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PSL(2;C) connections on 3-manifolds with L2

bounds on curvature

Clifford Henry Taubes
∗

Karen Uhlenbeck’s compactness theorem for sequences of connec-
tions with L2 bounds on curvature applies only to connections on
principal bundles with compact structure group. This article states
and proves an extension of Uhlenbeck’s theorem that describes se-
quences of connections on principal PSL(2;C) bundles over com-
pact three dimensional manifolds.

Suppose that M is a compact Riemannian manifold and P is a principal
bundle over M with fiber a Lie group to be denoted by G. Fix an integer no
less than 1

2 of the dimension of M, this denoted by p. In the case when G is
compact, Karen Uhlenbeck’s foundational paper Connections with Lp bounds
on curvature [U] explained the sense in which the space of connections on
the given principal bundle with an a priori Lp bound on the norm of the
curvature is compact. This paper is the first of a planned series of papers
that provide a generalization of Uhlenbeck’s theorem in the case when G is
not compact. This paper considers only the case when M has dimension 2
or 3, the group G is PSL(2;C) and p = 2. The generalization of Uhlenbeck’s
theorem for the case of dimension 3 is the upcoming Theorem 1.1. The
dimension 2 case is subsumed by Theorem 1.1 by taking the manifold in
Theorem 1.1 to be the product of the given surface with the circle. The
dimension 2 case is also stated separately as Theorem 1.2.

The space of automorphism equivalence classes of irreducible, flat
PSL(2;C) connections need not be compact. Morgan and Shalen [MS1]–
[MS3] construct a compactification of the latter space using certain equiv-
ariant maps from the universal cover of M to certain sorts of R-trees, an
R-tree being a metric space where by any two points are connected by a
unique path. Daskoloupoulus, Dostoglu and Wentworth [DDW1]–[DDW3]
subsequently proved that the Morgan-Shalen maps can be taken to be har-
monic. Some brief remarks are made near the end of Section 1 about what is
said in Theorem 1.1 and what is said in [MS1]–[MS4] and [DDW1]–[DDW3].
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A generalization of Uhlenbeck’s theorem to the case when G is PSL(2;C)
and M has dimension 3 is of specific, topical interest for reasons that are
described at the end of Section 1 of this paper. Moreover, close kin to the
techniques that are introduced to prove Theorem 1.1 will likely play crucial
roles in proofs of Theorem 1.1’s analog when G has rank greater than 2,
when M has dimension greater than 3, and/or when p is not equal to 2. It
is also likely that close kin of these same techniques can help characterize
the moduli spaces of solutions to various generalizations of the 3 and 4
dimensional Seiberg-Witten equations that involve more than one spinor
and more than one U(1) connection. The reason is that these Seiberg-Witten
equations have the same formal structure as those that assert the flatness
of a connection on a PSL(2;C) principal bundle. Compactness theorems for
solutions to these other equations are subjects for possible sequels to this
article.
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1. The PSL(2;C) extension of Uhlenbeck’s theorem

This section has six subsections. The first, Section 1.a, presents Uhlen-
beck’s theorem and then states its PSL(2;C) generalization, this being The-
orem 1.1. Section 1.b states and proves the dimension 2 analog of Theo-
rem 1.1. Section 1.c first explains the relationship between what is said in
Theorem 1.1 and what is said in [MS1]–[MS4] and [DDW1] about the flat
connections. It then gives a very brief account how the data supplied by The-
orem 1.1 leads to some central notions in 3-manifold topology. Section 1.d
provides a short outline of the proof of Theorem 1.1. Section 1.e describes
some questions in 3 and 4 dimensional differential topology and geometry
that may well require some sort of PSL(2;C) extension of Uhlenbeck’s theo-
rem. This section also has a paragraph that says something about extensions
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of Uhlenbeck’s theorem to PSL(n;C) for n > 2. Section 1.f supplies a table
of contents for this article and it states certain notational conventions that
are subsequently invoked with no further comments.

1.a. Theorem 1.1

Theorem 1.1 is stated below after some necessary stage setting to define the
notation and supply some needed background. The stage setting has nine
parts.

Part 1: The group SL(2;C) is viewed here as the group of 2 × 2 complex
matrices with determinant 1. Viewed in this light, its Lie algebra is the
vector space of trace zero, 2 × 2 complex matrices. The latter space can
be written as the direct sum su(2) ⊕ isu(2) with su(2) denoting the vector
space of skew hermitian complex matrices and with i denoting the square
root of −1. Keep in mind that the Lie algebra of SU(2) is the vector space
su(2). The linear form on the vector space of 2× 2 complex matrices given
by −1 times the trace is denoted in what follows by 〈 , 〉. The square of the
Hermitian norm on su(2) can be written using this notation as the function
u → 〈u u〉.

Part 2: Assume henceforth that M is a compact 3-dimensional manifold
with a given principal PSL(2;C) bundle. As PSL(2;C) bundles have reduc-
tions to principal SO(3) bundles, choose once and for all such a reduction
so as to write the given principal PSL(2;C) bundle as P ×SO(3) PSL(2;C)
with P → M a principal SO(3) bundle.

Any given connection on P ×SO(3) PSL(2;C) can be written as A + ia
with A being a connection on P and with a denoting a 1-form with values in
the associated vector bundle P×SO(3) su(2). The curvature of the connection
A = A+ia is denoted by FA and that of A by FA. The former is a section of
(P×SO(3) su(2))⊗ (∧2T∗M) and it can be written in terms of A’s curvature
as FA = FA − a ∧ a + idAa with dA denoting here the exterior covariant
derivative that is defined by A.

Part 3: Fix once and for all a Riemannian metric on M. Unless instructed
to the contrary, assume that all inner products on TM, T∗M and their tensor
products are defined by this metric. The metric Hodge star is denoted by ∗.
Likewise, assume that all covariant derivatives on these tensor bundles are
those induced by the associated Levi-Civita connection. These covariant
derivatives are denoted by ∇. The metric’s Ricci curvature tensor defines a
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symmetric, bilinear form on T∗M that is denoted by Ric. Integration on M
is defined using the metric’s volume element.

Norms of tensor bundle valued sections of P ×SO(3) su(2) are defined
using the Riemannian metric and the norm on su(2). Let A denote a given
connection on P. The covariant derivative defined by A and the Levi-Civita
connection on P×SO(3) su(2) valued sections of tensor bundles is denoted by

∇A. The Hermitian adjoint of this operator is denoted by ∇†
A.

Part 4: Sobolev spaces of connections are front and center in Uhlenbeck’s
theorem, and so they are front and center in Theorem 1.1. This part of the
subsection defines these spaces.

Fix a ‘fiducial’ connection on P to be denoted by A0. The connection
A0 is used to define a given k ∈ {0, 1, 2, . . . } version of the Sobolev L2

k norm
on tensors with values in P×SO(3) su(2), this being the norm whose square
assigns to a given tensor t the integral over M of

∑
0≤m≤k |(∇A0

)⊗mt|2. An

L2
k tensor with values in P ×SO(3) su(2) is an almost everywhere defined

section of the relevant vector bundle with finite Sobolev L2
k norm.

Let Conn(P) denote the space of smooth connections on P. Let k denote
for the moment a given non-negative integer. The L2

k topology on Conn(P)
is defined as follows: Write a given connection on P as A0 + â with â being
a section of (P ×SO(3) su(2)) ⊗ T∗M. Doing so identifies Conn(P) with the
vector space of sections of (P ×SO(3) su(2)) ⊗ T∗M. The L2

k topology on
Conn(P) is the topology that is induced by this identification from the L2

k
metric metric topology on the space of sections of (P×SO(3) su(2))⊗ T∗M.
This topology does not depend on the chosen fiducial connection.

A connection on P is said to be an L2
k connection if it has the form

A0+â with â denoting an L2
k section of (P×SO(3) su(2))⊗T∗M. This notion

is likewise independent of the choice of A0. A sequence {An}n=1,2,... of con-
nections on P is said to converge weakly in the L2

k topology on P when it can
be written as {An = A0 + ân}n=1,2,... with the sequence {ân}n=1,2,... having
bounded L2

k norm and converging weakly with respect to the L2
k norm to an

L2
k section of (P×SO(3) su(2))⊗ T∗M.

Part 5: Karen Uhlenbeck’s [U] theorem applies to connections on P and in
particular makes the following assertion:

Uhlenbeck’s Theorem. Suppose that {An}n=1,2,... is a sequence of con-
nections on P with the corresponding sequence

{∫
M
|FAn

|2
}

n=1,2,...
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being bounded. There is a subsequence of {An}n=1,2,..., hence renumbered

consecutively from 1, and a corresponding sequence of automorphisms of P,

this denoted by {gn}n=1,2,..., such that {gn∗An}n=1,2,... converges weakly in

the L2
1 topology to an L2

1 connection on P.

By way of a reminder, the space of automorphisms of P acts on Conn(P)

by pull-back. This space of automorphism can be identified in a canonical

fashion with the space of sections of P ×SO(3) SO(3). Let g denote such an

automorphism and let A denote a given connection. The pull-back g∗A can

be written as A + ĝ−1dAĝ where ĝ is a (locally defined) section of the as-

sociated bundle to P with fiber the group of 2 × 2 unitary matrices with

determinant 1, this being SU(2). The group SO(3) acts on SU(2) via conju-

gation. The automorphism g need not lift over the whole of M to a section

of the fiber bundle P ×Ad(SO(3)) SU(2), but a lift does exists over any con-

tractible subset of M. Even so, the section ĝ−1dAĝ of (P×SO(3) su(2))⊗T∗M
is defined everywhere on M because any two lifts of g differ by the action of

multiplication by 1 or −1.

Part 6: Uhlenbeck’s theorem is a godsend because its assumptions are in-

variant under the action on Conn(P) of P’s automorphism group; the rea-

son being that the norm given by u → −〈u u〉 on su(2) is ad-invariant. This

implies that the norm of the curvature of a connection on P is pointwise

identical to the norm of its pull-back via any automorphism of P. This be-

ing the case, the L2 norm of the curvature of any given connection is is the

same as that of its pull-back via an automorphism.

The Lie algebra of SL(2;C) does not have a norm that is invariant under

the adjoint action of SL(2;C). Even so, there is a useful generalization of the

L2 norm of the curvature of an SL(2;C) connection that is invariant under

the action of the group of PSL(2;C) automorphisms of P×SO(3) PSL(2;C).

The definition is given momentarily in (1.1). This generalization plays the

role in Theorem 1.1 that is played by the curvature L2 norm in Uhlenbeck’s

theorem.

The upcoming definition uses Conn(P ×SO(3) PSL(2;C)) to denote

the space of connections on P ×SO(3) PSL(2;C) The group of automor-

phisms of P ×SO(3) PSL(2;C) is denoted by GC; and the GC-orbit in

Conn(P×SO(3) PSL(2;C)) of a given connection A is denoted by GC(A).

The generalization to Conn(P ×SO(3) PSL(2;C)) of the square of the L2

norm of the curvature is the function on Conn(P×SO(3) PSL(2;C)) assigns

to any given connection A the infimum over connections A + ia ∈ GC(A) of



244 Clifford Henry Taubes

a function that is denoted by F and defined by the rule

(1.1) A → F(A) =

∫
M

(
|FA − a ∧ a|2 + |dAa|2 + |dA∗a|2

)
.

Part 7: Fix k ∈ {0, 1, 2, . . . }. The L2
k topology on Conn(P×SO(3)PSL(2;C))

is defined by first identifying the latter space with Conn(P) × C∞(M;
(P ×SO(3) su(2)) ⊗ T∗M) with it understood that a given pair (A, a) in
the latter space corresponds to the connection A + ia. Having done so, the
topology is defined to be the product of the L2

k topologies on Conn(P) and
C∞(M; (P×SO(3)su(2))⊗T∗M). An L2

k connection on the principal PSL(2;C)
bundle P×SO(3) PSL(2;C) is defined by a pair (A, a) of L2

k connection on P
and L2

k section of (P×SO(3) su(2))⊗ T∗M.
A part of Theorem 1.1 describes a connection on an open set in M as

being an L2
k;loc connection. Let U denote the given open set. A connection

on P|U×SO(3)PSL(2;C) is said to be an L2
k;loc connection if it can be written

as A0+ â+ ia with â and a being almost everywhere defined sections over U
of (P×SO(3) su(2))⊗T∗M with the following property: If V ⊂ U is any given
open set with compact closure, then the L2

k norm on V of (â, a) is finite, the
latter being the square root of the integral on V of

∑
0≤m≤k |(∇A0

)⊗mâ|2 and∑
0≤m≤k |(∇A0

)⊗ma|2. This notion of an L2
k;loc connection does not depend

on the fiducial connection A0.
A sequence of connections on P ×SO(3) PSL(2;C) is said to converge

weakly in the L2
k topology to an L2

k connection when the Conn(P) part of
the corresponding sequence in Conn(P) × C∞(M; (P ×SO(3) su(2)) ⊗ T∗M)
converges weakly in the L2

k topology to an L2
k connection on the principal

SO(3) bundle P and the C∞(M; (P×SO(3) su(2))⊗ T∗M) part has bounded
L2
k norm and converges weakly to an L2

k section of (P×SO(3) su(2))⊗T∗M. If
U ⊂ M is a given open set, a sequence of connections on P×SO(3) PSL(2;C)
is said to converge weakly to an L2

k;loc connection on U if both the Conn(P)
part and the C∞(M; (P×SO(3) su(2))⊗T∗M) part of the connection converge
weakly with respect to the L2

k topology on all open subsets in U with compact
closure. This is to say that the Conn(P) part differ from A0 on U by a
sequence of sections over U of the vector bundle (P ×SO(3) su(2)) ⊗ T∗M
with bounded L2

k norm on open sets in U with compact closure; and that
it converges weakly on such open sets to an L2

k;loc section of this vector
bundle. Meanwhile, the C∞(M; (P×SO(3) su(2))⊗T∗M) part of the sequence
has bounded L2

k norm on open sets in U with compact closure and it also
converges weakly on such open sets to an L2

k;loc section of (P |U×SO(3)su(2))⊗
T∗M.
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Part 8: The term real line bundle is used here to describe the associated line
bundle to a principal Z/2Z bundle. With this term understood, let U ⊂ M
denote a given open set and suppose that I → U is a real line bundle. An
I valued tensor field on U is a section of the tensor product bundle with I .
The Riemannian metric defines the pointwise norm of an I valued p-form
or any I valued tensor field. Meanwhile, the Levi-Civita covariant derivative
defines a covariant derivative of such a tensor field.

Fix p ∈ {0, 1, 2, 3} and let q denote for the moment an I valued p-form.
The definition of the exterior derivative of q is canonical and is denoted by
dq . This I valued p-form is said to be closed if dq = 0 and it is said to be
coclosed if d∗q = 0. An I valued p-form that is closed and coclosed is said
to be harmonic.

If A is a connection on P, then A defines a covariant derivative on
Hom(I ; P×SO(3) su(2)). A given section is said to be A-covariantly constant
if it is annihilated by A’s covariant derivative.

Keep in mind that if q is an I -valued p-form and σ is a section of the
vector bundle (I ⊗P)×Z/2Z×SO(3) su(2), then qσ is a p-form on U with values
in P×SO(3) su(2).

Part 9: Theorem 1.1 describes a certain subset of an open set in M as
an embedded Lipshitz curve. For the present purposes, an embedded Lipshitz
curve in a given open set U is closed in U and characterized as follows:
Let γ denote such a curve and let p denote a given point in γ. Let x =
(x1, x2, x3) denote Euclidean coordinates for R3. There is a coordinate chart
for M centered at p that depicts γ near p as the small |x| part of the graph
t → (x1 = t, x2 = ϕ2(t), x3 = ϕ3(t)) with ϕ = (ϕ1, ϕ2) being a Lipshitz map
from R to R2. By way of a reminder, a continuous map from an interval
I ⊂ R into a Riemannian manifold is said to be Lipshitz under the following
circumstances: Let γ denote the map in question. Then γ is Lipshitz when
supt,t′∈I dist(γ(t), γ(t

′)) ≤ cγ |t− t′| with cγ being a constant.
A subset of an open set of M is said to be a Lipshitz curve if it is

the image of a Lipshitz map from either the circle or an open set in R. A
Lipshitz curve is almost everywhere differentiable, and it has finite length if
its domain has compact closure. An embedded Lipshitz curve is a priori a
Lipshitz curve.

Granted all of this notation, here is the promised PSL(2;C) generaliza-
tion of Uhlenbeck’s theorem:

Theorem 1.1. Suppose that {An = An+ian}n=1,2... is a sequence of connec-
tions on P×SO(3)PSL(2;C) with the corresponding sequence {F(An)}n=1,2,...

being bounded. For each n ∈ {1, 2, . . . }, use rn to denote the L2 norm of an.
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• If the sequence {rn}i=1,2,... has a bounded subsequence, then there exists
a subsequence of {An}n=1,2,..., hence renumbered consecutively from 1,
and a corresponding sequence of automorphisms of P, this denoted
by {gn}n=1,2,..., such that {gn∗An}n=1,2,... converges weakly in the L2

1

topology to an L2
1 connection on P×SO(3) PSL(2;C).

• If the sequence {rn}n=1,2,... has no bounded subsequence, then there
exists a subsequence of {An}n=1,2,..., hence renumbered consecutively
from 1, a corresponding sequence of automorphisms of P, this denoted
by {gn}n=1,2,..., plus the following additional data: A closed set ZS ⊂ M,
a real line bundle I → M−ZS, and a harmonic I valued 1-form on
M−ZS. The latter is denoted by ν. These are such that

1) The norm |ν| of ν extends to the whole of M as a continuous,
L2
1 function. The set ZS is contained in the zero locus of |ν|, the

latter being a closed set in M that is contained in a countable
union of 1-dimensional Lipshitz curves. Moreover, given ε > 0,
there exists a finite set of balls whose total volume is less than
ε and with pairwise disjoint closures such that |ν|’s zero locus in
the complement of their union is a properly embedded finite length
Lipshitz curve with a finite set of components.

2) The sequence {gn∗An}n=1,2,... converges weakly in the L2
1;loc topol-

ogy on M−ZS to an L2
1;loc connection on P|M−ZS

, this denoted by
A.

3) The sequence {r−1
n gn

∗an}n=1,2,... converges weakly in the L
2
1;loc topol-

ogy on M−ZS to νσ with σ being a unit length, A-covariantly con-
stant homorphism over M−ZS from I into P×SO(3) su(2). Mean-
while, {r−1

n |an|}n=1,2,... converges to |ν| in the weak L2
1 topology

and the C0 topology on the whole of M.

Let Z denote the zero locus of |ν|. It is not out of the question that
there is a ‘generic metric’ theorem to the effect that Z and perhaps ZS are
necessarily the union of a finite set of points with a compact, embedded
Lipshitz or even smooth curve if the metric on M is chosen from a suitable
dense set. It is also possible that Z and perhaps ZS are as just described
if the sequence {An}n=1,2,... is chosen to have some additional properties; a
case to consider is that where the sequence sits on an integral curve of F’s
gradient vector field and the corresponding sequence of F values converges
to the infimum of F.

There is a certain topological significance in Z, I and ν that are il-
lustrated by two comparisons. The first comparison is that between what
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Theorem 1.1 says and what is said by the analog of Theorem 1.1 for mani-
folds of dimension 2. The dimension 2 analog of Theorem 1.1 is in the next
subsection. This second comparison is that between what is said by Theo-
rem 1.1 with no added assumptions and what can be said when the sequence
{An}n=1,2,... is a sequence of flat PSL(2;C) connections. Section 1.c contains
some very brief remarks about the latter case of Theorem 1.1 and then about
the topological significance in Z, I and ν in the general case.

1.b. The case of dimension 2

Let Σ denote a compact, Riemann surface and let P → Σ denote a given
principal SO(3) bundle. The function F in (1.1) has its analog for connections
on the principal PSL(2;C) bundle P ×SO(3) PSL(2;C), the formula being
identical but for the fact that the integration domain is Σ and the Hodge
dual is defined using the metric on Σ.

The upcoming Theorem 1.2 is the analog of Theorem 1.1 for oriented
surfaces. The dimension 2 case of Theorem 1.1 for an non-orientable sur-
face can be deduced from the theorem below by considering pull-backs to
the double cover. The statement of the non-orientable version is left to the
reader.

By way of background for Theorem 1.2, keep in mind first of all that
the chosen orientation and metric for Σ define a complex structure for TΣ
and thus a corresponding splitting of T∗Σ ⊗R C as the direct sum of two
complex line bundles, T1,0⊕T0,1. If q is a given P×SO(3)su(2) valued 1-form,
then q has a corresponding decomposition as q1,0 + q0,1 with q1,0 being the
part of q in (P×SO(3) su(2))⊗R T1,0 and with q0,1 denoting the part of q in
(P×SO(3) su(2))⊗R T0,1.

Theorem 1.2 refers to what is known as a quadratic differential. The
latter is a section of the complex line bundle T2,0 = T1,0 ⊗C T1,0. This
bundle has a canonical holomorphic structure and this is used to define the
notion of a holomorphic quadratic differential. The Riemann-Roch theorem
asserts that the space of holomorphic quadratic differentials is a complex
vector space of dimension zero if Σ is a sphere, dimension 1 over C if Σ
is a torus, and dimension 3g − 3 over C with g denoting the genus of Σ
when this genus is greater than 1. Let μ denote a non-trivial, holomorphic
quadratic differential. The zero locus of μ consists of 4g− 4 points counted
with multiplicity.

It may or may not be the case that μ is the square of a holomorphic
section of T1,0. This is the case if each of μ’s zeros has even multiplicity. In
any event, the square root of μ can be defined on the complement of its zero
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locus as a section of a real line bundle on this complement. The zero locus
of μ is denoted in Theorem 1.2 by Zμ, and the square root of μ on Σ−Zμ is
denoted by μ1/2. The corresponding real line bundle is denoted by Iμ.

Theorem 1.2. Let Σ denote a compact, oriented Riemann surface and let
P → Σ denote a principal SO(3) bundle. Suppose that {An = An+ian}n=1,2...

is a sequence of connections on P ×SO(3) PSL(2;C) with the corresponding
sequence {F(An)}n=1,2,... being bounded. For each n ∈ {1, 2, . . . }, use rn to
denote the L2 norm of an.

• If the sequence {rn}n=1,2,... has a bounded subsequence, then there exists
a subsequence of {An}n=1,2,..., hence renumbered consecutively from 1,
and a corresponding sequence of automorphisms of P, this denoted
by {gn}n=1,2,..., such that {gn∗An}n=1,2,... converges weakly in the L2

1

topology to an L2
1 connection on P×SO(3) PSL(2;C).

• If the sequence {rn}n=1,2,... has no bounded subsequence, then there
exists a subsequence of {An}n=1,2,..., hence renumbered consecutively
from 1, a corresponding sequence of automorphisms of P, this denoted
by {gn}n=1,2,..., and a non-trivial, holomorphic quadratic differential,
this denoted by μ. These are such that

1) The sequence {gn∗An}n=1,2,... converges weakly in the L2
1;loc topol-

ogy on Σ−Zμ to an L2
1;loc connection on P|M−Zμ

this denoted by A.

2) The sequence {r−1/2
n gn

∗an}n=1,2,... converges weakly in the L2
1;loc

topology on M−Zμ to a section of (P×SO(3) su(2))⊗ T∗Σ whose

T1,0 part is μ1/2σ with σ being an isometric, A-covariantly con-
stant homomorphism over M−Zμ from I to P×SO(3) su(2).

By way of a parenthetical remark, a connection on a principal bundle
over a Riemann surface defines a holomorphic structure on any associated
bundle with complex fibers. This understood, the conclusions of Theorem 1.2
are foreshadowed by Simon Donaldson’s paper [D1] about stable holomor-
phic bundles on surfaces.

Proof of Theorem 1.2. As explained momentarily, this theorem constitutes
a special case to Theorem 1.1. Even so, it can be proved independently
of Theorem 1.1 and with much less effort. To obtain Theorem 1.2 from
Theorem 1.1, take M in Theorem 1.1 to be the product S1 × Σ with the
metric being the product metric. The pull-back of the principal SO(3) bundle
P on Σ to M via the projection map to Σ defines a principal SO(3) bundle
over M, the latter is denoted also by P. The bundle P is the SO(3) bundle
to use for Theorem 1.1. The corresponding pull-back of {Ai}i=1,2,... defines
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a sequence of connections on the incarnation of P ×SO(3) PSL(2;C) as a
bundle on M. This pull-back sequence is also denoted by {An}n=1,2,.... Keep
in mind that the value of Σ’s version of F on a connection is the same up to
a multipicative factor as that of (1.1) on the pulled back connection. By the
same token, the Σ version of the sequence of L2 norms {rn}n=1,2,... differs
by an index independent multiplicative factor from the corresponding M
version of {rn}n=1,2,....

Granted what was said in the preceding paragraph, the first bullet of
Theorem 1.2 follows directly from the first bullet of Theorem 1.1 provided
an argument can be made to the effect that the sequence of automorphisms
{gn}n=1,2,... that Theorem 1.1 provides can be assumed to be pull-backs of a
corresponding sequence that is defined on Σ. The fact that this is so follows
from the fact that an L2

1 section of (P ×SO(3) su(2)) ⊗ T∗(S1 × Σ) restricts

to almost every constant t ∈ S1 slice as an L2
1 section along the slice, and it

restricts to half of these slices with L2
1 norm no greater than twice that of

its L2
1 norm on the whole of S1 × Σ.
An analogous argument can be used to prove that Theorem 1.1’s set Z is

the product of S1 and a closed set ZΣ ⊂ Σ and that Theorem 1.1’s real line
bundle I is isomorphic to the pull-back via the projection map of a real line
bundle defined on the complement in Σ of ZΣ, this denoted for now by IΣ.
Moreover, such an isomorphism identifies Theorem 1.1’s version of ν with
the pull-back of a harmonic, IΣ valued 1-form on Σ−ZΣ with ZΣ being the
locus where its norm is zero. Let νΣ denote the latter. Use the splitting of
T∗Σ⊗RC as T1,0⊕T0,1 to write νΣ as e+ē with e denoting the T1,0⊗RIμ part
of νΣ. The section e is holomorphic, this being a consequence of the fact that
νΣ is harmonic. Since e is holomorphic, its square e2 is a holomorphic section
of T2,0 over Σ−ZΣ that vanishes on Σ. This last observation implies that e2

extends over ZΣ so as to define a holomorphic quadratic differential on Σ.
The latter is Theorem 1.2’s quadratic differential μ. Since the zero locus of
e is ZΣ, this is likewise the zero locus of μ. Thus ZΣ is Theorem 1.2’s set Zμ

and Theorem 1.2’s principal Z/2Z bundle Iμ is IΣ.

1.c. The topological significance of Z, III and ν

There are two parts to what follows. The first part talks about Theorem 1.1
when the connections in the sequence {An}n=1,2,... are irreducible, flat con-
nections. The second part gives a very brief account of how the data Z, I and
ν in the general case lead to structures that are mainstays of 3-dimensional
topology.
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Part 1: Morgan and Shalen in [MS1]–[MS4] use R-trees to define a com-
pactification of the equivalence classes of irreducible representations of
π1(M) in PSL(2;C) with the equivalence relation defined by conjugation
by PSL(2;C). The latter space is a disjoint union of subspaces with each
equivalent to the space of automorphism classes of irreducible, flat PSL(2;C)
connections on some principal PSL(2;C) bundle over M. As noted in the in-
troduction, the Morgan-Shalen compactification involves π1(M)-equivariant
maps from M’s universal cover to R-trees and Daskoloupoulus, Dostoglu
and Wentworth [DDW1] proved that the Morgan-Shalen maps can be taken
to be harmonic. The next paragraph gives a rough summary of [DDW1]’s
construction of this map.

Suppose that {An}n=1,2,... is a sequence of flat connections on P ×SO(3)

PSL(2;C) that is described by the second bullet in Theorem 1.1. Donaldson
[D2] and Corlette [Co] prove that there is a connection on the Aut(P×SO(3)

PSL(2;C)) orbit of each member of this sequence with F = 0. This un-
derstood, Daskoloupoulus, Dostoglu and Wentworth start with a sequence
{An}n=1,2,... with just this property. Daskoloupoulus, Dostoglu and Went-
worth use what is known as the ‘developing map’ to obtain a π1-equivariant
harmonic map from M’s universal cover to the hyperbolic 3-ball from each
connection in the sequence. They then define a sequence of index n depen-
dent rescalings of the hyperbolic metric on the hyperbolic 3-ball and then
view the hyperbolic ball with this sequence of rescaled metrics as a sequence
of pointed metric spaces. Having taken this view, a theorem of Korevaar
and Schoen [KS] is invoked to conclude that the sequence of metric spaces
converges in a suitable sense to an R tree with an action of π1(M) and
that the sequence of harmonic maps to the hyperbolic ball has a subse-
quence that converges to a π1(M) equivariant harmonic map to this R-tree.
Daskoloupoulus, Dostoglu and Wentworth subsequently show that this limit
R-tree is of the sort that appears in the work of Morgan and Shalen.

To see the Daskoloupoulus, Dostoglu and Wentworth construction in
context of Theorem 1.1, note first that the hyperbolic 3-space can be viewed
as the space of Hermitian, 2 × 2 complex matrices with determinant equal
to 1, this denoted in what follows by H. The hyperbolic metric is that de-
fined by the norm on TH given by the trace of the square of a matrix. Let
{An}n=1,2... denote the sequence considered by Daskoloupoulus, Dostoglu
and Wentworth. Fix an index n ∈ {1, 2, . . . }. Let un denote the map from
M’s universal cover H that is constructed by Daskoloupoulus, Dostoglu and
Wentworth using the developing map with input being An. This map ap-
pears in the context of Theorem 1.1 as follows: Write An as An + ian. The
push-forward to M of the differential of un is the 1-form ian.
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The Daskoloupoulus, Dostoglu and Wentworth renormalization of the

hyperbolic metric on H multiplies the latter by the inverse of Theorem 1.1’s

constant rn, this being the L2 norm of the differential of un. Multiplying

the metric on H by the factor r−1
n is accounted for in Theorem 1.1 by the

appearance of r−1
n an in Item 3) of Theorem 1.1’s second bullet.

Theorem 1.1’s limit 1-form ν and its singular set ZS have the following

interpretation in the context of [DDW1]: Use T to denote the [DDW1] limit R

tree and u their limit harmonic map from M’s universal cover to T. Gromov

and Schoen [GS] (see also [S]) proved that u can be viewed as an honest

harmonic function on small balls in the complement of a set with Hausdorff

dimension at most 1. The latter set appears in the context of Theorem 1.1

as the inverse image in M’s universal cover of the set ZS. Meanwhile, the

differential of u where it is an honest harmonic function is the pull-back of

ν to M’s universal cover.

Daskoloupoulus, Dostoglu and Wentworth [DDW2], [DDW3] tell a fas-

cinating story about sequences of equivalence classes of flat PSL(2;C) con-

nections in the context of Theorem 1.2, these being sequences of connections

on a principal PSL(2;C) bundle over a Riemann surface.

Part 2: A tetrad of closely related notions in 3-manifold topology are singu-

lar measured foliations, measured laminations, weighted branched surfaces

and maps to R-trees. To paraphrase Hatcher and Oertel [HO], measured

laminations are extremely useful generalizations of two central notions in

3-manifold topology, incompressible surfaces and foliations without Reeb

components. Weighted branched surfaces and certain sorts of measured lam-

inations are in some sense, two sides of the same coin. These notions were de-

veloped extensively by a number of people in concert and separately, among

others Oertel [O], Hatcher [Hat], Morgan and Shalen [MS2], [MS3], and

Gabai with Ortel [GO]. As explained by [HO], certain sorts of measured

singular foliations give rise to measured laminations and weighted branched

surfaces, and vice versa. Measured laminations are also closely related to

maps from the universal cover to R-trees, this being the central theme in

[MS2]. Meanwhile, Bowditch [B] explains how to use measured, singular foli-

ations to define maps to R-trees. The reader should consult these references

and the myriad of more recent articles to learn more about this tetrad of

notions and their use in 3-manifold topology. As this author is a neophyte

on this subject, no more will (or can) be said here except to point out

that the notions from the tetrad serve as the dimension 3 generalization of

notions that play central roles in research on the structure of Teichmuller
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space and the mapping class group for surfaces. An elegant account of the
2-dimensional story can found in the beautiful book by Calegari [Ca].

The singular foliation member of the tetrad appears in the context of
Theorem 1.1. To say more about how this comes about, suppose for the
moment that Γ → M is a compact, embedded Lipshitz curve, that IΓ is a
real line bundle on M−Γ and that νΓ is a smooth, closed IΓ-valued 1-form
on M−Γ with zero locus being the union of Γ with a finite set of points in
M−Γ. Data of this sort can be found if M has a suitable branched cover
with branch locus being Γ. Let ZΓ denote the zero locus of νΓ. The kernel
of νΓ defines a 2-plane subbundle in M’s tangent bundle over M−ZΓ. This
subbundle is integrable because νΓ is closed, and so it is everywhere tangent
to the leaves of a foliation of M−ZΓ. Moreover, the folation defined by νΓ is
transversely measured with the measure given by integration along curves
that are transversal to the leaves. This foliation can be viewed as a singular,
transversely measured foliation on M. More to the point, if the structure
of νΓ near ZΓ is reasonable in a certain precise sense, then this singular
foliation will have the local structure that is needed so as to invoke what is
said in [HO].

Let Z, I and ν be as described in the second bullet of Theorem 1.1. Being
closed, the I -valued 1-form ν defines a transversely measured foliation on
M−Z and so a singular, transversely measured foliation on M. It is a conse-
quence of what is said in the upcoming Propositions 8.1 and in Sections 8.h
and 10.d that ν near most of its zero locus has the local form that is required
by [HO]. This is the part of Z that is described as a finite length Lipshitz
curve with finitely many components by Item 1) from the second bullet of
Theorem 1.1. As the complementary part of Z is contained in a finite set
of small, disjoint balls, it has little by way of topological significance. In
particular, the I -valued 1-form ν can likely be approximated by one that
behaves in the desired manner near its zero set.

1.d. An overview of the proof of Theorem 1.1

The first bullet of Theorem 1.1 is proved in Section 2.a. A fundamental
Bochner-Weitzenboch formula makes the first bullet little more than a corol-
lary to Uhlenbeck’s theorem for connections on principal SO(3) bundles.

The proof of the second bullet of Theorem 1.1 has three components. The
first component obtains an L2

1 limit of a subsequence of the rescaled sequence
{r−1

n |an|}n=1,2,..., this being the content of Lemma 2.1. The subsequence is
hence renumbered from 1. As it turns out, the limit function is bounded,
but the convergence is not L∞ convergence. For this and for other reasons, it
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proves necessary to modify the sequence {r−1
n an}n=1,2,... so as to obtain a new

sequence, this denoted by {an}n=1,2,..., with {|an|}n=1,2,... being uniformly

bounded, converging in L2
1 to the same limit function, but with the following

additional property: The limit L2
1 function, now denoted by |â♦|, is defined

at each point in M by the rule |â♦| = lim supn→∞ |ân|. The properties of

{an}n=1,2,... are described in Proposition 2.2.

This notion of pointwise convergence brings up a subtle but central issue,

which is that pointwise convergence to an L∞ limit does not imply that the

limit is C0. The second component of the proof of Theorem 1.1 consists

of a proof that |â♦| is a continuous function. The assertion that |â♦| is C0

is made by Proposition 6.1. The intervening Sections 3, 4 and 5 develop

the tools that are needed to prove Proposition 6.1. This proof that |â♦|
is continuous brings to bear, among other things, Uhlenbeck’s theorem for

SO(3) connections, the properties of a certain canonical, constant coefficient,

first order elliptic operator on R3 that is defined by the non-linear structure

of the curvature, and a gauge theoretic notion of the frequency function

that was introduced by Almgren [Al] and used to great success by [HHL]

and others to study the singularities of nodal sets of eigenfunctions of the

Laplacian.

Uhlenbeck’s theorem is brought to bear in Section 3 to study the behav-

ior of the sequence {(An, ân)}n=1,2,... on sequences of small radius balls about

each point of M; the radii of the balls in any given such sequence depend on

the chosen point and the index n. With a given point in M fixed, Section 4

uses the analysis in Section 3 to draw conclusions about the sequence whose

n’th term is the curvature of the connection An on the corresponding index

n dependent radius ball about the point. This analysis brings to bear the

aforementioned, constant coefficient first order operator. Section 5 defines

the gauge theory analog of Almgren’s frequency function and proves that

it obeys an approximate monotonicity formula, the latter being the gauge

theory analog of the monotonicity formula that is exploited by Almgren and

others to study the nodal sets of eigenfunctions of the Laplacian. Section 6

uses the conclusions of Sections 3, 4 and 5 to prove that |â♦| is continuous.
It follows from what is said in Lemma 7.2 that {|ân|}n=1,2,... converges to

|â♦| in the exponent 1
4 Holder topology near any point where |â♦| is positive.

Let Z denote the zero locus of |â♦|. The third component of the proof of

Theorem 1.1 begins in Section 7 with the construction of Theorem 1.1’s real

line bundle I , this defined over M−Z, and Theorem 1.1’s I valued 1-form ν.

Note in this regard that the fact that |â♦| is continuous implies that Z is a

closed subset of M and thus that M−Z is an open set. The fact that Z is
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closed rules out all sorts of terrible pathologies, among them the possibility
that M−Z has empty interior.

Proposition 7.1 asserts in part that |ν| = |â♦| and that ν is a harmonic
I valued 1-form on the complement of its zero locus, Z. Proposition 7.1 also
defines a version of Almgren’s frequency function for ν, the latter playing the
central role in the proof of Theorem 1.1’s assertions about Lipshitz curves.
Lemma 7.2 proves what is asserted by Items 2) and 3) of Theorem 1.1.
Theorem 1.1’s assertion about Lipshitz curves is restated as Proposition 10.1
and proved in Section 10. The intervening Sections 8 and 9 supply the tools
that are needed for the proof of Proposition 10.1. More is said about this in
next paragraph.

If I is a product bundle, then it extends across Z and the extension
writes ν as an R-valued 1-form on the whole of M. In the latter case, what
Theorem 1.1 says about Lipschitz graphs is little more than a corollary to
what is said in [HHL]. The story when I is not a product bundle is far more
complicated for two reasons, the first being that the derivative of ν on Z is
not a priori defined. This is because the derivative of an I valued section
of a vector bundle makes no sense where I is not defined. This issue can
be circumvented when Z is a reasonable set, for example a smooth curve,
by looking at ν on a suitable two-fold branched cover over Z. Even so, a
strategy of this sort will run afoul of the second complication, which is that
Z is determined by ν and to know if Z is nice requires knowing that ν is
nice. Since ν determines Z and Z determines ν, there is a chicken versus egg
problem to wrestle with. What is done in Sections 8–10 solves this problem
by augmenting and reworking strategies from [HHL] so as to avoid their use
of comparison functions and linear vector space structures.

1.e. Extensions of Theorem 1.1

This subsection briefly describes various contexts where the techniques and
strategies that are used prove Theorem 1.1 could prove useful.

Groups with rank greater than one: As noted in the introduction,
there is likely some sort of analog of Theorem 1.1 for Lie groups such as
PSL(n;C) for n > 2 The statement of a hypothetical n > 2 version of
Theorem 1.1 will almost surely be more involved by virtue of the fact that
the Lie algebra of such a group has non-Abelian subalgebras. In particular,
the role that is played in Item 3 of Theorem 1.1’s second bullet by νσ will
likely involve a 1-form with values in a twisted vector bundle whose fiber is
in a non-Abelian subalgebra of the group’s Lie algebra. The singular locus
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ZS may well extend beyond the zero locus of this νσ analog to account for
possible ranks of its stabilizer in the group.

Manifolds of dimension greater than three: There is likely an
Lp version of Theorem 1.1 for any p greater than half the dimension of
the ambient manifold. A case of special concern is the p = 2 case for a
manifold of dimension 4. The reason being that this case is relevant to
any attempt to define PSL(2;C) analogs of Floer homology and PSL(2;C)
analogs of Donaldson’s invariants. A bit more is said below about these
analogs. The analog of Theorem 1.1 in the case where p is half the dimension
of the manifold will be more complicated because this is so for the analogous
version of Uhlenbeck’s theorem. There may well be additional complications.
In any event, the singular set in the case where the dimension is greater than
3 will likely involve some sort of union of rectifiable, codimension 2, Lipshitz
submanifolds.

PSL(2;C) Floer homology: Of interest here are two sorts of equations
for maps from R to the space of connections on P ×SO(3) PSL(2;C), these
being

(1.2) • d
dtA = −∗(FA − a ∧ a) and d

dta = ∗dAa.
• d

dtA = −∗dAa and d
dta = −∗(FA − a ∧ a).

The former is the gradient flow for the real part of the Chern-Simons func-
tional

(1.3) A → cs(A) = 1
2

∫
M
tr

(
A ∧

(
FA − 1

3A ∧ A
))
.

The second equation in (1.2) is the gradient flow for the imaginary part of cs,
this being the Hamiltonian flow for the real part as defined using a certain
canonical symplectic form on the space of P ×SO(3) PSL(2;C) connections.
The function cs is decreasing with respect to the gradient flow and constant
along the Hamiltonian flow. The imaginary part of cs is constant under
the gradient flow and is monotonic under the Hamiltonian flow. Witten
[W1], [W2] conjectured that a certain CP1 parameterized family of linear
combinations of the four equations in the first and second bullets of (1.2)
can be used to give a gauge theoretic construction of Khovanov homology.
See also [GW]. A similar suite of equations were introduced in [Hay]. Such
linear combinations also enter in the work of Kapustin and Witten [KW] on
the geometric Langlands program. Witten proposed in [W3], [W4] that the



256 Clifford Henry Taubes

equations in (1.2) could be used to compute certain formal path integrals of

the Chern Simons functional.

Solutions to the a = 0 version of the equation in the top bullet of (1.2)

are used to define the differential for the SO(3) Floer homology on M; and

the L2 version of Uhlenbeck’s theorem for the manifold R×M plays a central

role in the proof that this differential has square zero. See [Fl] and also [D3].

This being the case, it is almost sure bet that some sort of PSL(2;C) ex-

tension of Uhlenbeck’s theorem will be needed to define analogous algebraic

structures using solutions to the equations in (1.2) and to the sorts of linear

combinations that are introduced by Witten.

What follows is a likely relevant observation with regards to any such

extension: The functional A →
∫
M |dA∗a|2 is constant along all of these flows.

PSL(2;C) Self duality: Let X denote a smooth, compact and oriented 4

dimensional Riemannian manifold. As noted by Witten [W1], the equations

in (1.2) have analogs on X, these being equations for a pair consisting of a

connection on a principal SO(3) bundle over X and a 1-form with values in

the associated vector bundle with fiber su(2) given by the adjoint represen-

tation. Let (A, a) denote such a pair. Use the metric to define the respective

bundles of self-dual and anti-self dual 2-forms. The orthogonal projection to

these respective bundles are denoted by Π+ and Π−. The analog of the top

equation in (1.2) reads

(1.4) Π+(FA − a ∧ a) = 0 and Π−dAa = 0 and dA∗a = 0.

There are corresponding analogs to the lower equation in (1.2) and to suit-

able linear combinations of the four equations in (1.2). See [DK] to read

about the applications of the a = 0 version of (1.4)

Witten and Vafa [VW] proposed an alternate generalization of the equa-

tions in (1.2), this being a system of equations for a connection on a princi-

pal SO(3) bundle and a self-dual 2-form with values in the same associated

bundle with fiber su(2). Let (A,w) denote such a pair. The Witten-Vafa

equations are written schematically as

(1.5) Π+(FA − [w;w]) = 0 and dAw = 0,

where [·, ·] here denotes a certain canonical, bilinear, symmetric fiber pre-

serving map that is defined by the metric’s Hodge dual and the commutator

on su(2).
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1.f. Table of contents and conventions

What follows is a table of contents for this article.

1. The PSL(2;C) extension of Uhlenbeck’s Theorem

2. L2
1 and pointwise limits

3. Scaling limits

4. Unexpectedly small curvature

5. Integral identities and monotonicity

6. Continuity of the limit

7. The data Z, I , and ν

8. Rescaling the 1-form ν

9. Weakly continuous points in Z

10. Lipschitz curves and the function n(·)(0)

The paper employs two conventions throughout. The first convention

has c0 denoting a number that is greater than 100 whose value does not

depend on any of the salient issues under consideration in a given assertion.

The value of c0 in any given appearance can depend on the particulars of M

and its Riemannian metric; and also on the upper bound for Theorem 1.1’s

sequence {F(An)}n=1,2,.... However, under no circumstances does it depend

on the index n. The value of c0 in successive appearances can be assumed

to increase.

The second convention concerns what is denoted by χ. This is a fixed,

smooth and nonincreasing function on R that equals 1 on (−∞, 14 ] and equals

0 on [34 ,∞). A favorite version is chosen now and used throughout the paper.

2. L2
1 and pointwise limits

The four subsections that follow comprise what Section 1.c described as

the Part 1 of the proof of Theorem 1.1. The first Section 2.a begins with

a Bochner-Weitzenboch formula that plays a central role in the remaining

subsections. It then uses this formula to prove the first bullet of Theorem 1.1.

The Section 2.b begins the proof of Theorem 1.1’s second bullet with the

construction an L2
1 limit from the sequence {r−1

i |ai|}i=1,2,.... The third subsec-

tion modifies the sequence {ai}i=1,2,... to obtain a new sequence that allows

greater control over the limit in Section 1.b. The salient features of this new

sequence are summarized by Proposition 2.2. The final subsection proves a

central lemma that is used to prove Proposition 2.2.
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2.a. The Bochner-Weitzenboch formula

Let A denote a given connection on P and a denote a section of P×SO(3)su(2).
It is important to keep in mind that there is a Bochner-Weitzenbock formula
that writes

(2.1) ∗dA∗dAa− dA∗dA∗a = ∇†
A∇Aa+ ∗(∗FA ∧ a+ a ∧ ∗FA) + Ric(a),

with Ric(·) denoting here the Ricci curvature in its guise as a homomorphism
of T∗M.

It proves useful to write (2.1) as an equality between integrals over M.
To this end, let f denote a chosen C2 function on M and let r ∈ [1,∞) denote
a chosen positive number. Take the inner product of both sides of (2.1) with
the section f a of P ×SO(3) su(2) and integrate over M. An integration by
parts to obtain an expression with only first derivatives of a leads to the
resulting integral identity to the following one:

(2.2)

∫
M
f(|dAa|2 + |dA∗a|2 + |r−1FA − ra ∧ a|2)

= 1
2

∫
M
d∗df |a|2 +

∫
M
f
(
|∇Aa|2 + r 2|a ∧ a|2 + r−2|FA|2 +Ric(〈a⊗ a〉)

)

−
∫
M
(df ∧ ∗〈a(∗dA∗a)〉+ df ∧ 〈a ∧ ∗dAa〉).

The notation here has 〈a ⊗ a〉 denoting the symmetric section of T∗M ⊗
T∗M that is defined as follows: Fix an orthonormal frame for T∗M at any
given point and use {aα}α∈{1,2,3} to denote the coefficients of a when writ-
ten using the chosen frame. The corresponding coefficients of 〈a ⊗ a〉 are
{〈aαaβ〉}α,β∈{1,2,3}. Meanwhile, the Ricci tensor in (2.2) is viewed using the
metric as a linear functional on T∗M⊗ T∗M.

Proof of the first bullet of Theorem 1.1. Take f = 1 and r = 1 in (2.2) to
see that

(2.3) F(A + ia) =

∫
M
(|∇Aa|2 + |a ∧ a|2 + |FA|2 +Ric(〈a⊗ a〉)).

It follows as a consequence that

(2.4)

∫
M
(|∇Aa|2 + |a ∧ a|2 + |FA|2) ≤ F(A + ia) + c0

∫
M
|a|2.
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To exploit (2.4), suppose that {An = An+ian}n=1,2,... is a sequence with both
{F(An)}n=1,2,... and {

∫
M |an|2}n=1,2,... being bounded. Then the sequence

{
∫
M |FAn

|2}n=1,2,... is bounded and so Uhlenbeck’s theorem finds a subse-
quence of {An}n=1,2,... (hence renumbered consecutively from 1) and corre-
sponding sequence of automorphisms of P, this denoted by {gn}n=1,2,... such
that {gn∗An}n=1,2,... converges weakly in the L2

1 topology to an L2
1 connection

on P. Denote the latter by A. Meanwhile, the sequence {
∫
M |∇An

an|2}n=1,2,...

is also bounded, and this implies that {gn∗an}n=1,2,... has a subsequence that
converges weakly in the L2

1 topology on the space of sections of P×SO(3)su(2)
to an L2

1 section, this denoted by a. The pair (A, a) define the desired limit
L2
1 connection on the bundle P×SO(3) PSL(2;C).

2.b. Renormalization and L2
1 convergence

This subsection begins the proof of the second bullet of Theorem 1.1. The in-
put is a sequence {An = An+ian}n=1,2,... with {F(An)}n=1,2,... being bounded,
but not so the sequence whose n’th term is the L2 norm of an. The latter
sequence is assumed to be unbounded with no finite limits. Fix n and set
ân = r−1

n an with rn denoting the L2 norm of the section an. Fix a C2 func-
tion, f , on M. Multiply the (A, a) = (An, an) and r = 1 version of (2.2) by
r−2
n to see that

(2.5) lim
n→∞

1
2

∫
M
d†df |ân|2

+ lim
n→∞

∫
M
f
(
|∇An

ân|2 + r 2n |ân ∧ ân|2 + r−2
n |FAn

|2 +Ric(〈ân ⊗ ân〉)
)
= 0.

This is so because the terms with r−1
n dAn

an and r−1
n dAn

∗an and r−2
n |FAn

−
an ∧ an| have limit zero as n → ∞.

Lemma 2.1. There exists κ > 1 with the following significance: Let {An =
An+ian}n=1,2,... denote a sequence of connections on P×SO(3) SL(2;C) with
{F(An)}n=1,2,... being bounded, but with the sequence whose n’th term is the
L2 norm of an being unbounded with no finite limits. For each n ∈ {1, 2, . . . },
set rn to be the L2 norm of an and set ân = r−1

n an. There is a subsequence in
{1, 2, . . . }, hence renumbered consecutively from 1 with the properties that
are listed below.

• The sequence {|ân|}n=1,2,... converges weakly in the L2
1 topology and

strongly in each p < 6 version of the Lp topology to an L2
1 function

on M, this denoted by |â|. The L2 norm of |â| is 1 and its L2
1 norm
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is bounded by κ. Moreover, |â| defines an L∞ function with |â| < κ

almost everywhere.

