
Cambridge Journal of Mathematics

Volume 2, Number 1, 49–90, 2014

Integral Eisenstein cocycles on GLn, I:
Sczech’s cocycle and p-adic L-functions of

totally real fields

Pierre Charollois and Samit Dasgupta
∗

We define an integral version of Sczech’s Eisenstein cocycle on
GLn by smoothing at a prime �. As a result we obtain a new
proof of the integrality of the values at nonpositive integers of the
smoothed partial zeta functions associated to ray class extensions
of totally real fields. We also obtain a new construction of the
p-adic L-functions associated to these extensions. Our cohomolog-
ical construction allows for a study of the leading term of these
p-adic L-functions at s = 0. We apply Spiess’s formalism to prove
that the order of vanishing at s = 0 is at least equal to the expected
one, as conjectured by Gross. This result was already known from
Wiles’ proof of the Iwasawa Main Conjecture.

Introduction 50

1 The Eisenstein cocycle 58

1.1 Sczech’s Eisenstein cocycle for GLn(Q) 58

1.2 Decomposition 60

1.3 Bernoulli distributions 60

2 The smoothed cocycle 62

2.1 Definition of the smoothed cocycle 62

∗We would like to thank Michael Spiess for several discussions regarding his
formalism for p-adic L-functions and for openly sharing his ideas that are presented
in Section 5. We would also like to thank Robert Sczech and Glenn Stevens for their
suggestions and encouragement, and for their papers [Sc] and [St] that helped inspire
this work. Samit Dasgupta was partially supported by NSF grants DMS 0900924
and DMS 0952251 (CAREER), as well as a fellowship from the Sloan Foundation.
Part of this paper was written while Pierre Charollois enjoyed the hospitality of
UC Santa Cruz.

49

http://www.intlpress.com/CJM/


50 Pierre Charollois and Samit Dasgupta

2.2 A Dedekind sum formula 63

2.3 A refined cocycle 65

2.4 Decomposition of the Dedekind sum 66

2.5 A cyclotomic Dedekind sum 68

2.6 The case e = 1 69

2.7 Proof of Theorem 4 70

3 Integrality of smoothed zeta functions 73

4 p-adic measures and p-adic zeta functions 76

4.1 p-adic measures associated to Ψ� 76

4.2 p-adic zeta functions 79

5 Order of vanishing at s = 0 83

5.1 p-adic L-functions 83

5.2 Spiess’ Theorems and the proof of Theorem 3 84

References 89

Introduction

Let F be a totally real field of degree n, and let f be an integral ideal of F .
For a fractional ideal a of F relatively prime to the conductor f, consider
the partial zeta function

(1) ζf(a, s) =
∑
b∼a

1

Nbs
, Re(s) > 1.

Here the sum ranges over integral ideals b ⊂ F equivalent to a in the narrow
ray class group modulo f, which we denote Gf. A classical result of Siegel and
Klingen states that the partial zeta functions ζf(a, s), which may be extended
to meromorphic functions on the complex plane, assume rational values at
nonpositive integers s. Siegel proved this fact by realizing these special values
as the constant terms of certain Eisenstein series on the Hilbert modular
group associated to F . The rationality of the constant terms follows from
the rationality of the other Fourier coefficients, which have a simple form.

Shintani gave an alternate proof of the Siegel–Klingen result using
a “geometry of numbers” approach. Shintani fixed an isomorphism
F ⊗Q R ∼= Rn, and considered a fundamental domain D for the action
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of the group of totally positive units in F congruent to 1 modulo f on the
totally positive orthant of Rn. The partial zeta functions of F could then be
expressed as a sum indexed by the points of D contained in various lattices
in Rn. Shintani evaluated these sums using standard techniques from com-
plex analysis and expressed them explicitly in terms of sums of products of
Bernoulli polynomials.

In 1993, Sczech gave yet another proof of the Siegel–Klingen rationality
theorem. He defined an “Eisenstein” cocycle Ψ on GLn(Q) valued in a space
of Q-valued distributions denoted MQ. He then showed that the cohomology
class [Ψ] ∈ Hn−1(GLn(Q),MQ) could be paired with certain classes in a
dual homology group to yield the special values of all totally real fields F of
degree n at nonpositive integers, thereby demonstrating their rationality.

Each of these proofs of the Siegel–Klingen rationality theorem bears an
integral refinement. Deligne and Ribet gave such a refinement of Siegel’s
method following an idea initiated by Serre. They constructed a model over
Z of the relevant Hilbert modular scheme, and proved that its fibers in char-
acteristic p are geometrically irreducible. Meanwhile, Barsky and Pi. Cassou-
Noguès proved an integral refinement of Shintani’s formulas and interpreted
these results in terms of p-adic measures.

The first goal of the present paper is to provide an integral refinement
of Sczech’s cocycle Ψ. We introduce a “smoothing” operation with respect
to a prime �, and use it to define a cocycle Ψ� that satisfies an important
integrality property (see Theorem 4 below for a precise statement). As an
application of our results, we give new proofs of the following two celebrated
theorems of Deligne–Ribet and Cassou-Noguès.

Theorem 1. Let c be an integral ideal of F relatively prime to f with prime
norm �. The smoothed zeta function

(2) ζf,c(a, s) = ζf(ac, s)−Nc1−sζf(a, s)

assumes values in Z[1/�] at nonpositive integers s.1

1See Remark 3.2 for a discussion of the condition that c has prime norm. Also,
note that Theorem 1 has the corollary that the “twice smoothed” zeta function

ζf,c,b(a, s) = ζf,b(ac, s)−Nc1−sζf,b(a, s)

= ζf,c(ab, s)−Nb1−sζf,c(a, s)

assumes integer values at nonpositive integers s when (Nb,Nc) = 1. Gross has re-
cently provided an interpretation of these integers in terms of dimensions of certain
spaces of automorphic forms [G2].
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Our integrality results further allow for a new construction of the

p-adic zeta functions ζf,c,p(a, s) interpolating the classical zeta values ζf,c(a, s),

originally constructed by Deligne–Ribet, Cassou-Noguès, and Barsky. Define

ζ∗f (a, s) as in (1), but with the sum restricted to ideals b relatively prime

to p; define ζ∗f,c(a, s) from ζ∗f (a, s) as in (2). Let W denote the weight space

of continuous homomorphisms from Z∗
p to C∗

p, with k ∈ Z embedded as

x �→ xk.

Theorem 2. Let c be an integral ideal of F relatively prime to fp with prime

norm �. There exists a unique Zp-valued analytic function ζf,c,p(a, s) of the

variable s ∈ W such that

ζf,c,p(a,−k) = ζ∗f,c(a,−k)

for all nonnegative integers k.

Our construction of the p-adic zeta functions of totally real fields al-

lows us to embark on a new study of the behavior of the leading terms

of these functions at s = 0. In order to state our main result, it is conve-

nient to work with the p-adic L-functions associated to characters rather

than the p-adic zeta functions associated to ideal classes. To this end, let

χ : Gal(F/F ) → Q
∗
be a totally odd finite order character with conductor

f. We fix embeddings Q ↪→ C and Q ↪→ Qp, so that χ can be viewed as

taking values in C or Qp. Let
2

ω : Gal(F/F ) −→ μp−1 ⊂ Q
∗

denote the Teichmüller character. There is a p-adic L-function

Lc,p(χω, s) : Zp −→ Cp

associated to the totally even character χω, given by

(3) Lc,p(χω, s) :=
∑
a∈Gf

χ(ac)ζf,c,p(a, 〈·〉s)

2As usual, replace μp−1 by {±1} when p = 2.
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where 〈x〉 = x/ω(x) for x ∈ Z∗
p.
3 It satisfies the interpolation property

Lc,p(χω,−k) = L∗
c(χω

−k,−k)

:= L∗(χω−k,−k)(1− χω−k(c)Nc1+k)

for integers k ≥ 0, where L∗(χ, s) denotes the classical L-function with Euler
factors at the primes dividing p removed.

Let rχ denote the number of primes p of F above p such that χ(p) = 1.
It is well-known that

ords=0 L
∗
c(χ, s) = ords=0 L

∗(χ, s) = rχ

(see [T, 2.6]). In [G], Gross proposed the following:

Conjecture 1 (Gross). We have

ords=0 Lc,p(χω, s) = rχ.

Combining our cohomological construction of the p-adic L-function with
Spiess’s formalism (see §5), we prove the following partial result towards
Gross’s conjecture:

Theorem 3. We have

ords=0 Lc,p(χω, s) ≥ rχ.

The result of Theorem 3 was already known from Wiles’ proof of the
Iwasawa Main Conjecture under the auxiliary assumption

F∞ ∩H = F,

where H denotes the fixed field of χ and F∞ denotes the cyclotomic
Zp-extension of F . This assumption (namely, that χ has “type S” in Green-
berg’s terminology) was removed by Snaith in [Sn, Theorem 6.2.5] using
Brauer induction (see also [BG, pp. 165–166] for further discussion).

Our method contrasts with that of Wiles in that it is purely analytic; we
calculate the first rχ−1 derivatives of Lc,p(χω, s) at s = 0 directly and show
that they vanish. Spiess proved Theorem 3 as well using his formalism [Sp2].

3We are now following the classical conventions and viewing Lc,p as a function
of Zp rather than as a function of weight space W . An element s ∈ Zp yields the
element x �→ 〈x〉s of W appearing on the right side of (3).
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His cohomology classes are defined using Shintani’s method. In [CDG] we

provide a direct comparison between the cocycles defined using the methods

of Sczech and Shintani.

We conclude the introduction by recalling Sczech’s method, which

is central to this article, and describing our integral refinement. Let

P = Q[X1, . . . , Xn]. We denote by Q a certain space of tuples of linear

forms on Rn, defined precisely in Section 1.1. The spaces P and Q are en-

dowed with a left action of Γ = GLn(Q) given by (AP )(X) = P (XA). Let

MQ denote the Q-vector space of functions

φ : P ×Q× (Q/Z)n −→ Q

that are Q-linear in the first variable and satisfy the distribution relation

(4) φ(P,Q, v) = sgn(λ)n
∑

w∈(Q/Z)n

λw=v

φ(λdegPP, λ−1Q,w)

for all nonzero integers λ, when P ∈ P is homogeneous.

