
) = 0.

By Remark 10.3.5, it suffices to prove that

〈λ , α̌〉 > 2g − 2 + strngX(Mλ, (VMλ,α̌)
∗)

for any positive root α̌ of G which is not a root of M .
Let i ∈ ΓG − ΓM be such that coeff i(α̌) > 0. Since λ is dominant for G

and 〈λ , α̌i〉 > c′i we have 〈λ , α̌〉 ≥ coeffi(α̌) · 〈λ , α̌i〉 > coeffi(α̌) · c′i . Now use
(10.7) for M ′ = Mλ (this is possible because i �∈ ΓM and therefore i �∈ ΓMλ

).
The proof of statement (b) is similar.

Remark 10.4.6. If k has characteristic p > 0 then Proposition 10.4.5
would become really useful if combined with good16 upper bounds for
the strangeness of the relevant representations. It would be interesting to
obtain such bounds.

10.5. Remarks on the positive characteristic case

10.5.1. Let V1 and V2 be finite-dimensional vector spaces over a field of
any characteristic. LetGi denote the algebraic groupGL(Vi). Then the (G1×

16A good upper bound should have the form c(p,G, α̌) · (g − 1). The number
c(p,G, α̌) should be independent of X and small enough to explain the phenomenon
in Sect. 10.5.1 below.
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G2)-modules Hom(V1, V2) and V1⊗V2 have strangeness 0. This immediately
follows from the definition of semi-stability.

Corollary 10.5.2. Suppose that Gad 	 PGL(d1) × . . . × PGL(dn). Then
all inequalities (10.7)–(10.8) hold for c′i = 2g − 2, c′′i = 0 (without any as-
sumption on char k).

10.5.3. Suppose that char k = 2. Let V be a 2-dimensional vector space
over k. If g > 1 then the representation of GL(V ) in the symmetric square
Sym2(V ) has strangeness g−1 > 0. This follows from Sect. 10.5.1, combined
with the exact sequence

0 → V (2) → Sym2(V ) → V ⊗ V

and the equality strngX(V (2)) = g − 1, which is proved, e.g., in [JRXY,
Sect. 4.5].

10.5.4. The assertion in Sect. 10.5.3 implies that if g > 1, char k = 2
and G = Sp(2n), n ≥ 2, then some of the inequalities (10.7) do not hold for
c′i = 2g − 2.

10.5.5. The situation for the numbers c′′i is as follows:

J. Heinloth [He] proved that if G is a classical group over a field of odd
characteristic then all inequalities (10.8) hold for c′′i = 0. He also showed
that if char k = 2 this is still true if Gad is a product of groups of type A
and C.

On the other hand, according to [He, P], some of the inequalities (10.8)
do not hold if char k = 2 and Gad has one of the following types: G2, Bn

(n ≥ 3), Dn (n ≥ 4).

11. Constructing the contraction

The goal of this section is to prove point (b) of Proposition 9.2.2 for the
numbers ci defined in formula (10.3) from Sect. 10.2.

11.1. Morphisms between BunP , BunP− , BunM , and BunG

In this subsection and the next we recall some well known facts that will be
used in the proof of Proposition 9.2.2(b).
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11.1.1. From now on we fix a (standard) parabolic P . Let P− be the
parabolic opposite to P such that P− ⊃ T . Note that P− is not a standard
parabolic! Namely, P− is the unique parabolic such that P ∩P− = M , when
the latter is viewed a subgroup of P , see Sect. 10.1.1.

Lemma 11.1.2. The morphism BunM → BunP− ×
BunG

BunP is an open

embedding.

Proof. An M -bundle on X is the same as a G-bundle FG equipped with an
M -structure, i.e., a section of (G/M)FG

.
The assertion follows from the fact that the morphism G/M → G/P−×

G/P is an open embedding.

11.1.3. Define open substacks Ui ⊂ BunM as follows:

U0 := {FM ∈ BunM |H0(X, (g/p)FM
) = 0},(11.1)

U1 := {FM ∈ BunM |H1(X, n(P )FM
) = 0}.(11.2)

Proposition 11.1.4. We have:

(a) The morphism ιP : BunM → BunP induces a smooth surjective mor-
phism

U1 → BunP ×
BunM

U1.

(b) The morphism pP− : BunP− → BunG is smooth when restricted to the
open substack

BunP− ×
BunM

U1 ⊂ BunP− .

(c) The morphism qP− : BunP− → BunM is schematic, affine, and smooth
over U0 ⊂ BunM .

(d) The morphism ιP− : BunM → BunP− defines a closed embedding

U0 → BunP− ×
BunM

U0.

Proof. Let FM ∈ U1(k), i.e., FM is an M -torsor on X such that
H1(X, n(P )FM

) = 0. Using an appropriate filtration on U(P ) one deduces
from this that H1(X,U(P )FM

) = 0, i.e., every U(P )FM
-torsor on X is

trivial. This implies the surjectivity part of statement (a).
To prove the smoothness part of (a), it suffices to check that the differ-

ential of the morphism ιP : BunM → BunP at any point FM ∈ U1(k) ⊂
BunM (k) is surjective. Its cokernel equals H1(X, n(P )FM

), which is zero by
the definition of U1, see formula (11.2).
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Note also that the smoothness part of (a) will follow from (b): to see
this, decompose the morphism ιP : BunM → BunP as

BunM → BunP− ×
BunG

BunP → BunP

and use Lemma 11.1.2.
To prove (b), we have to show that the differential of pP− : BunP− →

BunG at any k-point y of BunP− ×
BunM

U1 is surjective. Its cokernel equals

H1(X, (g/p−)FP− ), where FP− is the P−-bundle corresponding to y. Let
FM be the corresponding M -bundle. We have H1(X, n(P )FM

) = 0 by the
definition of U1, see formula (11.2). Now, the associated graded of (g/p−)FP−

with respect to a (canonically defined) filtration identifies with (g/p−)FM
,

and the assertion follows from the fact that the composition

n(P ) → g → g/p−

is an isomorphism of M -modules.
To prove (c), consider the filtration

U(P−) = U1 ⊃ U2 ⊃ . . . ,

where Um is the subgroup generated by the root subgroups corresponding
to the roots α̌ of G such that∑

i �∈ΓM

coeff i(α̌) ≤ −m.