• The sequence {〈ân ⊗ ân〉}n=1,2,... converges strongly in each q ≤ 3 ver-

sion of the Lq topology on the space of sections of T∗M ⊗ T∗M and

weakly in the L3 topology. The limit section of T∗M⊗T∗M is denoted

by 〈â⊗ â〉; it is in L∞ and its trace is the function |â|2.
• Let f denote any given C2 function on M. The three sequences

{
∫
M f |∇An

ân|2}n=1,2,..., {
∫
M r 2nf |ân ∧ ân|2}n=1,2,... and

{
∫
M r−2

n f |FAn
|2}n=1,2,... each converge. These limits are denoted by

Q∇,f , Q∧,f and QF,f .

a) Each of Q∇,f , Q∧,f and QF,f is bounded by κ times the sum of the

supremum norm and the L2
1 norm of f . Moreover, Q∧,f = QF,f ;

and if f ≥ 0, then Q∇,f ≥
∫
M f|d|â||2.

b) 1
2

∫
M d†df |â|2 +Q∇,f + 2Q∧,f = −

∫
M fRic(〈â⊗ â〉).

Proof of Lemma 2.1. The assertion in the first bullet to the effect that

{|ân|}n=1,2,... has a subsequence which converges weakly in the L2
1 topol-

ogy follows if the sequence has uniformly bounded L2
1 norm. That this is the

case follows from the f = 1 version because

(2.6) |d|b|| ≤ |∇Ab|

with A being any connection on P and b being any tensor valued section of

P×SO(3) su(2). The L
∞ assertions are proved momentarily. The proof of the

remaining bullets do not require the L∞ assertion in the first bullet.

With regards to the second bullet, the inequality in (2.6) with (2.4)

implies that the sequence {|ân|−1〈ân ⊗ ân〉}n=1,2,... is bounded in the L2
1

topology. It follows as a consequence that a subsequence converges weakly

in the L2
1 topology and strongly in the Lp topology for p < 6. Since this

is also the case for {|ân|}n=1,2,..., the product sequence {〈ân ⊗ ân〉}n∈1,2,...
converges strongly in the Lq topology for q < 3.

The existence of a subsequence that makes the third bullet true follows

from (2.5) because the space of C2 functions on M has a dense, countable

subset. The equality Q∧,f = QF,f follows because limn→∞ r−2
n

∫
M |FAn

−
r 2n ân ∧ ân|2 = 0; and the f ≥ 0 upper bound on Q∇,f follows from (2.6).

The four steps that follow momentarily prove that |â| defines an L∞

function with the asserted norm bound. By way of a reminder, a nonnegative

measurable function defines an L∞ function if it has an upper bound on the

complement of a measure zero set.
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Step 1. Fix p ∈ M and let Gp denote the Green’s function with pole at

p for the operator d†d + 1, this being a smooth function on M−p which

extends to the whole of M as an Lq function for any q < 3. More to the

point, Gp(·) ≤ c0dist(p, ·)−1, a fact that is exploited more than once in this

section. Keep in mind as well that |dGp| ≤ c0dist(p, ·)−2.

What follows directly describes a (0, 1] parametrized sequence of C2

approximations to Gp that converge to Gp as the parameter limits to 0 in

the Lq topology on C2(M) for q < 3 and in the C2 topology on compact

subsets of M−p. The ε ∈ (0, 1] member of this sequence is denoted by fp,ε.

To define fp,ε, let vp,ε denote the volume of the ball of radius ε centered at

p and define δp,ε to be the function given by be v
−1
p,ε on this radius ε ball

and zero on its complement. The function fp,ε is the solution on M to the

equation d†df + f = δp,ε.

A depiction of fp,ε near p is given momentarily. This depiction introduces

a constant, zp, with norm bounded by c0. This constant is defined by the

depiction of Gp in Gaussian coordinates near p, this having the form x →
Gp(x) =

1
4π|x| − zp + . . . where the unwritten terms have norm bounded by

c0|x|. Note in this regard that the R3 analog of Gp with pole at the origin

is the function x → 1
4π|x|e

−|x| and so the analog on R3 of zp is − 1
4π .

With zp understood, then the function fp,ε can be written using Gaussian

coordinates near p as fp,ε = gε + ep where the function x → gε(x) is defined

by the rule

gε(x) =
1

4π|x| − zp for |x| > ε and(2.7)

gε(x) =
3

8πε

(
1− |x|2

3ε2

)
− zp for |x| ≤ ε;

and where ep is a continuous function that is smooth on the complement of

the origin and such that |ep| ≤ c0|x| and |dep| ≤ c0.

Step 2. The f = fp,ε version of the equality given by Item b) of the third

bullet of Lemma 2.1 reads

(2.8) 1
2

∫
M
δp,ε|â|2 +Q∇,fp,ε

+ 2Q∧,fp,ε
=

∫
M
fp,ε

(
1
2 |â|

2 − Ric(〈â⊗ â〉)
)
.

The right hand side of (2.8) converges as ε → 0 because |â|2 is an L2 function.

It follows from the lemma’s first two bullets that the limit is the integral of

Gp(
1
2 |â|2 − Ric(〈â⊗ â〉).
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Step 3. The functions in the family {gε}ε∈(0,1] are such that gε ≥ gε′ for

ε < ε′. This has the following consequence for the left hand side of (2.8):

Let • denote either ∇ or ∧. Then Q•,fp,ε
can be written as Q•,gε

+ p•(p,ε)
where the sequence {p•,(p,ε)}ε∈(0,1] converges as ε limits to zero and where

the sequence {Q•,gε
}ε∈(0,1] is bounded and monotonically increasing as ε

decreases to zero. It follows that this sequence also has a unique limit as

ε limits to zero. Thus, the sequence {Q•,fp,ε
}ε∈(0,1] has a unique limit as ε

limits to zero. The limit is denoted by Q•,Gp
.

Step 4. Consider now the integral of δp,ε|â|2 that appears on the left hand

side of (2.8). This integral is positive, and it follows from (2.8) that the

various ε ∈ (0, 1] versions are uniformly bounded as ε → 0 with a p ∈ M

independent upper bound. This implies in particular that |â| is bounded by

c0 on the complement of a measure zero set. Meanwhile, the ε → 0 limit

of the integral of δp,ε|â|2 converges to |â|2 on the complement of such a set

([Fo], Theorem 3.18). This being the case, it follows from what was said in

Steps 2 and 3 that |â| can be modified on a measure zero set so that

(2.9) 1
2 |â|

2(p) + Q∇,Gp
+ 2Q∧,Gp

= −
∫
M
Gp

(
1
2 |â|

2 − 〈Ric(â, â)〉
)

for each p ∈ M. This formula implies the asserted norm bound.

2.c. Second derivative bounds

Let A denote for the moment a connection on P and let a denote a section of

(P×SO(3) su(2))⊗T∗M. Define qA(a) to be the section of (P×SO(3) su(2))⊗
T∗M given by

(2.10) qA(a) = ∇†
A∇Aa+ ∗(∗FA ∧ a+ a ∧ ∗FA) + Ric((·)⊗ a).

Note in particular that qA(a) is the expression on the right hand side of

(2.1).

Let {(An, ân)}n∈1,2,... denote the sequence from Theorem 1.1. By way

of a look ahead, the subsequent analysis of Lemma 2.1’s limit function |â|
requires a uniform bound for the sequence whose n’th term is the L2 norm of

the A = An and a = ân version of qA(a). The sad fact is that Theorem 1.1’s

assumptions are not strong enough to guarantee such a bound. The next

proposition circumvents this problem. This proposition uses ‖ · ‖2 to denote

the L2 norm of an indicated tensor field valued section of P×SO(3) su(2).
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Proposition 2.2. Suppose that {An = An+ian}n=1,2,... is a sequence of con-

nections on P×SO(3) SL(2;C) with {F(An)}n=1,2,... being bounded. For each

n ∈ {1, 2, . . . }, let rn denote the L2 norm of an and assume that {rn}n=1,2,...

is divergent with no finite limits. There exists a number κ > 1 that depends

only on the upper bound for the sequence {F(An)}n=1,2,..., and there exists

a sequence {ân}n=1,2... of sections of P ×SO(3) su(2)) ⊗ T∗M such that each

n ∈ {1, 2, . . . } version of Items a)–e) below holds.

a) ‖∇An
(ân − r−1

n an)‖2 + κ2rn‖ân − r−1
n an‖2 < κr−1

n .

b)
∫
M(|∇An

ân|2 + r 2n |ân ∧ ân|2 + r−2
n |FAn

|2 +Ric(〈ân ⊗ ân〉)) < κr−2
n .

c) ‖dAn
ân‖22 + ‖dAn

∗ân‖22 + r−2
n ‖FAn

− r 2n ân ∧ ân‖22 < κr−2
n .

d) ‖qAn
(ân)‖2 < κ.

e) supM |ân| < κ.

Moreover, there is a subsequence Λ ⊂ {1, 2, . . . } with the properties listed

below.

• The sequence {|ân|}n∈Λ is bounded in L2
1, it converges weakly in the L2

1

topology and strongly in Lq topology for q < 6. No member vanishes

on an open set in M.

• The L2 limit of {|ân|}n∈Λ is in L∞. The limit is denoted in what fol-

lows by |â♦|. This function is defined pointwise by the rule |â♦|(p) =
lim supn∈Λ |ân|(p).

• The sequence {〈ân⊗ ân〉}n∈Λ converges strongly in any q < 6 version of

the L6 topology on the space of sections of (P×SO(3) su(2))⊗T∗M, and

it converges weakly in the L6 topology. The limit section is 〈â♦ ⊗ â♦〉.
• Let f denote a given C2 function. The three sequences

{
∫
M f |∇An

ân|2}n∈Λ, {
∫
M r 2nf |ân ∧ ân|2}n∈Λ and {

∫
M r−2

n f |FAn
|2}n∈Λ

converge with respective limits that are denoted in what follows by

Q∇,f , Q∧,f and QF,f . These are such that Q∧,f = QF,f and any f ≥ 0

version of Q∇,f is no less than
∫
M f |d|â♦||2. Moreover,

1
2

∫
M
d∗df |â♦|2 +Q∇,f + 2Q∧,f +

∫
M
fRic(〈â♦ ⊗ â♦〉) = 0.

• The sequence {qAn
(ân)}n∈Λ has a weak limit in the L2 topology. More-

over, if f is any L2 function, then limn∈Λ
∫
M f〈ân ∧ ∗qAn

(ân)〉 = 0.

• Fix p ∈ M. The two sequences indexed by Λ with respective n’th terms

given by the integral of Gp|∇An
ân|2 and the integral of Gpr 2n |ân∧ân|2 are

less than κ. Introduce by way of notation Q♦,p to denote the lim-inf of
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the sequence with n’th term the integral of Gp(|∇An
ân|2+2r 2n |ân∧ ân|2).

The function |â♦|2 obeys the equation

1
2 |â♦|

2(p) + Q♦,p = −
∫
M
Gp

(
1
2 |â♦|

2 − Ric(〈â♦ ⊗ â♦〉)
)
.

The proof of Proposition 2.2 requires a preliminary lemma that directly
asserts a part of the proposition.

Lemma 2.3. Let {(An, ân)}{n∈1,2,... } denote the sequence in Lemma 2.1.
There exists κ > 1 that depends only on the upper bound for the sequence
{F(An)}n=1,2,... and, given z > κ, a sequence {ân}n=1,2... of sections of
P×SO(3) su(2))⊗ T∗M such that for each n ∈ {1, 2, . . . },

• ‖ân − ân‖2 ≤ z−1/2r−2
n .

• ‖dAn
ân‖22 + ‖dAn

∗ân‖22 ≤ κr−2
n .

• ‖qAn
(ân)‖2 ≤ κz.

This lemma is proved in the next subsection. Accept as gospel truth for
the moment.

Proof of Proposition 2.2. The proof has three parts. Fix z ≥ c0 so as to
invokes Lemma 2.3. As is evident in the proof, a large choice for z, but in
any event less than c0 suffices to prove the assertions of the proposition.
This said, view z for now as a chosen parameter. By way of notation, the
proof introduces ‖ · ‖q to denote a given q ∈ [1,∞] version of the Lq norm
on tensor valued sections of P×SU(2) su(2). The proof also denotes any given
n ∈ {1, 2, . . . } version of r−1

n an by ân.

Part 1: This first part proves Item e) of Proposition 2.2 and the assertion
in the proposition’s sixth bullet that the integrals of each n ∈ Λ version of
Gp|∇An

ân|2 and Gpr 2n |ân ∧ ân|2 has a p ∈ M and index n independent upper
bound. There are four steps.

Step 1. Integrate by parts to rewrite the second bullet of Lemma 2.3 as

(2.11)

∫
M
(|∇An

ân|2 + 2 〈∗FAn
∧ ân ∧ ân〉+Ric(〈ân ⊗ ân〉)) ≤ κr−2

n .

To exploit (2.11), use the first bullets of Lemmas 2.1 and 2.3 to see that
‖ân‖2 = 1 + e with |e| ≤ c0z−1/2r−2

n . Next, use the f = 1 version of
Lemma 2.1’s third bullet to bound the integral of |〈∗FAn

∧ ân ∧ ân〉| by c0.
Then write ân as ân + (ân − ân) and use the first bullet of Lemma 2.3 to go
from the preceding bound to a bound on the integral of |〈∗FAn

∧ ân ∧ ân〉|
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by c0 + c0‖FAn
‖2‖ân − ân‖1/26 (‖ân‖6 + ‖ân‖6)3/2. Here and below, ‖ · ‖6 de-

notes the L6 norm. Note that ‖FAn
‖2‖ân − ân‖1/26 ≤ c0 by Lemmas 2.1 and

2.3; and ‖ân‖6 ≤ c0 due to Lemma 2.1. The L6 norm of ân is bounded by
c0(‖∇An

ân‖2 + ‖ân‖2) using (2.6) and the Sobolev inequality that bounds
a function’s L6 norm by c0 times its L2

1 norm. These bounds give a c0(1 +

‖∇An
ân‖3/22 ) bound for the integral of |〈∗FAn

∧ ân∧ ân〉| and thus (2.11) gives
a c0 bound for ‖∇An

ân‖2. Note for use below that this leads back to a c0
bound ‖ân‖6.

Use the c0 bounds for the L
6 norm of ân and the L2 norm of FAn

−r 2n ân∧ân
in (2.11) to see that

(2.12)

∫
M
(|∇An

ân|2 + 2r 2n 〈∗(ân ∧ ân) ∧ ân ∧ ân〉) ≤ c0.

Write ân = ân − ân + ân and use this decomposition in (2.12) to see that
(2.13)∫

M
(|∇An

ân|2 + 2r 2n |ân ∧ ân|2) ≤ c0(1 + r 2n‖ân − ân‖2(‖ân‖6 + ‖ân‖6)‖ân‖26).

Lemma 2.3’s first bullet, the c0 bounds for the L6 norms of ân and ân and
(2.13) imply that

(2.14)

∫
M
(|∇An

ân|2 + 2r 2n |ân ∧ ân|2) ≤ c0.

This last inequality implies that ‖∇An
ân‖22 and r 2n‖ân∧ân‖22 are both bounded

by c0.

Step 2. Let (A, a) denote for the moment a given pair of connection on P
and section of (P ×SO(3) su(2)) ⊗ T∗M. Let f denote a given C2 function.
Integrate by parts in the right most integral on its right hand side of (2.2)
and then use (2.1) with the definition of qA(a) to obtain the equality

(2.15) 1
2

∫
M
d†df |a|2 +

∫
M
f(|∇Aa|2 + 2〈∗FA ∧ a ∧ a〉+Ric(〈a⊗ a〉))

−
∫
M
f〈a ∧ ∗qA(a)〉 = 0.

Since A and a are smooth, this equality also holds when f is such that d†df
is a distribution. In particular, it holds with f being the Green’s function
of d†d + 1 with pole at any given point. This understood, fix p ∈ M and
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let Gp again denote the Green’s function for d†d + 1 with pole at p. The
corresponding version of (2.11) reads

(2.16) 1
2 |a|

2(p) +

∫
M
Gp(|∇Aa|2 + 2〈∗FA ∧ a ∧ a〉)

=

∫
M
Gp(

1
2 |a|

2 − Ric(〈a⊗ a〉) + 〈a ∧ ∗qA(a)〉).

A bound for the right hand side of this inequality can be had by using the
fact that Gp(·) is bounded by c0dist(p, ·)−1. This being the case, the left
most two terms on the right hand side of (2.16) contribute at most c0‖a‖24
to the absolute value of the right hand side. What with (2.6), a dimension
3 Sobolev inequality bounds this by c0(‖∇Aa‖22 + ‖a‖22).

Meanwhile, the term with qA(a) in (2.16) contributes at most

(2.17) c0

(
sup
p∈M

‖dist(p, ·)−1a‖2
)
‖qA(a)‖2

to the absolute value of the right hand side of (2.16). As explained in the next
paragraph, supp∈M ‖dist(p, ·)−1a‖2 is no greater than c0(‖∇Aa‖2 + ‖a‖2).
Granted such a bound, then the absolute value of the right hand side of
(2.16) is no greater than

(2.18) c0(‖∇Aa‖22 + ‖a‖22 + ‖qA(a)‖22).

The assertion in the preceding paragraph about the supremum in (2.17)
invokes Hardy’s inequality: Let f denote any given L2

1 function on M. Then

(2.19) sup
p∈M

∫
M

1

dist(p, ·)2 f
2 ≤ c0(‖df‖22 + ‖f‖22).

The latter and (2.6) imply the asserted bound for supp∈M ‖dist(p, ·)−1a‖2.
Step 3. Fix n ∈ {1, 2, . . . }. Use the first and third bullets of Lemma 2.3 and
the bound for ‖∇An

ân‖2 from Step 1 to bound the (A = An, a = an) version
of (2.18) by c0z2 when z > c0. Given this bound, it then follows that the
absolute value of the right hand side of the (A = An, a = ân) version of
(2.16) is also bounded by c0z.

The integral of Gp|∇An
ân|2 that appears on the left hand side of the

(A = An, a = ân) version of (2.16) is nonnegative, and this is all that need
be said about this integral for the time being. The other integral on the left
hand side of this same version of (2.16) is that of 2Gp〈∗FAn

∧ ân ∧ ân〉. This
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integral is not manifestly nonnegative and so more needs to be said about
it. To start the story on this integral, write FAn

as the sum of two terms,
these being FAn

− r 2n ân ∧ ân and r 2n ân ∧ ân. Use this decomposition to write

(2.20)

∫
M
Gp 〈∗FAn

∧ ân ∧ ân〉 = r 2n

∫
M
Gp 〈∗(ân ∧ ân) ∧ (ân ∧ ân)〉+ e,

with e being the contribution from FAn
− r 2n ân ∧ ân. The bound by c0 on

the latter’s L2 norm leads to the bound |e| ≤ c0‖dist(p, ·)−1ân‖2‖ân‖∞. This
last bound with (2.19), (2.16) and Step 1’s bound for ‖∇An

ân‖2 implies that
|e| ≤ c0‖ân‖∞.

To see about the integral on the right hand side of (2.20), write ân ∧ ân
as a sum of two terms, these being ân ∧ ân and ân ∧ ân − ân ∧ ân. Use this
splitting to write (2.20) as

(2.21)

∫
M
Gp 〈∗FAn

∧ ân ∧ ân〉 = r 2n

∫
M
Gp|ân ∧ ân|2 + e′ + e,

with e′ being the contribution from ân ∧ ân − ân ∧ ân. Of particular note is
that

(2.22) |e′| ≤ c0r 2n‖ân − ân‖2(‖dist(p, ·)−1ân‖2 + ‖dist(p, ·)−1an‖2)‖ân‖2∞,

and thus |e′| is no greater that c0z−1/2‖ân‖2∞. This bound follows from the
first bullet of Lemma 2.3 using what was said already about the integrals
that involve dist(p, ·)−1.

Step 4. Use the bounds on |e| and |e′| in (2.21) with the bound in Step 2
for the right hand side of (2.16) to see that the latter equation implies the
bound

(2.23) (1− c0z−1/2)‖ân‖2∞ + sup
p∈M

∫
M
Gp(|∇An

ân|2 + r 2|ân ∧ ân|2) ≤ c0z.

Any z > c0 version of (2.23) supplies an index n independent bound for the
‖ân‖∞ and an index n and p ∈ M independent bound for the integral of
Gp|∇An

ân|2 and Gpr 2n |ân ∧ ân|2.

Part 2: This part of the subsection proves Items a), b) and c) of Proposi-
tion 2.2. This is done in three steps.

Step 1. This step explains why Item b) follows from Item c) and the first
bullet of Lemma 2.3. To start, fix n ∈ {1, 2, . . . } for the moment and de-
fine An to be the connection An = An + irnân, this being a connection on
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(P×SO(3) PSL(2;C). The assertion in Item c) is equivalent to the assertion

that F(An) ≤ c0. Meanwhile, the first bullet of Lemma 2.3 implies that

‖ân‖2 = 1 + e with |e| ≤ c0r−2
n .

The just stated bounds imply that the sequence {An}n=1,2,... can be used
in lieu of {An}n=1,2,... as input for Lemma 2.1. Item b) of Proposition 2.2 fol-

low directly from the second bullet of the {An}n=1,2,... version of Lemma 2.1.

Step 2. This step and Step 3 prove Items a) and c) in tandem. Note
in this regard that it suffices to prove that both ‖∇An

(ân − ân)‖22 and

r−2
n ‖FAn

−r 2n ân ∧ ân‖22 are at most c0r−2
n . This is a consequence of the first

and second bullets of Lemma 2.3.

To start the proof, use the second bullet of Lemma 2.3 to see that

(2.24) ‖dAn
(ân − ân)‖22 + ‖dAn

∗(ân − ân)‖22 ≤ c0r−2
n .

Integration by parts leads from (2.24) to the inequality

(2.25) ‖∇An
(ân − ân)‖22 + 2

∫
M
〈∗FAn

∧ (ân − ân) ∧ (ân − ân)〉

+

∫
M
Ric(〈(ân − ân)⊗ (ân − ân)〉) ≤ c0r−2

n .

The absolute value of the integral with Ricci curvature tensor is bounded

by c0r−4
n , this being a consequence of the first bullet of Lemma 2.3. To

see about the middle integral on the left hand side of (2.24), write FAn

as (FAn
− r 2n ân ∧ ân) + r 2n ân ∧ ân. The contribution to the middle integral

on the left hand side of (2.24) from (FAn
− r 2n ân ∧ ân) is no greater than

2‖FAn
− r 2n ân ∧ ân‖2‖ân − ân‖24. This, in turn, is no greater than

(2.26) c0‖FAn
− r 2n ân ∧ ân‖2‖ân − ân‖1/22 ‖ân − ân‖3/26 .

To saymore about the expression in (2.26), use the first bullet of Lemma 2.3

to bound it by c0 times the product z−1/2(r−1
n ‖FAn

−r 2n ân∧ ân‖2)‖ân− ân‖3/26 .

Meanwhile,

(2.27) ‖ân − ân‖3/26 ≤ c0(‖∇An
(ân − ân)‖2 + r−1

n ).

To derive this, note that ‖ân − ân‖3/26 ≤ ‖ân − ân‖6(‖ân‖6 + ‖ân‖6)1/2. This
understood, then (2.27) follows from (2.6) and a standard Sobolev inequality

given that the L2 norms of ân and ân and their respective An-covariant
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derivatives are bounded by c0. Such a bound for the An-covariant derivative
of ân is supplied by Step 1 of Part 1; and that of ân is supplied by Lemma 2.1.

Use what is said in the preceding two paragaphs with (2.25) to see that
(2.28)
‖∇An

(ân− ân)‖22 ≤ c0z−1/2‖FAn
− r 2n ân∧ ân‖2(‖∇An

(ân− ân)‖2+ r−1
n )+c0r−2

n .

This last inequality is invoked in at the very end of Step 3.

Step 3. The L2 norm of r−1
n (FAn

− r 2n ân ∧ ân) is no greater than the sum
of the L2 norms of r−1

n (FAn
− r 2n ân ∧ ân) and rn(ân ∧ ân − ân ∧ ân). The L2

norm of the former is bounded by c0r−1
n . Meanwhile, that of the latter is no

greater than the sum of the L2 norms of rn(ân − ân) ∧ (ân − ân) and twice
that of rn(ân − ân) ∧ ân.

The preceding observations imply directly that

(2.29) r−2
n ‖FAn

− r 2n ân∧ ân‖22 ≤ c0(r 2n‖ân− ân‖44+ r 2n‖ân‖2∞‖ân− ân‖22+ r−2
n ).

Part 1 bounds ‖ân‖∞ by c0 and Lemma 2.3 bounds ‖ân − ân‖2 by c0r−2
n .

This leads to a bound on the right hand side of (2.28) by c0r 2n‖ân − ân‖44 +
c0r−2

n . The latter is no greater than c0(r 2n‖ân − ân‖2‖ân − ân‖36 + r−2
n ). This

understood, use the first bullet of Lemma 2.3 and the bound on ‖ân − ân‖6
given by (2.27) to see that

(2.30) r−2
n ‖FAn

− r 2n ân ∧ ân‖2 ≤ c0z−1‖∇An
(ân − ân)‖22 + c0r−2

n .

Taken together, the inequalities in (2.28) and (2.30) imply that

(2.31) (1− c0z−1)(‖∇An
(ân − ân)‖22 + r−2

n ‖FAn
− r 2n ân ∧ ân‖22 ≤ c0r−2

n .

This inequality supplies the desired bounds if z > c0.

Part 3: The nine steps that follow in this part of the subsection prove the
bulleted assertions of Proposition 2.2.

Step 1. Reintroduce the sequence {An = An + irnân}n=1,2,... from Step 1
of Part 2, this being a sequence of connections on P ×SO(3) PSL(2;C). As
noted therein, the corresponding sequence {F(An)}n=1,2,... is bounded and
so it can be used in lieu of {An}n=1,2,... as input for Lemma 2.1.

Except for the assertion about vanishing on an open set, what is said by
the first bullet of Proposition 2.2 constitutes a part of the first bullet the
{An}n=1,2,... version of Lemma 2.1. Note that the limit L2

1 function has L2

norm equal to 1. The reason is that the top bullet of Lemma 2.3 implies
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that L2 norm of each n ∈ {1, 2, . . . } version of ân differs from 1 by at most
z−1/2r−2

n . The nonvanishing condition can readily be satisfied by making a
very small perturbation of a sequence that has all of the other properties
that are required by the proposition. This understood, no more will be said
about the nonvanising on an open set requirement.

The first bullet of the {An}n=1,2,... version of Lemma 2.1 asserts what is
said in the second bullet of Proposition 2.2 to the effect that the limit L2

1

function of the sequence {|ân|}n=1,2,... is an L∞ function. In fact, it follows
from Item a) of Proposition 2.2 that the limit functions of {|ân|}n=1,2,...

and {|ân|}n=1,2,... have the same weak L2
1 limits with it understood that the

subsequences that are chosen for the respective {An}n=1,2,... and {An}n=1,2,...

versions of Lemma 2.1 are identical.

Step 2. The definition of the function |â♦| by the second bullet of Propo-
sition 2.2 raises a subtle point, this being the distinction between elements
in L2

1 ∩ L∞ and functions that are defined pointwise. An element in the Ba-
nach space of L2

1 ∩ L∞ is an equivalence class of functions that are defined
almost everywhere with two functions being equivalent if they agree on the
complement of a set of measure zero. The distinction between a pointwise
defined function and an equivalence class of functions that differ on sets with
measure zero is at issue with regards to the definition in the second bullet of
Proposition 2.2 of |â♦|. In particular, this bullet of Proposition 2.2 defines
an honest function, |â♦|; and in so doing, this bullet makes the following
implicit assertion:

(2.32) The function defined by the rule p → lim supn→∞ |ân|(p) is in the
equivalence class of the L2

1 limit of the sequence {|ân|}n=1,2....

The proof of the second bullet of Proposition 2.2 requires a proof of (2.32).

The distinction between a pointwise defined function and an equivalence
class of functions that agree on the complement of a measure zero set is also
at issue with regards to the proof of the sixth bullet of Proposition 2.2. The
assertion in (2.32) and the fifth bullet of Proposition 2.2 are proved simul-
taneously in Steps 4–8. In the meantime, let |â♦| denote a chosen function
from the L2

1 equivalence class of the weak limit of {|ân|}n=1,2,....

Step 3. The assertions made by the third bullet of Proposition 2.2 follow
because the sequence {〈ân ⊗ ân〉}n∈{1,2... } is bounded in the L2

1 topology; a
priori bounds on the L2

1 norms of its elements come via Items b) and e) of
Proposition 2.2.

The proof of the assertions made by the fourth bullet of Proposition 2.2
are almost verbatim identical to those made by the third bullet of Lemma 2.1.
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To prove the assertion made by the fifth bullet, let f denote for the

moment a smooth function. Fix n ∈ {1, 2, . . . }. The right hand side (2.1) is

qA(a). This being the case, an integration by parts writes

(2.33)

∫
M
f〈ân ∧ ∗qAn

(ân)〉

=

∫
M
f((|dAn

ân|2 + |dAn
∗ân|2) + df ∧ (∗〈ân(∗dAn

∗ân) + ân ∧ ∗dAn
ân〉)).

Granted (2.33), then the second bullet of Lemma 2.3 and Item e) of Propo-

sition 2.2 finds

(2.34)

∣∣∣∣
∫
M
f〈ân ∧ ∗qAn

(ân)〉
∣∣∣∣ ≤ c0(‖f‖∞r−2

n + ‖df‖2r−1
n ).

Let g denote a given L2 function. Fix ε > 0 and let f denote a smooth

function such that ‖f − g‖2 ≤ ε. Then

(2.35)

∣∣∣∣
∫
M
g〈ân ∧ ∗qAn

(ân)〉
∣∣∣∣ ≤ c0ε‖ân‖∞‖qAn

(ân)‖2 +
∣∣∣∣
∫
M
f〈ân ∧ ∗qAn

(ân)〉
∣∣∣∣.

Now use (2.34) with (2.35) and Item e) of Proposition 2.2 to conclude that

(2.36)

∫
M
g〈ân ∧ ∗qAn

(ân)〉 ≤ c0(ε+ r−2
n ‖f‖∞ + r−1

n ‖df‖2).

Taking n sufficiently large bounds the right hand side of (2.36) by ε and so

(2.36) implies that

(2.37) lim
n∈Λ

∫
M
g〈â♦ ∧ ∗qAn

(ân)〉 = 0.

Step 4. This step with Steps 5–9 prove the assertion in (2.32) and the asser-

tion made by the sixth bullet of Proposition 2.2. To start, fix n ∈ {1, 2, . . . }
and a point p ∈ M so as to consider the (A = An, a = ân) version of (2.16).

Of particular concern in this step is the integral of Gp〈ân ∧ ∗qAn
(ân)) that

appears on the right hand side of the (An, ân) version. As explained directly,

the various p ∈ M versions are such that

(2.38) sup
p∈M

∣∣∣∣
∫
M
Gp〈ân ∧ ∗qAn

(ân)〉
∣∣∣∣ < c0r−1/5

n .
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To see that (2.38) holds, fix for the moment p ∈ M and ρ ∈ (0, 1). Having
done so, let χp,ρ denote the function on M given by χ(2−ρ−1dist(p, ·)). This
function equals 1 where the distance to p is greater than 2ρ and it equals
0 where the distance is less than ρ. Write Gp as (1 − χp,ρ)Gp + χp,ρGp so
as to split a given n ∈ {1, 2, . . . } version of the integral in (2.38) into two
integrals.

The absolute value of the integral of (1 − χp,ρ)Gp〈ân ∧ ∗qAn
(ân)〉 is no

greater than c0ρ
1/2‖ân‖∞‖qAn

(ân)‖2, this because Gp ≤ c0dist(p, ·)−1. Mean-
while, the absolute value of the integral of χp,ρGp〈ân∧∗qAn

(ân)〉 is no greater
than c0ρ

−2r−1
n , this being a consequence of (2.34). Granted these bounds,

take ρ = r−2/5
n and invoke Items d) and e) of Proposition 2.2 to conclude

that the absolute value in (2.38) is no greater than c0r−1/5
n as claimed.

Step 5. Fix n ∈ {1, 2, . . . } and p ∈ M again so as to return to the
(A = An, a = ân) version of (2.16). Of particular concern here is the integral
of Gp〈∗FAn

∧ ân ∧ ân〉 that appears on the left hand side of this version. As
explained directly,

(2.39)

∫
M
Gp〈∗FAn

∧ ân ∧ ân〉 =
∫
M
Gpr 2n |ân ∧ ân|2 + e,

n with e having absolute value no greater than c0r−2/3
n . To see why this is,

decompose FAn
as the sum r 2n ân∧ân+(FAn

−r 2n ân∧ân) so as to decompose the
integral on the left hand side of (2.39) as a sum of two integrals. The term
designated as e in (2.39) is the second of these two integrals. To bound |e|, fix
for the moment ρ > 0 and again write Gp as the sum (1−χp,ρ)Gp+χp,ρGp.
The absolute value of the contribution of (1 − χp,ρ)Gp to e is no greater
than c0ρ

−1‖FAn
− r 2n ân ∧ ân‖2‖ân ∧ ân‖2 because Gp ≤ c0dist(p, ·)−1. This

understood, Items b) and c) of Proposition 2.2 bound this contribution by
c0ρ

−1r−2
n . Meanwhile, the absolute value of the contribution of χp,ρGp to e

is no greater than c0ρ
1/2‖FAn

− r 2n ân ∧ ân‖2‖ân‖2∞. Items c) and e) of Propo-
sition 2.2 imply that this is no greater than c0ρ

1/2. Granted these bounds,

take ρ = r−4/3
n to see that |e| ≤ c0r−2/3

n .

Step 6. Fix once again n ∈ {1, 2, . . . } and p ∈ M. Use the (A = An, a = ân)
version of (2.16) with what is said in Steps 4 and 5 to see that

(2.40) 1
2 |ân|

2(p) +

∫
M
Gp(|∇An

ân|2 + 2r 2n |ân ∧ ân|2)

= −
∫
M
Gp

(
1
2 |ân|

2 − Ric(〈ân ⊗ ân〉)
)
+ en,
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with en having absolute value no greater than c0r−1/5
n . Let In(p) denote the

integral that appears on the right hand side of (2.40). Introduce by way of
notation

(2.41) I♦(p) = −
∫
M
Gp

(
1
2 |â♦|

2 − Ric(〈â♦ ⊗ â♦〉)
)
.

As explained directly, limn→∞ supp∈M |I♦(p) − In(p)| = 0. That this is so
follows from the first and third bullets of Proposition 2.2 with the fact that
Gp is square integrable.

Step 7. Introduce for the time being v to denote the function on M that is
defined by the rule p → v(p) = lim supn→∞ |ân|(p). Let Q♦ denote the func-
tion on M that is defined by the sixth bullet of Proposition 2.2. As explained
momentarily, the identity in (2.40) and the fact that limn→∞ supp∈M |I♦(p)−
In(p)| = 0 imply that

(2.42) 1
2v(p)

2 +Q♦(p) = I♦(p).

The final assertion of sixth bullet of Proposition 2.2 follows immediately
from (2.42) if it is the case that v = |â♦| on the complement of a measure
zero set.

To see about (2.42), fix Λ ∈ {1, 2, . . . } such that limn∈Λ |ân|(p) = v(p).
Suppose that there exists δ > 0 and a subsequence Λ′ ⊂ Λ such that

(2.43)

∫
M
Gp(|∇An

ân|2 + 2r 2n |ân ∧ ân|2) > Q♦(p) + 2δ

when n ∈ Λ′. If this is the case, then the left hand side of (2.40) for n ∈ Λ′

will be greater than 1
2v(p)

2 + Q♦(p) + 2δ when n is large, and this implies
that I♦(p) is no less than 1

2v(p)
2+Q♦(p)+2δ. Now fix a second subsequence,

Θ ⊂ {1, 2, . . . } such that n ∈ Θ versions of the integral on the left hand side
of (2.44) converges to Q♦(p). The n ∈ Θ versions of |an|(p) must in any
event be less than v(p)+ δ when n is large, and this implies that I♦(p) is no
greater than 1

2v(p)
2 +Q♦(p) + δ. This last conclusion is incompatible with

the lower bound just stated for I♦.

Step 8. This step proves that |â♦| ≥ v on a set of full measure. To start the
proof, fix ε > 0 and reintroduce the functions δ(·),ε and f(·),ε that are defined
in Step 1 of the proof of Lemma 2.1. The function on M given by the rule

(2.44) p →
∫
M
δp,ε|â♦|2
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is smooth. As noted in Step 3 of Lemma 2.1’s proof, the function depicted
in (2.44) converges as ε → 0 to an L∞ function that equals |â♦|2 on the
complement of a measure zero set. Of particular note is that the function
defined by (2.44) obeys (2.8).

Write fp,ε as gε+ep with gε defined using Gaussian coordinates centered
at p by the formulas in (2.7). The functions gε and Gp are such that

(2.45) gε ≤ Gp + rp,

with rp such that |rp| ≤ c0|x|. The inequality in (2.45) and the fact that
{fp,ε}ε∈(0,1] converges to Gp as ε → 0 in the C2 topology on compact subsets

of M−p has the following consequence: Fix ρ ∈ (0, c−1
0 ] and there exists

cρ > 1 that is independent of the point p and such that there is a continuous
function on M, to be denoted by rp,ε,ρ, with norm less than ρ and such that

(2.46) fp,ε ≤ Gp + rp,ε,ρ when ε < c−1
ρ .

Fix ρ ∈ (0, c−1
0 ] and ε < c−1

ρ . Given n ∈ {1, 2, . . . } and p ∈ M, multiply
both sides of (2.40) by δp,ε, and integrate the result over M and use (2.46)
to see that

(2.47) 1
2

∫
M
δp,ε|ân|2 +

∫
M
Gp(|∇An

ân|2 + 2r 2n |ân ∧ ân|2) ≥ I♦(p)− en,ε,ρ,

where en,ε,ρ is such that limn→∞ supp∈M |en,ε,ρ| ≤ c0ρ. Meanwhile, what is
said in the third bullet of Proposition 2.2 has the following implication:
Given ε < c−1

ρ and ε′ ∈ (0, 1], there exists nε,ε′ ≥ 1 such that

(2.48) sup
p∈M

∣∣∣∣
∫
M
δp,ε|â♦|2 −

∫
M
δp,ε|ân|2

∣∣∣∣ < ε′ when n > nε,ε′ .

This follows from the fact that {|ân|}n∈{1,2,... } converges strongly in the L2

topology to |â♦|.
Fix p ∈ X, take ε′ = ρ and then n > nε,ε′=ρ with two additional con-

straints, both giving lower bounds: The first is that n’s version of the Gp

integral on the right hand side of (2.47) differs from Q♦(p) by at most ρ.
The second is that supp∈M |en,ε,ρ| ≤ c0ρ. With n so chosen, invoke the ε′ = ρ
version of (2.48) to see that

(2.49) 1
2

∫
M
δp,ε|â♦|2 +Q♦(p) ≥ I♦(p)− c0ρ.
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Since ρ and then ε can be chosen as small as desired, and since this inequality
holds for each p ∈ X a comparison between (2.49) and (2.42) leads to the
conclusion that |â♦| ≥ v on the complement of a measure zero set.

Step 9. To see that |â♦| ≤ v on a set of full measure, fix ε > 0, p ∈ M and
a positive integer n. Having done so, multiply n’s version of (2.40) by δp,ε
and integrate the result over M. Do this for choices of n > nε,ε′=ε that obey
two additional lower bound constraints. The first constraint asks that n’s
version of the Gp integral on the right hand side of (2.47) is greater than
Q♦(p) − ε; and the second asks that supp∈M |I♦(p) − In(p)| < ε. With n so
chosen, invoke the ε′ = ε version of (2.48) to see that

(2.50) 1
2

∫
M
δp,ε|â♦|2 +Q♦(p) ≤ I♦(p) + c0ε.

Since ε can be as small as desired, a comparison between (2.50) and (2.42)
leads to the conclusion that |â♦| ≤ v on the complement of a measure zero
set.

2.d. Proof of Lemma 2.3

The proof has four parts. By way of a look ahead, any given ân for n ∈
{1, 2, . . . } is a particular t ∈ [0,∞) value of the solution to a certain heat
equation whose initial value is ân.

Part 1: Fix a pair (A, a) with A being a connection on P and a being
a section of (P ×SO(3) su(2)) ⊗ T∗M. Standard existence and uniqueness
theorems for parabolic differential equations prove that there is a unique
section of (P×SO(3) su(2)) ⊗ T∗M over [0,∞) ×M, this denoted by a, that
obeys the linear heat equation

(2.51) ∂
∂ta = −(∇A

†∇Aa + ∗(∗FA ∧ a + a ∧ ∗FA) + Ric(a) with a|t=0 = a.

This equation can be written equivalently in two ways,

(2.52) ∂
∂ta = −qA(a) and ∂

∂ta = −(∗dA∗dAa − dA∗dA∗a).

Use ‖ · ‖2 as before to denote the L2 norm on M. It follows from the
right most identity in (2.52) that the function [0,∞) given by ‖a‖2 is non-
increasing, and in particular, that

(2.53) d
dt‖a‖22 = −2(‖dAa‖22 + ‖dA∗a‖22).
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Let E denote the function on [0,∞) given by 1
2(‖dAa‖22 + ‖dA∗a‖22). It

follows from the left most identity in (2.52) that

(2.54) d
dtE = −‖qA(a)‖22.

The equations in (2.53) and (2.54) play central roles in Parts 2 and 3 of the
proof.

Part 2: Define the function n on [0,∞) by the rule

(2.55) t → n(t) = t−1

∫ t

0
‖qA(a)‖22.

Having done so, integrate (2.55) to see that

(2.56) E(t) = E(0)− tn(t).

As E(t) ≥ 0 in any event, the preceding identity requires that

(2.57) n(t) ≤ E(0)t−1.

Given the definition of n, this implies in particular that there exists s ∈ (0, t]
such that

(2.58) ‖qA(a|s)‖22 ≤ E(0)t−1.

Meanwhile, for any s ∈ [0,∞), use of the left most identity in (2.52) gives
the bound

(2.59) ‖a|s − a‖22 ≤ s2n(s).

Indeed, (2.59) follows by noting that ‖a|s − a‖2 ≤
∫ s
0 ‖

∂
∂sa‖2 =

∫ s
0 ‖qA(a)‖2.

Part 3: Let e denote an upper bound for the sequence {F(An+ian)}n=1,2,....
Now fix n ∈ {1, 2, . . . } and take (A, a) in Parts 1 and 2 to be (An, ân). If
e = 0, take ân = ân.

Assume now that e is positive. The relevant version in this case of the
function E has E(0) ≤ er−2

n . Granted that such is the case, take t in (2.58) to
be z−1

er−2
n . The resulting version of (2.58) asserts that there exists s ∈ (0, t]

such that ‖qA(a|s)‖2 ≤ z; and for such s, the resulting version of (2.59)
asserts that ‖a|s − a‖22 ≤ z−1r−4

n . Meanwhile, (2.56) implies that ‖dAa|s‖22 +
‖dA∗a|s‖22 ≤ er−2

n for this same choice of s.
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What is said in the preceding paragraph implies directly that all require-

ments of Lemma 2.3 are met by taking an to equal a|s.

3. Scaling limits

Theorem 1.3 and Lemma 2.5 from [U] play a central role in what is done

in this section. The required parts are stated momentarily in (3.1). The

notation uses B ⊂ R3 to denote the radius 1 ball centered on the origin

and θ0 to denote the product connection on the product principal bundle

B×SO(3). The assertion that follows restates the relevant parts Theorem 1.3

and Lemma 2.5 in [U].
(3.1) There exists κU > 1 with the following significance: Suppose that A

is a connection on the product SO(3) bundle over B whose curvature
has L2 norm at most κ−1

U . There is an automorphism of this bundle
that pulls A back as θ0 + âA with âA an su(2) valued 1-form on B
with the properties listed below.

• The 1-form âA is coclosed, thus d∗âA = 0.

• The 2-form ∗âA pulls back as zero to the boundary of the closure
of B.

• The Sobolev L2
1 norm of âA is bounded by κU times the L2 norm

of FA.

Conversely, if A = θ0 + âA is a connection on B× SO(3) such that
âA obeys the first two bullets and has L2

1 norm bounded by 1
2κ

−1
U ,

then the third bullet is also obeyed.

By way of a guide for those unfamiliar with [U], the proof of (3.1) uses

an open/closed argument that exploits four facts, the first being that the

L2
1 norm dominates the L4 norm. The second fact is that the curvature of

θ0 + â differs from dâ by a term that is quadratic in â. The third fact is as

follows: If â is an su(2) valued 1-form on B with ∗â pulling back as zero to

the boundary of B, then the sum of the L2 norms dâ and d∗â is greater than

c−1
0 times the L2

1 norm of â. The fourth fact asserts that the differential of

an su(2) valued function can be added to any given su(2) valued 1-form so

that the result obeys the first and second bullets in (3.1).

This section uses Uhlenbeck’s theorem to analyze the behavior

of suitably constrained connections on P and sections of the bundle

(P×SO(3) su(2))⊗T∗M on balls with radius chosen to guarantee an apriori

L2 bound for the curvature of the connection.
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3.a. The constraints

Fix r ≥ 1 and e ≥ 1, and let (A, â) ∈ Conn(P)× C∞(M; (P×SO(3) su(2))⊗
T∗M) denote a pair that obeys the following constraints:

(3.2) a)
∫
M |â|2 = 1.

b)
∫
M(|dAâ|2 + |dA∗â|2) < er−2

c)
∫
M |FA − r 2â ∧ â|2 < e.

d)
∫
M |qA(â)|2 < e.

The subsections that follow and Sections 4 and 5 use pairs that obey Items

a)–d) in (3.2). The rest of this subsection derives some direct implications,

these summarized by

(3.3) •
∫
M(|∇Aâ|2 + r 2|â ∧ â|2 + r−2|FA|2) ≤ c0e,

• supp∈M
∫
dist(p,·)≤rGp(|∇Aâ|2 + 2r 2|â ∧ â|2) ≤ c0e

2,

• supp∈M |â|(p) ≤ c0e.

Items a)–c) with the f = 1 and (A, â) version of (2.2) lead to the bounds in

the first bullet. The bounds in the second bullet follow with the addition of

Item d) using arguments that are very much like those in Steps 2–4 of the

proof of Proposition 2.2. The next paragraph gives the details.

Since (A, â) are smooth, the function f in the (A, â) version of (2.15) can

be replaced by the Green’s function Gp so as to obtain the corresponding

version of (2.16). Given the top bullet of (3.3), then what is said in Step 2 of

the proof of Proposition 2.2 bounds the right hand side of the (A, â) version
of (2.6) by c0e. The term on the integral on the left hand side with the

integrand Gp〈∗FA ∧ â ∧ â〉 is written as a sum of two integrals, the first

with integrand Gp〈∗(FA − r 2â ∧ â) ∧ â ∧ â〉, and the second with integrand

Gpr 2|â ∧ â|2. The latter is non-negative and it contributes in any event to

the left hand side of the second bullet in (3.3). The absolute value of the

former is at most

(3.4) c0‖FA − r 2â ∧ â‖2‖â‖∞‖dist(·, p)−1â‖2.

Use the first bullet of (3.3) with (2.19) to bound ‖dist(·, p)−1â‖2 by c0e
1/2.

This bound and Item c) in (3.2) bound (3.4) by c0e‖â‖∞. Given what was

said about the right hand side of the (A, â) version of (2.16), the latter bound

leads directly to a bound by c0e
2 for ‖â‖2∞ and for the integral of any p ∈ M

version of Gpr 2|â ∧ â|2.
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3.b. The parameter r♦

Fix a point p ∈ M. With r ∈ (0, c−1
0 ) specified, introduce by way of notation

Br to denote the ball of radius r centered at p. Denote by r♦ the largest
value of r such that

(3.5)

∫
Br

|FA|2 ≤ 1
100κ

−2
U r−1

Note that r♦ ≥ c−1
0 r−1, this being a consequence of Item c) in (3.2) and

the third bullet of (3.3). The upcoming Propositions 3.1 and 3.2 give an
indication of the significance of r♦.

To set the stage for Proposition 3.1 and for the discussion in the subse-
quent subsections, fix p ∈ M and Gaussian coordinates centered on p. Use
these coordinates to identify a radius c−1

0 ball centered at p with the radius
c−1
0 ball centered at the origin in R3. Let φ denote the map from the radius
c−1
0 r−1

♦ ball about the origin in R3 to the radius c−1
0 ball about p that is

obtained by composing first the map x → r♦x from R3 to itself, and then
the map that is defined by the Gaussian coordinates.

Pull the pair (A, r−1
♦ â) back to the radius c−1

0 r−1
♦ ball about the ori-

gin in R3 using φ to define a pair consising of a connection on φ∗P and a
φ∗(P ×SO(3) su(2)) valued 1-form. Denote this pair by (A♦, â♦). The defi-

nition of â♦ as r−1
♦ φ∗â implies that |â♦| ≤ ‖â‖∞ and that |â♦|(0) = |â|(p)

with it understood that the norm of â♦ is defined by using the metric that is
given by r−2

♦ times φ’s pull-back of M’s metric. The latter metric is denoted
by mφ. Note in any event that the metric mφ and the Euclidean metric dif-
fer by a term whose norm and first two derivatives are bounded by c0r

2
♦,

and whose derivatives to each order k > 2 are bounded by a k-dependent
constant time rk♦.

The number r♦ is defined so that the curvature of A♦ obeys

(3.6)

∫
|x|≤1

|FA♦ |2 ≤ 1
100κ

−2
U with equality if r♦ < c−1

0 ,

with it again understood that mφ is used to define the norm and volume
form.