We view the elements of (Q/Z)n as column vectors and define a left

Γ-action on MQ as follows. Given γ ∈ Γ, choose a nonzero scalar multiple

A = λγ with λ ∈ Z such that A ∈ Mn(Z). For f ∈ MQ, define

(5) (γf)(P,Q, v) = sgn(det(A))
∑

r∈Zn/AZn

f(AtP,A−1Q,A−1(r + v)).

The distribution relation (4) implies that (5) does not depend on the auxil-

iary choice of λ.

Sczech defined a homogeneous cocycle

Ψ ∈ Zn−1(Γ,MQ) ⊂ Cn−1(Γ,MQ) = HomΓ(Z[Γ
n],MQ)

called the Eisenstein cocycle, representing a class

[Ψ] ∈ Hn−1(Γ,MQ).

We recall this definition precisely in Section 1. The values at nonpositive

integers of the zeta functions of all totally real fields F of degree n can be

obtained from certain specializations of [Ψ] as follows.
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Fix a conductor f and an integral ideal a as above. Associated to F, f, a,

and a nonnegative integer k, we define a certain homology class

[Za,f,k] ∈ Hn−1(Γ,M
∨
Q),

where MQ denotes the Q-linear dual of MQ. Fix a Z-basis {w1, . . . , wn} for

a−1f. Let P ∈ Z[X1, . . . , Xn] denote the homogeneous polynomial of degree

n given up to scalar by the norm:

(6) P (X1, . . . , Xn) = N(a)N(w1X1 + · · ·+ wnXn).

Let Q = (Q1, . . . , Qn) be the n-tuple of linear forms given by

(7) Qi = τi(w
∗
1)X1 + · · ·+ τi(w

∗
n)Xn,

where {w∗
1, . . . , w

∗
n} denotes the dual basis with respect to the trace form on

F , and the τi for i = 1, . . . , n denote the embeddings F ↪→ R. Let

(8) v = (Tr(w∗
1), . . . ,Tr(w

∗
n)).

Denote by fk = fP,Q,v the element ofM∨
Q defined by evaluation at (P k, Q, v):

fk(φ) := φ(P k, Q, v).

Finally, we define elements A1, . . . , An−1 ∈ Γ by considering the action

of a basis of totally positive units of F congruent to 1 modulo f via mul-

tiplication on a−1f, in terms of the basis {wi} for a−1f. Homogenizing and

symmetrizing the tuple (A1, . . . , An−1) yields a certain homogeneous (n−1)-

chain A ∈ Z[Γn] (see (57) for the precise formula).

We then define

Za,f,k = A⊗ fk ∈ Cn−1(Γ,M
∨
Q) = Z[Γn]⊗Γ M∨

Q.

Using the definition of A in (57), it follows from the fact that the Ai commute

and that fk is invariant under the Ai that Za,f,k is in fact an (n− 1)-cycle.

The homology class that it represents depends only on f, a, and k, and not

on any other choices made.

The cap product yields a canonical pairing

〈·, ·〉 : Hn−1(Γ,MQ)×Hn−1(Γ,M
∨
Q) −→ Q
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given by 〈[Ψ], [A⊗ f ]〉 = f(Ψ(A)) and extended by linearity. Sczech proved

the formula

(9) ζf(a,−k) = 〈[Ψ], [Za,f,k]〉 ∈ Q

for integers k ≥ 0, thereby completing his proof of the Siegel–Klingen ratio-

nality theorem.

In this paper, we fix a prime � and consider the congruence subgroup

Γ� ⊂ Γ∩GLn(Z�) consisting of matrices whose first column has all elements

but the first divisible by �. We define a cocycle Ψ+
� ∈ Zn−1(Γ�,MQ) derived

from Sczech’s Ψ by smoothing at the prime � (see (25) for a precise formula).

We also define a cocycle Ψ� refining Ψ+
� from which Ψ+

� can be recovered by

projecting on to the subspace invariant under the action of multiplication

by −1 on Q. Our key result is the following.

Theorem 4. The cocycle Ψ� takes values in the Z[1� ][Γ�]-submodule

M� ⊂ MQ consisting of distributions φ such that φ(P,Q, v) ∈ 1
mZ[1� ] when

P ∈ Z[1� ][X1, . . . , Xn] is homogeneous and has the property

(10) P (v + 1
�Z⊕ Zn−1) ⊂ Z[1� ],

and Q ∈ Q is an m-tuple of linear forms. The cocycle Ψ+
� takes values in

1
2M�.

In particular, taking P = 1, we find that Ψ�(A, 1, Q, v) ∈ 1
mZ[1/�] for all

A,Q, and v. This integrality property of our cocycle Ψ� lies in sharp contrast

to Sczech’s Ψ, which assumes fractional values with p-adically unbounded

denominator for each p as v varies (with P = 1 and fixed A,Q).

Now let F be as above, and let c be a prime ideal of F with norm �.

Using Sczech’s formula (9), we prove that certain specializations of the class

Ψ+
� yield the smoothed partial zeta functions of F at nonpositive integers:

(11) ζf,c(a,−k) = 〈[Ψ+
� ], [Za,f,k,�]〉

where [Za,f,k,�] ∈ Hn−1(Γ�,M
∨
� ) is defined similarly to Za,f,k, but slightly

modified to account for the �-smoothing (see (51)–(57) in Section 3 for the

precise definition). Here M∨
� denotes the Z[1� ]-dual of M�. Since the groups



Integral Eisenstein cocycles on GLn 57

Hn−1(Γ�,M�) and Hn−1(Γ�,M
∨
� ) pair to Z[1� ], we arrive at our proof of

Theorem 1.4

We prove Theorem 2 by interpreting the cocycle Ψ� in terms of p-adic

measures and thereby defining a certain measure-valued cocycle μ�. Using

the cohomology class [μ�] and applying equation (11), we construct the

p-adic zeta functions ζf,c,p(a, s) with the desired interpolation property. The-

orem 3 is proven by using our cohomological construction of the p-adic

L-function to recognize the values L
(k)
c,p (χω, 0) for nonnegative integers k as

the pairing of [μ�] with certain homology classes denoted [Lk], and applying

results of Spiess (Theorems 5.1 and 5.2) that implies that these homology

classes vanish for k < rχ.

The fact that the p-adic zeta functions of all totally real fields of degree

n that contain a prime of norm � arise as the specializations of a single coho-

mology class [Ψ�] is striking. It seems promising to study these p-adic zeta

functions by taking certain other specializations of the same class. As an

example of this phenomenon, we hope to study Gross’s conjectural formula

for the leading term L
(rχ)
c,p (χω, 0) in future work, building on our prior inves-

tigations ([DD], [Das]). Also in future work ([CDG]), we will demonstrate

how to provide an alternate construction of the Eisenstein class [Ψ�] using

Shintani’s method, following prior works by Solomon, Hill, Colmez, and the

second author.

This paper is organized as follows. In Section 1, we give the precise

definition of Sczech’s cocycle Ψ and recall the formula for Ψ in terms of

Dedekind sums derived in [GS]. In Section 2 we define our smoothed cocycle

Ψ+
� and its refinement Ψ�. We prove Theorem 4, the key integrality result

concerning Ψ� and the technical heart of the paper. In Section 3 we combine

Theorem 4 with a suitable generalization of Sczech’s formula (9) to prove

Theorem 1. In Section 4, we interpret our construction in terms of p-adic

measures, and thereby prove Theorem 2. We conclude in Section 5 by proving

Theorem 3 using Spiess’ results.

4In fact, since the cocycle Ψ+
� defined from Sczech’s method takes values in 1

2M�,
and since the Q defined in (7) and used by Sczech is an n-tuple, the results of this
paper prove that the value ζf,c(a, s) lies in

1
2nZ[1/�] for nonpositive integers s. The

factor 1/(2n) can be eliminated by considering the refined cocycle Ψ� and proving
that one need only consider an individual linear form Qi rather than the entire
tuple Q. These aspects are studied in [CDG]; see Remark 2.6 and Section 3 below
for further details.
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1. The Eisenstein cocycle

The goal of this section is to recall the definition of Sczech’s cocycle Ψ and
some of its salient properties.

1.1. Sczech’s Eisenstein cocycle for GLn(Q)

We begin by recalling Sczech’s Eisenstein cocycle for Γ = GLn(Q). See [Sc],
[GS, Section 6], or [CGS] Section 2 for a more detailed exposition.

Let A = (A1, . . . , An) ∈ Γn be an n-tuple of matrices. Fix x ∈ Rn−{0}.
For each matrix Ai, let σi denote the first (i.e. leftmost) column of Ai such
that 〈x, σi〉 
= 0. Denote by σ = (σij) the square matrix with columns σi,
for 1 ≤ i ≤ n, and define

ψA(x) =
det(σ)

〈x, σ1〉 · · · 〈x, σn〉
.

More generally, for any homogeneous polynomial P (X1, . . . , Xn), we con-
sider the partial differential operator P (−∂x1

, . . . ,−∂xn
) and define the func-

tion

ψA(P, x) =P (−∂x1
, . . . ,−∂xn

)ψA(x)

= det(σ)
∑
r

Pr(σ)

n∏
j=1

1

〈x, σj〉1+rj
,(12)

where r = (r1, . . . , rn) runs over all partitions of deg(P ) into nonnegative
integers rj , and Pr(σ) is the homogeneous polynomial in the σij satisfying
the relation

(13) P (Xσt) =
∑
r

Pr(σ)
Xr1

1 · · ·Xrn
n

r1! · · · rn!
.