(Here coeff i(α̌) denotes the coefficient of α̌i in α̌.) Note that each quotient
Um/Um+1 is a vector group (i.e., a product of finitely many copies of Ga).
To prove (c), it suffices to check that for each m the morphism

(11.3) (BunP−/Um) ×
BunM

U0 → (BunP−/Um+1) ×
BunM

U0

is schematic, affine and smooth. In fact, it is a torsor over a certain vector
bundle.

To see this, note that by (11.1), for each FM ∈ U0 we have

H0(X, (Um/Um+1)FM
) = 0,

so the stack of (Um/Um+1)FM
-torsors on X is a scheme; namely, it is the

vector space H1(X, (Um/Um+1)FM
). As FM varies, these vector spaces form
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a vector bundle on U0. Let ξ denote its pullback to (BunP−/Um) ×
BunM

U0,

then the morphism (11.3) is a ξ-torsor.

Point (d) follows from point (c) since the map U0 → BunP− ×
BunM

U0 is a

section of the map

BunP− ×
BunM

U0 → U0,

and the latter is schematic and separated.

11.2. The action of A1 on BunP−

11.2.1. Let Z(M) denote the center of M . Choose a homomorphism μ :
Gm → Z(M) such that 〈μ , α̌i〉 > 0 for i �∈ ΓM . Then the action of Gm on
P− defined by

(11.4) ρt(x) := μ(t)−1 · x · μ(t), t ∈ Gm , x ∈ P−

extends to an action of the multiplicative monoid A1 on P− such that the
endomorphism ρ0 ∈ End(P ) equals the composition P− � M ↪→ P−.

11.2.2. The above action of A1 on P− induces an A1-action on BunP− .
Equip M and BunM with the trivial A1-action. The projection P− → M is
A1-equivariant, so the corresponding morphism qP− : BunP− → BunM has
a canonical A1-equivariant structure.

Remark 11.2.3. The above description of ρ0 implies that the morphism 0 :
BunP− → BunP− corresponding to 0 ∈ A1 equals the composition

(11.5) BunP−
qP−−→ BunM

ιP−−→ BunP− .

Remark 11.2.4. The action of Gm on BunP− is trivial: this follows from
formula (11.4), which says that the automorphisms ρt ∈ Aut(P−), t ∈ Gm,
are inner. Moreover, formula (11.4) provides a canonical trivialization of this
action.

Remark 11.2.5. Despite the previous remark, it is not true that the action of
Gm on each fiber of the morphism BunP− → BunM is trivial. (Note that al-
though Gm acts on BunP− by automorphisms over BunM , the trivialization
of the Gm-action on BunP− provided by (11.4) is not over BunM .)

Remark 11.2.6. It is not hard to show that the trivialization of the Gm-
action on BunP− defined in Remark 11.2.4 yields an action of the monoidal



The category of D-modules on BunG 105

stack17 A1/Gm on BunP− . The proof is straightforward; it uses the formula

ρt(μ(s)) = μ(s), t ∈ A1, s ∈ Gm ,

which follows from (11.4).

11.3. Proof of Proposition 9.2.2(b)

11.3.1. Let the numbers ci, i ∈ ΓG, be as in formula (10.3) from

Sect. 10.2. Let S ⊂ Λ+,Q
G be a P -admissible subset, and assume that S

satisfies (9.3), i.e.,

∀λ ∈ S, ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > ci .

We have to prove that the locally closed substack Bun
(S)
G ⊂ BunG is con-

tractive in the sense of Sect. 5.2.1.

11.3.2. Recall that ci := max(c′i, c
′′
i ), where c′i and c′′i are as in Proposi-

tion 10.1.3. So for all λ ∈ S and i ∈ ΓG − ΓM we have

〈λ , α̌i〉 > c′i ,(11.6)

〈λ , α̌i〉 > c′′i .(11.7)

By (11.6) and the assumption on the numbers c′i (see Proposition 10.1.3),

we have

(11.8) Bun
(S)
M ⊂ U1 := {FM ∈ BunM |H1(X, (n(P ))F) = 0}.

Similarly, (11.7) implies that

(11.9) Bun
(S)
M ⊂ U0 := {FM ∈ BunM |H0(X, (g/p)FM

) = 0}.

11.3.3. Let Bun
(S)
P− ⊂ BunP− denote the preimage of the open substack

Bun
(S)
M ⊂ BunM . The embeddings M ↪→ P ↪→ G and M ↪→ P− ↪→ G induce

a commutative diagram

17For any scheme S, the groupoid (A1/Gm)(S) is the groupoid of line bundles
over S equipped with a section, so (A1/Gm)(S) is a monoidal category with respect
to ⊗. In this sense A1/Gm is a monoidal stack.
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(11.10) Bun
(S)
M

ι(S)
P

ι
(S)

P−
Bun

(S)
P−

p(S)

P−

Bun
(S)
P

p(S)
P

BunG

We summarize the properties of the maps in the above diagram in the
following lemma:

Lemma 11.3.4. (i) The morphism Bun
(S)
M → Bun

(S)
P ×

BunG

Bun
(S)
P− defined

by diagram (11.10) is an open embedding.

(ii) The morphism ι
(S)
P : Bun

(S)
M → Bun

(S)
P is surjective and smooth.

(iii) The morphism p
(S)
P− : Bun

(S)
P− → BunG is smooth.

(iv) The morphism p
(S)
P induces an isomorphism Bun

(S)
P → Bun

(S)
G .

(v) The morphism ι
(S)
P− : Bun

(S)
M → Bun

(S)
P− is a closed embedding.

Proof. Statement (i) follows from Lemma 11.1.2.

By (11.8), statements (ii) and (iii) follow from Proposition 11.1.4 points
(a) and (b), respectively.

Statement (iv) holds by Proposition 9.2.2(a). By (11.9), statement (v)
follows from Proposition 11.1.4(d).

Remark 11.3.5. One can show, using [Sch, Proposition 4.4.4], that the map
in point (i) of Lemma 11.3.4 is an isomorphism for any P -admissible set S
(i.e., S does not even have to satisfy (9.3).)

11.3.6. Our goal is to prove that the locally closed substack Bun
(S)
G ⊂

BunG is contractive. By the definition of contractiveness (see Sect. 5.2.1),
this follows from Lemma 11.3.4 and the next statement:

Proposition 11.3.7. Let S be as in Proposition 9.2.2. Then the substack

Im(ι
(S)
P−) ⊂ Bun

(S)
P− from Lemma 11.3.4(v) is contractive.