The proposition also introduces θ0 to denote the product connection on
principal SO(3) bundle R3 × SO(3). Proposition 3.1’s Hodge star operator
is the Euclidean metric’s Hodge star, not mφ’s Hodge star. Meanwhile, the
norm and volume form used in Proposition 3.1 can be either those defined
by mφ of those defined by the Euclidean metric.
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Proposition 3.1. There exists κ > 1 with the following significance: Sup-
pose that e ≥ 1, r > 1 and (A, â) is a pair of connection on P and section of
(P×SO(3)su(2))⊗T∗M that obey (3.2). Fix p ∈ M. There is an isomorphism,

to be denoted by g, from the product SO(3) bundle over the |x| < κ−1r−1
♦ ball

in R3 to φ∗P such that

• The connection g∗A♦ can be written as θ0 + âA♦ where âA♦ is an
su(2)-valued 1-form on the |x| ≤ 1 ball in R3 with L2

1 norm bounded
by κ

∫
|x|≤1 |FA♦ |2. Moreover, âA♦ obeys dA♦∗âA♦ = 0 and ∗âA♦ pulls

back as zero to the |x| = 1 sphere.
• The L2

1 norm of g∗â♦ on the |x| < 1 ball is bounded by κe2. Moreover,
given r ∈ [12 , 1), there exists κe,r > κ which is independent of (A, â)
and is such that the L2

2 norm of g∗â♦ on the |x| ≤ r ball in R3 is
bounded by κe,r.

Granted (3.6) and some standard Sobolev inequalities, Proposition 3.1
amounts to little more than a corollary to Uhlenbecks theorem in (3.1). In
any event, its proof is in the next subsection.

Proposition 3.1 can be said to see only the SO(3) subgroup in PSL(2;C),
this being the maximal compact subgroup. The upcoming Proposition 3.2
can be said to see the whole of PSL(2;C). Proposition 3.2 is the key to
Theorem 1.1’s extension of Uhlenbeck’s theorem to PSL(2;C).

Proposition 3.2. Given e ≥ 1, μ ∈ (0, 12 ] and ε ∈ (0, 1], there exists
κe,μ,ε > 1 with the following significance: Suppose that r > 1 and (A, â) is
a pair of connection on P and section of (P ×SO(3) su(2)) ⊗ T∗M that obey

(3.2). Fix p ∈ M. If both r♦ < κ−1
e,μ,ε and

∫
Br♦

|∇Aâ|2 ≤ κ−1
e,μ,εr

−2
♦

∫
Br♦

|â|2,
then the r = (1− μ)r♦ version of

∫
Br

|FA|2 is less than εr−1.

The proof of Proposition 3.2 will invoke Proposition 3.1. This being the
case, it proves convenient to restate the proposition in terms of A♦ and â♦.
To this end, introduce z to denote the L2 norm of â♦ on the |x| < 1 ball;
then define â∗ to equal z−1â♦. Proposition 3.2’s assertion is equivalent to the
following:

(3.7) Given e ≥ 1, ε ∈ (0, 1] and μ ∈ (0, 12 ] and there exists ke,μ,ε > 1
with the following significance: Suppose that (A, â) ∈ Conn(P) ×
C∞(M;P×SO(3) su(2))⊗T∗M obeys (3.2). Fix p ∈ M. If r♦ < k

−1
e,μ,ε

and
∫
|x|≤1 |∇A♦ â∗|2 ≤ k

−1
e,μ,ε, then

∫
|x|≤1−μ |FA♦ |2 < ε.

The equivalence between the assertion in (3.7) and Proposition 3.2 follows
directly from the scaling identities given in the next subsection. Note that
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the norms and volume form used in (3.7) can be either those defined by mφ

or those defined by the Euclidean metric. The proof of (3.7) will use those
defined by the Euclidean metric.

The proof of Proposition 3.2 is in Section 4. Section 3.c states some
rescaling identities and, as noted previously, it proves Proposition 3.1. Sec-
tions 3.d and 3.e state and prove a pair of lemmas that are used in Section 4
for the proof of Proposition 3.2.

3.c. Scaling identities

Proposition 3.1 is proved at the end of this subsection. The observations
that follow directly in (3.8) are used in the proof and in the subsequent sub-
sections. The upcoming (3.8) lists some rescaling identities. What is denoted
by eG in the fourth bullet has norm bounded by c0r♦. All bullets refer to a
chosen R ∈ (0, c−1

0 r−1
♦ ). The norms, inner products, volume form and Hodge

dual in (3.8) are all defined using mφ.

(3.8) •
∫
|x|≤R(|dA♦ â♦|2 + |dA♦∗â♦|2) ≤ er−1

♦ r−2.

•
∫
|x|≤R |FA♦ − r2♦r 2â♦ ∧ â♦|2 ≤ er♦.

•
∫
|x|≤R |∇A♦ â♦|2 = r−1

♦
∫
BRr♦

|∇Aâ|2.

•
∫
|x|≤R |FA♦ |2 = r♦

∫
BRr♦

|FA|2.

•
∫
|x|≤R |qA♦(â♦)|2 = r♦

∫
BRr♦

|qA(â)|2.

Note that |â♦| ≤ c0e, this being a consequence of the third bullet in (3.3).
Moreover,

(3.9) •
∫
|x|≤R |∇A♦ â♦|2 ≤ c0e

2R,

• r2♦r 2
∫
|x|≤R |â♦ ∧ â♦|2 ≤ c0e

2R,

•
∫
|x|≤R |qA♦(â♦)|2 ≤ c0er♦.

The first and second bullets are consequences of the second bullet in (3.3);
and the third bullet is a consequence of Item d) of (3.2). These inequalities
hold with the norms, volume form and covariant derivative defined by either
mφ or the Euclidean metric.

A standard, dimension 3 Sobolev inequality is used in the proofs of both
Proposition 3.1 and Proposition 3.2; and a two other inequalities are used
only in the proof of Proposition 3.2. The first inequality is a version of the
assertion that the L2

1 norm dominates the L4 norm, the second inequality is
a local version of Hardy’s inequality in (2.19) and the third is a version of
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the assertion that L4
1 norm dominates the Holder exponent 1

4 norm. These
inequalities are given directly for future reference. To set the stage, fix p ∈ M
and r ∈ (0, c−1

0 ). Let f denote a Lipshitz function on Br. Then

(3.10) •
∫
Br

|f |4 ≤ c0(
∫
Br

|f |2)1/2(
∫
Br
(|df2 + r−2|f |2))3/2.

•
∫
Br

1
dist(p,·)2 f

2 ≤ c0
∫
Br
(|df |2 + r−2|f |2).

• If q1 and q2 are any two points in Br, then |f(q2)− f(q1)| ≤
c0dist(q2, q1)

1/4(
∫
Br

|df |4)1/4.

These same inequalities hold when f is a function on a ball about the origin
in R3 with the only change being the use of the Euclidean metric to define
the norms, volume form, and distance function.

It proves convenient at this point to use henceforth the following nota-
tional conventions. Unless stated explicitly to the contrary, the Euclidean
metric is used to define the norms, Hodge star, covariant derivatives and
volume form on the |x| < c−1

0 r−1
♦ part of R3. Covariant derivatives on su(2)

valued tensors on R3 that are defined using the connection θ0 are denoted
by ∇. What is denoted subsequently as ce is a number that is greater than
16 and depends only on e. It can be assumed to increase between successive
appearances. If μ ∈ (0, 1) has also been specified, ce,μ is used to denote a
number that is greater than 16 and depends only on e and μ. It can also be
assumed to increase between successive appearances.

Proof of Proposition 3.1. Granted (3.3), then Uhlenbeck’s theorem in the
guise of (3.1) can be invoked. This theorem supplies an isomorphism from
the product SO(3) bundle over the |x| < 1 ball to φ∗P that pulls A♦ back
as θ0 + âA♦ with âA♦ as described by Proposition 3.1. Use g to denote this
isomorphism.

The L2 norm of ∇A♦ â♦ on any radius R < c0r
−1
♦ ball in R3 centered at

the origin is a priori bounded by ceR this being a consequence of the first
bullet in (3.9). This L2 norm bound on ∇A♦ â♦ with what was said about
g∗A♦ implies that the L2

1 norm of g∗â♦ on the |x| < 1 ball is bounded by ce.
Fix μ ∈ (0, 12 ] and introduce by way of notation χμ to denote the function

on R3 given by the rule x → χ( 1μ(|x| − 1+μ)). This function equals 1 where

|x| ≤ 1− 3
4μ and it equals 0 where |x| ≥ 1− 1

4μ. Integrate by parts and use
the L∞ bound on |â♦| to see that

(3.11)

∫
|x|≤1

|∇A♦(χμ∇A♦ â♦)|2 ≤
∫
|x|≤1

χμ|q♦|2 + c0

(
μ−2‖∇A♦ â♦‖22

+

∫
|x|≤1

|FA♦ |χ2
μ|∇A♦ â♦|2 + r2♦

)
+ c0e

2

∫
|x|≤1

|FA♦ |2χ2
μ.
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To exploit this inequality, let x denote for the moment χμ∇A♦ â♦. Then (3.6),
the first and third bullets of (3.9) and (3.11) lead to the bound

(3.12) ‖∇A♦x ‖22 ≤ ce(1 + μ−2 + ‖x ‖24),

Given the Sobolev inequality asserted by the top bullet of (3.10), the inequal-
ity in (3.12) implies that χμ|∇A♦ â♦| is an L2

1 function on the |x| ≤ 1−μ ball
and a second appeal to (3.10) and (3.11) bounds ‖∇A♦x ‖2 by ce,μ.

Granted the latter L2 norm bound, write g∗A♦ = θ0 + âA♦ to see that

(3.13) ‖∇(g∗x )‖2 ≤ c0‖âA♦‖4‖x ‖4.

Use this last bound, the a priori L2
1 bound for âA♦ and the f = |âA♦ | version

of the top bullet of (3.10) to see that the L2
1 norm of g∗x is also bounded by

ce,μ. Write g∗(∇A♦ â♦) as ∇g∗A♦(g
∗â♦) to see that

(3.14)
|∇(∇(g∗â♦))| ≤ c0(|∇(g∗(∇A♦ â♦))|+(|∇âA♦ |+ |âA♦ |2)|â♦|+ |âA♦ ||∇A♦ â♦|).

Given this last inequality, then the apriori L2
1 bounds for g∗x and âA♦ with

the apriori L∞ bound for |â♦| lead directly to the desired ce,μ bound for the
L2
2 norm of g∗â♦.

3.d. When rrrzzz = zzzr♦♦♦rrr is small

Let z again denote the L2 norm of â♦ over the |x| ≤ 1 ball in R3. Introduce
by way of notation rz to denote the combination zr♦r . This combination
appears when writing the integral in the second bullet of (3.8) in terms
of â∗. Do so and it asserts the following:

(3.15)

∫
|x|≤R

|FA♦ − r 2z â∗ ∧ â∗|2 ≤ er♦.

The lemma that follows makes a formal statement to the effect that (3.7)
is true if there is an a priori bound on rz .

Lemma 3.3. Given e ≥ 1, k ≥ 1, μ ∈ (0, 12 ] and ε ∈ (0, 1], there exists κ > 1
with the following significance: Fix r > 1 and a pair (A, â) of connection on
P and section of (P×SO(3) su(2))⊗T∗M obeying (3.2). Suppose that p ∈ M
is a point where rz ≤ k. If both r♦ < κ−1 and

∫
|x|≤1 |∇Aâ∗|2 < κ−1, then∫

|x|≤1−μ |FA♦ |2 < ε.
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Proof of Lemma 3.3. Define χμ to be the function on R3 given by x →
χ( 1μ(|x| − 1+ μ)). This function equals 1 where |x| ≤ 1− 3

4μ and it equals 0

where |x| ≥ 1− 1
4μ. Fix constant orthonormal vectors e1 and e2 on R3 and in-

tegrate χ2
μ〈â∗(e1)[FAΔ

(e2, e1), â∗(e2)]〉 over the radius 1 ball about the origin.
The resulting integral is the same as the integral of χ2

μ〈FAΔ
(e2, e1)[â∗(e2),

â∗(e1)]〉. It follows from (3.15) that c0 times the latter integral plus cer−2
z r♦

bounds r−2
z ‖χμFAΔ

(e1, e2)‖22.
Meanwhile, [FAΔ

(e2, e1), â∗(e2)] can be written as the commutator of A♦
covariant derivatives of â∗(e2). Do so and use this depiction with an integra-
tion by parts to see that

(3.16) r−2
z ‖χμFAΔ

(e1, e2)‖22 ≤ c0(‖∇A♦ â∗‖22 + μ−1‖∇A♦ â∗‖2 + r−2
z r♦ce),

Suppose that rz < k. Then (3.15) asserts the desired bound ‖χμFAΔ
‖22 < ε

when r♦ < c−1
e ε and when ‖∇A♦ â∗‖ ≤ c−1

0 k
−2με.

The remaining subsections assume unless stated to the contrary that
rz ≥ 1.

3.e. First order equations

The 4 parts of this subsection explain how a certain almost tautological
system of inhomogeneous, semi-linear first order differential equations can
be used to prove Proposition 3.2. The linear terms in the homogeneous
version of these equations define the first order, constant coefficient system
of elliptic equations on R3 that is described in Part 1 of the subsection.
The fully non-linear, inhomogeneous equation is described in Part 2. Part
3 explains how a suitable a priori estimate for a solution to these equations
can be used to prove Proposition 3.2. The final part of the subsection states
and then proves a lemma that is subsequently used to invoke the arguments
in Part 3.

Part 1: To set the stage for what is to come, let τ denote a given, unit
length element in su(2). With τ chosen, introduce by way of notation V ⊂
(T∗R3 ⊕ R) ⊗ su(2) to denote the subbundle that is annihilated by the
homomorphism to (T∗R3 ⊕ R) that is defined by the rule f → 〈τ f〉. Let e
denote a chosen, constant 1-form on R3 with norm 1.

Fix m > 1. Define Lm : C∞(R3;V ⊕ V) → C∞(R3;V ⊕ V) as follows:
Write an element in V as (a, a0) with a being an su(2) valued 1-form and a0

an element in su(2). The operator Lm sends a given element ((a, a0), (b, b0))
to one whose components in the left and right most factor of V⊕V are the
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respective pairs of su(2) valued 1-form and valued function given by

(3.17) • ∗(da− me ∧ [τ, b])− da0 + me[τ, b0] and ∗(d∗a− me ∧ [τ, ∗b]),
• ∗(db− me ∧ [τ, a])− db0 + me[τ, a0] and ∗(d∗b− me ∧ [τ, ∗a]),

with ∗ denoting the Euclidean metric’s Hodge star operator. The opera-
tor Lm is symmetric with respect to the L2 inner product defined by the
Euclidean metric and such that L2

m = (∇†∇ + m2)I with I denoting the
identity endomorphism of V, with ∇ denoting the covariant derivative on
C∞(R3;V⊕V) as defined by the Euclidean metric with ∇† being its formal,
L2 adjoint.

This depiction of L2
m has the following useful corollary: Let ‖ · ‖2 denote

the L2 inner product on the space of L2
1 map from R3 to V ⊕ V. If k is any

such map, then

(3.18) ‖Lmk‖22 = ‖∇k‖22 + m2‖k‖22.
The positivity of the square of Lm implies that the equation Lm f = h has a
unique, L2

1 solution in C∞(R3;V⊕V) when h ∈ C∞(R3;V⊕V) is square in-
tegrable. This solution h can be written explicitly using the Green’s function
for −d†d + m2. The version of the latter with pole at a given point y ∈ R3

is denoted in what follows by Gy; it is the function on R3−{y} given by

(3.19) Gy(·) =
1

4π

1

|(·)− y|e
−m|(·)−y|.

As can be seen from (3.19), the function Gy obeys

(3.20) |Gy|+ |dGy|+ |∇(dGy)| ≤ c0e
−mδ/2

at points with distance greater than δ from y. The Green’s function for Lm
with pole at y is the End(V⊕V)-valued function on R3−y that is defined by
x → (LmG(·))|y(x). Note in particular that the bounds given above for Gy

and its derivatives lead directly to the following observation: The Green’s
function for Lm with pole at y and those of its first derivatives are also
bounded by c0δ

−2e−mδ/2 at points with distance greater than δ from y.

Part 2: Let (AΔ, aΔ) denote a pair consisting of a connection on the prod-
uct SO(3) bundle over the |x| ≤ 1 ball in R3 and an su(2) valued 1-form on
this ball. The connection AΔ is written as θ0 + âAΔ

. Fix m ≥ 1 and, with
τ ∈ su(2) as in (3.17), define

(3.21) a = m−1(âAΔ
− τ〈τ âAΔ

〉 and b =

√
4π

3
(aΔ − τ〈τaΔ〉).

With b understood, define the 1-form eΔ by writing aΔ as aΔ =
√

3
4π (τ eΔ+b).
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Let su⊥ ⊂ su(2) denote the kernel of the homorphism f → 〈τ f〉. Use s to

denote the su⊥ part of the su(2) valued 1-form m−1∗(FAΔ
− 4π

3 m2aΔ ∧ aΔ).

By the same token, use r to denote the su⊥ parts of
√

4π
3 dAΔ

aΔ. Let ∗φ
denote the Hodge dual that is defined by the metric mφ and introduce r0 to

denote the su⊥ part of
√

4π
3 ∗(dAΔ

∗φaΔ). Granted this notation, define an

su⊥ valued 1-form s by writing s as ∗(da−me∧ [τ, b])−s. Introduce a second

su⊥ valued 1-form r by writing r as ∗(db−me ∧ [τ, a])−r, and introduce an

su⊥ valued function r0 by writing r0 as ∗(d∗b− me ∧ [τ, ∗a])− r0. Use s0 to

denote the su⊥ valued function ∗(d∗a− me ∧ [τ, ∗b]). By way of a summary

the troika (s,r,r0) are as follows:

(3.22) • ∗s = m(eΔ − e) ∧ [τ, b]− 〈τ âAΔ
〉 ∧ [τ, a] + s,

• ∗r = m(eΔ − e) ∧ [τ, a] + 〈τ âAΔ
〉 ∧ [τ, b] + r,

• ∗r0 = ∗(d(πφb)−me ∧ [τ, πφa])+m(eΔ− e)∧ [τ, ∗φa]+ 〈τ âAΔ
〉∧

[τ, ∗φb] + r0,

where the notation has πφ denoting ∗φ − ∗.
Granted all of these definitions, view f = ((a, 0), (b, 0)) as mapping the

|x| < 1 ball to V ⊕ V. The map f obeys the tautological equation Lm f = h

with h = ((s, s0), (r,r0)). The respective left and write V summands of this

equation are

(3.23) • ∗(da− me ∧ [τ, b]) = s and ∗(d∗a− me ∧ [τ, ∗b]) = s0.

• ∗(db− me ∧ [τ, a]) = r and ∗(d∗b− me ∧ [τ, ∗a]) = r0.

The equation Lm f = h is introduced so that the properties of the Green’s

function for Lm can be used to obtain a priori bounds on f. This is done in

Part 4 of the subsection.

Part 3: With the proof of Proposition 3.2 in mind, what follows constitutes

a digression that explains how bounds on the L2 norm of b and L∞ norm

of aΔ lead to a bound for the L2 norm of FAΔ
. This comes about by writing

aΔ as
√

3
4π (τ eΔ + b) so as to write FAΔ

as

(3.24) FAΔ
= m2eΔ ∧ [τ, b] + m2b ∧ b+

(
FAΔ

− 4π

3
m2aΔ ∧ aΔ

)
.

Fix μ ∈ (0, 12 ]. It follows directly from this depiction of FAΔ
that its L2 norm

on the |x| < 1− μ ball in R3 obeys
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(3.25)

∫
|x|≤1−μ

|FAΔ
|2

≤ 2
(

sup
|x|≤1−μ

|aΔ|2
)(

m4

∫
|x|≤1−μ

|b|2
)
+

∫
|x|≤1−μ

∣∣∣∣FAΔ
− 4π

3
m2aΔ ∧ aΔ

∣∣∣∣
2

.

This inequality has the following consequence: Fix ε ∈ (0, 1]. The L2 norm
of FAΔ

on the |x| < 1− μ ball will be less than ε if sup|x|≤1−μ |aΔ| < d, and

if the L2 norm of |b| on the |x| ≤ 1 − μ ball is less than 1
4m−2

d
−1ε, and if

that of (FAΔ
− 4π

3 m2aΔ ∧ aΔ) is less than 1
2ε.

Part 4: The tautological equation Lm f = h leads to a priori bound for f

when h is small in a suitable sense. A precise statement as to what is meant
by ‘small’ requires the introduction of parameters m ≥ 1, μ ∈ (0, 2−20] and
ρ ∈ (0, 1]. Having chosen their values, make the following assumptions:

(3.26) • sup|x|≤1−μ(|b|+ |eΔ − e|) < ρ.

• The L2 norm of a on the |x| ≤ 1− μ ball is less than ρ.

• The L4 norm of 〈τ âAΔ
〉 on the |x| ≤ 1− μ ball is less than m.

• The L2 norms of s, r, r0 and s0 on the |x| ≤ 1− μ ball are less
than m−1ρ.

• The endomorphism πφ = ∗φ − ∗ and its covariant derivative
obey |∇πφ|+ |πφ| < ρ.

The equation Lm f = h is used to prove the next lemma.

Lemma 3.4. There exists κ > 1 and given μ ∈ (0, 2−20] and ε ∈ (0, 1),
there exists κ∗ > 1, these with the following significance: Fix m and suppose
that m > κm+κ−1

∗ and ρ < κ−1
∗ . Define (a, b) as in Part 2 and suppose that

the bounds in (3.26) are satisfied. Then

∫
|x|≤1−2048μ

(|∇a|2 + |∇b|2 + m2|a|2 + m2|b|2) < εm−2.

Proof of Lemma 3.4. The proof has seven steps.

Step 1. Define fμ : R3 → V⊕V to be the function χ4μf. The latter obeys an
equation that has the schematic form Lm fμ = hμ with hμ = S(dχ4μ)f+χ4μh

where S denotes the principal symbol of the operator Lm . In this case, S is
constant and so an element in Hom(R3; End(V⊕V)). The introduction of fμ
facilitates the use of the Green’s function for Lm that is described in Part 1.
The parameter 4μ is used with χ(·) because each point where χ4μ > 0 has
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distance at least 1
4μ from the |x| > 1− μ part of R3 and in particular from

the support of 1− χμ.

Step 2. Let g denote the square integrable map from R3 to V ⊕ V that
solves the equation Lmg = S(dχμ)f. To bound the size of |g|, first use Part
1’s Green’s function for Lm to see that

(3.27) • |g|(y) ≤ c0
∫
R3(

1
|(·)−y|2 + m 1

|(·)−y|)e
−m|(·)−y||dχ4μ‖f| at any given

y ∈ R3.

• |∇g|(y) ≤ c0
∫
R3(

1
|(·)−y|3 +m 1

|(·)−y|2 +m2 1
|(·)−y|)e

−m|(·)−y||dχ4μ‖f|
if dχ4μ = 0 at y.

Let dμ : R3 → [0,∞) denote the distance to the support of dχ4μ. Since
|f| ≤ |a|+ |b|, the bounds in (3.26) and (3.27) imply that

(3.28) • |g|(y) ≤ c0dμ(y)
−2e−mDμ(y)/2μ−1ρ if dχ4μ = 0 at y.

• |∇g|(y) ≤ c0dμ(y)
−3e−mDμ(y)/2μ−1ρ if dχ4μ = 0 at y.

Save these bounds for the moment.

Step 3. Introduce from (3.22) and (3.23) the terms that are denoted by
s, r, r0 and s0. Let t denote the solution in L2

1(R
3;V⊕ V) to the equation

(3.29) Lm t = χ4μ((s, s0), (r, r0)).

Take the L2 norm of both sides of (3.29) and (3.28) with (3.26)’s fourth
bullet find

(3.30) ‖∇t‖22 + m2‖t‖22 ≤ c0m−2ρ2.

This bound should also be saved.

Step 4. Let q = fμ − g − t. The latter obeys an inhomogeneous differential
equation that can be written schematically as

(3.31) Lmq− χ4μp(q) = d,

where p is defined momentarily and d = χ4μp(g+ t). The homomorphism p

of V⊕V sends a given element s = ((s1, s01), (s2, s02)) to p(s) = ((p1(s), 0),
(p2(s),p02(s)) where

(3.32) • ∗p1(s) = m(eΔ − e) ∧ [τ, s2]− 〈τ âAΔ
〉 ∧ [τ, s1].

• ∗p2(s) = m(eΔ − e) ∧ [τ, s1] + 〈τ âAΔ
〉 ∧ [τ, s2].

• ∗p02(s) = ∗(d(πφs2) − me ∧ [τ, πφs1]) + m(eΔ − e) ∧ [τ, ∗φs1] +
〈τ âAΔ

〉 ∧ [τ, ∗φs2].
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As explained momentarily, the operator Lm − χ4μp is invertible if ρ < c−1
0

and m > c0m
2. This implies in particular that (3.31) has a unique solution.

The asserted invertibility of Lm −χ4μp is proved using the bounds stated
below in (3.33). The notation in (3.33) has v denoting a given L2

1 section of
T∗R3 ⊗ su(2).

(3.33) • m‖χ4μ|eΔ − e|v‖2 ≤ c0ρm‖v‖2.
• ‖χ4μ|〈τ âAΔ

〉|v‖2 ≤ c0m(m−1‖∇v‖2 + m‖v‖2).
• ‖χ4μd(πφv)‖2 ≤ c0ρ(‖∇v‖2+‖v‖2) and m‖χ4μπφv‖2 ≤ mρ‖v‖2.

These bounds are derived in the next paragraph. The assertion that
Lm−χ4μp is invertible follows directly from the following assertion: If ρ < c−1

0

and m > c0m
2, then

(3.34) ‖(Lm − χ4μp)k‖22 ≥ 3
4(‖∇k‖22 + m2‖k‖22)

when k is any given L2
1 map from R3 to V ⊕ V. This last assertion follows

from (3.33) because the (3.33) implies the following: If k is an L2
1 map from

R3 to V⊕ V, then

(3.35) ‖χ4μp(k)‖22 ≤ c0(m−1
m+ ρ2)(‖∇k‖22 + m2‖k‖22).

If ρ < c−1
0 and m > c0m, then the right hand side is no greater than

1
100‖Lm k ‖22. The latter bound with (3.28) lead directly to the bound in (3.34).

The assertions of the first and third bullets in (3.33) follow directly from
the bounds in the respective first and fifth bullets of (3.26). To see about the
middle bullet, keep in mind that the L2 norm of χ4μ|〈τ âAΔ

〉||v| is bounded
by the product of their L4 norms. Use the f = |v| version of the top bullet
in (3.10) to bound the L4 norm of v. Having done so, then the inequality
in the middle bullet of (3.33) follows directly from the bound in the third
bullet of (3.26).

Step 5. Assume henceforth that ρ < c−1
0 and that m > c0m so as to use (3.28)

to bound the right hand side of (3.35) by 1
100‖Lmk‖22. This being the case,

then (3.34) holds. Use the k = q version of (3.34) with (3.31) to conclude
that

(3.36) ‖∇q‖22 + m2‖q‖22 = 4
3‖χ4μp(g+ t)‖22.

To exploit this last bound, first apply the bound for ‖p(·)‖2 ≤ 1
10‖Lm(·)‖2

to conclude that

(3.37) ‖∇q‖2 + m‖q‖2 ≤ 1
10(‖Lmg‖2 + ‖Lm t‖2).
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Use (3.43) to bound ‖Lm t‖2 by c0m−1ρ. Use the identity Lmg = S(dχ4μ)f
to bound ‖Lmg‖2 by c0μ

−1‖χμf‖2. Substituting these bounds on the right
hand side of (3.37) finds

(3.38) ‖∇q‖2 + m‖q‖2 ≤ c0(m−1ρ+ μ−1‖χμf‖2)

when ρ < c−1
0 and m > c0m

2.

Step 6. Write f on the |x| ≤ 1 − 4μ part of R3 as f = g + t+ q to conclude
that

(3.39) ‖χ16μ∇f‖2 + m‖χ16μf‖2
≤ ‖χ16μ∇g‖2 + m‖χ16μg‖2 + ‖∇t‖2 + m‖t‖2 + ‖∇q‖2 + m‖q‖2.

Use (3.30) to bound the terms in (3.39) with t and thus by m−1ρ. Use
(3.38) to bound those with q by c0(m−1ρ+μ−1‖χμf‖2). The pointwise norms
in (3.28) lead to a bound on the terms with g by c0μ

−4e−mμ/4ρ. These
substitutions imply the bound

(3.40) ‖χ16μ∇f‖2+m‖χ16μf‖2 ≤ c0μ
−1(μ−4e−mμ/4m+m−1)ρ+c0μ

−1‖χμf‖2.

Note in particular that μ−4e−mμ/4m ≤ m−1 when m > c0μ
−2. Granted that

such is the case, then (3.40) implies that

(3.41) ‖χ16μ∇f‖2 + m‖χ16μf‖2 ≤ c0μ
−1(m−1ρ+ ‖χμf‖2).

The first and second bullets of (3.26) bound ‖χμf‖2 by c0ρ and so the right
hand side of (3.41) is no larger than c0μ

−1ρ.

Step 7. Assume henceforth that m > c0μ
−2 so as to conclude from (3.41)

that

(3.42) ‖χ16μf‖2 ≤ c0μ
−1m−1ρ.

With (3.42) in hand, repeat Steps 1–6 but with μ replaced by μ′ = 128μ. The
salient difference is the replacement of the factor ‖χμf‖2 in (3.38), (3.40) and
(3.41) by ‖χ16μf‖2. Where as the former can be bounded only by c0ρ, the
latter is bounded courtesy of (3.42) by c0m−1ρ, this being an improvement
by a factor of m−1. Granted this replacement, then the μ′ = 128μ version of
(3.41) reads

(3.43) ‖χ2048μ∇f‖2 + m‖χ2048μf‖2 ≤ c0μ
−1m−1ρ.

The assertion made by Lemma 3.4 follows directly from (3.43).



PSL(2;C) connections on 3-manifolds with L2 bounds 291

4. Unexpectedly small curvature

Lemma 3.3 and a version of Lemma 3.4 are brought to bear in Section 4.d to
prove Proposition 3.2. The intervening subsections supply data that can be
used by Lemma 3.4. The latter requires as input a parameter m , a connection
on the product bundle over the |x| < 1 ball, and an su(2) valued 1-form
over this ball, these being AΔ and aΔ. The parameter m is taken to be

m =
√

3
4π rz and the connection AΔ is chosen to have the form h∗A♦ with h

being a suitable isomorphism from the product bundle on the |x| < 1 ball
to the bundle φ∗P over this ball. The su(2) valued 1-form aΔ will be the
pull back via h of a suitable perturbation of â∗. Section 4.a constructs this
perturbation and Section 4.c constructs h. The intervening subsection says
more about the perturbation.

4.a. The heat equation on the |x| < 1 ball

The three parts of this subsection modify â∗ over the |x| < 1 ball in R3 so
as to obtain a φ∗(P ×SO(3) su(2)) valued 1-form whose pointwise norm and
L2
2 norm on concentric balls with radius less than 1 obey a priori bounds

that can not be assumed to hold for â∗. The modified version is denoted
by ã∗. The following proposition summarizes the salient features of ã∗. The
proposition uses the metric mφ to define the norms, volume form, Hodge
star and covariant derivatives on tensors.

Proposition 4.1. Given e ≥ 1, there exists κe > κ, and given also μ ∈
(0, 12 ], there exists κe,μ > 1; these having the following significance: Suppose
that r > 1 and (A, â) is a pair of connection on P and section of (P×SO(3)

su(2)) ⊗ T∗M that obey (3.2). Fix p ∈ M such that rz = zr♦r ≥ 1. There
exists a φ∗(P ×SO(3) su(2)) valued 1-form on the |x| ≤ 1 ball in R3 to be
denoted by ã∗ with the properties in the list below.

•
∫
|x|≤1(|dA♦ ã∗|2 + |dA♦∗ã∗|2) < κer♦r−2

z .

•
∫
|x|≤1 |â∗ − ã∗|2 < κer♦r−4

z .

•
∫
|x|≤1 |∇A♦(â∗ − ã∗)|2 < κer♦r−2

z .

• If μ ∈ (0, 12 ], then
∫
|x|≤1−μ |∇A♦(∇A♦ ã∗)|2 < κe,μ.

• If μ ∈ (0, 12 ], then sup|x|≤1−μ |ã∗| < κe,μ.

• If μ ∈ (0, 12 ], then
∫
|x|≤1−μ |FA♦ − r 2z ã∗ ∧ ã∗|2 ≤ κe,μr♦.

Proof of Proposition 4.1. The desired ã∗ is constructed from â∗ by mimicking
what is done in Sections 2.c and 2.d. The construction has six steps. As in
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the statement of the proposition, these steps implicitly use the metric mφ

to define the norms, the volume form, the Hodge star and the covariant

derivatives on tensors. This metric is also used to define the formal, L2

adjoint of the covariant derivative.

Step 1. The section ã∗ is obtained from the solution to an analog of the heat

equation in (2.51). The heat equation in this case specifies a φ∗(P ×SO(3)

su(2)) valued 1-form over the product of [0,∞) with the |x| ≤ 1 ball in R3.

The 1-form in question is denoted by a and obeys the following:

(4.1) • ∂
∂ta = −(∇A♦

†∇A♦a + ∗(∗FA♦ ∧ a + a ∧ ∗FA♦) +Ricmφ
((·)⊗ a)

where |x| < 1.

• a|t=0 = â∗ for all |x| ≤ 1 .

• a||x|=1 = a∗||x|=1 for all t ≥ 0.

What is denoted by Ricmϕ
in the top bullet of (4.1) is the Ricci curvature

tensor of mφ. Note in particular that its pointwise norm is bounded by c0r
2
♦.

The third bullet in (4.1) specifies both tangential and normal components of

a on the boundary |x| = 1 sphere. Standard results about parabolic equations

prove that there is a unique solution to (4.1).

The desired ã∗ is given by a|s for an appropriate stopping time s ∈ [0,∞).

Step 2. The analog of the function that is denoted by E in Part 1 of Sec-

tion 2.d is the function on [0,∞) given by

(4.2) E =

∫
|x|≤1

(|dA♦a|2 + |dA♦∗a|2).

Since a is constant on the |x| = 1 sphere, integration by parts writes

(4.3) d
dtE = −2‖qA♦(a)‖22,

where ‖ · ‖2 denotes the L2 norm on the |x| < 1 sphere and where qA♦(a) is
defined by writing the top bullet of (4.1) schematically as ∂

∂ta = −qA♦(a).
Note that the integration by parts has no boundary contribution because

a = a∗ for all t where |x| = 1.

Step 3. The first bullet in (3.8) implies that E(â∗) ≤ cer♦r−2
z , and so (4.3)

finds

(4.4) E(t) ≤ c0r♦r−2
z − tn(t),
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where n(t) is defined by analogy with (2.53) as

(4.5) n(t) = t−1

∫ t

0
‖qA♦(a)‖22.

The inequality in (4.5) implies the assertion in the first bullet of Proposi-
tion 4.1 if ã∗ is defined to be any s ≥ 0 version of a|s. In any event, (4.4)
requires that n(t) ≤ cer♦r−2

z t−1 if t is positive. Meanwhile, the formula in
the first bullet of (4.1) for ∂

∂ta implies that

(4.6) ‖â∗ − a|t‖22 ≤ t2n(t) for any t ∈ [0,∞).

Step 4. The definition in (4.5) with the bound n(t) ≤ cer♦r−2
z t−1 have the

following consequence: There exists s ∈ [12t, t] such that a|s obeys

(4.7) ‖qA♦(a|s)‖22 ≤ cer♦r−2
z t−1.

This understood, take t = r−2
z and fix s ∈ [12t, t] so that (4.7) holds. Set ã∗

to equal a|s. It follows from (4.7) that ‖qA♦(ã∗)‖2 ≤ cer
1/2
♦ and (4.6) finds

‖â∗ − ã∗n‖2 ≤ cer
1/2
♦ r−2

z . The latter bound is the assertion in the second
bullet of the proposition.

To see about the third bullet of the proposition, use the fact that both
E(â∗) both E(ã∗) are bounded by cerr−2

z to see that

(4.8)

∫
|x|≤1

(|dA♦(â∗ − ã∗)|2 + |dA♦∗(â∗ − ã∗)|2) ≤ cer♦r−2
z

also. This understood, an integration by parts with the fact that â∗ = ã∗
where |x| = 1 leads from (4.8) to the bound

(4.9)

∫
|x|≤1

(
|∇A♦(â∗ − ã∗)|2 + 2〈∗FA♦ ∧ (â∗ − ã∗) ∧ (â∗n − ã∗n)〉

)

≤ cer
2
♦‖â∗ − ã∗‖22 + cer♦r−2

z .

In turn, this last inequality, the bound on the L2 norm of FA♦ and the
Sobolev inequality given in the top bullet in (3.10) lead to the bound

(4.10)

∫
|x|≤1

|∇A♦(â∗ − ã∗)|2 ≤ cer♦r−2
z .

This is the bound that is asserted by the third bullet of the proposition.
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Step 5. To see about the fourth and fifth bullets, fix μ ∈ (0, 12 ]. Set χμ to
denote again denote the function on R3 that is given by x → χ( 1μ(|x|−1+μ)).

The bound on the L2 norm of qA♦(ã∗), the bound on |Ricmφ
| by c0r

2
♦ and

the fact that (4.10) implies that ‖∇A♦ ã∗‖2 ≤ ce implies via an integration
by parts that

(4.11) ‖∇A♦(∇A♦(χμã∗))‖22 ≤ ce,μ + c0‖FA♦‖22‖χμã∗‖2∞,

Note that (4.11) also uses the fact that A♦ = θ+ âA♦ with the bound given
by Uhlenbeck’s theorem for the L2

1 norm of âA♦ . Since ‖FA♦‖2 ≤ 1, the
bound in (4.11) implies that

(4.12) ‖d|∇A♦(χμã∗)|‖2 ≤ ce,μ + c0‖χμã∗‖∞,

and so |∇A♦(χμã∗)| is an L2
1 function with L2

1 norm bounded by (ce,μ +
c0‖χμã∗‖∞).

Invoke the top bullet in (3.10) yet again to see that the L4 norm of
|∇A♦(χμã∗)| is also bounded by (ce,μ + c0‖χμã∗‖∞), and so this is also the
case for the L4 norm of d|χμã∗|. With the preceding understood, invoke the
the third bullet in (3.10) using |χμã∗| for f and then invoke the first bullet
of (3.10) using |∇A♦(χμã∗)| conclude the following: Fix δ ∈ (0, 1). Then

(4.13) ‖χμã∗‖∞ ≤ δ−1(ce,μ + ‖∇A♦ ã∗‖2) + δ‖∇A♦(∇A♦(χμã∗))‖2.

A δ = c−1
0 version of (4.13), the fact that ‖FA♦‖2 ≤ 1 with (3.26) and

(3.25) lead directly to the assertion in the fourth bullet of Proposition 4.1.
The assertion in the fifth bullet follows from the δ = 1 version of (4.13) and
the assertion in the fourth bullet.

Step 6. This step proves the assertion in the sixth bullet of the proposition.
Given what is said by (3.15), it is only necessary to prove that

(4.14) r 4z ‖χμ((â∗ ∧ â∗)− (ã∗ ∧ ã∗))‖22 ≤ crr♦.

The left hand side of (4.14) is no greater than

(4.15) c0r 4z ‖|â∗ − ã∗|2‖42 + c0r 4z ‖â∗ − ã∗‖22‖χμã∗‖2∞.

Use the first bullet in (3.10) with the first two bullets of the proposition to

see that the left most term in (4.15) is no greater than cer
5/2
♦ r−1

♦ . Invoke the
first bullet of the proposition to bound the right most term by cer♦‖χμã∗‖2∞;
then use the proposition’s fifth bullet to bound c0r♦‖χμã∗‖2∞ by ce,μr♦.
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4.b. The pair (âAΔ
, ã∗) and the bounds in (3.26)

Lemma 3.4 refers to parameters m , ρ and m. As noted at the outset, m will

be taken to be
√

3
4π rz . The parameters ρ and m are such that (3.26) holds.

An appeal to a given ε > 0 version of Lemma 3.4 requires an upper bound
for ρ. The upcoming Lemma 4.2 is the first of two lemmas that are used to
obtain the required upper bound. This lemma reintroduces the isomorphism
g given by Proposition 3.1. The lemma also writes g∗A♦ as θ0+âAΔ

as done
in Proposition 3.1.

Lemma 4.2. There exists m0 > 1, and given e ≥ 1, μ ∈ (0, 12 ] and ρ ∈ (0, 1],
there exists κρ > 1 with the following significance: Suppose that r > 1 and
(A, â) is a pair of connection on P and section of (P ×SO(3) su(2)) ⊗ T∗M
that obey (3.2). Fix p ∈ M where rz ≥ κρ. Suppose in addition that r♦ < κ−1

ρ

and that ‖∇A♦ ã∗‖2 < κ−1
ρ . There exists a constant, unit length 1-form e on

R3 and a constant, unit length element τ ∈ su(2) with the properties that
are listed below.

• Write g∗ã∗ as
√

3
4π (τ e∗ + b∗) with 〈τb∗〉 = 0. Then sup|x|≤1−μ(|b∗| +

|e∗ − e|) < ρ.
• Write âAΔ

as τ〈τ âAΔ
〉 + ma∗ with 〈τa∗〉 = 0. The L2 norm of a∗ on

the |x| ≤ 1 − μ ball is less than ρ and the L4 norm of 〈τ âAΔ
〉 on the

|x| ≤ 1− μ ball is less than m0.

Proof of Lemma 4.2. The assertions in the lower bullet follow directly from
(3.26) and Proposition 3.1. The proof of the top bullet has four steps. These
steps use δ to denote ‖∇A♦ ã∗‖2.
Step 1. Proposition 3.1 asserts in part that the L2

2 norm of g∗ã∗ on the
|x| ≤ 1− μ ball is bounded by ce,μ. Use this bound with those given in the
top bullet of (3.10) to conclude the following: Let x and y denote two points
R3 with norm at most 1− μ. Then

(4.16) |(g∗ã∗)|x − (g∗ã∗)|y| ≤ ce,μδ
1/4.

As explained directly, this inequality implies that ||ã∗|(0)−
√

3
4π | ≤ ce,μ(δ

1/4+

r♦r−2
z ).

To see about the latter claim, suppose for the moment that c > 1 is

such that the |ã∗|(0) <
√

3
4π − c−1. If so, then (4.16) implies that |ã∗|2 <

(
√

3
4π − c−1 + ce,μδ

1/4)2 on the whole of the |x| < 1 − μ ball. This being
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the case, then its integral over this ball is no greater than (1 −
√

4π
3 c−1 +

ce,μδ
1/4)2(1−μ)3. Moreover, the integral of |ã∗|2 on the |x| = 1−μ sphere is

no greater than 3(1−
√

4π
3 c−1+ce,μδ

1/4)2(1−μ)2. Granted this last bound,

it then follows using the fundamental theorem of calculus that the integral
of |ã∗|2 over the spherical annulus where 1− μ ≤ |x| ≤ 1 is no greater than

3(1−
√

4π
3 c−1+ce,μδ

1/4)2μ+c0δμ
1/2. Add these various bounds to conclude

that ‖ã∗‖22 ≤ (1− c0c−1 + ce,μδ
1/4)2 + c0δμ

1/2. This is nonsense if c−1 is less
than ce,μ(δ

1/4 + r♦r−2
z ) because Proposition 4.1’s second bullet implies that

the L2 norm of ã∗ is no less than 1−c0r♦r−2
z . Very much the same argument

derives nonsense if |ã∗|(0) >
√

3
4π + ce,μ(δ

1/4 + r♦r−2
z ).

Step 2. Let τ denote a unit length element in su(2) that maximizes the
function on the unit sphere in su(2) that assigns to any given element σ the
norm of the corresponding covector 〈σ(g∗ã∗)|0〉. Define the 1-form e∗ to be
〈τg∗ã∗〉 and define the su(2) valued 1-form b∗ by writing g∗ã∗ as τ e∗ + b∗.

Write e∗|0 as a positive multiple of a unit length 1-form and denote the
latter by e. As explained directly the inner product between e and b∗|0 must
be zero. To see why this is, note first that (g∗ã∗)|0 can be written as

(4.17) (g∗ã∗)|0 = τγe + τ1(α1e1 + νe) + τ2(α2e2 + βe1),

with γ > c−1
0 , with {τ1, τ2} being an orthonormal basis orthogonal com-

plement of τ and with {e1, e2} being an orthonormal basis in T∗R3 for the
orthogonal complement to e. Let τ ′ denote (γτ + ντ1)/(γ

2 + ν2)1/2. Look at
(4.17) to see that 〈τ ′(g∗ã∗)|0〉 is the 1-form (γ2+ν2)1/2e+α1ν(γ

2+ν2)−1/2e1.
The norm of the latter would be larger than γ were ν �= 0.

Write b∗ for the moment as b∗ = σe + b⊥ with σ being a map from the
|x| ≤ 1−μ ball in R3 to τ ’s version of su⊥ and with b⊥ such that e∧∗b⊥ = 0.
It follows from (4.16) and from what was said in the preceding paragraph
that |σ| ≤ ce,μδ

1/4.

Step 3. Use the AΔ = g∗A♦ and aΔ = g∗ã∗ version of (3.24) with (3.15) and
what is said in Part 1 to conclude that

(4.18)

∫
|x|≤1−μ

|FA♦ |2 ≥ 1
2 r 4z

(
sup

|x|≤1−μ
|b⊥|2 − ce,μδ

1/2
)
− ce,μr♦.

Note that this follows because b∗ ∧ b∗ is proportional to τ and thus point-
wise orthogonal to [τ, b∗]. This lower bound with (3.6) have the following
consequence: Fix for the moment c ≥ 1. If r♦ < c−1

e,μc−1 and δ < cE,μc−4 and
r 2z > ce,μc2, then |b⊥| < c−1 on the |x| ≤ 1− μ ball.
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Step 4. Fix c > 1 and suppose that r♦ < c−1
e,μc−1, δ < cE,μc−4 and r 2z ≥ ce,μc2

so as to conclude from Steps 2 and 3 that |b∗| < c−1 on the |x| ≤ 1−μ ball.

This understood, it then follows from what is in Step 1 that |e∗ − e| ≤
ce,μ(δ

1/4 + c−1 + r♦) on the |x| ≤ 1− μ ball.

Granted the bound in the preceding paragraph, the assertion made by

the top bullet follows if rz ≥ ce,μρ
−2 and δ < c−1

e,μρ
4 and r♦ < c−1

e,μρ.

4.c. The construction of h

Fix ρ > 0. Lemma 4.2 asserts that the conditions in the first, second and

third bullets of (3.26) are obeyed for a suitable m if r♦ < c−1
e,μρ

−1, δ < c−1
e,μρ

4

and rz ≥ ce,μρ
−2. The conditions in the fifth bullet are also met if r♦ < c−1

0 ρ

since the metric mφ differs from the Euclidean metric on the |x| ≤ 1 ball

by at most c0r
2
♦ and the norms of its first derivatives are also bounded

by c0r
2
♦. The L2 norms of what are denoted by s, r and r0 are bounded

respectively by c0 times r−1
z ‖FA♦ − r 2z ã∗ ∧ ã∗‖2, ‖dA♦ ã∗‖2 and ‖dA♦∗ã∗‖2. A

look at Proposition 4.1 finds the latter to be bounded by cer−1
z r

1/2
♦ . This

being the case, then the L2 norms of s, r and r0 will be bounded by m−1ρ if

r♦ ≤ c−1
e ρ2.

The problematic requirement in (3.26) is the one that concerns s0, the

reason being that the (âA♦ , g
∗ã∗) version of s0 is −m∗(e ∧ [τ, ∗b∗]) because

the Coulomb gauge condition was imposed on âA♦ . Given what is said so

far, the L2 norm s0 can be as large as c0mρ. The lemma that follows will be

used to circumvent this problem. This lemma finds an automorphism of the

product bundle that pulls back the given pair (A♦, ã∗) to one that satisfies

all of the conditions in (3.26).

Lemma 4.3. Given e ≥ 1, μ ∈ (0, 12 ] and ρ ∈ (0, 1], there exists c > 1

with the following significance: Suppose that r > 1 and (A, â) is a pair of

connection on P and section of (P ×SO(3) su(2)) ⊗ T∗M that obey (3.2).

Fix p ∈ M where rz ≥ c. Suppose in addition that r♦ < c−1 and that

‖∇A♦ ã∗‖2 < c−1. There exists an isomorphism, h, from the product prin-

cipal SO(3) bundle over the |x| ≤ 1 − μ ball to φ∗P over this ball such that

the pair (AΔ = h∗A♦, aΔ = h∗ã∗) satisfies the conditions in the (ρ,m = ρrz)

version (3.26).

Proof of Lemma 4.3. The proof has five parts. Parts 1–4 construct h and

Part 5 verifies that it has the required properties.
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Part 1: Let κ∗ denote the e and 1
16μ version of Lemma 4.2’s constant

κρ/16. Use δ again to denote ‖∇A♦ ã∗‖2. Assume henceforth that rz > κ∗,
that r♦ < κ−1

∗ and that δ < κ−1
∗ so as to invoke the apriori bounds that

Lemma 4.2 supplies on the |x| < 1− 1
16μ ball with ρ replaced every where by

1
16ρ. The desired isomorphism h is written as the composition of first g and
then the restriction to the |x| ≤ 1 − μ ball of a certain isomorphism of the
product bundle R3×SO(3). An isomorphism of the product principal SO(3)
bundle over R3 can be viewed as a map from R3 to SU(2) and vice-versa.
The notation in what follows does not distinguish between such a map and
the corresponding isomorphism of the product principal bundle R3×SO(3).
The desired map/isomorphism is denoted by u. The incarnation of u as a
map from R3 to SU(2) is written as u = emx with x denoting in what follows
a map from R3 to τ ’s version of su⊥ that is chosen so that the corresponding
(AΔ = h∗A♦, aΔ = h∗ã∗) version of s0 is 0 on the |x| ≤ 1− μ ball.

Part 2: Let u : R3 → SO(3) denote a given map. The action of u on
(g∗A♦, g∗ã∗) sends this pair to a pair that is written as (θ0+âu, u(g

∗ã∗)u−1)
with âu = uâA♦u

−1 + udu−1. Define a pair, (au, bu) of maps from the |x| <
1− 1

16μ ball in R3 to V⊕ V by

au = m−1(âu − τ〈τ âu〉) and(4.19)

bu =

√
4π

3
(u(g∗ã∗)u−1 − τ〈τu(g∗ã∗)u−1〉),

these being the AΔ = θ0 + âu and aΔ = u(g∗ã∗)u−1 versions of what (3.21)
denote by a and b. The plan for what follows is to construct a map x : R3 →
su⊥ so that the u = emx version of (au, bu) obey d∗au − me[τ, ∗bu] = 0 where
|x| < 1− μ.