The Eisenstein cocycle is essentially given by summing the value of
ψA(P, x) over all x ∈ Zn − {0}:

(14) “ Ψ(A,P, v) = (2πi)−n−deg(P )
∑

x∈Zn−{0}
e(〈x, v〉)ψA(P, x). ”

The sum in (14) converges only conditionally, so to make sense of it one uses
Sczech’s Q-summation trick. To this end we fix a family of m linear forms
Q1, . . . , Qm on Rn such that each form Qi is nonvanishing on Qn − {0}.
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Let Q denote the set of such m-tuples Q = (Q1, . . . , Qm) of linear forms.
We view each Qi as a row vector, and for any row vector x ∈ Rn we adopt
the notation

(15) Qi(x) = Qix
t =

n∑
j=1

Qijxj , Q(x) =

m∏
i=1

Qi(x).

We can identify Q with an m × n matrix with real rows Qi. The set Q is
endowed with a left action of Γ described in terms of matrices by AQ ↔
(Qij)A

t. The action with respect to the corresponding functions on row
vectors is given by AQ(x) = Q(xA).

Given Q ∈ Q, and a sequence a(x) indexed by a subset L of a lattice in
Rn, the Q-summation of a(x) over L is defined by

(16)
∑
x∈L

a(x)|Q = lim
t→∞

∑
x∈L

|Q(x)|<t

a(x),

under the assumption that the sum of a(x) over the x ∈ L such that
|Q(x)| < t converges absolutely for all t, and that the limit in (16) exists.
Sczech proved that the Q-summation

(17) Ψ(A,P,Q, v) = (2πi)−n−deg(P )
∑

x∈Zn−{0}
e(〈x, v〉)ψA(P, x) |Q

exists.
Let us recall some notation from the Introduction. Define the Q[Γ]-

module MQ to be the space of functions

φ : P ×Q×Qn/Zn −→ Q

that are Q-linear in the first variable and satisfy the distribution relation

φ(P,Q, v) = sgn(λ)n
∑

w∈(Q/Z)n

λw=v

φ(λdegPP, λ−1Q,w)

for all nonzero integers λ, when P ∈ P is homogeneous. The Γ-action on
MQ is given in equation (5). Sczech proved:

Theorem 1.1. The map A �→ Ψ(A, ·, ·, ·) defines a MQ-valued homogeneous
(n− 1)-cocycle on Γ. Moreover, it represents a non-trivial cohomology class
in Hn−1(Γ,MQ).

This is [Sc, Theorem 4], restricted to u = 0.
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1.2. Decomposition

For future calculations, it is convenient to decompose the sum in (17) ac-
cording to the various matrices σ that may occur. To this end, for each
d = (d1, . . . , dn) ∈ Zn such that 1 ≤ di ≤ n, let σ(d) denote the n×n matrix
whose ith column is the dith column of Ai. Let X(A, d) = X(d) ⊂ Rn−{0}
denote the set of x whose associated matrix σ is equal to σ(d), i.e. such that
the first column of Ai not orthogonal to x is the dith, for each i = 1, . . . , n.

Write 1 = (1, 1, . . . , 1), and for an n-tuple e = (e1, . . . , en), write e! =∏n
i=1 ei! and e =

∑n
i=1 ei. Gathering the terms together according to the

finite partition of Rn − {0} given by {X(d)}, we obtain

Ψ(A,P,Q, v) = (−1)n
∑
d

sgn(det(σ(d))×

∑
r

Pr(σ)

(1+ r)!
D+(X(d) ∩ Zn, σ(d), 1+ r,Q, v),(18)

where

(19) D+(L, σ, e,Q, v) =
(−1)n| det(σ)|e!

(2πi)e

∑
x∈L

e(〈x, v〉)
〈x, σ1〉e1 · · · 〈x, σn〉en

|Q.

We have introduced the factor (−1)n| det(σ)|e! in (19) to simplify future
calculations.

1.3. Bernoulli distributions

The sums in (19) are Dedekind sums that can be evaluated in terms of
Bernoulli distributions, whose definition we now recall. For each integer
k ≥ 0, the Bernoulli polynomial bk(x) is defined by the generating func-
tion

text

et − 1
=

∞∑
k=0

bk(x)
tk

k!
.

For k 
= 1, we define the periodic Bernoulli function Bk(x) = bk({x}), where
{x} ∈ [0, 1) denotes the fractional part of x. For k = 1, we reconcile the
discrepancy between b1(0) and b1(1) by defining

B1(x) =

{
b1({x}) = {x} − 1/2 x 
∈ Z

0 x ∈ Z.
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Given an n-tuple of positive integers e = (e1, . . . , en) and an element

x ∈ Rn, define

Be(x) =

n∏
j=1

Bej (xj).

Writing e =
∑

ej , the function Be provides a Q-valued distribution on

(Q/Z)n of weight e− n, in the sense that for each integer N , we have

(20) Be(x) = N e−n
∑

y∈(Z/NZ)n

Be

(
x+ y

N

)
.

To relate the distributions Be to Sczech’s cocycle Ψ, they must be al-

tered by a defect arising from the Q-limit summation process discussed in

Section 1.1.

Definition 1.2. Let e = (e1, . . . , en) be a vector of positive integers, and

v ∈ (Q/Z)n. Let

(21) J = {1 ≤ j ≤ n | ej = 1 and vj ∈ Z}.

Define

Be(v,Q) =
1

m

m∑
i=1

⎛
⎝∏

j∈J

signQij

2

⎞
⎠∏

j /∈J
Bej (vj).

(In particular, if J is empty, then Be(v,Q) = Be(v) does not depend on Q.)

Define

B+
e (v,Q) =

1

2
(Be(v,Q) +Be(v,−Q)) =

{
Be(v,Q) if #J is even,

0 otherwise.

The functions Be( . , Q) and B+
e ( . , Q) are distributions on (Q/Z)n of

weight e− n.

Proposition 1.3 ([GS], Proposition 2.7). Let e be an n-tuple of positive

integers, Q ∈ Q, v ∈ (Q/Z)n, and σ ∈ Mn(Z). Let

(22) L = {x ∈ Zn : 〈x, σi〉 
= 0 for 1 ≤ i ≤ n}.
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We have

(23) D+(L, σ, e,Q, v) =
∑

x∈Zn/σZn

B+
e (σ

−1(x+ v), σ−1Q),

where the right side is understood to have the value 0 when det(σ) = 0.

Proposition 1.3 gives the value of the Dedekind sum appearing in (18)
for d = 1; this will be sufficient for our applications. Whenever L is given
in terms of σ as in (22), we drop it from our notation and write simply
D+(σ, e, v,Q).

2. The smoothed cocycle

Let � be a prime number, and let Z(�) = Z[1/p, p 
= �] denote the localization
of Z at the prime ideal (�). Our aim in this section is to smooth the cocycle
Ψ at the prime �, yielding a cocycle Ψ+

� defined on the congruence subgroup

Γ� := Γ0(�Z(�)) = {A ∈ GLn(Z(�)) : A ≡

⎛
⎜⎜⎜⎝

∗ ∗ ∗
0 ∗ ∗
...

...
...

0 ∗ ∗

⎞
⎟⎟⎟⎠ mod �}.

We will then prove Theorem 4, an integrality result for the smoothed cocycle
Ψ+

� and a refinement Ψ�.

2.1. Definition of the smoothed cocycle

Consider the diagonal matrix whose first entry is � and other diagonal entries
are equal to 1:

π� =

⎛
⎜⎜⎜⎝

�
1

. . .

1

⎞
⎟⎟⎟⎠ .

For A = (A1, . . . , An) ∈ Γn
� , let

A′ = π�Aπ−1
� = (π�A1π

−1
� , . . . , π�Anπ

−1
� ) ∈ GLn(Z(�))

n.

Fix a homogeneous polynomial P ∈ P and define P ′ = π−1
� P . It is

a straightforward computation to check that the coefficients of P and P ′
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defined in (13) satisfy

(24) P ′
r(σ

′(d)) = Pr(σ(d)) · �−Σ(r,d) where Σ(r, d) =
∑

i: di=1

ri.

Here as in Section 1.2, d = (d1, . . . , dn) is a tuple of integers with 1 ≤ di ≤ n,
and σ(d) denotes the square matrix whose ith column is the dith column
of Ai. The matrix σ′(d) denotes the similarly constructed matrix with Ai

replaced by A′
i.

Next fix Q ∈ Q as in (15), and let Q′ = π�Q. For v ∈ (Q/Z)n, let
v′ = π�v. We define

(25) Ψ+
� (A,P,Q, v) = Ψ(A′, P ′, Q′, v′)− �Ψ(A,P,Q, v).

The following is a straightforward computation using the fact that Ψ is a
Γ-cocycle.

Proposition 2.1. The function Ψ+
� is a homogeneous (n−1)-cocycle on Γ�

valued in MQ:

Ψ+
� ∈ Zn−1(Γ�,MQ).

2.2. A Dedekind sum formula

In this section we prove that in the analogue of the Dedekind sum formula
(18) for Ψ�, all terms other than those arising from d = 1 cancel.

In what follows, all objects associated to A′ instead of A will be denoted
with a “prime”, such as X ′(d) = X(A′, d).

Lemma 2.2. For d 
= 1, the map

π� : (x1, x2, . . . , xn) �→ (�x1, x2, . . . , xn)

induces a bijection between X ′(d) ∩ Zn and X(d) ∩ Zn.

Proof. Denoting the jth column of the matrix Ai by Aij , note that for
x ∈ Rn, we have 〈x,A′

ij〉 = 0 ⇔ 〈π�x,Aij〉 = 0. In particular, π� gives
a bijection between X ′(d) and X(d), and hence induces an injection from
X ′(d) ∩ Zn to X(d) ∩ Zn.

To show that the map is surjective, we make use of the assumption d 
= 1

to obtain an index i, say i = 1, for which di > 1. For any given z ∈ X(d)∩Zn,
the condition 〈z,A11〉 = 0 ensures that its coordinates satisfy

a11z1 + · · ·+ an1zn = 0.
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This equation implies a11z1 ≡ 0 (mod �) since A1 ∈ Γ�. Moreover, a11 is

coprime to � since det(A1) ∈ Z∗
(�). We conclude that � divides z1, hence z is

of the form π�x for some x ∈ Zn as desired.