Proof. Equip BunP− with the A1-action from Sect. 11.2 corresponding to

some μ : Gm → Z(M). The open substack Bun
(S)
P− ⊂ BunP− is A1-stable, so

we obtain an A1-action on Bun
(S)
P− .

We apply Lemma 5.4.3 to the canonical morphism q
(S)
P− : Bun

(S)
P− →

Bun
(S)
M and the above A1-action on Bun

(S)
P− . We only have to check that the

conditions of the lemma hold.

By (11.9) and Proposition 11.1.4(c), the morphism q
(S)
P− : Bun

(S)
P− →
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Bun
(S)
M is schematic and affine. Conditions (i)–(ii) from Lemma 5.4.3 hold

by Remarks 11.2.3–11.2.4.

12. Counterexamples

The goal of this section is to show that the property of being truncatable is
a purely “stacky” phenomenon, i.e., that it “typically” fails for non quasi-
compact schemes.

12.1. Formulation of the theorem

Theorem 12.1.1. Let Y be an irreducible smooth scheme of dimension n,
such that for some (or, equivalently, any) non-empty quasi-compact open
U ⊂ Y the set

(12.1) {y ∈ Y − U | dimy(Y − U) = dimY − 1}

is not quasi-compact. Then D-mod(Y ) is not compactly generated.

The theorem will be proved in Sect. 12.2 below. Here are two examples
of schemes Y satisfying the condition of Theorem 12.1.1.

Example 12.1.2. Let I be an infinite set and let Y be the non-separated
curve that one obtains from A1 × I by gluing together the open subschemes
(A1 − {0})× {i}, i ∈ I (in other words, Y is the affine line with the point 0
repeated I times).

Example 12.1.3. Let X0 be a smooth surface and x0 ∈ X0 a point. Set
U0 = X − {x0}. Let X1 be the blow-up of X0 at x0. Let x1 ∈ X1 be a point
on the exceptional divisor. We have an open embedding

U0 = X − {x0} ↪→ X1 − {x1} = U1

such that U1 − U0 is a divisor. We can now apply the same process for
(X1, x1) instead of (X0, x0). Thus we obtain a sequence of schemes

U0 ↪→ U1 ↪→ U2 ↪→ ...

Then Y :=
⋃

i Ui satisfies the condition of Theorem 12.1.1. Note that Y is
separated if X0 is.

12.2. Proof of Theorem 12.1.1

We will use facts from Sect. 2.2.10 about the relation between compactness
and coherence (in the easier case of smooth schemes).
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12.2.1. Let Y be a smooth scheme, Z ⊂ Y a non-empty divisor, and

Y − Z = U
j
↪→ Y be the complementary open embedding.

Lemma 12.2.2. Suppose that N ∈ D-mod(Y ) is coherent and j∗ ◦ j∗(N) =
N. Then the singular support SS(N) ⊂ T ∗(Y ) is not equal to T ∗(Y ).

Proof. We can assume that Y is affine and Z is smooth. Since j∗ is t-exact
we can also assume that N is in D-mod(N)♥. Suppose that SS(N) = T ∗(Y ).
Then there exists an injective map DY ↪→ N, where DY is the D-module
of differential operators on Y . We obtain an injective map j∗ ◦ j∗(DY ) ↪→
j∗ ◦ j∗(N) = N. But N is coherent while j∗ ◦ j∗(DY ) is not.

12.2.3. Let Y be as in Theorem 12.1.1 and M ∈ D-mod(Y ) a compact
object. Note that by Remark 2.2.13, M is automatically coherent.

We claim:

Lemma 12.2.4. SS(M) �= T ∗(Y ).

Proof. By Proposition 2.3.7, there exists a quasi-compact open U
j
↪→ Y such

that M = j!(j
∗(M)) or equivalently,

DVerdier
Y (M) = j∗ ◦ j∗(DVerdier

Y (M)).

We can assume that U �= ∅ (otherwise M = 0 and SS(M) = ∅). Then
the set (12.1) is non-empty, so after shrinking Y we can assume that the set
Z := Y − U is a non-empty divisor.

Applying Lemma 12.2.2 to N = DVerdier
Y (M) we get SS(DVerdier

Y (M)) �=
T ∗(Y ). Finally, SS(M) = SS(DVerdier

Y (M)).

12.2.5. Recall that the full subcategory of compact objects in a DG cat-
egory C is denoted by Cc.

Lemma 12.2.6. Let A ⊂ D-mod(Y ) be the DG subcategory generated by
D-mod(Y )c. If M ∈ A is coherent then SS(M) �= T ∗(Y ).

Proof. Let U
j
↪→ Y be a non-empty quasi-compact open subset.

Let C ⊂ D-mod(U) be the full DG subcategory of D-mod(U) generated
by j∗(D-mod(Y )c). Since j∗(D-mod(Y )c) ⊂ D-mod(U)c, we have

Cc = C ∩D-mod(U)c,

and by Corollary 1.4.6, the latter is Karoubi-generated by j∗(D-mod(Y )c).
This observation, combined with Lemma 12.2.4 and the fact that T ∗(U)

is dense in T ∗(Y ), implies that for any N ∈ Cc,
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SS(N) �= T ∗(U).

Now, j∗(M) ∈ C∩D-modcoh(U), and since U is quasi-compact, we have
D-modcoh(U) = D-mod(U)c. Hence, j∗(M) ∈ Cc, implying the assertion of
the lemma.

Corollary 12.2.7. The DG category A from Lemma 12.2.6 does not contain
DY .

Theorem 12.1.1 clearly follows from Corollary 12.2.7.

Appendix A. Preordered sets as topological spaces

The material in this section is standard.

A.1. Definition of the topology

Given a preordered set X we equip it with the following topology: a subset
U ⊂ X is said to be open if for every x ∈ U one has {y ∈ X|y ≤ x} ⊂ U .

Lemma A.1.1.

(i) A subset F ⊂ X is closed if and only if for every x ∈ F one has
{y ∈ X|y ≥ x} ⊂ F .

(ii) A subset Z ⊂ X is locally closed if and only if

(A.1) ∀x1, x2 ∈ Z {y ∈ X|x1 ≤ y ≤ x2} ⊂ Z.