To see what the construction of the desired map involves, let x : R3 →
su(2) denote a smooth map with 〈τx 〉 = 0 and with |x | < m−1c−1

0 at all
points. With x chosen, set u = emx . The resulting version of au and bu can
be written schematically as

(4.20) au = a− dx + a(x , a) and bu = b− m [τ, x ]e + b(x , b).

The desired version of x is constrained to obey the differential equation

(4.21) d†dx + m2x + χμ∗(me ∧ [τ, ∗b]− d∗a+ me ∧ [τ, ∗b]) = 0.

If x obeys (4.21), then d∗au −me ∧ [τ, ∗bu]) = 0 is obeyed where χμ = 1 and
thus on the ball where |x| < 1− 3

4μ. Note that (4.21) is the linear equation
d†dx + m2x = 0 where χμ is zero, and thus where |x| ≥ 1− 1

4μ.
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Part 3: It proves useful to write (4.21) as an equation for the fixed point of
a self-map of a certain Banach space completion of the space of compactly
supported maps from R3 to su⊥. The norm for the Banach space is defined
by the rule

(4.22) x → sup
R3

(m |x |+ |dx |).

This norm is denoted by ‖ · ‖B and the resulting Banach space is denoted
by B.

The specification of the relevant map from B to B is denoted by T .
This map is depicted in the upcoming (4.24). What follows directly explains
the notation that is used in (4.24). To start, let u again denote emx . Then
m−1udu−1 can be written schematically as G(dx ) with G denoting the map
from R3 to End(su(2)) given by the rule

(4.23) α → G(α) = −
∫ 1

0
esmxαe−smx ds.

This formula has the following implication: If |x | ≤ c−1
0 m−1, then G can

be written as 1 + g with |g(α)| < 1
100 |α|. In particular, G is invertible if

|u| ≤ c−1
0 m−1 and its inverse can be written as G−1 = 1 + g∗ with |g∗(α)| <

c0|x ||α|. In addition to introducing g∗, the upcoming (4.24) introduces a1 to
denote the contribution to a in (4.20) from the term m−1uâA♦u

−1. This is
to say that a1 = m−1([duu−1, uâA♦u

−1]− τ〈τ [duu−1, uâA♦u
−1]〉). By way of

a final remark about notation, (4.24) reintroduces the Green’s function G
from (3.19).

Having set the notation, fix c > c0 so that g∗ is defined on the ‖·‖B < c−1

ball about the origin in B. Denote this ball by Bc and introduce the map
T : Bc → C0(R3; su(2)) by defining T (x ) at any given point y ∈ R3 to be
(4.24)

−
∫
R3

Gyχμ

(
m2g∗x−∗d∗a1+∗m(1+g∗)(e∧[τ, ∗b]−G(dx )∧∗G(dx )+e∧[τ, ∗B])

)
.

A C2 fixed point of T is, by construction, a solution to (4.21).

Part 4: This part of the proof explains why the following assertion is true:

(4.25) There exists k > 1 with the following significance: Suppose that
c > k and that m > k and that sup|x|<1−μ/16 |b∗| < k

−1. Then T
maps Bc to itself as a contraction mapping.
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Steps 1–3 of what follows prove the assertion in (4.25). A fourth step proves
that the corresponding fixed point is C∞. These steps use λ to denote
sup|x|<1−μ/16 |b∗|.
Step 1. Fix c > c0 so that T is defined on Bc . This step derives an a priori
bound for the supremum norm of any given x ∈ Bc version of T (x). To this
end, use the fact that d∗âA♦ = 0 to see that the integrand in (4.24) has
absolute value less than

(4.26) c0(m‖x ‖2B + m |b∗|+ ‖x ‖B|âA♦ |).

As can be seen from (3.20), the integral Gy(·) is bounded by c0m−2, and
so the integral of Gy times the left most two terms in (4.26) is bounded by
c0m−1(‖x ‖2

B
+ λ). Meanwhile, the integral of Gy(·)|âA♦n

| is bounded by c0
times the product of the L2 norm of the function e−m|·|/4 with the L2 norm of

1
|y−(·)|χμ|âA♦ |. The former is bounded by c0m−3/2 and the latter is bounded

courtesy of the second bullet in (3.10) and Proposition 3.1 by c0. Granted
all of this, it then follows that

(4.27) |T (x )| ≤ c0m−1(c−2 + λ+ m−1/2c−1) when x ∈ Bc .

This is the promised supremum norm for T (x ) because it holds at all x ∈ R3.

Step 2. This step derives an a priori bound for the supremum norm of
the 1-form dT (x ). To start this task, fix x ∈ R3 and view the assignment
y → Gy(x) as defining a function on R3−{x}. Use (dG)y(x) to denote the

1-form on R3 that is obtained by differentiating this function. It follows from
(3.20) that

(4.28) |(dG)y(·)| ≤ c0

(
1

|(·)− y|2 + m
1

|(·)− y|

)
e−m|(·)−y|.

The integral of the right hand side of (4.28) is bounded by c0m−1. This
understood, then the integral of |(dG)y(·)| times the left most two terms
in (4.26) is at most c0(‖x ‖2

B
+ λ). Meanwhile, the L2 norm of ( 1

|(·)−y| +

m)e−m|(·)−y| is no greater than c0 m−1/2. It follows from the latter bound that
the integral of |(dGy(·)| times the term ‖x ‖B|âA♦n

| in (4.26) is no greater
than c0m−1/2‖x ‖B times the L2 norm of 1

|y−(·)|χμ|âA♦ |. As noted previously,

the latter norm is bounded by c0. Therefore, the bounds just stated imply
that

(4.29) |dT (x )| ≤ c0(c2 + λ+ m−1/2c−1) when x ∈ Bc .
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This inequality holds for all x ∈ R3 and thus supplies a supremum norm for
|dT (x)|.
Step 3. It follows from (4.27) and (4.29) that T maps Bc to the space of
Lipshitz maps from R3 to su⊥. To see that the image is in B, use the fact that
the integrand in (4.24) is supported where |x| < 1 with (4.26) to conclude
that T (x ) is smooth where |x| > 1 and that the norms of T (x ) and its
derivatives to any given order are bounded a priori where |x| > 1 by an
order dependent multiple of ‖T (x )‖Be−mn|x|/2. This implies that T maps Bc
to B.

Granted that T maps Bc to B, it follows from (4.27) and (4.29) that

(4.30) ‖T (x )‖B ≤ c0(c−2 + λ+ m−1/2c−1).

This last bound has the following consequence: If c > c0 and λ < c−1
0 c−1

and m > c0, then T maps Bc to the ‖ · ‖B < 1
2 c−1 ball in B.

Fix c and ρ and m so that the preceding conclusions apply. Let x and
x ′ denote two elements in Bc . Arguments that differ only cosmetically from
those in Steps 1 and 2 prove that ‖T (x )−T (x ′)‖B ≤ c0(c−1+λ+m−1/2)‖x −
x ′‖B. This last bound implies that T defines a contraction self-map of Bc
when c > c0 and λ < c−1

0 and m > c0.

Step 4. Fix c > c0 and λ < c−1
0 c−1 and m > c0 so that T maps Bc to itself

as a contraction mapping. The contraction mapping theorem asserts that
T has a unique fixed point in Bc . Let x now denote this fixed point. The
fact that x is smooth can be proved using a boot-strapping argument with
(4.24). In particular an argument of this sort using a difference quotient
construction gives Lipshitz bounds on successive orders of derivatives. This
argument is straightforward; and since it is somewhat tedious, it is left to
the reader except for the following brief remarks about the argument for the
second derivatives. To start, fix ε > 0|∇dx |ε denote

(4.31) |∇dx |ε = ε−1 sup
{(y,y′)∈R3:|y−y′|>ε}

|(dx )|y − (dx )|y′ |

Since x = T (x ), the bound in (4.31) for the ‖ · ‖B norm of (4.24) and the
definition in (4.23) for G can be used with the arguments that differ little
from those in Step 2 to prove that

(4.32) |∇dx |ε ≤ c0(c−1 + m−1/2)|∇dx |ε + c0

(
sup
R3

(|∇b|+ |∇âA♦ |) + mc−1
)
.

This last bound leads to the following conclusion: If c > c−1
0 and m > c0,

then |∇dx |ε has a ε independent upper bound. Granted that such is the
case, then dx is Lipschitz.
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Part 5: Fix c > c0 and λ < c−1
0 c−1 and m > c0 so that the map T has a

unique fixed point in Bc . Let x denote this fixed point. Let u denote emx .
This part of the proof considers the extent to which the pair (AΔ = θ0+ âu,
aΔ = u(g∗ã∗g−1)u−1) obey the conditions set forth in a given m and ρ version
of (3.26).

The fifth bullet in (3.26) is again obeyed when r♦ < c−1
0 ρ1/2, this because

πφ has no (AΔ, ãΔ) dependence. As for the fourth bullet, the L2 norms of s,
r and r0 for the case when (AΔ = θ0+âu, aΔ = u(g∗ã∗g−1)u−1) are the same
as those of their analogs for the case when (AΔ = θ0 + âAΔ

, aΔ = g∗ã∗g−1).
This is because the (AΔ = θ0 + âu, aΔ = u(g∗ã∗g−1)u−1) versions of s, r and
r0 are the pointwise conjugations of their (AΔ = θ0 + âAΔ

, aΔ = g∗ã∗g−1)
namesakes by emx . Meanwhile, the (AΔ = θ0 + âu, aΔ = u(g∗ã∗g−1)u−1)
version of s0 is zero on the |x| ≤ 1−μ ball. This being the case, the L2 norm
bounds in the the fourth bullet of the (AΔ = θ0 + âu, aΔ = u(g∗ã∗g−1)u−1)
version of (3.26) are met if r♦ ≤ c−1

0 ρ2.
The subsequent discussion of the first three bullets in (3.26) invokes an

important consequence of (4.30), this being that

(4.33) |dx |+ m |x | ≤ c0λ.

It follows directly from (4.33) that

(4.34) • |bu − b∗|+ |eu − e∗| ≤ c0λ(λ+ |b∗|),
• |au − a∗| ≤ c0λ(λ+ |a∗|),
• |〈τ âu〉 − 〈τ âAΔ

〉| ≤ c0λ
2m + c0λ|〈τ âAΔ

〉|.
The inequality in the first bullet in (4.34) with the assumed bound |b∗| +
|e∗−e| < 1

16ρ implies that sup|x|≤1−μ(|bu|+|eu−e|) < ρ when λ < c−1
0 ρ. This is

the requirement of the first bullet in the (AΔ = θ0+âu, aΔ = u(g∗ã∗g−1)u−1)
version of (3.26). The second bullet of (4.34) with the assumed 1

16ρ bound for

the L2 norm of a∗ on the |x| < 1− 1
16μ ball implies the following: If λ < c−1

0 ρ,
then the L2 norm of au on the |x| < 1 − μ ball is less than ρ. This is the
requirement of the second bullet of the (AΔ = θ0+ âu, aΔ = u(g∗ã∗g−1)u−1)
version of (3.26). If λ < c−1

0 ρ, then the third bullet in (4.34) implies the
third bullet of the (AΔ = θ0 + âu, aΔ = u(g∗ã∗g−1)u−1) version of (3.26) in
the case when m = ρrz .

4.d. The proof of Proposition 3.2

Fix small μ > 0 and ε′ > 0. Lemma 4.3 with the first and second bul-
lets of Proposition 4.1 and Lemma 3.4 lead directly to the following: There
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exists c > 1 such that if rz > c, r♦ < c−1 and ‖∇A♦ â∗‖2 < c−1, then
|u(g∗ã∗g−1)u−1| ≤ c0 on the |x| < 1 − μ ball and the (AΔ = u∗g∗A♦,
aΔ = u(g∗ã∗g−1)u−1) version of what is denoted by b in (3.21) obeys

(4.35)

∫
|x|≤1−μ

|b|2 < ε′r−4
z .

Given what is said in the second bullet of (3.8), these bounds with the

m =
√

3
4π rz version of (3.25) lead directly to the bound

(4.36)

∫
|x|≤1−μ

|FA♦ |2 ≤ c0(ε
′ + r♦).

If ε′ is taken equal to c−1
0 ε and if r♦ < c−1

0 ε, then (4.36) is the asser-
tion of Proposition 3.2. Therefore, if rz > c and r♦ < min(c−1, c−1

0 ε) and
‖∇A♦ â∗‖2 < c−1, then Proposition 3.2 is true.

Let κc denote the (k= c, μ, ε) version of Lemma 3.3’s constant κ. If rz ≤ c,
then Lemma 3.3’s conclusion holds if both r♦ < κ−1

c and ‖∇A♦ â∗‖2 < κ−1
c .

As Lemma 3.3’s conclusion is the assertion of Proposition 3.2, it follows that
Proposition 3.2 is true no matter the value of rz when both r♦ and ‖∇A♦ â∗‖2
are less than min(c−1, c−1

0 ε, κ−1
c ).

5. Integral identities and monotonicity

This section has two purposes, the first is to state and then prove a propo-
sition that asserts a monotonicity property of two functions on (0, c−1

0 ) that
are associated to any given point in M and a pair (A, â) of connection on
P and section of P ×SO(3) su(2) that obeys the constraints in (3.2) for a
given e and r . This monotonicity assertion constitutes the upcoming Propo-
sition 5.1. The second purpose of the section is to establish various integral
inequalities, some of which are used in the proof of Proposition 5.1 and some
are used in Section 6.

To set the stage for Proposition 5.1, fix c0 > 1 so that the ball of radius
c−1
0 centered about any given point in M has compact closure in a Gaussian
coordinate chart about the chosen point. Fix for the moment a point p ∈ M.
Given r ∈ (0, c−1

0 ), let Br ⊂ M denote radius r ball centered at p and let ∂Br

denote the boundary of the closure of Br.

Reintroduce Uhlenbeck’s constant κU from (3.1). Having specified a con-
nection, A, on P and p ∈ M, define r♦ ∈ (0, c−1

0 ] as in (3.5) to be the largest
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value of r such that

(5.1)

∫
Br

|FA|2 ≤ 1
100κ

−2
U r−1,

To continue the stage setting, suppose that p ∈ M and r ∈ (0, c−1
0 ) are

given and that r is a chosen, positive number. Fix a pair (A, â) with A being
a connection on P’s restriction to the closure of Br and with â being a section
over this closure of the bundle (P×SO(3) su(2))⊗T∗M. The parameter r with

A and â define functions h and H on (0, c−1
0 ) by the rules

(5.2) r → h(r) =

∫
∂Br

|â|2 and r → H(r) =

∫
Br

(|∇Aâ|2 + 2r 2|â ∧ â|2).

Use these two to define the function n on the h �= 0 part of (0, c−1
0 ) by the

rule

(5.3) r → n(r) =
rH(r)

h(r)
.

The function n is called the frequency function because it plays the role here
that is played by an eponymous function that was introduced by Almgren
[Al]. The latter incarnation of n plays a central role in proving various theo-
rems about the nodal sets of eigenfunctions of the Laplacian on Riemannian
manifolds, and on solutions to certain nonlinear equations, second order dif-
ferential equations with Laplace symbol. See for example [Han], [DF] and
[HHL].

Proposition 5.1. Fix r0 > 0 such that each p ∈ M version of the functions
h, H and n are defined on the radius r0 ball centered at p. Given r0, there
exists κ > 100 whose significance is explained by what follows. Suppose that
e ≥ 1, that r > κeκ and that (A, â) is a pair in Conn(P)×C∞(M; (P×SO(3)

su(2)) ⊗ T∗M) obeying Items a)–d) in (3.2). Fix a point p ∈ M so as to
define the function h, H and n using r and (A, â) on (0, r0].

• If r ∈ [12r♦, κ
−1r0], then

d
drh = 2r−1(1+n)h+ e with e being a function

of r whose absolute value is less than κ(er−2+er−1/2h1/2+e1/2r−1H1/2).
• Let u denote the function on [12r♦, κ

−1r0] that is defined by the rule

r → u(r) = κEκr1/κ. If r† ∈ [12r♦, κ
−1r0] is such that h(r) ≥ r3−1/κ

when r ∈ [r†, κ−1r0]. Then

n(r2) ≥ e−u(r2)+u(r1)
n(r1)− u(r2) + u(r1)− r−1/8.

when r2 and r1 are such that r† ≤ r1 ≤ r2 ≤ κ−1r0.
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• If r∗ ∈ [12r♦, κ
−1) is such that h(r∗) = r

2+1/16
∗ and h(r) > r2+1/16 when

r is greater than r∗ but sufficiently close to r∗, then h(r) ≤ κr2+1/16

when r ∈ [r∗, κ−1r0].

• If r∗ ∈ [12r♦, κ
−1) and h(r∗) ≤ r

2+1/16
∗ , then h(r) ≤ κr2+1/16 for all

r ∈ [r∗, κ−1r0].

Note that the version of κ in this proposition depends on r0. The case
when r or r† or r∗ are less than r♦ is of no interest to the subsequent appli-
cations. Keep in mind in what follows that r is less than r♦ if r > c0e and

r ≤ c−1
0 e

−110−1/2κ
−1/2
U r−1, this being a consequence Item c) in (3.2) and

the third bullet of (3.3).
By way of an outline for the rest of this section, the proof of the first

bullet of the proposition is in Section 5.b and that of the second is in Sec-
tion 5.d. Section 5.e contains the proofs Proposition 5.1’s third and fourth
bullets. The intervening subsections establish some facts and observations
that are used in the proof.

5.a. Integration by parts identities

The upcoming Lemma 5.2 states the two fundamental integration by parts
identities. The second refers to the parameter r that is used to define the
function H. By way of notation, the lemma introduces functions h and f on
(0, c−1

0 ), these defined by

h(r) =
∫
Br

(|∇Aâ|2 + 2〈∗FA ∧ â ∧ â〉) and(5.4)

f(r) =

∫
Br

(r−2|FA − r 2â ∧ â|2 + |dAâ|2 + |dA∗â|2).

The lemma also uses ‖ · ‖2,r to denote the L2 norm on Br, and it ‖ · ‖∞,r to
denote the supremum norm on Br.

To set the rest of the notation, keep in mind that if p ∈ M and if
r ∈ (0, c−1

0 ), then the ball Br has compact closure in a Gaussian coordinate
chart centered at p. This being the case, the outward pointing, unit length
tangent vectors to the geodesic rays that start at p define a smooth vector
field on B−p. This vector field is denoted by ∂r. When â denotes a section
over Br of (P ×SO(3) su(2)) ⊗ T∗M, then âr is used to denote the section of
(P ×SO(3) su(2)) overy Br−p that is given by pairing â with ∂r. When A
denotes a connection on P’s restriction to Br, then ∂A,r is used to denote
the A’s directional covariant derivative along the vector field ∂r.
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Lemma 5.2. There exists κ > 1 with the following significance: Fix p ∈ M
and fix r ∈ (0, κ−1). Suppose that A is a connection on P’s restriction to
the closure of Br and that and â is a section over this closure of (P ×SO(3)

su(2))⊗ T∗M. Then

•
∫
∂Br

〈∂A,râ ∧ ∗â〉 = h +
∫
Br

Ric(〈â ⊗ â〉)−
∫
Br
〈â ∧ ∗qA(â)〉.

•
∫
∂Br

(|∇Aâ|2 + 2r 2|â ∧ â|2) = 2
∫
∂Br

(|∂A,râ|2 + r 2|[â, âr]|2) + 1
rH+R,

with R obeying |R| ≤ c0(‖qA(â)‖2,r + r f1/2‖â‖∞,r)H
1/2 + c0(h + rH) +

c0(f
1/2‖â‖2,r + ‖â‖22,r).

Proof of Lemma 5.2. Given the definitions of h and qA, the identity in the
first bullet of the lemma follows using Stoke’s theorem. The proof of the
assertion in the second bullet has two steps.

Step 1. Fix p ∈ M and an orthonormal frame {ei}i=1,2,3 for T∗M on the
radius c−1

0 ball centered at p. Write â = âiei and ∇Aâ = (∇A,iâ)kek⊗ ei with
it understood that repeated indices are to be summed. View the Riemann
curvature tensor as a section of ⊗4T∗M and write it as Rikmne

i⊗ek⊗em⊗en.
Likewise, write the Ricci tensor as Ricike

i⊗ek. The metric tensor is δike
i⊗ek

in this notation with δik = 0 if i �= k and δ11 = δ22 = δ33 = 1. Granted this
notation, a symmetric section of T∗M⊗T∗M to be denoted by T = Tije

i⊗ej

is defined by setting any given i, j ∈ {1, 2, 3} version of Tij to be

(5.5) Tij = 〈(∇A,iâ)k(∇A,jâ)k〉+ r 2〈[âi, âk][âj, âk]〉+Rikjm〈âkâm〉
− 1

2δij(〈(∇A,mâ)k(∇A,mâ)k〉+ r 2〈[âk, âm][âk, âm]〉+Ricmk〈âkâm〉),

with it again understood that repeated indices are summed.
Let d† denote the map from C∞(M;T∗M⊗T∗M) to C∞(M;T∗M) given

by the formal L2 adjoint of the Levi-Civita covariant derivate. The 1-form
d†T can be written schematically as

(5.6) (d†T)i = −〈(∇A,iâ)kqA(â)k〉+Q∧i(rq⊗ â ⊗ r (â ∧ â))
+Q∇i(rq⊗ â ⊗∇Aâ) +Ri(â ⊗ q) + Si(â ⊗ â),

where the notation has q denoting the triple

(5.7) q = (r−1∗(FA − r 2â ∧ â), ∗dAâ, dA∗â),

this being a section of (P ×SO(3) su(2)) ⊗ (T∗M ⊕ T∗M ⊕ (∧3T∗M)). What
are denoted by Q∧, Q∇, R and S in (5.6) are homomorphisms that involve
only the metric, the Riemann curvature tensor and the latter’s covariant
derivative. In any event, each has norm bounded by c0.
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Step 2. Fix r ∈ (0, c−1
0 ). Let Δ denote for the moment the function dist(·, p)2

on the ball Br. Integrate d†T∧ ∗dΔ on Br and use Stoke’s theorem to write

(5.8)

∫
Br

d†T ∧ ∗dΔ = −2r

∫
∂Br

T(∂r ⊗ ∂r) +

∫
Br

Tij∇i∇jΔ.

The identity in the second bullet of Lemma 5.2 follows directly from (5.8)

given what is said in the subsequent paragraph about the integral on the

left hand side and the two integrals on the right hand side.

The norm of |dΔ| on Br is bounded by r and so it follows from (5.5) that

the absolute value of the integral on the left hand side of (5.6) is no greater

than r times

(5.9) c0(‖qA(â)‖2,r + r f1/2‖â‖∞,r)H
1/2 + c0(f

1/2‖â‖2,r + ‖â‖22,r).

Meanwhile, the boundary integral on the right hand side of (5.8) differs from

r times

(5.10)

∫
∂Br

(|∇Aâ|2 + 2r 2|â ∧ â|2)− 2

∫
∂Br

(|∂A,râ|2 + r 2|[â, âr]|2)

by at most c0rh, this being a direct consequence of (5.5)’s formula for T. The

right most integral in (5.8) differs from the integral of the trace of T by at

most c0(r
2H+ ‖a‖22,r), this because ∇i∇kρ differs from 2δik by at most c0r

2.

A look at (5.5) finds that the trace of T differs from −1
2(|∇Aâ|2+2r 2|â ∧ â|2)

by at most c0|â|2.

5.b. Proof of the first bullet of Proposition 5.1

The proof has five parts.

Part 1: Invoke the first bullet of Lemma 5.2 to write

(5.11) d
drh = 2r−1(1 + r)h + 2h +

∫
Br

Ric(〈â ⊗ â〉)−
∫
Br

〈â ∧ ∗qA(â)〉,

with r denoting a term whose absolute value is bounded by c0r
2. This term

accounts for the fact that the second fundamental form of ∂Br may differ

from r−1 times the induced metric. The bound on |r| is due to the fact that

these two tensors can differ by at most c0r.
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Part 2: Assume that A is a connection on P’s restriction to the closure
of Br and that â is a section over this closure of (P ×SO(3) su(2)) ⊗ T∗M.
Assume in addition that a positive number e has been specified and that
‖FA − r 2â ∧ â‖2,r ≤ e

1/2. Write 〈∗FA ∧ â ∧ â〉 as the sum of r−1〈∗(FA −
r 2â ∧ â) ∧ (r â ∧ a)〉 and r 2|a ∧ a|2 to derive the bound given below for the
difference between h and H:

(5.12) |h −H| ≤ c0e
1/2r−1H1/2.

Use this bound with the definition of n to write (5.11) as

(5.13) d
drh = 2r−1(1 + n+ r)h + r1 +

∫
Br

Ric(〈â ⊗ â〉)−
∫
Br

〈â ∧ ∗qA(â)〉

with r1 being a term with norm at most c0e
1/2r−1

H
1/2.

Part 3: Assume as in Part 2 that (A, a) is a pair of connection on P’s
restriction to the closure of Br and that â is a section over this closure of
(P×SO(3) su(2))⊗ T∗M. Then

(5.14)

∫
Br

|â|2 ≤ 2rh(r) + 8r2H(r).

This inequality is a direct consequence of the following integration by parts
formula for the radius 1 ball in R3: Let f denote a smooth on the |x| ≤ 1
ball. Fix ε ∈ (0, 1). Then

(5.15) (1− ε)

∫
|x|≤1

1

|x|2 f
2 ≤

∫
|x|=1

f2 + ε−1

∫
|x|≤1

|df |2.

The inequality in (5.15) leads to (5.14) by writing the integrals in (5.14)
using a Gaussian coordinate chart centered at p. Having done so, appeal to
(2.6) when invoking the f = |â| and ε = 1

4 version of (5.15).

It follows directly from (5.14) that the contribution to (5.13) from the
Ricci curvature integral on (5.13)’s right hand side has absolute value at
most c0r(1 + n)h.

Part 4: Assume that A is a connection on P’s restriction to the closure of Br

and that â is a section over this closure of (P×SO(3) su(2))⊗T∗M. Assume in
addition that a number e > 1 has been specified and that each of ‖qA(a)‖2,r,
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r‖dAâ‖2,r and r‖dA∗â‖2,r is less than e
1/2. As explained momentarily, r > c0e

and if r > c−1
0 e

−110−1/2κ
−1/2
U r−1, then

(5.16)

∣∣∣∣
∫
Br

〈â ∧ ∗qA(â)〉
∣∣∣∣ ≤ c0(er−2 + er−1/2h1/2 + e

1/2r−1H1/2).

By way of a parenthetical remark, (5.16) holds with r > m−1r for any
m > 0 with c0 replaced by an m-dependent constant. The given lower
bound on r is used because r is necessarily less than r♦ if r > c0e and

r ≤ c−1
0 10−1/2κ

−1/2
U r−1. The proof of (5.16) has two steps.

Step 1. Fix ε ∈ (0, 12) for the moment and let χε denote the function on Br

given by χ(ε−1(r−1dist(·, p)−1+ε)). This function equals 1 where dist(·, p) ≤
(1 − ε)r and it equals 0 where dist(·, p) ≥ r. Write the integral over Br of
〈â ∧ ∗qA(â)〉 as the sum of two integrals, the first being the integral over Br

of χε〈â ∧ ∗qA(â)〉 and the second being the integral of (1− χε)〈â ∧ ∗qA(â)〉.
The absolute values of these two integrals are bounded respectively by

c0er−2 + c0e
1/2ε−1/2r−1/2r−1

(
sup

(1−ε)r≤s≤r
h(s)

)1/2
and(5.17)

c0e
1/2ε1/2r1/2

(
sup

(1−ε)r≤s≤r
h(s)

)1/2
.

To prove the bound for the first integral, write qA(â) as ∗dA∗dAâ−dA∗dA∗â,
integrate by parts and invoke the assumption that ‖dAâ‖2,r + ‖dA∗â‖2,r is
less than r−1

e
1/2. The bound for the second integral follows directly from

the assumption that ‖qA(â)‖2,r ≤ e
1/2.

Step 2. Use the fundamental theorem of calculus to see that

(5.18) sup
(1−ε)r≤s≤r

h(s) ≤ c0h(r) + c0εr

∫
Br

|∇Aâ|2.

This inequality with (5.17) leads directly to the following bound:

(5.19)

∣∣∣∣
∫
Br

〈â ∧ ∗qA(â)〉
∣∣∣∣

≤ c0er−2+c0e
1/2(ε−1/2r−1/2r−1+ε1/2r1/2)h1/2+c0(r−1+εr)(H1/2+e

1/2r−1).

Assume henceforth that r> c−1
0 e

−110−1κ
−1/2
U r−1. Use ε=c−1

0 κ
−1/2
U e

−1r−1r−1

in the right hand side of (5.19) to go from the latter bound to the bound in
(5.16).
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Part 5: Use what is said in Parts 2–4 to conclude that the right hand
side of (5.11) differs from 21

r (1 + n)h by at most c0r(1 + n)h + c0(er−2 +

e
1/2r−1H1/2) + c0er−1/2h1/2. This is what is claimed by the first bullet of

Proposition 5.1.

5.c. A differential equation for nnn

The next lemma asserts a formula for dn
dr . This lemma also refers to Uhlen-

beck’s constant κU from (3.1).

Lemma 5.3. There exists κ ≥ 100 with the following significance: Suppose
that e ≥ 1, that r > κe and that (A, â) ∈ Conn(P) × C∞(M; (P ×SO(3)

su(2)) ⊗ T∗M) obeys the conditions in (3.2). Fix p ∈ M so as to define the

functions h, H and n using r and (A, â). If r ≥ κ−1κ
−1/2
U r−1, then

dn

dr
≥ 2

r

h

∫
∂Br

r 2|[â, âr]|2 − xn− κe

(
r

h

)1/2

n
1/2 − κ

(
r + κer−1/2r

(
r

h

)1/2)
,

with x obeying |x| ≤ κ(er−1( 1
rh)

1/2
n
1/2 + rn+ e

1
h r−2 + c0er−1/2( 1h)

1/2).

Proof of Lemma 5.3. The proof does its best to mimic what is done in [Al],
[HHL] and [Han] to prove an analoguous monotonicity assertion for the
version of n that arises when studying eigenfunctions of d†d. In any event,
the starting point is the identity

(5.20)
dn

dr
=

H

h
+

r

h

dH

dr
− rH

h2
dh

dr
.

The derivation of the lemma’s lower bound from (5.20) has four parts.

Part 1: The derivative of H is

(5.21)
dH

dr
=

∫
∂Br

(|∇Aâ|2 + 2r 2|â ∧ â|2),

and the second bullet of Lemma 5.2 is used to write this as

(5.22)
dH

dr
= 2

∫
∂Br

(|∂A,râ|2 + r 2|[â, âr]|2) +
1

r
H +R.

Use this last identity to write n’s derivative as

(5.23)
dn

dr
= 2

r

h

∫
∂Br

(|∂A,râ|2 + r 2|[â, âr]|2) +
rR

h
+ 2

H

h
− rH

h2
dh

dr
.

Save this identity for Part 3.
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Part 2: Use the definition of h to write

(5.24)
dh

dr
= 2(1 + r)

h

r
+ 2

∫
∂Br

〈∂A,râ ∧ ∗â〉 ,

with r being the same as its namesake in (5.11). Thus, |r| ≤ c0r
2. This then

leads to

(5.25) 2
H

h
− rH

h2
dh

dr
= −2

rH

h2

∫
∂Br

〈∂A,râ ∧ ∗â〉 − 2
1

r
rn.

To continue, use (5.12) to write H= h−z1 with z1 obeying |z1|≤ c0e
1/2r−1H1/2

and then use this to write the right hand side of (5.25) as twice

(5.26) − rh
h2

∫
∂Br

〈∂A,râ ∧ ∗â〉+ r

h2
z1

∫
∂Br

〈∂A,râ ∧ ∗â〉 − 1

r
rn,

Now use the first bullet of Lemma 5.2 to replace h in (5.26) and in doing so,

replace (5.26) with the expression

(5.27) − r

h2

(∫
∂Br

〈∂A,râ ∧ ∗â〉
)2

+
r

h2

(
z1 +

∫
Br

Ric(〈â ⊗ â〉)−
∫
Br

〈â ∧ ∗qA(â)〉
)∫

∂Br

〈∂A,râ ∧ ∗â〉 − 1

r
rn.

One last replacement is needed, this the replacement in (5.27) of the right

most integral over ∂Br of ∂A,râ ∧ ∗â using the first bullet of Lemma 5.2 to

equate (5.27) with

(5.28) − r

h2

(∫
∂Br

〈∂A,râ ∧ ∗â〉
)2

+
r

h2
z(H + z)− 1

r
rn,

with z denoting z = z1 +
∫
Br

Ric(〈â ⊗ â〉)−
∫
Br

〈
â ∧ ∗qA(â)

〉
.

Part 3: Twice the expression in (5.28) is the same as the right hand side of

(5.25) and thus the same as the left hand side of (5.25). The latter appears

in (5.23). Replace its incarnation in (5.23) with (5.28) to write the derivative

of n as

(5.29)
dn

dr
= 2

r

h2
X+

rR

h
+ 2

r

h2
z(H + z)− 2

1

r
rn,

with X = (
∫
∂Br

|â|2)(
∫
∂Br

(|∂A,râ|2 + r 2|[â, âr]|2))− (
∫
∂Br

〈∂A,râ ∧ ∗â〉)2.
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The key observation with regards to (5.29) is that X is non-negative.
More to the point, writing the derivative of n as in (5.29) leads to the lower
bound

(5.30)
dn

dr
≥ 2

r

h

∫
∂Br

r 2|[â, âr]|2 +
rR

h
+ 2

r

h2
z(H + z)− 2

1

r
rn.

The left most term on the right hand side of (5.30) is nonnegative. Part 4
gives bounds for the absolute values of the remaining terms.

Part 4: With regards to (5.30), keep in mind that |r| ≤ c0r
2. Keep in mind

also that Lemma 5.2 with (5.14), the assumptions in Items a)–d) of (3.2)
and the first plus third bullet of (3.3) give the bound

(5.31) |R| ≤ c0eH
1/2 + c0h + c0rH + c0er−1r1/2h1/2

Meanwhile, what is said above about |z1| and what is said in (5.14) and
(5.16) imply that

(5.32) |z| ≤ c0e
1/2r−1H1/2 + c0(rh + r2H) + c0(er−2 + er−1/2h1/2).

Use these bounds for |r|, |R| and |z| to bound the derivative of n from below
by

(5.33)
dn

dr
≥ 2

r

h

∫
∂Br

r 2|[â, âr]|2 − c0erH
1/2h−1 − c0r− c0er−1/2r3/2h−1/2

− c0(r + er−1H1/2h−1 + c0r
2Hh−1 + c0er−2h−1 + c0er−1/2h−1/2)n.

Write each occurrence of H in (5.33) as r−1
nh to obtain the bound asserted

by Lemma 5.3.

5.d. Proof of the second bullet of Proposition 5.1

The proof of the second bullet has two parts.

Part 1: This part of the subsection states and then proves a lemma that
asserts the conclusions of the second bullet on any interval in [r‡, r0] where
n is not too large.

Lemma 5.4. Given m > 1, there exists κ ≥ 100 with the following
significance: Suppose that e ≥ 1, r > κeκ and that (A, â) ∈
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Conn(P) × C∞(M; (P ×SO(3) su(2)) ⊗ T∗M) obeys the conditions in Items

a)–e) in the statement of Proposition 5.1. Suppose that r2 > r1 are from the

interval [r♦, r0] and such that both h(r) ≥ r3−1/m and n(r) ≤ r 1/2m when

r ∈ [r1, r2]. Let u denote the function on [r1, r2] that is defined by the rule

r → u(r) = κeκr1/κ. Then n(r2) ≥ e−u(r2)+u(r1)
n(r1)− u(r2) + u(r1).

Proof of Lemma 5.4. The proof has two steps.

Step 1. Keep in mind that the function h is uniformly bounded by c0e, this

being a consequence of the first bullet of (3.3). Write each explicit occurrence

of H1/2 on the right hand side of (5.33) as (r−1
nh)1/2 to obtain the bound

(5.34) dn
dr ≥ −c0er

1/2h−1/2
n
1/2 − c0r− c0er−1/2r3/2h−1/2

− c0(r + er−1(rh)−1/2
n
1/2 + c0r

2Hh−1 + c0er−2h−1 + c0er−1/2h−1/2)n.

Replace the left most occurrence of n1/2 on the right hand side of (5.34) by

(1 + n), replace the explicit occurrence of H on the right hand side by c0e

to obtain the lower bound

(5.35) dn
dr ≥ −c0er

1/2h−1/2 − c0r− c0er−1/2r3/2h−1/2

− c0(r + er1/2h−1/2 + er−1(rh)−1/2
n
1/2

+ c0er
2h−1 + c0er−2h−1 + c0er−1/2h−1/2)n.

Now suppose h(r) ≥ r3−1/m when r ∈ [r1, r2]. Use this assumption to replace

all occurrences of h on the right hand side of (5.35) with r3−1/m. Mean-

while, replace the occurrence of n1/2 on the right hand side by r 1/4m. These
replacements lead to the lower bound

(5.36) dn
dr ≥ −c0er

−1+1/2m − c0r− c0er−1/2r1/2m

− c0(r + er−1+1/2m + er−1+1/4mr−2+1/2m

+ c0er−2r−3+1/m + c0er−1/2r−3/2+1/2m)n.

This inequality plays the role of the monotonicity inequalities for n’s name-

sakes in [Al], [HHL] and [Han].

Step 2. Integrate (5.36) to obtain the inequality

(5.37) n(r2) ≥ e−u(r2)+u(r1)(n(r1)− c0(m + er−1/2)(r
1/2m
2 − r

1/2m
1 ),
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where u is defined by the rule
(5.38)
r → u(r) = c0e(mr1/2m−r−1+1/4mr−1+1/2m−r−2r−2+1/m+r−1/2r−1/2+1/2m).

The right hand side of (5.38) is an increasing function of r, but it is no greater
than c0emr1/2m unless r ≤ cme

cm r−1−1/8m with cm depending only on m.
This with the third bullet in (3.3) implies that the integral of |FA|2 over the
radius r ball centered at p is no greater than c0(cme

cm)3r−1−3/8m. Note in
particular that the latter L2 norm bound violates the bound in (5.1) when
r is large. If the lower bound r ≥ c0(cme

cm)2m is obeyed, then Lemma 5.4’s
assertion follows directly from (5.37) and (5.38).

Part 2: The second bullet of Proposition 5.1 is an immediate corollary of
Lemma 5.4 and the subsequent lemma.

Lemma 5.5. Given m > 1, there exists κ ≥ 100 with the following sig-
nificance: Suppose that e ≥ 1, r > κeκ and that (A, â) ∈ Conn(P) ×
C∞(M; (P ×SO(3) su(2)) ⊗ T∗M) obeys the conditions in (3.2). Fix p ∈ M

and suppose that r† ∈ [r♦, 12r0] is such that h(r) ≥ r3−1/m when r ∈ [r†, r0].

Then n(·) ≤ r 1/2m on the interval [r†,
1
2r0].

Proof of Lemma 5.5. Let κm denote the version of κ that is given by
Lemma 5.4, and suppose that r ≥ κme

κm so as to invoke Lemma 5.4. Suppose
that r1 ∈ [r†,

1
2r0] is a point where n(r1) ≥ r 1/2m. It follows as a consequence

of Lemma 5.4 that n(·) ≥ 1
2κ

−1
m r 1/2m on the interval [r1, r0]. Use this fact

with the first bullet of Proposition 5.1 to see that

(5.39) d
drh ≥ c−1

∗ r 1/2mr−1h− c0e(r−2 + r−1−1/2m) when r ∈ [r1, r0],

where c∗ denotes a number that is greater than 1 and depends only on m.
Introduce by way of shorthand z denote c−1

∗ r 1/2m. The differential inequality
in (5.39) implies that

(5.40) h(r0) ≥ 2z(h(r)− cme(r−2−1/2m + r−1−1/m)) for any r ∈
[
r1,

1
2r0

]
,

where cm denotes here and in what follows a number that is greater than
1 and depends only on m. The assigned value for cm can be assumed to
increase between successive appearances.

The fact that |â| ≤ c0e means that h(r0) ≤ c0er
2
0. This runs afoul of the

r = 1
2r0 version of (5.40) when r ≥ cm unless h(12r0) < cmer−1−1/m. But the

latter bound is not allowed if r > cme
cm because h(12r0) is no smaller than

r
3−1/m
0 .
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5.e. Proof of the third and fourth bullets of Proposition 5.1

The fourth bullet follows directly from the third. The proof of the proposi-
tion’s third bullet has three parts.

Part 1: Fix δ ∈ (0, 1) for the moment. With δ chosen define the func-
tion x on [r♦, 12r0] by the rule r → x (r) = h(r) − r2+2δ. The first bullet of
Proposition 5.1 implies that x obeys the differential inequality

(5.41) d
drx ≤ 2r−1(1+n)x +2(n−δ)r1+2δ+c0e(r−2+ r−1/2h1/2+ r−1H1/2).

Write H1/2 as (r−1
nh)1/2 in (5.41) to see that (5.41) leads to the bound

(5.42)
d
drx ≤ 2r−1(1+n)x +2(n−δ+r−1/8)r1+2δ+c0e(1+δ−1)r−7/8+c0er−1/2h1/2.

Let rδ ∈ [r♦, 12r0] denote a zero of x , thus a value of r where the function
h obeys h(r) = r2+2δ. It follows from (5.42) that x is decreasing at rδ unless

(5.43) n ≥ δ − r−1/8 − c0e(1 + δ−1)r−2r−1−2δ − c0er−1/2r−δ.

In particular, if δ ≤ 1
4 , then x is decreasing at rδ unless n(rδ) >

1
4δ or else

r ≤ c−1
0 δ4e−4r−4/3. The latter option is of no concern if r > c0e

c0 because
it runs afoul of the r ≥ r♦ assumption. This understood, assume henceforth
this lower bound for r so as to conclude that x is decreasing at any zero in
[r♦, 12r0] where n ≤ 1

4δ.

Part 2: Take δ = 1
16 . Suppose that r∗ ∈ [r♦, 12r0] is a zero of x with the

property that x (r∗ + t) > 0 if t is positive and sufficiently small. Let r1 ∈
(r∗, c

−1
0 r0] denote the largest value of r such that h(s) ≥ s2+3/4 when s ∈

[r∗, r]. Note in particular that r1 is strictly larger than r∗ because h(r∗) =

r
2+1/16
∗ . It follows from the second bullet of Proposition 5.1 that

(5.44) n(r) ≥ 1
16 − r−1/8 − ce(s

1/c0 − r
1/c0
∗ ) for all s ∈ [r∗, r1].

Keeping this in mind, use the first bullet of Proposition 5.1 with to see that

(5.45) d
drh ≥ 2r−1

(
1 + 1

16 − r−1/8 − ce(r
1/c0 − r

1/c0
∗ )

)
h− ce(r−2 + r−7/8r)

on [r∗, r1]. Since r∗ ≥ c−1
0 r−1, this inequality implies that

(5.46) d
drh ≥ 2r−1

(
1 + 1

16 − r−1/8 − ce(r
1/c0 − r

1/c0
∗ )

)
h− cer−3/4r9/8



316 Clifford Henry Taubes

on [r∗, r1]. Integrating (5.46) finds that

(5.47) h(r) ≥ e−v(r)+v(r∗)r2+1/16 when r ∈ [r∗, r1],

where v is a non-negative function on [0, c−1
0 r0] that obeys |v|(r) ≤ c0r

1/c0 .

The lower bound in (5.47) implies that h(r1) ≥ r
2+3/4
1 if r1 ≤ c−1

0 r0. This

being the case, it follows that r1 must equal c−1
0 r0 and so both (5.44) and

(5.46) hold on [r∗, c
−1
0 r0].

Part 3: Fix r ∈ [r∗, c
−1
0 r0] and use r0∗ for the moment to denote the upper

end point of this interval. Integrate (5.46) from r to r0∗ to see that

(5.48) h(r0∗) ≥ c−1
0

(
r0∗
r

)2+1/16

h(r).

As noted previously, h(r0) is at most c0e
2r20∗. Use the latter bound in (5.47)

to see that h(r) ≤ c0r
2+1/16 when r ∈ [r∗, c

−1
0 r0]. This last conclusion is the

assertion of the third bullet of Proposition 5.1

6. Continuity of the limit

This section uses the results from Sections 3–5 to prove that Proposition 2.2’s

limit function |â♦| is continuous. The proposition below makes a formal

statement to this effect.

Proposition 6.1. Fix a subsequence Λ ⊂ {1, 2, . . . } so that {(An, ân)}n∈Λ
is described by Proposition 2.2. The limit function |â♦| given by the second

bullet of Proposition 2.2 is continuous. This function is also Hölder contin-

uous with exponent 1
4 where it is positive; and if p ∈ M and if |â♦|(p) = 0,

then there exists κ > 4 such that |â♦| ≤ κdist(p, ·)1/κ on the radius κ−1 ball

centered at p.

The proof of Proposition 6.1 occupies the remainder of this section.

Section 6.a proves that |â♦| is continuous where it is positive and it proves

the Hölder continuity assertion for the points where |â♦| is positive. The

arguments in Section 6.a assume Lemma 6.2, this being the crucial input.

Section 6.b contains the proof of Lemma 6.2. Section 6.c proves that |â♦|
is continuous near its zeros, and it proves that |â♦| has the asserted Hölder

continuity property at each zero.
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6.a. Continuity where |â♦| > 0

The assertion in Proposition 6.1 to the effect that |â♦| where positive is
Hölder continuous with exponent 1

4 is seen momentarily to be a consequence
of the upcoming Lemma 6.2. The notation for Lemma 6.2 and for the subse-
quent subsections refers back to notation that was introduced in Section 3.b.
To say more, fix for the moment p ∈ M. Each n ∈ Λ version of (An, ân) has a
corresponding version of what is denoted in Section 3.b as r♦. The (An, ân)
version is denoted in what follows by r♦n. Section 3.b describes a map that
it denotes by φ from the radius c−1

0 r−1
♦ ball in R3 to the radius c−1

0 ball
in M centered at p. The (An, an) version of this map is denoted by φn. The
corresponding pair (φn

∗An, r
−1
♦n ân) is denoted by (A♦n, â♦n), this being a pair

of connection on φn
∗P and φn

∗P×SO(3) su(2) valued 1-form.

Lemma 6.2. Let p denote a point in M where |â♦|(p) > 0. Choose a subse-
quence in Λ such that the corresponding sequence with n’th term |ân|(p) con-
verges to |â♦|(p). This chosen subsequence has a subsequence, to be denoted
by Λp, such that lim infn∈Λp

r♦n > 0. Moreover, there exists data consisting
of

• A sequence {gn}n∈Λp
with n’th member being an isomorphism from the

product principal SO(3) bundle over the |x| < 1 ball in R3 to φn
∗P.

• A pair (A♦, â♦) of L2
1;loc connection on the product principal SU(2)

bundle over the |x| < κ−1 ball in R3, and an su(2)-valued, L2
2;loc 1-

form on this ball with |a♦| = |â♦|(p). These are such that the sequence
{gn∗A♦n}n∈Λp

converges weakly in the L2
1;loc topology on the |x| < 1 ball

to A♦ and the sequence {gn∗a♦n}n∈Λ♦ converges weakly in the L2
2;loc

topology on the |x| < 1 ball to a♦.

The proof of Lemma 6.2 is in the Section 6.b.

The lemma that follows asserts the parts of Proposition 6.1 that concern
the points in M where |â♦| is greater than zero.

Lemma 6.3. Fix a subsequence of Λ ⊂ {1, 2, . . . } so that {(An, ân)}n∈Λ is
described by the six bullets in Proposition 2.2. Let |â♦| denote the limit func-
tion given by the second bullet of Proposition 2.2. Then the |â♦| > 0 subset
of M is open and |â♦| on this subset is Hölder continuous with exponent 1

4 .

Proof of Lemma 6.3. The proof has two parts.

Part 1: Fix p ∈ M where |â♦|(p) > 0 and let Λp denote the correspond-
ing subsequence from Lemma 6.2. Let r∗ > 0 denote a lower bound for
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{r♦n}n∈Λp
. The convergence of {gn∗â♦n}n∈Λp

that is asserted by Lemma 6.2
with the fact that each n ∈ Λp version of r♦n is greater than r∗ imply that the
sequence {|ân|}n∈Λp

converges strongly in the exponent υ = 1
4 Hölder topol-

ogy in the radius 1
2r∗ ball in M centered at p. That this is so follows from

a 3-dimensional Sobolev inequality that asserts in part that L2
2 functions in

are Hölder continuous for any Hölder exponent less than 1
2 .

Since |â♦(p)| > 0, so |an|(p) > 1
2 |â♦|(p) for all n ∈ Λp if n is suffi-

ciently large. This last observation with the Hölder topology convergence
implies the following: There exists rp ∈ (0, r∗) such that |ân| > 0 on the
radius rp ball about p if n ∈ Λ is sufficiently large. Let p′ denote a point in
this radius rp ball. Then |â♦|(p′) > 0 because the second bullet of Propo-
sition 2.2 has |â♦|(p′) = lim supn→∞ |ân|(p′) and this lim sup is no smaller
than limn∈Λp

|ân|(p′). This proves that the |â♦| > 0 part of M is an open set.

Part 2: To see about the continuity and Hölder continuity assertions where
|â♦| is positive, fix p ∈ M with |â♦|(p) > 0 and let Λp again denote the sub-
sequence from Lemma 6.2. Let Bp ⊂ M denote the radius rp ball centered
on p. For each n ∈ Λp, let un denote the automorphism of P’s restric-
tion to Bp given by (φ−1

n )∗(g−1
1 gn). The convergence asserted by Lemma 6.2

for the sequence {gn∗â♦n}n∈Λp
on the unit ball in R3 implies that the se-

quence {un∗An}n∈Λp
converges weakly in the L2

1;loc topology on Bp and

that {un∗ân}n∈Λp
converges weakly in the L2

2;loc topology on Bp. A stan-

dard Sobolev inequality implies that convergence occurs in the exponent 1
4

Hölder topology on compact subsets of this ball. Let ap denote the limit
section over Bp of the bundle (P ×SO(3) su(2)) ⊗ T∗M. Note that |ap| =
limn∈Λp

|(φ−1
n )∗â♦n|. It follows in particular from Proposition 2.2 that

|â♦| ≥ |ap′ | on Bp with equality at p and on a set of full measure, the measure
being full because {|ân|}n=1,2,... converges in the L2 topology on Bp. Let p′

denote another point in Bp. The point p
′ has a corresponding Hölder contin-

uous |ap′ | that is defined on a ball Bp′ about p′ and is such that |â♦| ≥ |ap′ |
with equality at p′ and on a set of full measure. Both |ap′ | and |ap′ | are
Hölder continuous functions defined on Bp ∩ Bp′ that are equal on a set of
full measure. This can happen only if they are equal at all points in Bp∩Bp′ .
This last observation implies that |â♦| = |ap| on Bp and so |â♦| is Hölder
continuous on Bp with exponent 1

4 .