Next we use Lemma 2.2 to compare ψA′ and ψA on the sets X ′(d) ∩ Zn

and X(d)∩Zn, respectively. A direct computation shows that for x ∈ X ′(d),
one has

(26) 〈x, σ′
i(d)〉 =

{
〈π�x, σi(d)〉 if di > 1,

�−1〈π�x, σi(d)〉 if di = 1.

On the other hand,

(27) det(σ′(d)) = �1−#{i: di=1} det(σ(d)).

Equations (26) and (27) yield

(28)
det(σ′(d))∏n

i=1〈x, σ′
i(d)〉1+ri

=
�1+Σ(r,d) det(σ(d))∏n
i=1〈π�x, σi(d)〉1+ri

for x ∈ X ′(d), where Σ(r, d) is defined as in (24). Multiplying (28) by (24)

and recalling the definition of ψ given in (12), we obtain

ψA′(P ′, x) = �ψA(P, π�x).

Multiplying by

e(〈x, π�v〉) = e(〈π�x, v〉)

and taking the Q′-summation over all x ∈ X ′(d) ∩ Zn, Lemma 2.2 implies

that in the evaluation of

Ψ+
� (A,P,Q, v) = Ψ(A′, P ′, Q′, π�v)− �Ψ(A,P,Q, v),

the terms in (18) for d 
= 1 cancel.

We have therefore proven the following explicit formula for Ψ+
� . Let

A ∈ Γn
� . Scale the matrices in A by an integer relatively prime to � so that

they all have integer entries; the formulae below will be independent of the

chosen scaling integer by the distribution relation for Bernoulli polynomials.

The matrix σ = σ(1) has all rows but the first divisible by � (and all entries
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in the first row relatively prime to �). Therefore, the matrix σ� = π��
−1σ

has entries in Z(�). Define the �-smoothed Dedekind sum:

D+
� (σ, e,Q, v) = D+(σ�, e, π�Q, π�v)− �1−n+eD+(σ, e,Q, v).

=
∑

x′∈Zn/σ�Zn

B+
e (σ

−1
� (x′ + π�v), σ

−1Q)

− �1−n+e
∑

x∈Zn/σZn

B+
e (σ

−1(x+ v), σ−1Q).

(29)

Proposition 2.3. We have

Ψ+
� (A,P,Q, v) = (−1)nsgn(detσ)

∑
r

Pr(σ)

(r + 1)!�r
D+

� (σ, 1+ r, v,Q).

2.3. A refined cocycle

Define D� as in (29) with B+ replaced with B. Define Ψ� as in Proposi-
tion 2.3, with D+

� replaced by D�:

(30) Ψ�(A,P,Q, v) := (−1)nsgn(detσ)
∑
r

Pr(σ)

(r + 1)!�r
D�(σ, 1+ r,Q, v).

Then Ψ+
� is recovered from Ψ� by projection onto the +1 eigenspace of the

action of multiplication by −1 on Q:

Ψ+
� (A,P,Q, v) =

1

2
(Ψ�(A,P,Q, v) + Ψ�(A,P,−Q, v)).

In [CDG], we show that the result of Proposition 2.1 holds still for Ψ�:

Proposition 2.4. The function Ψ� is a homogeneous (n− 1)-cocycle on Γ�

valued in MQ:

Ψ� ∈ Zn−1(Γ�,MQ).

Remark 2.5. The Γ�-invariance of Ψ� (i.e. the fact that Ψ� is a homoge-
neous cochain) is easy to check directly from the definition. However, the
alternating property of Ψ� (i.e. that Ψ� is a cocycle) is mysterious using our
explicit definition. In [CDG], we show that for P = 1, the function Ψ� is
equal to a cocycle defined using Shintani’s method; the case for general P
then follows from Theorem 4.2 below.
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2.4. Decomposition of the Dedekind sum

Consider the following Z[1� ][Γ]-submodule of MQ:

M� = {φ ∈ MQ : φ(P,Q, v) ∈ 1
mZ[1� ] when P ∈ Z[1� ][X1, . . . , Xn]

is homogeneous and P (v + (1�Z⊕ Zn−1)) ⊂ Z[1� ]}.
(31)

In (31), the constant m denotes the number of linear forms defining the
element Q ∈ Q, as in Section 1.1. In the remainder of this section, we prove
Theorem 4, which states that the smoothed cocycle Ψ� takes values in M�.

Remark 2.6. The cocycle Ψ� was introduced in Section 2.3 because it takes
values inM�. The smoothed Sczech Ψ+

� takes values in 1
2M�. Furthermore, we

prove in [CDG] that the cocycle Ψ� may be paired with an appropriate cycle
involving Q ∈ Q with m = 1 to yield the special values of zeta functions,
thereby leading to a proof of Theorem 1 (see Section 3). Sczech’s formulas
relating Ψ to zeta values involves a Q with m = n = [F : Q]. This leads to
a slightly weaker version of Theorem 1, where the zeta values are shown to
lie in 1

2nZ[1/�].

In view of the definition (30), our first step in proving the integrality
of Ψ� is to decompose D�(σ, e, v,Q) into a sum of terms that individu-
ally share an analogous integrality property. To this end, fix a linear map
L ∈ Hom(Zn,F�), and assume that its values on the standard basis of Zn

are all nonzero. For a tuple e = (e1, . . . , en) of positive integers, x ∈ Qn,
and z ∈ F� define

(32) BL,z
e (x,Q) = Be(x,Q)− �1−n+e

∑
y∈Fn

�
L(y)=z

Be

(
x+ y

�
,Q

)
,

where the summation runs over all y ∈ Fn
� such that L(y) = z. Note that

BL,z
e depends on x mod �Zn rather than mod Zn, since the summation over

y is restricted. It satisfies the following distribution relation for integers N
relatively prime to �:

(33) BL,Nz
e (x,Q) = N e−n

∑
k∈(�Z/�NZ)n

BL,z
e

(
x+ k

N
,Q

)
.

As in the previous section, consider A ∈ Γn
� and σ = σ(1) the square

matrix consisting of the first columns of the matrices in the tuple A. Recall
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that σ� = π��
−1σ. For y ∈ Zn/�Zn, define L(y) = 〈R, y〉 (mod �), where R

denotes the first row of σ. Our desired decomposition is:

Lemma 2.7. Let {x = (x1, . . . , xn)} ⊂ Zn denote a set of representatives
for Zn/σ�Z

n. We have

(34) D�(σ, e, v,Q) =
∑
x

BL,−x1
e (σ−1

� (x+ π�v), σ
−1Q).

Remark 2.8. One easily checks that the summand in (34) is independent
of the choice of representative x ∈ Zn for each class in Zn/σ�Z

n.

Before proving the lemma, we state an elementary lemma that will be
used to change variables of indices in double sums several times in this
article.

Lemma 2.9. Let A,B,C,D be finite index subgroups of an abelian group E
such that A ⊃ B and C ⊃ D. Let {xi}mi=1 and {yj}nj=1 be sets of representa-
tives for A/B and C/D, respectively. Suppose that #(E/D) = mn and that
A ∩ C ⊂ B. Then the map

ψ : A/B × C/D → E/D

given by ψ(xi, yj) = xi + yj is a bijection of sets.

Remark 2.10. Note that the map ψ depends on the set of representatives
{xi} chosen and is hence only a bijection of sets and not a homomorphism
of groups.

Remark 2.11. Note that the conditions in the third sentence of Lemma 2.9
are automatically satisfied if A = E and B = C.

Proof of Lemma 2.7. Applying Lemma 2.9 with the choicesA = E = π−1
� Zn,

B = C = �−1σZn, and D = σZn, we see that the map (x, y) �→ z = π−1
� x+

�−1σy induces a bijection between Zn/σ�Z
n×Zn/�Zn and π−1

� Zn/σZn. (We
stress again that this map is only a bijection of sets dependent on the repre-
sentatives x chosen for Zn/σ�Z

n; it is not a group homomorphism.) Under
this bijection we have

L(y) ≡ −x1 (mod �) ⇐⇒ z ∈ Zn.

The result follows immediately from the definitions (29) and (32).

From (30) and Lemma 2.7, we obtain:
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Proposition 2.12. We have

Ψ�(A,P,Q, v) = ±
∑
r

Pr(σ)

(r + 1)!�r

∑
x∈Zn/σ�Zn

BL,−x1

1+r (σ−1
� (x+ π�v), σ

−1Q),

where the ± sign is given by (−1)nsgn(detσ).

In the next two subsections, we show that the individual terms in (34)

are integral when e = 1, thereby proving the integrality property for Ψ�

when P = 1. The integrality of Ψ� in general will follow by bootstrapping

from this base case.

2.5. A cyclotomic Dedekind sum

The following “cyclotomic Dedekind sum” attached to a real number x will

play an important role in our computations:

(35) Bexp
1 (x, r) =

�∑
m=1

e
(rm

�

)
B1

(
x+m

�

)

for any x ∈ R and r ∈ F×
� .

Lemma 2.13. The value of the cyclotomic Dedekind sum is given by

(36) Bexp
1 (x, r) =

e(−r[x]
� )

e( r� )− 1
+

δx
2
e
(
−rx

�

)
,

where δx = 1 if x ∈ Z and is 0 otherwise.

Proof. Translating m by the integer [x] gives m′ = m+ [x], which runs over

the same set of classes mod �. This yields

Bexp
1 (x, r) =

∑
m′ mod �

e

(
r(m′ − [x])

�

)
B1

(
m′ + {x}

�

)
,

where 0 ≤ {x} < 1 is the fractional part of x. Choosing representatives m′

between 0 and �− 1 gives

B1

(
m′ + {x}

�

)
=

m′ + {x}
�

− 1

2
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unless m′ = {x} = 0, in which case the −1/2 term does not occur. Therefore

(37) Bexp
1 (x, r) = e

(
−r[x]

�

) �−1∑
m′=0

m′

�
e

(
rm′

�

)
+

δx
2
e

(
−rx

�

)
,

since the terms coming from {x} and 1
2 each vanish in the sum over m′.