(iii) For every subset Y ⊂ X the topology on Y corresponding to the induced
preordering on Y is induced by the topology on X.

Proof. We will only prove (ii). Condition (A.1) holds for locally closed sub-
sets because it holds for open and closed ones. Conversely, if Z satisfies (A.1)
then Z has the following representation as F ∩U with F closed and U open:

F := Z̄ = {x ∈ X | ∃z ∈ Z : z ≤ x}, U := {x ∈ X | ∃z ∈ Z : z ≥ x}.

A.2. Continuous maps

The following is also easy to see:

Lemma A.2.1. Let X,X ′ be preordered sets equipped with the above topol-
ogy. Then a map f : X → X ′ is continuous if and only if it is monotone,
i.e., x1 ≤ x2 ⇒ f(x1) ≤ f(x2).
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Appendix B. The Langlands retraction and coarsenings of
the Harder-Narsimhan-Shatz stratification

In Sect. B.1 we recall the definition of the Langlands retraction L : ΛQ

G →
Λ+,Q
G .
Using this retraction, we define in Sect. B.2 a coarsening of the usual

Harder-Narasimhan-Shatz stratification of BunG depending on the choice of
η ∈ Λ+,Q

G (the usual stratification itself corresponds to η = 0).

In Sect. B.3 we show that if η is “deep inside” Λ+,Q
G then all the strata

of the corresponding stratification are contractive (and therefore truncative
if char k = 0). Combined with Proposition 9.2.2 this immediately implies
Theorem 9.1.2 (see Sect. B.3.5 below).

In Sect. B.4 we explain the relation between the two proofs of Theo-
rem 9.1.2.

B.1. Recollections on the Langlands retraction

Equip ΛQ

G with the ≤
G

ordering. The following notion goes back to [La,

Sect. 4].

Definition B.1.1. The Langlands retraction L : ΛQ

G → Λ+,Q
G is defined as

follows: for λ ∈ ΛQ

G , let L(λ) be the least element of the set {μ ∈ Λ+,Q
G | μ ≥

G

λ} in the sense of the ≤
G

ordering.

B.1.2. The existence of the least element is not obvious; it was proved
by R.P. Langlands in [La, Sect. 4]. The material from [La, Sect. 4] is known
under the name of “Langlands’ geometric lemmas”. We give a short review of
it in [Dr]. In particular, we give there two proofs of the existence of the least
element: J. Carmona’s “metric” proof (see [Dr, Sections 2-3]) and another
one (see Sect. 4 of [Dr], including Example 4.3).

B.1.3. It is clear that the map L : ΛQ

G → Λ+,Q
G is an order-preserving

retraction. The following description of the fibers of L is given in [La, Sect. 4];
see also [Dr, Cor. 5.3(iii)].

Lemma B.1.4. For any λ ∈ Λ+,Q
G one has

L−1(λ) = λ+
∑
i∈Iλ

Q≤0 · αi , where Iλ := {i ∈ ΓG | 〈λ, αi〉 = 0}.
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B.2. The η-stratification

B.2.1. The η-shifted Langlands retraction. Let η ∈ Λ+,Q
G . The map

(B.1) L+
η : Λ+,Q

G → (η + Λ+,Q
G ), L+

η (λ) := L(λ− η) + η

is an order-preserving retraction (this follows from a similar property of L).
By definition,

(B.2) ∀λ′ ∈ Λ+,Q
G , ∀λ ∈ (η + Λ+,Q

G ) we have L+
η (λ

′) ≤
G
λ ⇔ λ′ ≤

G
λ.

B.2.2. The η-stratification of BunG . In Sect. 7.4.8 we defined the
Harder-Narasimhan map HN : |BunG(k)| → Λ+,Q

G and formulated three

properties of it, see Lemma 7.4.9 (i-iii). Since the map L+
η : Λ+,Q

G → (η +

Λ+,Q
G ) is order-preserving, the map

(B.3) HNη : |BunG(k)| → (η + Λ+,Q
G ), HNη := L+

η ◦HN

has the same three properties. So the fibers of the map (B.3) form a strat-
ification of BunG with quasi-compact strata. We call it the η-stratification
of BunG ; the corresponding strata are

(B.4) Bun
(λ)η
G :=

⋃
λ′∈(L+

η )−1(λ)

Bun
(λ′)
G , λ ∈ (η + Λ+,Q

G ).

It is clear that the η-stratification is coarser than the Harder-Narsimhan-
Shatz stratification (the word “coarser” is understood in the non-strict
sense).

B.2.3. Open substacks associated to the η-stratification. Recall

that for each λ ∈ Λ+,Q
G the open substack Bun

(≤λ)
G ⊂ BunG is the union of

the strata

Bun
(λ′)
G , λ′ ≤

G
λ.

If one considers similar unions of the strata of the η-stratification then one
gets “essentially” the same class of open substacks of BunG ; more precisely,
we claim that for each λ ∈ (η + Λ+,Q

G ) one has⋃
λ′∈(η+Λ+,Q

G ), λ′≤
G
λ

Bun
(λ′)η
G = Bun

(≤λ)
G .

This follows from (B.2) and (B.4).
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B.2.4. Changing η. If η′ ∈ (η + Λ+,Q
G ) then L

+
η′ ◦ L+

η = L
+
η′ , so the η′-

stratification is coarser than the η-stratification. If η′ and η have the same
image in Λ+,Q

Gad
then L

+
η′ = L+

η , so the η′-stratification and the η-stratification
are the same.

B.2.5. (L+
η )−1(λ) as a P -admissible set. Let λ ∈ (η+Λ+,Q

G ). Let P be
the parabolic whose Levi quotient, M , corresponds to the following subset
of ΓG :

(B.5) ΓM = {i ∈ ΓG | 〈λ− η , α̌i〉 = 0}.

Equivalently,

(B.6) ΓG − ΓM = {i ∈ ΓG | 〈λ , α̌i〉 > 〈η , α̌i〉}.

By Lemma B.1.4, the subset Tλ := (L+
η )

−1(λ) ⊂ Λ+,Q
G has the following

description in terms of the ≤
M

ordering:

(B.7) Tλ = {λ′ ∈ Λ+,Q
G |λ′ ≤

M
λ}.