6.b. Proof of Lemma 6.2

Item c) of Proposition 2.2 has the following consequence: There exists e > 1
such that each n ∈ Λ version of (An, ân) is described by the e and r = rn
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version of (3.2). With this understood, invoke Proposition 3.1 for each n ∈ Λ

version of (An, ân). Proposition 3.1 supplies corresponding (An, ân) versions
of what it denotes by g and âA♦ . These versions are denoted in what follows

by gn and âA♦n
.

It follows from what is said in Proposition 3.1 that {âA♦n
}n∈Λ is bounded

in the L2
1 topology on the |x| ≤ 1 ball. Proposition 3.1 implies that the

{gn∗ân}n∈Λ is also bounded in the L2
1 on the |x| ≤ 1 ball and, if r < 1, then

it is also bounded in the L2
2 topology on each |x| ≤ r ball in R3. It follows as

a consequence that there is a subsequence in Λ, this to be denoted by Λ♦,
such that {âA♦n

}n∈Λ♦ converges weakly in the L2
1 toplogy on the |x| ≤ 1 ball

in R3 as does {gn∗â♦n}n∈Λ♦ . The latter sequence also converges weakly in

the L2
2;loc topology on the |x| ≤ 1 ball in R3.

Granted what is said in the preceding paragraph, the proof of Lemma 6.2

needs only a proof of the following assertion: There exists a subsequence

Λp ⊂ Λ♦ with the property that {r♦n}n∈Λp
is bounded away from zero.

This assertion is proved by assuming it false so as to derive nonsense. The

derivation of this nonsense has seven parts.

To set the notation, suppose that n ∈ Λ♦. The various parts of the proof
use hn to denote the version of the function h in (5.2) that is defined using p

and the pair (An, ân). The corresponding versions of the functions H and n

are denoted by Hn and nn. The arguments that follow also use d to denote

the assumed nonzero value of |â♦|(p). No generality is lost by assuming that
1
2d ≤ |ân|(p) ≤ 2d for all n ∈ Λ.

Part 1: Let p for the moment denote a given point in M. Fix r ∈ (0, c−1
0 )

and let χp,r denote the function on M given by χ(r−1dist(p, ·) − 1). This

function equals 1 where dist(p, ·) < r and it equals zero where the dist(p, ·) >
2r. Let Gp denote the Green’s function for the operator d†d + 1 on M with

pole at p. Fix n ∈ {1, 2, . . . } and integrate the function χp,rGp〈ân∧∗qAn
(ân)〉

over M, then integrate by parts so as to derive the following local version of

(2.40):

(6.1) 1
2 |ân|

2(p) +

∫
M
χp,rGp(|∇Aân|2 + r 2n |ân ∧ ân|2) = ep0

where |ep0| is bounded by

(6.2) c0r
1/2 + c0r

−3

∫
r≤dist(p,·)≤2r

|ân|2.
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By way of an explanation, the bound on |ep0| follows from two facts, the
first being that the L2 norm of qAn

(ân) is bounded by c0 and those of both
dAn

ân and dAn
∗ân are bounded by c0r−1

n ; these are the bounds asserted by
Items c) and d) of Proposition 2.2. The third fact is that the L2 norm of Gp

over B2r is less than c0r
1/2. Proposition 2.2 asserts in part that |â♦|(p) =

lim supn∈Λ |an|(p) and that {ân}n∈Λ converges strongly in the L2 topology
on M to |â♦|. These facts with (6.1) and (6.2) imply that

(6.3) 1
2 |â♦|

2(p) ≤ c0r
1/2 + c0r

−3 lim
n∈Λ

∫
r≤dist(p,·)≤2r

|ân|2.

Note that the sequence whose n’th term is the n ∈ Λ version of the integral
on the right hand side of (6.3) converges; and the limit is the integral of |â♦|2
over the indicated domain. This is so because {|ân|}n∈Λ converges strongly
in the L2 topology on M to |â♦|.

Part 2: As explained momentarily, the following two assertions must hold:

(6.4) • If n ∈ Λ is sufficiently large, then hn(r) ≥ c−1
0 d

2r2 for all
r ∈ [12r♦n, 9r♦n].

• lim supr∈[ 1
2
r♦n,9r♦n] n(r) = 0.

Given (6.4), nothing is lost by assuming that the n ∈ Λ versions of hn
and nn are such that hn(r) ≥ c−2

0 d
2r2 and nn(r) ≤ 1 for all r ∈ [12r♦n, 9r♦n].

Moreover, the second bullet of (6.1) plus the assumption that limn∈Λ r♦n = 0
implies the following: Given δ ∈ (0, 1

16), there exists an integer Nδ such that

(6.5) sup
r∈[ 1

2
r♦n,9r♦n]

nn(r) < δ and r♦n < e−1/δ when n ≥ Nδ

The subsequent steps generate the required nonsense when δ < c−1
0 .

The proof of (6.4) follows directly. To prove the top bullet, use p’s version
of (6.3) to conclude that

(6.6) d
2 ≤ c0r

1/2 + c0r
−2 sup

s∈[r,2r]
hn(s)

when r ∈ (0, c−1
0 ]. Fix R > 1

2 for the moment. If n is sufficiently large, then
hn is defined at r = Rr♦n. Assuming this to be the case, then (6.6) demands
a point s ∈ [Rr♦n, 2Rr♦n] with hn(s) ≥ c−1

0 d
2R2r2♦n. Fix such a point and

integrate the first bullet of the p and (An, ân) version of Proposition 5.1
using the fact that h(t) ≤ c0t

2 for any t ∈ (0, c−1
0 ) to conclude that h(Rr♦) ≥
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c−1
0 d

2R2r2♦n−c0(r−2
n Rr♦n+ r−1/2

n R2r 2♦n). Since r♦n ≥ c−1
0 rn in any event, this

last inequality leads directly to the top bullet (6.4) when n is large.
The proof of the second bullet of (6.4) assumes to the contrary that the

lim sup in question is positive and derives nonsense. To start the derivation,
fix m > 16 so that the lim sup in the second bullet of (6.4) is greater than
m−1. Let Λ′ denote a corresponding subsequence of Λ with the following
property: If n ∈ Λ′, then there exists r1n ∈ [12r♦n, 9r♦n] with nn(r1n) ≥ m−1.

Fix n ∈ Λ′ and let κ denote the constant that is supplied by the p and
(An, an) version of Proposition 5.1. Note in particular that κ is independent
of n. The top bullet in (6.4) implies that hn(r) ≥ r3−1/κ for r ∈ [12r♦n, 9r♦n]
when n is large. This being the case, there exists a maximal r1 ∈ [9r♦n, c−1

0 r0]
such that hn(r) > r3−1/κ for all r ∈ [r♦n, r1]. Invoke the first bullet of Propo-
sition 5.1 to conclude that

(6.7) d
drhn ≥ 2r−1(1 + m−1 − r−1/8 − ce(r

1/c0 − r
1/c0
∗ ))hn − cer−1/4r5/4

for all r ∈ [r♦n, r1]. Integrate this equation to see that

(6.8) hn(r) ≥ c−1
0 d

2

(
r

r♦n

)1/m

r2.

for all r ∈ [r♦n, r1]. It follows from this that r1 must be equal to c−1
0 r0.

Since hn(c
−1
0 r0) ≤ c0r

2
0 in any event, the r = c−1

0 r0 version of (6.8)
can hold only if r♦n ≥ c−1

0 r0d
−2m . The latter conclusion constitutes the

desired nonsense because it runs afoul of the assumption at the outset that
lim supn∈Λ♦ r♦n = 0.

Part 3: To set the notation that is used below, fix n ∈ Λ and p∗n ∈ M. The
notation uses r∗♦n to denote the p∗n version of r♦n as defined using the pair
(An, ân). The notation also has h∗n, h∗n and n∗n denoting the p∗n versions of
the functions h, h and n. The function that measures the distance to p∗n is
denoted by r∗n.

Suppose that n ∈ Λ and that p∗n is a point in M with dist(p, p∗n) ≤ 3r♦n.
As proved directly, the following must be true:

(6.9) • h∗n(r∗n) ≥ r
2+1/16
∗n for all r∗n ∈ [12r∗♦n, 4r♦n].

• n∗n(r∗n) < c0d
-2δ for all r∗n ∈ [12r∗♦n, 4r♦n] if n ≥ Nδ.

If the top bullet in (6.9) were false for some r∗n in the indicated range,
then the fourth bullet in the p∗n and (An, ân) version of Proposition 5.1
would apply with r∗ being the relevant value of r∗n. In particular, this bullet
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would find h∗n ≤ c0r
2+1/16
∗n for all r∗n between 4r♦n and c−1

0 . This would
imply that the integral of |ân|2 over the spherical annulus centered at p∗n
where 4r♦n ≤ dist(p∗n, ·) ≤ 12r♦n is no greater than c0r

3+1/16
♦n . But this is

not possible when n ≥ c−1
0 because the latter spherical annulus contains the

spherical annulus centered at p where 7r♦n ≤ dist(p, ·) ≤ 9r♦n and it follows
from (6.4) that the integral of |ân|2 over the 7r♦n ≤ dist(p, ·) ≤ 9r♦n annulus
is greater than c−1

0 d
2r2♦n.

Granted that the top bullet is true, suppose for the sake of argument that
the lower bullet is not true. The three steps that follow generate nonsense
from this assumption. To set the stage for what is to come, fix for the
moment m > 1 and suppose that there exists n ∈ Λ with a corresponding
r∗ ∈ [12r∗♦n, 4r♦n] where n∗n(r∗) ≥ 2mδ.

Step 1. If n∗n(r∗) ≥ 1
16 , then the argument in Part 2 of Section 5.e can

be repeated to see that (5.48) must hold. The latter conclusion is untenable

when n is large because it implies that hn(r♦n) < c0r
2+1/16
♦n . This understood,

assume that mδ ≤ n∗(r∗n) <
1
16 .

Step 2. There exists in any case r > r∗ such that h∗n(s) > s2+3/4 for all
s ∈ [r∗, r]. It then follows from the second bullet of Proposition 5.1 that

(6.10) n∗n(s) ≥ mδ − c0(s
1/c0 − r

1/c0
∗ ) for all s ∈ [r∗, r].

This inequality is untenable when n is large if r = 4r♦n for the following
reason: The ball of radius 4r♦n centered on p∗n is contained in the ball of
radius 7r♦n centered on p. This implies that the integral of |∇ân|2 over the
ball of radius 7r♦n is greater than c−1

0 mδr♦n when n is large. But the latter
integral can be no larger than c0d

−2δr♦n, this being a consequence of (6.4).
These two bounds can not hold simultaneously if m > c0d

−2.

Step 3. If m = c0d
−2, then it follows from what was said in Step 2 that

there exists r‡ ∈ [r∗, 4r♦n] such that h∗n(r‡) ≤ r
2+3/4
‡ . This understood, then

the fourth bullet of Proposition 5.1 can be invoked using r‡ in lieu of r∗ to

conclude that h∗n(r∗n) ≤ c0r
2+1/16
∗n when r∗n ∈ [4r♦n, c−1

0 ] and n is large.
Repeat verbatim the argument for the first bullet in (6.9) to see that this is
a nonsensical conclusion.

Part 4: Fix n ≥ Nδ and p∗n ∈ M with dist(p, p∗n) ≤ 3r♦n. Introduce by
way of notation B∗n to denote the ball of radius r∗♦n centered on p∗n. Let
φ∗n denote the p∗n and (An, ân) version of the map φ that is described at
the outset of Section 3.b, this to be viewed as a map from the radius 4 ball
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about the origin in R3 to the radius 4r∗♦n ball centered on p∗n. Use this
map to define the p∗n version of the pair that is denoted in Section 3.a by
(A♦, â♦). The p∗n version is denoted by (A∗♦n, a∗♦n); it is a pair whose left
hand member is connection on the φ∗n pull-back of P and whose right hand
member is a section of the φ∗n pull-back of the bundle (P×SO(3)su(2))⊗T∗M.
Denote by â∗∗n the p∗n version of what is denoted in Section 3.b by â∗, this
having the form z−1

∗n â∗♦n with z∗n denoting the L2 norm of â∗n on B∗n. Thus,
â∗∗n has L2 norm 1 on the |x| ≤ 1 ball in R3. Given the definition of n, the
bound in the second bullet of (6.9) implies that

(6.11)

∫
|x|≤1

|∇A∗♦n
â∗∗n|2 ≤ cdδ,

with cd denoting here and in what follows a number that is greater than 1
that depends only on d. The value of cd can be assumed to increase between
successive appearances.

Part 5: Fix n ≥ Nδ and introduce next ã∗∗n to denote p∗n version of what is
denoted by ã∗ in Section 4.a. The latter obeys the version of Proposition 4.1
that uses (A∗♦n, â∗∗n), r∗♦n and rz∗n in lieu of (A♦n, â∗n), r♦n and rzn . Given
that rz∗n ≥ c−1

d , r∗♦n ≤ c0r♦n and r♦n ≤ e−1/δ, the second bullet of Proposi-
tion 4.1 implies that ‖ã∗∗n‖2 differs from 1 by at most c0e

−1/δ. Meanwhile,
the third bullet of Proposition 4.1 and (6.11) imply that

(6.12)

∫
|x|≤1

|∇A∗♦n
ã∗∗n|2 ≤ cdδ.

With an appeal to Proposition 3.2 in mind, fix ε ∈ (0, 1) and r ∈ (0, 1) and let
κε,r denote the ε and r version of what is denoted by κe,r,ε in Proposition 3.2.
If δ < c−1

d κ−1
ε,r and also r♦n < c−1

d κ−1
ε,r then Proposition 3.2 says that the

square of the L2 norm of FA∗♦n
on the |x| < r ball in R3 is less than ε.

Part 6: Fix an integer n > Nδ. This part of the proof defines an itera-
tive procedure that starts with p and generates from p a finite sequence
of points. The k’th point in the sequence is denoted by p∗n,k. It is such
that dist(p, p∗n,k) < 3r♦n. The description that follows of the iteration step
uses p∗n,0 to denote p. If some k ≥ 0 version of p∗n,k has been defined, the
notation has r∗♦n,k denoting the p∗n,k version of r∗♦n.

The iteration procedure: Fix k ≥ 0 and suppose that that the
point p∗n,k has been defined. Let p∗n ∈ M denote any given point with
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dist(p∗n,k, p∗n) ≤ 2r∗♦n,k. The assignment of r∗♦n to p∗n defines a continuous
function on the radius 2r∗♦n,k ball about p∗n,k. If the minimum value is less
than or equal to 1

256r∗♦n,k, take p∗n,k+1 to be a point with distance 2r∗♦n,k
or less from p∗n,k where the minimum value is achieved. If the minimum
value of this function is greater than 1

256r∗♦n,k, then there is no (k + 1)’st
point and p∗n,k is the last point in the sequence. Note that the iteration
must stop after a finite number of runs because each p∗n version of r∗♦n is,
in any event, greater than c−1

0 r−1
n .

The sequence {p∗n,k}k=1,2,... lies in the radius (2 + 1
2)r♦n ball centered

on p. To understand why this is, keep in mind that

(6.13) dist(p∗n,k, p∗n,k+1) ≤ 1
128r∗♦n,k.

Meanwhile, r∗♦n,k < 1
256r∗♦n,k−1 and so r∗♦n,k ≤ ( 1

256)
kr♦n.

Thus, dist(p∗n,k, p∗n,k+1) ≤ 4( 1
256)

kr♦n and so dist(p, p∗♦n,k+1) ≤ (2 +
4(

∑
m=1,2,...k(

1
256)

m))r♦n which is no greater than (2 + 1
32)r♦n.

Part 7: Let p∗k now denote the final point in the iteration sequence
{p, p∗n,1, . . . }. It follows from the definition that the radius 2r∗♦n,k ball cen-
tered on p∗n,k is contained in the radius 3r♦n ball centered around p. If p∗n
is a given point in the radius 2r∗♦n,k ball centered p∗n,k, then its correspond-
ing r∗♦n is no less than 1

256r∗♦n,k. This understood, it follows that the radius
2r∗♦n,k ball centered on p∗n,k has a cover, U, with the following properties:

(6.14) • U consist of at most c−1
0 balls with centers in the radius 2r∗♦n,k

ball about p∗n,k.

• Let p∗n denote a center point of a ball from U. The radius of
its ball is 1

2r∗♦n.

Let p∗n denote the center point of a given ball from U and let B∗n denote
the corresponding ball from U. Use the r = 3

4 version of what is said at the
end of Part 5 to see that the square of the L2 norm of FAn

over B∗n is at
most ε2r−1

∗♦n and thus at most 256ε2r−1
∗♦n,k. Since there are at most c−1

0 balls
in U, this bound implies in turn that

(6.15)

∫
dist(p∗n,k,·)≤2r∗♦n,k

|FAn
|2 ≤ cdε

2r−1
∗♦n,k.

The latter bound is nonsensical if ε < c−1
d because it runs afoul of the

definition of r∗♦n,k. This is the promised nonsense from the small δ versions
of (6.5).
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6.c. |â♦| near its zero locus

This subsection proves the assertions in Proposition 6.1 that concern |â♦|
on its zero locus. The proof has two parts.

Part 1: The lemma that follows plays a central role in the subsequent argu-

ments. To set the notation, suppose that p ∈ M. Given a positive integer n,

the lemma uses hn to denote the version of the function h in (5.2) that is

defined using p and the pair (An, ân).

Lemma 6.4. Fix p ∈ M and c > 2. Suppose there exists a subsequence in

Proposition 6.1’s sequence Λ, this denoted by Λp, such that limn∈Λp
hn(r) ≤

cr1/cr2 when r ≤ c−1. Then |â♦|(p) = 0. Moreover, |â♦| is continuous at p

and there exists a constant κ > 1 such that |â♦|(·) ≤ κdist(p, ·)1/κ on the

ball of radius κ−1 centered at p.

Proof of Lemma 6.4. Fix r ∈ (0, c−1
0 ) and it follows from (6.3) that |â♦|2(p)

is bounded by c0(r
1/2 + r1/c). It follows as a consequence that |â♦|(p) = 0.

Let q denote some other point in M with dist(p, q) < c−1
0 . Take r to equal

4dist(p, q) and use q’s version of (6.3) to see that

(6.16) |â♦|2(q) ≤ c0r
1/2 + c0r

−3 lim
n∈Λ

∫
r/2≤dist(p,·)≤4r

|ân|2

The final arguments for Lemma 6.4 exploit (6.16). To this end, fix n ∈ Λ for

the moment and let hn(·) denote the version of the function h in (5.2) that

is defined by the point p and the pair (An, ân). If dist(p, q) < c−1
0 , then hn

is defined on the interval [0, 4r]. Granted this is the case, use the definition

of hn to conclude that

(6.17)

∫
B4r−Br/2

|ân|2 ≤ c0r sup
s∈[r/2,4r]

hn(s).

Let c and Λp be as described by Lemma 6.4. If 4r is less than c−1, then

the right hand side of (6.17) is no greater than c0cr1/cr3 when n ∈ Λp is

large. This implies that the right hand side of (6.16) is no greater than

c0(r
1/2 + cr1/c) because the limit of a convergent sequence is equal to the

limit of any its subsequences. Thus |â♦|2(q) ≤ c0(r
1/2 + cr1/c). This is the

assertion made by Lemma 6.4 because r = 4dist(p, q).
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Part 2: The assertion in Proposition 6.1 to the effect that |â♦| is continuous
across its zero locus follows from the assertion in the proposition to the effect

that |â♦| is Hölder continuous at each of its zeros. The proof of the latter

assertion is given in the three steps that follow. These steps employ the

following terminology: The local Hölder property is said to hold at a given

point p if there exists κ > 1 such that |â♦(q)| < κdist(p, q)1/κ for all q ∈ M

with dist(p, q) < κ−1.

Step 1. Fix p ∈ M with |â♦|(p) = 0. Since |â♦|(p) = 0, so limn→∞ |ân|(p) = 0

also, this a consequence of the second bullet in Proposition 2.2. There are

now two cases to consider, the first being where p’s version of the sequence

{r♦n}n∈Λ has a subsequence that is bounded away from zero. If such is the

case, let r∗ > 0 denote a lower bound for this subsequence. The correspond-

ing subsequence of {ân}n∈Λ is bounded in the L2
2 topology on the radius r∗

ball in M centered at p, and so it has a subsequence that converges strongly

in the exponent 1
4 Hölder topology on this ball. Let Λp ⊂ Λ denote the

indexing set for the latter subsequence. The Hölder convergence of {ân}n∈Λp

on the radius r∗ ball centered at p has the following consequence: Given

ε > 0, there exists Nε such that if n ∈ Λp and n > Nε, then

(6.18) |an| ≤ ε+ dist(p, ·)1/4 on the radius r∗ ball centered at p.

Fix n ∈ Λp with n > Nε. The bound in (6.18) implies that the p and (An, ân)
version of the function hn(·) obeys hn(r) ≤ c0(ε + r1/4)r2 when r ∈ (0, r∗).
Granted this last bound, invoke Lemma 6.4 to see that the local Hölder

property holds at p.

Step 2. Assume here and in the subsequent steps that {(An, an)}n∈Λ is such

that limn∈Λ |an|(p) = 0 and limn∈Λ r♦n = 0. Granted this assumption, then

at least one of the three cases in the subsequent list describes {(An, ân)}n∈Λ.
Step 3 contains the proof that the list is inclusive.

Case 1. This case occurs if there is a subsequence Λp ⊂ Λ with two proper-

ties, the first being the following: If n ∈ Λp, then there exists r‡n ∈ [12r♦n, c
−1
0 ]

which is such that hn(r‡n) ≤ r
2+1/16
‡n . The second property requires that

limn∈Λp
r‡n = 0. Fix n ∈ Λp. Let r1n ∈ [r‡n, c

−1
0 ] denote the maximal value

for r such that hn(s) ≤ s2+1/16 for all s ∈ [r‡n, r1n]. It follows from the fourth

bullet of Proposition 5.1 that hn(r) ≤ c0r
2+1/16 for all r ∈ [r1n, c

−1
0 ]; it follows

from the definitions of r1n and r‡n that hn(r) < r2+1/16 for all r ∈ [r‡n, r1n].
Since limn∈Λp

r‡n = 0, the subsequence Λp with any c > c0 can be used as

input to Lemma 6.4 to prove that the local Hölder property holds at p.
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Case 2. This case occurs if there exists δ > 0 and a subsequence Λ′ ⊂ Λ with

the following property: If n ∈ Λ′, then hn(r) > r2+1/16 for all r ∈ [12r♦n, 9r♦n]
and there exists r ∈ [12r♦n, 9r♦n] with nn(r) ≥ δ. Let r1n ∈ (9r♦n, c−1

0 ] denote

the maximal r which is such that hn(s) ≥ s2+1/16 for all s ∈ [r♦n, r1n].
Suppose first that lim infn∈Λ′ r1n = 0. Fix n ∈ Λ′. The fourth bullet of

Proposition 5.1 implies that hn(r) ≤ c0r
2+1/16 for all r ∈ [r1n, c

−1
0 ]. Fix a sub-

sequence Λp ⊂ Λ′ such that limn∈Λp
r1n = 0. The fact that limn∈Λp

r1n = 0

implies that Λp and any c > c0 version of Lemma 6.4 can again be used to

prove that the local Hölder property holds at p.

Suppose on the other hand that there exists r0 < c−1
0 such that

lim infn∈Λ′ r1n > 2r0. Fix n ∈ Λ′ such that r1n > r0. Then hn(r) > r2+1/16

on [r♦n, r0]. This being the case, the second bullet of Proposition 5.1 can be

invoked to see that nn(r) ≥ 1
2δ if r ∈ [12r♦n, c

−1
0 r0]. With this understood,

invoke the first bullet of Proposition 5.1 to obtain the inequality

(6.19) d
drhn ≥ 2r−1

(
1 + 1

2δ
)
hn − c0δ

−1r−1
n r

where r ∈ [12r♦n, c
−1
0 r0]. Fix r in this range, and integrate (6.19) from r

to c−1
0 r0 and use the fact that hn(c

−1
0 r0) ≤ c0r

2
0 to conclude that hn(r) ≤

c0(r
−1/(2δ)
0 r2+1/(2δ) + r−1

n r20). Let r‡n denote the number r−1/(2+1/(2δ))
n r0 and

let c denote c0(δ
−1 + c0r

−1/2δ
0 ). Then the preceding bound on hn(r) implies

that hn(r) ≤ cr2+1/c when r ∈ [r‡n, c
−1
0 r0]. Noting that limn∈Λ′ r‡n = 0,

Lemma 6.4 can be invoked using as input Λp = Λ′ and c to prove that the

local Hölder property assertion holds at p.

The statement of the third case reintroduces notation from Part 3 of

Section 6.b.

Case 3. This case occurs when three conditions are met. The first condition

requires that hn(r) > r2+1/16 for all r ∈ [12r♦n, 9r♦n] when n ∈ Λ is sufficiently

large; and the second condition requires that limn∈Λ supr∈[ 1
2
r♦n,9r♦n] nn(r) = 0.

The third condition requires there be a subsequence Λ′ ∈ {1, 2, . . . } and an

associated sequence {p∗n}n∈Λ′ ⊂ M with the following properties.

(6.20) • Each n ∈ Λ′ version of p∗n has distance less than 3r♦n from p.

• Either or both of the following statements are true.

i) If n ∈ Λ′, then there exists r∗‡n ∈ [12r∗♦n, 9r∗♦n] such that

h∗n(r∗‡n) ≤ r
2+1/16
∗‡n .

ii) supr∈[ 1
2
r∗♦n,9r∗♦n] n∗n(r) ≥ δ
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Suppose there is a subsequence Λ′′ ⊂ Λ′ such that Item i) in the second
bullet of (6.20) holds for all n ∈ Λ′′. Fix n ∈ Λ′′ and let h∗n denote the
p∗n version of h. But for cosmetic changes, the argument in Case 1 can
be used with p∗n replacing p to see that h∗n(s) ≤ c0s

2+1/16 for all s ∈
[9r∗♦n, c−1

0 ]. Keeping this in mind, use an integration by parts with the fact
that ‖∇An

ân‖2 ≤ c0 and |an| ≤ c0 to see that

(6.21) hn(s) ≤ h∗n(s + 4r♦n) + c0r
3/2
♦n ,

when s > 10r♦n. Fix r > 0 and (6.21) implies that limn∈Λ′ hn(r) ≤ c0r
2+1/16.

This being the case, then Lemma 6.4 can be invoked using as input Λp = Λ′′

and any c ≥ c0 to prove that p has the local Hölder property.
Suppose next that Item i) of (6.20) is not true if n ∈ Λ′ is large. This

understood, throw out the finite set of integer where Item i) is true and use
Λ′ now to denote the remaining set. Each n ∈ Λ′ obeys the condition in
Item ii) of (6.20). But for cosmetic changes, the argument in Case 2 can be
used with each n ∈ Λ′ version of p∗n replacing p to obtain the following data:
A number c > 1 and a sequence {r∗‡n}n∈Λ′ ⊂ (0, c−1) with limit zero and
with the following additional property: Each n ∈ Λ′ version of r∗‡n is such
that h∗n(s) ≤ cs2+1/c when s ∈ [r∗‡n, c−1]. Granted this data, use (6.21) to
conclude that limn∈Λ′ hn(r) ≤ c0cr2+1/c for each r ∈ (0, c−1). It follows from
the latter bound that the sequence Λp = Λ′ and the given value of c can be
used as input to Lemma 6.4 to prove that p has the local Hölder property.

Step 3. Assume that {(An, ân)}n∈Λ is such that limn∈Λ |ân|(p) = 0 and
limn→∞ r♦n = 0. The paragraphs that follow proves that at least one of
the three cases in Step 2 apply. To this end, assume to the contrary that
none of these cases. The existence of such a sequence is shown below to lead
to nonsense.

After discarding a finite set of terms and then relabling the result as
Λ, the sequence {(An, ân)}n∈Λ must have the following property: The first
bullet in (6.9) is obeyed for all n ∈ Λ; and given δ > 0, there exists Nδ > 1
such that the second bullet in (6.9) is obeyed when n ≥ Nδ. Indeed, the first
bullet of (6.9) must be obeyed to avoid a Case 1 label and the second bullet
of (6.9) must be obeyed to avoid a Case 2 label. Given the preceding, then
what is said in Parts 4 and 5 of Section 6.b applies to each point p∗n in the
radius 3r♦n ball centered at p with the number cd in (6.11) replaced by c0.
This replacement is allowed by virtue of the fact that Item ii) of (6.20) is
violated. Granted that Parts 4 and 5 of Section 6.b apply, then an essentially
verbatim repetition of the arguments in Parts 6 and 7 of Section 6.b prove
that {r♦n}n∈Λ has a strictly positive lower bound. This last conclusion is
nonsense because it runs afoul of the assumptions made at the outset.
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7. The data Z, III and ν

The forthcoming proposition is used in subsequent sections to characterize
the zero locus of |â♦|. By way of notation, the proposition denotes this zero
locus by Z. The following notation is also used: Fix p ∈ M and r > 0. The
proposition uses Br to denote the radius r ball centered at p and it uses ∂Br

to denote the boundary of the closure of Br. Keep in mind that the term real
line bundle is used here to describe the associated line bundle to a principal
Z/2Z bundle.

Proposition 7.1. The set Z ⊂ M is a closed set and so M−Z is open. There
is a real line bundle over M−Z, this denoted by I , and a harmonic section,
ν, of T∗(M−Z)⊗ I with the properties listed below.

• |ν| = |â♦|.
• |∇ν| extends from M−Z as an L2 function on M−Z.
• For any point p in M, the function |∇ν|dist(·, p)−1/2 is an L2 function
on M−Z and there is a p-independent bound on its L2 norm.

• There exists κ ≥ 1 with the following significance. Fix p ∈ M to define
functions h and H on (0, κ−1) by the rules

r → h(r) =

∫
∂Br

|ν|2 and r → H(r) =

∫
Br−Z

|∇ν|2.

a) The function h is strictly positive on (0, κ−1).

b) Define the function n on (0, κ−1) by the rule r→n(r)=rH(r)/h(r).
The function h is differentiable on [0, κ−1). Moreover, its deriva-
tive on (0, κ−1) can be written as d

drh = 2r−1(1 + n + e)h with e

such that |e| ≤ κr2.

c) If s > r > 0, then n(s) ≥ e−κ(s2−r2)
n(r)− κ(s2 − r2).

With regards to the Item b) of the fourth bullet, keep in mind that nh
is rH and so r−1

nh has limit zero as r limits to 0. This is also the case for
r−1h because h ≤ c0r

2.
The function n plays the role here of the frequency function introduced

by [Al] and used by [HHL] and [Han]. It is perhaps needless to say that
Proposition 7.1’s version of n is the analog for ν of the function in (5.3).

Granted that Z is closed and granted the second and third bullets of the
proposition, the convention in what follows is to extend |∇ν| and any p ∈ M
version of dist(p, ·)−1|∇ν| as an L2 functions on the whole of M by declaring
them to be zero on Z. For example, this convention writes H(r) as

∫
Br

|∇ν|2.
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Sections 7.a and 7.b contain the proof of Proposition 7.1. Section 7.c

contains a lemma that concern the behavior of the r → 0 limit of Proposi-

tion 7.1’s function n as the point p is varied in M.

7.a. The construction of I and ν

Proposition 6.1 asserts in part that |â♦| is continuous, and this implies di-

rectly that its zero locus, Z, is a closed set. The subsequent lemma provides

what is needed to define I and ν. The notation is that used by Proposi-

tion 6.1.

Lemma 7.2. Let Λ ⊂ {1, 2, . . . } denote the subsequence from Proposi-

tion 6.1. There exists a subsequence Λ♦ ⊂ Λ such that the corresponding

sequence {(An, ân)}n∈Λ∗ has the properties listed below.

• The sequence of {FAn
}n∈Λ∗ has bounded L2 norm on compact subsets

of M−Z and {∇An
ân}n∈Λ∗ has bounded L2 norm on M.

• There exists a sequence {hn}n∈Λ∗ ⊂ Aut(P) such that each n ∈ Λ∗ ver-

sion of hn
∗An can be written on M−Z as A0+ âh∗An

with {âh∗An
}n∈Λ∗

having bounded L2
1 norm on any given compact subset of M−Z and

converging in the L2
1;loc topology on M−Z. Meanwhile {hn∗an}n∈Λ∗ has

bounded L2
2 norm on any given compact set in M−Z and it converges

weakly in the L2
2;loc topology on M−Z.

• Let (A♦, a♦) denote the limit pair of L2
1;loc connection on P|M−Z and

L2
2;loc section over M−Z of (P ×SO(3) su(2)) ⊗ T∗M. These are such

that

a) dA♦a♦ = 0, dA♦∗a♦ = 0 and a♦ ∧ a♦ = 0.

b) |a♦| = |â♦|.

c) |∇A♦a♦| = limn∈Λ |∇An
ân| with the convergence being in the L2

1;loc

topology on the set where |â♦| > 0.

This lemma is proved momentarily. Assume it to be true for the time

being.

Parts 1 of what follows directly use Lemma 7.2 to define I , and Part 2 of

what follows defines ν and verifies the first bullet of Proposition 7.1. Part 3

of what follows uses Lemma 7.2 to prove the second and third bullets of

Proposition 7.1.
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Part 1: Let SM denote the unit sphere bundle TM. Since |â♦| < c0, Item b)
of the third bullet in Lemma 7.2 finds |a♦| < c0. This understood, define a
quadratic map from the SM/{±1} to [0, c0) by the rule v → |a♦(v)|2. This
map has a unique maximum at each point of M−Z, this being one conse-
quence of the fact that a♦ ∧ a♦ = 0. The corresponding line in TM|M−Z

defines a real line subbundle of TM over M−Z. This real line bundle sub-
bundle is denoted by I‡. It is associated in a canonical way to the principal
Z/2Z that is defined by the points where I‡ intersects the unit sphere bundle
in TM. The bundle I is the dual to I‡.

Part 2: Let U denote a countable, locally finite open cover of M−Z by balls,
and let B denote a given ball from this cover. The fact that a♦ ∧ a♦ = 0
implies that a♦ can be written on B as σBνB with σB being a Sobolev class
L2
2 map from B to the unit sphere in su(2) and with νB being an R valued

1-form on B that annihilates the orthogonal complement in TM|B of the line
subbundle I‡|B.

The equations [σB, dA♦a♦] = 0 and [σB, dA♦∗a♦] = 0 are equivalent to
the assertions ∇A♦σB ∧ νB = 0 and ∇A♦σB ∧ ∗νB = 0. Since |νB| = |â♦| �= 0
on B, these together assert that ∇A♦σB = 0. Thus, σB is A♦-covariantly
constant. Meanwhile, the two equations 〈σBdA♦a♦〉 = 0 and 〈σBdA♦∗a♦〉 = 0
say that νB is a harmonic 1-form on B. As a parenthetical remark, the fact
that σB is A♦ covariantly constant implies that FA♦ can be written on B as
σBwB with wB denoting a closed square integrable 2-form on B.

The following turns out to be a crucial observation about this writing
of a♦ The definition of νB has a sign ambiguity because there are auto-
morphisms of B × SU(2) that pull σB back as −σB. This sign ambiguity
disappears if and only if I‡ is the product line bundle.

What follows gives a second view of this sign ambiguity. Fix a length
1 element, σ ∈ su(2). There exists a Sobolev class L2

2 automorphism of the
bundle B × SU(2) that writes A♦ as θ0 + σaB and writes a♦ on B as σνB
with aB denoting a 1-form on B of Sobolev class L2

1. Now let τ ∈ su(2)
denote a given element with 〈στ〉 = 0 and length |τ | = π. View eτ as an
automorphism The latter pulls back A♦ as θ0 − σaB and it pulls back a♦ as
−σνB. The sign ambiguity is due to the fact that θ0 − σaB and −σνB can
be written respectively as θ0+σa′

B and σν ′B with a
′
B = −aB and ν ′B = −νB.

Let B and B′ denote intersecting balls from U. Then νB can be writ-
ten on B ∩ B′ as zBB′νB′ with zBB′ being either 1 or −1. The collection
{zBB′}B,B′∈U defines the transition functions for the line bundle I . Mean-
while, the collection {νB}B∈U defines a smooth, harmonic section over M−Z
of T∗(M−Z)⊗ I that vanishes on Z, this being Proposition 7.1’s section ν.



332 Clifford Henry Taubes

Part 3: The fact that |ν| = |â♦| follows from Item b) of Lemma 7.2’s third
bullet because |ν| = |a♦|. The fact that |∇ν| is square integrable follows
from the first bullet of Lemma 7.2 because |∇ν| = |∇A♦a♦|. To elaborate,
fix ρ > 0 and introduce by way of notation Zρ ⊂ M to denote the set where
|â♦| < ρ. Lemma 7.2 implies directly that

(7.1)

∫
M−Zρ

|∇ν|2 = lim
n∈Λ

∫
M−Zρ

|∇An
ân|2.

With (7.1) in mind, define a function on (0, c−1
0 ) by the rule that assigns a

given number ρ in this integral the value of the left hand integral in (7.1).
The first bullet of Lemma 7.2 asserts in part that this function is bounded
on (0, c−1

0 ) and since it is a decreasing function of ρ, so the dominated
convergence theorem says that it has a unique ρ → 0 limit. This limit is the
integral of |∇ν|2.

Proposition 7.1’s third bullet follows using an identical argument after
invoking what is said in the sixth bullet of Proposition 2.2 about the sequence
whose n’th term is the integral over M of the function Gp|∇An

ân|2.
Proof of Lemma 7.2. The proof has three steps.

Step 1. Fix ρ > 0. This step proves the following assertion:

(7.2) The sequence

{∫
M−Zρ

|FAn
|2

}
n∈Λ

is bounded.

To see why this is, suppose to the contrary that (7.2) is false. Given a point
p in the M−Zρ, and n ∈ Λ, let r♦n,p denote p’s version of the number r♦
that is defined in (3.5) by the connection An. If (7.2) is false, then it must
be that lim infp∈M−Zρ

(lim infn∈Λ r♦n,p) = 0. This understood, there exists a
point p ∈ M−Zρ a subsequence Λ′ ⊂ Λ and a sequence {pn}n∈Λ′ ⊂ M−Zρ

that converges to p and is such that limn∈Λ′ r♦n,pn
= 0. Granted this, then

it must be true that limn∈Λ′ r♦n,p = 0 also.
The sequence {(An, ân)}n∈Λ′ can be used as input for Proposition 2.2.

Let |â′♦| denote the Λ′ version of what is denoted in Proposition 2.2 by |â♦|.
Use |â♦| to denote the original version that is supplied by Λ. Proposition 6.1
asserts that |â′♦| is also a Hölder continuous function on the complement of
its zero locus, and locally Hölder continuous on its zero locus. It then follows
that |â′♦| = |â♦| because both are Hölder continuous and because they define
the same L2 function. Since p ∈ M−Z, it follows that |â′♦|(p) > 0 and so
Λ′ has a subsequence, this denoted by Λp, with limn∈Λp

|ân|(p) = |â′♦|(p).
Invoke Lemma 6.2 using the point p and Λp to conclude that {r♦n,p}n∈Λp

is
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bounded away from zero. But this is nonsense because Λp ⊂ Λ′ and Λ′ was
chosen so limn∈Λ′ r♦n,p = 0.

Step 2. Granted (7.2), then the constructions of Uhlenbeck in [U] can be
employed to obtain a subsequence Λ′ ⊂ Λ and a sequence {hn}n∈Λ′ of auto-
morphisms of P|M−Z such that the sequence {hn∗An}n∈Λ′ has the properties
asserted by the second bullet of Lemma 7.3. The L2

1;loc limit connection can
be taken to be A♦.

Proposition 2.2 implies in part that the sequence {∇An̂
an}n∈Λ′ is bounded,

and this with the first bullet of (3.10) implies that the sequence {hn∗ân}n∈Λ′

is bounded in the L2
1 topology on compact subsets of M−Z. As the sequence

{qAn
(ân)}n∈Λ is also bounded, (7.2) with the same sort of integration by

parts argument that is used to prove the fourth bullet of Proposition 4.1
proves that {∇An

(∇An
ân)}n∈Λ′ has bounded L2 norm on compact subsets of

M−Z. It follows that (3.10) can be used again to see that {hn∗ân}n∈Λ′ has
bounded L2

2 norm on compact subsets of M−Z. This implies in particular
that Λ′ has a subsequence, this being Λ∗, such that {hn∗ân}n∈Λ∗ converges
weakly in the L2

2;loc topology on M−Z. Use a♦ to denote the limit.

Step 3. What is said in (7.2) has the following implication: Suppose
that U is a compact set in M−Z. Then there exists rU > 0 such that
infp∈U{infn∈Λ′{r♦n,p}} > rU. This being the case, the argument in Part 2
of the proof of Lemma 6.3 can be used to prove that |a♦| = |â♦|. Item c)
of Lemma 7.2 with what is said in Step 2 about convergence implies that
dA♦ â♦ = 0 and dA♦∗â♦ = 0 and â♦ ∧ â♦ = 0.

7.b. The fourth bullet of Proposition 7.1

The eight parts of this subsection prove the fourth bullet of Proposition 7.1.
The three items are proved in more or less reverse order.

Part 1: Fix ρ > 0 and let Zρ ⊂ M again denote the set where |ν| < ρ. The
following observation is invoked repeatedly in subsequent arguments in this
section and in later sections.

(7.3) lim
ρ→0

∫
Zρ

|∇ν|2 = 0.

By way of an explanation, the integrand is a measurable function with sup-
port on Zρ−Z. Meanwhile, Z is a closed set and so the function of ρ given
by the volume of Zρ−Z has limit zero as ρ limits to zero.
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With ρ > 0 given, the subsequent arguments refer to the function χρ =
χ(2−ρ−1|ν|), this being a function on M that equals 0 on Zρ and 1 on M−Z2ρ.
It is introduced to avoid certain delicate issues with regard to derivatives of
ν near Z.

Define h(ρ) and H(ρ) to be the functions

(7.4) h(ρ) =

∫
∂Br

χρ|ν|2 and H(ρ) =

∫
Br

χρ|∇ν|2

It follows from the definitions that h(ρ)(r) ≤ h(r) ≤ h(ρ)(r) + c0r
2ρ2. Mean-

while, H(ρ)(r) is no greater than H(r), and (7.3) implies that limρ→0 |H(r)−
H(ρ)(r)| = 0 with the limit being uniform in the following sense: Given ε > 0,

there exists ρε > 0 such that if r ∈ [0, c−1
0 ] and ρ < ρε, then |H(r)−Hρ(r)| < ε.

Part 2: The lemma stated and then proved below asserts in part that h is
non zero on (0, c−1

0 ].

Lemma 7.3. There exists κ > 1 with the following significance: Fix p ∈ M
so as to define the function h. If r ∈ (0, κ−1), then

∫
Br

|ν|2 ≤ (1− κr2)rh(r).

Proof of Lemma 7.3. Use Q to denote the symmetric section of the tensor
bundle ⊗2T

∗M given by Q = ν ⊗ ν − 1
2m|ν|2. The fact that ν is closed and

coclosed implies that Q is divergence free. This means that it has vanishing
L2 inner product with the covariant derivatives of 1-forms. Note that Q
is an L2

1 section of ⊗2T
∗M that is smooth on M−Z and continuous and

locally Hölder continuous across Z. The fact that Q is smooth on M−Z
follows from the fact that ν is harmonic on M−Z and thus smooth. The fact
that Q is locally Hölder continuous across Z follows from what is said by
Proposition 6.1.

Fix a Gaussian coordinate system centered at p, and use the coordinate
differentials as a basis for T∗M and the coordinate vector fields as a basis for
TM. Integrate the inner product between ∇d(|x|2) and Q over the ball Br.
Use the fact that Q is divergence free and that |ν| is continuous and zero on
Z with an integrate by parts to identify the latter integral with a boundary
term. The resulting identity can be written as

(7.5) r

∫
∂Br

(
|νr|2 − 1

2 |ν|
2
)
+ 1

2

∫
Br

|ν|2 = d(r),

where νr denotes the inner product between d|x| and ν and where |d(r)| ≤
c0r

2
∫
Br

|ν|2. Granted this bound on |d|, the identity in (7.5) implies what is
asserted by Lemma 7.3.
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Part 3: Lemma 7.3 has the following consequence: If r ∈ (0, c−1
0 ) and if

h(r) = 0, then h(s) = 0 for all s ≤ r. This understood, let d ∈ [0, c−1
0 ] denote

the maximum value of r where h(r) is zero. The function n is defined on
(d, c−1

0 ). The rest of this Part 3 and all of Parts 4–6 prove Item c) from
Proposition 7.1’s fourth bullet for s > r with r > d.

The proof of Item c) for when s and r are greater than d will appeal to
the lemma that follows directly and the upcoming Lemma 7.5.

Lemma 7.4. There exists κ ≥ 1 with the following significance. Let Λ′

denote the subsequence from Lemma 7.2. Fix ρ > 0. If n ∈ Λ is sufficiently
large, then ∫

Zρ

(|∇An
ân|2 + r 2n |ân ∧ ân|2) < κρ1/κ.

Proof of Lemma 7.4. Fix for the moment s ∈ (0, c−1
0 ) and introduce the

function χn,s on M that is given by χ(s−1|ân| − 1). This function is equal to
1 where |ân| < 5

4s and it is equal to zero where |ân| ≥ 7
4s. Take f = χn,s in

the (An, ân) version of (2.2) to obtain an equation with the form

(7.6) −
∫
M
χ′
n,s|ân||d|ân||2 +

∫
M
χn,s(|∇An

ân|2 + r 2n |ân ∧ ân|2) = en(s)

where |en(s)| ≤ c0(r−1
n + s2).

Fix ρ < c−1
0 and let Nρ denote the smallest integer with the following

property: If n ∈ Λ and n ≥ Nρ, then

(7.7) rn > ρ−2 and 7
8 |ν| ≤ |an| ≤ 9

8 |ν| where |ν| > 1
8ρ.

If n ≥ Nρ and s ≥ ρ, then (7.6) implies the inequality

(7.8)

∫
Zs

(|∇An
ân|2+r 2n |ân∧ân|2) ≤ c0

∫
Z2s−Zs

(|∇An
ân|2+r 2n |ân∧ân|2)+c0s

2).

The integral on the left in (7.8) is the difference between the respective
integrals of its integrand over Z2s and Zs. Use this fact to rewrite (7.8) so as
to read
(7.9)∫
Zs

(|∇An
ân|2 + r 2n |ân ∧ ân|2) ≤ (1− c−1

0 )

∫
Z2s

(|∇An
ân|2 + r 2n |ân ∧ ân|2) + c0s

2.

Given k ∈ {0, 1, . . . } but less than 1
ln 2 | ln ρ| − c0 introduce x k to denote the

s = 2−kc−1
0 version of the integral on the left hand side of (7.9). With this
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notation understood, then (7.9) asserts that

(7.10) x k ≤ (1− c−1
0 )x k−1 + c02

−2k.

Iterating this finds x k ≤ (1− c−1
0 )k(x 0 + c0). This implies that

(7.11)

∫
Zρ

(|∇An
ân|2 + r 2n |ân ∧ ân|2) ≤ c0ρ

k/c0 .

Since (7.11) holds for all n ≥ Nρ, it leads directly to the claim made by
Lemma 7.4.

The next lemma is also needed for the fourth bullet of the proposition:

Lemma 7.5. Let Λ′ denote the subsequence from Lemma 7.2. Given ρ > 0,
then there exists κ > 1 with the following significance: If n ∈ Λ′, then
r 2n

∫
M−Zρ

|ân ∧ ân|2 ≤ κr−2
n .

Proof of Lemma 7.5. The integral of |FAn
|2 on M−Zρ enjoys an n-independ-

ent upper bound and so this is also the case for the integral of r 4n |ân ∧ ân|2
on M−Zρ.

Part 4: Given n ∈ Λ′, use hn, hn and nn to denote the version of the
functions h and n that are defined in (5.2) and (5.3) using the point p,
r = rn and (A, â) = (An, ân). Suppose ρ > 0 has been specified. Fix r > 0
and let hn(ρ)(r) and Hn(ρ)(r) denote the respective integrals

hn(ρ)(r) =

∫
∂Br

χρ|ân|2 and(7.12)

Hn(ρ)(r) =

∫
Br

χρ(|∇An
ân|2 + r 2n |ân ∧ ân|2).

These are such that

(7.13) • hn(ρ) ≤ hn for all n ∈ Λ and hn(ρ) ≥ hn − c0r
2ρ2 if n ∈ Λ is

sufficiently large.

• Hn(ρ) ≤ Hn for all n ∈ Λ and Hn(ρ) ≥ Hn − c0ρ
1/c0 if n ∈ Λ is

sufficiently large.

By way of an explanation, the lower bound for hn(ρ) follows from the fact
that {|ân|}n∈Λ converges to |ν|, and that for Hn(ρ) follows from Lemma 7.4.

Fix r ∈ (d, c−1
0 ). It follows from what is said by (7.13) and Lemma 7.5

by taking limits first as n ∈ Λ′ gets ever larger and then as ρ limits to zero
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that

(7.14) n(r) = lim
n∈Λ′

nn(r),

and that this limit is uniform as r various on compact subsets of (d, c−1
0 ).

Part 5: This part of the subsection invokes some of what is said in Sec-

tions 5.c and 5.d to derive the r > d version of Item c) of the fourth bullet

from a lemma that is proved in Part 6. The starting point is the r = rn
and (A, â) = (An, ân) version of (5.30). Keep in mind that what is denoted

in (5.30) by r is discussed subsequent to (5.11). It is enough to know that

|r| < c0r. What is denoted by z is defined subsquent to (5.28). A bound

for |z| is supplied by (5.32), but the latter is not sufficient for the purposes

at hand. The upcoming Lemma 7.6 says what is needed about z’s absolute

value. There is also a term in (5.30) that is denoted by R. This term enters

via the second bullet of Lemma 5.2. A bound for |R| is supplied by (5.31),

but a stronger bound is needed and Lemma 7.6 provides one.