The value of the sum in (37) can be obtained by evaluating at z = r the
derivative of

1

2πi

�−1∑
m′=0

e

(
m′z

�

)
=

1

2πi
· e(z)− 1

e(z/�)− 1
.

The lemma follows.

2.6. The case e = 1

The goal of this section is to bound the denominators of the individual terms
in (34) when e = 1.

Proposition 2.14. Let x ∈ Qn. The quantity BL,z
1 (x,Q) lies in 1

mZ[1/�],
and lies in 1

mZ if � > n+ 1.

Proof. This proof follows the argument of [Das, §6.1]. We begin by relaxing
the restricted summation. Since the map

y �→ 1

�

�−1∑
k=0

e

(
kL(y)

�

)

is the characteristic function of the kernel of L, we obtain

(38) BL,z
e (x,Q) = −�e−n

�−1∑
k=1

∑
y∈Fn

�

e

(
k(L(y)− z)

�

)
Be

(
x+ y

�
,Q

)
.

Note that the term k = 0 cancels the leading term of BL,z
e using the distri-

bution relation for Be.
Let aj be the value of the linear form L on the j-th term of the standard

basis of Zn. We specialize to e = 1 and consider the case where no component
of x is an integer (so there is no dependence on Q). The sum (38) then
decomposes as

−
�−1∑
k=1

e

(
−kz

�

) �∑
y1=1

. . .

�∑
yn=1

n∏
j=1

e

(
kajyj
�

)
B1

(
xj + yj

�

)
.
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Since each aj is non-zero by assumption, we can repeatedly use Lemma 2.13
to obtain

BL,z
1 (x,Q) = −

�−1∑
k=1

e(−kz

�
)

⎛
⎝ n∏

j=1

e(−kaj [xj ]
� )

e(kaj

� )− 1

⎞
⎠

= − TrQ(ζ�)/Q

(
e(−z−L([x])

� )∏n
j=1(e(

aj

� )− 1)

)
.(39)

For any primitive �-th root of unity ζ�, the element ζ� − 1 is supported at
� and has �-adic valuation 1/(� − 1). Therefore, the expression (39) lies in
Z[1� ] and has denominator at most �

n

�−1 . The lemma is proven in the case
where no component xj is integral.

For the general case, let J0 = {j : xj ∈ Z}. An argument as above shows

that BL,z
1 (x,Q) is equal to −1/(2#J0m) times the quantity

(40)
m∑
i=1

∑
J⊂J0

TrQ(ζ�)/Q

⎛
⎝ e(−z−L([x])

� )∏
j 
∈J0

(e(aj

� )− 1)

∏
j∈J0−J

e(aj

� ) + 1

e(aj

� )− 1

∏
j∈J

signQij

⎞
⎠ .

As in (39), the sum in (40) lies in Z[1/�] and in fact lies in Z if � > n+1. It
only remains to eliminate the factor 1/2#J0 . When summed over all J ⊂ J0,
the argument of the trace in (40) is equal to a constant depending on J0
(but not J) times

∑
J⊂J0

⎛
⎝ ∏

j∈J0−J

e(aj

� ) + 1

e(aj

� )− 1

∏
j∈J

signQij

⎞
⎠ =

∏
j∈J0

(
e(aj

� ) + 1

e(aj

� )− 1
+ signQij

)
(41)

= 2#J0

∏
j∈J0

(
αij

e(aj

� )− 1

)
,(42)

where αij = e(aj/�) or αij = 1 in the cases signQij = 1 or signQij = −1,
respectively. The factor 2#J0 in (42) cancels that in (40).

2.7. Proof of Theorem 4

We are now ready to complete the proof of Theorem 4 from the introduction,
which states that the rational number Ψ�(A,P,Q, v) lies in 1

mZ[1/�] when
(10) is satisfied. We do this by showing that it lies in 1

mZp for each prime
p 
= �.
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Proposition 2.15. Let x ∈ Qn and let p 
= � be a prime number. Let r be

an n-tuple of nonnegative integers. There exists an integer ε depending only

on r, � and the denominator of x, such that for all positive integers M we

have the following congruence between rational numbers:

(43) pM ·rN(r+ 1)−1BL,z
1+r

(
x

pM
, Q

)
≡ BL,z

1

(
x

pM
, Q

)
Nxr mod pM−εZp.

Remark 2.16. Here Nxr is shorthand for
∏n

j=1 x
rj
j . If it happens that both

rj and xj are zero, the corresponding term x
rj
j is understood to equal 1.

Before proving Proposition 2.15, we show how it enables the proof of

Theorem 4.

Proof of Theorem 4. We recall Proposition 2.12:

(44)

Ψ�(A,P,Q, v) = ±
∑
r

Pr(σ)

r!�r
N(r+1)−1

∑
x∈Zn/σ�Zn

BL,−x1

1+r (σ−1
� (x+π�v), σ

−1Q).

For each x in the sum above we let y = σ−1
� (x + π�v) and note that y has

the property

(45) 1
�σ(y) ∈ v + 1

�Z⊕ Zn−1.

Fix a prime p 
= �. For each y we let ε be as in Proposition 2.15 and fix a

positive integer M ≥ ε. Applying the distribution relation (33) we replace

the term BL,−x1

1+r (y, σ−1Q) in (44) with

(46) pM ·r
∑

k∈(�Z/�pMZ)n

BL,z
1+r

(
y + k

pM
, σ−1Q

)
,

where z ≡ −p−Mx1 (mod �). By Proposition 2.15 and the choice of M , the

quantity in (46) multiplied by N(r + 1)−1 is congruent modulo Zp to

∑
k∈(�Z/�pMZ)n

BL,z
1

(
y + k

pM
, σ−1Q

)
N(y + k)r

Plugging this expression into (44), we note that each coefficient Pr(σ)
r! lies in
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Zp, and hence Ψ�(A,P,Q, v) is congruent modulo Zp to

(47) ±
∑
x

∑
k∈(�Z/�pMZ)n

BL,z
1

(
y + k

pM
, σ−1Q

)∑
r

Pr(σ)

r!
N

(
y + k

�

)r

.

By the definition (13), the sum over r in (47) is equal to P (σ(y + k)/�),
which by (45) and the given property

P (v + (1�Z⊕ Zn−1)) ⊂ Z[1� ]

lies in Z[1� ]. Therefore, by Proposition 2.14, the quantity in (47) lies in 1
mZp,

and the theorem is proven.

Proof of Proposition 2.15. As in the classical Kubota–Leopoldt construc-
tion of p-adic L-functions over Q, the proof relies on the fact that the
Bernoulli polynomial bk(x) begins

(48) bk(x) = xk − k

2
xk−1 + · · · .

We recall equation (38) for BL,z
1+r:

(49) BL,z
1+r(x,Q) = −�r

�−1∑
k=1

∑
y∈Fn

�

e

(
k(L(y)− z)

�

)
B1+r

(
x+ y

�
,Q

)
.

At the expense of altering z, we may translate x by an element of pMZn

and assume that x/pM belongs to [0, 1)n. Furthermore, for each class in Fn
�

we choose the representative y ∈ Zn with 0 ≤ yj ≤ �− 1. Let

J0 = {j | xj = 0 and rj = 0}.

For j 
∈ J0, (48) yields

pMrjB1+rj

( xj

pM + yj

�

)
≡ p−M

(xj
�

)1+rj
+

(1 + rj)
(xj
�

)rj
(
yj
�
− 1

2

)
mod pM−εjZp,

where εj depends only on rj , � and the power of p in the denominator of
xj . Let aj ∈ F� denote the value of L on the jth standard basis vector of
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Zn, and multiply the previous congruence by e(kajyj

� ). Summing over all

0 ≤ yj ≤ �− 1, the leading term of the right side vanishes and we obtain

pMrj
∑
yj∈F�

e

(
kajyj
�

)
B1+rj

( xj

pM + yj

�

)
≡

(1 + rj)
(xj
�

)rj ∑
yj∈F�

e

(
kajyj
�

)
B1

( xj

pM + yj

�

)
mod pM−εjZp[ζ�].

(50)

Take the product of these congruences over all j 
∈ J0 and multiply by

−
e(−kz

� )

m

m∑
i=1

⎛
⎝∏

j∈J0

signQij

2

⎞
⎠ .

In view of (49), summing over k = 1, . . . , �− 1 gives the desired result (after

dividing by N(1+ r) and increasing ε accordingly).

3. Integrality of smoothed zeta functions

Let F be a totally real field of degree n. In this section we combine the Z[1/�]-

integrality property of Ψ� proved in Theorem 4 with a suitable generalization

of Sczech’s formula (9) to prove Theorem 1, recalled below. Let a and f be

coprime integral ideals of F . Let c be an integral ideal of F with norm �

such that (c, f) = 1.

Theorem 1. The smoothed zeta function

ζf,c(a, s) = ζf(ac, s)−Nc1−sζf(a, s)

assumes values in Z[1/�] at nonpositive integers s.

Proof. Fix a basis {w1, . . . , wn} for a−1f such that {1
�w1, w2, . . . , wn} is a

basis for a−1c−1f. Let {ε1, . . . , εn−1} denote a basis of the group of totally

positive units of F congruent to 1 modulo f. Let A1, . . . , An−1 be the ma-

trices representing multiplication by the εi on a−1f in terms of the basis

w = (w1, . . . , wn), i.e. such that

wεi = wAi i = 1, . . . , n.
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The matrices Ai lie in Γ�, since left multiplication by these matrices preserves
the lattice of column vectors 1

�Z⊕Zn−1 ∼= a−1c−1f (where the isomorphism
is given by dot product with w).