So by (B.6) and Lemma 8.1.2(a), the set Tλ is P -admissible in the sense of

Definition 8.2.2. Moreover, by (B.4) and (B.7), the stratum Bun
(λ)η
G is equal

to the locally closed substack Bun
(Tλ)
G defined in Sect. 8.3.1 by formula (8.6).

B.3. The case where η is “deep inside” Λ+,Q
G

B.3.1. Contractiveness of the strata. Suppose now that

(B.8) 〈η , α̌i〉 ≥ ci for all i ∈ ΓG ,

where the numbers ci ∈ Q≥0 are as in Proposition 9.2.2.

Proposition B.3.2. Under these conditions, all strata of the η-stratification
are contractive.

Proof. Let λ ∈ (η + Λ+,Q
G ). By Sect. B.2.5, Bun

(λ)η
G = Bun

(Tλ)
G , where Tλ ⊂

Λ+,Q
G is the P -admissible set defined by (B.7). So by Proposition 9.2.2(b), it

suffices to check that for all λ′ ∈ Tλ and i ∈ ΓG − ΓM one has 〈λ′ , α̌i〉 > ci.
If λ′ = λ this is clear from (B.6) and (B.8). The general case follows by
Lemma 8.1.2(a).

B.3.3. The characteristic 0 case. Now assume that char k = 0. Then
by Proposition 9.2.2, one can take ci = max(0, 2g− 2), where g is the genus
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of X. In this situation condition (B.8) can be rewritten as

(B.9) η ∈ (η0 + Λ+,Q
G ), where η0 := max(0, 2g − 2) · ρ

(as usual, ρ denotes the half-sum of positive coroots). E.g., one can take
η = η0 .

In characteristic 0 we have the notion of truncativeness and the fact that
contractiveness implies truncativeness, see Corollary 5.2.3. Thus we get part
(i) of the following

Corollary B.3.4. Suppose that char k = 0 and

(B.10) 〈η , α̌i〉 ≥ max(0, 2g − 2) for all i ∈ ΓG .

Then:

(i) all strata of the η-stratification are truncative;
(ii) the open strata of the η-stratification are co-truncative.

Proof. We have already proved (i). The complement of an open stratum is
a union of strata, so statement (ii) follows from Proposition 3.7.2.

B.3.5. Proof of Theorem 9.1.2. We have to show that the substack
Bun

(≤η)
G ⊂ BunG is co-truncative if 〈η , α̌i〉 ≥ 2g − 2 for all i ∈ ΓG . If g = 0

then any open substack of BunG is co-truncative by Sect. 3.2.4. So we can as-
sume that (B.10) holds. Then the statement follows from Corollary B.3.4(ii)

because Bun
(≤η)
G is an open stratum of the η-stratification; namely, it is the

stratum corresponding to η ∈ (η + Λ+,Q
G ).

B.4. Relation between the two proofs of Theorem 9.1.2

Suppose that char k = 0 and g ≥ 1.
In the proof of Theorem 9.1.2 given in Sect. 9.3 we used substacks

Bun
(Sλ)
G ⊂ BunG, λ ∈ Λ+,Q

G , where
(B.11)

Sλ := {λ′ ∈ Λ+,Q
G |λ′ − λ ∈

∑
i∈I

Q≤0 · αi}, I := {i ∈ ΓG | 〈λ, αi〉 ≤ 2g − 2}.

These substacks are related to the strata of the η0-stratification, where η0
is as in (B.9). The relation is as follows. The stratum of the η0-stratification

corresponding to λ ∈ (η0 + Λ+,Q
G ) equals Bun

(Sλ)
G . On the other hand, for

any λ ∈ Λ+,Q
G the stack Bun

(Sλ)
G is a locally closed substack of the stratum
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of the η0-stratification corresponding to L+
η0
(λ). (The proof of these facts is

left to the reader.)

Appendix C. A stacky contraction principle

The main goal of this appendix is to prove Theorem C.5.3 and Corollar-
ies C.5.4–C.5.5.

Corollary C.5.5 is a “contraction principle”, which is slightly more gen-
eral than Proposition 5.1.2. Theorem C.5.3 and Corollary C.5.4 are gener-
alizations of the classical adjunction from Proposition 5.3.2.

Convention: throughout this appendix algebras are always associative
but not necessarily unital; coalgebras are coassociative but not necessarily
counital.

C.1. Idempotent algebras in monoidal categories

The notions of algebra and coalgebra make sense in any monoidal category.

Definition C.1.1. An algebra A in a monoidal category is said to be idem-
potent if the multiplication morphism A⊗A → A is an isomorphism.

Remark C.1.2. The dual notion of idempotent coalgebra is, in fact, equiv-
alent to that of idempotent algebra: an isomorphism m : A ⊗ A → A is an
algebra structure if and only if m−1 : A → A⊗A is a coalgebra structure.

In any monoidal categoryM the unit object 1M has a canonical structure
of idempotent algebra.

Here is another example. Any monoidM can be considered as a monoidal
category (with M as the set of objects and no morphisms other than the
identities). In particular, this applies to {0, 1} as a monoid with respect to
multiplication. Clearly 0 is an idempotent algebra in the monoidal category
{0, 1}.
Remark C.1.3. The category of idempotent algebras in a monoidal category
M is equivalent to the category of monoidal functors F : {0, 1} → M; namely,
the idempotent algebra corresponding to F is F (0).

Let C be a category. By an idempotent functor C → C we mean an idem-
potent algebra in the monoidal category of functors C → C. One can think
of idempotent functors in terms of the two mutually inverse constructions
below.

Construction 1. Suppose we have categories A and C, functors A
i−→ C

π−→
A, and an isomorphism f : π ◦ i ∼−→ IdA. Set 0 := i ◦ π. Then 0 : C → C is
an idempotent functor: the isomorphism 0 ◦ 0 ∼−→ 0 is the composition
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0 ◦ 0 = (i ◦ π) ◦ (i ◦ π) = i ◦ (π ◦ i) ◦ π ∼−→ i ◦ IdA ◦ π = i ◦ π = 0.

Construction 2. Let C be a category equipped with an idempotent functor

0 : C → C. Equivalently, C carries an action of the monoid {0, 1} (see
Remark C.1.3). Let C0 be the category of {0, 1}-equivariant functors {0} →
C. Then the {0, 1}-equivariant maps {0} ↪→ {0, 1} → {0} induce functors

C0 π←− C
i←− C0 with π ◦ i = IdC0 . Equivalently, one can think of C0 as

the category of 0-modules18 c in C such that the morphism 0 · c → c is an

isomorphism; then i : C0 → C is the forgetful functor and π : C → C0 is the

“free module” functor.