Lemma 7.6. There exists κ> 1, and given ε∈ (0, 1], there exists κε >κ with

the following significance: Let Λ′ denote the subsequence from Lemma 7.2.

If n ∈ Λ′ is greater than κε, then the absolute values of the r = rn and

(A, â) = (An, ân) versions of z and R at points r ∈ [ε, κ−1) are such that

|z| < ε+ κrhn and |R| < ε+ κ(hn + rHn).

This lemma is proved in Part 6.

Accept Lemma 7.6 for the moment to complete the proof of the s > d

version of Item c) from Proposition 7.1’s fourth bullet. To do this, fix first

r∗ > d and suppose that r is greater than r∗. It then follows from Lemma 7.3

that h(r) > m−1
∗ with m∗ > 1 a number that depends on r∗ but not on r. Fix

ε positive but less than the smaller of c−1
0 m−1

∗ and r∗. If n is large, then hn(r)

will differ by at most ε2 from the integral of |ν|2 over ∂Br, and so hn(r) will

be greater than c−1
0 m−1

∗ .

With the preceding in mind, use Lemma 7.6 with (5.30) to conclude that

(7.15)

d
drnn ≥ −c0

(
r +

r

hn
ε

)
(1 + nn) when max(d, ε) < r ≤ c−1

0 and n is large.

Since hn(r) ≥ c−1
0 m−1

∗ , the inequality (7.15) leads to the bound

(7.16)
d
drnn ≥ −c0(r + m∗ε)(1 + nn) when max(d, ε) < r ≤ c−1

0 and n is large.
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Suppose now that ε is greater than m−2
∗ . If both s and r are greater than

max(d, ε) and less than c−1
0 , and if s > r, then integrating (7.17) finds that

(7.17) nn(s) > e−c0(s2−r2+ε1/2)
nn(r)− c0(s

2 − r2 + ε1/2) when n is large.

Proposition 7.1’s fourth bullet for r > d follows directly from (7.14) and

(7.17).

Part 6: This part of the subsection contains the proof of Lemma 7.6.

Proof of Lemma 7.6. The proof has four steps.

Step 1. What is said about z subsequent to (5.28) finds

(7.18) |z| ≤ ce

(
|H− h |+

∫
Br

|â|2 +
∣∣∣∣
∫
Br

〈â ∧ ∗qA(â)〉
∣∣∣∣
)
,

with ce > 1 denoting here and in what follows, a number that depends only

on the value of e in (3.2) and whose value can increase between successive

appearances. The absolute value of H−h is no greater than cer−1, this being

the content of (5.12). Meanwhile, the integral that involves qA(â) is bounded
by cer−1/2, this being a consequence of (5.16). If the integer n ∈ Λ′ is large,

then r−1/2
n will be less than c−1

e ε2 and in particular, the left most and right

most terms in the r = rn and (A, â) = (An, ân) version of (7.16) will make a

contribution to |z| that is less than 1
2ε

2. Meanwhile, the integral of |ân|2 over

any r > ε version of Br differs from that |ν|2 by at most c−1
e ε2 if n is large,

and Lemma 7.5 asserts that the latter integral is no greater than r(1− c0r
2)

times that of |ν|2 over the boundary of Br. This integral of |ν|2 will differ

from r(1− c0r
2)hn(r) by at most c−1

e ε2 when r ≥ ε if n is large. It follows as

a consequence that |z| ≤ ε+ cerhn when r ≥ ε and n is large.

Step 2. Reintroduce the notation from Step 1 of the proof of Lemma 5.2.

The idnentities in (5.6)–(5.8) lead to a bound on |R| that can be written as

(7.19) |R| ≤ c0

∣∣∣∣
∫
Br

〈(∇A,iâ)kqA(â)k〉∂iΔ
∣∣∣∣ + ce

(
h + rH +

∫
Br

|â|2 + r−1/2

)
.

What is denoted by Δ designates the function dist(·, p)2 and ∂iΔ designates

the directional derivative of the function Δ along the i’th basis vector. Re-

marks in Step 1 imply the following: If r ∈ (ε, c−1
0 ) and n is large, then the



PSL(2;C) connections on 3-manifolds with L2 bounds 339

r = rn and (A, â) = (An, ân) version of the right hand side of (7.19) is no
greater than

(7.20) c0

∣∣∣∣
∫
Br

〈(∇A,iâ)kqA(â)k〉∂iΔ
∣∣∣∣ + ce(h + rH) + c−1

e
ε2.

Fix ρ > 0 and use the identity 1 = (1 − χρ) + χρ to break the integral in
(7.20) into two parts, the first having the factor (1 − χρ) in the integrand
and the second having the factor χρ. The next step supplies bounds for the
absolute values of these two integrals.

Step 3. Use Lemma 7.4 with Item d) in Proposition 2.2 to see that the norm
of

(7.21)

∫
Br

(1− χρ)
〈
(∇An,iân)kqAn

(ân)k
〉
∂iΔ

is no greater than c0rρ
1/c0 when n is sufficiently large.

The χρ part of the integral in (7.20) is

(7.22)

∫
Br

χρ

〈
(∇An,iân)kqAn

(ân)k
〉
∂iΔ.

To bound the absolute value of (7.22), fix μ ∈ (0, 1
64) for the moment and

introduce by way of notation σμ to denote the function on Br given by
χ(2−μ−1(1− r−1dist(·, p))). This function equals 0 where the distance to p
is greater than (1− μ)r and it equals 1 where the distance to p is less than
1− 2μ. Insert the identity 1 = (1− σμ) + σμ into the integrand in (7.22) to
write it as a sum of two terms.

The absolute value of the term with the factor 1− σμ is no greater than

(7.23) c0r

(∫
1−2μ<dist(·,p)<1

χρ|∇An
ân|2

)1/2

,

this being a consequence of Item d) of the second bullet of Proposition 2.2.
Meanwhile, the integral in (7.23) is no greater than c0r

1/2μ1/4 times the L4

norm of ∇An
ân over Br. The latter norm has a ρ dependent but n indepen-

dent upper bound, this being a consequence of the first bullet of (3.10) and
the second bullet of Lemma 7.2. This understood, it then follows that the
contribution to the absolute value of the integral in (7.22) from the term
with 1 − σμ is no greater than c0r

3/2μKρ with Kρ being a number that is
determined by ρ but independent of μ and n.
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The contribution to the integral of (7.22) from the term with σμ is the
integral over Br of σμχρ〈(∇An,iân)jqAn

(ân)j〉∂iΔ. A bound for the absolute
value of this integral is obtained by writing

(7.24) qAn
(ân) = ∗dAn

(∗dAn
ân)− dAn

(∗dAn
∗ân),

and then integrating by parts to make an integrand which has terms that are
linear in the components of dAn

ân and dAn
∗ân. Use Item c) of Proposition 2.2

and the L2
2 bound in the second bullet of Lemma 7.2 to see from the resulting

integral that the absolute value of the σμ contribution to (7.22) is bounded
by Kρμ

−1r−1
n with Kρ denoting again a number that is determined by ρ but

is independent of both μ and n.

Step 4. By way of a summary, what is said in Steps 1–3 bound the absolute
value of the explicit integral in (7.20) by

(7.25) c0ρ
1/c0 +Kρ(μ

1/4 + μ−1r−1
n )

With ε given, first choose ρ < εc0 so that the left most term in (7.25) is
less than 1

3ε
2. With ρ so chosen, choose a postive value of μ, but sufficiently

small so as to make the middle term in (7.25) less than 1
3ε

2 also. With ρ and
μ fixed, the right most term in (7.25) is less than 1

3ε
2 when n is sufficiently

large. Granted these bounds, then (7.20) leads directly to the bound asserted
by Lemma 7.6.

Part 7: This part of the subsection derives a differential equation for h
that is the same as that given in Item b) of Proposition 7.1 where r > d. To
set the notation, let m denote the metric inner product on T∗M. Use ∂r to
denote the derivative along the radial geodesics from p in Br. Fix ρ ∈ (0, c−1

0 )
and differentiate to obtain the identity

(7.26)
d

dr

∫
∂Br

χρ|ν|2 = 2r−1(1 + e1)

∫
∂Br

χρ|ν|2 + 2

∫
∂Br

χρm(ν, ∂rν)

with e1 being bounded by c0r
2. Integrate by parts in the second integral

using the fact that ν is harmonic to write it as

(7.27)

∫
∂Br

χρm(ν, ∂rν) =

∫
Br

χρ(|∇ν|2 +Ric(ν, ν)) + e2.

where e2 is a term with absolute value obeying

(7.28) |e2| ≤ c0ρ
−1

∫
Br∩Z2ρ

|ν||∇ν|2
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Given that |ν| < 2ρ on Z2ρ, this bound for |e2| implies directly that

(7.29) |e2| ≤ c0

∫
Z2ρ

|∇ν|2.

As noted in (7.3), the ρ → 0 limit in (7.29) is zero.
Fix r > 0 and ε > 0; then integrate (7.26) and use (7.27) to see that

(7.30)

∫
∂Br+ε

χρ|ν|2 −
∫
∂Br

χρ|ν|2

=

∫ r+ε

r

(
s−1

∫
∂Bs

(1 + e1)χρ|ν|2 +
∫
Bs

χρ(|∇ν|2 +Ric(ν, ν)) + e2

)
ds.

Take ρ to zero on both sides of (7.30). What is said subsequent to (7.4) and
what is said in (7.3) imply that the ρ → 0 limit of (7.30) is the identity
(7.31)

h(r + ε)− h(r) =

∫ r+ε

r

(
s−1

∫
∂Bs

(1 + e1)|ν|2 +
∫
Bs

(|∇ν|2 +Ric(ν, ν))

)
ds.

Divide both sides of (7.31) by ε and take the ε → 0 limit. As the ε → 0
limit of the right hand side exists, the result of taking the ε → 0 limit is an
identity for the derivative of h that reads

(7.32) d
drh = 2r−1(1 + e∗)h + H +

∫
Br

Ric(ν, ν)

with e∗ being a function of r obeying |e∗| ≤ c0r
2.

The integral of Ric(ν, ν) that appears in (7.32) is bounded by c0 times
the integral of |ν|2 over Br. This understood, use Lemma 7.3 to write (7.32)
schematically as

(7.33) d
drh = 2r−1(1 + e)h + H,

where e is a function of r that obeys |e| ≤ c0r
2. The equation in (7.33) is

the equation in Item b) of Proposition 7.1’s fourth bullet at values of r > d,
this because the definition of n can be invoked to write H as H = r−1

nh.

Part 8: This step proves the assertion in Item a) of Proposition 7.1’s fourth
bullet to the effect that any given p ∈ M version of h is positive on the
whole of (0, c−1

0 ). This is done by assuming that there exists p ∈ M where
the corresponding version of d is positive and deriving nonsense.



342 Clifford Henry Taubes

To set the stage for the derivation, note that if d is positive, then Z
contains an open set. If such is the case, then there exists, for any ε > 0,
a point p ∈ Z with d positive but less than ε. In particular, there exists a
point p ∈ M with d positive, with h defined on (0, r0) with r0 > c−1

0 and
with h(12r0) > 0. Let p ∈ M denote such a point.

Write H in (7.33) on the r > d part of (0, r0) as r−1
nh. Fix s > r > d

with both in (0, r0) and integrate this rewriting of (7.33) to see that

(7.34) h(s) = (1 + d)

(
s

r

)2

exp

(
2

∫ s

r

1

t
n(t)dt

)
h(r),

where d(s) is such that |d| ≤ c0s
2 and | ddsd| ≤ c0s. As the r → d limit of h(r)

is zero and as d is positive, the identity in (7.34) implies that the function
n can not be a bounded function on (d, 12r0]. This understood, fix for the
moment m > 1 and some rm ∈ (d, 12r0] with n(rm) > m . The r > d version

of Item c) of the fourth bullet in Proposition 7.1 says that n(12r0) ≥ c−1
0 m .

Since m can be as large as desired, this constitutes the desired nonsense.
The reason it is nonsense is as follows: By assumption, h(12r0) > 0. Since H
is bounded and since n = rH/h, so n(12r0) is finite, and thus less than m if
m is sufficiently large.

7.c. The r → 0 limit of nnn

Given a point p ∈ M, let n(p) denote p’s version of the function n. The
upcoming Lemma 7.7 concerns the behavior of the r → 0 limit of np(r) as p
varies in Z.

Lemma 7.7. There exists κ ≥ 1 with the following significance: Any given
p ∈ M version of n(p) extends to [0, κ] as a continuous function. Moreover,

• If {qk}k=1,2,... ⊂ M converges to a given point p ∈ M then
limk→∞ n(qk)(0) ≤ n(p)(0).

• If p ∈ M−Z, then n(p)(0) = 0; and if p ∈ Z, then n(p)(0) > κ−1.

The remainder of this subsection contains the proof of this lemma.

Proof of Lemma 7.7. The proof has four parts.

Part 1: To see that a given p ∈ M version of n(p) is continuous on its
original domain of definition, keep in mind that p’s version of the function h
is differentiable, this being an assertion of Proposition 7.1. This understood,
it follows that n(p) is continuous on (0, c−1

0 ) if and only if p’s version of the
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function H is continuous. The fact that H is continuous follows from what is
said in Part 1 of Section 7.b about H and (7.4)’s function H(ρ). To say more,
fix ε > 0 and use what is said at the end of Part 1 of Section 7.b to find
ρε > 0 such that |H(·) − H(ρ)(·)| < ε when ρ < ρε. Fix such a value for ρ.
Since ν is smooth on M−Z, the function H(ρ) is smooth. This understood fix

r ∈ (0, c−1
0 ] and then fix Δ > 0 so that |H(ρ)(r + Δ) − H(ρ)(r)| < ε. It then

follows that |H(r + Δ)−H(r)| < 3ε and so H is continuous.
The assertion that n(p) extends continuously to [0, c−1

0 ] follows from Item
c) of the fourth bullet of Proposition 7.1 given the fact that n(p) is positive.

Part 2: The proof of the bulleted assertions requires a weak version of what
is said by the lemma’s first bullet, this being the following:

(7.35) If p ∈ M−Z, then n(p)(0) = 0; and if p ∈ Z, then n(p)(0) > 0.

The proof of (7.35) has two steps.

Step 1. If p ∈ M−Z, then |ν|2 is greater than zero at p and smooth in a
neighborhood of p. This being the case, p’s version of the function h must
have the form 4πr2|ν|2(p)+e with e being a function of r with absolute value
bounded by c0r

3. With this in mind, write n(p) near r = 0 as n(p)(0) + o

with limr→0 o(r) = 0. Suppose for the sake of argument that ε > 0 and that
n(p)(0) is greater than ε so as to derive nonsense. To do this, fix s > 0 and

use (7.34) to see that h(r) ≤ c(s)r2+ε/2 when r is small.

Step 2. Suppose that p ∈ Z and suppose for the sake of argument that
n(p)(0) = 0 so as to derive nonsense. To start, introduce by way of notation
c to denote the version of the constant κ that is assigned to p by Proposi-
tion 6.1. It follows from Proposition 6.1 that p’s version of the function h is
such that h(r) ≤ cr2+2/c when r ≤ c−1. Hold onto this bound for a moment.

Use the fact that n(p) is continuous on [0, c−1
0 ] and 0 at r = 0 to draw the

following conclusion: Given ε > 0, there exists rε > 0 such that n(p)(r) < ε
when r < 2rε. Granted this bound, use the s = rε version of (7.34) to see
that h(r) ≥ c−1

ε r2+2ε when r < rε with cε > 1 being a number that depends
on ε but not on r.

The lower bound h(r) ≥ c−1
ε r2+2ε runs afoul of the upper bound cr2+2/c

when ε > 1/c. The fact that the lower bound holds for all nonzero ε consti-
tutes the desired nonsense.

Part 3: The three steps that follow prove Lemma 7.7’s assertion about the
behavior of the function p → n(p)(0). The notation used below has h(p) and
H(p) denoting a given p ∈ M version of the functions h and H.
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Step 1. Granted that n(p)(0) = 0 when p ∈ M−Z, then what is said by

Lemma 7.7 about the semi-continuity n(·)(0) at a point p ∈ M−Z follows

directly from the fact that M−Z is an open set.

Step 2. Fix p ∈ Z and d > 0. Let q ∈ Z denote a point with distance d

or less from p. If r ∈ (c0d, c
−1
0 ), then the sphere of radius r centered at q

is contained in the ball of radius r + d centered at p and it contains the

ball of radius r − d centered at p. This understood, an application of the

fundamental theorem of calculus finds

(7.36) |h(q)(r)− h(p)(r)| ≤ c0(H(p)(r + d))1/2rd1/2.

Use the third bullet of Proposition 7.1 to bound H(p)(r+d) by c0(r+d)1/2 and

use this bound with (7.35) to conclude that |h(q)(r) − h(p)(r)| ≤ c0r
3/2

d
1/2

when r ∈ (10d, c−1
0 ).

Step 3. The fact that n(p) is continuous on [0, c−1
0 ) has the following con-

sequence: Fix ε > 0 and there exists rε ∈ (0, ε) such that n(p)(0) − ε ≤
n(p)(r) ≤ n(p)(0) + ε if r ∈ (0, 2rε]. This being the case, then (7.34) implies

that h(p)(r) for r ∈ [0, 2rε] can be written as

(7.37) h(p)(r) = cεr2(1+n(p)(0)+e),

where cε > 0 and where the function e is such that |e| ≤ c0ε. If d < c−1
0 rε,

then this equation for h(p) with (7.36) implies that the function h(q)(r) for

r ∈ (10d, 2rε] can be written as

(7.38) h(q)(r) = cεr2(1+n(p)(0)+e) + r

where the function r is such that |r| ≤ c0r
3/2

d
1/2. If it is the case that

d < c−1
0 c2ε r

c0
ε , then (7.38) holds for r ∈ [rε, 2rε] with r = 0 but with a

different version of e such that |e| ≤ c0ε.

Step 4. Suppose that d obeys the bound d ≤ c−1
0 c2ε r

c0
ε . It follows from what

is said at the end of Step 2 that if s > r with both from [rε, 2rε], then

(7.39) h(q)(r)/h(q)(s) ≥
(
r

s

)2(1+n(p)(0))+c0ε

.

Meanwhile, the point q has its corresponding version of Proposition 7.1’s

fourth bullet. Item c) of the q version implies that n(q)(t) > n(q)(0) − c0r
2
ε
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for t ∈ [0, 2rε]. This bound with q’s version of (7.34) implies that

(7.40) h(q)(r)/h(q)(s) ≤
(
r

s

)2(1+n(q)(0))−c0ε

.

These upper and lower bounds are not compatible unless n(q)(0) ≤
n(p)(0) + c0ε. Since ε can be made as small as desired by taking d suffi-
ciently small, this last inequality proves Lemma 7.7’s claim about the semi-
continuity of n(·)(0) at p.

Part 4: To prove Lemma 7.7’s second bullet, fix n ∈ {1, 2, . . . } for the
moment and denote by Vn the set {p ∈ Z : n(p)(0) ≥ 1

n}. The first bullet
of Lemma 7.7 implies that Vn is closed. Use the topology from M to view
Z as a topological space. The set Vn is a closed subspace and let Un denote
its interior. If not empty, then Un is an open subset of Z. It follows from
(7.33) that each point in Z is contained in some set from the collection
{Un}n∈{1,2,... } and so this collection defines an open cover of Z. As Z is
compact, there is a finite subcover consisting of sets from the collection
{Un}n∈{1,2,... }. As a consequence, there exists n ≥ 1 such that each p ∈ Z

version of n(p)(0) is greater than
1
n .

8. Rescaling the 1-form ν

A data set (Z, I , ν) with Z ⊂ M being a closed set and I → M−Z being a real
line bundle and ν being a harmonic, I -valued 1-form on M−Z is said to be
a twisted harmonic form data set when three conditions are met. The first
condition requires that the function |ν| extend to M as a continuous function
with Z ⊂ |ν|−1(0); the second condition requires that the second, third and
fourth bullets of Proposition 7.1 be obeyed; and the third condition requires
that the conclusions of Lemma 7.7 hold. This section and Sections 9 and 10
assume that (Z, I , ν) defines a twisted harmonic form. In particular, various
lemmas and propositions that follow in Sections 8–10 do not ask that (Z, I , ν)
arise from a sequence as described in the second bullet of Proposition 2.2.

This section begins the analysis of (Z, I , ν) by looking at ever smaller
length scales on balls centered around a given point in Z. The results of this
analysis are summarized by the upcoming Proposition 8.1. The proof of this
proposition occupies the subsections of this section.

To set the stage and notation for Proposition 8.1, fix R ∈ (0,∞) for
the moment and define the rescaling map ψR : R3 → R3 by the rule
x → ψR(x) = Rx. A closed set in R3 is said to be scale invariant when
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it is mapped to itself by each R > 0 version of ψR. An example is the union
of the origin with a finite set of rays from the origin. A real line bundle
defined on the complement of a scale invariant set is canonically isomorphic

to its pull-back by any R > 0 version of ψR.

Fix r0 > c−1
0 so that the radius 100r0 ball about any given point in M

is well inside the domain of a Gaussian coordinate chart centered on the
point in question. Given p ∈ M, a Gaussian coordinate chart centered at p

and λ ∈ (0, r0], define φλ to be the map from the radius λ−1r0 ball about
the origin in R3 to M that composes first ψλ and then the chosen Gaussian
coordinate chart map.

Given p ∈ Z and λ ∈ (0, r0], Proposition 8.1 use Zλ to denote φ−1
λ (Z) and

it uses Iλ to denote φλ
∗I , these defined on the radius λ−1r0 ball centered on

the origin in R3. Let h(p) denote p’s version of the function h in Proposi-

tion 7.1. Proposition 8.1 uses νλ to denote h(p)(λ)
−1/2φλ

∗ν, this being an Iλ
valued 1-form on the complement of Zλ in |x| < λ−1r0 ball centered on the
origin in R3 that extends over Zλ as 0.

Proposition 8.1. There exists κ > 1, and given p ∈ Z plus a Gaussian
coordinate chart centered at p, there exists a data set (Z∗, I∗, ν∗) with the
properties listed below.

• Z∗ is the union of the origin in R3 and a finite set of rays from the
origin.

• I∗ is a real line bundle defined on the complement of Z∗ in R3.
• ν∗ is an I∗ valued, harmonic 1-form on R3−Z∗ whose norm extends

over Z∗ as an L2
1;loc and exponent υ = κ−1 Hölder continuous function

with zero locus Z∗.
• ψR

∗ν∗ = R1+n(p)(0)ν∗ if R > 0.
• The sequence of data sets {(Zλ, Iλ, νλ)}λ∈(0,r0] converges to (Z∗, I∗, ν∗)
in the following sense: Given ε ∈ (0, 1), there exists rε ∈ (0, 1] such

that if λ ∈ (0, rε), then

a) The functions |νλ| and |ν∗| differ where |x| < ε−1 by a function
with exponent υ = κ−1 Hölder norm less than ε.

b) Let Tε ⊂ R3 denote the radius ε tubular neighborhood of Z∗. Each
|x| < ε−1 point in Zλ lies in Tε.

c) There exists an isomorphism between I∗ and Iλ over the |x| < ε−1

part of R3−Tε that identifies νλ with an I∗ valued 1-form that
differs from ν∗ by an I∗ valued 1-form with any k < ε−1 version
of the Ck norm being less than ε−1.
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The upcoming Lemma 8.12 in Section 8.h says more about the behavior

of ν∗ near the rays in Z∗; it asserts in particular that |ν∗|2 vanishes to integer

order along each of them.

Proof of Proposition 8.1. The assertions of the proposition are consequences

of various lemmas that are stated and then proved in Sections 8.a–8.g. The

definition of what turns out to be |ν∗| is supplied by Lemma 8.5 from Sec-

tion 8.c. This lemma also gives the assertion in Proposition 8.1’s third bullet

that |ν∗| extends over Z∗ as an L2
1;loc function. Lemma 8.6 in Section 8.c

asserts that the extension of |ν∗| is Hölder continuous. Lemma 8.7 in Sec-

tion 8.d gives a construction of Z∗, I∗ and ν∗. Lemma 8.7 together with

Lemma 8.8 in Section 8.e imply in part what is asserted by Proposition 8.1’s

fifth bullet. Lemma 8.9 in Section 8.f gives the assertion of the fourth bullet

of Proposition 8.1. The proof of Proposition 8.1 is completed by Lemma 8.10

from Section 8.g. This lemma asserts that Z∗ is the union of the origin and

a finite set of rays from the origin.

Sections 8.a and 8.b prove various facts about |ν| that are used to prove

the lemmas in the subsequent subsections.

8.a. Hölder continuity of |ν| along Z

This section supplies via Lemma 8.2 a result that is used as input in some

of the forthcoming subsections. Keeping in mind that |ν| = |â♦|, this lemma

refines a part of Proposition 6.1 by saying more about Hölder continuity of

|â♦| on its zero locus.

Lemma 8.2. There exists κ > 1 with the following significance: Fix a point

p ∈ Z and fix s ∈ (0, r0). Then

• There exists zs ∈ (0, κ) such that h(p)(s) = z2s s
2+2n(p)(0). Moreover, if

zs is such that h(p)(s) = z2s s
2+2n(p)(0), then h(p)(r) ≤ (1+κ)z2s r

2+2N(p)(0)

when r ∈ (0, s].

• If q∈M is such that dist(p, q)≤κ−1s, then |ν|(q)≤κzs(dist(p,q))n(p)(0).

The remainder of this subsection contains the proof of this lemma.

Proof of Lemma 8.2. The existence of a value of zs in the indicated range

that makes the first bullet true follows from (7.34) using two additional facts.

The first is Lemma 7.7’s observation that n(p)(0) > 0; and the second is the

inequality that is stated by Item c) of Proposition 7.1’s fourth bullet.
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To start the proof of the second bullet, use the fact that ν is closed and
coclosed where non-zero to see that |ν| obeys the equation

(8.1) 1
2d

†d|ν|2 + |∇ν|2 +Ric(ν ⊗ ν) = 0 on M−Z.

To exploit this equation, fix for the moment ρ > 0 and use χρ to once again
denote the function on M given by χ(2 − ρ−1|ν|). By way of a reminder,
χρ equals 0 where |ν| < ρ and it equals 1 where |ν| > 2ρ. Let f for the
moment denote a given, differentiable function on M. Multiply both sides of
(8.1) by fχρ, integrate the result over M and integrate by parts to obtain
the identity

(8.2) 1
2

∫
M
d†df |ν|2 +

∫
M
f(|∇ν|2 +Ric(ν ⊗ ν)) + eρ(f) = 0,

where |eρ(f)| ≤ cf
∫
M−Z2ρ

|∇ν|2 with cf ≥ 1 depending only on f but not

on ρ. Invoke (7.3) to see that limρ→0 |eρ(f)| = 0. This understood, what is
written in (8.2) implies that

(8.3) 1
2

∫
M
d†df |ν|2 +

∫
M
f(|∇ν|2 +Ric(ν ⊗ ν)) = 0.

when f is a C2 function on M.
Fix q ∈ M and let Gq(·) denote the Green’s function for the operator

d†d+1 with pole at q. Let σ denote a given smooth function on M. Use the
sequence of functions {fq,ε}ε∈(0,1) from Step 1 of the proof of Lemma 2.1 to
see that (8.3) still holds when f is equal to σGq. By way of a parenthetical
remark, when (Z, I , ν) comes from a sequence that is described by Propo-
sition 2.2, then a proof of this last assertion can also be had by using the
first and third bullets of Proposition 7.1 and the local Hölder assertion in
Proposition 6.1. In any event, the f = σGq version of (8.3) reads

(8.4) 1
2σ(q)|ν|(q)

2 +

∫
M
σGq|∇ν|2

=

∫
M
σGq(|ν|2 − Ric(ν ⊗ ν))−

∫
M

(
1
2d

†dσGq +m(dσ, dGq)
)
|ν|2,

where m(·, ·) is used here to denote the metric inner product on T∗M.
Fix p ∈ Z and r ∈ (0, r0). Let q denote a point on the boundary of the

ball of radius r centered at p. Fix R > 3 and take the function σ in (8.4) to
be the function on M given by χ((Rr)−1dist(·, p)−1). This function is equal
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to 1 where the distance to p is less than Rr and it is equal to 0 where the
dist(·, p) > 2R. In particular, it is equal to 1 at q.

Keeping in mind that integrand for the right-most integral in (8.4) is
supported in B2Rr−BRr, the fact that

(8.5) |Gp −Gq| ≤ c0
dist(p, q)

dist(·, p)2

on the complement of the radius 3r ball centered at p leads to a bound on
the absolute value of the right most integral by c0(Rr)

−2h(p)(Rr). If Rr is
less than the chosen value of s, then this last expression is no greater than
c0zs(Rr)2np(0).

The left most integral on the right hand side of (8.4) can be bounded
using the fact that Gq near q can be written as Gq = 1

4πdist(q, ·)−1+ r with
|r| ≤ c0dist(q, ·)| ln(dist(q, ·)|. The contribution of r to the integral is less
than c0(Rr)

2| ln(Rr)|h(p)(Rr). This is less than c0(Rr)
4| ln(Rr)|zs(Rr)2np(0)

when Rr is less than s. The contribution to the left most integral on the
right side of (8.4) from 1

4πdist(·, q)−1 can be broken in to two parts, these
being the contribution from the part where the distance to q is greater
than 1

2Rr and that where the contribution is less than 1
2Rr. The absolute

value of the former is bounded by c0h(p)(Rr) and so it is no greater than

c0(Rr)
2zs(Rr)2np(0) when Rr is less than s. An integration by parts can be

used to bound the absolute value of the latter by the integral of c0|ν||∇ν|
over BRr plus that of c0(Rr)

−1|ν|2 over the boundary of BRr. Both of these
integrals are bounded by c0(Rr)

−1hp(Rr), and thus by c0(Rr)zs(Rr)2np(0)

when Rr < s.
Take R = 4 in the preceding two paragraphs to obtain the bound that

is asserted by the second bullet in Lemma 8.2.

8.b. The r dependence of h and H near r = 0

Let p denote a given point in Z, thus a point where ν is zero. The three
parts of this subsection prove that the functions h(p), H(p) and some related
functions are nearly powers of r when r is small. Lemmas 8.3 and 8.4 makes
precise what this means.

Part 1: The definition is such that |νλ|2 has integral 1 on the sphere of
radius 1 about the origin in R3 when the inner product and area form
are defined using the metric on the radius λ−1r0 ball that is obtained by
multiplying the φλ pull back of the latter metric by λ−2. This metric is
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denoted here by mλ. It differs from the Euclidean metric by a term with
norm bounded by c0λ

2. The norms of the first and second derivative of mλ

are also bounded by c0λ
2. Derivatives of order k ≥ 3 are bounded by a k

dependent multiple of λk.
The convention for what follows in this subsection and henceforth with

regards to metrics is as follows: All inner products and covariant derivatives
of line bundle valued tensors on subsets of R3 are understood to be defined
by the Euclidean metric unless explicitly stated to the contrary. The Hodge
star is the Euclidean Hodge star unless stated to the contrary. Integration
on submanifolds and domains in R3 is likewise defined using the Euclidean
metric unless noted otherwise.

Part 2: The lemma that follows concerns the λ → 0 limit of integrals
that involve the 1-forms in the sequence {νλ}λ∈(0,r0]. With λ given, the first
lemma uses νλr to denote the radial component of νλ.

Lemma 8.3. This sequence has the properties that are listed in the bullets
that follow. The four bullets refers to a chosen number R ∈ (0,∞).

• {
∫
|x|=R |νλ|2}λ<r0/R converges as λ → 0 with limit R2+2n(p)(0).

• {
∫
|x|=R |νλr|2}λ<r0/R converges as λ → 0 with limit

1+n(p)(0)
3+n(p)(0)

R2+2n(p)(0).

• {
∫
|x|≤R |νλ|2}λ<r0/R converges as λ → 0 with limit 1

3+2n(p)(0)
R3+2n(p)(0).

• {
∫
|x|≤R |∇νλ|2}λ<r0/R converges as λ → 0 with limit n(p)(0)R

1+2n(p)(0).

Moreover, all four of the preceding assertions hold when the norms, covariant
derivative and volume or area form are defined for each λ ∈ (0, 1] by the
corresponding metric mλ.

Proof of Lemma 8.3. The proof has two steps.

Step 1. What is said in Part 1 about the difference between the Euclidean
metric and a given λ ∈ (0, 1

100r0] version of mλ implies that the Euclidean
metric version of Lemma 8.3 holds if and only if the mλ metric version holds.
Keep in mind that the definition of any νλ is such that the mλ version of
the integral on the radius R sphere in R3 mλ version of |νλ|2 using mλ’s area
2-form is h(λR)/h(λ).

Step 2. Lemma 7.7 has the following consequence: Given ε > 0, then there
exists rε ∈ (0, 1

100r0] such that |n(p)(r)−n(p)(0)| ≤ ε when r ∈ (0, 2rε]. With
the preceding understood, fix s > r from (0, 2rε] and use (7.34) to write

(8.6) h(s) =

(
s

r

)2(1+n(p)(0))+e

h(r),
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where e is such that |e| ≤ c0ε. This identity with what is said in Step 1

implies what is asserted by the first bullet of Lemma 8.3. The assertion

in the third bullet of Lemma 8.3 is obtained from the first by integrating.
Meanwhile, the assertion in the second bullet follows from the first and third

via the identity in (7.5). The fourth bullet’s assertion is obtained from the

first bullet by writing p’s version of the function H as H = r−1
n(p)h.

Part 3: The upcoming Lemma 8.4 concerns the λ → 0 limit of integrals

on constant |x| spheres in R3 of |∇νλ|2 and of the square of the norm of

νλ’s radial derivative. There is some subtlety here by virtue of the fact that
there is no assertion as yet that a given λ ∈ (0, 1

100r0] version of the function

|∇νλ|2 is square integrable on any given constant |x| sphere. Even so, it is

none-the-less a fact that the function given by the rule

(8.7) R →
∫
|x|=R

|∇νλ|2

defines an L1 function on (0, λ−1r0). The proof that this is so starts with

the following observation: Fix λ ∈ (0, 1
100r0]. Use hλ : (0, λ−1r0) → [0,∞) to

denote the function of R given by the rule

(8.8) R → hλ(R) =

∫
|x|≤R

|∇νλ|2.

This function is bounded, nondecreasing and continuous. The continuity of

hλ follows from what is said in Part 1 of Lemma 7.7’s proof to the effect that

H is continuous. Since hλ is continuous and nondecreasing, it is differentiable
almost everywhere; see for example Theorem 3.23 in [R]. Its derivative is an

L1 function on [0, λ−1r0), this being the function in (8.7).

Let ∇r denote the directional covariant derivative in the radial direc-

tion. The same argument proves that the function defined by the rule R →∫
|x|=R |∇rνλ|2 is also L1.

Lemma 8.4. Fix p ∈ Z so as to define the sequence {νλ}λ∈(0,r0].

• The sequence of L1 functions {R →
∫
|x|=R |∇νλ|2}λ<r0/R converges as

λ → 0 on compact subsets of [0,∞) with limit

n(p)(0)(1 + 2n(p)(0))R
2n(p)(0).

• The sequence of L1 functions {R →
∫
|x|=R |∇rνλ|2}λ<r0/R converges as

λ → 0 on compact subsets of [0,∞) with limit n(p)(0)
2R2n(p)(0).
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Proof of Lemma 8.4. The proof has seven steps. The Steps 1 and 2 prove
the top bullet and the subsquent steps prove the bottom bullet.

Step 1. Use the definition of n(ρ) to write the derivative of hλ as

(8.9)
d

dR
hλ =

d

dR

(
1

R
n(p)(Rλ)

h(p)(Rλ)

h(p)(λ)

)
.

Now use (7.34) to rewrite the right hand side of (8.9) as 1
R2qλ(R)

∫
|x|=R |νλ|2

with

(8.10) qλ(R) = (1 + 2n(p)(Rλ))n(p)(Rλ) +

(
r
d

dr
n(p)(r)

)∣∣∣∣
r=Rλ

.

The next paragraph says precisely what is meant by the formula in (8.10)
To explain the right hand side of (8.10), note first that the function of

R given by the rule R → (1+2n(p)(Rλ))n(p)(Rλ) is continuous on [0, λ−1r0]
and nothing more need be said about it at this point. To say what is meant
by derivative of n(p), fix r ∈ (0, r0) and then ε ∈ (0, c−1

0 r). Having done so,
use the fourth bullet of Proposition 7.1 to conclude that

(8.11) n(p)(r + ε)− n(p)(r) ≥ −c0εr.

Since n(p) is continuous and also bounded on (0, r0], this lower bound implies
that n(p) is a function of bounded variation (see, e.g. [R]). It follows as a
consequence that n(p) is almost everywhere differentiable (see for example
Theorem 8.19 in [R]) and its derivative is an L1 function. This being the
case, the right hand side of (8.10) defines an L1 function on [0, λ−1r0) and
thus qλ is an L1 function.

Step 2. Given what is said by the first bullet of Lemma 8.3, the assertion in
the top bullet of Lemma 8.4 follows directly from a proof that the sequence
of functions {R → qλ(R)}λ∈(0,r0)

has an appropriate λ → 0 limit. With this
understood, it is sufficient to prove that the sequence of functions given by
{R → (r d

drn(p))|r=Rλ}λ∈(0,r0) has a suitable limit, this because limλ→0(1 +
2n(p)(Rλ))n(p)(Rλ) = (1 + 2n(p)(0))n(p)(0) with the limit being uniform
with respect to variations of R on compact subsets of [0,∞).

To see about the λ → 0 limit of {R → (r d
drn(p))|r=Rλ}λ∈(0,r0), first use

(8.11) to conclude that d
drn(p)(r)) ≥ −c0r. This lower bound implies that

(8.12)∫ t

0

1

s

∣∣∣∣
(
r
d

dr
N

)∣∣∣∣
r=s

|ds ≤ (n(p)(t)− n(p)(0) + c0t
2) for any given t ∈ [0, r0].
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Given that n(p) is continuous, the inequality in (8.12) leads directly to the fol-

lowing conclusion: The sequence of L1 functions {R → (r d
drn(p))|r=Rλ}λ∈(0,r0)

converges to zero in the L1
loc topology on compact subsets of [0,∞). This be-

ing the case, it then follows that the sequence of L1 functions {qλ}λ∈(0,r0)
con-

verges on compact subsets of [0,∞) to the constant function
(1 + 2n(p)(0))n(p)(0). This last fact plus (8.9) imply what is asserted by
the top bullet of Lemma 8.4.

Step 3. This step and Steps 4–7 prove Lemma 8.4’s second bullet. The
subsequent steps establish the identity

(8.13) lim
λ→0

∫
|x|≤R

|∇rνλ|2 =
1

1 + 2n(p)(0)
n(p)(0)

2R1+2n(p)(0).

Granted (8.13), then arguments that differ only cosmetically from those in
Step 2 can be repeated to prove that the derivative with respect to R of the
limit on the left hand side of (8.13) is an L1

loc function on [0,∞) whose restric-
tion to bounded interval is equal to the function R → limλ→0

∫
|x|=R |∇rνλ|2.

The second bullet then follows by differentiating (8.13).

Step 4. This step and the subsequent steps prove the assertion in (8.13).
To set the notation, fix λ ∈ (0, r0) and reintroduce the metric mλ on the
|x| < λ−1r0 part of R3. Denote the components of mλ as defined using the
basis {dxi}i=1,2,3 as {mλik}1≤i,k≤3 and denote those of the dual metric on
T∗R3 by {mik

λ }1≤i,k≤1. The mλ covariant derivative in the three Euclidean

coordinate directions are denoted {∇(λ)
i }1≤i≤3. As before, {∇i}1≤i≤3 is used

to denote the corresponding set of Euclidean metric covariant derivatives.

Keep in mind that each i ∈ {1, 2, 3} version of ∇(λ)
i −∇i is an endomorphism

with norm bounded by c0λ
2|x|. The pointwise norm on line bundle valued

tensors that is defined using mλ is denoted by | · |λ. As before, | · | denotes
the corresponding Euclidean metric norm.

Define the symmetric tensor Qλ = νλ⊗νλ− 1
2mλ|νλ|2 and let {Qλij}1≤i,j≤3

denote its components when written with respect to the coordinate basis.

The tensor Qλ is coclosed in the sense that {mik
λ ∇

(λ)
i Q(λ)kj = 0}1≤j≤3. The

fact that Q(λ) is coclosed follows from the fact that ν(λ) is closed and mλ-
coclosed.

The fact that νλ is closed and coclosed can be used to see that

(8.14) 1
2(m

mn
λ ∇(λ)

m ∇(λ)
n Qλ)ij = mnm∇iνλn∇jνλm − 1

2mij|∇νλ|2λ + r0λ

where {νλi}1≤i≤3 denote the components of νλ, and where |r0λ| ≤ c0λ
2|ν|2λ.

The notation in (8.14) and subsequently uses the convention that repeated
indices are summed.
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Step 5. For i ∈ {1, 2, 3}, let x̂i denote
1
|x|xi. Fix ρ > 0 and then multiply

each i, j ∈ {1, 2, 3} version of (8.14) by χρx̂ix̂j, sum the resulting equalities
and integrate both sides of the sum over the ball of radius R centered at the
origin. Having done so, use an integration by parts and the fact that Qλ is
coclosed to derive the identity

(8.15)

∫
|x|≤R

(
|∇rνλ|2 − 1

2 |∇νλ|2
)

= 1
2R

−2

∫
|x|=R

xixj∇rQλij +

∫
|x|≤R

1

|x| x̂ix̂jx̂k∇kQλij + e1λ + e(ρ),

where |e1λ(R)| ≤ c0λ
2R1/cp with cp > 1 depending only on p. Meanwhile,

e(ρ) is a term that has limit zero as ρ → 0, this being a consequence of (7.3).
By way of an explanation for the e1λ term, it has one contribution from the

rλ term in (8.14) and a second contribution from the fact that ∇(λ)
i differs

from ∇i by an endomorphism with norm at most c0λ
2|x|. Granted this, the

bound on the norm of the second contribution follows from the bounds in
the third and fourth bullets of Lemma 8.3.

Step 6. Introduce by way of notation ∂r to denote the unit length, radial
vector field on R3 and introduce Qλrr to denote the pairing between Qλ and

∂r ⊗ ∂r. Use the fact that |∇(λ)
i −∇i| ≤ c0λ

2|x| and Lemma 8.3 to see that
the far right hand integral in the ρ = 0 version of (8.15) is equal to

(8.16)

∫
|x|≤R

(
1

|x|3∇r(|x|2Qλrr)− 2
1

|x|2Qλrr

)
+ e2λ(R),

where |e2λ(R)| ≤ c0λ
2R1/cp . The identity Qλrr = |νλr|2 − 1

2 |νλ|2λ with an
integration by parts writes the integral in (8.16) as

(8.17) R−1

∫
|x|=R

(
|νλr|2 − 1

2 |νλ|
2
)
−

∫
|x|≤R

1

|x|2 (2|νλr|
2 − |νλ|2) + e3λ(R)

with |e3λ(R)| also bounded by c0λ
2R1/cp . Invoke Lemma 8.3 once again

to conclude that the λ → 0 limit of the expression in (8.16) is equal to
1
2

1
3+2n(p)(0)

1−2n(p)(0)
1+2n(p)(0)

R1+2n(p)(0).

Step 7. Use the bound |∇(λ)
i −∇i| ≤ c0λ

2|x| to rewrite the left most integral
on the right hand side of the ρ = 0 version of (8.15) as

(8.18)

∫
|x|=R

xixj∇rQλij

= R2 d

dR

(∫
|x|=R

(
|νλr|2 − 1

2 |νλ|
2
))

− R

∫
|x|=R

(2|νλr|2 − |νλ|2) + e3λ(R),
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where |e3λ(R)| ≤ c0λ
2Rc0 . Use Lemma 8.3 to conclude that the λ → 0

limit of the right most integral on (8.18)’s right hand side is equal to
− 2

3+2n(p)(0)
R3+2n(p)(0). Use the identity in (7.5) with Lemma 8.3 to prove

that the λ → 0 limit of the left most term on (8.18)’s right hand side is

equal to − 2+n(p)(0)
3+2n(p)(0)

R3+2n(p)(0). It then follows that the λ → 0 limit of the

whole of (8.18)’s right hand side is − n(p)(0)
3+2n(p)(0)

R3+2n(p)(0).

Use the conclusions of the preceding paragraph and those in Step 6
to see that the λ → 0 limit of the right hand side of (8.15) is equal to
−1

2
1

1+2n(p)(0)
n(p)(0)R

1+2n(p)(0). The claim in (8.13) follows from this last con-

clusion and Lemma 8.3’s fourth bullet.

8.c. A definition of the function |ν∗|

The λ → 0 limit of the set {|νλ|}λ∈(0,r0) is analyzed in the two parts that
comprise this subsection with the result being a definition of |ν∗|.

Part 1: The lemma that follows asserts the existence of subsequences of
the set {|νλ|}λ∈(0,r0) that converge strongly in the L2 topology on any ball
about the origin in R3.

Lemma 8.5. There exists κ > 0 with the following signifance: Fix a de-
creasing sequence in (0, r0) with limit zero. There is a subsequence of this
sequence, denoted here by Λ, such that the corresponding sequence of func-
tions {|νλ|}λ∈Λ converges as λ → 0 weakly in the L2

1 topology on every ball
about the origin in R3. The limit function is an L2

1;loc and L∞ function on

each such ball whose pointwise norm is bounded by κRn(p)(0) on the radius R
ball about the origin in R3. Meanwhile, the sequence {|∇νλ|}λ∈Λ converges
weakly in the L2 topology on each such ball.

The limit function of one of Lemma 8.5’s sequence {|νλ|}λ∈Λ is denoted
in what follows by |ν∗|. Although the notation indicates that this function
is independent of Λ, an assertion to this effect is not proved until later.

Proof of Lemma 8.5. It follows directly from Lemma 8.3 that there exists
Λ, this being a subsequence of the original sequence, such that {|νλ|}λ∈Λ
converges weakly in the L2

1 topology on every ball about the origin in R3

and such that {|∇νλ|}λ∈Λ converges weakly in the L2 topology on every
such ball. Use |ν∗| to denote the limit function of {|νλ|}λ∈Λ. To prove the
pointwise bound, fix ε ∈ (0, 1) and reintroduce rε from Step 2 of the proof
of Lemma 8.3. Fix R > 1 and suppose that λ ∈ (0,R−1r0) is less than rε. It
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follows from the s = λR and z2s = h(p)(s)s
−2−2n(p)(0) version of Lemma 8.2

using (8.6) that

(8.19) |νλ| ≤ c0(1 + ec0εR)RN(p)(0)

on the radius R ball about the origin in R3. The function |ν∗|must also obeys
the bound in (8.19) and since ε has no positive lower bound, the function
|ν∗| must obey the ε = 0 version of (8.19).

Part 2: The assertion in the next lemma implies in part that Lemma 8.5’s
sequence {νλ}λ∈Λ converges uniformly in the C0 topology on compact sub-
sets of R3.

Lemma 8.6. There exists a p-independent number κ > 10 with the follow-
ing significance: Lemma 8.5’s limit function |ν∗| is Hölder continuous with
exponent υ = κ−1 and Lemma 8.5’s sequence {|νλ|}λ∈Λ converges to |ν∗| in
the υ = κ−1 Hölder topology on compact subsets of R3.

Proof of Lemma 8.6. The proof has five steps. By way of notation, these
steps use n0 as shorthand for n(p)(0).

Step 1. Fix λ ∈ (0, r0) and define zλ by writing h(p)(λ) as z2λλ
2+2n0 . Let

Zλ denote the zero locus of |νλ| in the radius λ−1r0 ball about the origin
in R3. Let z ∈ Zλ denote a given point. This point corresponds to a point,
pz, on the zero locus of ν in the radius r0 ball centered at p. Use nz,0

as shorthand for n(pz)(0). Suppose that R > 16 has been specified, that

λ < R−1r0 and that the point z is in the radius 1
8R ball centered at the

origin in R3. Define zp,λ ∈ (0, c0] to be the infimum of numbers z such that
h(pz)(r) ≤ z2r2+2nz,0 for all r ∈ (0, 12Rλ]. As explained momentarily, there
exist a purely R-dependent constant cR which is greater than R and has the
following significance: If λ ≤ c−1

R r0 then

(8.20) zp,λz−1
λ ≤ c0(Rλ)

n0−nz,0 .

To prove this claim, first use the pz version of (7.34) and Item c) from the
fourth bullets of the pz version of Proposition 7.1 to see that

(8.21) z2p,λ ≤ c0
(
1
2Rλ

)−2−2nz,0h(pz)

(
1
2Rλ

)

Meanwhile, Stoke’s theorem with the definition of h(p) can be used to bound
the right hand side of (8.21) by c0 times the value of r−2−2n0h(p)(r) at r = Rλ.
Granted this last bound, then (8.20) follows from (8.6).
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Step 2. Fix R > 16, and then λ ∈ (0, c−1
R r0) with cR as described in Step 1.

Lemma 8.2 with (8.20) have the following implication: Let z denote a point
in Zλ that lies in the radius (16+c0)

−1R ball about the origin; and let x ∈ R3

denote a point in the concentric ball of twice this radius. Then

(8.22) |νλ|(x) ≤ c0R
c0 |z− x|Nz,0 .

As Lemma 7.7 finds c0 > 1 such that nz,0 > c−1
0 , this last bound implies in

particular that |νλ| is Hölder continuous with exponent υ > c−1
0 along its

zero locus in any given radius ball about the origin in R3.

Step 3. Fix λ ∈ (0, c−1
R r0). Given δ ∈ (0, c−1

0 ], let UR,λ,δ denote the set of
points in the |x| ≤ R ball with distance δ or more from Zλ. Being closed and
coclosed, the 1-form ν obeys the equation ∇†∇ν+Ric((·)⊗ ν) = 0. Use this
equation with Lemma 8.3 to see that the second derivatives of νλ obey

(8.23)

∫
UR,λ,δ

|∇∇νλ|2 ≤ c0δ
−2R1+2n0 .

This last inequality with a standard Sobolev inequality can be used to prove
the following: Suppose that x and y are points in UR,λ,δ. Then

(8.24) |νλ(x)− νλ(y)| ≤ c0δ
−1R(1+2n0)/2|x− y|1/2.

What is said by (8.24) implies that ||νλ|(x)−|νλ|(y)| is also bounded by the
right hand side of (8.24) when x and y are both in UR,λ,δ.