Let P ∈ Z[1� ][X1, . . . , Xn] denote the homogeneous polynomial of degree
n given up to a scalar by the norm:

(51) P (X1, . . . , Xn) = N(ac)N(w1X1 + · · ·+ wnXn).

Let Q̃ = (Q1, . . . , Qn) be the n-tuple of linear forms given by

(52) Qi = τi(w
∗
1)X1 + · · ·+ τi(w

∗
n)Xn,

where {w∗
1, . . . , w

∗
n} is the dual basis with respect to the trace form on F

(i.e. Tr(wiw
∗
j ) = δij), and the τi denote the embeddings F ↪→ R. Define the

column vector

(53) v = (Tr(w∗
1), . . . ,Tr(w

∗
n)),

so that

1 = v1w1 + v2w2 + · · ·+ vnwn.

Dot product with (w1, . . . , wn) provides a bijection

(54) v + 1
�Z⊕ Zn−1 ↔ 1 + a−1c−1f,

so P and v satisfy the key property

(55) P (v + 1
�Z⊕ Zn−1) ⊂ Z[1� ]

of Theorem 4.
The matrices {Ai} give rise to a homogeneous (n− 1)-chain in the stan-

dard way, which we write using the bar notation:

[A1 | . . . | An−1] = (1, A1, A1A2, . . . , A1A2 · · ·An−1) ∈ Γn
� .

We symmetrize this chain by defining

(56) A(A1, . . . , An−1) :=
∑

π∈Sn−1

sgn(π)[Aπ(1) | · · · | Aπ(n−1)] ∈ Z[Γn
� ].

Let

(57) A = ρ · A(A1, . . . , An−1).
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Here ρ = ±1 is a sign defined as follows: let τ1, . . . , τn denote the real
embeddings of F , and consider the square matrices

W = (τi(wj))
n
i,j=1 and R = (log τi(εj))

n−1
i,j=1.

Then ρ = (−1)n−1 sign(detW ) sign(detR).
For integers k ≥ 0, Sczech’s formula ([Sc2, Corollary p. 595]) reads

(58) ζf(a,−k) = �−kΨ(A,P k, Q̃, v),

where the �-power term arises from the extra factor of Nc = � in the definition
of P . Applying this formula again with a replaced by ac gives

(59) ζf(ac,−k) = Ψ(A′, (P ′)k, Q̃′, v′),

where

A′ = π�Aπ−1
� , P ′ = π−1

� P, Q̃′ = π�Q̃, and v′ = π�v

as in Section 2.
Combining (58) and (59), we find

ζf,c(a,−k) = ζf(ac,−k)− �1+kζ(a,−k).

= Ψ(A′, (P ′)k, Q̃′, v′)− �Ψ(A,P k, Q̃, v)

= Ψ+
� (A,P k, Q̃, v).(60)

The result ζf,c(a,−k) ∈ 1
2nZ[1/�] now follows from Theorem 4.

The denominator 2n may be removed by invoking the following result
proven in [CDG], which states that (60) still holds with Ψ+

� replaced by Ψ�,

and with Q̃ replaced by any one of the n individual linear forms defining it:

Theorem 3.1. Let the notation be as above, and let

Q(X1, . . . , Xn) =

n∑
i=1

τ(w∗
i )Xi

for a real embedding τ : F ↪→ R. Then

ζf,c(a,−k) = Ψ�(A,P k, Q, v).

Now ζf,c(a,−k) ∈ Z[1/�] follows from Theorem 4.

Remark 3.2. Note that

ζf,bc(a, s) = ζf,c(ab, s) + Nc1−sζf,b(a, s),
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so we obtain more generally that ζf,c(a,−k) ∈ Z[1/Nc] for nonnegative inte-
gers k when c is a product of ideals with prime norm. Deligne–Ribet show
that this result holds for arbitrary integral ideals c. Extending our methods
to obtain this general result seems difficult, since the fact that the level � of
our modular group Γ� is squarefree appears at face value to be essential in
the argument of Proposition 2.14.

4. p-adic measures and p-adic zeta functions

In this section we interpret the cocycle Ψ� in terms of p-adic measures and
use this perspective to prove Theorem 2 of the Introduction on the existence
of p-adic zeta functions.

4.1. p-adic measures associated to Ψ�

Let X = Zn
p , and let

Γ�,p := Γ0(�Z[1/p]) = Γ� ∩GLn(Z[1/p]).

Given A ∈ Γn
�,p, Q ∈ Q, and v ∈ Qn, we define a 1

mZ[1/�]-valued measure
μ� = μ�(A,Q, v) on

Xv := v +X ⊂ Qn
p

as follows. Let σ denote the matrix whose columns are the first columns of
the matrices in the tuple A. If det(σ) = 0, then μ� is the 0 measure. Suppose
now that det(σ) 
= 0.

A vector a ∈ Zn and a nonnegative integer r give rise to the compact
open subset

a+ prX ⊂ X.

These sets form a basis of compact open subsets of X, and hence their
translates by v form a basis of compact open subsets of Xv. We define μ�

by applying Ψ� with the constant polynomial P = 1:

(61) μ�(A,Q, v)(v + a+ prX) = Ψ�

(
A, 1, Q,

v + a

pr

)
∈ 1

mZ[1� ] ⊂
1
mZp.

It is easily checked that this assignment is well-defined, and that the distri-
bution relation for Ψ� yields a corresponding distribution relation for μ�.

Let V = Qn/Zn. Let Mp denote the space of functions that assigns
to each (Q, v) ∈ Q × V a Cp-valued measure α(Q, v) on Xv such that
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α(Q, pv)(pU) = α(Q, v)(U) for all U ⊂ Xv. The space Mp naturally has
the structure of a Γ�,p-module given by

(γα)(Q, v)(U) := α(AQ,Av)(AU),

where A = λγ is chosen such that λ is a power of p and A ∈ Mn(Z).

Proposition 4.1. The function μ� : Γ
n
�,p−→Mp is a homogeneous (n− 1)-

cocycle.

Proposition 4.1 follows directly from the fact that Ψ� is a cocycle. The
following theorem shows that the cocycle Ψ� can be recovered from the
cocycle of measures μ�; in other words, the cocycle Ψ� specialized to P = 1
determines its value on all P ∈ P .

Theorem 4.2. For any P ∈ P, a ∈ Zn, and M ∈ Mn(Z) ∩ Γ�,p, we have

(62)

∫
v+a+M(X)

P (x)dμ�(A,Q, v)

is equal to

sgn(det(M)) ·Ψ�(M
−1A,M tP,M−1Q,M−1(v + a)).

In particular we have

(63)

∫
Xv

P (x) dμ�(A,Q, v)(x) = Ψ�(A,P,Q, v).

Proof. It suffices to prove the result when P is homogeneous of degree d.
We follow closely the proof of Theorem 4 given in Section 2.7. It was shown
there (see (47)) that there exists an integer ε such that for each positive
integer N ≥ ε, the quantity

(64) Ψ�(M
−1A,M tP,M−1Q,M−1(v + a))

is congruent to

(65) ±
∑
x

∑
k∈(�Z/�pNZ)n

BL′,−p−Nx1
1

(
y + k

pN
, σ−1Q

)
P

(
σ(y + k)

�

)

modulo pN−εZp. Here σ again denotes the matrix of first columns of A, scaled
by an integer relatively prime to � such that M−1σ ∈ Mn(Z). Meanwhile,
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the index x sums over representatives in Zn for Zn/σ′
�Z

n, where
σ′
� = π��

−1M−1σ ∈ Mn(Z), and y = (σ′
�)

−1x + σ−1�(v + a). The ± sign is
(−1)n sign(detM−1σ). Finally, the linear form L′ is given by
L′(y) = σ′

�(y)1 = the inner product of y with the first row of M−1σ. The
expression (65) is simplified with a change of variables. First replace the vari-
able k by arbitrary representatives j for Zn/pNZn (not necessarily divisible

by �) such that j ≡ k (mod pN ); the expression BL′,−p−Nx1
1 (y+k

pN , σ−1Q) is

seen from the definitions to equal B
L′,−p−N (x1+L′(j))
1 (y+j

pN , σ−1Q). Then let

u = x + σ′
�(j); by Lemma 2.9 the expression (65) is congruent modulo pN

to:

(66) ±
∑

u∈Zn/pNσ′
�Z

n

BL′,−p−Nu1
1

(
(σ′

�)
−1(u) + σ−1�(v + a)

pN
, σ−1Q

)
P (Mπ−1

� u+v+a).

Let us meanwhile evaluate the Riemann sums approximating the inte-
gral (62). There is a δ depending on the powers of p in the denominator of
P (v) such that for N large we have that∫

v+a+MX
P (x) dμ�(x)

is congruent modulo pN−δZp to

(67)
∑

h∈Zn/pNZn

P (v + a+Mh)μ�(v + a+Mh+ pNMX).

Let r be large enough that prX ⊂ MX. We can then apply the definition of
μ� using the decomposition

v + a+Mh+MpNX =
⊔

s∈MZn/prZn

(v + a+Mh+ spN + pN+rX).

Using the change of variables j = Mh+ spN , we obtain by Lemma 2.9 that
(67) is equal to

(68) ±
∑

j∈MZn/pN+rZn

P (v + a+ j)D�

(
σ, 1, Q,

v + a+ j

pN+r

)
,

where the ± sign is (−1)n sign(detσ). We rename N + r as N for simplicity,
since r is fixed and we will be taking N → ∞. Applying Lemma 2.7 for the
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occurrence of D� in (68), we obtain
(69)

±
∑

j∈MZn/pNZn

∑
z∈Zn/σ�Zn

P (v+a+j)BL,−z1
1 (σ−1

� (z+π�

(
v + a+ j

pN

)
), σ−1Q).

Now if we fix representatives {j} and {z} for MZn/pNZn and Zn/σ�Z
n

respectively, then by Lemma 2.9 the map (j, z) �→ π�M
−1j+pNπ�M

−1π−1
� z

gives a bijection

MZn/pNZn × Zn/σ�Z
n ←→ Zn/pNσ′

�Z
n.