It is easy to check that the above Constructions 1 and 2 are mutually
inverse.19

Remark C.1.4. In the situation of Construction 1, the algebra 0 is unital (or
equivalently, is a monad) if and only if (π, i) is an adjoint pair of functors

with f : π ◦ i ∼−→ IdA being one of the adjunctions (in this case the unit of 0

is the other adjunction). Similarly, 0 is a counital coalgebra (or equivalently,
a comonad) if and only if (i, π) is an adjoint pair.

C.2. The monodromic subcategory

Let Y be a QCA stack equipped with a Gm-action. Then one has the quotient

stack Y/Gm and the canonical morphism p : Y → Y/Gm.

Definition C.2.1. The monodromic subcategory D-mod(Y)μ ⊂ D-mod(Y)

is the subcategory generated by the essential image of p! : D-mod(Y/Gm) →
D-mod(Y) (or equivalently, by the essential image of p∗).

(A more precise name for D-mod(Y)μ would be “unipotently

monodromic subcategory.”)

Lemma C.2.2. If the Gm-action on Y is trivial then D-mod(Y)μ =
D-mod(Y).

Proof. A trivialization of the Gm-action on Y identifies Y/Gm with Y ×
(pt /Gm) and the morphism p : Y → Y/Gm with the canonical morphism

Y = Y× pt → Y× (pt /Gm).

18This notion makes sense because 0 is an algebra in the monoidal category of
functors C → C.

19This is a “baby case” of the theory of retracts and idempotents in ∞-categories
from [Lu1, Sect. 4.4.5].
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C.3. Recollections on the renormalized direct image

Let π : Y1 → Y2 be a morphism of QCA stacks. The renormalized direct
image functor

π� : D-mod(Y1) → D-mod(Y2)

is defined in [DrGa1, Sect. 9.3] to be the functor dual to π! : D-mod(Y2) →
D-mod(Y1) (dual in the sense of Sects. 1.5.2 and 2.2.16 of this article). By
definition, π� is continuous. One also has a not necessarily continuous de
Rham direct image functor πdR,∗ : D-mod(Y1) → D-mod(Y2), see [DrGa1,

Sect. 7.4]. If πdR,∗ is continuous then one has a canonical isomorphism π�
∼−→

πdR,∗ , see [DrGa1, Corollary 9.3.8]. For instance, this happens if the fibers
of π are algebraic spaces, see [DrGa1, Corollary 10.2.5].

C.4. Formulation of the theorem

Let Y be a QCA stack equipped with an action of the multiplicative monoid
A1. Let 0 ∈ Mor(Y,Y) denote the endomorphism of Y corresponding to
0 ∈ A1. One has continuous functors 0!,0� : D-mod(Y) → D-mod(Y)
(the functor 0dR,∗ is continuous only if it equals 0�). By Remark C.1.3,
0 is an idempotent algebra in the monoidal category Mor(Y,Y). So the
functors 0� and 0! are idempotent algebras in the monoidal category
Functcont(D-mod(Y),D-mod(Y)) and also in the monoidal category
Functcont(D-mod(Y)μ,D-mod(Y)μ) (here D-mod(Y)μ ⊂ D-mod(Y) is the
monodromic subcategory, see Sect. C.2). By Remark C.1.2, one can also
consider 0� and 0! as idempotent coalgebras.

Theorem C.4.1. The algebra 0� ∈ Functcont(D-mod(Y)μ,D-mod(Y)μ) is
unital. The coalgebra 0! ∈ Functcont(D-mod(Y)μ,D-mod(Y)μ) is counital.

A proof will be given in Sect. C.6–C.8. A slightly different proof will be
sketched in Sect. C.9.

Corollary C.4.2. If the Gm-action on Y is trivial then the algebra

0� ∈ Functcont(D-mod(Y),D-mod(Y))

is unital and the coalgebra

0! ∈ Functcont(D-mod(Y),D-mod(Y))

is counital.

Proof. Use Theorem C.4.1 and Lemma C.2.2.
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C.5. Reformulation in terms of adjunctions

Let Y be as in Sect. C.4. In particular, the submonoid {0, 1} ⊂ A1 acts on Y.

Define Y0 to be the stack of {0, 1}-equivariant maps {0} → Y. Equivalently,

for any test scheme S, the groupoid Y0(S) is obtained from Y(S) using

Construction 2 from Sect. C.1. It is clear that the stack Y0 is QCA.

The {0, 1}-equivariant maps {0, 1} → {0} ↪→ {0, 1} induce morphisms

(C.1) Y
i←− Y0 π←− Y, π ◦ i = IdY0 , i ◦ π = 0.

The A1-action on Y induces an A1-action on the diagram (C.1). The A1-

action on Y0 is canonically trivial (this follows from the identity λ · 0 = 0 in

A1). So D-mod(Y0)μ = D-mod(Y0).

Example C.5.1. Let Y be the stack BunP− equipped with the A1-action

from Sect 11.2. Then Y0 = BunM and diagram (C.1) identifies with diagram

(11.5).

Remark C.5.2. Since π ◦ i = IdY0 the morphism i is representable20 (i.e., its

fibers are algebraic spaces rather than stacks). So the renormalized direct

image functor i� equals the “usual” direct image idR,∗ .

By Remarks C.1.4 and C.5.2, one can reformulate Theorem C.4.1 and

Corollary C.4.2 as follows.

Theorem C.5.3. The functors

(C.2)

π� : D-mod(Y)μ � D-mod(Y0) : idR,∗ , i! : D-mod(Y)μ � D-mod(Y0) : π!

form adjoint pairs with the adjunctions π� ◦ idR,∗
∼−→ IdD-mod(Y0) and

IdD-mod(Y0)
∼−→ i! ◦ π! coming from the isomorphism π ◦ i ∼−→ IdY0 .

Corollary C.5.4. If the Gm-action on Y is trivial then the functors

(C.3)

π� : D-mod(Y) � D-mod(Y0) : idR,∗ , i! : D-mod(Y) � D-mod(Y0) : π!

form adjoint pairs with the adjunctions π� ◦ idR,∗
∼−→ IdD-mod(Y0) and

IdD-mod(Y0)
∼−→ i! ◦ π! coming from the isomorphism π ◦ i ∼−→ IdY0.