Step 4. Suppose that x and y are both in the radius R ball about the origin.
If either x or y is in Zλ, then (8.22) implies that

(8.25) ||νλ|(x)− |νλ|(y)| ≤ c0R
c0 |x− y|Nz,0

for some z ∈ Zλ because the distance between x and y at most that between
either and Zλ.

Now assume that neither x nor y is in Zλ. Set δ to equal the minimum of
dist(x,Zλ)

1/5 and dist(y,Zλ)
1/5. If |x− y| ≤ δ5, then what is said in Step 3

implies that

(8.26) ||νλ|(x)− |νλ|(y)| ≤ c0R
c0 |x− y|1/20.

Suppose next that |x − y| ≥ δ5 and suppose for argument’s sake that δ =
dist(x,Zλ). Then there exists z ∈ Zλ with |x − z| ≤ 2δ. It then follows that
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|y − z| ≤ 2δ + δ5 and because ||νλ|(x) − |νλ|(y)| ≤ max(|νλ|(x), |νλ|(y)), it
follows from (8.22) that

(8.27) ||νλ|(x)− |νλ|(y)| ≤ c0R
c0 |x− y|Nz,0/10

for some z ∈ Zλ.

Step 5. It follows from what is said in Step 4 using Lemma 7.7’s lower bound
n(·) > c−1

0 that the λ < c−1
R r0 part of the sequence {νλ}λ∈Λ is bounded in any

υ < c−1
0 Hölder topology on the radius R ball. It follows as a consequence

that this sequence is equi-Hölder continuous, and as it converges in the
L2 topology on the |x| ≤ R ball, the same sort of argument that proves the
Arzela-Arcoli theorem proves that {|νλ|}λ∈Λ converges in any given exponent
υ < c−1

0 Hölder topology in the |x| ≤ R ball. This implies in particular that
|ν∗| is Hölder continuous for any given exponent υ < c−1

0 .

8.d. A construction of (Z∗, III∗, ν∗)

The next lemma supplies Proposition 8.1’s data (Z∗, λ∗, ν∗).

Lemma 8.7. There exists a p-independent number κ > 1 such that the
following is true: Let |ν∗| denote the limit function of Lemma 8.5’s sequence
{|νλ|}λ∈Λ and let Z∗ ⊂ R3 denote the zero locus of |ν∗|.

• The set Z∗ is closed.
• There exists a real line bundle I∗ → R3−Z∗ and a harmonic, I∗ valued
1-form on R3−Z∗ with norm equal to |ν∗|. The latter is denoted by ν∗.

• Fix R > 1, ε ∈ (0, 1] and k ∈ {0, 1, . . . }. Let BR denote the radius
R ball centered on the origin in R3 and introduce ZR,ε to denote the
radius ε tubular neighborhood Z∗∩BR. There exists λR,ε,k ∈ (0,R−1r0)
with the following significance: Suppose that λ ∈ Λ with λ < λR,ε,k.
Then Zλ ∩ BR ⊂ ZR,ε and there is an isomorphism between I∗ and
Iλ over BR−ZR,ε that identifies νλ as an I∗ valued 1-form that differs
from ν∗ by an I∗ valued 1-form whose Ck norm on BR−ZR,ε is less
than ε.

• The 1-form ν∗ is such that for each R > 0,

i)
∫
|x|=R |ν∗|2 = R2+2n0 .

ii)
∫
|x|≤R |ν∗|2 = 1

3+2n0
R3+2n0 .

iii)
∫
|x|≤R |∇ν∗|2 = n0R

1+2n0 .

iv)
∫
|x|=R |∇ν∗|2 = n0(1 + 2n0)R

2n0 if R is not in a certain measure
zero set.
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Proof of Lemma 8.7. The assertion in the first bullet to the effect that Z∗ is

closed follows from the fact that |ν∗| is continuous, the latter being a conse-

quence of Lemma 8.6. To prove the second bullet, use the Hölder convergence

given by Lemma 8.6 to see that

(8.28) lim
λ∈Λ

sup
{z∈Zλ∩BR}

dist(z,Z∗) = 0.

It follows as a consequence that there exists λR,ε ∈ (0,R−1r0) such that if

λ ∈ Λ is less than λR,ε, then each point in Zλ ∩ BR has distance ε2 or less

from Z∩BR. Fix pairs λ and λ′ that obey these conditions. The convergence

assertion of Lemma 8.6 can be used to construct an isomorphism between

Iλ and Iλ′ over BR−ZR,ε. A directed limit of these isomorphisms defines the

line bundle I∗ over R3−Z.

What follows is a tautological consequence of this construction: Fix

R > 1 and then ε ∈ (0, 1). There exists an isomorphism between each

λ < λR,ε version of Iλ and I∗ over BR−ZR,ε. Fix an isomorphism of this

sort for each such λ so as to view νλ as an I∗ valued 1-form on BR−ZR,ε.

Since each λ < λ2R,2ε version of νλ is closed on B2R−Z2R,2ε and coclosed

with Hodge star defined by mλ, and as Lemma 8.3 gives a λ, R and ε inde-

pendent bound for its L2
1 norm, there exists an a priori pointwise bound for

the derivatives of νλ to any given order on BR−ZR,ε.

Granted the conclusions of the preceding paragraph, a standard argu-

ment using the Arzela-Ascoli theorem and the fact that {νλ}λ∈Λ converges in

the L2 topology on bounded domains in R3 supplies the I∗ valued, harmonic

1-form ν∗. The convergence of {νλ}λ∈Λ to ν∗ is in any given k ∈ {0, 1, . . . }
version of the Ck topology on sets with compact closure in R3−Z.

The first and second items of the fourth bullet follow from Lemma 8.3.

To prove Item iii), first use the fourth bullet of Lemma 8.3 with the fact that

ν∗ is the limit of the sequence {νλ}λ∈Λ∗ to see that ∇ν∗ is square integrable

on any R > 0 version of BR and that the square of its L2 norm is no greater

than n0R
1+2n0 . This fact, what is said in the fourth bullet of Lemma 8.3

and the fact that {νλ}λ∈Λ converges in the C1 topology to ν∗ on compact

subsets of R3−Z implies that the L2 norm of ∇ν∗ on the |x| < R ball is in

fact equal to n0R
1+2n0 . But for one change, the argument for Item iv) of the

fourth bullet is identical to that just given for Item iii). This change replaces

each reference to the fourth bullet of Lemma 8.3 in the latter argument by

a reference to the first bullet of Lemma 8.4.
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8.e. Uniqueness of the limit data set (Z∗, III∗, ν∗)

This subsection proves that any two subsequences of {νλ}λ<r0 that converge
as λ limits to zero as described in Lemma 8.5 have the same limit 1-form ν∗.
The lemma that follows makes the formal statement to this effect.

Lemma 8.8. Let Λ and Λ′ denote sequences in (0, r0) such that the corre-
sponding sequences {νλ}λ∈Λ and {νλ}λ∈Λ′ converge as described by
Lemma 8.5. Let |ν∗| and |ν ′∗| denote the respective {νλ}λ∈Λ and {νλ}λ∈Λ′

limit functions supplied by Lemma 8.5. Let I∗ and I ′∗ denote the correspond-
ing real lines bundles over the complements of the zero loci of |ν∗| and |ν ′∗|
that are described in Lemma 8.7, and let ν∗ and ν ′∗ denote the associated
I∗ and I ′∗ valued 1-forms from Lemma 8.7. The functions |ν∗| and |ν ′∗| are
equal and so I∗ and I ′∗ are defined over the same domain in R3. As such, they
are isomorphic, and there is an isomorphism from I∗ to I ′∗ that identifies ν∗
with ν ′∗.

Proof of Lemma 8.8. There are three steps in the proof.

Step 1. If s ∈ (0, 1] and x is such that νλs(x) �= 0, then the definition of νλs(x)
as λsh(λs)−1/2ν(λsx) with what is said in Item b) of Proposition 7.1’s fourth
bullet can be used to write

(8.29)
∣∣ ∂
∂sνλs

∣∣(x) = |(n(p)(λs) + eλs)νλs(x)− (r∇rνλs)(x)|,

where eλs is such that |eλs| ≤ c0λ
2s2. The right hand side of (8.29) defines

an L2 function on the |x| = 1 sphere for almost all s ∈ (0, 1], this being a
consequence of the first bullet of Lemma 8.3 and what is said in Part 3 of
Section 8.b just prior to the statement of Lemma 8.4. Choose s ∈ (0, 1] so
that this so and the equality in (8.29) gives the identity

(8.30)

∫
|x|=1

∣∣ ∂
∂sνλs

∣∣2

= n(p)(λs)
2

∫
|x|=s

|νλ|2−2n(p)(λs)s

∫
|x|≤s

|∇νλ|2+s2
∫
|x|=s

|∇rνλ|2+nλ(s),

with nλ(s) obeying |nλ(s)| ≤ c0λ
2s2. By way of an explanation for the middle

integral on the right hand side of (8.30), note that the latter is equal to the
integral over the |x| = 1 sphere of the inner product of νλs and ∇rνλs.
This equality follows formally via an integration by parts from the fact that
∇†∇ν+Ric(ν) = 0. As in Section 7, the functions from the set {χρ}ρ>0 with
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(7.3) can be used to prove that the formal integration by parts identity is

not compromised by contributions from neighborhoods of Zλ.

Fix λ ∈ (0, r0) so as to view the right hand side of (8.30) as a function of

the coordinate s for the interval (0, 1]. It follows from what is said just prior

to Lemma 8.4 that the right hand side of (8.30) defines an L1 function on this

interval. This is therefore the case for the function of s ∈ (0, 1] given by the

integral on the left hand side of (8.30). With the preceding understood, then

(8.30) with the first and fourth bullets of Lemma 8.3, the second bullet of

Lemma 8.4 and Lemma 7.7 lead directly to the following conclusion: Given

ε > 0, there exists λε ∈ (0, r0) such that

(8.31)

∫ 1

0

(∫
|x|=1

∣∣ ∂
∂sνλs(·)

∣∣2)ds < ε

when λ ∈ (0, λε).

Step 2. Fix λ ∈ (0, r0) and define the function lλ on (0, 1] using the rule

(8.32) t → lλ(t) =

∫
|x|=1

(|νλ|(·)− |νλt|(·)|)2.

This function is no greater than

(8.33)

∫
|x|=1

(∫ 1

t

∣∣ ∂
∂sνλs(·)

∣∣ds
)(∫ 1

t

∣∣ ∂
∂s′ νλs′(·)

∣∣ds′
)

which in turn is bounded by the integral on the left hand side of (8.31).

This being the case, it follows directly from (8.31) that the sequence of

functions {lλ}λ∈(0,r0) converges to zero in L1((0, 1]) as λ limits to zero. This

last observation implies that |ν∗| = |ν ′∗|.
Let v denote a unit length vector in R3 and let (νλ)v denote the I valued

function on the radius λ−1 ball about the origin in R3 that is obtained by

viewing v as a section of TR3 and νλ as a section of Hom(T∗R3; I ) over

the complement of the |νλ| = 0 locus. Define the function lλ,v on (0, 1] by

replacing νλ in (8.32) by (νλ)v. The latter is also bounded by the integral

on the left hand side of (8.31). As a consequence, the sequence of functions

{lλ,v}λ∈(0,r0) converges to zero as in L1((0, 1]) as λ limits to zero. This last

observation implies that |(ν∗)v| = |(ν ′∗)v|.
Step 3. The fact that |ν∗| = |ν ′∗| implies that Z∗ = Z′

∗. This step constructs

an isomorphism between I∗ and I ′∗ that identifies ν∗ and ν ′∗. To this end,
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introduce by way of notation ι to denote the section of I∗ ⊗ I ′∗ that is ob-
tained by multiplying the metric inner product of ν∗ with ν ′∗ by |ν∗|−2. The
observation at the end of Step 2 to the effect that |(ν∗)v| = |(ν ′∗)v| for any
v ∈ TR3 implies that ι has norm 1 at each point in R3−Z∗. This being the
case, ι defines an isomorphism between I∗ and I ′∗ that identifies ν∗ with ν ′∗.

8.f. Scaling behavior of ν∗

The lemma that follows asserts that ν∗ has a very simple dependence on the
radial coordinate R3.

Lemma 8.9. Fix R > 0 so as to define the map ψR : R3 → R3 by the
rule x → ψR(x) = Rx. Then ψR(Z∗) = Z∗ and there exists an isometric
isomorphism between I∗ and ψR

∗I∗ that identifies ψR
∗ν∗ with R1+n0ν∗.

This lemma is proved momentarily.
What follows directly describes an important consequence, this being

that ν∗ can be viewed using the scaling relation ψR
∗ν∗ = R1+n0ν∗ as a pair

(ν∗r, ν∗⊥) with the first entry being an I∗ valued function on the complement
of Z∗ in the |x| = 1 sphere and with the second being an I∗ valued 1-form on
this same complement. This is done by writing ν∗ as ν∗rdr + ν∗⊥ on R3−Z∗
with dr denoting the metric dual to the radial vector field ∂r on R3 and with
ν∗⊥ annihilating this same vector field. The scaling formula ψR

∗ν∗ = R1+n0ν∗
implies that ν∗ is determined by the restrictions of ν∗r and ν∗⊥ to the |x| = 1
sphere. This being the case, (ν∗r, ν∗⊥) are henceforth viewed as a pair of I∗
valued function and 1-form that are defined on the complement in the |x| = 1
sphere of the of the |x| = 1 points in Z∗.

The scaling relation ψR
∗ν∗ = R1+n0ν∗ can be used to write the equations

dν∗ = 0 and d∗ν∗ = 0 as equations on the |x| = 1 sphere for (ν∗r, ν∗⊥), these
being the equations

(8.34) dν∗⊥ = 0, ∗d∗ν∗ = −(n0 + 2)ν∗r and dν∗r = n0ν∗⊥.

To explain the notation, the exterior derivatives in (8.34) are exterior deriva-
tives on the |x| = 1 sphere and the Hodge dual in (8.34) refers to the version
on the |x| = 1 sphere that is defined by its round metric. These equations
play a central role in Sections 8.g and 8.h.

Proof of Lemma 8.9. Fix a decreasing sequence Λ ⊂ (0, r0) with limit zero
of the sort described in Lemma 8.5. As explained in Lemmas 8.5–8.8, the
sequence {|νλ|}λ∈Λ converges in the L2

1;loc topology on R3 to |ν∗| and this
convergence is in an exponent υ > 0 Hölder topology on compact subsets,
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and in the C∞ topology on compact subsets of R3−Z∗. The sequence {νλ}λ∈Λ
converges in the C∞ topology on compact subsets of R3−Z∗ to ν∗ in the
following sense: Fix R > 0. The sequence {νRλ}λ∈Λ also converges in the
manner dictated by Lemma 8.5, and so its limit is also ν∗.

It follows from the definitions that |νRλ| = h(Rλ)−1/2h(λ)1/2|ψR
∗νλ|.

Meanwhile, it follows from (7.34) and from the continuity of the function
n that h(Rλ) = R2+2n0+eλh(λ) with the collection {eλ}λ∈Λ having the fol-
lowing property: Given ε > 0 and R, there exists λR,ε ∈ (0, r0) such that
|eλ| < ε when λ ∈ Λ is less than λR,ε. Granted these observations, take λ ∈ Λ
ever smaller and invoke what is said in the first paragraph to conclude that
|ν∗| = R1+n0 |ψR

∗ν∗|. This implies that ψR(Z∗) = Z∗ and the latter implies
that there is an isomorphism from I∗ to ψR

∗I∗ and that the R ∈ (0,∞) of
such isomorphisms is suitably continuous.

Fix ε > 0 and T > 1 and let ZT,ε denote the radius ε tubular neighbor-
hood of the intersection between Z∗ and the |x| < T ball in R3. Fix R < T
and x ∈ R3−ZT,ε with |x| being less than the maximum of T and RT. If
λ ∈ Λ is small then Zλ and ZRλ will intersect the |x| < T ball inside ZT,ε.
Assuming this to be the case, then the bundles Iλ and IRλ can be iden-
tified with I∗ near x. Granted this identification, then νRλ and νλ near x
can be viewed as sections of the same vector bundle. When viewed as such,
it follows from the definitions that νRλ(x) = h(Rλ)−1/2h(λ)1/2(ψR

∗νλ)(x).
Granted this fact, take λ ∈ Λ ever smaller and invoke what is said in the
first paragraph to see that (ψR

∗ν∗)(x) = R1+n0ν∗(x).

8.g. The structure of Z∗

Lemma 8.9 implies that Z∗ is a cone on its intersection with the |x| = 1
sphere in R3. The next lemma describes this cone.

Lemma 8.10. The set Z∗ contains a finite number of |x| = 1 points. Thus,
Z∗ consists of the union of the origin in R3 and a finite set of rays based at
the origin in R3.

Proof of Lemma 8.10. Suppose to the contrary that ν∗ has an infinite set of
zeros on the |x| = 1 sphere so as to generate nonsense. This is done in the
five steps that follow.

Step 1. Fix a countable set of |x| = 1 zeros of ν∗ that converge. Use stereo-
graphic projection based at the antipodal point to the limit point to view the
limit point as the origin in R2 and use the standard complex structure on R2

to view R2 as C. Use the stereographic projection map to view this countable
set of zeros as a sequence of points in C that converge to the origin. Denote
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this set by {wk}k=1,2,.... No generality is lost by assuming that {wk}k=1,2,...

does not contain the origin, that |w1| < 1 and that |wk+1| < 1
8 |wk| for all

k ∈ {1, 2, . . . }.
Use the stereographic projection to view the part of Z∗ in its domain

as a subset of C. Denote this subset by Z∗ also. The pull-back of I∗ by
the inverse map is a real line bundle over C−Z∗, this denoted by I∗ also.
The corresponding pull-backs of ν∗⊥ and ν∗r via the inverse to stereographic
projection are an I∗ valued 1-form and I∗ valued function on C−Z∗. As is the
case with Z∗ and I∗, the notation used below does not distinguish between
ν∗⊥ and ν∗r and their incarnations on C.

Let z denote the standard complex coordinate on C. Denote the z-
derivative by ∂ and the z̄ derivative by ∂̄. Write ν∗⊥ as ν∗⊥ = 2

(1+|z|2)(αdz̄+

ᾱdz). The equations in (8.34) can be written schematically using this nota-
tion as

(8.35) ∂α = −1
2(1 + n0)(1 + r0)ν∗r and ∂̄ν∗r = 2n0(1 + r1)α.

with r0 and r1 denoting smooth C-valued functions that obey |r0| + |r1| ≤
c0|z|2.
Step 2. Given m ∈ {1, 2, . . . }, let um =

∏
m<k≤2m

1
(z−wk)

. Define qm to be

um/ūm. This is a C valued function on C−{wk}m<k≤2m with norm 1. Fix for
the moment ε ∈ (0, 1) and for each k ∈ {m+ 1, . . . , 2m}, set σm,k to denote
the function χ(2−ε−1|(·)−wk|), this being a function on C that is equal to 1
where |z−wk| > 2ε and equal to 0 where |z−wk| < ε. Fix δ ∈ (0, 1) and let
σδ denote the function on C that is given by the rule z → χ(δ−1|z|−1). The
function σδ is equal to 1 where |z| < δ and it is equal to 0 where |z| > 2δ.
Define σ to be σδ

∏
m<k≤2m σm,k.

With the preceding understood, define αm to be σūmα and βm to be
σumν∗r. The equations in (8.36) imply that the pair (αm, βm) obey an equa-
tion of the form

∂αm = −1
2(1 + n0)(1 + r0)Q̄mβm + zα + uα,ε and(8.36)

∂̄βm = 2n0qm(1 + r1)αm + zβ + uβ,ε.

where z = (zα, zβ) has the derivatives of σ0 and thus has compact sup-
port where δ ≤ |z| ≤ 2δ; and where uε = (uα,ε, uβ,ε) has the derivatives of∏

m<k≤2m σm,k and is therefore zero except where ε ≤ |z−wk| ≤ 2ε for some
k ∈ {m+ 1, . . . , 2m}.
Step 3. The lemma that follows says what else is needed with regards to z

and uε.
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Lemma 8.11. The L2 norm of z is bounded by κδ−m with κ being indepen-
dent of m. Meanwhile, lim supε→0

∫
C
|uε|2 exists and it is equal to zero.

Proof of Lemma 8.11. The assertion about z follows from the fact that
|um| ≤ c0|z|−m where |z| ≥ 2|wm|. To prove the assertion about uε, in-
voke Lemma 8.6 to conclude that the integral of |uε|2 is no greater than
c0m|w2m|−m+1ε1/c0 .

Step 4. Introduce the radial coordinates r ∈ (0,∞) and θ ∈ R/(2πZ) by
writing z as reiθ. Write ∂ and ∂̄ using these coordinates. Having done so,
square the norm of both sides of both equations in (8.36) and multiply by
r to obtain the inequalities that follow.

(8.37) • r|∂rαm|2 + i∂r(αm∂θᾱm)− i∂θ(αm∂rᾱm) + r
−1|∂θαm|2 ≤

c0r(|αm|2 + |βm|2 + |zα|2 + |uα,ε|2).
• r|∂rβm|2 − i∂r(βm∂θβ̄m) + i∂θ(βm∂rβ̄m) + r

−1|∂θβm|2 ≤
c0r(|αm|2 + |zβ |2 + |uβ,ε|2).

Fix ρ > 0 and multiply both sides of both inequalities by the function
χρ = χ(2− ρ−1|ν∗|); then integrate both sides of the result over the disk of
radius 2δ about the origin in C using the measure drdθ. Integrate by parts to
rewrite the integrals of iχρ∂r(αm∂θᾱm), iχρ∂θ(αm∂rᾱm), −iχρ∂r(βm∂θβ̄m)
and iχρ∂θ(βm∂rβ̄m) to obtain derivatives of χρ. As in previous applications
of χρ, these terms have ρ → 0 limit equal to zero. Take this limit to conclude
that

(8.38)

∫
|z|≤2δ

(|∂Rαm|2 + |∂Rβm|2)r dr dθ

≤ c0

∫
|z|≤2δ

(|αm|2 + |βm|2)r dr dθ +

∫
|z|≤2δ

(|z|2 + |uε|2)r drdθ.

Step 5. Since αm and βm have compact support where |z| ≤ δ, the integral
on the left hand side of (8.38) is no less than c−1

0 δ−2 times the integral of
|αm|2+|βm|2. This being the case, then (8.38) leads directly to the inequality
(8.39)

(δ−2 − c0)

∫
|z|≤2δ

(|αm|2 + |βm|2)rdr dθ ≤ c0

∫
|z|≤2δ

(|z|2 + |uε|2)r drdθ.

Take δ < c−1
0 so that the left hand side of (8.39) is positive. Then take the

ε → 0 limit and use Lemma 8.11 to see that the result implies the bound

(8.40)

∫
|z|≤2δ

(|αm|2 + |βm|2)r drdθ ≤ c0δ
−2m.
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The left hand side of (8.40) is no less than the integral of |αm|2+ |βm|2 over
the disk in C where 1

16δ < |z| ≤ 1
8δ. With δ = c−1

0 fixed, then all k > c−1
0

points wk will have norm less than 1
100δ

2, and as a consequence, |αm|2+|βm|2
where 1

16δ < |z| < 1
8δ will be greater than c−1

0 (4δ)−2m(|α|2 + |ν∗r|2). This
being the case, then the δ = c−1

0 and m > c−1
0 versions of (8.40) imply that

(8.41)

∫
δ/16≤|z|≤δ/8

(|ν∗⊥|2 + |ν∗r|2)rdr dθ ≤ c04
−m.

Take m ever larger in (8.41) to deduce that |ν∗| must be zero on an annulus
about the origin in C. But this implies that |ν∗| is zero on the cone over this
annulus, which is nonsense as it runs afoul of Item a) of some p′ �= p version
Proposition 7.1’s fourth bullet.

8.h. The behavior of ν∗ near Z∗

This last subsection first states and then proves the upcoming Lemma 8.12
which implies in part that |ν∗|2 vanishes to integer order along each ray
component of Z∗.

Lemma 8.12. Let x denote an |x| = 1 point in Z∗. There exists k ∈
{1, 2, . . . } with the following properties:

• The function |ν∗| near x can be written as |ν∗| = c|x−(·)|k/2+· · · where
c is a positive number and where the unwritten terms are bounded by
a multiple of |x− (·)|k/2+1.

• The bundle I∗ near x is isomorphic to the product bundle if and only
if k is even.

Proof of Lemma 8.12. Let x a point on Z∗ with norm 1. Use the stereo-
graphic coordinates from Step 1 of the proof of Lemma 8.10 to view this point
as the origin in C and to likewise view ν∗⊥ and ν∗r on C. With this view un-
derstood, write ν∗⊥ again as 2

1+|z|2 (αdz̄+ ᾱdz). Fix a small radius disk about

the origin whose closure has no point but the origin where |α|2 + |ν∗r|2 = 0.
Let D denote this disk and let ρ denote its radius. If the bundle I∗ on D is
isomorphic to the product bundle, it then follows from (8.35) that α and ν∗r
are real analytic on D. This being the case, Taylor’s theorem with remainder
finds exists an integer k ∈ {1, 2, . . . } and non-zero complex number α0 such
that

(8.42) α = α0z̄
k + · · · and ν∗r =

1

k + 1

1

2
n
−1
0 (α0z̄

k+1 + ᾱ0z
k+1) + · · · .
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with the unwritten terms in the equation for α having norm bounded by
a multiple of |z|k+1 and with those in the equation for ν∗r having norm
bounded by |z|k+2. This equation implies the assertion of the first bullet of
Lemma 8.12 when I∗ is isomorphic to the product bundle on D−0.

Now assume that I∗ is not isomorphic to the product bundle on D−0.
Introduce a second copy of C and let w denote the complex coordinate on
this second copy of C. Use Dw to denote the |w| < ρ1/2 disk in this second
copy of C. Define the 2-fold branched cover ϕ : Dw → D by the rule whereby
ϕ∗z = w2. The pull-back bundle ϕ∗I∗ is the product bundle on Dw−0. This
implies that ϕ∗α and ϕ∗ν∗r are respective C valued and R valued functions
on Dw. It follows from (8.35) that these pull-backs obey the equations

(8.43) ∂(ϕ∗α) = −(1 + n0)wϕ
∗ν∗r and ∂̄(ϕ∗ν∗r) = 4n0w̄ϕ

∗α.

These equations imply that ϕ∗α and ϕ∗ν∗r are real analytic functions of w.
Moreover, they imply there exists α0 ∈ C−0 and k ∈ {0, 1, . . . } such that

ϕ∗α = α0w̄
2k+1 + · · · and(8.44)

ϕ∗ν∗r =
1

4(2k + 3)
n
−1
0 (α0w̄

2k+3 + ᾱ0w
2k+3) + · · · .

where the unwritten terms in the equation for ϕ∗α have norm bounded by a
multiple of |w|2k+3 and those in the equation for ϕ∗ν∗r have norm bounded
by a multiple of |w|2k+5. Note in particular that ϕ∗α must vanish to odd
order as a function of w̄; if not, then the components of ν∗ on D−0 could
be used to obtain a nowhere zero section of I∗ on D−0. What is written in
(8.44) implies what is said by the first bullet when I∗ is not isomorphic to
the product bundle on D−0. The fact that ϕ∗α must vanish to odd order
with (8.42) implies the assertion of Lemma 8.12’s second bullet

9. Weakly continuous points in Z

As in Section 8, the implicit assumption in what follows is that (Z, I , ν)
define a twisted harmonic form data set. A point p ∈ Z is said to be weakly
continuous when there exists a sequence {pi}i=1,2,... ⊂ Z with limit p such
that {n(pi)(0)}i=1,2,... converges with its limit being n(p)(0). Let p ∈ Z denote
such a point. The central proposition in this section describes an alternative
contruction of p’s version of the set Z∗. This central proposition is Proposi-
tion 9.2. Proposition 9.2 leads to the characterization p’s version of Z∗ that
is given below by Proposition 9.1. The lemmas used to prove Proposition 9.2
also play a role in Section 10.
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Proposition 9.1. Suppose that p ∈ Z is a weakly continuous point.

• n(p)(0) is half a positive integer.
• The set Z∗ from p’s version of Proposition 8.1 has precisely two |x| = 1
points, these being antipodal. This is to say that Z∗ is a line through
the origin.

• There exists c ∈ (0,∞) such that if x is either of the points with
norm 1 on Z∗, then the function |ν∗| near x has the form |ν∗| =
c|x − (·)|N(p)(0) + · · · where the norm of the unwritten terms is no
greater than a constant multiple of |x− (·)|n(p)(0)+1.

This proposition is proved in Section 9.c
To set the stage for Proposition 9.2, suppose that p is weakly continuous.

Fix a sequence {pi}i={1,2,... } ⊂ Z converging to p such that {n(pi)(0)}i=1,2,...

converges with its limit being n(p)(0). Discard a finite number of elements
from the sequence {pi}i=1,2,... so that the resulting sequence lies in the radius
1

100r0 ball centered at p; then renumber the resulting sequence consecutively
from 1. Fix i ∈ {1, 2, . . . } for the moment and select a number λi which is
positive but less than 1

100r0. Choose Gaussian coordinates centered at p to
define an orthonormal basis for TM|p. Parallel transport this basis along the
short geodesic ray from p to pi to define an orthonormal basis for TM|pi

. Use
the latter to define Gaussian coordinates centered at pi. Having done so, let
φ(pi)λi

denote the map from the radius λ−1
i r0 ball centered at the origin in

R3 to the radius r0 ball centered at pi that is obtained by composing first the
rescaling map x → λix and then the Gaussian coordinate chart map. Define
Zi to be the inverse image via φ(pi)λi

of Z, define Ii to be the pull-back via

φ(pi)λi
of I and define νi to be the product of h(pi)(λi)

−1/2 with the φ(pi)λi

pull-back of ν. The set Zi is a closed subset of the |x| < λ−1
i r0 ball in R3,

what is denoted by Ii is a real line bundle over the complement of Zi in this
ball, and what is denoted by νi is an Ii valued 1-form on the complement of
Zi with Zi being the zero locus of |νi|.
Proposition 9.2. Fix p ∈ Z and suppose that {pi}i=1,2,... ⊂ Z is a sequence
with limit p such that {n(pi)(0)}i=1,2,... converges with its limit being n(p)(0).
Let Z∗ ⊂ R3 denote the set that is supplied by p’s version of Proposition 8.1
and let I∗ denote the corresponding real line bundle over R3−Z∗. There exists
an I∗ valued, harmonic 1-form on R3−Z∗ with the properties listed below.
The list use ν♦ to denote this I∗ valued 1-form.

• |ν♦| extends to R3 as an L2
1;loc and Hölder continuous function with

zero locus Z∗.
• Fix R > 0. Then ψR

∗ν♦ = R1+n(p)(0)ν♦.
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• Fix a decreasing sequence {λi}i=1,2,... in (0, 1
100r0) with limit zero; then

construct the sequence {Zi, Ii, νi}i=1,2,... as instructed above. There ex-
ists a subsequence in {1, 2, . . . } to be denoted by Λ♦ with the following
properties: Given ε ∈ (0, 1], there exists iε such that if i ∈ Λ♦ and
i > iε, then

a) The functions |νi| and |ν♦| differ where |x| < ε−1 by a function
with L2

1 norm and Hölder norm less than ε with the Hölder ex-
ponent being independent of the data set {(pi, λi)}i=1,2,... and the
point p.

b) Let Tε ⊂ R3 denote the radius ε tubular neighborhood of Z∗. Each
|x| < ε−1 point in Zi lies in Tε.

c) There exists an isometric identification between Ii and I∗ over the
|x| < ε−1 part of R3−Tε that identifies νi as an I∗ valued 1-form
that differs from ν♦ by an I♦ valued 1-form with any k < ε−1

version of the Ck norm being less than ε−1.

The proof of this proposition is contained in Sections 9.a and 9.b.

9.a. The data set (Z♦, III♦, ν♦)

The upcoming Lemma 9.3 states a weak analog of Proposition 9.2 that has
Z∗ replaced everywhere by a finite union of rays from the origin in R3 and
I∗ replaced by a real line bundle over the complement in R3 of this same
finite set of rays.

Lemma 9.3. Fix p ∈ Z and suppose that {pi}i=1,2,... ⊂ Z is a sequence
with limit p such that {n(pi)(0)}i=1,2,... converges with its limit being n(p)(0).
There exists a triple (Z♦, I♦, ν♦) with the properties listed below.

• Z♦ is the union of the origin in R3 with a finite union of rays from the
origin in R3 and I♦ is a real line bundle on R3−Z♦.

• ν♦ is an I♦ valued, harmonic 1-form on R3−Z♦ with |ν♦| extending
to R3 as an L2

1;loc and Hölder continuous function whose zero locus
is Z♦. Moreover, this Hölder norm is independent of the data set
{(pi, λi)}i=1,2,... and independent of p.

• Fix R > 0 and there exists an isometric isomorphism between ψR
∗I♦

and I♦ that identifies ψR
∗ν♦ with R1+n(p)(0)ν♦.

• Fix a decreasing sequence {λi}i=1,2,... in (0, 1
100r0) with limit zero; then

construct the sequence {Zi, Ii, νi}i=1,2,... as just instructed. There exists
a subsequence in {1, 2, . . . } denoted by Λ♦ with the following properties:
Given ε ∈ (0, 1], there exists iε such that if i ∈ Λ♦ and i > iε, then
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a) The functions |νi| and |ν♦| differ where |x| < ε−1 by a function

with L2
1 norm and Hölder norm less than ε with the Hölder ex-

ponent being independent of the data set {(pi, λi)}i=1,2,... and the

point p.

b) Let Tε ⊂ R3 denote the radius ε tubular neighborhood of Z♦. Each
|x| < ε−1 point in Zi lies in Tε.

c) There exists an isometric identification between Ii and I♦ over the

|x| < ε−1 part of R3−Tε that identifies νi as an I♦ valued 1-form

that differs from ν♦ by an I♦ valued 1-form with any k < ε−1

version of the Ck norm being less than ε−1.

Proof of Lemma 9.3. The proof has seven parts. Part 4 constructs a closed

set Z♦ ⊂ R3 and data (I♦, ν♦) from a given sequence {λi}i=1,2,... with I♦
being a real line bundle on R3−Z♦ and with ν♦ being an I♦ valued 1-form

on R3−Z♦. Part 4 also verifies that (Z♦, I♦, ν♦) is described by the second

and fourth bullets of Lemma 9.3. Part 5 proves that the data set (Z♦, I♦, ν♦)
depends only on the sequence {pi}i=1,2,.... Part 6 of the lemma proves the

scaling relation that is asserted by the third bullet of Lemma 9.3 and Part 7

proves that Z♦ has the form that is asserted by the first bullet of the lemma.

By way of notation, the proof denotes each i ∈ {1, 2, . . . } version of

dist(pi, p) by di. The proof uses n0 to denote n(p)(0); it uses other notation

from Section 8 as well.

Part 1: Fix λ ∈ (0, 1
100r0) and suppose that i ∈ {1, 2, . . . } is such that

di < λ. Reintroduce p’s version of the map φλ from Section 8. The point

pi corresponds via φλ to a point in R3 with norm λ−1
di. Denote this point

by xi. Fix R > 1 and let BλR(pi) ⊂ M denote the ball of radius Rλ centered

at pi. This ball corresponds to a domain in R3 via the map φλ. Denote this

domain by Ui,R. If i is large, then Ui,R is very nearly a ball of radius R

centered about xi. In particular, Ui,R will be a convex set containing the

origin whose boundary is an embedded sphere that is very nearly the sphere

where |x − xi| = R. What follows defines what is meant by the term ‘very

nearly’: Fix k ≥ 0 and δ > 0. Then there exists a λ-independent number ιk,δ
such that if i > ιk,δ, then the boundary of Ui,R will differ by at most δ in

the Ck topology from the round sphere in R3 with radius R and center xi.

This is because the composition of first the Gaussian coordinate chart map

centered at pi with the inverse of that centered at p has the schematic form

x → x + λxi + r(di, x) where r has C100k norm bounded by a k-dependent

multiple of di and is such that |r(di, x)| ≤ c0di|x|.
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It follows from what was just said that if λ < c−1
0 r0, and if the index

i is large, then Ui,R contains the |x| < R − 2λ−1
di ball and it, in turn,

is contained in the |x| < R + 2λ−1
di ball. Use this last observation with

Lemma 8.3 to write

(9.1)

∫
∂Ui,R

|νλ|2 = (1 + ei,R + eλ,R)R
2+2n0 ,

where ei,R accounts for the fact that the boundary of Ui,R is not the |x| = R
sphere and where eλ,R accounts for the fact that n(p)(λR) is not exactly n0.
In particular |ei,R| is at most c0R

−1λ−1
di. Meanwhile, if δ > 0 has been

specified, then |eλ,R| will be less than δ if λR is sufficiently small because
n(p)(·) is continuous.

Part 2: Fix δ > 0 for the moment. Having done so, take λ < δ3 and also
small enough so as to guarantee that any R ≤ δ−1 version of |eλ,R| is less
than δ. As explained in the next paragraph, with λ so chosen, then the
following are true:

(9.2) • |n(pi)(λ)− n0| ≤ c0(λ
−1

di + δ + λ2)

• n(pi)(r) ≤ n0+c0(λ
−1

di+δ+λ2R2) if r ∈ (0,Rλ) and R < δ−1.

• n(pi)(r) ≥ n0 − δ − c0r
2 if i is large, r ∈ (0,Rλ) and R < δ−1.

To prove the assertion in the top bullet, first take s = 2λ and r = λ in
pi’s version of (7.34) use the resulting equation with Item c) of the fourth
bullet from the pi version of Proposition 7.1 to see that h(pi)(2λ)/h(pi)(λ) ≥
(1− c0λ

2)22(1+n(pi)
(λ)). Indeed, Item c) of the fourth bullet of pi’s version of

Proposition 7.1 asserts that n(pi)(r) ≥ n(pi)(λ) up to a small error on the
interval [λ, 2λ]; and this fact with pi’s version of (7.34) leads to the asserted
lower bound for h(pi)(2λ)/h(pi)(λ). Invoke pi’s version of (7.34) a second time

with s = λ and r = 1
2λ and use Item c) in the fourth bullet from the pi version

of Proposition 7.1 to see that h(pi)(λ)/h(pi)(
1
2λ) ≤ (1+c0λ

2)22(1+n(pi)
(λ)). The

proof of this inequality uses Item c) of the fourth bullet from pi’s version
of Proposition 7.1 to conclude that n(pi)(r) ≤ n(pi)(λ) but for a small error

for r ∈ [12λ, λ]. This fact plus (7.34) leads to the asserted upper bound for
h(pi)(λ)/h(pi)(

1
2λ). A comparison of these two inequalities with the respective

R = 2λ, R = λ and R = 1
2λ versions of (9.1) leads directly to the assertion

in (9.2)’s top bullet. The r < λ version of the middle bullet in (9.2) follows
from the top bullet using Item c) from the fourth bullet of pi’s version of
Proposition 7.1. The r ∈ (λ,Rλ) version of the middle bullet in (9.2) follows



372 Clifford Henry Taubes

from (9.1) by invoking pi’s version of (7.34) with Item c) of the fourth
bullet in pi’s version Proposition 7.1 to see that h(pi)(Rλ)/h(pi)(r) ≥ (1 −
c0R

2λ2)R2(1+n(pi)
(r)). The assertion in the lower bullet follows from Item c)

of the fourth bullet in the pi version of Proposition 7.1 given the assumption
that limi→∞ n(pi)(0) = n0.

Part 3: Choose δ ∈ (0, 1) and then λ < δ and in particular, so that
|eλ,1/δ| < δ. With λ so chosen, fix i ∈ {1, 2, . . . } so that λ−1

di < δ2 and

so λ−1
i λ > δ−2. The Gaussian coordinates centered at pi that are used to

define νi identify the ball of radius λ centered at pi with the ball of radius
λ−1
i λ centered at the origin in R3. Use this identification to view |νi| as a

continuous function on the |x| < δ−1 ball in R3. By way of a reminder, the
zero locus of |νi| on this ball is the |x| < δ−1 part of Zi. The line bundle Ii
on this ball is the pull-back of I to the complement of Zi via the map φ(pi)λi

;
and the 1-form νi on this ball is an Ii valued 1-form on the complement of Zi.

The integral of |νi|2 over the |x| = 1 sphere in R3 is equal to 1, this by
definition. Fix R ∈ (0, δ−1) and use what is said by the second and third
bullets of (9.2) with the pi version (7.34) to write

(9.3)

∫
|x|=R

|νi|2 = (1 + ri,R)R
2+2n0 ,

with the absolute value of ri,R obeying the bound

(9.4) |ri,R| ≤ c0(λ
2
i R

2 +Rc0δ).

Introduce νir to denote the radial component of νi and ∇rνi to denote
the covariant derivative of νi in the radial direction on R3. Keeping in mind
that δ in (9.2) and (9.4) be chosen as small as desired, the arguments that
prove Lemmas 8.3 and 8.4 and (8.19) can be invoked using the middle and
lower bullets of (9.2), (9.3) and (9.4) to see that

(9.5) • {
∫
|x|=R |νir|2}i=1,2,... converges with limit 1+n0

3+2n0
R2+2n0 ,

• {
∫
|x|≤R |νi|2}i=1,2,... converges with limit 1

3+2n0
R3+2n0 ,

• {
∫
|x|≤R |∇νi|2}i=1,2,... converges with limit n0R

1+2n0 ,

• {
∫
|x|=R |∇νi|2}i=1,2,... converges with limit n0(1 + 2n0)R

2n0 ,

• {
∫
|x|=R |∇rνi|2}i=1,2,... converges with limit n

2
0R

2n0 .

• lim supi→∞(sup|x|≤R |νi|) ≤ c0R
n0 .
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Part 4: The bounds given in (9.3) and (9.4) with those in the first three
bullets and the last bullet of (9.5) lead directly to the following conclusion:
There is a subsequence Λ0 ⊂ {1, 2, . . . } such that the corresponding sequence
of functions {|νi|}i∈Λ converges weakly in the L2

1 topology on every ball
about the origin in R3. The limit function defines an L2

1;loc function on R3

with norm bounded by κRN0 on the radius R ball about the origin in R3.
Meanwhile, the sequence {|∇νλ|}λ∈Λ converges weakly in the L2 topology
on each such ball. Let |ν♦| denote the limit function. An almost verbatim
repetition of the arguments that prove Lemma 8.6 proves that |ν♦| is Hölder
continuous with exponent υ = c−1

0 and that {|νi|}i∈Λ♦ converges as i → ∞
to |ν♦| in the exponent υ Hölder topology on every ball about the origin
in R3.

Let Z♦ ⊂ R3 denote the zero locus of |ν♦|. This is a closed set because
|ν♦| is continuous. The fact that {|ν|}i∈Λ0

converves to |ν♦| on compact
subsets of R3 in a Hölder norm has the following consequence: Fix ε > 0.
Then the |x| < ε−1 part of all sufficiently large i versions of Zi lie in the
radius ε tubular neighborhood of Z♦. Granted that this is the case, then the
arguments used to prove the first three bullets of Lemma 8.7 can be reused
with only cosmetic changes to define the line bundle I♦ over R3−Z♦ and
the desired I♦ valued harmonic 1-form ν♦. This is to say that I♦ is defined
to be isomorphic to suitably large i versions of Ii over compact subsets of
R3−Z♦ and ν♦ is then the C∞ Frêchet space limit on any given compact
subsets in R3−Z♦ of the large i part of the sequence {νi}i∈Λ♦ . Convergence
of {νi}i∈Λ♦ in the C∞ Frêchet space topology occurs on compact subsets for
the reason given in the proof of Lemma 8.7 for the analogous convergence
of {νλ}λ∈Λ to ν∗. The limit 1-form ν♦ is harmonic for the same reason that
ν∗ is harmonic.

Note that the assertions of Items i)–iv) of the fourth bullet from
Lemma 8.7 hold with ν♦ replacing ν∗, this being a consequence of (9.5) and
what was said in the preceding paragraphs about convergence of {|νi|}i∈Λ♦
on compact subsets of R3 and of {νi}i∈Λ♦ on compact subsets of R3−Z♦.

Part 5: This part of the proof explains why the data (Z♦, I♦, ν♦) does not
depend on the choice of the sequence {λi}i=1,2,.... The argument has five
steps.

Step 1. Let {λ′
i}i=1,2,... and {λ′′

i }i=1,2,... denote decreasing sequences in (0,
1

100r0) that converge to zero. Let Λ′
♦ ⊂ {λ′

i}i=1,2,... and Λ′′
♦ ⊂ {λ′′

i }i=1,2,...

denote two subsequence with the properties that are described in Part 4.
Relable the sequence Λ′

♦ by the odd integers starting with 1 and relable Λ′′
♦
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by the even integers starting from 2 so as to obtain a new sequence to be
denoted now by {λi}i=1,2,....

Step 2. Fix i ∈ {1, 2, . . . } and define

(9.6) li =

∫
|x|=1

(|ν2i|(·)− |ν2i−1|(·)|)2.

Given a contant, unit length vector v on R3, define (ν2i−1)v to be the section
of I2i−1 that is defined over the complement of Z2i−1 in the |x| < 2 ball by
pairing ν2i with v. The analogous rule defines (ν2i)v as a section of I2i over
the complement of Z2i in the |x| < 2 ball. Granted these definitions, define
li,v by replacing ν2i−1 in (9.6) by (ν2i−1)v and replacing ν2i by (ν2i)v. The
next step explains why the sequences {li}i=1,2,... and {li,v}i=1,2,... converge
as i → ∞ with limit zero. Granted that such is the case, then the arguments
used in Step 3 of the proof of Lemma 8.8 can be reused to prove that
the {λ′

i}i=1,2,... version of Part 4’s data set (Z♦, I♦, ν♦) is the same as the
{λ′′

i }i=1,2,... version.

Step 3. Fix i ∈ {1, 2, . . . }. Assume first that λ2i < λ2i−1. Fix s ∈ (0, 1] and
define φ(pi)sλ2i−1

to be the map from the |x| < 2 ball in R3 to the radius
2sλ2i−1 ball centered at pi that is obtained by composing first the rescaling
map x → sλ2i−1x and then the Gaussian coordinate chart map. Define Zi,s

on the |x| < 2 ball in R3 to be the φ(pi)sλ2i−1
inverse image of Z, and define Ii,s

to be the real line bundle over the complement in Zi,s of the φ(pi)sλ2i−1
pull

back of I . Then define νi,s to be the Ii,s valued 1-form on the complement of
the |x| < 2 ball in R3 of Zi,s by multiplying the φ(pi)sλ2i−1

pull-back of ν by

(h(pi)(sλ2i−1))
−1/2. Define the function on wi on [0, 1] by the rule

(9.7) s → wi(s) =

∫
|x|=1

∣∣ ∂
∂sνi,s(·)

∣∣2

If it is the case that λ2i ≥ λ2i−1, then define wi by repeating what was just
said with λ2i replacing λ2i−1 in all instances.

The argument used in Step 1 of the proof of Lemma 8.8 can be repeated
to prove that each i ∈ {1, 2, . . . } version ofwi defines an L1 function on [0, 1].
This understood, the arguments in Step 1 of the proof of Lemma 8.8 that
lead to (8.31) can be repeated using the identities in (9.5) in lieu of their
analogs from Lemmas 8.3 and 8.4 to prove that the sequence {wi}i=1,2,...

converges to zero in L1([0, 1]).
Meanwhile, an essentially verbatim version of the arguments in Step 2

of the proof of Lemma 8.8 can be used to draw the following conclusion: If
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i ∈ {1, 2, . . . }, then both li and li,v are bounded by the L1 norm of wi. This
understood, the conclusions of the preceding paragraph imply that both
lim supi→∞ li and lim supi→∞ li,v are zero.

Part 6: The argument that proves the third bullet of Lemma 9.3 is essen-
tially the same as that used to prove Lemma 8.9. By way of a quick summary,
fix a decreasing sequence {λi}i=1,2,... ⊂ (0, 1

100R
−1r0] and construct the data

(Z♦, I♦, ν♦) first using the latter. Having done so, construct this data again
using the sequence {Rλi}i=1,2,.... The analog of each i ∈ {1, 2, . . . } version
of νi for the latter sequence is denoted by νi,R. To prove the scaling rela-
tion asserted by the third bullet of Lemma 9.3, first use the definitions of

νi and νi,R imply the identity νi,R = (
h(pi)

(λi)
h(pi)

(Rλi)
)1/2ψR

∗νi. The desired scaling

relation follows directly from the assertion that any fixed R version of the

sequence {( h(pi)
(λi)

h(pi)
(Rλi)

)1/2}i=1,2,... converges to R−1−n(p)(0). The two steps that

follow prove this convergence assertion.

Step 1. Fix δ > 0 for the moment but less than R−1 and then fix λ < δ3.
Use the second and third bullets of (9.2) with pi’s version of (7.34) to see

that (
h(pi)

(λi)
h(pi)

(Rλi)
)1/2 can be written as (1+ zi,R)R

−1−n(p)(0) with |zi,R| ≤ c0(δ+

λ−1
di + λ2R2 + λ2

i R
2) lnR.

Step 2. Keeping in mind that R < δ−1 and λ < δ3, the preceding bound
implies that |zi,R| ≤ c0δ| ln δ| + c0(λ

−1
di + λ2

i R
2) lnR). The latter in turn

implies that |zi,R| < c0δ| ln δ| when i is sufficiently large. As there is no
positive lower bounds for the choice of δ, this bound for |zi,R| implies that

the i → ∞ limit of (
h(pi)

(λi)

h(pi)
(Rλi)

)1/2 has the desired limit.

Part 7: Given the scaling property in Lemma 9.3’s third bullet, and given
that ν♦ is harmonic, the arguments that prove Z♦ to be the union of the
origin with a finite union of rays through the origin in R3 are identical to
those used in Sections 8.g and 8.h to prove Lemma 8.10 and Lemma 8.12.

Note for future reference that the ν♦ analogs of what are denoted by α
and ν∗r in Sections 8.g and 8.h obey (8.42) and (8.43) as the case may be.

9.b. The proof of Proposition 9.2

Proposition 9.2 follows directly from Lemma 9.3 and the lemma given below.

Lemma 9.4. Let Z♦ ⊂ R3 denote the set given by Lemma 9.3 and let I♦
denote Lemma 9.3’s real line bundle over R3−Z♦. Then Z∗ is a line through
the origin, Z♦ = Z∗ and I♦ is isomorphic to I∗.
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Proof of Lemma 9.4. The proof has three steps.