The change of variables u = π�M
−1j + pNπ�M

−1π−1
� z then shows that

the expressions (66) and (69) are congruent modulo pN−max(δ,ε) up to the
discrepancies in the ± signs, which is sign(detM). Here we use the fact that

L′(y) ≡ −p−Nu1 ⇔ L(y) ≡ −p−NM11u1 ⇔ L(y) ≡ −z1 (mod �).

Letting N → ∞ gives the desired result.

4.2. p-adic zeta functions

We now return to the setting of a totally real field F . Let p be a rational
prime. Let a be an integral ideal of F and let c be an ideal of norm � such
that (ac, f) = 1. We will use the p-adic measures defined above to construct
the p-adic zeta function ζf,c,p(a, s) of Theorem 2, which we recall below.

Theorem 2. There exists a unique Zp-valued analytic function ζf,c,p(a, s)
of the p-adic variable s ∈ W such that

(70) ζf,c,p(a,−k) = ζ∗f,c(a,−k)

for all nonnegative integers k.

Proof. First we note that it suffices to consider the case where f is divisible
by all primes of F above p. Indeed, if we let g denote the least common
multiple of f and the primes above p, then we can define the p-adic zeta
functions attached to f from the ones attached to g as follows:

ζf,c,p(a, s) =
∑
b∼fa

ζg,c,p(b, s).

Here the sum ranges over representatives b for the narrow ideal class group
Gg whose images in Gf are equivalent to a. The analogous equation for the
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classical partial zeta functions ζ∗ follows from the fact that the sum defining
ζ∗ ranges over ideals relatively prime to p.

Therefore, suppose that f is divisible by all primes of F above p. Then
ζ∗f,c = ζf,c. Let P,Q, v, and A be as in Section 3, and let μ� = μ�(A,Q, v) as
above. As we saw in (54)–(55), for any x ∈ Zn the quantity P (v + x) is the
norm of an integral ideal of F relatively prime to f. Since f is divisible by all
the primes above p, this quantity is an integer relatively prime to p. By the
continuity of P , we find that

P (v + x) ∈ Z×
p for all x ∈ X,

i.e. P (Xv) ⊂ Z×
p . We may therefore define a p-adic analytic function on W :

(71) ζf,c,p(a, s) :=

∫
Xv

P (x)−s dμ�(A,Q, v).

Here we have followed the usual convention of writing x−s for s(x)−1 when
x ∈ Z×

p , s ∈ W .
For a nonnegative integer k, equation (60) and Theorem 4.2 yield

ζf,c(a,−k) = Ψ�(A,P k, Q, v)

=

∫
Xv

P (x)k dμ�(A,Q, v).(72)

Equation (72) gives the desired interpolation property (70).

With our applications to Gross’s Conjecture 1 in mind, it is useful to have
a formula such as (71) for the p-adic zeta-function when f is not necessarily
divisible by the primes above p. Write f = f0f1, where f0 is the prime-to-p
part of f and f1 is divisible only by primes above p. Let fp denote the product
of the primes dividing p that do not divide f. Fix an integral ideal a relatively
prime to p. An elementary calculation following directly from the definitions
shows that for s ∈ C,

(73) ζ∗f,c(a, s) =
∑
b|fp

μ(b)Nb−sζf,c(ab
−1, s),

where μ(b) = ±1 is determined by the parity of the number of prime factors
of b. For integers s ≤ 0, we will express each term of (73) as an integral with
respect to the measure μ� in such a way that the sum can be interpolated
p-adically.
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Define the variables A,P,Q, v as in Section 3 using the ideals a and f0.
In particular, {wi} is a Z-basis of a−1f0. Dot product with w = (w1, . . . , wn)
gives a bijection between the spaces Xv = X and Op =

∏
p|pOp. Using this

bijection we view μ�(A,Q, v) as a measure on Op. For each prime ideal p | p,
define Op,f := 1 + fOp, and write

Op,f := 1 + fOp =
∏
p|p

Op,f.

Let b denote an integral ideal of F with p-power norm such that (b, f) = 1
(so b is a product of prime ideals dividing fp). Define

Op,b,f := bOp ∩ Op,f =
∏
p|b

bOp ×
∏

p|p, p�b

Op,f.

Write

O∗
p,f := O∗

p ∩ Op,f, O∗
p,f :=

∏
p|p

O∗
p,f, O∗

p,b,f :=
∏
p|p

bO∗
p ∩ Op,f.

The following formula generalizes (71) to the current setting, where f is
not necessarily divisible by all primes above p.

Proposition 4.3. The p-adic zeta-function of Theorem 2 is given explicitly
by the following integral representation:

(74) ζf,c,p(a, s) = (Nac)−s

∫
O∗

p,f

(Nx)−s dμ�(A,Q, v).

More generally, with b as above we have

(75) ζf,c,p(ab
−1, s) = (Nac)−s

∫
O∗

p,b,f

(Nx)−s
p dμ�(A,Q, v),

where xp := x/pordp(x) is the unit part of x ∈ Q×
p .

Proof. We first express the zeta value ζf,c(ab
−1,−k) for a nonnegative integer

k as an integral over the space Op,b,f. Fix an integral ideal q relatively prime
to fp whose image in Gf is the inverse class of b. Therefore bq = (π) for a
totally positive π ≡ 1 (mod f).

Fix a Z-basis u = (u1, . . . , un) for a−1bf such that (1�u1, u2, . . . , un) is
a basis for a−1c−1bf. Let M be the matrix such that wM = u. It is clear
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that M ∈ Mn(Z), and that | detM | = Nbf1 is a power of p. Furthermore,

it is clear that M ∈ Γ�,p, so M satisfies the conditions of Theorem 4.2. For

simplicity let us choose the basis u such that detM > 0.

Next, let R note the matrix representing multiplication by π with respect

to the basis w, i.e. such that wπ = wR. Note that R commutes with the

matrices Ai in the definition of the chain A. Now

a−1q−1f = π−1(a−1bf)

has basis π−1u = wR−1M . If we use this basis to define the variables

Aaq, Paq, Qaq, vaq as in Section 3 using the ideals aq and f, then we find

Aaq = M−1AM,

Paq = Nb−1 · (M tP ),

Qaq ∼ M−1Q,

vaq ≡ M−1(v + a) (mod Zn),

where a ∈ Zn is chosen so that

w · a = π − 1 ∈ a−1f0.

Here Qaq ∼ M−1Q means that the corresponding tuples of linear forms are

equal up to up to scaling the linear forms by positive reals (which does not

affect the value of the cocycle Ψ�).

For any nonnegative integer k, we therefore find

ζf,c(aq,−k) = Ψ�(Aaq, P
k
aq, Qaq, vaq)

= Nb−kΨ�(M
−1AM, (M tP )k,M−1Q,M−1(v + a))

= Nb−kΨ�(M
−1A, (M tP )k,M−1Q,M−1(v + a))(76)

= Nb−k

∫
v+a+M(X)

P (x)k dμ�(A,Q, v)(77)

= (Nacb−1)k
∫
Op,b,f

(Nx)k dμ�(A,Q, v).(78)

Equation (76) follows from [Sc, Lemma 4]. Equation (77) follows from

Theorem 4.2. In equation (78) we have identified v + a+M(X) with Op,b,f

via dot product with w. From (73) and (78) and an inclusion-exclusion
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argument, it follows that

ζ∗f,c(a,−k) = (Nac)k
∫
O∗

p,f

(Nx)k dμ�(A,Q, v).

This proves (74) by interpolation, and (75) holds similarly.

5. Order of vanishing at s = 0

5.1. p-adic L-functions

As in the introduction, let χ : Gal(F/F ) → Q
∗
be a totally odd finite order

character with conductor f. The p-adic L-function Lc,p(χω, s) : Zp −→ C∗
p is

given by

Lc,p(χω, s) =
∑
a∈Gf

χ(ac)ζf,c,p(a, 〈·〉s).

Let p1, . . . , prχ denote the primes above p such that χ(pi) = 1. (In particular

each pi � f.) The goal of the rest of the paper is to prove Theorem 3, which

states that

L
(k)
c,p (χω, 0) = 0 for k < rχ.

In the sequel, we write simply r for rχ. Let Gp,χ ⊂ Gf denote the subgroup

generated by the images of p1, . . . , pr. Let ei denote the order of pi in Gf,

and write p
ei
i = (πi) for a totally positive πi ≡ 1 (mod f). Let

e =

(
r∏
i

ei

)
/#Gp,χ ∈ Z.

We then have

Lc,p(χω, s) =
∑

a∈Gf/Gp,χ

χ(ac)
∑

b∈Gp,χ

ζf,c,p(ab
−1, s)

=
1

e

∑
a∈Gf/Gp,χ

χ(ac)
∑

b|
∏r

i=1 p
ei−1

i

ζf,c,p(ab
−1, s)

=
1

e

∑
a∈Gf/Gp,χ

χ(ac)〈Nac〉−s

∫
O
〈Nx〉−sdμ�(Aa, Qa, va),(79)
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where

O =

r∏
i=1

(Opi
− πiOpi

)×
∏

p|p, p
=pi

O∗
p,f.

Equation (79) follows from Proposition 4.3. (As usual, the representative
ideals a are chosen relatively prime to fp.)

In order to prove Theorem 3, it therefore suffices to show that the integral
in (79) has order of vanishing at least r, i.e. that

(80)

∫
O
(logpNx)kdμ�(A,Q, v) = 0 for 0 ≤ k < r.

5.2. Spiess’ Theorems and the proof of Theorem 3

In this section, we explain how the cocycle of measures μ� can be combined
with Spiess’s cohomological formalism for p-adic L-functions to deduce (80),
and thereby prove Theorem 3. All of the definitions, results, and proofs in
this section are due to Spiess [Sp1].