20Example C.5.1 shows that i is not necessarily a monomorphism. Simpler ex-
ample: let G be an affine algebraic group equipped with an A1-action and set
Y := pt /G, then Y0 = pt /G0, where G0 ⊂ G is the subgroup of A1-fixed points.



118 V. Drinfeld and D. Gaitsgory

Corollary C.5.5. Suppose that the Gm-action on Y is trivial and the mor-
phism i : Y0 → Y is a composition of an almost-isomorphism21 Y0 → Z and
a locally closed embedding Z ↪→ Y. Then the substack Z ⊂ Y is truncative.

Remark C.5.6. The assumption of Corollary C.5.5 is equivalent to the fol-
lowing one: 0(Y) ⊂ Z and 0|Z : Z → Z is an almost-isomorphism.

Remark C.5.7. Corollary C.5.5 holds even if Y is locally QCA (but not
necessarily quasi-compact). To show this, we can assume that Y0 is quasi-
compact (otherwise replace Y by Y ×Y0 S, where S is any quasi-compact
scheme equipped with a smooth morphism to Y0). Then Y0 is contained in
a quasi-compact open substack U ⊂ Y. Since the Gm-action on Y is trivial
U is A1-stable. Applying Corollary C.5.5 to U we see that Y0 is truncative
in U and therefore in Y.

C.6. The key lemma

Similarly to the notion of monoidal groupoid, there is a notion of monoidal
stack. Of course, any algebraic group or the multiplicative monoid A1 are
examples of monoidal stacks. In the proof of Theorem C.4.1 we will use the
monoidal stack A1/Gm. (If you wish, S-points of A1/Gm can be interpreted
as line bundles over S equipped with a section; this is a monoidal category
with respect to ⊗).

Let G be a monoidal QCA stack over k. Then D-mod(G) is a monoidal
category with respect to the convolution

(C.4) M ∗N := m�(M � N), M,N ∈ D-mod(G),

where m : G×G → G is the multiplication map.
For any g ∈ G(k) define g ∈ D-mod(G) to be the direct image of k ∈

D-mod(pt) under the map g : pt → G (this is a kind of “delta-function”
at g). The assignment g �→ g is a monoidal functor G(k) → D-mod(G). In
particular, 1 ∈ D-mod(G) is the unit object.

If f : G1 → G2 is a morphism of monoidal stacks then f� : D-mod(G1) →
D-mod(G2) is a monoidal functor. If f is only a morphism of semigroups
then f� is a semigroupal22 functor, so f�(1) ∈ D-mod(G2) is an idempotent
algebra.

Applying this to 0 : pt → A1/Gm we see that 0 ∈ D-mod(A1/Gm) is an
idempotent algebra.

Lemma C.6.1. The algebra 0 ∈ D-mod(A1/Gm) is unital.

21See Definition 7.4.2.
22There exists a precedent of the usage of “semigroupal” in the literature; this

word means “monoidal, but without asking that the unit map to the unit.”
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Proof. Consider the morphisms {0}/Gm
i
↪→ A1/Gm

π−→ {0}/Gm induced
by the morphisms {0} ↪→ A1 → {0}. Set C := D-mod({0}/Gm); this is a
monoidal category because {0}/Gm is a monoidal stack. We have a monoidal
functor πdR,∗ : D-mod(A1/Gm) → C and a semigroupal functor idR,∗ : C →
D-mod(A1/Gm) with πdR,∗◦idR,∗ = IdC . By definition, 0 = idR,∗(1C), where
1C is the unit object of C.

Let us now construct the unit e : 1 → 0 of the algebra 0. By Sect. 3.3.9,
(πdR,∗, idR,∗) is an adjoint pair of functors (this is the “baby case” of Theo-
rem C.5.3). So

Maps(1, 0) = Maps(1, idR,∗(1C)) = Maps(πdR,∗(1),1C) = Maps(1C,1C);

more precisely, the map πdR,∗ : Maps(1, 0) → Maps(1C,1C) is an isomor-
phism. Define e : 1 → 0 to be the morphism such that πdR,∗(e) equals

id : 1C
∼−→ 1C.

Let us show that e is indeed a unit. Let f : 0 → 0 denote the composition
of the morphism e ∗ id0 : 0 = 1 ∗ 0 → 0 ∗ 0 with the multiplication map
0 ∗ 0 → 0. We have to prove that f = id0 . To do this, it suffices to show
that πdR,∗(f) equals the identity. This is clear because πdR,∗ is a monoidal

functor and πdR,∗(e) equals id : 1C
∼−→ 1C.

C.7. Proof of a particular case of Theorem C.4.1

The following statement is a particular case of Theorem C.4.1 and of Corol-
lary C.4.2.

Lemma C.7.1. Let Y be a QCA stack equipped with an action of the
monoidal stack A1/Gm. Then the algebra 0� ∈ Functcont(D-mod(Y),
D-mod(Y)) is unital and the coalgebra 0! ∈ Functcont(D-mod(Y),D-mod(Y))
is counital.

This lemma is an immediate consequence of Lemma C.6.1 and the fol-
lowing general considerations.

Suppose that a monoidal QCA stack G acts on a QCA stack Y. Then the
monoidal category G(k) acts on D-mod(Y) on the left by g �→ g�, g ∈ G(k).
One also has the right action23 g �→ g!. Each of these two actions extend to
an action of D-mod(G). Namely, the left action is defined by

(C.5) M ∗N := a�(M � N), M ∈ D-mod(G), N ∈ D-mod(Y),

23Usually it does not commute with the left action. E.g., if g ∈ G is invertible
then g! = (g−1)� does not have to commute with g′�, g

′ ∈ G.
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where a : G × Y → Y is the action map. One can get the right action
of D-mod(G) on D-mod(Y) from the left one using the equivalence
D-mod(Y)∨ 	 D-mod(Y) that comes from Verdier duality, see (2.2). One
can also define the right action explicitly by
(C.6)

N ∗M := (pY)�

(
p!G(M)

!
⊗ a!(N)

)
, M ∈ D-mod(G), N ∈ D-mod(Y),

where pG : G× Y → G and pY : G× Y → Y are the projections.
Now Lemma C.7.1 is clear. It immediately implies the following state-

ment.