Step 1. Fix i ∈ {1, 2, . . . } and let di again denote dist(p, pi). Define λi to
be di. Let pi ∈ R3 denote φ(pi)λi

-inverse image of p, this being a point on
the |x| = 1 sphere. Keep in mind that pi is in Zi. Let Λ♦ ⊂ {1, 2, . . . }
denote a subsequence that is obtained from {λi = di}i=1,2,... by invoking
the fourth bullet of Lemma 9.3. It follows from this fourth bullet that the
set of limit points of the sequence {pi}i∈Λ♦ is a subset of the finite set of
|x| = 1 points in Z♦. Fix a subsequence Λ′ ⊂ Λ♦ so that the corresponding
sequence {pi}i∈Λ′ converges and let p♦ denote the limit point. Keep in mind
that Z♦ intersects any radius r ∈ (0, 1) ball in R3 centered on p♦ as the
1− r < |x| < 1 + r segment in the ray from the origin that contains p♦.

Step 2. Return now to the point p’s version of Lemma 8.5. This lemma
requires at its very start the choice of a decreasing sequence in (0, r0) with
limit zero. Take this sequence to be {λi = di}i∈Λ′ so that sequence Λ in
Lemma 8.5’s is a subsequence of Λ′. Fix i ∈ Λ. The corresponding function
|νλi

| is a function on the |x| < c−1
0 λ−1 ball in R3. This is also the case for

the function on |νi|. As explained momentarily, given R > 1, there exists a
sequence {εi,R}i=1,2,... ⊂ (0, c0) with limit zero such that

(9.8) ||νi|(x + p♦)− |νλi
|(x)| ≤ εi,R at all points x with |x| ≤ 2R.

Indeed, this follows from three facts. The first is that each i ∈ Λ version of
|νi| is the pull-back of |νλi

| by a diffeomorphism that sends x to x − pi + ei

with the various i ∈ Λ versions of ei such that limi→∞ |ei| = 0 on compact
subsets of R3. The second fact is that the sequence {pi}i∈Λ converges to p♦,
and the third is that the sequences {|νi|}i∈Λ and {|νλi

|}i∈Λ are uniformly
bounded in an exponent υ = c−1

0 Hölder space on compact subsets of R3.

Step 3. It follows from (9.8) that the functions x → |ν♦|(x + p♦) and
x → |ν∗|(x) are the same. This understood, what is said at the end of Step 1
leads to the following conclusion: The version of Z∗ that is define for p by the
sequence {λi}i∈Λ is a line through the origin in R3. Given that Lemma 8.8
asserts in part that all versions of Z∗ are one and the same subset in R3,
the fact that |ν♦|(x + p♦) and |ν∗|(x) are equal at all x ∈ R3 implies that
Z♦ = Z∗.

To see about Lemma 9.4’s assertion about I♦ and I∗, let v denote a
constant, unit length vector on R3. Given i ∈ Λ, use (νi)v to denote the
pairing between νi and v, this being a section of Ii on R3−Zi. Define (νλi

)v
to be the analogous pairing between the Iλi

valued 1-form νλi
and v. The

argument that leads to (9.8) can be repeated to prove that the analog of
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(9.8) holds with (νi)v replacing νi and with (νλi
)v replacing νλi

. This being
the case, then the argument used in the preceding paragraph can be repeated
with only notational changes to prove that the |(ν♦)v|(x+p♦) and |(ν∗)v|(x)
are equal at all x ∈ R3. Granted this last assertion, then an almost verbatim
repetition of what is said in Step 3 of the proof of Lemma 8.8 proves that
I♦ and I∗ are isomorphic.

9.c. Proof of Proposition 9.1

The assertion that Z∗ is a line through the origin is part of what is asserted
by Lemma 9.4. To see about n(p)(0), reintroduce ν♦. Mimic what was done
in Section 8.f with ν∗ by writing ν♦ as ν♦rdr + ν♦⊥ with ν♦r denoting a
section of I♦ on the complement of Z♦ and with ν♦⊥ being an I♦ valued
1-form on the complement of Z♦ that annihilates the radial vector field ∂r.
Restrict the latter to the |x| = 1 sphere and use the fact that ν♦ is harmonic
with the scaling relation ψR

∗ν♦ = R1+n0ν♦ to see that the pair (ν♦r, ν♦⊥)
when viewed as a pair consisting of an I♦ valued function and I♦ valued
1-form obey

(9.9) dν♦⊥ = 0, ∗d∗ν♦ = −(n0 + 2)ν♦r and dν∗r = n0ν♦⊥,

with it understod that the exterior derivatives differentiate only in directions
tangent to the |x| = 1 sphere, and the Hodge star is defined by the round
metric on the |x| = 1 sphere. This equation holds on the complement of the
set {p♦,−p♦}. Use stereographic projection from −p♦ to view ν♦r on the
complement of −p♦ as an I♦ valued function on C−0 and to view ν♦⊥ as an
I♦ valued 1-form on C−0. Write the latter as 2

(1+|z|2)(α♦dz̄ + ᾱ♦dz) to see

that the pair (ν♦r, α♦) obey the equation

(9.10) ∂α♦ = −1
2(2 + n0)(1 + r0)ν♦r and ∂̄ν♦r = 2n0(1 + r1)α♦.

with r0 and r1 being the same here as their namesakes in (8.35).
The arguments in the proof of Lemma 8.12 can repeated to see that α

and ν♦r near the origin in C have the same form as that given for ν∗r and α
in either (8.42) or (8.43). These equations have the following consequence:
There exists c > 0 and k ∈ {1, 2, . . . } such that if x is a point on the
unit sphere near p♦, then |ν♦|(x) = c dist(p♦, x)k/2+ · · · with the unwritten
terms being higher powers of dist(p♦, x). Given (9.8) and the scaling relation
ψR

∗ν∗ = R1+n0ν∗, this last fact implies that n(p)(0) =
1
2k.

To prove the final assertion of Proposition 9.1, introduce the Euclidean
coordinates (t, z1, z2) for R

3 where p♦ appears as the point (1, 0, 0). The fact
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that |ν♦|(x + p♦) = |ν∗|(x) for all x, and the fact that both ν♦ and ν∗ obey
the same scaling relation ψR

∗(·) = R1+n0(·) implies that |ν∗| when written
as a function of (t, z1, z2) has no dependence on t. This last fact with what
was said in the preceding paragraph implies that |ν∗| = c(z21 + z22)

n0/2 + · · ·
with the unwritten terms being higher powers of (z21 + z22). The writing of
|ν∗| in this way verifies what is asserted by Proposition 9.1’s third bullet.

10. Lipschitz curves and the function nnn(·)(0)

The upcoming Proposition 10.1 implies the assertion that is made by Item 1)
of the second bullet in Theorem 1.1.

By way of a reminder from the start of Section 8, a twisted harmonic form
data set (Z, I , ν) has Z ⊂ M being a closed set and I → M−Z being a real
line bundle and ν being a harmonic, I -valued 1-form on M−Z. In addition,
|ν| extends to M as a continuous function with Z ⊂ |ν|−1(0); the second,
third and fourth bullets of Proposition 7.1 are obeyed; and the conclusions
of Lemma 7.7 hold.

Proposition 10.1. The set Z from a twisted harmonic form data set (Z, I , ν)
is contained in a countable union of embedded Lipshitz curves. Moreover,
given ε > 0, there exists a finite set of balls with pairwise disjoint closure
whose union has volume less than ε and such that Z’s intersection with the
complement of this union of balls is a properly embedded, finite length Lip-
shitz curve with finitely many components.

The proof of this proposition is in Section 10.d. The intervening subsec-
tions supply various facts about the function n(·)(0) that play central roles
in the proof.

10.a. Quantization of nnn(·)(0)

The second bullet of the upcoming Lemma 10.2 implies in part that the
function n(·)(0) has but a countable set of possible values. This is what is
meant by the term quantization in the subsection title. To set the stage
for the lemma, fix m ∈ {1, 2, . . . } and introduce Zm to denote the subset
of Z where n(·)(0) = 1

2m. Define Zm ⊂ Z to be the set of points where

n(·)(0) ≥ 1
2m; and given ε ∈ (0, 12), define Zm,ε ⊂ Zm to be the set of points

where n(·)(0) >
1
2m+ ε.

Lemma 10.2 refers to the notion of a weakly continuous point in Z.
By way of a reminder from Section 9, a point p ∈ Z is weakly continuous if
there is a subsequence {pi}i=1,2,... ⊂ Z with limit p such that {n(pi)(0)}i=1,2,...

converges to n(p)(0).



PSL(2;C) connections on 3-manifolds with L2 bounds 379

Lemma 10.2. The set Z is such that the following are true:

• The function n(·)(0) is no less than 1
2 .

• The complement in Z of ∪m=1,2,...Zm is a countable set. The comple-
ment in Z of its weakly continuous points is also countable.

• Fix m ∈ {1, 2, . . . } and ε ∈ (0, 12). Then

a) Both Zm and Zm,ε are closed subsets of Z.

b) All limit points of Zm,ε−Zm+1 are in Zm+1.

c) The set of points in Zm,ε with distance greater than ε from Zm+1

is finite.

Proof of Lemma 10.2. The proof of the lemma has three parts.

Part 1: This part proves the assertion of the second bullet. Proposition 9.1
asserts in part that the set of weakly continuous points is a subset of
∪m∈{1,2,... }Zm. This being the case, it is sufficient to prove that the comple-
ment in Z of the set of weakly continuous points is a countable set. Define
X ⊂ Z to be this complement. A point p ∈ X has the following property: If
{pi}i=1,2,... ⊂ Z−p converges to p, then limi→∞ n(pi)(0) < n(p)(0).

Fix m = {1, 2, . . . } and define the subset Xm ⊂ X using the following
criteria: Suppose that p ∈ Xm. Then n(·)(0) < n(p)(0) on the complement of

p in the ball of radius 1
m centered at p. This a finite set because the distance

between any pair of distinct points in this set is no less than 1
m . Indeed, were

p and p′ in Xm with p �= p′ and dist(p, p′) < 1
m , then n(p′)(0) would be less

than n(p)(0) and vice versa. The sets {Xm}m=1,2,... are nested in the sense
that X1 ⊂ X2 ⊂ · · · ⊂ Xm ⊂ · · · , and their union is the whole of X. This last
observation implies that X is countable.

Part 2: This part proves Item a) of the third bullet and it explains why
Item c) of the third bullet follows from Items a) and b) of the third bullet.
To see about Item a), the fact that Zm is closed follows from the first bullet
of Lemma 7.7. The fact that Zm,ε is closed follows from the first bullet
of Lemma 7.7 and the first bullet of Proposition 9.1. The first bullet of
Proposition 9.1 is needed to rule out limit points of sequences in Zm,ε where
n(·)(0) =

1
2m+ ε.

The proof that follows of Item c) of the lemma’s third bullet assumes
that Item b) is true. Granted that such is the case, suppose that Item c)
is false so as to derive nonsense. If Item c) is false, then Zm,ε−Zm has a
sequence {pi}i=1,2,... of distinct points with distance ε or more from Zm+1

that converges to a point p ∈ Z. Item b) of the third bullet puts this point
in Zm+1. This is nonsense because dist(pi,Zm+1) ≥ ε for all i ∈ {1, 2, . . . }.
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Part 3: This part simultaneously proves Lemma 10.2’s first bullet and Item
c) of its third bullet. The proof has three steps. Step 3 of what follows proves
the lemma’s first bullet and Item c) of the third bullet. Steps 1 and 2 supply
input for Step 3.

Step 1. Suppose that p ∈ Z is a limit point of a sequence in Z. Fix a
sequence {pi}i=1,2,... ⊂ Z that converges to p such that each member is in
the radius 1

100r0 ball centered at p. With i ∈ {1, 2, . . . } fixed, define λi to
be dist(p, pi). Lemma 8.5 supplies a subsequence Λ ⊂ {1, 2, . . . } such that
the corresponding sequence {νλi

}i∈Λ is described by Lemmas 8.5–8.7. Fix
i ∈ {1, 2, . . . } and let qi ∈ R3 denote the inverse image of pi via the map
φλi

. The point qi is a zero of νλi
and so it lies in Zi.

It follows from what is said by the third bullet of Lemma 8.7 that there
is a point q∗ ∈ Z∗ with norm 1 and a subsequence Λ′ ⊂ Λ such that {qi}i∈Λ′

converges to q∗. Meanwhile, the point q∗ has an associated positive integer
and numbers c > 0 and z > 1 with following significance: If q ∈ R3 is such
that |q∗ − q| ≤ z−1, then

(10.1) • |ν∗|(q) = c(1 + e0)|q∗ − q|k/2 with |e0| ≤ z|q∗ − q|k/2+1.

• |∇ν∗|(q) = c(1 + e1)
1
2k|q∗ − q|k/2−1 with |e1| ≤ z|q∗ − q|k/2.

This follows from scaling relation ψR
∗ν∗ = R1+n0ν∗ and the formulas in

(8.42) and (8.44). The equations in (10.1) lead directly to the following
observation: If ρ ∈ (0, z−1), then

(10.2) •
∫
|x−q∗|=ρ |ν∗|2 = 4πc2(1 + z0)ρ

2+k where |z0| ≤ c0ρ.

•
∫
|x−q∗|≤∂ρ |∇ν∗|2 = 2πc2k(1 + z1)ρ

1+k where |z1| ≤ c0ρ.

What is said in Lemma 8.5 about the convergence of {νλi
}i∈Λ′ to ν∗ has the

following implications when the index i ∈ Λ′ is sufficiently large:

(10.3) •
∫
|x−qi|=ρ |νλi

|2 = 4πc2(1 + z0i)ρ
2+k where |z0i| ≤ c0ρ.

•
∫
|x−qi|≤ρ |∇νλi

|2 = 2πc2k(1 + z1i)ρ
1+k where |z1i| ≤ c0ρ.

The equations in (10.3) in turn lead to an estimate for the function n(pi)

that appears in the pi version of Proposition 7.1, this being the following:
Fix ρ ∈ (0, z−1). If the index i ∈ Λ′ is sufficiently large, then

(10.4) n(pi)(λiρ) = (1 + zi)
k

2
where |zi| ≤ c0ρ.

To deduce this last equation from (10.3), reintroduce the metric mλi
on the

|x| ≤ λ−1
i r0 ball in R3, this being the metric that is obtained by multiplying
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the φλi
pull-back of the metric on M by λ−2

i . The metric mλi
differs from

the Euclidean metric by c0λ
2
i |x|2 and its derivatives are bounded by c0λ

2
i |x|.

This fact with (10.3) can be used to estimate the functions h(pi) and rH(pi)

at r = λiρ; and the resulting estimates lead directly to (10.4).

Step 2. Fix R ≥ 100 and i ∈ Λ′ such that λiR < r0. Given that ν∗ is
harmonic, what is said in Items i) and ii) from the fourth bullet of Lemma 8.7
imply that

(10.5) •
∫
|x−q∗|=R |ν∗|2 = (1 + r0)R

2+2n0 where |r0| ≤ c0R
−1.

•
∫
|x−q∗|=R |∇ν∗|2 = (1 + r1)n0R

1+2n0 where |r1| ≤ c0R
−1.

Granted (10.4), what is said by Lemma 8.5 has the following implications:
If i is greater than a purely R dependent constant, then

(10.6) •
∫
|x−qi|=R |νλi

|2 = (1 + r0i)R
2+2n0 where |r0i| ≤ c0R

−1.

•
∫
|x−qi|=R |∇νλi

|2 = (1 + r1i)n0R
1+2n0 where |r1i| ≤ c0R

−1.

The equations in (10.6) lead directly to the following conclusion: If i is
greater than a purely R dependent constant, then

(10.7) npi
(λiR) = (1 + ri)n0 where |ri| ≤ c0R

−1.

By way of an explanation, (10.7) is obtained from (10.6) by using (10.6)
with what is said in Step 1 about the metric mλi

to estimate the values of
h(pi) and H(pi) at r = λiR.

Step 3. To see about Item c) of the third bullet of Lemma 10.2, fix m ∈
{1, 2, . . . } and ε ∈ (0, 12). Let {pi}i=1,2,... denote a sequence in Zm,ε that
converges, and let p ∈ Z denote the limit point. Fix ρ ∈ (0, z−1). What
is said by (10.4) with Item c) from the fourth bullet in the pi version of
Proposition 7.1 implies that n(pi)(0) ≤ (1 + c0ρ)

k
2 when i ∈ Λ′ is sufficiently

large. Since n(pi)(0) > m
2 + ε, this requires that k ≥ (1 − c0ρ)(m + ε).

Meanwhile, (10.7) and R = ρ−1 version of (10.7) with Item c) from the
fourth bullet in the pi version of Proposition 7.1 implies that n0 ≥ (1−c0ρ)

k
2

when i is large. Since ρ can be as small as desired, the lower bound on k
implies that k can be no less than m+1 and the lower bound on n0 implies
that n0 can be no less than 1

2(m + 1). Thus p is in Zm+1.

To prove the first bullet of Lemma 10.2, let n denote infp∈M n(p)(0). The

second bullet of Lemma 7.7 asserts that n is greater than zero. Fix ε ∈ (0, 12)
and then fix a point p ∈ Z with n(p)(0) < n + ε. Suppose first that p is
not an isolated point in Z. Then there is a sequence {pi}i∈{1,2,... } ⊂ Z that
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converges to p. Fix ρ ∈ (0, z−1) and a very large i ∈ Λ′. Use (10.4), the

R = ρ−1 version (10.7) and Item c) from the fourth bullet of the pi version

of Proposition 7.1 to conclude that n0 is no less than (1 − c0ρ)
1
2k. Since ρ

can be as small desired, this implies that n ≥ 1
2k − ε. Since ε can be taken

as small as desired, this last bound implies that n ≥ 1
2 .

If p is an isolated point of Z, then the bundle I is necessarily isomorphic

to the product bundle on the complement of p in a sufficiently small radius

ball centered at p. This being the case, I extends to the whole of this ball

as the product real line bundle and ν defines an R-valued harmonic 1-form

on this ball. It follows that ν is smooth on this ball and Aronzajn’s theorem

[Ar] can be invoked to prove that it vanishes to finite order at p. This

fact with Taylor’s theorem implies that there is a positive integer k and a

positive integer c such that |ν| = c dist(p, ·)k+ · · · near p with the unwritten

terms being bounded by a multiple of dist(p, ·)k+1. Given what is said by

the second bullet of Lemma 8.2, and given (7.34) and Item b) of the fourth

bullet of Proposition 7.1, this depiction of |ν| near p implies that n(p)(0) = k

and thus n > k− ε. Since ε can be as small as desired, so n can not be less

than 1.

10.b. The angle inequality

To set the notation for the upcoming Lemma 10.3, introduce R∗ to denote

the multiplicative group of non-zero real numbers and let PM denote the

RP2 bundle (TM−0)/R∗. Suppose that q, q1 and q2 are points in Z with q1
and q2 being distinct from q but such that dist(q, q1) and dist(q, q2) are less

than 1
100r0. The tangent vector at q to the short geodesic segment between

q0 and q1 defines a point in PM|q. Meanwhile, the tangent vector at q to the

short geodesic segment between q and q2 defines a second point in PM|q.
Define Δ to be the distance in PM|q between these two points. The lemma

that follows concerns the behavior of Δ near a given weakly continuous

point.

Lemma 10.3. Let p ∈ Z denote a weakly continuous point. Given ε > 0,

there exists κε > 1 with the following significance: Suppose that q, q1 and

q2 are points in Z with distance less than κ−1
ε from p with q1 and q2 being

distinct from q. Suppose in addition that |n(q)(0)−n(p)(0)| < κ−1
ε . Then the

(q, q1, q2) version of Δ is less than ε.

Proof of Lemma 10.3. Suppose that the lemma is false so as to generate

nonsense. This is done in three steps.
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Step 1. If the lemma is false, then there exists ε > 0 and a sequence

{qi}i=1,2,... of the following sort: Each i ∈ {1, 2, . . . } version of qi is a triple

(qi, qi1, qi2) of points in Z with Δ ≥ ε, such that each point in qi has

distance less than r0 from p. In addition, limi→0 |n(qi)(0) − n0| = 0 and

limi→∞ supq∈qi
dist(q, p) = 0.

Step 2. Suppose that there are but finitely many elements in {qi}i=1,2,...

that have the form (p, q1, q2). Use Lemma 9.3 to construct (Z♦, I♦, ν♦) using
the sequences {pi = qi}i=1,2,... and {λi = dist(qi, qi1)}i=1,2,... for the input

data. Use Λ♦ to denote the subsequence that is supplied by Lemma 9.3.

Invoke Lemma 9.3 a second time using the sequences {pi = qi}i∈Λ♦ and

{λi = dist(qi, qi2)}i∈Λ♦ for the input data. In the first instance, the resulting

version of Z♦ is a line through the origin in R3. In the second instance,

the resulting version of Z♦ is also a line through the origin in R3. The

assertion that these are lines is part of Lemma 9.4. These two lines define

respective points in PM|p with distance c−1
0 ε or greater between them. The

next paragraph explains why. This claim about the distance between the

two points in PM|p constitutes the desired nonsense because it contradicts

what is said by Lemma 9.3 to the effect that Z♦ does not depend on the

choice of {λi}.
To explain why the two versions of Z♦ define distinct points in PM|p,

keep in mind that each i ∈ {1, 2, . . . } version of q1i in the first instance

defines a point on the |x| = 1 sphere where |νi| = 0. This is the case in the

second instance with each i ∈ {1, 2, . . . } version of q2i. The lines from the

origin to these respective points define points in RP2 with distance c−1
0 ε or

greater between them because the qi version of Δ is no less than ε. Granted

this observation, the claim about the distance between the two points in

PM|p follows from Item b) from the fourth bullet of Lemma 9.3.

Step 3. If a subsequence in {qi}i=1,2,... has the form (p, q1, q2), then pass

to this subsequence and renumber it consecutively from 1. Contruct Z∗ as

directed in Section 8 twice, the first taking Lemma 8.5’s input subsequence

from (0, r0) to be {dist(p, q1i)}i=1,2,.... With Λ denoting the subsequence

from this version of Lemma 8.5, the second appeal to Lemma 8.5 uses the

sequence {dist(p, q2i)}i∈Λ. These two instances result in two versions of Z∗
that define distinct points in PM|p. The argument for this is identical but

for notation to what is said in the second paragraph of Step 2. The fact

that the two versions of Z∗ are distinct constitutes the desired nonsense as

it contradicts what is said by Proposition 8.1.
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10.c. Points where nnn(·)(0) is half of a positive integer

To set the notation for what is to come, fix p ∈ Z and r ∈ (0, r0). A subset of
the radius r ball centered at p is said to be a 1-dimensional Lipshitz graph
when a Gaussian coordinate chart centered at p identifies the subset with
the |x| < r part of a Lipschitz map from a 1-dimensional subspace in R3 to
its orthogonal complement. A 1-dimensional Lipshitz graph is, by definition,
a 1-dimensional rectifiable set. As such it has finite 1-dimensional Hausdorff
measure and thus finite length. A graph of this sort is almost everywhere a
C1 curve.

To continue setting the notation, suppose that k is a given positive inte-
ger and that ε ∈ (0, 1). The next lemma introduces Zk,ε to denote the subset
in Z where |n(·)(0)− 1

2k| < ε.

Lemma 10.4. Fix k ∈ {1, 2, . . . } and p ∈ Zk. There exists rp ∈ (0, r0) and
εp ∈ (0, 1) with the properties listed below.

• If p is not weakly continuous, then Zk,εp ∩ Brp = p.
• If p is weakly continuous, then the following are true:

a) The set Zk,εp ∩ Brp is contained in a connected, 1-dimensional
Lipshitz graph whose union has length at most 4rp.

b) If I is an open subset of Item a)’s graph and if (Zk,εp ∩ Brp) ∩ I
is dense in I, then the whole of I is in Zk ∩ Brp and so this part
of Zk ∩ Brp is an embedded, Lipshitz curve. Moreover, a neigh-
borhood in I of each weakly continuous point in I ∩ Zk is an open
subset of Z.

If I is isomorphic to the product bundle on a neighborhood of p, then
the assertion is little more than a corollary to Theorem 3.1 in [HHL]. The
proof given below is modeled on the proof of Lemma 2.3 in [Han].

Proof of Lemma 10.4. The proof has six steps.

Step 1. If p is not a weakly continuous point, then there exists a pair r ∈
(0, r0) and ε ∈ (0, 1) such that Zk,ε ∩ Br = p. This understood, suppose
in what follows that p is weakly continuous. Proposition 9.1 asserts that
p’s version of Z∗ is a line in R3. Fix an orientation for this line to define
a coordinate function τ : Z∗ → R with |τ | giving the distance from the
origin. Fix r ∈ (0, r0) and let Br denote ball of radius r centered at p. Define
ι : Z ∩ Br → R to be the pull-back of the function τ by the composition of
the map to the radius r0 ball in R3 given by the inverse of a chosen Gaussian
coordinate chart and then the orthogonal projection in R3 to the line Z∗.
The map ι is a continuous map.
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Step 2. The assertion that follows summarizes the conclusions of this step.

(10.8) There exist r1 ∈ (0, 14r0) and ε ∈ (0, 1) with the following signifi-
cance: If p′ ∈ Z ∩ Br1 and |n(p′)(0)− n0| < ε, then ι−1(ι(p′)) = p′.

To prove this, assume to the contrary that this assertion is false so as to

generate nonsense. If this assertion is false, there exist sequences {p′i}i=1,2,...

and {yi}i=1,2,... in (Z−p) ∩Br1 with the following properties: Both converge

to p and limi→∞ n(p′
i)
(0) = n0. Moreover, yi �= p′i but ι(yi) = ι(p′i) for each

i ∈ {1, 2, . . . }. Fix a pair of sequences of the sort just described.

For each i ∈ {1, 2, . . . }, define the ordered triple qi to be (qi = p′i, q1i = yi,

q2i = p). The corresponding version of Δ is greater than c−1
0 . The existence of

the sequence {qi}i=1,2,... is the required nonsense that proves (10.8) because

a sequence of this sort runs afoul of Lemma 10.3.

Step 3. Let ê denote the chosen, oriented unit vector along Z∗ and let Z⊥
∗

denote the 2-dimensional subspace orthogonal to ê∗. Use Π: R3 → Z⊥
∗ to

denote the orthogonal projection map. This notation used below writes a

given point x ∈ R3 as τ(x)ê + Π(x).

Lemma 10.3 has an additional consequence, this being the existence of

r2 ∈ (0, r1) whose significance is as follows: Fix r ∈ (0, r2) and let p1 and

p2 denote two points in Zk,εp ∩ Br. Use the Gaussian coordinate chart that

defined ι to view p1 and p2 as points in R3, these denoted by x1 and x2.

Then

(10.9) |Π(x1)−Π(x2)| ≤ 1
100 |τ(x1)− τ(x2)|.

The inequality in (10.9) plays a central role in Step 5.

Step 4. This step and Step 5 construct the Lipshitz graph for Item a) of the

lemma’s second bullet. To start this task, fix r ∈ (0, 12r1). Use the inverse of

the chosen Gaussian coordinate chart map to view Zk,εp ∩B2r as a subset of

the |x| < 2r ball in R3. The latter incarnation is also denoted by Zk,εp ∩B2r.

An inductive construction is given momentarily that produces a countable

collection of finite subsets in Zk,εp ∩ B2r with the properties listed below.

This list writes this collection as {Θm}m=1,2,....

(10.10) • The collection of sets is nested in the sense that Θm ⊂ Θm+1

for each m ∈ {1, 2, . . . }.
• Each point in τ(Zk,εp∩B2r) has distance at most 1

mr from some
point in τ(Θm).
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Fix m ∈ {1, 2, . . . } and let Nm denote the number of points in Θm. The
points in Θm are labeled as {xm,1, . . . , xm,Nm

} so that τ(xm,i) < τ(xm,i+1)
for all i ∈ {1, . . . ,Nm − 1}. Introduce by way of notation xm,0 = −2rê and
xm,Nm+1 = 2rê.

Step 5. Fix m ∈ {0, 2, . . . ,Nm} and define a piecewise linear map, this
denoted by im, from (−2r, 2r) to R3 by the following rules:

If τ ∈ [τ(xm,i), τ(xm,i+1)],(10.11)

then im(τ) = xm,i +
τ − τ(xm,i)

τ(xm,i+1)− τ(xm,i)
(xm,i+1 − xm,i).

The following is a direct consequence of (10.9) and the nesting asserted
by (10.10): If m and m′ are positive integers, and if τ, τ ′ ∈ [−r, r], then
|im(τ)−im′(τ ′)| ≤ 1

50 |τ−τ ′|. This last fact has the following implication: The
sequence {im}m=1,2,... converges pointwise on the |x| ≤ r ball to a Lipshitz
graph with total length less than 3r. The second bullet of (10.10) guarantees
that this graph contains Zk,εp ∩ Br.

Step 6. This step and Step 7 prove Item b) of Lemma 10.4’s second bullet.
To start, let I denote an open subset in Item a)’s Lipshitz graph with (Zk,εp∩
Brp)∩ I being dense in I. It follows from what is said by Item a) of the third
bullet of Lemma 10.2 that the closure in I of (Zk,εp ∩Brp)∩ I is in Zk,εp ∪Zk.
It follows as a consequence that the whole of I is an embedded Lipshitz
curve in Zk,εp ∪ Zk. If p

′ ∈ I is not in Zk, then p′ is not weakly continuous.
This being the case, there are at most a countable set of points in I that are
not in Zk. With this fact in mind, suppose for the sake of argument that I
has a point that is not in Zk. This is to say that I has a point where the
value of n(·)(0) is less than

1
2k. As (Zk,εp ∩Brp)∩ I is dense in I, there would

be a sequence in Zk ∩ I that converges to such a point. Since a sequence of
this sort runs afoul of the first bullet in Lemma 7.7, all points in I must
be in Zk.

Step 7. Let p′ ∈ I ∩ Zk denote now a weakly continuous point and assume
for the sake of argument that there is no neighborhood in I that is an open
subset in Z. The subsequent three paragraphs derive a pair of assertions
that can not both be true. The existence of such a pair proves Item b) of
Lemma 10.4’s second bullet.

To start the derivation, suppose that p′ is as just described. There is
a sequence {yi}i=1,2,... ⊂ Z−I that converges to p′. Nothing is lost by as-
suming that this sequence lies in the radius r0 ball centered at p′. For each
i ∈ {1, 2, . . . }, let λi denote dist(yi, p

′). Use the sequence {λi}i=1,2,... in the
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p′ versions of Lemmas 8.5–8.7 to construct the p′ version of Z∗, I∗ and ν∗.
Being that p′ is weakly continuous, its version of Z∗ is a line through the
origin. Fix i ∈ {1, 2, . . . } and use the p′ version of the map φλi

to view yi as
a point on the |x| = 1 sphere in R3, this denoted by xyi

.
Fix ε ∈ (0, 1

1000). With i ∈ {1, 2, . . . } chosen, the map φλi
identifies the

part of I with distance less than 10λi from p′ with a Lipshitz graph in the
|x| < 10 ball in R3. This graph contains the origin, and it follows from the
p′ version of (10.9) that there are points on this graph with distance from
the origin between 1 − ε and 1 + ε and with distance less than 3

2 from xyi

when i is large. Since the set of weakly continuous points in I ∩ Zk is dense
in I, there are weakly continuous points in this part of I. Let qi denote such
a point, and let xqi

denote the corresponding point in R3. Use δi to denote
the angle between the ray from the origin to xqi

and the ray from the origin
to xyi

, this being a number between 0 and π. The fact that |xxi
| = 1 and

|xqi
| ∈ (1 − ε, 1 + ε) and |xyi

− xqi
| < 3

2 , this angle δi must be greater than

c−1
0 but less than π − c−1

0 .
Fix i ∈ {1, 2, . . . } and denote by qi the ordered triple (qi, yi, p

′). Use this
triple to define Lemma 10.3’s number Δ. The fact that δi ∈ (c−1

0 , π − c−1
0 )

implies that qi’s version of Δ is greater than c−1 with c being less than c0.
Meanwhile, the q = qi version of Lemma 10.3 asserts that Δ is no greater
than 1

1000 c−1 when i is large. These last two assertions can not both be true.

10.d. Proof of Proposition 10.1

To set the notation, fix for the moment k ∈ {1, 2, . . . }. Given p ∈ Zk, let
rp and εp denote p’s version of the constants r and ε that are supplied by
Lemma 10.4. The proof also uses Brp(p) to denote the ball of radius rp
centered on p.

The proof of Proposition 10.1 has three parts.

Part 1: Fix k ∈ {1, 2, . . . } and let p denote a weakly continuous point from
Zk. By way of short hand, let B denote the ball Brp(p). Lemma 10.4 describes
an embedded, Lipshitz graph that contains Zk ∩ B. Denote this graph by
Γk,p. The map ι : B → (−rp, rp) from Step 1 of the proof of Lemma 10.4
restricts to Γk,p as a Lipshitz homeomorphism onto (−rp, rp). It follows from
Item b) of Lemma 10.4 that Γk,p has an open subset, this denoted by Ik,p,
with the following properties:

(10.12) • Ik,p is an open subset of Z lying entirely in Zk.

• Zk ∩ (Γk,p − Ik,p) is a closed, nowhere dense subset of Γk,p.
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It is a consequence of the second bullet in (10.12) that Γk,p can be further
decomposed as the disjoint union Γk,p = Ik,p ∪ Gk,p ∪ Jk,p with Gk,p =
Zk ∩ (Γk,p−Ik,p) and with Jk,p being an open set.

Let V ⊂ B denote a given closed set whose boundary is disjoint from
Gk,p. Use G to denote Gk,p−(V ∩ Gk,p). Since Gk,p is closed, there exists
δV,p > 0 such that each point in the boundary of V has distance no less
than δV,p from Gk,p. With the preceding understood, fix δ ∈ (0, c−1

0 ) but
less than 1

1000rp and less than 1
1000δV,p. The observation that follows is used

in Step 5.

(10.13) The set G has a finite cover by balls with radius at most δ and with
closures that are pairwise disjoint, and disjoint from V.

An inductive algorithm is given the subsequent paragraphs that constructs
such a cover.

To start the algorithm, let I1 denote the set of component intervals of
Ik,p ∪ Jk,p with at least one end point not in V. Choose such an interval,
denote it by i1 and let q1 denote an end point point of i1 that is not in V.
Being that the set Ik,p∪Jk,p is open and dense, there exits r1 ∈ (14δ,

1
2δ) such

that the boundary of the ball of radius r1 centered on q1 is disjoint from
Gk,p ∪V. Denote this ball by B1.

Use (10.9) to see that if rp < c−1
0 , then the boundary of B1 will intersect

Ik,p ∪ Jk,p twice, once in i1 and once in a second interval, this denoted by i2.
One end point of i2 will lie in B1 and the other will not. If the other end point
lies in V, then choose an interval i3 from I−{i1, i2} with at least one end
point not in V. Denote this second end point by q3. If the other end point
does not lie in V, denote it by q2. This end point has distance greater than δ
from V. If rp < c−1

0 , then (10.9) has the following consequence: There exists
a ball with center on Γk,p and radius between 1

4δ and 1
2δ that is disjoint

from B1 whose boundary intersects Γk,p in i2 and in a second interval from
Ik,p ∪ Jk,p. Denote this second interval by i3 and denote this ball by B2.
If rp < c−1

0 , then (10.9) guarantees that there are only two intersections
between Γk,p and B2’s boundary. One end point of i3 will not be in B2.
Denote the latter by q3.

If q3 ∈ V, then choose an interval from I−{i1, i2, i3} with at least one
end point not in V. Denote this interval by i4 and use q4 to denote the end
point of i4 that is not V. If q3 is not in V, then what follows is again a
consequence of (10.9) when rp < c−1

0 : There is a ball with center on Γk,p and
radius between 1

4δ and 1
2δ that is disjoint from B1 and B2 whose boundary

intersects Γk,p in i3 and in a second interval from Ik,p ∪ Jk,p. Denote this
second interval by i4 and this new ball by B3. As was the case in the previous
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paragraph, (10.9) guarantees that there are only two intersections between
Γk,p and the boundary of B3. One end point of i4 will not be in B2. Denote
the latter by q4.

Continuing in this vein defines a collection of balls, this denoted by Uk,p,δ

that are pairwise disjoint, disjoint from V and cover the set G. The collection
has at most c0rpδ

−1 balls, this because the length of Γ is less than c0rp and
each ball in this collection intersects Γk,p as an arc with length greater than
c−1
0 δ. The volume of the union of the balls from Uk,δ,p is at most c0rpδ

3, this
because Uk,δ,p consists of at most c0rpδ

−1 balls and each has volume at most
c0δ

3.

Part 2: Define K ∈ {1, 2, . . . } as follows: If k ∈ {1, 2, . . . } and Zk �= ∅, then
k ≤ K. Thus, K is the largest integer from the set of integers with non-empty
version of Z(·). The lemma that follows describes the corresponding set ZK.

Lemma 10.5. The set ZK is contained in a countable union of Lipshitz
curves. Moreover, given ε ∈ (0, 1

100r0), there is an open set in M and a
finite collection of balls in M that together cover ZK and have the properties
listed below. The list uses VK to denote the open set and UK∗ to denote the
collection of balls.

• The balls from UK∗ have closures are pairwise disjoint, and their union
has volume less than ε.

• The intersection of ZK with VK is an open set in Z consisting of a
properly embedded, finite length, Lipshitz curve with finitely many com-
ponents.

Proof of Lemma 10.5. The proof has five steps. Steps 1–4 prove the assertions
given in the two bullets. The last step uses the two bullets to prove the
assertion that the whole of ZK is contained in a countable union of embedded
Lipshitz curves. The notation uses I to denote the set of weakly continuous
points in ZK.

Step 1. It follows from Item c) of Lemma 10.2’s third bullet that there exists
a subset Λ ⊂ {1, 2, . . . } of consecutive integers starting at 1 and a labeling of
I as {pi}i∈Λ with the property that n(pi)(0) ≥ n(pi+1)(0) for all indices i ∈ Λ.

Fix r1 ∈ (14ε,
1
2ε) such that the sphere of radius r1 centered at p1 contains

no point in I. There is a dense set of choices for r1 because I is a countable
set. Let B(1) denote the ball of radius r1 centered at p1. Use m2 ∈ {2, . . . } to

denote the smallest integer that labels a point in J−B(1). Fix r2 ∈ (0, 12ε
2)

such that the closure of the ball of radius r2 centered on pm2
is disjoint

from the closure of B(1) and has no points from I on the boundary of its



390 Clifford Henry Taubes

closure. Continue in this vein to define in an inductive fashion an increasing
sequence of integers {1,m2,m3, . . . }, and a corresponding set of balls,with
pairwise disjoint closures that have the properties listed below. The list uses
{B(mk)}k=1,2,... to denote the relevant set of balls.

(10.14) • For each k ∈ {1, 2, . . . }, the ball B(mk) has center pmk
, radius

less than 1
2ε

k and no points from I on its boundary.

• For each k ∈ {1, 2, . . . }, the set {pi}1≤i≤mk
⊂ ∪1≤i≤kB(mi).

• If k ∈ {1, 2, . . . } and if pmk
∈ ZK, then B(mk) ⊂ Brp(p).

It is a consequence of the construction that ∪i=1,2,...B(mi) has volume less
than c0ε

3 and that it contains J. Let UK+ denote the collection {B(mi)}i=1,2,....

Step 2. Let UK denote the collection of balls from {Brp(p)}p∈ZK
with a

weakly continuous center point. This collection of balls defines an open cover
of ZK−(J ∩ ZK) and so the joint collection UK+ ∪ UK defines an open cover
of ZK. As noted by Item a) of the third bullet of Lemma 10.2 the set ZK is
closed, and thus it is compact. This being the case, there is a finite set of
balls from UK+ and a finite set from UK that together define a finite cover
of ZK. Denote the finite set from UK+ by UK+ and that from UK by UK.

Step 3. Let p denote the center point of a ball from UK. Introduce from
Part 1 the corresponding set GK,p. Let B′ denote a ball from UK+. The
boundary of the closure of B′ may or may not contain a point in GK,p. If it
does, then its radius can be increased by a factor greater than 1 but othewise
as close to 1 as desired so that the boundary of the closure of resulting ball
is disjoint from GK,p and such that the closure of the result is disjoint from
the closures of all other balls in UK+. This understood, nothing is lost by
assuming that the closures of all balls from UK+ are disjoint from the various
versions of GK,p that are defined by the centers of the balls from UK.

Step 4. Let N denote the number of balls that comprise UK. Label the center
points of these balls as {p1, . . . , pN}. Fix δ > 0 for the moment and use what
is said in Part 1 to construct the p = p1 version of UK,p,δ with V being the
union of the closures of the balls from the set UK+. If δ2 ∈ (0, δ] is sufficiently
small, then the constructions in Part 1 supply the set UK,p2,δ2 using for V
the union of the closures of the balls from UK+ ∪ UK,p1,δ. Continue in an
inductive fashion consecutively for i = 3, . . . ,N to construct sets UK,pi,δi with
δi < δ chosen to be small and using for V the union of closures of the balls
from UK+ ∪ (∪m=1,...,iUK,pm,δm).

The collection UK+ ∪ (∪m=1,...,NUK,pm,δm) consists of a finite number of
balls with pairwise disjoint closure whose total volume is at most c0(δ

2+ε3).
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It follows as a consequence that the total volume of the balls in UK+ ∪
(∪m=1,...,NUK,pm,δm) is less than ε if δ is less than c−1

0 ε and if ε is less than c−1
0 .

Choose δ < c−1
0 ε and ε < c−1

0 so that the total volume of UK+ ∪
(∪m=1,...,NUK,pm,δm) is indeed less than ε. Use UK∗ to denote the collection
UK+ ∪ (∪m=1,...,NUK,pm,δm) and let VK denote a very small radius tubular
neighborhood in M of ∪p∈ΘIK,p. It follows from (10.12) that this pair meets
the requirements of the two bullets in Lemma 10.5.

Step 5. To prove that ZK is contained in a countable union of embedded
Lipshitz curves, fix for the moment n ∈ {1, 2, . . . } and let ΓK,n denote the
countable set of Lipshitz curves that is obtained from the ε = 1

n version of
the second bullet of the lemma. The set ∪n=1,2,...ΓK,n is a countable union of
embedded Lipshitz curves that contains ZK−J. Meanwhile, J is a countable
set of points and thus also contained in a countable union of embedded
Lipshitz curves.

Part 3: Lemma 10.5 proves that the subset ZK ⊂ Z has the properties
that Proposition 10.1 attributes to the whole of Z. The proof that the whole
of Z has the desired properties proceeds by downward induction on k ∈
{2, 3, . . . ,K}. This is to say that the argument proves the assertion for ZK−1,
then ZK−2, and so on. The argument for the generic induction step to go from
Zk to Zk−1 for k ∈ {2, 3, . . . ,K} differs only in notation from the argument
given below for the step from ZK to ZK−1. The argument for the latter step
is presented in lieu of an argument for the generic step to minimize the
introduction of new notation.

The lemma below states the ZK−1 analog of Lemma 10.5.

Lemma 10.6. The set ZK−1 is contained in a countable union of Lipshitz
curves. Moreover, given ε ∈ (0, 1

100r0), there is an open set in M and a finite
collection of balls in M that together cover ZK−1 and have the properties listed
below. The list uses VK−1 to denote the open set and U(K−1)∗ to denote the
collection of balls.

• The balls from U(K−1)∗ have closures are pairwise disjoint, and their
union has volume less than ε.

• The intersection of ZK−1 with VK−1 is an open set in Z consisting
of a properly embedded, finite length Lipshitz curve with finitely many
components.

Proof of Lemma 10.6. The proof has three steps. Steps 1 and 2 prove the
first two bullets of the lemma and Step 3 proves the assertion that ZK−1

is contained in a countable union of embedded Lipshitz curves. To set the
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notation, first use ε3 in lieu of ε to invoke Lemma 10.5 so as to define the sets
UK∗ and VK. Use αK to denote the the intersection of Z with VK, this being
a properly embedded Lipshitz curve. Use J now to denote the set of points
in ZK−1−ZK that are not weakly continuous. This set contains ZK−1−(ZK∪
ZK−1) and the complement in ZK−1 of the set of weakly continuous points.

Step 1. Suppose that {pi}i=1,2,... is a sequence of non-weakly continuous
points in ZK−1−ZK that converges to a point p ∈ M. If p is not in ZK−1,
then if follows from Item c) from the third bullet of Lemma 10.2 that p is in
ZK. If p is in ZK, then it can not be on αK and so it must be in a set from
UK∗. This fact and the fact that the set of non-weakly continuous points is
countable have the following implications:

(10.15) • The complement in ZK−1−ZK of its intersection with UK∗ is
compact.

• Let U ⊂ M denote a given open neighborhood of the set of
weakly continuous points in ZK−1. There are but a finite num-
ber of points in ZK−1−ZK that are not weakly continuous, not
in U and not in UK∗.

Let UK−1 denote the collection of balls from {Brp(p)}p∈ZK−1
with weakly

continuous center point. Set U = ∪B⊂UK−1
B. This set is an open cover of

the set of weakly continuous points in ZK−1. Let Θ denote the set of points
in ZK−1−ZK that are not weakly continous, not in U and not in UK∗. The
second bullet of (10.15) says that Θ is finite. It follows as a consequence
that the radii of the balls that comprise UK∗ can be increased by a factor
greater than 1 but otherwise as close to 1 as desired so that their closures
are still pairwise disjoint, and so that the boundaries of their closures are
disjoint from Θ. Make an adjustment of this sort and henceforth use UK∗ to
denote the resulting set of slightly larger balls. This can and should be done
so that this new incarnation of UK∗ with VK obey all of the requirements of
the version of Lemma 10.5 that uses ε3 in lieu of ε.

Use what is said in Step 1 to find r ∈ (0, ε) so that the set of balls with
radius r and center on the points in Θ have the following properties: The
balls from this set have pairwise disjoint closures and the closure of each ball
is disjoint from the closure of each ball in UK∗ and from the closure of αK.
Let U(K−1)+ denote this set of balls.

Step 2. The set of UK−1 ∪ U(K−1)+ ∪ UK ∪ VK gives an open cover of ZK−1.
Item a) from the third bullet of Lemma 10.2 says that ZK is closed. This
being the case, it is compact and so there exists a finite set from UK−1 that
defines with VK and the balls from U(K−1)+ ∪ UK an open cover of ZK−1.
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Denote this set from UK−1 by UK−1. Let N denote the number of balls that
comprise UK−1. Label the center points of these balls as {p1, . . . , pN}. Fix
δ > 0 again, and use the construction in Part 1 to obtain a p = p1 ver-
sion of UK−1,p,δ using for V the union of the closures of the balls from
the set U(K−1)+ ∪ UK. If δ2 ∈ (0, δ] is sufficiently small, then the con-
structions Part 1 supply a set UK−1,p2,δ2 using for V the union of the clo-
sures of the balls from U(K−1)+ ∪ UK ∪ UK−1,p1,δ. Continue in an induc-
tive fashion consecutively for i = 3, . . . ,N to construct sets UK−,pi,δi with
δi < δ chosen to be small and using the union of closures of the balls from
U(K−1)+ ∪ UK ∪ (∪m=1,...,iUK−1,pm,δm) for the set V.

The collection U(K−1)+ ∪ UK ∪ (∪m=1,...,NUK−1,pm,δm) consists of a finite
number of balls with pairwise disjoint closure whose total volume is at most
c0(δ

2 + ε3). It follows as a consequence that the total volume of the balls
in U(K−1)+ ∪ UK ∪ (∪m=1,...,NUK−1,pm,δm) is less than ε if δ is less than c−1

0 ε

and if ε is less than c−1
0 . Choose δ < c−1

0 ε and ε < c−1
0 so that this is so.

Use U(K−1)∗ to denote the collection U(K−1)+ ∪ UK ∪ (∪m=1,...,NUK−1,pm,δm)
and let VK−1 denote the union of a very small radius tubular neighborhood
of αK with a very small radius tubular neighborhood in M of ∪p∈ΘIK,p. It
follows from (10.12) that this pair meets the requirements of the two bullets
in Lemma 10.6.

Step 3. This step proves that ZK−1 is contained in a countable union of Lip-
shitz graphs. To start, invoke Lemma 10.5 to conclude that ZK is contained
in a countable union of Lipshitz curves. Lemma 10.2’s second bullet implies
that the non-weakly continuous points in ZK−1−ZK form a countable set and
so this set is also contained in a countable union of Lipshitz curves. Mean-
while, the weakly continuous points in ZK−1−ZK are in ZK−1, this being
an assertion of Proposition 9.1. Granted these observations, it is sufficient
to prove that the set of weakly continous points in ZK−1 is contained in a
countable union of Lipshitz curves.

With the preceding understood, fix n ∈ {1, 2, . . . } and define ZK−1,n as
follows: A point p is in ZK−1 if and only if it is weakly continuous and such
that rp ≥ 1

n . Lemma 10.4 asserts that the intersection of ZK−1 with any
p ∈ ZK−1,n version of Brp(p) is contained in a connected, Lipshitz graph.

As the closure of ZK−1,n is compact and so it has a finite cover by balls.
The next paragraph proves the following assertion:

(10.16) The closure of the set of weakly continuous points in ZK−1 has a
finite cover with all balls from the collection {Brp(p)}p∈ZK−1,n

.

Granted that (10.15) is true, it follows that ZK−1,n is contained in a finite
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set of Lipshitz graphs. The assertion that ZK−1 is contained in a countable
set of Lipshitz curves follows directly because ZK−1 = ∪n=1,2,...ZK−1,n.

The proof of (10.15) starts with the observation that ZK−1,n is cov-
ered by the balls that comprise the union of two collections, the first being
{Brp(p)}p∈ZK−1,n

, and the second being the collection of balls with radius
1
2n centered on the points of the boundary of the closure of Zk−1,n. This
understood, let U denote a finite cover of the closure of ZK−1,n by balls from
these two collections. Write U as UI ∪ U∂ with UI consisting of balls from
{Brp(p)}p∈ZK−1,n

and with U∂ consisting of balls with radius 1
2n and center

on the boundary of the closure of ZK−1,n. Let B ∈ U∂ denote one of the
latter and let p denote its center point. By definition, there is a sequence
{pi}i=1,2,... ∈ Zk−1,n that converges to p. If the index i is sufficiently large,
then p will have distance less than 1

4n from pi. This being the case, it follows
that B is contained entirely in Brpi

(pi) and so B can be replaced by the latter
ball. Replace each ball from the collection U∂ by a ball {Brp(p)}p∈ZK−1,n

to
obtain the desired cover of ZK−1,n.
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