Denote by E ⊂ O∗
F the group of totally positive units of F congruent

to 1 modulo f. Denote by T the subgroup of F ∗ generated by the πi, for
i = 1, . . . , r. Denote by U ∼= E × T the subgroup of F ∗ generated by E and
T .

Write Fp =
∏

p|p Fp for the completion of F at p. Let Cc(Fp) denote the
Cp-algebra of Cp-valued continuous functions on Fp with compact support,
and similarly for Cc(Fp), for p | p.

Note that U acts on Cc(Fp) by (u ·f)(x) := f(x/u). The cocycle μ� along
with the ideal a allow for the definition of a homogeneous cocycle

κa ∈ Zn−1(U,Cc(Fp)
∨)

as follows. Given ε1, . . . , εn ∈ U , let Ai ∈ Γ�,p denote the matrix for multi-
plication by εi with respect to the basis {wi} of a−1f0, and define

κa(ε1, . . . , εn)(f) =

∫
Fp

f(x)dμ�(A1, . . . , An)(Qa, va).

As in the previous section, we have identified Qn
p with Fp via dot product

with (w1, . . . , wn), and thereby view μ� as a compactly supported measure
on Fp. (Initially μ� was defined on a compact subset of Qn

p , and we extend
it by zero to a compactly supported measure on Qn

p .) The cocycle κa yields
a class [κa] ∈ Hn−1(U,Cc(Fp)

∨).
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Meanwhile, for each nonnegative integer k we define a class
[Lk] ∈ Hn−1(U,Cc(Fp)) as follows. Let ε1, . . . , εn−1 denote a basis of E,
and define

Lk := A(ε1, . . . , εn−1)⊗ 1O · (logpNx)k ∈ Zn−1(U,Cc(Fp)),

where A is defined as in (56). Tracing through these notations, it is clear
that the left side of (80) is given by

(81)

∫
O
(logpNx)kdμ�(A,Q, v) = ±〈[κa], [Lk]〉,

where the pairing on the right is the usual cap product

Hn−1(U,Cc(Fp)
∨)×Hn−1(U,Cc(Fp)) −→ Cp

(and the ± is given by the sign ρ appearing in the definition (57) of A). In
view of the discussion of Section 5.1 (in particular (80)) and (81), Theorem 3
will follow if we can prove that

(82) [Lk] = 0 in Hn−1(U,Cc(Fp)) for k < r.

The functions 1O · (logpNx)k lie in a certain subspace C	
c(Fp) ⊂ Cc(Fp)

that we now define. Write S = {p1, . . . , pr}, and for each p ∈ S define C	
c(Fp)

to be the subspace of Cc(Fp) consisting of those functions that are constant
in a neighborhood of 0. Define

C	
c(Fp) :=

⊗
p∈S

C	
c(Fp)⊗

⊗
p|p, p
∈S

C(O∗
p) ⊂ Cc(Fp).

In other words, C	
c(Fp) consists of functions on Fp that can be written as

finiteCp-linear combinations of products
∏

p|p fp, with fp ∈ C	
c(Fp) for p ∈ S

and fp ∈ C(O∗
p) for p | p, p 
∈ S. Note that 1O · (logpNx)k ∈ C	

c(Fp), since
for a tuple x = (xp) ∈ Fp with xp ∈ Op, xp 
= 0, we have

(83) logpNx =
∑
p

�p(x), where �p(x) := logpNFp/Qp
xp.

We will show that in fact

(84) [Lk] = 0 in Hn−1(U,C
	
c(Fp)) for k < r,

which of course implies (82). The proof of (84) is broken into two steps. Let
I denote the augmentation ideal of the group ring Cp[T ].
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Theorem 5.1 (Spiess, [Sp1]). The natural map

Hn−1(U,C
	
c(Fp))−→Hn−1(E,C	

c(Fp)/I)

is an isomorphism.

Theorem 5.2 (Spiess, [Sp1]). For k < r, we have

1O · (logpNx)k ∈ I · C	
c(Fp),

and in particular the image of [Lk] in Hn−1(E,C	
c(Fp)/I) vanishes.

Theorems 5.1 and 5.2 combine to yield (84), which in turn combined
with (81) and (79) yields the proof of Theorem 3. For completeness, we
recall Spiess’s proofs of these results.

Lemma 5.3. The space C	
c(Fp) is a free Cp[T ]-module.

Proof. We show by induction on r that

C	
c(FS) :=

⊗
p∈S

C	
c(Fp)

is a free T -module. To this end, fix p = pr ∈ S and write π = πr,
S′ = {p1, . . . , pr−1}, and T ′ = 〈πi〉r−1

i=1 , so T = T ′ × 〈π〉. Our inductive
hypothesis is that C	

c(FS′) is free as a Cp[T
′]-module.

The space Cc(F
∗
p ) of compactly supported continuous functions on F ∗

p

can be identified with the subspace of C	
c(Fp) consisting of those functions

that vanish on a neighborhood of 0. Write C0
c (Fp) for the space of com-

pactly supported locally constant functions on Fp, so in particular C	
c(Fp)

is generated by its subspaces Cc(F
∗
p ) and C0

c (Fp), and we have

C	
c(Fp)/C

0
c (Fp) ∼= Cc(F

∗
p )/C

0
c (F

∗
p ).

We therefore obtain an exact sequence
(85)
0 −→ C	

c(FS′)⊗ C0
c (Fp) −→ C	

c(FS) −→ C	
c(FS′)⊗ Cc(F

∗
p )/C

0
c (F

∗
p ) −→ 0.

It suffices to prove that the first and third terms of the sequence are free
Cp[T ]-modules.

Since Fp := Op − πOp is a fundamental domain for the action of π on
F ∗
p , we have

(86) C0
c (Fp) = C0

c (F
∗
p )⊕Cp1Op

= (Ind〈π〉C0(Fp))⊕Cp1Op
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as Cp[T
′]-modules. Choose a T ′-stable decomposition C0(Fp) = V ⊕Cp1Fp

(for instance, we may take V ⊂ C0(Fp) to be the subspace of functions
that have integral against Haar measure on Op equal to 0). Using 1Fp

=
(1− π)1Op

, one sees from (86) that

C0
c (Fp) = IndTT ′(V ⊕ 1Op

)

as Cp[T ]-modules. Lemma 5.4 below then implies that C	
c(FS′)⊗ C0

c (Fp) is
a free Cp[T ]-module.

Similarly,

Cc(F
∗
p )/C

0
c (F

∗
p )

∼= IndTT ′(C(Fp)/C
0(Fp))

as a Cp[T ]-module, and hence the third term of (85) is a free Cp[T ]-module
by Lemma 5.4. We conclude that C	

c(FS) is a free Cp[T ]-module, and hence
C	
c(Fp) is as well.

Lemma 5.4. Let G1 and G2 be groups, G = G1 ×G2, and let K be a field.
Let M1,M2 two K[G]-modules such that M2

∼= IndGG1
N2 as a K[G]-module

for some G1-module N2, and M1
∼= IndG1 N1 as a K[G1]-module for some

K-vector space N1. Then M1 ⊗K M2 is a free K[G]-module.

Proof. One verifies that M1 ⊗K M2
∼= IndG(N1 ⊗K ResG1

1 N2).

Lemma 5.3 immediately yields:

Proof of Theorem 5.1. Since C	
c(Fp) is a free Cp[T ]-module, it has homolog-

ical dimension 1, and the Hochschild–Serre spectral sequence

E2
p,q = Hp(E,Hq(T,C

	
c(Fp))) =⇒ Hp+q(U,C

	
c(Fp))

degenerates at E2. Therefore the maps En −→ E2
n,0 are isomorphisms as

desired.

We now move on to:

Proof of Theorem 5.2. As above we write S = {p1, . . . , pr}. For any subset
R ⊂ S, let

OR :=
∏
pi∈R

(Opi
− πiOpi

)×
∏

pi∈S−R

Opi
×

∏
p|p, p
∈S

O∗
p,f,

so in particular OS = O.
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From (83) it follows that (logpNx)k can be expanded as a sum of mono-
mials of the form

�(x)n :=
∏
p|p

�p(x)
np ,

where n = (np)p|p is a tuple of nonnegative integers such that |n| :=
∑

p
np =

k. We will prove by induction on |n| that if R ⊂ S is a subset such that
np = 0 for all p ∈ S −R and |R| > |n|, then

1OR
· �(x)n ∈ I · C	

c(Fp).

The desired result will then follow from the case R = S, |n| = k.
For the base case, |n| = 0, we choose pi ∈ R (which is possible since

|R| > 0), let R′ = R− {pi}, and note

(87) 1OR
= (1− πi) · 1OR′ .

The inductive step is similar, using the linearity of the functions �p.
Given R ⊂ S such that np = 0 for all p ∈ S − R and |R| > |n|, we may
choose a pi ∈ R such that npi

= 0. Let R′ = R− {pi}. Then:

(1− πi)�(x)
n =

∏
p|p

�p(x)
np −

∏
p|p

(�p(x)− �p(πi))
np

=
∑

n′,|n′|<|n|
an′�(x)n

′
(88)

for some coefficients an′ (where n′
p = 0 for all p ∈ S − R′ if an′ 
= 0). Using

the formula

((1− π)f) · g = (1− π)(f · g)− f · ((1− π)g) + ((1− π)f) · ((1− π)g)

applied with f = 1OR′ , g = �(x)n, and π = πi, equations (87) and (88)
combine to give

1OR
· �(x)n =((1− πi)1OR′ ) · �(x)n

≡− 1OR′ ·
∑
n′

an′�(x)n
′
+ 1OR

·
∑
n′

an′�(x)n
′

(mod I · C	
c(Fp)).

Each of the terms 1OR′ · �(x)n
′
and 1OR

· �(x)n′
lies in I · C	

c(Fp) by the
inductive hypothesis, yielding 1OR

· �(x)n ∈ I · C	
c(Fp) as desired.
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totalement réels. Groupe d’étude d’analyse ultramétrique (5ème
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