Corollary C.7.2. Let Y be a QCA stack equipped with an action of the
monoidal stack A1/Gm. Then the functors
(C.7)
π� : D-mod(Y) � D-mod(Y0) : idR,∗ , i! : D-mod(Y) � D-mod(Y0) : π!

form adjoint pairs with the adjunctions π� ◦ idR,∗
∼−→ IdD-mod(Y0) and

IdD-mod(Y0)
∼−→ i! ◦ π! coming from the isomorphism π ◦ i ∼−→ IdY0.

C.8. Proof of Theorems C.4.1 and C.5.3

We will deduce them from Corollary C.7.2. First, let us make some general
remarks.

If Z is an algebraic stack equipped with a morphism ψ : Z → BGm

then D-mod(Z) is equipped with the following action of the tensor category

(D-mod(BGm),
!
⊗):

M ⊗ F := ψ!(M)
!
⊗ F, M ∈ D-mod(BGm), F ∈ D-mod(Z).

If f : Z1 → Z2 is a morphism of QCA stacks over BGm then the functors
f� and f ! are compatible with the above action of D-mod(Gm).

Lemma C.8.1. Suppose we have a Cartesian diagram of QCA stacks

Z̃ −−−−→ pt

p

⏐⏐� ⏐⏐�ϕ

Z
ψ−−−−→ BGm

Then one has a canonical isomorphism

(C.8) Maps(p!(F1), p
!(F2)) = Maps(F1, A⊗ F2), F1,F2 ∈ D-mod(Z),
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where A := ϕdR,∗(k)[−2] and A⊗ F2 := ψ!(A)
!
⊗ F2.

Proof. p!(F1) = p∗dR(F1)[2], so

Maps(p!(F1), p
!(F2)) = Maps(F1, pdR,∗ ◦ p!(F2)[−2]) = Maps(F1, A⊗ F2).

Now let us prove the assertion of Theorem C.5.3 concerning the pair
(π�, idR,∗). The proof of the other assertion of Theorem C.5.3 is similar, and
Theorem C.4.1 follows from Theorem C.5.3.

We have to show that for any F̃1 ∈ D-mod(Y)μ and F̃2 ∈ D-mod(Y0) =
D-mod(Y0)μ the canonical map
(C.9)

Maps(F̃1, idR,∗(F̃2)) → Maps(π�(F̃1), π� ◦ idR,∗(F̃2)) = Maps(π�(F̃1), F̃2)

is an isomorphism. By the definition of the monodromic subcategory, we can
assume that F̃1 = p!(F1) for some F1 ∈ D-mod(Y/Gm). Since the action of

Gm on Y0 is trivial, we can also assume that F̃2 = (p0)!(F2) (here p0 : Y0 →
Y0/Gm). Applying Lemma C.8.1 for Z = Y/Gm, Z̃ = Y and for Z = Y0/Gm,

Z̃ = Y0 we get

Maps(F̃1, idR,∗(F̃2)) = Maps(F1, A⊗ i′dR,∗(F2)), i′ : Y0/Gm → Y/Gm,

Maps(π�(F̃1), F̃2) = Maps(π′
�(F1), A⊗ F2), π′ : Y/Gm → Y0/Gm.

The map (C.9) is a particular case of the canonical map

(C.10) Maps(F1,M⊗ i′dR,∗(F2)) → Maps(π′
�(F1),M ⊗ F2)

which is defined for any M ∈ D-mod(BGm). Applying Corollary C.7.2 to
the action of A1/Gm on Y/Gm we see that the map (C.10) is an isomor-
phism if M = ωBGm

. This implies that (C.10) is an isomorphism for any
M ∈ D-modcoh(BGm) (because by connectedness of Gm, D-modcoh(BGm)
is the smallest non-cocomplete triangulated subcategory of D-mod(BGm)
containing ωBGm

). In particular, (C.10) is an isomorphism for M = A, and
we are done.

C.9. Sketch of another approach to Theorems C.4.1 and C.5.3

In Sect. C.8 we deduced Theorems C.4.1 and C.5.3 from Corollary C.7.2,
which relies on the study of D-mod(A1/Gm) (see Lemma C.6.1). Here
we sketch a slightly different approach, which is based on the study of
D-mod(A1)μ and does not rely on Corollary C.7.2.
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Proposition C.9.1. The subcategories D-mod(Gm)μ ⊂ D-mod(Gm) and
D-mod(A1)μ ⊂ D-mod(A1) are closed under convolution. Moreover, they
are monoidal categories. The unit object of D-mod(Gm)μ equals 1μ, where 1
is the unit object of D-mod(Gm) and

M �→ Mμ

is the “monodromization” functor D-mod(Gm) → D-mod(Gm)μ, i.e., the
functor right adjoint to the embedding D-mod(Gm)μ ↪→ D-mod(Gm). The
unit object of D-mod(A1)μ has a similar description and can also be described
as j∗(1μ), where j : Gm ↪→ A1 is the embedding.

The adjunction mentioned in the proposition defines a canonical mor-
phism ε : 1μ → 1.

Remark C.9.2. Let ΓdR(Gm,−) denote the de Rham cohomology
functor D-mod(Gm) → Vect. The pair (1μ, ε) is uniquely character-
ized by the following properties: 1μ ∈ D-mod(Gm)μ and the map
ΓdR(Gm, 1μ) → ΓdR(Gm, 1) = k induced by ε is an isomorphism. This
implies that 1μ is nothing but the “infinite Jordan block” I−∞,0 from
[Be, Sect. 1.3]. In particular, the image of 1μ under the Riemann-Hilbert
correspondence is a sheaf (rather than a complex of sheaves).

Similarly to Lemma C.6.1, one has the following statement (which im-
plies Lemma C.6.1).

Lemma C.9.3. The idempotent algebra 0μ ∈ D-mod(A1)μ is unital in
D-mod(A1)μ.

One shows that if Y is a QCA stack equipped with a Gm-action then
D-mod(Gm)μ acts on D-mod(Y)μ as a monoidal category, i.e., 1μ acts as iden-
tity. Similarly, if Y is equipped with an A1-action then one has the left and
right monoidal action of D-mod(A1)μ on D-mod(Y)μ. Now Theorem C.4.1
follows from Lemma C.9.3, and Theorem C.5.3 follows from C.4.1.
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